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A B S T R A C T

In this article we propose two-step generalized method of moment (GMM) procedure for a
Spatial Binary Probit Model. In particular, we propose a series of two-step estimators based
on different choices of the weighting matrix for the moments conditions in the first step, and
different estimators for the variance–covariance matrix of the estimated coefficients. In the
context of a Monte Carlo experiment, we compare the properties of these estimators, a linearized
version of the one-step GMM and the recursive importance sampler (RIS). Our findings reveal
that there are benefits related both to the choice of the weight matrix for the moment conditions
and in adopting a two-step procedure.

. Introduction

Social agents are faced with decisions that are intrinsically discrete. There are several situations in which the variable that needs
o be explained takes only two different values (whether a county decides to implement a certain policy, entering the labor force,
ropping college, voting for democrats, etc.). In many of those situations, space plays a crucial role because economic agents are
ffected from the decisions taken by their neighbors. One simple example could relate to the decision to increase the police force
n a given area (e.g., a county). Of course, reasonable candidates to explain such variable would be the level of crime in the area,
he unemployment rate, the educational level, and the proportion housing units that are rented. However, it is also of interest to
onsider the decision made in neighboring areas about the commitment of increasing the police force. The explanation for this is
hat, ceteris paribus, if neighboring counties increase the police force, and a given county does not, that given county will become
ore attractive for criminals, with all the consequences that something like this bears.

Spatial limited dependent variable models have a quite long history in spatial econometrics. One of the first attempts to estimate
he binary spatial error and the spatial autoregressive models is McMillen (1992) that proposes two categories of estimators, one
ased on the EM algorithm and one derived from the spatial expansion method (Casetti, 1972).1

The GMM approach to estimate spatial binary models was first proposed by Pinkse and Slade (1998) in the context of a spatial
rror probit model. They develop test for spatial error dependence and GMM estimators to account for spatial dependence when the
estrictions are rejected. Their empirical application was focused on the evaluation of spatial patterns in retail-gasoline contracts.2
ne of the drawbacks of the GMM approach proposed by Pinkse and Slade (1998) is that it requires the inversion of an 𝑛×𝑛 matrix,
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1 The paper also contained an empirical application based on the popular Columbus crime dataset (Anselin, 1988).
2 For future reference, note that in their empirical application, they make use of a one-step GMM estimator where the weighting matrix of the moments is

et to an identity matrix.
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which is still quite an obstacle in very large data. For this reason, Klier and McMillen (2008) propose a linearized version of the
GMM put forth by Pinkse and Slade (1998). The linearization allows to estimate the model in two steps: the first step is a standard
probit (or logit) model; in the second step the linearized model is estimated by two-stage least squares method.

For binomial discrete choice models, several estimators have been proposed in addition to the GMM and the EM.3 LeSage (2000)
uggests a Bayesian estimation of the limited dependent variable spatial autoregressive model.4 Based on Vijverberg (1997) and
eron and Vijverberg (2004) introduce the so-called recursive importance sampling (RIS) estimator and show how this estimator
an be used to evaluate an 𝑛-dimensional normal probability. More recently, Billé and Leorato (2020), put forth a partial maximum
ikelihood estimator for a general spatial non-linear probit model, and perform a complete asymptotic analysis of their estimator.
inally, in the context of a Monte Carlo experiment, Calabrese and Elkink (2014) provide a comparison of the accuracy of some
f these estimators. One of their conclusions was that only the linearized version of the GMM estimator proposed by Klier and
cMillen (2008) can be used for very large samples, provided that the level of spatial correlation in the data is low.

In this paper we consider a set of two-step GMM estimators for a spatial binary probit model based on different choices of the
eighting matrix for the moment conditions in the first step, and different estimators for the variance–covariance matrix of the
stimated coefficients. To the best of our knowledge, this is the first attempt to consider two-step GMM. In the spirit of Calabrese
nd Elkink (2014), we report on a Monte Carlo experiment that compares between one- and two-step GMM estimators, the linearized
MM, and the RIS estimators.5 Results from the Monte Carlo experiment reveal that there are benefits related both to the choice of

he weight matrix for the moment conditions and in adopting a two-step procedure.
Finally, we provide an empirical application analyzing the decision to reopen after the Hurricane Katrina of a sample of firms

ocated in the New Orleans area (LeSage et al., 2011). In particular, we compare results from the GMM estimators and those reported
n the original paper. We observe that, in general, the statistical significance and the magnitude of the estimated coefficients are
ery similar.

The paper is organized as follow. In Section 2, we introduce the model specification. Section 3 deals with the description of
he GMM estimators and the RIS. The results from the Monte Carlo experiment are presented in Section 4. Section 5 contains the
mpirical illustration, while Section 6 draws conclusions and gives indications for further research.

. The model

As in Pinkse and Slade (1998), our point of departure is the spatial autoregressive specification of a binary probit model (SARB).
he structural form of the SARB model can be written in the following way:

𝐲∗𝑛 = 𝜌𝐖𝑛𝐲∗𝑛 + 𝐗𝑛𝜷 + 𝜺𝑛, 𝑖 = 1,… , 𝑛

𝐲𝑛 = 1
[

𝐲∗𝑛 > 0
]

,
(1)

here 𝐲∗𝑛 is a 𝑛 × 1 vector of latent (unobserved) continuous variable, 𝐲𝑛 is the vector of observed binary variable, and 1 [⋅] is the
ndicator function. In other words, the binary variable 𝑦𝑖,𝑛 = 1 if 1

[

𝑦∗𝑖,𝑛 > 0
]

, and zero otherwise. The matrix 𝐗𝑛 is a 𝑛 × 𝑘 matrix of

xplanatory variables whose first column is the intercept, 𝐖𝑛 is a non-stochastic 𝑛 × 𝑛 spatial weighting matrix with element 𝑤𝑖𝑗,𝑛,
nd 𝐖𝑛𝐲∗𝑛 is the spatial lag of the continuous but unobserved variable 𝐲∗𝑛 which introduces (unobserved) endogeneity; 𝜷 is a 𝑘 × 1
ector of coefficients, 𝜌 is the spatial autoregressive coefficient, and 𝜺𝑛 is the 𝑛 × 1 vector of error terms.

In line with the literature on spatial models, we make the following assumptions regarding the weighting matrix, the error terms
nd the spatial autoregressive parameter.

ssumption 1. (a) All diagonal elements of 𝐖𝑛 are zero. (b) 𝜌 ∈ (−1, 1). (c) The matrix 𝐀𝑛 =
(

𝐈𝑛 − �̄�𝐖𝑛
)

is nonsingular for all
̄ ∈ (−1, 1).

ssumption 2. The innovations
{

𝜖𝑖,𝑛 ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1
}

are normally identically distributed and satisfy E(𝜖𝑖,𝑛) = 0, E(𝜖2𝑖,𝑛) = 𝜎2,
here 0 < 𝜎2 < 𝑏. Furthermore, its moments E

(

|

|

|

𝜖4+𝛿𝑖,𝑛
|

|

|

)

exist for some 𝛿 > 0.

ssumption 3. The row and column sums of the matrix 𝐖𝑛 are bounded uniformly in absolute value by, respectively, one and
ome finite constant, and the row and column sums of the matrix 𝐀−1

𝑛 = (𝐈𝑛 − �̄�𝐖𝑛)−1 are bounded uniformly in absolute value by
ome constant.

