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A B S T R A C T

This article investigates the usage of a general model-based recursive partitioning algorithm
to model preference heterogeneity. We use the algorithm to grow a decision tree based on
statistical tests of the stability of individuals’ preference parameters. In particular, we used
a Mixed Logit (MIXL) model with alternative-specific attributes at the end leaves of the tree
while using individual characteristics as partition variables. This configuration allows us to
search for instabilities of the taste parameters across individuals’ characteristics. We conduct
a simulation study to investigate the algorithm’s ability to recover different data generating
processes with structural breaks in the taste parameters. The results show that the algorithm
can correctly recover diverse tree-like data generating processes. Additionally, we applied the
algorithm to stated choice data of the preferences for the environmental impact of (hypothetical)
energy generation plans in Chile. The results show that the model-based decision tree fits the
data better than MIXL in terms of information criteria. Moreover, we show that the derived
tree structure depends on the assumptions on the parameters’ distributions. Additionally, we
compare the model-based decision tree model with Latent Class (LC) models with and without
within-class heterogeneity. Finally, we show that the recursive partitioning algorithm can inform
the selection of variables to be included in the LC allocation models.

. Introduction

Since the introduction of the Multinomial Logit model (MNL) (McFadden, 1974), researchers have developed several model
xtensions to capture individuals’ heterogeneous preferences. These efforts, mainly motivated by the bias and inconsistency
enerated when the assumption of homogeneous preferences across individuals does not hold (Chamberlain, 1980), have provided
umerous extensions to the MNL model. The extensions are mainly triggered by the fact that including interaction terms between
lternative-specific and individual-specific attributes is the only way to capture heterogeneity in MNL models. A popular extension is
he Mixed Logit (MIXL) model (McFadden and Train, 2000), which captures the heterogeneity of preferences assuming a probability
istribution on the model’s parameters. The MIXL has been shown to be a powerful tool with substantial gains in terms of goodness
f fit (Hensher and Greene, 2003). However, the interpretation of the heterogeneity is not immediately available to the researcher.
his is mainly because allowing random parameters can show that the preferences are heterogeneous, but further steps, such as
egression analysis on individual characteristics, are needed to gain insight into what might drive the heterogeneity captured by the
odel.
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Another major contribution to capture preference heterogeneity is the development of the Latent Class (LC) Model (Bhat, 1997;
rain, 2008). Unlike the MIXL1 model, it captures heterogeneity by assigning individuals into different classes. Each of the classes
as different taste parameters, meaning that the model provides a discrete distribution of taste parameters across classes. The LC
odel uses an allocation model that can include characteristics of the individuals to compute the probability of belonging to a class.
common practice among practitioners is to label the resulting classes in terms of the allocation model, such as what observed

haracteristics would make an individual more likely to belong to a particular class. By doing so, researchers can characterize the
aste parameters that an individual with given characteristics will most likely have.

Additionally, further attempts to combine the probabilistic classes created by LC models with the continuous random heterogene-
ty of MIXL has resulted in what we will refer to as the LC-MIXL model (Keane and Wasi, 2013). The LC-MIXL is, at its core, a LC
odel that allows random parameters for each of the classes. Keane and Wasi (2013), using ten different data sets, document that

he LC-MIXL has superior model fit compared to LC and MIXL models. The authors attribute this to its capacity to capture a wide
ange of behavioral types present in the data, from lexicographic/non-compensatory choice behavior to ‘‘random‘‘ choice behavior,

in the sense that the choices are little influenced by the observed attributes. Furthermore, the authors document the difficulty of
using the LC-MIXL model in practice, arguing that not only the number of classes is unknown but also the distribution of the random
parameters needs to be selected by the modeler, which leads to a large number of models that have to be fitted.

Following the same motivation as the above-mentioned models, this article proposes using the so-called MOdel Based Recursive
Partitioning (MOB) algorithm (Zeileis et al., 2008) to capture individuals’ preferences heterogeneity. The MOB algorithm generates
partitions in the data based on structural tests of parameter stability. The basic idea of the parameter stability tests is to check
whether the score functions of the model (i.e., the first derivative of the log-likelihood function) oscillate randomly around zero
or if they exhibit systematic deviations generated by some variables, which are referred to as ‘‘partition variables’’. That is to
say, the stability tests analyze the influence of a given partition variable over the score functions of the model. Intuitively, if the
scores at different values of the partition variable do not oscillate around zero (i.e. the theoretical mean value when evaluated
at the maximum likelihood), the parameters’ estimates are not stable across persons, and a data partition should be introduced.
Originally, Zeileis et al. (2008) presented the algorithm with least-squares, logistic, and survival regression models, and later it was
extended to models that incorporate random effects, for instance, the so-called generalized linear mixed-effects model tree (GLMM
tree) algorithm (Fokkema et al., 2018) which uses the same battery of statistical tests proposed by Zeileis et al. (2008).

It is important to notice that the MOB algorithm, when used in a regression context, requires the user to specify which variables
will be included in the parametric model at the end leaves and which variables will be used to partition the data. That being said,
we will exploit the natural separation between alternative-specific attributes and individual-specific characteristics that arises in
discrete choice applications. Concretely, we will use a MIXL model as the parametric model at the end leaves, including all the
alternative-specific attributes, and we will use all the individual-specific characteristics to generate partitions on the data based on
statistical tests of parameter stability. We will refer to the resulting model as the MOB-MIXL model. In this way, we expect our
specification to benefit from the ability to automatically identify which individual-specific variables are relevant to create partitions
on the data, which contrasts with the need to select the variables that will be included in latent class’ allocation models. In the
following, we refer to the partitions created by the MOB algorithm as hard breaks because they are deterministic. However, given
their probabilistic nature, we refer to the segments created by LC models as fuzzy breaks. Additionally, from all the decision trees
applied in the discrete choice literature (see Section 2.2), this is the first to allow for random coefficients in the parametric model
fitted at the end leaves.

To briefly illustrate the potential of the MOB algorithm, Fig. 1 shows a hypothetical tree that has a MIXL model with two random
coefficients (log-normally distributed). The Figure represents a hypothetical situation in which the algorithm used the individuals’
age as a partition variable, dividing the sample between people older than 25 years old and younger than 25 years old. That is
to say, the structural tests (see Section 4) rejected the null hypothesis of parameter stability and created a partition on the data
based on the individual’s age. Accordingly, the algorithm can improve the overall model fit (i.e., the Akaike Information Criterion
(AIC) (Akaike, 1998) and the Bayesian Information Criteria (BIC) (Schwarz, 1978)) by estimating a separate model in each partition
rather than having one global model fitted to the entire sample. Subsequently, the algorithm performed the same structural tests
used in the global model (node 1 ) at the end leaves (nodes 2 and 3 ), and it failed to reject the null hypothesis of parameter
instability, hence the algorithm stopped. As illustrated, the algorithm can automatically detect different groups of individuals by
partitioning the data based on their characteristics; that is, the algorithm does not require a pre-defined number of classes as LC and
LC-MIXL models. Finally, since the algorithm is model agnostic, simpler models can be used as well in the end leaves, for instance,
an MNL or a Nested Logit model. However, we use a MIXL model because of the considerable improvement in model fit derived
from such models .

The contribution of our article is twofold. First, we carry out a simulation study to evaluate the MOB algorithm’s performance
when the parametric model at the end leaves consists of a MIXL model. We show the ability of the algorithm to recover several
tree-like structures with hard breaks using simulated data. Second, we show a way to use the MOB algorithm as a diagnostic tool
to select the variables to be included in the allocation model of LC models. Using simulated data, we show that the algorithm can
discover the allocation model’s variables associated with relevant variables in the true Data Generation Process (DGP).

