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A B S T R A C T   

This paper presents a random utility maximization model for individuals selecting discrete 
quantities from a set of n alternatives. Multiple alternatives with positive quantities may be 
selected. Diminishing marginal utility to quantity of each alternative is modeled via order sta-
tistics of independent Gumbel random variables. The model is parsimonious and tractable, 
admitting closed-form expressions for choice probabilities. As such, the model is amenable to 
maximum likelihood estimation of structural parameters from observed choices. 

Probability functions recover binary logit probabilities under binary choice and a maximum 
quantity of one unit, and probability is monotonic in the quantity of each alternative. The 
monotonic property likely restricts the application of the model to a narrow range of settings. The 
property is a manifestation of a recursive relationship among Gumbel order statistic probabilities. 
This relationship and related properties may lead to new models for capturing important com-
plexities in a tractable manner.   

1. Introduction 

The literature on multiple discrete choice (MDC) with continuous quantity decisions is extensive. The literature on MDC with 
discrete quantity decisions is not. This can be at least partially explained by tractability challenges that arise with the requirement of 
discrete quantities. 

For many real-world applications that exhibit discrete quantity choices, a continuous decision variable can be a reasonable 
approximation. This is more likely to be case in applications where observed choice quantities tend to be relatively large. For other 
settings, such as shopping where consumers tend to purchase a few units of several products, the continuous approximation may be 
problematic. 

Gallego and Wang (2020) propose a tractable formulation for analyzing MDC models with discrete quantities called the threshold 
utility model (TUM). TUM specifies how alternatives are selected at a choice event. TUM underlies MDC models with continuous 
quantity decisions and includes all generalized extreme value models (McFadden 1978) as a special case. 

In this paper, I present a novel modeling strategy (Section 4) that defines random marginal utilities as differences between Gumbel 
order statistics. Order statistics capture diminishing marginal utility to consumption. I present properties related to Gumbel order 
statistics and use these properties to derive choice probability expressions for this model within a TUM framework (Section 6). 
Included is a theorem showing that a property of the difference of Gumbel random variables extends to a form of conditional Gumbel 
order statistics. This result is one key to obtaining closed-form expressions for choice probabilities. The characterizations of Gumbel 
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order statistics in this paper may have implications for other application areas. I briefly discuss parameter estimation and normative 
analysis, then conclude with a summary and reflection. Proofs are in the appendix. 

2. Quantity decisions as nonnegative continuous variables 

2.1. General model 

Individual j from a population selects quantities among n alternatives. Let uij(xi) denote individual j utility from xi ≥ 0 units of 
alternative i. Function uij(xi) is concave and increasing for all i and j. Individual j’s total utility as a function of continuous quantity 
vector x = (x1, …., xn) is 

∑n
i=1uij(xi), i.e., utility is additively separable in the alternatives. 

Individual j chooses x to maximize total utility subject to an upper limit on the total quantity selected, denoted Bj: 

max
x≥0

{
∑n

i=1
uij(xi) :

∑n

i=1
xi ≤Bj

}

(1)  

The corresponding Lagrangian is 

Lj
(
x, λj

)
=
∑n

i=1
uij(xi) + λj

(

Bj −
∑n

i=1
xij

)

If uij are differentiable and the constraint is binding, then marginal utility at quantity xi is Δuij(xi) = uij
′

(xi) and at optimal solution (x*, 
λj) = argmax

x,λj

L(x,λj), 

Δuij
(
x*

i

)
= λj for all x*

i > 0, Δuij(0) ≤ λj for all x*
i = 0,

∑n

i=1
x*

i = Bj (2)  

The value of λj represents the individual’s threshold marginal utility in the utility maximization problem; for any i satisfying Δuij(0)
>λj, the value of xi is increased until marginal utility matches the threshold λj. 

From a microeconomic decision-making perspective, the decision model given in (1) can be viewed as a problem in the second stage 
of a consumer’s two-stage budgeting process proposed by Strotz (1957). In the first stage, an individual allocates total expenditures for 
an upcoming period across groups of products (e.g., food, clothing, recreation, etc.). In the second stage, the individual selects the 
quantities of products within each group. For example, Hausman et al. (1995) apply two-stage budgeting in an empirical estimation of 
recreation choice; individuals decide the total number of recreational trips (for an upcoming period) in the first stage, then choose the 
specific activities in the second stage. 

The two-stage budgeting process can be formalized as an iterative process wherein feedback from the previous cycle informs budget 
allocation in the next period. Gorman (1959) identifies necessary and sufficient conditions for which the first-stage allocation decision 
only requires price indices for each product group (i.e., conditions under which detailed product prices are not needed for the 
first-stage decision). A sufficient condition, for example, is additive separability of total utility across product groups (e.g., if there a N 
product groups, total utility = U1(⋅) + … + UN(⋅) where Ui is the utility function of product group i). Gorman (1959) shows that errors 
in an iterative budgeting cycle are small if price changes from one period to the next are small. 

2.2. Multiple discrete-continuous extreme value model 

Bhat (2005) proposes the multiple discrete-continuous extreme value (MDCEV) model (for recent discussions of MDCEV extensions 
and applications see, e.g., Bhat et al., 2020; Palma and Hess 2020; Saxena et al., 2020). Because x is continuous and uij are continuous, 
increasing, differentiable functions, the budget constraint is binding, which implies  

xi > 0 for some i ∈ {1, …, n}                                                                                                                                                      (3) 

For each individual. This is not restrictive, e.g., if x = 0 among alternatives 1 through n is possible, then an alternative 0 corresponding 
to not selecting 1 through n can be introduced to the choice set. 

MDCEV is appealing because (1) it admits closed-form probabilities for choice decisions among a population of individuals and (2) 
it reduces to the widely accepted multinomial logit (MNL) choice probability if only one alternative is selected. I summarize this model 
below. 

The utility of quantity xi of alternative i of a randomly selected individual from the population is 

ũi(xi)= eai+̃εi (bi + xi)
αi  

where ε̃i are iid Gumbel random variables that capture idiosyncratic (unknown to the researcher) preferences of individuals. The 
remaining parameters, ai, bi, αi reflect observed characteristics of alternative i utility, and αi ∈ (0, 1] to reflect positive and diminishing 
marginal utility to quantity. 
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Note that for realization εi of ε̃i, Δui(xi) = eai+εi+ln(αi(bi+xi)
αi − 1

). Assuming the same Lagrange multiplier λ among individuals in the 
population, optimal x* satisfies 

ai + εi + ln(αi)+ (αi − 1)ln
(
bi + x*

i

)
= ln λfor all x*

i > 0  

ai + εi + ln(αi) + (αi − 1)ln(bi)〈ln λ for all x*
i = 0.

Define 

vi(xi)= ai + ln(αi) + (αi − 1)ln(bi + xi)

v0 = ln λ  

x̃ = (x̃1, ..., x̃n) = quantity choice vector for a randomly selected individual from the population.

Then the fraction of the population that selects quantity vector x = (x1, …, xk, 0, …, 0) where xi > 0 for i = 1, …, k and k ∈ {1, …, n} is 

P[x̃= x] =P[v1(x1)+ ε̃1 = v0, ..., vk(xk)+ ε̃k = v0, vk+1(0)+ ε̃k+1 < v0, ..., vn(0)+ ε̃n < v0]

(Due to (3), P[x̃ = 0] = 0.). Since ̃εi are iid, P[x̃= x] can be expressed as a product of probabilities, i.e., 

P[x̃= x] =

(
∏k

i=1
P[̃εi = v0 − vi(xi)]

)(
∏n

i=k+1
P[̃εi < v0 − vi(0)]

)

Substituting Gumbel probabilities into the above, normalizing, and simplifying yields 

P[x̃= x] =

(
∏k

i=1

1 − αi

bi + xi

)(
∑k

i=1

bi + xi

1 − αi

)

⎛

⎜
⎜
⎜
⎝

∏k

i=1
evi(xi)

(
∑n

j=1
evj(xj)

)k

⎞

⎟
⎟
⎟
⎠
(k − 1)! (4)  

(Bhat 2005). If k = 1, then (4) reduces to the form of MNL choice probability, i.e., 

P[x̃=(x1, 0, ..., 0)] = ev1(x1)

(
∑n

j=1
evj(xj)

)− 1

(5)  

The closed-form expression for choice probabilities allows for efficient estimation of utility function parameters, e.g., via maximum 
likelihood estimation (MLE) methods. 

3. Discrete quantity choices 

3.1. Adaptation of classic discrete choice models 

One alternative for modeling multiple discrete choice with discrete quantities is the MNL model with a choice set that includes all 
combinations of quantity decisions (Train 2009). For example, if m = n = 2, then each individual selects one of (1 + m)n = 9 alter-
natives corresponding to X = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. The MNL-based model has the advantage of 
simple probability expressions. However, the model has the disadvantage of overfitting when estimating the parameters from the data 
when m is not small, or when observed data cover only a fraction of the quantity-choice set. The utilities associated with alternative i =
1, …, n have m + 1 parameters, one for each possible discrete quantity (and (m + 1)n – 1 parameters in total, after normalizing a 
parameter to value 1). For comparison, MDCEV has up to three parameters (i.e., ai, bi, αi) for each ui function, reflecting a parsimonious 
relationship governing marginal utility. This observation motivates exploration of alternatives to the above MNL-based model that 
explicitly account for discrete quantity decisions. 

The next section considers the special case where the quantity available in any alternative is limited to one. The properties and 
intuition associated with this special case provide a foundation for generalized models in subsequent sections. 

3.2. Binary quantity decisions 

In this section and the remainder of the paper, I present model elements in a manner that allows for two interpretations of the set of 
choice alternatives: (1) including an outside option against which the utilities of inside options are compared, (2) not including an 
outside option for comparison. I clarify the distinction between these interpretations after introducing necessary background and 
notation. 