Under Assumption 1, the reduced form of Eq. (1) can be expressed as the following latent process:

𝐲∗𝑛 =
(

𝐈𝑛 − 𝜌𝐖𝑛
)−1 (𝐗𝑛𝜷 + 𝜺𝑛

)

,

= 𝐀−1
𝑛 𝐗𝑛𝜷 + 𝐮𝑛,

(2)

3 For an exhaustive survey of methods see Fleming (2004).
4 See also LeSage et al. (2011).
5 To keep the simulation feasible, we decided to exclude from the comparison the EM algorithm (McMillen, 1992), the Bayesian approach (LeSage, 2000),

nd the recent development in maximum likelihood (Billé and Leorato, 2020).
2
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where 𝐀𝑛 = (𝐈𝑛 − 𝜌𝐖𝑛) and 𝐮𝑛 = 𝐀−1
𝑛 𝜺𝑛, so that, under Assumption 2, 𝐮𝑛 ∼ N(𝟎,𝜮𝑢), with variance–covariance matrix given by:

𝜮𝑢 = E(𝐮𝑛𝐮⊤𝑛 |𝐗𝑛,𝐖𝑛) = 𝜎2
(

𝐈𝑛 − 𝜌𝐖𝑛
)−1

[

(

𝐈𝑛 − 𝜌𝐖𝑛
)⊤

]−1
= 𝜎2(𝐀⊤

𝑛𝐀𝑛)−1. (3)

Thus, the inclusion of 𝐖𝑛𝐲∗𝑛 introduces endogeneity as well as heteroskedasticity. As standard in binary models, we need to fix 𝜎2

in the estimation procedure for identification of the parameters. Hereafter, we assume that 𝜎2 = 1. For further reference, note that
𝐲∗𝑛 ∼ N

(

𝐀−1
𝑛 𝐗𝑛𝜷,𝜮𝑢

)

.
The SARB model in (1) has several distinctive peculiarities. First, since the spatial lag of the dependent variable 𝐖𝐲∗𝑛 is correlated

with the disturbances, the SARB models suffers from endogeneity which motives the use of instrumental variables. Following Kelejian
and Prucha (1998), we use an approximation to the ideal instruments. In particular, let 𝐇𝑛 be an 𝑛 × 𝑝 matrix of non-stochastic
nstruments where 𝑝 ≥ 𝑘 + 1. The assumptions on 𝐗𝑛 and 𝐇𝑛 are the following:

ssumption 4. The regressor matrices 𝐗𝑛 have full column rank for 𝑛 large enough. Additionally, the elements of 𝐗𝑛 are uniformly
ounded in absolute value.

ssumption 5. The instrument matrices 𝐇𝑛 have full column rank 𝑝 ≥ 𝑘 + 1 for all 𝑛 large enough. Furthermore, the elements
f the matrices 𝐇𝑛 are uniformly bounded in absolute value. Additionally, 𝐇𝑛 contain at least the linearly independent columns of
𝐗𝑛,𝐖𝑛𝐗𝑛,𝐖2

𝑛𝐗𝑛).

Second, standard Maximum Likelihood (ML) estimators are also inconsistent due to the heteroskedasticity induced by spatial
ependence (Pinkse and Slade, 1998). In fact, from the reduced form in (2), we can obtain the conditional expectation of the
bserved outcome, for all 𝑖 = 1,… , 𝑛 as

E(𝑦𝑖,𝑛|𝐗𝑛,𝐖𝑛) = Pr(𝑦𝑖,𝑛 = 1|𝐗𝑛,𝐖𝑛)

= Pr
({

𝐮𝑛
}

𝑖 > −
{

𝐀−1
𝑛 𝐗𝑛𝜷

}

𝑖 |𝐗𝑛,𝐖𝑛
)

= 𝛷
(

{

𝜮𝑢
}−1∕2
𝑖𝑖

{

𝐀−1
𝑛 𝐗𝑛𝜷

}

𝑖

)

= 𝛷
(

𝑎𝑖,𝑛
)

(4)

here 𝛷(⋅) is the normal cumulative distribution function (cdf), {⋅}𝑖 is the 𝑖th element of the vector in brackets and {⋅}𝑖𝑖 is the 𝑖th
iagonal element of the matrix in brackets. Eq. (4) reveals that the probability of observing 𝑦𝑖,𝑛 = 1 is heteroskedastic and hence
LE is inconsistent and not fully efficient (Fleming, 2004).

. GMM estimators and RIS

.1. GMM estimators

Following Pinkse and Slade (1998) and Fleming (2004), this section describes the general GMM approach to estimate a SARB
robit model.6 We place particular emphasis on the difference between the one-step and the two-step GMM estimator (also known
s optimal GMM estimator). Finally, we present the linearized version of the GMM estimator (Klier and McMillen, 2008), and the
IS estimator put forth by Beron and Vijverberg (2004).

.1.1. Moment conditions
For the estimation of the SARB probit model using a GMM procedure we need population moment conditions based on the

nnovations. The main problem with the model in Eq. (1) is that the error term 𝜺𝑛 is based on unobserved dependent variables, 𝐲∗𝑛 .
or this reason, we need to rely on the concept of generalized residuals which are based on observed error terms (Cox and Snell,
968; Chesher and Irish, 1987; Gourieroux et al., 1987).

To simplify the notation, let 𝑎𝑖,𝑛 in Eq. (4) be the 𝑖th element of the following 𝑛 × 1 vector:

𝐚𝑛 = 𝐃−1
𝑛,𝜌𝐀

−1
𝑛 𝐗𝑛𝜷, (5)

here 𝐃𝑛,𝜌 is a 𝑛×𝑛 diagonal matrix with diagonal elements representing the square root of the diagonal elements of the conditional
ariance–covariance matrix of the error terms 𝐮𝑛 given in Eq. (3). Thus, the generalized residuals for spatial unit 𝑖 = 1,… , 𝑛 are (see
lso Pinkse and Slade, 1998):

�̃�𝑖,𝑛(𝜽) = 𝑢𝑖,𝑛 ⋅
[ 𝜙(𝑎𝑖,𝑛)
𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))

]

, (6)

6 Although Pinkse and Slade (1998) derive a GMM procedure for the spatial error binary model (SEMB), it is not difficult to extend their procedure to the
3

ARB model. See also Fleming (2004).
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where 𝜙(⋅) is the standard normal density function, 𝑢𝑖,𝑛 = 𝑦𝑖,𝑛 − 𝛷(𝑎𝑖,𝑛) and 𝜽 = (𝜷⊤, 𝜌)⊤ is the (𝑘 + 1) × 1 vector of population
arameters.7

The 𝑝 × 1 population moment conditions are then:

E
[

𝐡𝑖,𝑛�̃�𝑖,𝑛(𝜽)
]

= 𝟎, (7)

here 𝐡𝑖,𝑛 is a 𝑝× 1 vector of instruments such that 𝑝 ≥ 𝑘+ 1 for identification of the parameters. The sample analog in vector form
f the population moment conditions in (7) is:

𝐠𝑛(𝜽) = 𝑛−1𝐇⊤
𝑛 �̃�𝑛, (8)

here �̃�𝑛 is the 𝑛 × 1 vector of generalized residuals. These sample moments reveal several aspects that deserve to be mentioned.
irst, unlike the traditional GMM methods for linear spatial models, the sample moments in (8) require to invert 𝐀𝑛 to obtain 𝐚𝑛
s shown in Eq. (5).8 Second, the sample moments do not consider the off-diagonal elements of 𝜮𝑢.9 Thus, GMM estimators are
enerally less efficient than techniques that account for the full variance–covariance structure of the error term (see also Calabrese
nd Elkink, 2014). Finally, the 𝑛 × 𝑝 matrix of instrument is given by the independent columns of 𝐇 = (𝐗,𝐖𝐗,𝐖2𝐗,… ,𝐖𝑞𝐗) for
ome given 𝑞 (Kelejian and Prucha, 1998; Kelejian et al., 2004). The 𝑝× 𝑝 variance matrix of the moment conditions is given by10:

𝐒𝑛(𝜽) = Var
[

𝐠𝑛(𝜽)
]

,

= 𝑛−1𝐇⊤
𝑛 𝐓𝑛𝐇𝑛,

(9)

here 𝐓𝑛 is a diagonal matrix whose elements are 𝜙2(𝑎𝑖,𝑛)∕
[

𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))
]

.

.1.2. General GMM estimator
Let �̂� 𝑛 be some 𝑝 × 𝑝 symmetric positive semidefinite moment-weighting matrix such that �̂� 𝑛

𝑝
⟶ 𝜳 , then the corresponding

MM estimator is defined as:

�̂�𝑛,𝐺𝑀𝑀 = argmin
𝜽∈𝜣

𝐽𝑛(𝜽) = 𝐠⊤𝑛 (𝜽)�̂� 𝑛𝐠𝑛(𝜽), (10)

here 𝐠𝑛 is the 𝑝 × 1 vector of sample moments given in Eq. (8), and 𝜽 = (𝜷⊤, 𝜌)⊤ is the 𝑘 + 1 vector of parameters. Under certain
egularity conditions, the GMM estimator is consistent and asymptotically normally distributed with estimated variance–covariance
atrix as (see Pinkse and Slade, 1998, pag. 134):

�̂�𝑛,𝐺𝑀𝑀 = 𝑛
[(

�̂�⊤
𝑛𝐇𝑛

)

�̂� 𝑛

(

𝐇⊤
𝑛 �̂�𝑛

)]−1 [(
�̂�⊤

𝑛𝐇𝑛

)

�̂� 𝑛�̂�𝑛�̂� 𝑛

(

𝐇⊤
𝑛 �̂�𝑛

)] [(

�̂�⊤
𝑛𝐇𝑛

)

�̂� 𝑛

(

𝐇⊤
𝑛 �̂�𝑛

)]−1
, (11)

where �̂�𝑛 is 𝑛 × (𝑘 + 1) matrix of first derivatives of the generalized residuals (see Appendix B) such that:

�̂�𝑛 =
𝜕�̃�𝑛
𝜕𝜽⊤

|

|

|

|

|�̂�𝑛

, (12)

and the 𝑝 × 𝑝 matrix �̂�𝑛 is a consistent estimator of (9).