This article is organized as follows. Section 2 presents a general literature review on decision trees, its applications in discrete
choice modeling and some extensions to latent class models. Section 3 provides a brief description of the discrete choice models

1 See Greene and Hensher (2003) for a detailed comparison of LC and MIXL models.
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Fig. 1. Hypothetical decision tree resulting from using the MOB-MIXL algorithm and two log-normally distributed parameters.

e will use in this article. Section 4 introduces the MOB-MIXL algorithm. Section 5 presents two simulation studies. The first one
hows that the MOB-MIXL can recover the true DGP from different tree-like with structures hard breaks. The second illustrates how
LC model will behave when in presence of data with hard breaks. Section 6 show a possible way to use the MOB algorithm as a

ariable selection step for latent classes’ allocation models. Section 7 illustrates the usage of the algorithm on real data. Section 8
resent a discussion that compares hard breaks with fuzzy breaks highlighting their advantages and disadvantages and presents the
onclusions of the article.

. Literature review

.1. Decision trees: Overview

Decision Trees (DT) are classifiers that sequentially partition the data to generate a tree-like structure. There are substantial
ifferences between different trees. For instance, algorithms like the Classification and Regression Trees (CART) (Breiman et al.,
984) and C4.5 (Quinlan, 1993), grow trees trying to create partitions that are as homogeneous as possible in terms of the dependent
ariable. In particular, they grow a large tree and then prune it using cross-validation to minimize the test error, that is to say,
hey try to maximize the accuracy of the predictions only. However, decision trees introduced later in the literature can include
arametric models at the end leaves. For example, the Fast and Accurate Classification Tree (FACT) (Loh and Vanichsetakul, 1988),
he Quick, Unbiased and Efficient Statistical Tree (QUEST) (Loh and Shih, 1997), the Generalized, Unbiased, Interaction Detection
nd Estimation (GUIDE) algorithm (Loh, 2002) and the Conditional Inference Trees algorithm (CTREE) (Hothorn et al., 2006)
ntroduced statistical tests in the tree growing process. Additionally, the MOdel-Based (MOB) recursive partitioning algorithm (Zeileis
t al., 2008), which is the one we use in this article, uses structural breaks of the fitted model’s score functions. After the split
ariable is selected based on tests for parameter stability, the MOB algorithm selects the split point by maximizing the sum of
og-likelihood functions in the emerging subgroups. However, unlike the GUIDE algorithm, the MOB algorithm requires to declare
ifferent variables to be used as splitting variables and as regressors (i.e., to be included in the parametric model defined at the end
eaves). Here we exploit, in the context of discrete choice applications, the natural difference between individual characteristics and
lternative specific variables using the former as partition variables and the latter as explanatory variables in the model. This is a
easonable assumption given that individual characteristics are very often used within class membership functions in LC models.
ence, we mimic the same behavior, yet creating hard breaks instead of probabilistic classes or fuzzy breaks.

.2. Discrete choice applications of decision trees

There is an increasing interest in data-driven methods within the discrete choice community. A recent literature review by Hillel
t al. (2021) reflects this, finding more than 70 articles that use Machine Learning techniques. For instance, the work of Karlaftis
2004) develops a multivariate recursive partitioning algorithm maximizing class purity using the Gini index (Breiman et al., 1984).
he author shows that the predictive power of the proposed approach is higher than of conventional MNL models while obtaining
convenient series of ‘‘if-then’’ statements with the mode choice predictions. Similarly, Tang et al. (2015), and Liang et al. (2021)

lso use decision trees to model travel mode choice, showing that they outperform the predictive power of traditional logit models.
3

owever, they do not elaborate further on the interpretability of the models they present, reducing them to a purely predictive
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exercise. Using a more model-oriented approach, Arentze and Timmermans (2007) develop the so-called parametric action decision
tree (PADT). This algorithm grows the tree in two steps, distinguishing between discrete and continuous attributes. PADT uses
discrete attributes to produce the tree and continuous attributes to model utility at the end leaves for groups as homogeneous as
possible in terms of the dependent variable. Another noteworthy attempt to bring together the predictive power of decision trees and
discrete choice models is the work of Brathwaite et al. (2017). The authors use what they call a ‘‘Bayesian model tree’’ to model bicycle
mode choice in the San Francisco Bay Area. They show that this tree can accommodate different types of non-compensatory behavior
while automatically identifying the effect of bicycle infrastructure investment to be moderated by travel distance, topography, and
individuals’ socio-demographic characteristics.

In the same avenue, the MOB algorithm we use in this article can grow a decision tree that contains a parametric model at the end
leaves. One noticeable advantage of the MOB-MIXL algorithm over the previous decision trees applied so far in the discrete choice
literature is its ability to include random coefficients in the model specification at the end leaves which can drastically increase
the model fit. Additionally, the only application of the MOB algorithm in the context of choice modeling was described by Cockx
and Canters (2020), who implement it using revealed preference data for residential location choice in Belgium. The authors show
that the model can identify heterogeneous preferences in residential location, where the main drivers of the different groups are
the individuals’ education level, nationality and household type, and the tenure status of the house. However, the authors use an
MNL model as the parametric model at the end leaves, instead of the MIXL model we use. Additionally, the authors do not compare
the performance of the MOB algorithm with other commonly used discrete choice models nor do they perform any simulations to
assess the algorithm’s performance.

2.3. Beyond latent class models in discrete choice applications

Given that the MOB-MIXL algorithm yields a structure that is somewhat comparable with LC and LC-MIXL models, in the sense
that both extract groups of individuals with different taste parameters in the data, we review the latest advances in those models
for the sake of completeness. Most recent advances in the LC literature have been devoted to implementing more flexible allocation
models. For instance, Han (2019) implements the so-called nonlinear-Latent Class Choice Model (nonlinear-LCCM), which combines
the traditional LC models with a neural network in the allocation model. The model seeks to find nonlinear relationships at the
level of the allocation model so it can better learn the mixing distribution that allocates individuals into classes. The authors train
the nonlinear-LCCM and conventional LC models as a neural network using Stochastic Gradient Descent (SGD) methods which they
found to perform better than using conventional Expectation–Maximization (EM) or Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithms in several aspects. First, it scales better for large data sets in terms of running time. Second, it produces more stable
results under complex circumstances (large number of classes and parameters). Third, it performs better at identifying smaller
classes present in the data.

Sfeir et al. (2021), in the same spirit of Han (2019), propose an LC model that replaces the conventional Logit specification
used in the allocation model with a Gaussian–Bernoulli mixture model. The proposed model distinguishes between binary and
continuous individual characteristics used in the allocation model. The authors show that their model outperforms traditional LC
models in terms of model fit in two data sets without interpretability losses producing logical economic indicators (e.g., willingness
to pay). Unfortunately, the authors do not investigate how the model would behave when introducing within-class heterogeneity,
as in LC-MIXL models, and leave this open for future research.

To conclude, the significant advances in recent articles devoted to extensions of the LC model have been novel and have lead
to more complex structures that replace the Logit model traditionally used as an allocation model. However, none of the articles
have investigated within-class heterogeneity, which the MOB algorithm can do by using a MIXL as the parametric model at the end
leaves. The algorithm used in this paper can be understood roughly as a LC-MIXL model with an allocation model that works in
a deterministic way, creating non-overlapping data partitions with different taste parameters based on individual characteristics.
Consequently, even though this way of proceeding is less flexible than a probabilistic allocation model, it is more straightforward to
interpret than LC and LC-MIXL models. Additionally, we will also show how the MOB algorithm can be used as a variable selection
procedure (see Section 6) when choosing the LC or LC-MIXL allocation models

3. Discrete choice models

This section describes the notation we will use for the discrete choice models that we have mentioned: the MNL, LC, MIXL and
LC-MIXL models. We use this notation to introduce the MOB algorithm in Section 4.