There are n alternatives. Each alternative i for i = 1, …, n is either selected or not selected, i.e., quantity decisions are binary. Let 
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Ũi = ũi − ũ0, i = 1,…, n  

denote the (net) utility of alternative i where ũi for i = 0, 1, …, n are random variables (model primitives). 
At each choice event, an individual selects the alternatives with the highest utilities subject to a constraint that, on average, the 

number of alternatives selected at each event is no more than B. The problem can be expressed as 

max
λ≥0

{
∑

i:̂x(λ,Ũi)=1

E[Ũi] :
∑n

i=1
E[x̂(λ, Ũi)] ≤B

}

(6)  

where x̂(λ,Ui) = 1 if Ui ≥ λ; otherwise x̂(λ,Ui) = 0. Note that x̂(λ,Ui) is consistent with the decision rule given in (2). The problem is 
referred to as the threshold utility model in Gallego and Wang (2020).1 

If 
∑n

i=1E[Ũi] ≤ B, then the constraint is nonbinding and the threshold is λ = 0; otherwise the threshold λ is the solution to 

∑n

i=1
E[x̂(λ, Ũi)]=B (7)  

The probability that alternative i is selected is 

P[̃xi = 1] = P[Ũi ≥ λ], i= 1,…, n. (8)  

If ̃ui = ai + ε̃i, i = 0, 1, …, n where ̃εi are iid Gumbel random variables (normalized with location parameter 0 and scale parameter 1), 
then the choice probabilities have the following binary logit form: 

P[̃xi = 1] = P[̃ε0 − ε̃i ≤ ai − a0 − λ] =
eai − a0 − λ

1 + eai − a0 − λ, i= 1,…, n. (9) 

Note that Ũi can be interpreted as the utility of alternative i. In this case, an individual selects among n alternatives; characteristics 
of any outside option are not relevant. Alternatively, one may interpret ũi as the utility of inside option i that is compared against the 
best outside option with utility ̃u0 when an individual makes choice decisions; under this interpretation, alternative i is not selected if 
the utility does not exceed the outside option as shown in (8). Consideration of a no-purchase option within a choice model is relatively 
commonplace in the literature and this interpretation may be useful for some applications. For example, a firm interested in estimating 
parameters of a choice model will likely have data on choice decisions of its own products and may be able to develop reasonable 
estimates of market size. However, the firm is unlikely to have access to choice data on competitor products. In this case, it may be 
convenient to recognize the best outside option in the model. It is important to emphasize that this approach to estimation requires an 
implicit assumption on consumers’ microeconomic decision-making model: consumers view the firm’s offerings within the product 
category as a group that warrants its own constraint on choice decisions (see (6)), e.g., competitor products, if considered for selection, 
fall into a separate group. 

One might infer from (8) or (9) that the model is not appropriate for normative analysis, e.g., not capturing how changes in one 
alternative may affect choice probabilities of other alternatives. However, as with MDCEV, interactions are captured through the 
relationship between the threshold parameter and B. Furthermore, normative analysis of the model under Gumbel error terms is 
relatively tractable. For example, let ai = (ai1, ..., aiM) denote the vector of predictors for alternative i. Let α = (α1, …, αM) denote the 
utility coefficient vector estimated from the data, e.g., αTai is an estimate of ai – a0 – λ in (9) for i = 1, …, n. Consider a change in 
attribute l of alternative i from ail to ail + Δil. If one accepts an assumption that the value of B remains stable as changes in alternatives 
are introduced (or can be predicted), then the updated choice probabilities are 

P
[
x̃j = 1

]
=

eαT aj+αlΔil I(j=i)

eΔλ + eαT aj+αlΔil I(j=i), j= 1,…, n  

where I(⋅) in an indicator function and Δλ is the solution to 

∑n

j=1

eαT aj+αlΔil I(j=i)

eΔλ + eαT aj+αlΔil I(j=i) =B (10)  

While Δλ cannot be expressed in closed-form, the left-hand side of (10) is decreasing in Δλ, and thus can be efficiently obtained via 
bisection search. 

1 A more general formulation allows the threshold to be different for each alternative, i.e., maximize over λ = (λ1, …, λn) instead of scalar λ. 
Gallego and Wang (2020, Theorem 1) show that the optimal solution is a scalar, i.e., λi = λ for all i. 
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3.3. Quantity decisions as nonnegative integers 

Up to m units of each alternative may be selected where m > 1. For quantity x ∈ {1, …, m}, let Δũi(x) = ũi(x) − ũi(x − 1) where ̃ui(0): 
= 0 for i = 1, …, n. The random marginal (net) utility of the xth unit of alternative i is Δũi(x) − ũ0. The xth unit of alternative i will not 
be selected if marginal utility is negative, i.e., if Δũi(x) − ũ0 < 0. Note that 

∑x
k=1(Δũi(k) − ũ0) is the total gain in utility from each 

additional unit of alternative i up to x units. The threshold optimization problem can be expressed as 

max
λ≥0

{
∑n

i=1

∑m

x=1
E[Δũi(x) − ũ0|Δũi(x) − ũ0 ≥ λ]P[Δũi(x) − ũ0 ≥ λ] :

∑n

i=1

∑m

x=1
P[Δũi(x) − ũ0 ≥ λ] ≤B

}

The probability that x units of alternative i are selected by a random individual in the population is 

P[̃xi = x] =P[̃xi ≥ x] − P[̃xi ≥ x+ 1] = P[Δũi(x) − ũ0 ≥ λ] − P[Δũi(x+ 1) − ũ0 ≥ λ] (11) 

Empirical estimation of utility parameters requires specification of a model governing random marginal utilities. One alternative 
appears in Gallego and Wang (2020): For i = 1, …, n, x = 1, …, m, 

Δũi(x) − ũ0 =Δgi(x)(ũi − ũ0) − Δhi(x)

Δgi(x)= gi(x) − gi(x − 1)

Δhi(x)= hi(x) − hi(x − 1)

Function gi(x) is concave increasing, function hi(x) is convex, and gi(0) = hi(0) = 0. These properties imply that marginal utility Δ 
ui(x) − u0 is decreasing in quantity. Diminishing marginal utility assures that the xth unit of an alternative will not be selected by an 
individual unless the (x-1)th unit is selected, e.g., P[x̃i ≥ x] is decreasing in x. Threshold λ is the solution to 

∑n

i=1

∑m

x=1
P[Δũi(x) − ũ0 ≥ λ] =B;  

λ = 0 if the constraint is nonbinding.2 If ̃εi are iid Gumbel normalized random variables, then choice probabilities can be expressed in 
closed form: 

P[̃xi ≥ x] =P
[

ε̃0 − ε̃i ≤ ai − a0 −
λ + Δhi(x)

Δgi(x)

]

= eai − a0 −
λ+Δhi (x)

Δgi (x)

(

1 + eai − a0 −
λ+Δhi (x)

Δgi (x)

)− 1

(12)  

P[x̃= x] =
∏n

i=1
(P[̃xi ≥ xi] − P[̃xi ≥ xi + 1]) (13) 

The simplicity of (12) motivates an alternative to MLE based on (13): each observed event x̃i = x for x ≥ 1 in the data generates 
events ̃xi ≥ 1, …, ̃xi ≥ x in an augmented dataset. While the form and parameters of functionsΔgi(x) and Δhi(x) must be specified, the 
choice probably model can be efficiently estimated from the augmented dataset due to the simple binary logit form in (12). 

In summary, the formulation yielding choice probabilities given by (11) defines a class of models for multiple discrete choice and 
discrete quantity in a manner consistent with random utility maximization. Specific models within this class depend upon the model 
primitives that govern that random marginal utility of each alternative i and quantity xi, i.e., Δũi(x) − ũ0. One subclass of (11) specifies 
functions that map a random variable for net utility of each alternative to marginal utility at different values of xi, e.g., as in (13). An 
alternative subclass specifies probability distribution functions for random variables, Δũi(x) − ũ0, i = 1, …, n and x = 1, …, m. In the 
following sections, I introduce such a model and derive choice probability expressions. The model relies on order statistics, which 
capture the property of diminishing marginal return to quantity for each alternative. 

4. Diminishing marginal utility as order statistics 

The law of diminishing marginal utility, as originally proposed by Marshall (1920), states that the gain in utility from each unit of 
consumption decreases in quantity. This feature can be captured through order statistics, as described and illustrated in (14) below. 

For xi ∈ {1, …, m} units of alternative i ∈ {1, …, n}, let 

ũi(xi)= aixi +
∑xi

j=1
ε̃(j)i  

Δũi(xi)= ai + ε̃(xi)
i 

2 Gallego and Wang (2020, Theorem 6) consider the generalized threshold optimization problem of maximizing over λ = (λ1, …, λn) and show the 
optimal solution is a scalar for their model. 
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ũ0 = a0 + ε̃0  

where ̃ε(1)i = max{ε̃i1, ..., ε̃im}, …, ε̃(m− 1)
i = max{{ε̃i1, ..., ε̃im}\{ε̃(1)i , ..., ε̃(m− 2)

i }}, ̃ε(m)

i = min{ε̃i1, ..., ε̃im}

and ̃ε0, ̃εij for i = 1, …, n, j = 1, …, m are iid random variables.3 During a choice event, an individual observes the realizations of 
random variables ũ0 and Δũi(xi) for i = 1, …, n and xi = 1, …, m, then selects quantities of alternatives for which marginal utility 
exceeds threshold λ. While consecutive marginal utilities of an alternative exhibit randomness over choice events, realizations exhibit 
diminishing marginal utility, i.e., 

Δũi(1)≥… ≥ Δũi(m) (14) 

The specific character of random diminishing marginal utility depends on the probability distribution of error terms ̃ε0, ̃εij. 
This paper presents results for the case where ε̃0 and ε̃ij are Gumbel random variables, which I refer to as OS-G model (order 

statistics – Gumbel). The location parameter is normalized to 0 without loss of generality. The scale parameter is β. Fig. 1 illustrates 
expected marginal net utility for the OS-G model at several values of β as quantity xi ranges between 1 and 25. 