3.1.3. One-step GMM estimators
The one-step procedure estimates the model parameters based on an initial weight matrix �̂� 𝑛. Following Klier and McMillen

(2008) and Pinkse and Slade (1998), we consider two types of one-step GMM estimators. The first estimator is obtained by setting
�̂� 𝑛 =

(

𝑛−1𝐇⊤
𝑛𝐇𝑛

)−1, that is:

�̃�OS,𝐻 = argmin
𝜽∈𝜣

𝐽𝑛(𝜽) =
( 1
𝑛
�̃�⊤𝑛𝐇𝑛

)

(

𝑛−1𝐇⊤
𝑛𝐇𝑛

)−1 ( 1
𝑛
𝐇⊤

𝑛 �̃�𝑛
)

. (13)

This one-step estimator is a natural adaptation of the estimator proposed by Klier and McMillen (2008) to estimate a spatial lag
binary dependent model with a logistically distributed error term.11 The variance–covariance matrix for �̃�OS,𝐻 can be estimated as:

�̂�
(

�̃�OS,𝐻

)

=𝑛
[

�̃�⊤
𝑛𝐇𝑛

(

𝐇⊤
𝑛𝐇𝑛

)−1 𝐇⊤
𝑛 �̃�𝑛

]−1 [
�̃�⊤

𝑛𝐇𝑛
(

𝐇⊤
𝑛𝐇𝑛

)−1 �̃�𝑛
(

𝐇⊤
𝑛𝐇𝑛

)−1 𝐇⊤
𝑛 �̃�𝑛

]

×
[

�̃�⊤
𝑛𝐇𝑛

(

𝐇⊤
𝑛𝐇𝑛

)−1 𝐇⊤
𝑛 �̃�𝑛

]−1
,

(14)

7 If we let 𝑞𝑖,𝑛 = 2𝑦𝑖,𝑛 − 1, the generalized residuals can be also written as:

�̃�𝑖,𝑛 = 𝑞𝑖,𝑛 ⋅
𝜙(𝑞𝑖,𝑛 ⋅ 𝑎𝑖,𝑛)
𝛷(𝑞𝑖,𝑛 ⋅ 𝑎𝑖,𝑛)

.

e use this simplified expression for coding the procedure in the R programming language.
8 Of course, this can be very time consuming in large datasets. However, this problem can be mitigated by using some matrix approximations (see, for

xample, Santos and Proença, 2019).
9 One way to account for this problem would be to consider quadratic forms of the moment condition. While interesting, this is beyond the scope of our

aper.
10 See Appendix A.
11 The generalized residuals for the Logit model are �̃� = 𝑦 − exp(𝑎 )∕

(

1 + exp(𝑎 )
)

.

4

𝑖,𝑛 𝑖 𝑖,𝑛 𝑖,𝑛
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where the estimator for �̃�𝑛 is:

�̃�𝑛
(

�̃�OS,𝐻

)

= 1
𝑛

𝑛
∑

𝑖=1
𝐡𝑖,𝑛

[

𝜙2(𝑎𝑖,𝑛)
𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))

]

𝐡⊤𝑖,𝑛, (15)

where 𝑎𝑖,𝑛 is the 𝑖th element of Eq. (5) evaluated at �̃�OS,𝐻 .
As in Pinkse and Slade (1998), the second one-step estimator sets �̂� 𝑛 = 𝐈𝑝 yielding:

�̃�OS,𝐈 = argmin
𝜽∈𝜣

𝐽𝑛(𝜽) = 𝐠⊤𝑛 𝐠𝑛. (16)

This estimator can be viewed as an unweighted nonlinear least squares estimators in which 𝐽𝑛(𝜽) is the sum of 𝑝 squared sample
verage of the moment conditions (Cameron and Trivedi, 2005). The estimator of the variance–covariance matrix in this case
ecomes:

�̂�
(

�̃�OS,𝐈

)

=𝑛
[

�̂�⊤
𝑛𝐇𝑛𝐇⊤

𝑛 �̂�𝑛

]−1 [
�̂�⊤

𝑛𝐇𝑛�̂�𝑛𝐇⊤
𝑛 �̂�𝑛

] [

�̂�⊤
𝑛𝐇𝑛𝐇⊤

𝑛 �̂�𝑛

]−1
. (17)

Under the assumptions made, the choice of the weight matrix �̂� 𝑛 should not affect the consistency of the one-step estimators.
owever, we should observe differences in finite sample.

.1.4. Two-step GMM estimator
It is widely known that one can gain efficiency by computing two-step estimators of the form:

�̂�TS = argmin
𝜽∈𝜣

𝐽𝑛(𝜽) = 𝐠⊤𝑛 (𝜽)�̂� 𝑛𝐠𝑛(𝜽), (18)

here �̂� 𝑛 = �̃�−1𝑛 , and �̃�𝑛 is an estimate of the variance–covariance matrix 𝐒𝑛 based on either of the one-step estimator.
The step-wise procedure can be summarized as follows:

1. First, minimize the objective function (10) by choosing either �̂� 𝑛 = 𝐈𝑝 or �̂� 𝑛 = (𝑛−1𝐇⊤
𝑛𝐇𝑛)−1 to obtain �̃�OS. Note that in either

case, �̃�OS is consistent as 𝑛 → ∞ but not fully efficient.
2. Second, use �̃�OS to obtain the residuals from the first step and calculate �̃�𝑛 using Eq. (15). Set �̂� 𝑛 = �̃�−1𝑛 and minimize (18)

to obtain the final round estimate �̂�𝑇𝑆 . The estimated asymptotic variance is given by:

�̂�𝐸𝐺𝑀𝑀 = 𝑛
[

�̂�⊤
𝑛𝐇𝑛�̂�𝐇⊤

𝑛 �̂�𝑛

]−1
, (19)

where �̂� 𝑛 = �̃�−1.12 However, as pointed out by Cameron and Trivedi (2005) in finite samples the estimator in Eq. (19) might
be biased. In such case, it would be better to use Eq. (11), where �̂� 𝑛 = �̃�−1, and �̂�𝑛 is computed using Eq. (15) and �̂�TS.

.1.5. Lineralized GMM
One of the main drawback of the previous GMM estimators is that they require the inversion of the 𝑛×𝑛 matrix 𝐀𝑛 =

(

𝐈𝑛 − 𝜌𝐖𝑛
)

which can be very time consuming for large datasets. To overcome this problem, Klier and McMillen (2008) propose a linearized
version of the one-step GMM estimator around the starting point 𝜌 = 0. When 𝜌 = 0, 𝜷 is estimated consistently by standard probit
model and 𝐀−1

𝑛 = 𝐈𝑛 so that no matrices need to be inverted. Linearizing the generalized residuals around the initial estimates of 𝜽
(i.e, 𝜽0), Klier and McMillen (2008) obtain �̃�𝑖,𝑛 ≈ �̃�0𝑖,𝑛 − 𝐆𝑛(𝜽𝑛 − 𝜽0𝑛). If we define 𝜐𝑖,𝑛 = �̃�0𝑖,𝑛 + 𝐆𝑛𝜽0𝑛 − 𝐆𝑛𝜽𝑛 and letting 𝜳 𝑛 = (𝐇⊤

𝑛𝐇𝑛),
he objective function becomes 𝝊⊤𝑛𝐇𝑛

(

𝐇⊤
𝑛𝐇𝑛

)−1 𝐇⊤
𝑛 𝝊𝑛.

The steps for the linearized spatial Probit model are the following Klier and McMillen (2008, pag. 462):

1. Estimate the model by standard probit model, in which spatial autocorrelation and heteroskedasticity are ignored. The
estimated values are 𝜷0. Calculate the generalized residuals in Eq. (6) assuming that 𝜌 = 0, and the gradient terms
𝐆𝜷 = −𝜕�̃�𝑛∕𝜕𝜷 and 𝐆𝜌 = −𝜕�̃�𝑛∕𝜕𝜌.