3.1. The multinomial logit model

Consider a situation in which we have a sample of 𝑁 decision-makers, and that respondent 𝑛 can choose among 𝐽 alternatives
in each of 𝑡𝑛 choice situations. Let the utility that this individual obtains from alternative 𝑖 in choice set 𝑡 be described by
𝑈𝑖𝑛𝑡 = 𝜷′𝒙𝑖𝑛𝑡 + 𝒛′𝑛𝜶𝒙𝑖𝑛𝑡 + 𝜀𝑖𝑛𝑡, where 𝜷 is a 𝐾 × 1 column vector of coefficients, 𝒙𝑖𝑛𝑡 is a 𝐾 × 1 column vector characterizing the
attribute levels of alternative 𝑖 in choice set 𝑡 for respondent 𝑛, 𝜶 is a 𝐾𝑧 × 𝐾 matrix of interaction coefficients, 𝒛𝑛 is a 𝐾𝑧 × 1
column vector of individual characteristics of individual 𝑛, and 𝜀𝑖𝑛𝑡 is an error term that represents the unobserved component of
the utility. The error term is assumed to be an independent and identically distributed type I extreme value. Additionally, we assume
4
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that individuals choose the alternative with maximum utility. Under these standard assumptions, the probability that individual 𝑛
chooses alternative 𝑖 in choice situation 𝑡 can be expressed by a Multinomial Logit (MNL) formula (McFadden, 1974):

𝑃𝑖𝑛𝑡 =
exp

(

𝜷′𝒙𝑖𝑛𝑡 + 𝒛′𝑛𝜶𝒙𝑖𝑛𝑡
)

∑𝐽
𝑗=1 exp

(

𝜷′𝒙𝑗𝑛𝑡 + 𝒛′𝑛𝜶𝒙𝑗𝑛𝑡
)
. (1)

Using (1) we can define the sample log-likelihood function of the MNL model as

𝐿𝐿(𝜷) =
𝑁
∑

𝑛=1

𝑡𝑛
∑

𝑡=1

𝐽
∑

𝑖=1
𝑦𝑖𝑛𝑡 × ln

(

𝑃𝑖𝑛𝑡
)

, (2)

where 𝑦𝑖𝑛𝑡 is the response variable that is one if individual 𝑛 chooses alternative 𝑖 in choice situation 𝑡 and zero otherwise.
The MNL is the most simple and easy to interpret discrete choice model. However, it cannot exploit the panel structure produced

by a series of choices made by the same individual (i.e., it treats choices made in different choice situations as independent) and
the heterogeneity is limited to the inclusion of interaction terms with individual characteristic variables. The following Sections
describe discrete choice models that extend the MNL to overcome these limitations.

3.2. The latent class model

The LC Model (Bhat, 1997; Train, 2008) assumes that there are 𝐶 distinct classes of individuals with different taste parameters
present in the data

(

𝜷1, 𝜷2,… , 𝜷𝐶
)

. Accordingly, if individual 𝑛 belongs to class 𝑐, the probability of observing the sequence of
choices of individual 𝑛 is a product of conditional logit formulas given by

𝑃𝑛(𝜷𝑐 ) =
𝑡𝑛
∏

𝑡=1

𝐽
∏

𝑖=1

{

exp
(

𝜷′𝑐 𝒙𝑖𝑛𝑡
)

∑𝐽
𝑗=1 exp

(

𝜷′𝑐 𝒙𝑗𝑛𝑡
)

}𝑦𝑖𝑛𝑡

, (3)

with 𝜷𝑐 being the vector of preference parameters in class 𝑐 (𝑐 = 1,… , 𝐶). Given that the class membership is unknown, the
econometrician needs to specify the unconditional probability, 𝜋𝑐𝑛, of an individual 𝑛 belonging to class 𝑐, which is typically
described using a Logit function that can include individual characteristics (𝒛𝑛), such as:

𝜋𝑐𝑛(𝜸𝑐 , 𝜆𝑐 ) =
exp

(

𝜆𝑐 + 𝜸′𝑐 𝒛𝑛
)

∑𝐶
𝑙=1 exp

(

𝜆𝑙 + 𝜸′𝑙 𝒛𝑛
)
, (4)

here 𝜸𝑐 is the parameter vector of the allocation model and 𝜆𝑐 is a constant term related to class 𝑐. The parameters 𝜸𝑐 capture the
influence of the vector of individual characteristics, 𝒛𝑛, on the class allocation probabilities. Additionally, if no information about
individual characteristics is available, the allocation model can be a constant-only model, meaning only including 𝜆𝑐 parameters.
For identification we set the parameters from one class (e.g.; 𝜸1, 𝜆1) equal to zero.

Accordingly, we can define the sample log-likelihood function of the LC model in terms of Eqs. (3) and (4) as

𝐿𝐿(𝜷, 𝜸, 𝜆) =
𝑁
∑

𝑛=1
ln

𝐶
∑

𝑐=1
𝜋𝑐𝑛(𝜸𝑐 , 𝜆𝑐 ) × 𝑃𝑛

(

𝜷𝑐
)

. (5)

We can see that the LC model can specify heterogeneous preferences across classes by splitting individuals into probabilistic
rofiles based on their individual-specific characteristics.

.3. The mixed logit model

The MIXL model (McFadden and Train, 2000), similarly to the models we have already presented, works with a sample of 𝑁
ndividuals with 𝑡𝑛 choice sets of 𝐽 alternatives. The difference is to be found in the utility that individual 𝑛 derives from choosing
lternative 𝑖 on choice situation 𝑡, which now is given by 𝑈𝑖𝑛𝑡 = 𝜷′𝑛𝒙𝑖𝑛𝑡 + 𝒛

′
𝑛𝜶𝒙𝑖𝑛𝑡 + 𝜀𝑖𝑛𝑡, where 𝜷𝑛 is a vector of individual-specific

oefficients. Different from the MNL model, where the parameter 𝜷 is assumed to be the same for all individuals, the MIXL assumes
hat 𝜷 follows a density denoted as 𝑓 (𝜷|𝝋), where 𝝋 are the parameters of the distribution, for example, if a normal distribution is

assumed, its mean and variance. Accordingly, the full set of parameters of the model will be denoted by 𝜽.
Conditional on knowing 𝜷𝑛 for each individual, the probability that respondent 𝑛 chooses alternative 𝑖 on choice situation 𝑡 is

given by

𝑃𝑖𝑛𝑡(𝜷𝑛,𝜶) =
exp

(

𝜷′𝑛𝒙𝑖𝑛𝑡 + 𝒛
′
𝑛𝜶𝒙𝑖𝑛𝑡

)

∑𝐽
𝑗=1 exp

(

𝜷′𝑛𝒙𝑗𝑛𝑡 + 𝒛′𝑛𝜶𝒙𝑗𝑛𝑡
)
, (6)

hich is almost identical to the formula of the MNL model (see Eq. (1)). The only difference is that now we have one vector of taste
arameters 𝜷𝑛 for each individual 𝑛. Additionally, the probability of the observed sequence of choices of individual 𝑛 (conditional
n knowing 𝜷𝑛) is given by