5. Existing theory 

5.1. Gumbel distribution 

The pdf and cdf of a Gumbel random variable z̃ with location parameter ν and scale parameter β are 

f (z)=
e− (z− ν)/β

β
e− e− (z− ν)/β

, z ∈ ( − ∞,∞) (15)  

F(z)= e− e− (z− ν)/β
, z ∈ ( − ∞,∞) (16)  

with mean and variance 

E[̃z] = ν+ γβ where γ = −

∫∞

0

e− t ln tdt ≈ 0.577 is the Euler − Mascheroni constant (17)  

V [̃z] = π2β2 / 6  

Lemma 1. (Gumbel 1954). The Gumbel distribution is closed under maximization. That is, for independent Gumbel random variables ̃z1, .

.., z̃m with scale parameter β and location parameters ν1, …, νm, ̃z(1) =max{z̃1, ..., z̃m} is a Gumbel random variable with scale parameter β and 
location parameter ν = β ln

∑m
i=1eνi/β. 

Corollary 1. ε̃(1)i =max{ε̃i1, ..., ε̃im} is a Gumbel random variable with scale parameter β and location parameter βlnm. 

Lemma 2. (Train 2009, p. 35). The difference between two independent Gumbel random variables with the same scale parameter is a logistic 
random variable. That is, for Gumbel ̃z1 and ̃z2 with scale parameter β and location parameters ν1 and ν2, ̃z =z̃2 − z̃1 is logistic with mean ν2 – 
ν1, variance π2β2/3, and cdf 

F̃z(z)=
1

1 + e− (z− (ν2 − ν1))/β   

5.2. Order statistic distribution functions 

Let ̃z1, ..., z̃m denote iid continuous random variables with pdf f and cdf F. Let ̃z(1) = max{z̃1, ..., z̃m}, ̃z(2) = max{{z̃1, ..., z̃m}\{z̃(1)}}, 
z̃(3) = max{{z̃1, ..., z̃m}\{z̃(1), z̃(2)}} , …, z̃(m)

= min{z̃1, ..., z̃m}. Then 

f̃
z
(x) (z)=

m!

(x − 1)!(m − x)!
F(z)m− x

(1 − F(z))x− 1f (z) (18)  

F̃
z
(x) (z)=

∑x− 1

j=0

(
m
j

)

F(z)m− j
(1 − F(z))j (19) 

3 This indexing of largest-to-smallest is the reverse of the standard order-statistic convention of smallest-to-largest, but is more convenient for our 
setting. 
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f̃
z
(1)

,...,̃z
(x) (z)=

m!

(m − x)!
F(zx)

m− x
∏x

j=1
f
(
zj
)
, z1 ≥ z2 ≥…≥ zx, x ≤ n (20) 

(see Chapter 2 in David 1981). Expressions (18) and (19) show how the probability density function and the cumulative distri-
bution function of an order statistic ̃z(x) relate to the corresponding functions of random variable z̃i. Expression (20) shows the joint 
density for the xth largest order statistics. These results are used in the next section. 

6. Theory development 

To simplify presentation, parameters a0 and λ are normalized to zero, e.g., by redefining ai = ai – a0 – λ for all i. Thus 

P
[

x∼i ≥ x
]

= P
[

Δu∼i(x) − u∼0 ≥ λ
]

= P
[

ε∼0 − ε∼
(x)
i ≤ ai

]

, i = 1,…, n, x = 1,…,m. (21) 

Define 
Ai = eai/β for i = 0, 1, …, n 
(e.g., A0 = 1). Corollary 2 follows from (15) – (20). 

Corollary 2. For x ∈ {1, …, m}, 

FΔ̃u0
(t)= e− e− t/β  

fΔ̃u0
(t)=

e− t/β

β
e− e− t/β  

FΔ̃ui(x)
(t)=

∑x− 1

j=0

(
m
j

)

e− (m− j)Aie− t/β
(

1 − e− Aie− t/β
)j  

fΔ̃ui(x)
(t) = x

(
m
x

)
Aie− t/β

β
e− (m− x+1)Aie− t/β

(
1 − e− Aie− t/β

)x− 1  

fΔ̃ui(1),...,Δ̃ui(x)
(t)=

m!

(m − x)!

(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai

(
∑x

j=1
e
− tj/β

+(m− x)e− tx/β

)

, t1 ≥… ≥ tx.

Lemmas 3 – 5 provide the foundation for theorems 1 through 3 that pertain to the probability distribution of random choice vector ̃x 

=

(

x ∼
1, ..., x ∼

n

)

. Lemma 6 describes the expected value of marginal utility. 

Lemma 3. For any i ∈ {1, …, n}, 

P
[

x ∼
i ≥ 1

]

=
mAi

1 + mAi
(22)  

P
[

x ∼
i = 0

]

=
1

1 + mAi
(23) 

Fig. 1. Plot of E[Δũi(xi) − ũ0] with m = 25, a0 = ai = 0, and β = 1 (dotted curve), β = 2 (dashed curve), β = 4 (solid curve). The x-axis ranges from xi 

= 1 to xi = 25. Expressions for E[Δũi(xi) − ũ0] appear in Lemma 6. 
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Lemma 4. Let Δu
∼

0(1) =u ∼
0 in (25) and (27) below. For any i ∈ {0, 1, …, n} and t, 

P[Δũi(x)> t≥Δũi(x+ 1)] =
(

m
x

)

e− (m− x)Aie− t/β
(

1 − e− Aie− t/β
)x
, x ∈ {1,…,m} (24)  

P[Δũi(1)≤ t] = e− mAie− t/β (25)  

P[Δũi(m)> t] = P[Δũi(m)> t≥Δũi(m+ 1)] =
(

1 − e− Aie− t/β
)m

(26)  

P[Δũi(1)> t] = 1 − e− mAie− t/β (27)   

Lemma 5. For a, b > 0 and nonnegative integers m ≥ x, 

(m − x)
(

m
x

)
∑x

j=0

(
x
j

)

( − 1)j
(

b
a + (m − x + j)b

)

=
∏x

j=0

(m − j)b
a + (m − j)b

(28)   

Lemma 6. For x = 1, …, m, 

E
[

Δu ∼
i(x)

]

= ai + βx
(

m
x

)
∑x− 1

j=0

(
x − 1
j

)

( − 1)j
(

γ + ln(m − x + 1 + j)
m − x + 1 + j

)

(29)   

Theorem 1. Marginal probability functions are 

P
[

x ∼
i ≥ x

]

=
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai
, x ∈ {1,…,m} (30)  

P
[

x ∼
i ≥ x + 1

⃒
⃒
⃒x ∼

i ≥ x
]

=
(m − x)Ai

1 + (m − x)Ai
, x ∈ {1,…,m – 1} (31)  

P
[

x ∼
i = x

⃒
⃒
⃒x ∼

i ≥ x
]

=
1

1 + (m − x)Ai
, x ∈ {1,…,m} (32)  

P
[

x ∼
i = x

]

=

(
1

1 + (m − x)Ai

)
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai
, x ∈ {0,…,m} (33)  

=

(
Ai + (m − x)Ai

1 + (m − x)Ai

)

P
[

x ∼
i = x − 1

]

, x ∈ {1,…,m}. (34)  

Notice in (34) that the probability that x units is selected is proportional to the probability that x – 1 units is selected. Whether the 
probability is increasing in x or decreasing in x depends on the value of Ai, as formalized in the following corollary. 

Corollary 3. If Ai = 1, then P
[

x ∼
i = x

]

= 1
1+m for all x ∈ {0, …, m} and E

[

x ∼
i

]

=m
2 . If Ai < 1, then P

[

x ∼
i = 0

]

> … > P
[

x ∼
i = m

]

and 

E
[

x ∼
i

]

<m
2. If Ai > 1, then P

[

x ∼
i = 0

]

< … < P
[

x ∼
i = m

]

and E
[

x ∼
i

]

>m
2. 

Notice that (23) and (33) recover the binary logit choice probabilities when m = 1: 

P
[

x ∼
i = 0

]

=
1

1 + eai/β  

P
[

x ∼
i = 1

]

=
eai/β

1 + eai/β  

(e.g., see (9)). Furthermore, if n = 1 and m > 1, so that an individual selects a quantity (possibly zero) up to m of a single alternative, 
then the probability distribution of random choice x ∼ is fully specified by (23) and (33): 

S. Webster                                                                                                                                                                                                               



Journal of Choice Modelling 46 (2023) 100395

9

P[x
∼
= 0] =

1
1 + mA1  

P[̃x= 1] =
(

mA1

1 + (m − 1)A1

)

P[̃x= 0]

P[̃x= 2] =
(

(m − 1)A1

1 + (m − 2)A1

)

P[̃x= 1]

⋮  

P[̃x=m − 1] =
(

2A1

1 + A1

)

P[̃x=m − 2]

P[̃x=m] =A1P[̃x=m − 1]

Finally, observe that (31) in Theorem 1 hints at a rather remarkable result on the character of the probability function of condi-
tional Gumbel order statistics, which I state below as a theorem. The theorem illuminates a simple structure underlying the probability 
distribution of the difference between Gumbel order statistics. 