2. The second step is a two-stage least squares estimator of the linearized model. Thus, regress 𝐆𝜷 and 𝐆𝜌 on 𝐇𝑛. The predicted
values are �̂�𝜷 and �̂�𝜌. Then regress 𝑢0 +𝐆⊤

𝜷𝜷0 on �̂� =
[

�̂�𝜷 , �̂�𝜌

]

. The coefficients are the estimated values of 𝜷 and 𝜌.

The variance–covariance matrix can be computed using the traditional White-corrected coefficient covariance matrix from the
ast two-stage least squares estimator of the linearized model.

12 Since any consistent estimate of 𝜽 can be used, an alternative is to evaluate 𝐒 at �̂� .
5
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3.2. The RIS estimator

The recursive importance sampling (RIS) was initially proposed by Beron and Vijverberg (2004) as a way to evaluate directly
he 𝑛-dimensional integral implied by the model. Let 𝝂 be distributed as a normal with mean zero and variance–covariance matrix
. The aim is to evaluate Pr[𝝂 < 𝑉 ]. Let 𝐂 be an upper-triangular matrix such that 𝐂⊤𝐂 = 𝜴−1, and let 𝜼 = 𝐂𝝂. Note that 𝜼 is
(0, 1). Additionally, we can define the matrix 𝐁 = 𝐂−1, where 𝐁 an upper triangular matrix with 𝑏𝑖𝑖 > 0 ∀𝑖. Then the upper limit

f the inequality 𝐁𝜼 < 𝑉 can be written as

𝜼𝑛 < 𝑏−1𝑛𝑛 𝑉𝑛 ≡ 𝜼𝑛0

𝜼𝑗 < 𝑏−1𝑖𝑖

[

𝑉𝑖 −
𝑛
∑

𝑗=𝑖+1
𝑏𝑖𝑗𝜼𝑖

]

≡ 𝜼𝑖0.

Let ℎ(𝜼𝑖) be a density function and let 𝐻 be the associated cumulative distribution function, and define ℎ𝑐 (𝜼𝑖) = ℎ(𝜼𝑖)∕𝐻(𝜼𝑖0)
here 𝜼𝑖 ≤ 𝜼𝑖0. Then, we can compute the following probability

𝑝 =Pr[𝝂 < 𝑉 ] = ∫

𝑉

−∞
𝜙𝑛(𝝂; 0,𝜴) 𝑑𝝂 = ∫

𝜼𝑛0

−∞
⋯∫

𝜼𝑛1,0

−∞

𝑛
∏

𝑖=1
𝜙(𝜼𝑖)𝑑𝜼1 … 𝑑𝜼𝑛

=∫

𝜼𝑛0

−∞

𝜙(𝜼𝑛)
ℎ𝑐 (𝜼𝑛)

[

∫

𝜼𝑛−1,0

−∞

𝜙(𝜼𝑛−1)
ℎ𝑐 (𝜼𝑛−1)

…
(

∫

𝜼2,0

−∞

𝜙(𝜼2)
ℎ𝑐 (𝜼2)

𝛷(𝜼1,0)ℎ𝑐 (𝜼2)𝑑𝜼2
)

…
]

ℎ𝑐 (𝜼𝑛)𝑑𝜼𝑛.

he RIS simulator can be implemented by drawing 𝑅 random vectors of 𝜼 from the distribution defined by ℎ.13 In the end, the
imulated value for 𝑝 can be obtained from the following equation:

�̂� = 1
𝑅

𝑅
∑

𝑟=1

[ 𝑛
∏

𝑖=1
𝛷(�̃�𝑖,0,𝑟)

]

. (20)

. Monte Carlo

To assess the efficiency of the estimators presented in the previous section, we perform a Monte Carlo experiment. The set up of
ur Monte Carlo is similar to the one in Calabrese and Elkink (2014). In the next subsection we describe the design of our experiment
ighlighting the data generation process and the different estimators employed. Next, we focus on the results obtained from the
onte Carlo that give valuable information for applied researchers.

.1. Monte Carlo design

The data generating process (DGP) is given by the following equation:

𝐲∗ = (𝐈 − 𝜌𝐖)−1
(

𝛽0𝒊𝑛 + 𝛽1𝐱 + 𝜺
)

,

𝐲 = 1
[

𝐲∗𝑛 > 0
]

,
(21)

where 𝒊𝑛 in an 𝑛× 1 vector of one and the elements of the vector 𝐱 are normally distributed with mean 2 and standard deviation 4.
The parameter 𝛽0 is set to 4, while 𝛽1 = −2. The error term is normally distributed with mean zero and standard deviation one. We
account for five different values for the spatial parameter 𝜌, namely, 0, 0.2, 0.4, 0.6, 0.8. We consider two sample sizes 𝑛 = 50 and
= 500 and generate 1000 replication for both sample sizes.14

The spatial weighting matrix 𝐖 is computed as in Beron and Vijverberg (2004). We first generate uncorrelated random pair of
coordinates from the uniform distributions for each 𝑖 = 1,… , 𝑛. Then, we set 𝑤𝑖𝑗 = 1 if 𝑑𝑖𝑗 < 𝑑(𝑛) and 0 otherwise, where 𝑤𝑖𝑗 is the
𝑖, 𝑗th element of 𝐖, 𝑑𝑖𝑗 is the euclidean distance between observations 𝑖 and 𝑗, and 𝑑(𝑛) is a threshold distance that depends on the
sample size. For each sample size 𝑛, the threshold distances are set so as to obtain an average of five nearest neighbors for each
observation. Finally, the row-standardized spatial weighting matrix is used to generate the matrix of instrument 𝐇 =

[

𝜾, 𝐱,𝐖𝐱,𝐖2𝐱
]

.
For each Monte Carlo sample, we compute the following estimators15:

1. �̆�LGMM: The linearized GMM estimator (LGMM).
2. �̃�OS, I: One-step GMM estimator setting the weighting-moment matrix �̂� = 𝐈𝑝 (OS-I).
3. �̃�OS, H: One-step GMM estimator setting the weighting-moment matrix to �̂� =

(

𝑛−1𝐇⊤
𝑛𝐇𝑛

)−1 (OS-H).

13 In line with the literature, in our Monte Carlo we drew samples from a normal distribution.
14 A major concern with the simulation experiment is the amount of processing time, particularly for those estimator using simulated probabilities (Beron and
ijverberg, 2004). Similarly to Calabrese and Elkink (2014), the decision of generating 1000 Monte Carlo samples was taken to keep the experiment manageable

n terms of computation time.
15 The GMM, LGMM and RIS estimators were coded by the authors using the R software environment. The functions used to estimate the models in this
aper are part of an upcoming library named spldv which, at this time, is still under development. However, a preliminary version of the library is available
6

n GitHub at the following link: https://github.com/gpiras/spldv.

https://github.com/gpiras/spldv
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Fig. 1. Boxplot for 𝜌: 𝑛 = 50.

4. �̂�TS, I: Two-step GMM estimator based on residuals from �̃�OS, I to construct the second-step weighting matrix �̂� in Eq. (18)
(TS-I).

5. �̂�TS, H: Two-step GMM estimator based on residuals from �̃�OS, H to construct the second-step weighting matrix �̂� in Eq. (18)
(TS-H).

6. �̄�RIS: The RIS estimator (RIS)

It is important to note that the GMM and the RIS estimators use as initial values of the optimization procedure the estimates
from a standard probit for the model parameters and the correlation between 𝐖𝐲 and 𝐲 as the initial value for 𝜌. All the GMM
estimators are computed using an analytical gradient (see additional material associated with the paper in Appendix B), whereas
the RIS estimator uses numerical derivatives. Furthermore, both GMM and RIS estimator use constrained optimization methods
adopting the BFGS algorithm. Unfortunately, the LGMM procedure does not allow to constrain the values of 𝜌.16

16 As suggested by a referee, one can impose the constraint −1 < 𝜌 < 1 on the post estimation of 𝜌 by applying the tilting approach of Hall and Huang (2002).
7
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Table 1
Simulation results for estimates of 𝜌: 𝑛 = 50.