𝑃𝑛(𝜷𝑛) =
𝑡𝑛
∏

𝐽
∏

{

𝑃𝑖𝑛𝑡(𝜷𝑛)
}𝑦𝑖𝑛𝑡 . (7)
5
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The unconditional probability of the observed sequence of choices is the conditional probability integrated over the entire domain
f the distribution of 𝜷. Accordingly, the sample log-likelihood function for the MIXL model is given by

𝐿𝐿 (𝜽) =
𝑁
∑

𝑛=1
ln
[

∫𝜷
𝑃𝑛 (𝜷) 𝑓 (𝜷|𝝋) 𝑑𝜷

]

. (8)

As the integral in Eq. (8) does not have a closed form, it is approximated using simulation (see Train (2009)). Accordingly, in what
follows we estimate the model using Maximum Simulated Likelihood where we maximize the following simulated log-likelihood

𝑆𝐿𝐿 (𝜽) =
𝑁
∑

𝑛=1
ln

{

1
𝑅

𝑅
∑

𝑟=1
𝑃𝑛 (𝜷𝑟)

}

, (9)

where 𝑅 is the number of replications and 𝜷𝑟 is the 𝑟th drawn from 𝑓 (𝜷|𝝋).

3.4. Latent class model with random coefficients

The LC-MIXL model (Keane and Wasi, 2013) is at its core, an LC model that allows for within-class continuous heterogeneity, so
we will have different classes denoted by 𝑐 (𝑐 = 1,… , 𝐶) where inside of each class we have individual-level parameters specific for
each class, 𝜷𝑛|𝑐 . Hence, when individual 𝑛 belongs to class 𝑐, the probability of observing its sequence of choices will be the product
of conditional Logit formulas (conditional on knowing 𝜷𝑛|𝑐) given by:

𝑃𝑛(𝜷𝑐 ) =
𝑡𝑛
∏

𝑡=1

𝐽
∏

𝑖=1

⎧

⎪

⎨

⎪

⎩

exp
(

𝜷′𝑛|𝑐 𝒙𝑖𝑛𝑡
)

∑𝐽
𝑗=1 exp

(

𝜷′𝑛|𝑐 𝒙𝑗𝑛𝑡
)

⎫

⎪

⎬

⎪

⎭

𝑦𝑖𝑛𝑡

, (10)

In the same fashion as in the LC model, we can use an allocation model that is a function of individual characteristics 𝒛𝑛 (see
q. (4)). However, given that we allow for random heterogeneity within classes, we need to integrate the conditional probability
f the observed sequence of choices from individual 𝑛 in class 𝑐 over the entire domain of the distribution of 𝜷𝑛|𝑐 to obtain the
nconditional choice probability. Accordingly, we can define the log-likelihood of the model using Eq. (10) and (4) as:

𝐿𝐿(𝜷, 𝜸, 𝜆) =
𝑁
∑

𝑛=1
ln

𝐶
∑

𝑐=1
𝜋𝑐𝑛(𝜸𝑐 , 𝜆𝑐 ) ×

[

∫𝜷
𝑃𝑛

(

𝜷𝑐
)

𝑓
(

𝜷𝑐 |𝝋
)

𝑑𝜷𝑐
]

(11)

The log-likelihood function presented in Eq. (11) is also estimated using simulations, as for the case of the MIXL model,
aking draws from the assumed distribution of the random coefficients. Accordingly, we will maximize the following simulated
og-likelihood function

𝑆𝐿𝐿(𝜷, 𝜸, 𝜆) =
𝑁
∑

𝑛=1
ln

𝐶
∑

𝑐=1
𝜋𝑐𝑛(𝜸𝑐 , 𝜆𝑐 ) ×

[

1
𝑅

𝑅
∑

𝑟=1
𝑃𝑛

(

𝜷𝑟𝑐
)

]

, (12)

here 𝑅 is the number of replications and 𝜷𝑟 is the 𝑟th drawn from 𝑓 (𝜷𝑐 |𝝋). The described model can create an arbitrary number
f probabilistic profiles of individuals while being able to accommodate continuous random heterogeneity for the parameters inside
f each of the classes while leads to the most flexible model of all presented in this article.

. Parameter instability tests

.1. The MOB-MIXL algorithm

The MOB algorithm (Zeileis et al., 2008) proposes the idea of recursive partitioning, which comes from the insight that, in some
ituations, it is unreasonable to assume that a single global model can fit all observations in the sample sufficiently well. Instead, it
ight be the case that partitions of the sample space with respect to a partition variable allow for a better local specification. The
OB algorithm generates partitions on the data based on a statistical test of parameter stability rather than using purity measures

s, for example, the CART (Breiman et al., 1984) or the C4.5 (Quinlan, 1993) algorithms. Concretely, we use the MOB algorithm to
ivide the sample into subgroups and fit a separate MIXL model at these end leaves leading to the MOB-MIXL model. So we propose
he MOB-MIXL algorithm which contains the following steps:

1. Fit a MIXL model once to all observations in the current node.
2. Assess whether the taste parameters are stable with respect to demographic variables. If there is parameter instability, select

the demographic variable, 𝑍𝑠, associated with the highest parameter instability; otherwise, stop.
3. Compute the split point that maximizes the sum of the simulated log-likelihood functions (see Eq. (9)) over the emerging

subgroups.
6

4. Split the node into child nodes and repeat the procedure until some stopping criterion is met.
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We briefly explain the details of the stability tests of step 2 in Section 4.2, but a detailed explanation of such tests can be found
n Zeileis et al. (2008). Additionally, the algorithm allows the user to specify the minimum number of observations necessary to
reate a partition and the significance level of the test for parameter instabilities (the default being 0.05). That is to say that the
lgorithm can stop primarily for two reasons. First, the stability test (step 2) performed at a given node of the tree fails to reject
he null hypothesis of parameter stability. Second, the partition to be created does not reach the required minimum number of
bservations specified by the user. Once the algorithm has stopped, the resulting tree can be pruned in order to maximize model
it based on either Akaike Information Criterion (AIC) (Akaike, 1998) or the Bayesian Information Criteria (BIC). Further details of
he pruning process can be found in Hothorn and Zeileis (2015).

.2. The empirical fluctuation process and the stability tests

In this Section we describe the empirical fluctuation process, which is used later in the stability tests of the MOB algorithm (step
in Section 4.1). For further details, and a general description of the empirical fluctuation process, we refer readers to Zeileis et al.

2008) and Merkle et al. (2014). In Zeileis et al. (2008) the authors stated that ‘‘to assess parameter instabilities, a natural idea is to
check whether the score functions, fluctuate randomly around their mean zero, or exhibit systematic deviation from zero over 𝑍𝑝’’ (Zeileis
et al., 2008, p. 496), where 𝑍𝑝 is a possible partition variable. Accordingly, the stated deviations of the score functions can be
aptured by the so-called empirical fluctuation process.