Theorem 2. Let z ∼
0, z ∼

1, ..., z ∼
m be independent Gumbel random variables with the same scale parameter β and location parameter νi with 

νi = ν for i ≥ 1. Let z ∼(x:m) denote the xth largest value in m-dimensional random vector 
(

z ∼
1, ..., z ∼

m

)

. Define y ∼(x:m) =z
∼

0 − z ∼(x:m) for x ∈

{1, …, m} and let y ∼(x+1:m)|(x:m) denote a conditional random variable with probability distribution P[y
∼(x+1:m)|(x:m)

≤ t ]

=P[y
∼(x+1:m)

≤ t|y ∼(x:m) ≤ t ] for x ∈ {1, …, m – 1}. Then y ∼(x+1:m)|(x:m) is a logistic random variable with mean ν0 – ν(m-x) where ν(m-x) = [ν +

βln(m – x)] is the location parameter of z
∼(1:m− x)

, variance π2β2/3, and cdf 

P[y ∼(x+1:m)|(x:m) ≤ t ] = P[y
∼(1:m− x)

≤ t ] = P
[

z ∼
0 − z ∼(1:m− x) ≤ t

]

=
1

1 + e− (t− (ν0 − ν(m− x) ) )/β
(35)  

Theorem 2 generalizes Lemma 2 to non-extreme, but conditional, order statistics. For example, at x = 0, then y
∼(0:m)

doesn’t exist, 
and (35) becomes 

P
[

z∼0 − z ∼(1:m) ≤ t
]

=
1

1 + e− (t− (ν0 − ν(m) ) )/β  

which is the result in Lemma 2. While z
∼(x:m)

is not a Gumbel random variable when x > 1, it retains the Gumbel character when 
appropriately conditioned on the next largest order statistic. The effect of conditioning is akin to the creation of an unconditional 
Gumbel obtained from the maximum of a smaller set of iid Gumbels. This special structure is key to the relatively simple and recursive 
expressions that appear in Theorem 1. A manifestation of this special structure inherent to Gumbel random variables appears in Beggs 
et al. (1981). They show that the probability of an ordering of the largest k of n > k independent Gumbel random variables is inde-
pendent of the n – k smallest random variables. The next result builds on theorems 1 and 2 and presents the choice probability 
functions. 

Theorem 3. The probability mass function of x̃ is 

P[x∼ = x] =

(
∏n

i=1

(
m
xi

))
∑x1

j1=0
…
∑xn

jn=0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
x1
j1

)

…
(

xn
jn

)

( − 1)

(
∑n

i=1
ji

)

1 +
∑n

i=1
(m − xi + ji)Ai

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x ∈ {0,…,m}
n
. (36)  

or in vector notation, 

P[x∼ = x] =

(
∏m

i=1

(
m
xi

))

C→2(x)T α→2(x) (37)  

where I(•) is an indicator function returning 1 if condition • holds and 
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C→(x) =

⎛

⎝

(
∏n

i=1

(
xi
ji

)

I(ji ≤ xi)

)

( − 1)
∑n

i=1
ji

⎞

⎠

j∈{0,...,m}n  

The single-choice and null-choice probabilities exhibit a particularly simple structure. For x = (x,0, ...,0) with x ∈ {1, …, m}, I 
apply the identity in Lemma 5, and (36) simplifies to 

P[x∼ = (x, 0, ..., 0) ] =

⎛

⎜
⎜
⎝

1

1 + m
∑n

i=2
Ai + (m − x)A1

⎞

⎟
⎟
⎠

∏x− 1

j=0

(m − j)A1

1 + m
∑n

i=2
Ai + (m − j)A1

(38)  

which follows the marginal probability structure in (33). If x = 0, then (36) simplifies to 

P[x∼ = 0] = 1

1 + m
∑n

i=1
Ai

(39)  

which recovers the MNL null-choice probability. 

7. Parameter estimation 

Without loss of generality, the scale parameter is normalized to β = 1, e.g., Ai = ea⌢i/β = eai .4 Estimation of parameters of the OS-G 
model will rely on an estimate of m, which represents an upper limit on the number of units selected of an alternative. The selection of 
this value may be informed by some combination of judgement, observed choice quantities in the data, and computational consid-
erations, e.g., the complexity of probability expressions increases in m. 

For a given value of m, one may estimate vector A = (A1, …, An) by maximizing the log-likelihood function (i.e., MLE) of obser-
vations x1, …, xN: 

Â = argmax
Y

ln

(
∏N

k=1
P
[
x̃= xk

⃒
⃒A=Y

]
)

= argmax
Y

(
∑N

k=1
ln

((
∏m

i=1

(
m
xk

i

))

C→
(
xk)T α→

(
xk
⃒
⃒Y
)
))

where 

α→
(
xk
⃒
⃒Y
)
=

⎛

⎜
⎜
⎝

1

1 +
∑n

i=1
(m − xk

i + ji)Yi

⎞

⎟
⎟
⎠

j∈{0,...,m}
n 

An alternative estimation method that provides less theoretical precision (because it ignores some information) but is computa-
tionally more efficient is MLE using the marginal probability functions instead of the joint probability functions: 

Â = argmax
Y

ln

(
∏n

i=1

∏N

k=1
P
[
x̃i = xk

i

⃒
⃒Ai = Yi

]
)

= argmax
Y

∑n

i=1

∑N

k=1
ln
(
P
[
x̃i = xk

i

⃒
⃒Ai =Yi

])

= argmax
Y

∑n

i=1

∑N

k=1
ln

⎛

⎝

(
1

1 + (m − xk
i )Yi

)
∏x
k
i − 1

j=0

(m − j)Yi

1 + (m − j)Yi

⎞

⎠

= argmax
Y

∑n

i=1

∑N

k=1

⎛

⎝ln
(

1
1 + (m − xk

i )Yi

)

+
∑x

k
i − 1

j=0
ln
(

(m − j)Yi

1 + (m − j)Yi

)
⎞

⎠

With this approach, the parameter for each alternative can be estimated independently, i.e., for i = 1, …, n, 

Âi = argmax
Yi

∑N

k=1

⎛

⎝ln
(

1
1 + (m − xk

i )Yi

)

+
∑x

k
i − 1

j=0
ln
(

(m − j)Yi

1 + (m − j)Yi

)
⎞

⎠

I run a small numerical experiment to provide a sense of how the two methods compare in terms of accuracy. I randomly generate 

4 Parameter ai can be interpreted as the nominal marginal utility of alternative i, which may be modeled as a linear combination of alternative i 
attributes/characteristics ai = (ai1, ..., aiM) and a vector α = (α1, …, αM) that reflects characteristics of the population e.g., ai = αTai. 
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individual choices according to the OS-G model with m = 3, n = 3, and true parameters A1 = 7 ≈ e2 A2 = 1 = e0, A3 = 0.13 ≈ e− 2, and a0 
= λ = 0. I set the sample size to N = 1000 and run 30 replications. Table 1 compares the mean absolute percentage error (MAPE) of MLE 
parameter estimates Âi for the two methods. The results illustrate the decrease in precision from ignoring correlation in quantity 
choices of individuals in a population. In this example, the reduction in accuracy of parameter estimates is relatively small. 

8. Normative analysis 

Recall that B is the average number of units selected during a choice event by individuals in the population, which may be estimated 
from observed choices. The value of B plays a role when measuring how choice probabilities change as features of alternatives change. 
If the value of B remains stable (or can be predicted) as changes in alternatives are introduced, then the effects of changes in alter-
natives on choice probabilities can be measured (e.g., in a manner similar to Section 3.2). I illustrate this relationship for the OS-G 
model below, after presenting Theorem 4 on optimal thresholds for the general OS model. Following Gallego and Wang (2020), it 
is straightforward to show that the solution to the threshold optimization problem with marginal utilities as order statistics of iid error 
terms is a scalar. 

Theorem 4. OS model: ̃u0 =a0 + ε̃0 and Δũi(xi) = ai + ε̃(xi)
i where ̃ε0, ̃εij are iid continuous random variables. For the OS model, the solution 

to the threshold optimization problem 

max
λ≥0

{
∑n

i=1

∑m

x=1
E[Δũi(x) − ũ0|Δũi(x) − ũ0 ≥ λi]P[Δũi(x) − ũ0 ≥ λi] :

∑n

i=1

∑m

x=1
P[Δũi(x) − ũ0 ≥ λi] ≤B

}

is the unique solution to 

∑n

i=1

∑m

x=1
P[Δũi(x) − ũ0 ≥ λ] =B (40)  

if a solution exists; otherwise λ = 0. Assume that ̃ε0, ̃εij are iid normalized Gumbel random variables (OS-G model). As in Section 3.2, 
let ai =(ai1, ..., aiM) denote the vector of predictors for alternative i, let α = (α1, …, αM) denote the utility coefficient vector estimated 
from the data (e.g., αTai is an estimate of ai), and let Δil denote a change in attribute l of alternative i. Prior to the change in the attribute, 

P
[
x̃j ≥ x

]
=
∏x− 1

k=0

(m − k)eαT aj

1 + (m − k)eαT aj
, j= 1,…., n, x= 1,…,m  

(see (21) and (30)), and after the change in attribute l of alternative i to aij + Δij, 

P
[
x̃j ≥ x

]
=
∏x− 1

k=0

(m − k)eαT aj+αlΔil I(j=i)

eΔλ + (m − k)eαT aj+αlΔil I(j=i)

where Δλ is the solution to 

∑n

j=1

∑m

x=1

∏x− 1

k=0

(m − k)eαT aj+αlΔil I(j=i)

eΔλ + (m − k)eαT aj+αlΔil I(j=i) =B. (41)  

The value of Δλ can be efficiently obtained via bisection search because the left-hand side of (41) is decreasing in Δλ. 