LGMM OS-I OS-H TS-I TS-H RIS

𝜌 = 0
Mean bias −0.009 −0.035 −0.029 −0.027 −0.023 −0.025
Median bias −0.000 −0.019 −0.013 −0.012 −0.010 −0.008
SD 0.335 0.202 0.211 0.201 0.207 0.191
RMSE 0.335 0.205 0.213 0.203 0.208 0.192
RMSE median 0.173 0.166 0.172 0.172 0.176 0.150

𝜌 = 0.2

Mean bias −0.008 −0.043 −0.032 0.007 0.006 −0.026
Median bias 0.003 −0.018 −0.004 0.026 0.031 −0.010
SD 0.211 0.193 0.198 0.167 0.173 0.177
RMSE 0.212 0.197 0.201 0.167 0.173 0.179
RMSE median 0.171 0.167 0.175 0.134 0.132 0.166

𝜌 = 0.4

Mean bias 0.014 −0.056 −0.037 −0.015 −0.008 −0.029
Median bias 0.021 −0.022 −0.004 0.001 0.005 −0.003
SD 0.230 0.183 0.166 0.154 0.130 0.157
RMSE 0.230 0.191 0.170 0.155 0.131 0.160
RMSE median 0.193 0.115 0.116 0.102 0.101 0.115

𝜌 = 0.6

Mean bias 0.137 −0.064 −0.008 −0.040 −0.005 −0.004
Median bias 0.133 −0.019 0.002 −0.002 0.004 0.007
SD 0.264 0.239 0.109 0.228 0.095 0.106
RMSE 0.297 0.248 0.109 0.231 0.095 0.106
RMSE median 0.288 0.096 0.089 0.083 0.081 0.083

𝜌 = 0.8

Mean bias 0.499 −0.181 −0.022 −0.131 −0.016 −0.007
Median bias 0.459 −0.025 −0.000 −0.013 −0.003 0.002
SD 0.511 0.456 0.121 0.405 0.100 0.090
RMSE 0.714 0.491 0.123 0.426 0.101 0.090
RMSE median 0.663 0.089 0.052 0.072 0.053 0.051

4.2. Monte Carlo results

4.2.1. Bias and standard deviation
In presenting the Monte Carlo results we focus both on the spatial autoregressive parameter 𝜌 as well as on 𝛽1. In particular,

he tables of the results contain the Mean Bias, the Median Bias, the standard deviation (SD), the root mean square error (RMSE)
nd the root mean square error with respect to the median (RMSE Median) for both sample sizes (Tables 1–4).17 Finally, we also
ompare the size of the test on the two parameters for the estimators (Tables 5–8).

Figs. 1 and 2 graph the boxplot for different values of 𝜌 obtained from the Monte Carlo samples for the six estimators considered
n the paper. In particular, Fig. 1 refers to the smallest sample size, and Fig. 2 refers to 𝑛 = 500. A glance at Fig. 1 reveals that

the performance of the estimators varies with the value of the spatial parameter. When 𝜌 = 0, all six estimator are unbiased with
small variability (apart from few outliers). This is also evident looking at the statistics in the first panel of Table 1. Perhaps not
surprisingly, the linearized GMM has the lowest mean and median bias of −0.009 and −0.000, respectively. At the same time the
standard deviation of the LGMM is the highest among all estimators. Specifically, the SD for the LGMM is 0.335 while the RIS has
standard deviation below 0.2. As the value of 𝜌 increases, the number of outliers in the boxplot also increases. Note that, as we have
mentioned before, all the GMM and the RIS estimator use constrained optimization, while the LGMM does not. Hence the outliers
for the GMM and the RIS are values of 𝜌 within the parameter space but the LGMM gives values outside of range. Interestingly,
except for the LGMM, the variability is higher for the estimators that are based on the identity matrix as initial moment-weighting
matrix (i.e., OS-I and TS-I). For 𝜌 = 0.2 and 𝜌 = 0.4, the two-step estimators are those with the lowest mean bias and SD. Finally,
when the level of spatial autocorrelation is substantial (𝜌 = 0.6 and 𝜌 = 0.8) the TS-H and the RIS estimator perform the best both
in terms of bias and variability (SD and RMSE). One interesting point to note is that, whenever the level of spatial autocorrelation
is large, the LGMM is, by far, the estimator that performs the worse.

Moving to Fig. 2 and Table 2 that relates to 𝑛 = 500, it is evident again that for small values of the spatial parameter (𝜌 = 0
nd 𝜌 = 0.2) the performance of the six estimators is extremely similar. When 𝜌 = 0.4, the LGMM consistently over estimate the
patial autocorrelation parameter and the variability is about twice as large as the other estimators. In contrast, the GMM and RIS

17 Following Kelejian and Prucha (1998), the RMSE Median is computed as
[

bias2 + (IQ∕1.35)2
]1∕2 where bias is an absolute difference between the median of
8

he empirical distribution and the true parameter value, and IQ is an interquantile range.
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Table 2
Simulation results for estimates of 𝜌: 𝑛 = 500.

LGMM OS-I OS-H TS-I TS-H RIS

𝜌 = 0
Mean bias 0.001 −0.001 0.001 0.001 0.001 0.001
Median bias 0.004 0.000 0.002 0.002 0.002 0.002
SD 0.040 0.041 0.040 0.041 0.041 0.040
RMSE 0.040 0.041 0.040 0.041 0.041 0.040
RMSE median 0.040 0.040 0.040 0.041 0.041 0.041

𝜌 = 0.2

Mean bias −0.005 −0.004 0.001 0.001 0.001 0.001
Median bias −0.006 −0.004 0.001 0.002 0.002 0.001
SD 0.038 0.036 0.035 0.035 0.035 0.034
RMSE 0.039 0.036 0.035 0.035 0.035 0.034
RMSE median 0.041 0.037 0.034 0.035 0.035 0.034

𝜌 = 0.4

Mean bias 0.011 −0.006 −0.000 0.000 0.000 −0.000
Median bias 0.010 −0.004 0.001 0.001 0.001 −0.000
SD 0.052 0.029 0.027 0.027 0.027 0.027
RMSE 0.053 0.030 0.027 0.027 0.027 0.027
RMSE median 0.051 0.028 0.026 0.026 0.026 0.026

𝜌 = 0.6

Mean bias 0.119 −0.014 −0.001 −0.010 −0.001 −0.002
Median bias 0.120 −0.006 −0.001 −0.001 −0.000 −0.001
SD 0.077 0.102 0.020 0.115 0.020 0.020
RMSE 0.142 0.103 0.020 0.115 0.020 0.020
RMSE median 0.142 0.023 0.020 0.020 0.019 0.019

𝜌 = 0.8

Mean bias 0.482 −0.302 −0.001 −0.275 −0.001 −0.002
Median bias 0.482 −0.010 −0.001 −0.006 −0.001 −0.002
SD 0.143 0.553 0.013 0.573 0.013 0.012
RMSE 0.503 0.630 0.013 0.636 0.013 0.012
RMSE median 0.503 0.504 0.013 0.059 0.013 0.012

estimator are unbiased and presents almost the same variability at the same true experimental value 𝜌 = 0.4. For the highest value
f 𝜌 = 0.8, the GMM estimators TS-H and OS-H remain unbiased and efficient. However, the TS-I and OS-I are biased and inefficient.
learly, this last point is very relevant and it was not observed in Calabrese and Elkink (2014) simply because they only considered
he one-step GMM estimator based on the identity matrix.

The results in Tables 3 and 4 show evidence of the bias and efficiency of the estimated 𝛽1. In those two tables, a non-spatial
robit model was added as a reference point. A quick look at Table 3 reveals that, no matter the level of spatial autocorrelation,
ll the estimators are biased for the small sample size. For the most part, the estimators present a downward bias. The only two
xceptions are the positive values for the probit and LGMM when 𝜌 = 0.8.18 Interestingly, for all levels of spatial autocorrelation (less
han 𝜌 = 0.8), the two-step GMM estimators in columns five and six have the least bias. For what concern the standard deviation,
he TS-I and the TS-H record the smallest values. Summarizing the results for 𝑛 = 50, it seems almost prohibitive to estimate the
odel parameter 𝛽1 in a precise and accurate way.