In order to define the empirical fluctuation process we need to compute the score functions of the model. Given that, in the MIXL
model, the analytical expression of the score functions depend on the parametric distribution of the random coefficients,2 we refer
to it, without loss of generality, as:

𝜕 ln𝐿𝑛(𝜽)
𝜕𝜽

|

|

|

|𝜽=�̂�
= 1

𝐿𝑛(𝜽)
×

𝜕𝐿𝑛(𝜽)
𝜕𝜽

|

|

|

|𝜽=�̂�
= �̂�𝑛. (13)

where �̂�𝑛 is a 𝑡𝑛 × 𝐾∗ matrix of score functions related to the 𝑡𝑛 choice situations answered by the individual 𝑛 and 𝐾∗ represents
he length of the full vector of parameters, 𝜽, included in the model specification. Additionally, we can define the matrix �̂� which
tacks the score functions of the individuals into a 𝑇 ×𝐾∗ matrix, where 𝑇 =

∑𝑁
𝑛=1 𝑡𝑛, represents the total number of choice situations

n the data. Besides, we refer to the choice situation 𝑠 of the matrix �̂� , independent of the individual who answered it, as �̂�𝑠 which
s a 1 × 𝐾∗ vector. Using �̂�𝑠 we will construct the statistical tests of parameter stability as in Zeileis et al. (2008). To do so, we
ill define the empirical fluctuation process of partition variable 𝑍𝑝 as 𝑾 (𝑝)(𝑠∗) in Eq. (14) where �̂�𝑠|𝑧𝑝 represents a reordering of the

ows of the matrix �̂� based on the ordering of variable 𝑍𝑝 =
(

𝑧𝑝1,… , 𝑧𝑝𝑇
)′. Additionally, 𝑠∗ ranges from 1 to 𝑇 and represents the

umber of choice sets included in the cumulative sum, and �̂� is the estimated variance–covariance matrix.3 This results in 𝑇 row
ectors of length 𝐾∗ which are stacked together resulting in the 𝑇 ×𝐾∗ matrix 𝑾 (𝑝) with elements 𝑤(𝑝)

𝑠𝑘 :

𝑾 (𝑝)(𝑠∗) =

( 𝑠∗
∑

𝑠=1
�̂�𝑠|𝑧𝑝

)

𝑇 −1∕2�̂�−1∕2 𝑠∗ = 1,… , 𝑇 (14)

Using properties of empirical fluctuation processes and Brownian bridges, Zeileis and Hornik (2007) show that it is possible to
o statistical inference about functions of 𝑾 (𝑝) to check for parameters’ instabilities. Appendix A illustrates the relation between
he empirical fluctuation process and the score functions for a simple model with one quantitative attribute. In order to compute
formal test we need to apply a scalar function 𝜙(⋅) over the empirical fluctuation process that captures the instabilities over the

artition variable 𝑍𝑠. The applied scalar function differs based on the nature of the partition variable (i.e., continuous, categorical
r ordinal). If the partition variable is continuous (e.g., age, income, etc.), Zeileis et al. (2008) propose that a natural test statistic
s

𝜙sup𝐿𝑀 (𝑾 (𝑝)) = max
𝑠=s,…,�̄�

( 𝑠
𝑇

× 𝑇 − 𝑠
𝑇

)−1 𝐾∗
∑

𝑘=1

[

𝑤(𝑝)
𝑠𝑘

]2
. (15)

The 𝜙sup LM(𝑾 (𝑝)) is the sup𝐿𝑀 statistic of Andrews (1993), which is asymptotically equivalent to the so-called Chow test (Chow,
1960). The test is specified in terms of the empirical fluctuation process and it is typically defined by requiring some minimal number
of choice sets s (therefore �̄� = 𝑇 − s). The test computes the maximum sum of squared elements of the 𝑾 (𝑝) matrix’s rows scaled by
ts variance function.4 The sup𝐿𝑀 statistic has the advantage that it has to be fitted only once under the null hypothesis and not in
he alternative of each possible breakpoint. Additionally, the limiting distribution is the supremum of a tied-down Bessel process,
nd the 𝑝-values can be computed as stated in Hansen (1997). Similar tests where proposed to deal with non-ordered categorical
nd ordered categorical variables which we present briefly in Appendix B. See Merkle et al. (2014) and Zeileis et al. (2008) for a
ull description of said statistical tests.

2 For an exhaustive derivation of the analytical expressions of the score functions under normality assumptions we refer the readers to the Appendix A.1
n Zhang et al. (2017).

3 In our case, when repeated choice situations are answered by the same individual, we use cluster-corrected variance–covariance matrices, �̂� , to account for
the dependence between choice sets answered by the same individual.

4 This expression for the variance is taken from the asymptotic distribution of 𝑾 (𝑝), which, under the null hypothesis of parameter stability, converges to
7

Brownian bridge.
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It is worth mentioning that in the presence of multiple choices (𝑡𝑛 > 1) per individual, if a partition is made, all choice sets of
individual 𝑛 will move as a ‘‘block’’ when growing the tree. This behavior occurs because, once we reject the null hypothesis of
parameter stability for a given partition variable (step 2 in Section 4.1), the algorithm finds the split point by running a grid search
across all possible values of the partition variable and by maximizing the sum of the (simulated) log-likelihood function over the
emerging subgroups (see step 3 in Section 4.1). Accordingly, given that all the choice sets answered by the same individual have the
same individual characteristics, they are assigned in ‘‘blocks’’ to the end leaves of the tree. Finally, the quality of the approximation
of log-likelihood and the score functions, that is to say, the number of draws used in the estimation, will impact the structural
tests used by the MOB algorithm, so the larger this number, the more powerful the test will be. We investigate this behavior in the
empirical application finding that a different number of draws result in different tree structures.

4.3. Software details

We run all the computations using R (R Core Team, 2022) on a Windows 10 machine with an AMD EPYC 7552 48-Core
Processor (2.20 GHz) with 256gb of RAM. Besides, we implement the MOB algorithm using the R package partykit (version
1.2.13) (Hothorn and Zeileis, 2015) together with mlogit (version 1.1.1) (Croissant, 2020) which is used to fit a MIXL model at
the end leaves. The mlogit package also produces the score functions used by the structural tests performed by the MOB algorithm.
Additionally, we used the R package Apollo (version 0.2.7) (Hess and Palma, 2019) to fit the LC and LC-MIXL models. Finally,
all the figures were created using the ggplot2 package (Wickham, 2016). Finally, the code that replicates the results presented in
this article is available at https://github.com/alvarogutyerrez/mobmixl.

5. Simulation studies

5.1. The MOB-MIXL algorithm applied to data with hard breaks

To show the potential of the MOB-MIXL algorithm we present a large simulation study. In particular, we investigate how the
algorithm’s performance depends on the size of the data, the size of the parameter differences across the partitions, and how
balanced the groups are at the end leaves. The DGP follows closely the scheme used by Schlosser et al. (2019) in the context
of linear regression, but is adapted for discrete choice models. The discrete choice sets consist of three alternatives (𝑖 = 1, 2, 3) with
wo alternative-specific attributes (𝒙𝑖𝑛𝑡) that describe the observed utility (𝑉𝑖𝑛) of each alternative. We simulated different tree-like
tructures with hard breaks on the taste parameters based on individual-specific characteristics (𝑍1 to 𝑍5). The full description of
he DGP and the assumed model for each scenario is available in Table 1.

Table 1
Simulation setup.