9. Summary and reflection 

This paper presents a model of discrete quantity decisions over a set of alternatives that is consistent with random utility maxi-
mization. The model employs order statistics of Gumbel random variables to capture individuals’ idiosyncratic and diminishing 

Table 1 
Mean parameter estimate and mean absolute percentage error over 30 replications with sample size N = 1000 using the probability mass function 
(Method 1) and the marginal probability function (Method 2). Standard errors are in parentheses.   

Sample Size = 1 000 Choices 

Method 1 Method 2  

True 
Value 

Mean MLE 
Estimate 

MAPE (Std Err) Mean MLE 
Estimate 

MAPE (Std Err) 

A1 7.00 6.942 5.21% (0.61%) 6.874 6.11% (0.69%) 
A2 1.00 1.004 4.21% (0.61%) 1.004 4.23% (0.61%) 
A3 0.13 0.132 5.25% (0.70%) 0.132 5.21% (0.70%)  
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marginal utility to consumption. The underlying mathematical structure admits closed-form marginal quantity-choice probability 
functions and closed-form joint probability functions. 

An important question is whether, or under what settings, the model may capture the essence of real-world behavior... whether the 
model can provide useful predictions or expose new insights for guiding decisions in public- or private-sector settings. I suspect that the 
range of meaningful application is narrow, and one reason stems from a property of the probability distribution of Gumbel order 
statistics identified in Theorem 1. One manifestation of this property is the probability mass function of quantity choice of each 
alternative is monotonic (see Corollary 3); as Ai increases from 0, the distribution of mass shifts from an extreme right skew (all mass at 
0) to uniform at Ai = 1, to extreme left skew with all mass at m as Ai approaches infinity. The model restricts the mode of the quantity- 
choice distribution to be the extreme left, the extreme right, or the entire sample space (in the case of Ai = 1), a property that may not 
fit with reality in some settings. This limitation is illustrated in Fig. 1 that shows how the expected value of marginal utility changes in 
quantity. The form of the curves that are initially convex decreasing and later concave decreasing may align with behavior in some 
settings but not in others. 

Interestingly, the monotonic feature of the probability distribution is characteristic of a power-law relation where probability is 
scale-invariant and proportional to x-k. For example, the continuous analog of the probability distribution in Theorem 1 has density 
proportional to (1 + m – x)k where k > (<) 0 if Ai < (>) 1 (see the appendix). A wide variety of phenomena (physical, biological, man- 
made) exhibit power-law relations. 

An additional potential weakness of the model is the form of the constraint in an individual’s choice optimization problem—an 
individual maximizes expected utility for a given average purchase quantity at each choice event. A key advantage is that, under this 
constraint, an individual’s optimization problem at each choice event is simple: choose alternatives with the highest utility that exceed 
a given threshold. An alternative formulation is to maximize expected utility for a given average spend amount at each choice event. 
This formulation translates to a more complex (i.e., combinatorial) decision problem for an individual, e.g., a simple rule of choosing 
alternatives with the highest utility per dollar that exceed a given threshold is not necessarily optimal. Consideration of this, or other, 
alternative formulations is one avenue for future research. 

In sum, the main value of this paper is perhaps less in the OS-G model of multiple discrete choice—for which application may be 
narrow—and more in lemmas 3–6, theorems 1–3, and corollaries 2–3. These lemmas, theorems, and corollaries present probability 
distribution functions and properties related to the difference of a pair of Gumbel order statistics. Order statistics arise in a variety of 
real-world phenomena that extend beyond choice decisions. Thus, the results presented in Section 6 have potential to spur new ap-
plications and research on order-statistic-based models. 
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11. Appendix 

11.1. Proofs 

Proof of Corollary 2. To simplify notation, f(t) = fΔ̃u0
(t), F(t) = FΔ̃u0

(t), fi(t) = fai+̃εij
(t), and Fi(t) = Fai+̃εij

(t). From (15) and (16), 

F(t) = e− e
− t

β f (t) =
e−

t
β

β
e− e

− t
β  

Fi(t) = e− Aie− t/β fi(t) =
Aie− t/β

β
e− Aie− t/β  

and from (15) – (20), 

fΔ̃ui(x)
(t) =

m!

(x − 1)!(m − x)!
Aie− t/β

β
e− (m− x+1)Aie− t/β

(
1 − e− Aie− t/β

)x− 1  
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FΔ̃ui(x)
(t)=

∑x− 1

j=0

(
m
j

)

e− (m− j)Aie− t/β
(

1 − e− Aie− t/β
)j  

fΔ̃ui(1),...,Δ̃ui(x)
(t)=

m!

(m − x)!
F(tx)

m− x
∏x

j=1
f
(
tj
)

=
m!

(m − x)!

(
e− Aie− tk/β

)m− x
(

Aie− t1/β

β
e− Aie− t1/β

)

× · · · ×

(
Aie− tx/β

β
e− Aie− tx/β

)

=
m!

(m − x)!

⎛

⎝e
− Ai

(
∑x

j=1
e
− tj/β

+(m− x)e− tx/β

)
⎞

⎠

(
Aie− t1/β

β

)

× · · · ×

(
Aie− tx/β

β

)

= x
(

m
x

)(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai

(
∑x

j=1
e
− tj/β

+(m− x)e− tx/β

)

Proof of Lemma 3. Recall that ũ0 is Gumbel with scale β and location 0. It follows from Lemma 1 that Δũi(1) is an independent 
Gumbel with scale β and location ai + βlnm. Therefore, from Lemma 2, it follows that ̃u0 − Δũ(1)

i is a logistic random variable with mean 
–(ai + βlnm), and thus, 

P[̃xi ≥ 1] = P[Δũi(1)≥ ũ0] =P[ũ0 − Δũi(1)≤ 0] =
1

1 + e− (0− (0− ai − β ln m))/β =
1

1 + e− (ai+β ln m)/β  

=
meai/β

1 + meai/β =
mAi

1 + mAi  

P[̃xi = 0] = 1 − P[̃xi ≥ 1] =
1

1 + mAi 

Proof of Lemma 4. To simplify notation, let ũi(x) = (Δũi(1), ..., ũi(x)). Then 

A=P[Δũi(x)> t≥Δũi(x+ 1)] =
∫∞

t

∫t1

t

...

∫tx− 1

t

∫t

− ∞

f̃ui(x+1)(t1, ..., tx+1)dtx+1...dt1  

=

∫∞

t

∫t1

t

...

∫tx− 1

t

∫t

− ∞

m!

(m − x − 1)!

(
Ai

β

)x+1

e
−
∑x+1

j=1
tj/β

e
− Ai

(
∑x+1

j=1
e
− tj/β

+(m− x)e− tx+1/β

)

dtx+1...dt1  

=
m!

(m − x − 1)!

∫∞

t

∫t1

t

...

∫tx− 1

t

(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai
∑x

j=1
e
− tj/β

⎛

⎝
∫t

− ∞

Aie− tx+1/β

β
e− Ai(m− x)e− tx+1/β

dtx+1

⎞

⎠dtx...dt1 

Let δ = − Aie− tx+1/β. Then dδ = Aie− tx+1/β

β dt, tx+1 = –∞ ⇒ δ = –∞, tx+1 = t ⇒ δ = − Aie− t/β, and 

A=
m!

(m − x − 1)!

∫∞

t

∫t1

t

...

∫tx− 1

t

(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai
∑x

j=1
e
− tj/β

⎛

⎜
⎝

∫− Aie− t/β

− ∞

e(m− x)δdδ

⎞

⎟
⎠dtx...dt1  

=
m!

(m − x − 1)!

∫∞

t

∫t1

t

...

∫tx− 1

t

(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai
∑x

j=1
e
− tj/β(

e− (m− x)Aie− t/β

m − x

)

dtx...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 1

t

(
Ai

β

)x

e
−
∑x

j=1
tj/β

e
− Ai
∑x

j=1
e
− tj/β

dtx...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 2

t

(
Ai

β

)x− 1

e
−
∑x− 1

j=1
tj/β

e
− Ai
∑x− 1

j=1
e
− tj/β

⎛

⎝
∫tx− 1

t

Ai

β
e− tx/βe− Aie− tx/β dtx

⎞

⎠dtx− 1...dt1  
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=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 2

t

(
Ai

β

)x− 1

e
−
∑x− 1

j=1
tj/β

e
− Ai
∑x− 1

j=1
e
− tj/β

⎛

⎜
⎝

∫− Aie− tx− 1/β

− Aie− t/β

eδdδ

⎞

⎟
⎠dtx− 1...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 2

t

(
Ai

β

)x− 1

e
−
∑x− 1

j=1
tj/β

e
− Ai
∑x− 1

j=1
e
− tj/β(

e− Aie− tx− 1/β
− e− Aie− t/β

)
dtx− 1...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 3

t

(
Ai

β

)x− 2

e
−
∑x− 2

j=1
tj/β

e
− Ai
∑x− 2

j=1
e
− tj/β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫tx− 2

t

Aie− tx− 1/β

β
e− 2Aie− tx− 1/β

dtx− 1

− e− Aie− t/β
∫tx− 2

t

Aie− tx− 1/β

β
e− Aie− tx− 1/β

dtx− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

dtx− 2...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 3

t

(
Ai

β

)x− 2

e
−
∑x− 2

j=1
tj/β

e
− Ai
∑x− 2

j=1
e
− tj/β

⎛

⎜
⎝

∫− Aie− tx− 2/β

− Aie− t/β

e2δdδ − e− Aie− t/β
∫− Aie− tx− 2/β

− Aie− t/β

eδdδ

⎞

⎟
⎠dtx− 2...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 3

t

(
Ai

β

)x− 2

e
−
∑x− 2

j=1
tj/β

e
− Ai
∑x− 2

j=1
e
− tj/β

⎛

⎜
⎜
⎝

e− 2Aie− tx− 2/β
− e− 2Aie− t/β

2

− e− Aie− t/β
(

e− Aie− tx− 2/β
− e− Aie− t/β

)

⎞

⎟
⎟
⎠dtx− 2...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 3

t

(
Ai

β

)x− 2

e
−
∑x− 2

j=1
tj/β

e
− Ai
∑x− 2

j=1
e
− tj/β

⎛

⎜
⎜
⎜
⎝

e− 2Aie− tx− 2/β

2

− e− Aie− t/β e− Aie− tx− 2/β
+

e− 2Aie− t/β

2

⎞

⎟
⎟
⎟
⎠

dtx− 2...dt1  

=
m!e− (m− x)Aie− t/β

(m − x)!