The situation improves tremendously for 𝑛 = 500. While – as expected – the probit and the LGMM are still biased, the GMM
nd the RIS presents very low figures for the bias ranging from −0.045 and 0.285 (when 𝜌 is, at most, 0.6). When the spatial
utocorrelation coefficient is 0.8, only the OS-H and TS-H remain unbiased. This means that using the identity matrix to weight
he moment conditions is a sub-optimal choice that can lead to bias, particularly when the level of spatial correlation in the model
s high. Interestingly, this is also true when the focus is on the efficiency. In fact, the SD of the OS-H and TS-H is always lower
han that for OS-I and TS-I. It is important to note two additional points. First, the SD for both the probit and LGMM is consistently
ower than the one obtained with other methods. Unfortunately, those two estimators are biased when there is presence of spatial
utocorrelation. Secondly, the RIS and the OS-H and TS-H are comparable in terms of efficiency (with the RIS performing slightly
etter). At the same time though, RIS has a computational time that is way higher than the GMM, despite the fact that the GMM
mplies the inversion of a 𝑛 × 𝑛 matrix.

.2.2. Size of the test on 𝜌 and 𝛽1

18 This result has also been found by Calabrese and Elkink (2014).
9
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Fig. 2. Boxplot for 𝜌: 𝑛 = 500.

Tables 5–8 report the size of a test on 𝜌 and 𝛽1 for the two sample sizes.19 Note that those tables have nine columns. The first
three columns are the LGMM, the OS-I and OS-H. The two-step GMM estimators differ in terms of the variance–covariance matrix
employed. In particular, TS-I-A is based on the identity matrix for the first step and the variance–covariance matrix in Eq. (11). The
next two columns are based on the identity matrix for the first step, and the variance–covariance matrix in Eq. (19), where 𝐒𝑛 is
evaluated respectively, at �̃�𝑂𝑆,𝐻 (TS-I-B) or �̂�𝑇𝑆 (TS-I-C). Analogously, the last three columns are based on OS-H for the first step
and on different estimators for the variance–covariance. For the first column (TS-H-A) the variance–covariance is that in Eq. (11).
For the remaining two columns, the variance–covariance matrix is that in Eq. (19), where 𝐒𝑛 is evaluated respectively, at �̃�𝑂𝑆,𝐻
(TS-H-B) or �̂�𝑇𝑆 (TS-H-C). This is done to test whether there are improvements in efficiency when the variance–covariance matrix
is estimated with the final values of the parameter vector.

19 Note that the rejection rate in the tables are significantly different from the nominal level of 5% only if they are outside of the confidence interval
10

0.0365; 0.0635].
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Table 3
Simulation results for estimates of 𝛽1: 𝑛 = 50.

Probit LGMM OS-I OS-H TS-I TS-H RIS

𝜌 = 0
Mean bias −51.838 −53.823 −51.994 −52.056 −2.596 −2.906 −56.515
Median bias −1.022 −1.473 −1.429 −1.738 −0.839 −0.801 −3.992
SD 491.727 524.796 491.711 491.706 6.479 5.201 492.402
RMSE 494.452 527.549 494.453 494.454 6.980 5.958 495.635
RMSE median 13.018 16.047 12.958 12.938 3.250 3.141 21.713

𝜌 = 0.2

Mean bias −24.943 −26.679 −25.314 −25.553 −3.199 −3.240 −32.723
Median bias −0.208 0.003 −0.788 −1.034 −1.472 −1.321 −6.722
SD 149.922 161.306 149.861 149.864 4.417 5.361 150.683
RMSE 151.982 163.497 151.984 152.027 5.454 6.264 154.195
RMSE median 3.413 6.446 3.581 4.312 4.169 4.093 20.596

𝜌 = 0.4

Mean bias −4.604 −2.972 −5.514 −5.693 −2.959 −3.005 −14.226
Median bias 0.818 0.861 −0.247 −0.376 −2.114 −2.019 −4.977
SD 46.562 62.601 46.471 46.463 3.490 3.643 47.563
RMSE 46.789 62.671 46.797 46.810 4.575 4.722 49.645
RMSE median 1.037 1.136 1.105 1.568 4.167 4.375 13.850

𝜌 = 0.6

Mean bias −3.772 −4.127 −5.244 −5.260 −2.670 −2.500 −14.516
Median bias 1.319 1.303 0.059 −0.043 −2.007 −1.909 −4.727
SD 145.765 154.420 145.722 145.718 3.666 2.892 146.422
RMSE 145.814 154.475 145.817 145.813 4.536 3.823 147.140
RMSE median 1.342 1.334 0.793 0.984 3.443 3.476 10.455

𝜌 = 0.8

Mean bias 1.480 1.433 −1.017 −0.028 −1.639 −1.596 −8.467
Median bias 1.621 1.604 0.205 0.201 −1.283 −1.219 −3.971
SD 1.664 1.822 3.966 1.784 21.073 2.114 13.106
RMSE 2.227 2.318 4.094 1.784 21.137 2.649 15.603
RMSE median 1.626 1.611 1.042 0.806 2.583 2.359 8.376

Let us first focus on Tables 5 and 6, which refer to the spatial autocorrelation coefficient. A glance at Table 5 reveals that
or small sample sizes there is actually a problem of the size and this is particularly true for higher values of 𝜌. Contrarily to the

expectation, the two-step estimators TS-I-A and TS-H-A systematically over reject. Surprisingly, for lower-to-medium values of 𝜌,
the one-step based on the identity matrix seems to be the most reliable. It is worth noting that the TS-I-B and the TS-H-B show sizes
that, although outside of the confidence interval, are relatively close to the 5% nominal level. A final remark on Table 5 is that the
rejection rates for the LGMM when there is substantial spatial dependence are way over the nominal level.

Moving to Table 6 corresponding to the larger sample size, it is immediately evident that the estimators based on the ‘‘optimal’’
choice of weights in the first step (OS-H, TS-H-A, TS-H-B, and TS-H-C) are performing extremely well also for extreme values of the
spatial parameter. Among those, the TS-H-B is the one whose sizes are all within the confidence interval (ranging from 0.042 to
0.052). Generally, the GMM estimators based on the identity matrix in the first step show a problem of the size. Finally, consistently
with previous evidence, the figures for the size of the LGMM are way off also in larger sample sizes when the level of spatial
autocorrelation is considerable.

Tables 7 (𝑛 = 50) and 8 (𝑛 = 500) have to do with the size of a test on 𝛽1. Indeed similar consideration can be made also in
this case. Focusing on Table 7, it is evident that inference based on LGMM cannot be done unless the spatial autocorrelation in the
data is particularly moderate. The OS-H is still the one that behave best. Out of the remaining estimators (apart from TS-I-B, and
TS-H-B), their performance is overall reasonable with some values of the size less than 5% indicating under rejection. For the larger
sample size (Table 8), the two-step GMM estimators based on the ‘‘optimal’’ weighting matrix in the first step produce sizes that
are the closest to the nominal level, and almost all of them are not statistically different from 5%. It is also remarkable that the
one-step estimators fail even with small level of autocorrelation, while the two-step based on the identity matrix deteriorate only
for high level of spatial dependence.

Summarizing, our Monte Carlo results show some interesting patterns that were not noted in previous studies. First of all, the
LGMM is the estimator that presents the largest bias and higher standard deviation among all the considered estimators. This is
particularly evident when the level of spatial dependence increases in the data. Second, for what concerns the one-step GMM
estimators, the ‘‘optimal’’ GMM (OS-H) consistently outperform the estimator based on the identity matrix. To the best of our
knowledge, all previous Monte Carlo experiments only considered the one-step GMM based on the identity matrix and hence GMM
has always been deemed as worst compared to other, more efficient, estimators. Third, there is an advantage in considering two-step
estimators based on the ‘‘optimal’’ weighting matrix in the first step compare to those that are based on the identity matrix. Fourth,
11

given our Monte Carlo setup, efficiency not always improves when a two-step estimator is adopted, particularly for the small sample
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Table 4
Simulation results for estimates of 𝛽1: 𝑛 = 500.