Name Notation Specification

Variables:

Random Utility 𝑈𝑖𝑛𝑡 = 𝑉𝑖𝑛𝑡 + 𝜀𝑖𝑛𝑡
Deterministic Utility 𝑉𝑖𝑛𝑡 = 𝛽1(𝑍1 , 𝑍2) ⋅ 𝒙1𝑛𝑡 + 𝛽2(𝑍1 , 𝑍2) ⋅ 𝒙2𝑛𝑡
Alternative Specific Attribute 𝒙1𝑛𝑡 ,𝒙2𝑛𝑡  ([−2, 2])
Error 𝜀𝑖𝑛𝑡 Gumbel distribution
Individual Characteristics with Split 𝑍1 (or 𝑍2)  ([0, 1])
Individual Characteristics without Split 𝑍2 (or 𝑍3) - 𝑍5  ([0, 1])

Parameters

Number of individuals 𝑁 ∈ {250, 500}
Number of choice sets per individual 𝑡𝑛 ∈ {6, 12}
Taste Parameter 1 𝛽1  (1, 1∕2) or  (1 + 𝛿, 1∕2)
Taste Parameter 2 𝛽2  (1, 1∕2) or  (1 + 𝛿, 1∕2) or  (1 + 2𝛿, 1∕2)
True split point 𝜉 ∈ {0.5, 0.8}
Effect size 𝛿 ∈ {0.5, 1}

From Table 1, we can see that we are modeling the taste parameters (𝛽1 and 𝛽2) as a function of individual characteristics (i.e., 𝑍1
or/and 𝑍2) of the individuals. Additionally, we vary the mean of the random parameter among groups with 𝛿 and the proportion
of each group at the end leaves with 𝜉. Given that all the partition variables have a uniform distribution, 𝜉 equal to 0.5 means that
the groups are balanced. Conversely, if 𝜉 is equal to 0.8, the groups are unbalanced at the end leaves.

The first scenario consists of the so-called ‘‘stump’’ scenario, where both taste parameters have only one split based on variable
𝑍1 as described in Fig. 2(a). The second scenario consists of a so-called ‘‘tree’’ scenario, where both taste parameters have one split
based on the individual-specific variables illustrated in Fig. 2(b).

We evaluate the MOB-MIXL algorithm’s performance using 50 different simulated data sets for each of the different combinations
of the number of individuals (𝑁), choice sets answered per individual (𝑡𝑛), the differences of the mean of the random parameters (𝛿)
and the proportions of each group (𝜉), on two different scenarios, namely the ‘‘stump’’ and ‘‘tree’’. We only include the alternative-
specific attributes for the utility specification at the end leaves of the tree. We drop the interaction terms from Eq. (6) because we
allow the individual-characteristics variables to act only as partition variables when growing the decision tree.
8

https://github.com/alvarogutyerrez/mobmixl
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Fig. 2. Graphical representation of the possible data generating process (DGP). Fig. 2(a) represents the ‘‘stump’’ scenario, where only one split is present. Fig. 2(b)
represents the ‘‘tree’’ scenario where two splits are present.

Table 2
Illustration of partitions 𝐴 and 𝐵 over a set of 𝑁 individuals.

A B Sums

𝐵1 𝐵1 ⋯ 𝐵𝑞

𝐴1 𝑛11 𝑛12 ⋯ 𝑛1𝑞 𝑎1
𝐴2 𝑛21 𝑛22 ⋯ 𝑛2𝑞 𝑎2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐴𝑟 𝑛𝑟1 𝑛𝑟2 ⋯ 𝑛𝑟𝑞 𝑎𝑟
Sums 𝑏1 𝑏2 ⋯ 𝑏𝑞 N

5.1.1. Evaluation criteria
We measure the performance of the algorithm in terms of two different criteria. First, its ability to correctly recover the underlying

ata structure, that is to say, that the estimated tree corresponds to the true DGP process. Second, its ability to correctly recover
he true values of the parameters for each of the partitions.
Data Structure Recovery: In terms of the model’s ability to recover the underlying data structure, we use different metrics

depending on the underlying data-generating process. When recovering the ‘‘stump’’ scenario, following Schlosser et al. (2019), we
use as a performance metric the proportion of the 50 different simulated data sets for which the selected splitting variable was the
correct one (i.e., 𝑍1) among all five possible splitting variables. This proportion is further denoted as the ‘‘selection probability’’.

On the other hand, to assess the performance for the ‘‘tree’’ scenario, we use the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) to evaluate the degree of similarity between the real tree structure and the estimated tree. We will define the ARI in terms
of a given set 𝑮 of 𝑁 elements (individuals), and two partitions, namely 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑟} and 𝐵 = {𝐵1, 𝐵2,… , 𝐵𝑞}. The overlap
between partitions 𝐴 and 𝐵 can be summarized in a contingency table, where each entry 𝑛𝑖𝑗 denotes 𝑛𝑖𝑗 =

|

|

|

𝐴𝑖 ∩ 𝐵𝑗
|

|

|

:
In our case, we have 𝑁 individuals, 𝐴 indicates the partitions produced by the true DGP, and 𝐵 the ones produced by the

estimated tree. Consequently, the ARI is defined in terms of the contingency table in Table 2 as

ARI =

∑

𝑖𝑗
(𝑛𝑖𝑗
2

)

−
[

∑

𝑖
(𝑎𝑖
2

)
∑

𝑗
(𝑏𝑗
2

)

]/

(𝑁
2

)

1
2

[

∑

𝑖
(𝑎𝑖
2

)

+
∑

𝑗
(𝑏𝑗
2

)

]

−
[

∑

𝑖
(𝑎𝑖
2

)
∑

𝑗
(𝑏𝑗
2

)

]/

(𝑁
2

)

. (16)

Parameter Recovery: To assess the ability to recover the true parameters, we compute the Mean Absolute Error (MAE) across
ll individuals, defined as

MAE(𝛽𝑘) =
1
𝑁

𝑁
∑

𝑛=1

|

|

|

𝛽𝑘𝑛 − 𝛽𝑘𝑛
|

|

|

, (17)

here the 𝛽𝑘𝑛 represents the true coefficient of attribute 𝑘 for individual 𝑛 and 𝛽𝑘𝑛 the estimated value of attribute 𝑘 for individual
.

.1.2. Results
We start by looking at the model’s ability to recover the data structure produced by the ‘‘stump’’ scenario. Fig. 3 presents the

‘selection probability’’ of the correct splitting variable on the first node, namely 𝑍1. As expected, the metric increases with the number
f individuals and the number of choice situations. In addition, we can see that when groups are balanced (𝜉 = 0.5), and the size of
he parameter differences is large (𝛿 = 1), regardless of the number of choice situations per individual, the selection probability is
9

irtually equal to 1. On the other hand, when groups are unbalanced (𝜉 = 0.8), and the parameter differences are smaller (𝛿 = 0.5),
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the mean selection probability goes from 60% to more than 80% when increasing the number of individuals from 250 to 500, which
are moderately small sample sizes. This is evidence that the algorithm can correctly identify the true partition variable 𝑍1 among
he other possible partition variables (𝑍2 −𝑍5).

Fig. 3. ‘‘Selection probability’’ of the correct splitting variable (𝑍1) resulting from 50 runs of the MOB-MIXL algorithm for different values of 𝛿, 𝜉, 𝑁 and 𝑡𝑛.
Presented 95% confidence intervals were computed using a population proportion formula, namely 𝑝 = �̄� ± 𝑧2.5%

√

(�̄� (1 − �̄�)) ∕𝑁 .

In the so-called ‘‘tree’’ scenario, we used the ARI to assess the model’s ability to capture the underlying data structure. Fig. 4
resents box plots of the ARI resulting from the simulations. The results are very similar to the ones obtained in the ‘‘stump’’ scenario.
n particular, we can see that for large parameter differences (𝛿 = 1) and balanced groups (𝜉 = 0.5), the ARI goes quickly towards
ne even when only six choice situations were answered per individual in a reduced sample size of 250 individuals. On the contrary,
or unbalanced groups (𝜉 = 0.8) and smaller parameter differences (𝛿 = 0.5), we see a slower convergence towards one, observing
hat only for 500 individuals answering 12 choice situations the ARI values are very close to one.