∫∞

t

∫t1

t

...

∫tx− 3

t

(
Ai

β

)x− 2

e
−
∑x− 2

j=1
tj/β

e
− Ai
∑x− 2

j=1
e
− tj/β

1
2

(
e− Aie− tx− 2/β

− e− Aie− t/β
)2

dtx− 2...dt1  

=
m!e− (m− x)Aie− t/β

2(m − x)!

∫∞

t

∫t1

t

...

∫tx− 4

t

(
Ai

β

)x− 3

e
−
∑x− 3

j=1
tj/β

e
− Ai
∑x− 3

j=1
e
− tj/β

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫tx− 3

t

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Aie− tx− 2/β

β

×e− Aie− tx− 2/β

(
e− Aie− tx− 2/β

− e− Aie− t/β

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

dtx− 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

dtx− 3...dt1  

=
m!e− (m− x)Aie− t/β

2(m − x)!

∫∞

t

∫t1

t

...

∫tx− 4

t

(
Ai

β

)x− 3

e
−
∑x− 3

j=1
tj/β

e
− Ai
∑x− 3

j=1
e
− tj/β

⎛

⎜
⎝

∫− Aie− tx− 3/β

− Aie− t/β

eδ
(

eδ − e− Aie− t/β
)2

dδ

⎞

⎟
⎠dtx− 3...dt1  

=
m!e− (m− x)Aie− t/β

2(m − x)!

∫∞

t

∫t1

t

...

∫tx− 4

t

(
Ai

β

)x− 3

e
−
∑x− 3

j=1
tj/β

e
− Ai
∑x− 3

j=1
e
− tj/β

⎛

⎜
⎜
⎝

(
eδ − e− Aie− t/β

)3

3

⃒
⃒
⃒
⃒
⃒
⃒
⃒

− Aie− tx− 3/β

− Aie− t/β

⎞

⎟
⎟
⎠dtx− 3...dt1  

=
m!e− (m− x)Aie− t/β

2(m − x)!

∫∞

t

∫t1

t

...

∫tx− 4

t

(
Ai

β

)x− 3

e
−
∑x− 3

j=1
tj/β

e
− Ai
∑x− 3

j=1
e
− tj/β

(
e− Aie− tx− 3/β

− e− Aie− t/β
)3

3
dtx− 3...dt1  

=
m!e− (m− x)Aie− t/β

3!(m − x)!

∫∞

t

∫t1

t

...

∫tx− 5

t

(
Ai

β

)x− 4

e
−
∑x− 4

j=1
tj/β

e
− Ai
∑x− 4

j=1
e
− tj/β

⎛

⎜
⎝

∫− Aie− tx− 4/β

− Aie− t/β

eδ
(

eδ − e− Aie− t/β
)3

dδ

⎞

⎟
⎠dtx− 4...dt1  
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=
m!e− (m− x)Aie− t/β

3!(m − x)!

∫∞

t

∫t1

t

...

∫tx− 5

t

(
Ai

β

)x− 4

e
−
∑x− 4

j=1
tj/β

e
− Ai
∑x− 4

j=1
e
− tj/β

⎛

⎜
⎜
⎝

(
eδ − e− Aie− t/β

)4

4

⃒
⃒
⃒
⃒
⃒
⃒
⃒

− Aie− tx− 4/β

− Aie− t/β

⎞

⎟
⎟
⎠dtx− 4...dt1  

=
m!e− (m− x)Aie− t/β

4!(m − x)!

∫∞

t

∫t1

t

...

∫tx− 5

t

(
Ai

β

)x− 4

e
−
∑x− 4

j=1
tj/β

e
− Ai
∑x− 4

j=1
e
− tj/β(

e− Aie− tx− 4/β
− e− Aie− t/β

)4
dtx− 4...dt1  

⋮(repeating the pattern up to t1, e.g., x – 5= 1, x – 4= 2, 4= x – 2)

=
m!e− (m− x)Aie− t/β

(x − 2)!(m − x)!

∫∞

t

⎛

⎜
⎝

∫t1

t

(
Ai

β

)2

e
−
∑2

j=1
tj/β

e
− Ai
∑2

j=1
e
− tj/β(

e− Aie− t2/β
− e− Aie− t/β

)x− 2
dt2

⎞

⎟
⎠dt1  

=
m!e− (m− x)Aie− t/β

(x − 2)!(m − x)!

∫∞

t

Aie− t1/β

β
e− Aie− t1/β

⎛

⎝
∫t1

t

Aie− t2/β

β
e− Aie− t2/β

(
e− Aie− t2/β

− e− Aie− t/β
)x− 2

dt2

⎞

⎠dt1  

=
m!e− (m− x)Aie− t/β

(x − 2)!(m − x)!

∫∞

t

Aie− t1/β

β
e− Aie− t1/β

⎛

⎜
⎝

∫− Aie− t1/β

− Aie− t/β

eδ
(

eδ − e− Aie− t/β
)x− 2

dδ

⎞

⎟
⎠dt1  

=
m!e− (m− x)Aie− t/β

(x − 2)!(m − x)!

∫∞

t

Aie− t1/β

β
e− Aie− t1/β

⎛

⎜
⎜
⎝

(
eδ − e− Aie− t/β

)x− 1

x − 1

⃒
⃒
⃒
⃒
⃒
⃒
⃒

− Aie− t1/β

− Aie− t/β

⎞

⎟
⎟
⎠dt1  

=
m!e− (m− x)Aie− t/β

(x − 1)!(m − x)!

∫∞

t

Aie− t1/β

β
e− Aie− t1/β

(
e− Aie− t1/β

− e− Aie− t/β
)x− 1

dt1  

=
m!e− (m− x)Aie− t/β

(x − 1)!(m − x)!

∫0

− Aie− t/β

eδ
(

eδ − e− Aie− t/β
)x− 1

dδ  

=
m!e− (m− x)Aie− t/β

(x − 1)!(m − x)!

⎛

⎜
⎝

(
eδ − e− Aie− t/β

)x

x

⃒
⃒
⃒
⃒
⃒
⃒

0

− Aie− t/β

⎞

⎟
⎠

=
m!e− (m− x)Aie− t/β

x!(m − x)!

[(
1 − e− Aie− t/β

)x
−
(

e− Aie− t/β
− e− Aie− t/β

)x]

=

(
m
x

)

e− (m− x)Aie− t/β
(

1 − e− Aie− t/β
)x 

which is (24). Note that 

P[Δũi(1)≤ t] =
∫t

− ∞

fΔ̃ui(1)
(t1)dt1 =

∫t

− ∞

mAie− t1/β

β
e− mAie− t1/β

dt1  

=
(

e− mAie− t1/β
⃒
⃒
⃒

t

− ∞

)
= e− mAie− t/β  

P[Δũi(m)> t] =
∫∞

t

fΔ̃ui(m)
(t1)dt1 =

∫∞

t

mAie− t1/β

β
e− Aie− t1/β

(
1 − e− Aie− t1/β

)m− 1
dt1  

=
(
−
(

1 − e− Aie− t1/β
)m)⃒⃒

⃒
∞

t
=
(

1 − e− Aie− t/β
)m 

and it is apparent that (24) includes (25) and (26) as special cases. Finally. 
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P[Δũi(1)> t] = 1 − P[Δũi(1)≤ t] = 1 − e− mAie− t/β . 
Proof of Lemma 5. It is clear that (28) holds at x = m. I evaluate over increasing values of x to establish the pattern that generalizes 

to (28). Let g(x) be the LHS of (28) and h (x) be the RHS of (28). Then for increasing values of x < m, 

g(0)=
mb

a + mb
= h(0)

g(1)=m(m − 1)b
(

1
a + (m − 1)b

−
1

a + mb

)

=

(
(m − 1)b

a + (m − 1)b

)(
mb

a + mb

)

= h(1)

g(2)=
m!b

2(m − 3)!

(
1

a + (m − 2)b
−

2
a + (m − 1)b

+
1

a + mb

)

=
m!b

2(m − 3)!

(
1

a + (m − 2)b
−

1
a + (m − 1)b

−

(
1

a + (m − 1)b
−

1
a + mb

))

=
m!b

2(m − 3)!

(
b

(a + (m − 2)b)(a + (m − 1)b)
−

b
(a + (m − 1)b)(a + mb)

)

=
m!b2

2(m − 3)!

(
2b

(a + (m − 2)b)(a + (m − 1)b)(a + mb)

)

=

(
(m − 2)b

(a + (m − 2)b)

)(
(m − 1)b

a + (m − 1)b

)(
mb

a + mb

)

= h(2)

g(3)=
m!b

3!(m − 4)!

(
1

a + (m − 3)b
−

3
a + (m − 2)b

+
3

a + (m − 1)b
−

1
a + mb

)

=
m!b

3!(m − 4)!

⎛

⎜
⎜
⎜
⎝

1
a + (m − 3)b

−
1

a + (m − 2)b

− 2
(

1
a + (m − 2)b

−
1

a + (m − 1)b

)

+
1

a + (m − 1)b
−

1
a + mb

⎞

⎟
⎟
⎟
⎠

=
m!b2

3!(m − 4)!