Probit LGMM OS-I OS-H TS-I TS-H RIS

𝜌 = 0
Mean bias −0.089 0.145 −0.070 −0.045 −0.107 −0.105 −0.119
Median bias −0.038 0.112 −0.035 −0.011 −0.053 −0.049 −0.063
SD 0.332 0.881 0.372 0.374 0.342 0.341 0.347
RMSE 0.344 0.892 0.379 0.377 0.359 0.357 0.367
RMSE median 0.296 0.590 0.354 0.337 0.307 0.308 0.306

𝜌 = 0.2

Mean bias 0.421 0.426 0.063 0.166 −0.121 −0.115 −0.114
Median bias 0.447 0.434 0.094 0.201 −0.060 −0.056 −0.053
SD 0.211 0.390 0.310 0.316 0.362 0.360 0.356
RMSE 0.471 0.577 0.316 0.357 0.381 0.378 0.374
RMSE median 0.490 0.534 0.304 0.345 0.316 0.314 0.320

𝜌 = 0.4

Mean bias 1.058 0.976 0.193 0.200 −0.103 −0.098 −0.016
Median bias 1.068 0.978 0.217 0.236 −0.052 −0.045 0.036
SD 0.104 0.149 0.303 0.356 0.369 0.365 0.358
RMSE 1.063 0.988 0.359 0.408 0.383 0.378 0.358
RMSE median 1.072 0.987 0.359 0.394 0.328 0.320 0.300

𝜌 = 0.6

Mean bias 1.432 1.377 0.285 0.236 −0.217 −0.143 0.136
Median bias 1.437 1.385 0.327 0.288 −0.086 −0.085 0.175
SD 0.057 0.072 0.501 0.335 1.412 0.404 0.324
RMSE 1.433 1.379 0.576 0.410 1.429 0.428 0.352
RMSE median 1.438 1.387 0.423 0.419 0.363 0.357 0.337

𝜌 = 0.8

Mean bias 1.682 1.654 −3.129 0.340 −3.346 −0.198 0.565
Median bias 1.684 1.658 0.263 0.383 −0.394 −0.049 0.604
SD 0.031 0.037 6.335 0.327 217.823 0.666 0.283
RMSE 1.682 1.655 7.066 0.472 217.849 0.694 0.632
RMSE median 1.684 1.658 5.286 0.483 7.541 0.490 0.661

Table 5
Rejection rates for 𝜌: 𝑛 = 50.

LGMM OS-I OS-H TS-I-A TS-I-B TS-I-C TS-H-A TS-H-B TS-H-C

𝜌 = 0 0.026 0.078 0.091 0.163 0.111 0.187 0.164 0.105 0.181
𝜌 = 0.2 0.035 0.060 0.080 0.143 0.078 0.159 0.138 0.079 0.163
𝜌 = 0.4 0.079 0.035 0.049 0.104 0.057 0.133 0.104 0.064 0.123
𝜌 = 0.6 0.151 0.056 0.035 0.113 0.048 0.150 0.093 0.042 0.117
𝜌 = 0.8 0.420 0.140 0.027 0.124 0.063 0.195 0.065 0.031 0.132

Table 6
Rejection rates for 𝜌: 𝑛 = 500.

LGMM OS-I OS-H TS-I-A TS-I-B TS-I-C TS-H-A TS-H-B TS-H-C

𝜌 = 0 0.048 0.046 0.040 0.056 0.052 0.056 0.056 0.052 0.056
𝜌 = 0.2 0.046 0.039 0.038 0.062 0.051 0.062 0.063 0.046 0.063
𝜌 = 0.4 0.081 0.028 0.033 0.056 0.040 0.056 0.057 0.044 0.057
𝜌 = 0.6 0.518 0.033 0.040 0.076 0.048 0.079 0.068 0.050 0.068
𝜌 = 0.8 0.992 0.379 0.037 0.356 0.322 0.449 0.082 0.042 0.083

Table 7
Rejection rates for 𝛽1: 𝑛 = 50.

LGMM OS-I OS-H TS-I-A TS-I-B TS-I-C TS-H-A TS-H-B TS-H-C

𝜌 = 0 0.014 0.024 0.043 0.020 0.031 0.139 0.028 0.052 0.154
𝜌 = 0.2 0.053 0.042 0.052 0.025 0.046 0.102 0.031 0.052 0.138
𝜌 = 0.4 0.269 0.045 0.052 0.020 0.029 0.135 0.020 0.030 0.137
𝜌 = 0.6 0.762 0.070 0.042 0.026 0.019 0.121 0.015 0.019 0.122
𝜌 = 0.8 0.966 0.159 0.057 0.065 0.060 0.117 0.030 0.032 0.104
12
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Table 8
Rejection rates for 𝛽1: 𝑛 = 500.

LGMM OS-I OS-R TS-I-R TS-I-E TS-I-E2 TS-R-R TS-R-E TS-R-E2

𝜌 = 0 0.056 0.025 0.020 0.047 0.050 0.047 0.047 0.040 0.047
𝜌 = 0.2 0.266 0.044 0.083 0.037 0.019 0.038 0.036 0.019 0.036
𝜌 = 0.4 0.993 0.122 0.171 0.047 0.029 0.047 0.046 0.031 0.046
𝜌 = 0.6 1.000 0.192 0.160 0.056 0.030 0.069 0.048 0.029 0.050
𝜌 = 0.8 1.000 0.493 0.184 0.314 0.293 0.358 0.046 0.038 0.046

size. For what concerns the size of the test for 𝛽1 when 𝑛 = 50, our results indicates that the OS-H is the only estimator that has
izes within the confidence interval for all values of 𝜌. However, when the sample size increases the two-step GMM estimators based

on a ‘‘optimal’’ weighting matrix in the first step are generally very close to the 5% nominal level (apart for a few values that are
outside the confidence interval).

5. Empirical application

In this section, we provide an empirical application using LeSage et al. (2011)’s dataset. LeSage et al. (2011) analyze the
decision to reopen for a sample of (slightly less than) seven hundred firms in the aftermath of Hurricane Katrina on major business
thoroughfares in New Orleans. They assume that the decision to reopen is likely to depend on decisions made by neighboring firms.
Thus, the model proposed has the following SAR structure:

𝑦∗𝑖 = 𝜌
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑦

∗
𝑗 + 𝐱⊤𝑖 𝜷 + 𝜖𝑖, 𝑖 = 1,… , 𝑛 (22)

where 𝑦∗𝑖 denotes the propensity of reopening the establishment 𝑖 at same point in time after the disaster; ∑𝑛
𝑗=1 𝑤𝑖𝑗𝑦∗𝑗 captures the

propensity of reopening for the neighbors of unit 𝑖; 𝐱𝑖 is a 𝑘× 1 vector of explanatory variables; and 𝜖𝑖 is the error term assumed to
be 𝜖𝑖 ∼ N(0, 1).

The propensity to be open for each firm depends on the difference in profits 𝑦∗𝑖 = 𝜋1𝑖 − 𝜋0𝑖, for 𝑖 = 1,… , 𝑛 where 𝜋1𝑖 represents
profits in the open state and 𝜋𝑖0 in the closed state. The link between the observed choice made by the firm, 𝑦𝑖 and the unobserved
propensity to be open is

𝑦𝑖 =

{

1 if 𝑦∗𝑖 = 𝜋1𝑖 − 𝜋0𝑖 ≥ 0,
0 if 𝑦∗𝑖 = 𝜋1𝑖 − 𝜋0𝑖 < 0.

(23)

LeSage et al. (2011) use different time horizons to create the dependent variable. Specifically, the dependent variable equals 1 if
the firm reopened 3, 6 and 12 months after the hurricane. The spatial weight matrix 𝐖 is constructed using the 15-nearest neighbors
for each firm.20 The main covariates are the flood depth (measured in feet) at the location of the firm, the logarithm of median
income for the census block group in which the firm was located, two dummy variables indicating small and large size firms, with
medium size firms representing the omitted category, two dummy variables indicating low and high socio-economic class of the
store’s buyers and two dummy variables for type of store ownership, one for sole proprietorship and the other for national chains,
with regional chains being the omitted category.

Table 9 shows the results using as dependent variable whether the firm reopened within the 0–6 months time horizon. Each
column presents the estimates for different estimation methods. For the GIBBS estimator, we show the posterior mean and the
standard deviation in parentheses. For the rest of the estimators the standard errors are reported. The RIS estimator was computed
using 1000 draws, whereas the GIBBS estimator was computed using 1000 MCMC. All GMM estimators use 𝐇 =

[

𝐗,𝐖𝐗,𝐖2𝐗
]

as
instruments.

In terms of the covariates, we observe some differences in terms of magnitude of the point estimates and their significance across
estimators. Flood depth is significant across all the estimator, except for LGMM and OS-I which are not significant at the traditional
level. The logarithm of median income is only significant for the probit estimator. Other things equal, this would indicate that this
variable is capturing some sort of spatial dependency of the propensity to reopen across firms. Small size is negative, but only slightly
significant for the TS GMM estimators. Firms oriented to low status consumers are on average less likely to be opened than those
oriented to medium status consumers for all the estimators. This variable is not significant only when using the OS-I estimator. The
spatial autoregressive coefficient is positive and significant across all estimators suggesting a positive spatial dependence in firms’
decisions regarding open-closed status. Thus, firms nearby exhibit similar decisions outcomes regarding reopening. As expected, the
higher value is obtained when the LGMM is used, whereas the other estimators yield more similar values.