Fig. 4. Box-plot of the Adjusted Rand Index (ARI) resulting from 500 runs of the MOB-MIXL algorithm at different number of individuals (𝑁), choice situations
(𝑡𝑛), size of parameter differences (𝛿) and proportion of each group which is controlled by the value of 𝜉. The solid horizontal line connects the ARI’s mean for
ach configuration.

We present the box-plots of the parameter estimates’ MAE for 𝛽1, in Fig. 5. Results for the estimates of 𝛽2 are omitted as they are
lmost identical to 𝛽1. The results are in line with the aforementioned capacity to recover the underlying tree structure, meaning
hat the MAE values go towards zero when increasing the number of individuals and choice sets.

Finally, we can see from this simulation that, based on our setup, the algorithm is suitable primarily for experimental designs
ith several choice situations per individual. In particular, we observe that even for moderately reduced sample sizes the algorithm

s able to recover the true DGP of two different tree-like structures with hard breaks.

.2. The LC-MIXL model fitted to data with hard breaks

This section illustrates how an LC-MIXL model will behave when the assumption of probabilistic profiles (or fuzzy breaks) does
ot hold and, instead, the data presents hard breaks. To do so, we simulate two data sets using the ‘‘tree’’ scenario described in
10
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Fig. 5. Box-plot of the Mean Absolute Error (MAE) for 𝛽1𝑛 resulting from 50 runs of the MOB algorithm at different number of individuals (𝑁), choice sets per
ndividual (𝑇 ), size of parameter differences (𝛿) and proportion of each groups (𝜉).

Section 5.1. Given that only two of the simulated individual characteristics are the partitions’ drivers, we expect only the parameters
associated with those variables to be statistically significant from zero in the allocation model.

The first data set is simulated using 𝛿 = 0.5, representing a DGP where there is some overlap among the distributions of the
arameters of each group. That is to say, the different groups present in the data are relatively similar. On the other hand, the
econd data set is simulated using 𝛿 = 1, creating less overlap among the parameters of each group and, consequently, the groups
ave rather different taste parameters. Both simulated samples use values of 𝜉 = 0.5, indicating that the hard breaks divide the groups
t the end leaves, roughly, in half (see Table 1). We simulate a data set that consists of 1500 individuals answering 10 choice sets
ach. We fitted a three-class LC-MIXL model with an allocation model that includes all the individual-specific characteristics (𝑍1 to
5) and normally distributed parameters for each attribute to this data. We estimated the models 30 times for each data set using

andom starting values,5 and 5000 Halton draws to approximate the integral of Eq. (11).
Table 3 presents the models with the best log-likelihood value, among the 30 different starting values, for each data set. We

bserve that regardless of the value of 𝛿, the true values (see Fig. 2(b)) of the parameters’ distributions are recovered fairly accurately.
dditionally, the size of the classes (�̄�𝑐 with 𝑐 ∈ (1, 2, 3)) is also very close to the true proportion of 50% for the larger class, and
5% for each of the smaller ones. However, we observe that parameters from the allocation model are exploding, with large point
stimate values and standard errors. Surprisingly, almost all the parameters in the allocation model seem statistically significant
or at least one of the classes, which goes against the DGP. However, we observe that the larger point estimates correspond to the
ariables that generated the hard breaks (𝑍1 and 𝑍2). In summary, the only clear sign that the DGP might contain sharp breaks is
he explosive behavior in the allocation model. Accordingly, from an applied perspective, it might be worth investigating the MOB
lgorithm as an alternative to LC or LC-MIXL models when in the presence of said behavior.

. The MOB algorithm as a variable selection for the LC allocation model

In this section, we will do the reverse of Section 5.2, in the sense that we will apply the MOB algorithm to data that contains fuzzy
reaks or probabilistic profiles. When applying the MOB algorithm to this kind of data, we noticed that it created many partitions
sing the variables included in the LC allocation model of the true DGP. This behavior renders the algorithm useful for identifying
elevant variables to be included in the LC class allocation model. That being said, in this section, we show one way to use the MOB
lgorithm as a variable selection procedure that can identify the relevant variables of the LC allocation model. To do so, we simulate
ne data set that follows a LC-MIXL model (see Section 3.4) and, via bootstrapping this data set, we grow one hundred decision
rees using the MOB algorithm. We use bootstrapped versions of the data following the Bagging principle (Breiman, 1996) from
nsemble Learning. However, instead of being focused on the predictions of the model, we compute metrics about the relevance
f the partition variables to be included in the LC allocation model. Furthermore, to speed up the exercise, we only used a simple
NL model as the parametric model (MOB-MNL hereafter) and we observe that the algorithm is able to retrieve the important

ariables from the allocation model. We assume that the use of MIXL models can improve the results, however further assumptions
re necessary (i.e., the distribution of the random parameters) and the computation time will most likely increase drastically. In

5 The different starting values for the classes of the LC and LC-MIXL models are sampled from a uniform distribution that ranges ±1.5 units around the
parameter estimates of an MNL model. In particular, for the LC-MIXL models, we used those parameters to initialize the mean and mode of the normal and
triangular distributions, respectively. Finally, all the starting values of the extra parameters of the LC and LC-MIXL that do not appear in a simple MNL model
11

(i.e., the allocation model and variance parameters) are sampled from the same distribution but centered at zero.



Journal of Choice Modelling 46 (2023) 100393Á.A. Gutiérrez-Vargas et al.

t
a
1
b
v

6

v
t

Table 3
LC-MIXL models fitted to data with hard breaks.

Variables LC-MIXL

(𝛿 = 0.5) (𝛿 = 1.0)

Truea Estimates Truea Estimates

𝑥1(𝜇1) 1 0.982(0.038)*** 2 1.900(0.065)***
𝑥1(𝜇2) 2 2.106(0.095)*** 1 0.987(0.029)***
𝑥1(𝜇3) 1.5 1.500(0.052)*** 3 3.116(0.119)***

𝑥1(𝜎1) 0.5 −0.475(0.032)*** 0.5 −0.412(0.090)***
𝑥1(𝜎2) 0.5 −0.500(0.209)* 0.5 −0.476(0.031)***
𝑥1(𝜎3) 0.5 0.451(0.079)*** 0.5 −0.362(0.164)*

𝑥2(𝜇1) 1 1.004(0.036)*** 2 1.977(0.067)***
𝑥2(𝜇2) 1.5 1.509(0.105)*** 1 1.006(0.029)***
𝑥2(𝜇3) 1.5 1.575(0.052)*** 2 2.153(0.089)***

𝑥2(𝜎1) 0.5 0.440(0.040)*** 0.5 0.525(0.074)***
𝑥2(𝜎2) 0.5 −0.598(0.069)*** 0.5 0.444(0.035)***
𝑥2(𝜎3) 0.5 −0.491(0.078)*** 0.5 0.610(0.079)***

𝜆2 −1256.46(6.94)*** 713.93(0.11)***
𝑍1(𝛾2) 1393.02(10.20)*** −1363.37(0.17)***
𝑍2(𝛾2) 548.09(49.47)*** 90.99(1.33)***
𝑍3(𝛾2) −0.07(2.69) −39.02(3.23)***
𝑍4(𝛾2) 96.52(71.41) −39.03(2.01)***
𝑍5(𝛾2) −89.31(12.44)*** 65.44(3.03)***

𝜆3 −439.59(20.32)*** −156.33(1.88)***
𝑍1(𝛾3) 751.54(25.62)*** 42.17(1.94)***
𝑍2(𝛾3) −47.45(17.10)** 219.52(1.13)***
𝑍3(𝛾3) −10.52(27.24) 15.54(3.23)***
𝑍4(𝛾3) 77.41(14.78)*** 1.73(2.88)
𝑍5(𝛾3) 21.73(7.27)** −7.38(2.50)**

N 15 000 15 000
LL −10 337.07 −9443.21
Num.Params 24 24
AIC 20 772.1 18 934.4
BIC 20 904.9 19 117.2

�̄�1 50% 54.17% 25% 24.17%
�̄�2 25% 19.05% 50% 54.27%
�̄�3 25% 26.78% 25% 21.57%

Clustered standard errors in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01.
aGiven the nature of the true GDP (see Fig. 2(b)), the only parameters we know are the taste parameters withing each class.
Hence, this is why there are no ‘‘True’’ values for the parameters of the allocation model.