⎛

⎜
⎜
⎜
⎝

1
(a + (m − 3)b)(a + (m − 2)b)

−
1

(a + (m − 2)b)(a + (m − 1)b)

−

(
1

(a + (m − 2)b)(a + (m − 1)b)
−

1
(a + (m − 1)b)(a + mb)

)

⎞

⎟
⎟
⎟
⎠

=
m!b2

3!(m − 4)!

⎛

⎜
⎜
⎜
⎝

2b
(a + (m − 3)b)(a + (m − 2)b)(a + (m − 1)b)

−
2b

(a + (m − 2)b)(a + (m − 1)b)(a + mb)

⎞

⎟
⎟
⎟
⎠

=
m!b3

3(m − 4)!

(
3b

(a + (m − 3)b)(a + (m − 2)b)(a + (m − 1)b)(a + mb)

)

=

(
(m − 3)b

a + (m − 3)b

)(
(m − 2)b

a + (m − 2)b

)(
(m − 1)b

a + (m − 1)b

)(
mb

a + mb

)

= h(3)

⋮  

continuing the pattern …  

⋮  

g(m – 1) =
( b

a+b
)( 2b

a+2b
)
⋯
(

(m− 1)b
a+(m− 1)b

)( mb
a+mb

)
= h(m – 1). 

Proof of Lemma 6. Recall that Δũi(x) = ai + ε̃(x)i , and thus 

E[Δũi(x)] = ai + E
[
ε̃(x)i

]

where ε̃(x)i is the xth largest value among m independent Gumbel random variables with location parameter ν = 0 and scale 
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parameter β. From Lemma 1, it follows that E[̃ε(1)i ] = β(ln m + γ), and thus, 

E[Δũi(1)]= ai + β(ln m+ γ) (A1) 

Suppose x > 1. For b > 0, let δ = be− t/β, and note that dδ = − be− t/β

β dt , t = β ln
(

b
δ

)
, t = -∞ ⇒ δ = ∞, t = ∞ ⇒ δ = 0. Therefore, 

∫∞

− ∞

tbe− t/β

β
e− be− t/β dt= −

∫0

∞

β ln
(

b
δ

)

e− δdδ=
∫∞

0

β ln
(

b
δ

)

e− δdδ= β
∫∞

0

[ln b − ln δ]e− δdδ  

= β

⎛

⎝− e− δ ln b|∞0 −

∫∞

0

e− δ ln δdδ

⎞

⎠= β(ln b+ γ) (see (17)) 

Note that f̃
ε
(x)
i
(t) = x

(
m
x

)
e− t/β

β e− (m− x+1)e− t/β
(1 − e− e− t/β

)
x− 1 (see Corollary 2). Therefore, for x = 2, …, m, 

E
[
ε̃(x)i

]
=

∫∞

− ∞

tf̃
ε
(x)
i
(t)dt= x

(
m
x

) ∫∞

− ∞

te− t/β

β
e− (m− x+1)e− t/β

(
1 − e− e− t/β

)x− 1
dt 

Applying the binomial expansion, (1 − ey)
x 
=
∑x

j=0

(
x
j

)

(− 1)jejy, x = 0, 1, 2, 3, …, 

E
[
ε̃(x)i

]
= x
(

m
x

) ∫∞

− ∞

te− t/β

β
e− (m− x+1)e− t/β ∑

x− 1

j=0

(
x − 1
j

)

(− 1)je− je− t/β dt  

= x
(

m
x

)
∑x− 1

j=0

(
x − 1
j

) ∫∞

− ∞

te− t/β

β
e− (m− x+1+j)e− t/β

(− 1)jdt  

=

(
m
x

)
∑x− 1

j=0

x
m − x + 1 + j

(
x − 1
j

) ∫∞

− ∞

t(m − x + 1 + j)e− t/β

β
e− (m− x+1+j)e− t/β

(− 1)jdt  

= βx
(

m
x

)
∑x− 1

j=0

(
x − 1
j

)

(− 1)j
(

γ + ln(m − x + 1 + j)
m − x + 1 + j

)

Thus 

E[Δũi(x)] = ai + βx
(

m
x

)
∑x− 1

j=0

(
x − 1
j

)

(− 1)j
(

γ + ln(m − x + 1 + j)
m − x + 1 + j

)

which, as a consistency check, reduces to (A1) when x = 1.  

Proof of Theorem 1. From Corollary 2, 

A=P[̃xi ≥ x] =P[Δũi(x) − ũ0 > 0] =
∫∞

− ∞

P[ũ0 ≤ t]fΔ̃ui(x)
(t)dt  

=
m!

(x − 1)!(m − x)!

∫∞

− ∞

e− e− t/β Aie− t/β

β
e− (m− x+1)Aie− t/β

(
1 − e− Aie− t/β

)x− 1
dt 

Applying the binomial expansion, (1 − ey)
x 
=
∑x

j=0

(
x
j

)

(− 1)jejy, x = 0, 1, 2, 3, …, 

A=
m!

(x − 1)!(m − x)!

∫∞

− ∞

Aie− t/β

β
e− [1+(m− x+1)Ai ]e− t/β ∑

x− 1

j=0

(
x − 1
j

)

(− 1)je− jAie− t/β
dt  

=
m!

(x − 1)!(m − x)!

∑x− 1

j=0

∫∞

− ∞

Aie− t/β

β

(
x − 1
j

)

(− 1)je− [1+(m− x+1+j)Ai ]e− t/β dt 
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Let δ = − e− t/β. Then dδ = e− t/β

β dt, t = –∞ ⇒ δ = –∞, t = ∞ ⇒ δ = 0, and 

A=
m!

(x − 1)!(m − x)!

∑x− 1

j=0

∫0

− ∞

(
x − 1
j

)

(− 1)jAie[1+(m− x+1+j)Ai ]δdδ  

= (m − (x − 1))
(

m
x − 1

)
∑x− 1

j=0

(
x − 1
j

)

(− 1)j
(

Ai

1 + (m − (x − 1) + j)Ai

)

and it follows from Lemma 5 that 

P[̃xi ≥ x] = (m − (x − 1))
(

m
x − 1

)
∑x− 1

j=0

(
x − 1
j

)

(− 1)j
(

Ai

1 + (m − (x − 1) + j)Ai

)

=
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai  

which is (30). 
Note that P[x̃i ≥ 0] = 1. From Lemma 3, 

P[̃xi ≥ 1] = P[̃xi ≥ 1|̃xi ≥ 0] =
mAi

1 + mAi
.

Thus, for x ∈ {1, …, m – 1}, I rearrange 

P[̃xi ≥ x+ 1] = P[̃xi ≥ x+ 1|̃xi ≥ x]P[̃xi ≥ x]

and apply (30) to obtain 

P[̃xi ≥ x+ 1|̃xi ≥ x] =
P[̃xi ≥ x + 1]

P[̃xi ≥ x]
=

(m − x)Ai

1 + (m − x)Ai 

which is (31). Applying the above, 

P[̃xi = x|̃xi ≥ x] = 1 − P[̃xi ≥ x+ 1|̃xi ≥ x] =
1

1 + (m − x)Ai 

which is (32). Finally, applying (30) and (32), 

P[̃xi = x] =P[̃xi = x|̃xi ≥ x]P[̃xi ≥ x] =
(

1
1 + (m − x)Ai

)
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai 

yields (33), or alternatively (as a consistency check), 

P[̃xi = x] =P[̃xi ≥ x] − P[̃xi ≥ x+ 1] =
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai
−
∏x

j=0

(m − j)Ai

1 + (m − j)Ai  

=

(
1

1 + (m − x)Ai

)
∏x− 1

j=0

(m − j)Ai

1 + (m − j)Ai
(which is (33))  

=

(
1

1 + (m − x)Ai

)(
(m − x + 1)Ai

1 + (m − x + 1)Ai

)
∏x− 2

j=0

(m − j)Ai

1 + (m − j)Ai  

=

(
(m − x + 1)Ai

1 + (m − x)Ai

)(
1

1 + (m − x + 1)Ai

)
∏x− 2

j=0

(m − j)Ai

1 + (m − j)Ai  

=

(
(m − x + 1)Ai

1 + (m − x)Ai

)

P[̃xi = x − 1]

which is (34). 

Proof of Corollary 3. The relationship among probabilities follows directly from (34) and observation that 
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Ai + (m − x)Ai

1 + (m − x)Ai

⎧
⎨

⎩

< 1,Ai > 1
= 1,Ai = 1
> 1,Ai < 1 

If Ai = 1, then 

E[̃xi] =
1

1 + m

∑m

j=0
j=

m
2  

and E[x̃i] <
m
2 for Ai < 1 and E[x̃i] >

m
2 for Ai > 1 follow from the monotonicity of the probability mass function. 

Proof of Theorem 2. The proof relies on (31) in Theorem 1. To simplify notation, I suppress the subscript i, and (31) becomes 

P[̃x≥ x+ 1|̃x≥ x] = P
[
ε̃0 − ε̃(x+1:m)

≤ a
⃒
⃒ε̃0 − ε̃(x:m)

≤ a
]
=

(m − x)ea/β

1 + (m − x)ea/β, x ∈ {1,…,m – 1}.