In general, our results are in line with those reported by Calabrese and Elkink (2014), but we show that the TS point-estimates
are closer to those more efficient estimates (such as the RIS and GIBBS estimators) which can be beneficial if the sample size is
large.

20 The appropriate number of neighbors was found using the deviance information criterion (LeSage et al., 2011, pag. 1057).
13
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Table 9
SARB estimates 0–6 months time horizon.
Source: Data from LeSage et al. (2011).

Probit RIS GIBBS LGMM OS-I OS-H TS-I-A TS-I-B TS-H-A TS-H-B

Constant −8.327** −3.198 −2.877 2.177 −8.331 −1.346 −1.122 −1.122 −1.294 −1.294
(2.792) (2.716) (2.341) (4.528) (6.636) (1.213) (0.957) (0.901) (1.119) (1.121)

Flood depth −0.261*** −0.106** −0.106*** 0.026 −0.084 −0.077** −0.059** −0.059** −0.069** −0.069**
(0.034) (0.037) (0.032) (0.105) (0.056) (0.031) (0.021) (0.021) (0.027) (0.027)

Log(Median income) 0.886** 0.335 0.302 −0.226 0.840 0.159 0.137 0.137 0.153 0.153
(0.273) (0.268) (0.230) (0.469) (0.664) (0.122) (0.095) (0.090) (0.112) (0.113)

Small size −0.128 −0.134 −0.094 −0.161 −0.215 −0.212 −0.242* −0.242* −0.245* −0.245*
(0.144) (0.157) (0.154) (0.121) (0.142) (0.130) (0.131) (0.129) (0.129) (0.129)

Large size −0.456 −0.509 −0.403 −0.410* −0.447 −0.411 −0.393 −0.393 −0.415 −0.415
(0.295) (0.463) (0.315) (0.243) (0.333) (0.298) (0.298) (0.289) (0.295) (0.296)

Low status customers −0.513** −0.342** −0.336** −0.311** −0.202 −0.351** −0.291** −0.291** −0.313** −0.313**
(0.156) (0.171) (0.154) (0.155) (0.190) (0.129) (0.099) (0.097) (0.118) (0.117)

High status customers 0.086 0.035 0.039 0.058 0.020 −0.001 −0.034 −0.034 0.008 0.008
(0.150) (0.163) (0.150) (0.124) (0.137) (0.123) (0.118) (0.116) (0.120) (0.120)

Sole proprietorship 0.312* 0.363* 0.333* 0.302* 0.373** 0.238 0.207 0.207 0.239 0.239
(0.182) (0.189) (0.175) (0.162) (0.177) (0.158) (0.151) (0.147) (0.155) (0.155)

National chain 0.154 0.275 0.294 0.213 0.178 −0.231 −0.560 −0.560 −0.341 −0.341
(0.347) (0.574) (0.393) (0.267) (0.414) (0.389) (0.399) (0.379) (0.389) (0.388)

𝜌 0.624*** 0.586*** 1.028** 0.584** 0.752*** 0.843*** 0.843*** 0.782*** 0.782***
(0.126) (0.076) (0.369) (0.283) (0.131) (0.099) (0.097) (0.120) (0.120)

N 673 673 673 673 673 673 673 673 673 673

*Significance: 𝑝 < 0.1.
**Significance: 𝑝 < 0.05.
***Significance: 𝑝 < 0.001.

6. Conclusions

This paper dealt with two-step GMM estimators for spatial binary probit model. These estimators were based on different choices
of the weighting matrix for the moment conditions in the first step, and different estimators for the variance–covariance matrix of
the estimated coefficients. The Monte Carlo experiment comparing one- and two-step GMM estimators, the linearized GMM, and
the RIS estimators offered interesting results for potential applications in the area. In particular, the results highlighted that there
are benefits related both to the choice of the weight matrix for the moment conditions and in adopting a two-step procedure. The
empirical application based on the firm’s decision to reopen after the event of the Hurricane Katrina in New Orleans showed that
the results obtained from the two-step GMM estimator are in line with the RIS and GIBBS results. Finally, as a possible extension,
one could consider GMM estimator based not only on linear but also on quadratic moments to exploit the entire structure of the
variance–covariance matrix.
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Appendix A. Derivation of 𝐒
14

Since E(𝑢𝑖,𝑛) = 0 and Var(𝑦𝑖,𝑛 −𝛷(𝑎𝑖,𝑛)) = 𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛)), the variance for the generalized residuals in Eq. (6) is:
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Var(�̃�𝑖,𝑛) = E(�̃�2𝑖,𝑛),

= E

([

𝜙(𝑎𝑖,𝑛)2 ⋅
[ 𝑦𝑖,𝑛 −𝛷(𝑎𝑖,𝑛)
𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))

]2])

,

= E

(

[ 𝜙(𝑎𝑖,𝑛)
𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))

]2

E𝑦𝑖,𝑛|𝐱𝑖,𝑛

(

{

𝑦𝑖,𝑛 −𝛷(𝑎𝑖,𝑛)
}2

|𝐱𝑖,𝑛
)

)

,

= E

(

[ 𝜙(𝑎𝑖,𝑛)
𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))

]2

𝛷(𝑎𝑖,𝑛)
(

1 −𝛷(𝑎𝑖,𝑛)
)

)

,

=
𝜙(𝑎𝑖,𝑛)2

𝛷(𝑎𝑖,𝑛)(1 −𝛷(𝑎𝑖,𝑛))
.

(A.1)

Then,

Var
(

𝐇⊤
𝑛 �̃�𝑛

)

= 𝐇⊤
𝑛 Var(�̃�𝑛)𝐇𝑛,

= 𝐇⊤
𝑛 𝐓𝑛𝐇𝑛,

here 𝐓𝑛 is a diagonal matrix whose elements are given by (A.1).

ppendix B. Derivation of 𝐆

In this section we drop the subscript 𝑛 to simplify the notation. Let the generalized residuals given by:

�̃� = 𝐪 ⋅
𝜙(𝐪 ⋅ 𝐚)
𝛷(𝐪 ⋅ 𝐚)

, (B.1)

where 𝐚 is given in Eq. (5) and 𝐪 = 2 ⋅ 𝐲− 𝒊𝑛 where 𝒊𝑛 is an 𝑛-vector of ones. Taking the derivative of Eq. (B.1) with respect to 𝜷, we
obtain:

𝜕�̃�
𝜕𝜷⊤ = 𝐪2 ⋅

[

𝜙′(𝐪 ⋅ 𝐚) ⋅𝛷(𝐪 ⋅ 𝐚) − 𝜙(𝐪 ⋅ 𝐚)2

𝛷(𝐪 ⋅ 𝐚)2

]

⋅ 𝐃−1
𝜌 𝐀−1

𝜌 𝐗, (B.2)

where 𝜙′(𝑧) = −𝑧𝜙(𝑧). Taking the derivative of Eq. (B.1) with respect to 𝜌, we obtain:

𝜕�̃�
𝜕𝜌

= 𝐪2 ⋅
[

𝜙′(𝐪 ⋅ 𝐚) ⋅𝛷(𝐪 ⋅ 𝐚) − 𝜙(𝐪 ⋅ 𝐚)2

𝛷(𝐪 ⋅ 𝐚)2

]

⋅
𝜕𝐚
𝜕𝜌

,

where:
𝜕𝐚
𝜕𝜌

=
[

𝐀−1
𝜌 𝐖𝐚 − 𝐃−1

𝜌

[

𝜕𝐃
𝜕𝜌

]

𝐚
]

, (B.3)

and:
𝜕𝐃𝜌

𝜕𝜌
=

𝜕 diag(𝝈𝐮)
𝜕𝜌

= 1
2
𝐃−1
𝜌 diag

[(

(𝐀⊤
𝜌𝐀𝜌)−1

[

𝐀𝜌 + 𝐀⊤
𝜌

]

𝐖(𝐀⊤
𝜌𝐀𝜌)−1

)]

.
(B.4)

If 𝐀𝜌 is symmetric, then:

𝜕𝐃𝜌

𝜕𝜌
= 𝐃−1

𝜌 diag(𝐀−1
𝜌 𝐖𝐀−1

𝜌 𝐀−1
𝜌 ). (B.5)
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