From Lemma 1, ̃ε(1:k) is a Gumbel random variable with scale parameter β and location parameter ν = β ln k. From Lemma 2, ̃z = ε̃0−

ε̃(1:k) is a logistic random variable with cdf 

F̃z(z)=
1

1 + e− (z− (0− β ln k))/β =
1

1 + e− z/β+ln k =
kez/β

1 + kez/β 

Therefore 

P
[
ε̃0 − ε̃(x+1:m)

≤ a
⃒
⃒ε̃0 − ε̃(x:m)

≤ a
]
=P
[
ε̃0 − ε̃(1:m− x)

≤ a
]

(1) 

We interpret (1) terms of ̃z0, z̃1, ..., z̃m given in the theorem, which can be rewritten as ̃z0 = ν0 + ε̃0 and ̃zi = ν+ ε̃i where ̃εi are iid 
Gumbel random variables with location 0 and scale β. Furthermore, ̃z(1:m− x)

= ν + ε̃(1:m− x) with location parameter ν(m-x) = ν + βln(m – x) 
(see Lemma 1). Let a = ν(m-x) + t – ν0. Substituting into (1), 

P
[
ε̃0 − ε̃(x+1:m)

≤ ν(m− x) + t − ν0
⃒
⃒̃ε0 − ε̃(x:m)

≤ ν(m− x) + t − ν0
]
= P
[
z̃0 − z̃(x+1:m)

≤ t
⃒
⃒̃z0 − z̃(x:m)

≤ t
]

P
[
ε̃0 − ε̃(1:m− x)

≤ ν+ t − ν0
]
=P
[
z̃0 − z̃(1:m− x)

≤ t
]
=

(m − x)e(ν+t− ν0)/β

1 + (m − x)e(ν+t− ν0)/β =
e(ν+β ln(m− x)+t− ν0)/β

1 + e(ν+β ln(m− x)+t− ν0)/β  

=
1

1 + e− (t− (ν0 − ν(m− x)))/β 

Therefore, ỹ(x+1:m)|(x:m) is a logistic random variable with mean ν0 – ν(m-x) and variance π2β2/3. □ 

Proof of Theorem 3. From Corollary 2 and Lemma 4, 

A=P[x̃= x] =
∫∞

− ∞

fΔ̃u0
(t)

(
∏n

i=1
P[Δũi(xi)≥ t≥Δũi(xi + 1)]

)

dt  

=

∫∞

− ∞

e− t/β

β
e− e− t/β

(
∏n

i=1

(
m
xi

)

e− (m− xi)Aie− t/β
(

1 − e− Aie− t/β
)xi

)

dt 

Applying the binomial expansion, 

(1 − ey)
x
=
∑x

j=0

(
x
j

)

(− 1)jejy, x= 0, 1, 2, 3,…,

A=

(
∏n

i=1

(
m
xi

)) ∫∞

− ∞

e− t/β

β

⎛

⎝e
−

(

1+
∑n

i=1
(m− xi)Ai

)

e− t/β
⎞

⎠

⎛

⎜
⎝
∑x1

j1=0
…
∑xn

jn=0

(
x1
j1

)

…
(

xn
jkn

)

(− 1)

(
∑n

i=1
ji

)

e
−

(
∑n

i=1
jiAi

)

e− t/β

⎞

⎟
⎠dt  

=

(
∏n

i=1

(
m
xi

))
⎛

⎜
⎝
∑x1

j1=0
…
∑xn

jn=0

∫∞

− ∞

(
x1
j1

)

…
(

xn
jn

)

(− 1)

(
∑n

i=1
ji

)

e− t/β

β

⎛

⎝e
−

(

1+
∑n

i=1
(m− xi)Ai

)

e− t/β
⎞

⎠e
−

(
∑n

i=1
jiAi

)

e− t/β

dt

⎞

⎟
⎠

Let δ = − e− t/β. Then dδ = e− t/β

β dt, t = –∞ ⇒ δ = –∞, t = ∞ ⇒ δ = 0, and 
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A=P[x̃= x] =

(
∏n

i=1

(
m
xi

))
⎛

⎜
⎝
∑x1

j1=0
…
∑xk

jn=0

∫0

− ∞

(
x1
j1

)

…
(

xn
jn

)

(− 1)

(
∑n

i=1
ji

)
⎛

⎝e

(

1+
∑n

i=1
(m− xi+ji)Ai

)

δ
⎞

⎠dδ

⎞

⎟
⎠

As a consistency check, recall that ũ0, Δũ1(1), ...,Δũn(1) are independent Gumbel random variables with scale β and location pa-
rameters 0 and ai + βlnm for i = 1, …, n. Thus, it follows from lemmas 1 and 2 that 

P[x̃= 0] =P[ũ0 ≥maxi{Δũi(1)}]=
1

1 + e
−

(

0−

(
∑n

i=1
(ai+β ln m)− 0

))/

β

=
1

1 + m
∑n

i=1
Ai 

which aligns with the general expression above. □ 

Proof of Theorem 4. Let τ denote a threshold vector. The Lagrangian of the optimization problem is 

L(τ, λ)= λB +
∑n

i=1

∑m

x=1
(E[Δũi(x) − ũ0|Δũi(x) − ũ0 ≥ τi] − λ)P[Δũi(x) − ũ0 ≥ τi]

Let fi(t |x) denote the probability density function of Δũi(x) − ũ0. Then 

∂L(τ, λ)
∂τi

=
∂

∂τi

∑m

x=1

∫∞

τi

(t − λ)fi(t|x)dt= −
∑m

x=1
(τi − λ)fi(τi|x)

∂2L(τ, λ)
∂τi

2 = −
∑m

x=1

[

(τi − λ)
∂fi(τi|x)

∂τi
+ fi(τi|x)

]

∂2L(τ, λ)
∂τi∂τj

= 0, i ∕= j 

The first-order condition (necessary condition for interior optimal) is τi = λ for all i and at this point, 

∂2L(λ, λ)
∂τi

2 < 0,

which implies that τi = τ = λ is a unique global maximum. If 
∑n

i=1
∑m

x=1P[Δũi(x) − ũ0 ≥ 0] < B, then the constraint is nonbinding and τ 
= λ = 0. Otherwise τ is the unique solution to (40). □ 

11.2. Hard Constraint versus Soft Constraint 

Estimation of MDCEV (via (4)) and the models in sections 3.2 and 3.3 include an assumption on how individuals operationalize 
choice decisions. I describe the assumption in this section and compare it to an alternative assumption. 

At each choice event, an individual makes decisions to maximize utility. There are at least two ways in which this may be oper-
ationalized. The following two formulations show optimal expected utility from a future choice event. 

P1 : U*
1 = E

[

max
x

{
∑n

i=1
ũi(xi) :

∑n

i=1
xi ≤ B

}]

(hard constraint)

P2 : U*
2 = max

λ≥0

{
∑n

i=1
E[ũi(x̂(λ, ũi( ⋅ )))] :

∑n

i=1
E[x̂(λ, ũi( ⋅ ))] ≤ B

}

(soft constraint)

where for realization ui( ⋅) of random utility function ũi( ⋅)

x̂(λ, ui( ⋅ ))=max
x∈Z+

{x : Δui(x)≥ λ}

Note that x̂(λ, ui( ⋅)) is the decision rule given in (2). For a given realization of utility functions, the decision the rule yields the 
quantity decisions x that maximize total utility subject to an upper limit on consumption that is determined by the dual value λ. The 
optimal value of λ is set to maximize expected utility subject to an upper limit on expected consumption (B). 

Under P1, the decision maker chooses x that maximizes utility subject to the constraint for each realization of utility functions. P1 
enforces the constraint at each choice event, i.e., the inequality is treated as a hard constraint. 

Under P2, the decision maker chooses x according to the threshold decision rule; the decision maker identifies alternatives with 
marginal utility above the threshold λ at the origin, and then increases quantity until marginal utility matches the threshold. The 
threshold is set to maximize expected utility while satisfying the constraint in expectation, i.e., the inequality is treated as a soft 
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constraint. That is, the decision maker identifies the threshold that maximizes expected utility while assuring that the constraint is 
satisfied “on average” (e.g., tuned heuristically from experience over time). As shown in Section 2.2, MDCEV is based on P2, as are the 
models in sections 3.2 and 3.3. 

Intuition may suggest that P2 results in higher expected utility than P1, i.e., U2* ≥ U1*. This intuition is correct. The reason is that, 
at the optimal threshold under P2, the decision maker selects more than B units when realized choice utilities are high, which is offset 
(in expectation) by selecting fewer than B units when realized choice utilities are low.5 It may be that P2 is more aligned with human 
nature as well, e.g., tend to choose more than B when highly desirable to do so. 

In summary, in the context of discrete quantity choice, P2 has appealing characteristics relative to P1 across several dimensions: 
individual decision-making, empirical analysis, and normative analysis. From the perspective of an individual’s choice decision, P2 
results in higher average utility for an individual while being practical to operationalize. Choice probabilities have a simple form that is 
amenable to efficient estimation under alternative assumptions for probability distributions of idiosyncratic error terms (e.g., probit, 
logit). And while perhaps not apparent from the choice probability expression, the model captures the interaction of alternatives 
through the threshold parameter. Normative analysis based on the model is relatively tractable. Lastly, it is important to note that the 
entire class of generalized extreme value models (McFadden 1978) is a special case of the model given in P2 with B = 1, i.e., P2 is 
consistent with GEV models. This result is proved in Gallego and Wang (2020, Theorem 3). 

11.3. Continuous Analog of the Discrete Distribution in Theorem 1.6 

Define g(x) = P[x̃ = x], x = 0, …, m. From Theorem 1 (with the subscript for alternative i suppressed), 

g(0)=
1

1 + mA  

g(x)=
(

1 + m − x
1/A + m − x

)

g(x − 1), x= 1,…,m.

Thus, 

Δg(x)
g(x)

=
g(x) − g(x − 1)

g(x)
=

1 + m − x − (1/A + m − x)
1 + m − x

=
1 − 1/A

1 + m − x
.

The continuous analog, h(x), satisfies 

h′

(x)
h(x)

=
1 − 1/A

1 + m − x
.

For A ∕= 1, the solution to the differential equation is 

h(x)= c(1 + m − x)1/A− 1  

where c is the positive constant that assures h(x) integrates to one over its support. 
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