Section 6.1 we describe the true DGP and the configuration of the MOB-MNL we fit to the bootstrapped versions of the simulated
data. Section 6.2 describes the three metrics we used to shed some light on the relevance of each variable as a candidate for the
allocation model. Finally, 6.3 shows the results of this simulation study.

6.1. LC-MIXL data description and the MOB-MNL algorithm

The three-class LC-MIXL model we used to simulate the artificial data set has an allocation model that contains five different
individuals’ characteristics (𝑍1 to 𝑍5), which follow a uniform distribution from −1 to 1. The true parameters of the allocation model
are described in columns 𝜆𝑐 , 𝛾1,𝑐 , 𝛾2,𝑐 , 𝛾3,𝑐 , 𝛾4,𝑐 and 𝛾5,𝑐 in Table 4 where only tree variables have a non-zero coefficient (i.e., 𝑍1, 𝑍2 and
𝑍3). Inside each class, the utility was based on two alternative specific attributes, (𝑋1,𝑐 and 𝑋2,𝑐 with 𝑐 ∈ {1, 2, 3}) with coefficients
hat follow a standard normal distribution. Additionally, the class-specific distributions of the individual level parameters of the
lternative-specific attributes are described in columns 𝛽1𝑛|𝑐 and 𝛽2𝑛|𝑐 in Table 4. We simulated the data using a sample size of
500 individuals which answered 10 choice situations each. Finally, we ran the MOB-MNL algorithm 100 times over 100 different
ootstrapped versions of the simulated data set. We used all the five simulated individual characteristics as candidates for partition
ariables and modeled the MNL model at the end leaves using the two alternative-specific attributes (𝑋1 and 𝑋2).

.2. Metrics of the partition variables’ relevance

From the 100 resulting decision trees, we retrieve three metrics of variable importance that show the relevance of each partition
ariable as a candidate to be included in the allocation model of an LC or LC-MIXL model. First, we compute the proportion of
12

imes that each partition variable created a root split; that is to say, it was the first variable selected as a partition variable. Second,
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Table 4
True Parameters of LC-MIXL model used to simulate data.

Class (𝑐)/Param. 𝛽1𝑛|𝑐 𝛽2𝑛|𝑐 𝜆𝑐 𝛾1,𝑐 𝛾2,𝑐 𝛾3,𝑐 𝛾4,𝑐 𝛾5,𝑐

1  (1, 0.25)  (−1, 0.25) 0 0 0 0 0 0
2  (2, 0.25)  (−2, 0.25) 1 2 2 1 0 0
3  (3, 0.25)  (−3, 0.25) −1 −2 −2 −1 0 0

we compute the average number of splits created by each partition variable over the 100 trees. Finally, we pruned the 100 decision
trees maximizing the overall BIC of the tree, and we recomputed the average number of splits per variable. These three metrics
should indicate how good the method is at identifying the correct variables to be included in the allocation model.

6.3. Results of the MOB algorithm as variable selection step

Table 5 displays the results of the metrics described in Section 6.2. As expected, we observe that the variables that created
he larger number of root splits were the ones with the larger coefficients in the allocation model (𝑍1 and 𝑍2). Additionally, the

average number of splits, before and after pruning the decision trees, was at least three times larger for the variables with non-zero
coefficients in the allocation model. These results show the possible usage of the MOB algorithm as a variable selection procedure
for the allocation model when using LC or LC-MIXL models. Accordingly, the same procedure might be used by applied researchers
as a guide to select the most relevant variables to be included in the allocation model of LC or LC-MIXL models.

Table 5
Variable importance based on the MOB-MNL algorithm as diagnostic tool.

𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

Root node split (%) 34 66 0 0 0
Average number of splits 2.41 1.93 0.58 0.22 0.23
Average number of splits after pruning 2.18 1.57 0.33 0.11 0.10

7. Real data application

7.1. Data description

We use data from De La Maza et al. (2021) to compare the performance of the MOB-MIXL algorithm with standard discrete choice
odels, namely MNL, MIXL, LC, and LC-MIXL models. The data6 consists of stated choice data of preferences for environmental

mpact of two (hypothetical) energy generation plans in Chile (alternatives A and B). Respondents are required to trade-off increases
n their future energy costs with the environmental impact generated by each plan. Additionally, respondents also have a ‘‘status quo’’
ption, representing the cost and ecological impact of the current energy generation plan. This scheme leads to a three-alternative
etup (𝐽 = 3), where each individual answers twelve choice situations (𝑡𝑛 = 12).7 The attributes that describe each of the survey’s

plans are hectares of native forest destroyed (Forest), number of emergency room visits for respiratory or cardiovascular diseases
(Morbidity), hectares of land used (Land), a dummy variable indicating if the used area will be pristine or not (Location) and the
resulting increase in the electric bill from each of the energy plans (Cost). For a complete description of the choice experiment, see
Appendices 5.1 and 5.2 in De La Maza et al. (2021).

The survey also captures information about the individuals, such as Gender, Age, Income, average amount paid for electric-
ity (Electricity Bill), whether the individual belongs to a specific ethnicity (Ethnicity), membership in an environmental Non-
Governmental Organization (NGO), having children (Children), whether participants visited any potentially affected area (Visit),
or whether participants had family in those areas (Family). Finally, participants were randomly selected to sign an oath to give
truthful answers (Signed Oath). Attitudinal variables such as trust in the government, pro-social behavior, and a sense of individual
responsibility are also present in the sample. However, we exclude those variables from our analysis primarily because they are hard
to interpret as partition variables given their subjective nature. For a detailed description of the survey and descriptive statistics,
we refer readers to De La Maza et al. (2021).

7.2. Model specification

7.2.1. The MOB-MIXL model
We implement the MOB-MIXL algorithm imposing a minimum of 360 choice sets (equivalent to 30 individuals) at each end leaf

and generating breaks when the stability test rejects the null hypothesis of parameter stability at 5% significance. We selected a
minimum of 30 individuals so the algorithm does not fail to estimate a MIXL model at the end leaves because the sample size is too
small. Regarding the MIXL model, we assumed the Land coefficient to be fixed given that in preliminary investigations, the standard

6 The data set from De La Maza et al. (2021) is available at osf.io/uqtjb.
7 In the data, nine individuals answered only eleven out of the twelve choice sets. They were not dropped from the sample.
13
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deviation parameter (when assumed normally distributed) was very close to zero. Additionally, the dummy variables Location and
the alternative specific constants (ASC) were also assumed to have fixed parameters. On the other hand, the Cost parameter was
ssumed to follow a restricted triangular distribution, where the mode and the spread parameters of a triangular distribution are
estricted to have the same value. We selected this distribution mainly because more complex non-positive distributions suitable for
money metric (e.g., Log-normal, truncated normal distributions) produced unreasonably long tails.

Additionally, we implement the MOB-MIXL algorithm using two different distributions for the Forest and Morbidity coefficients
o see how sensitive the resulting tree was to the selected parametric distribution of the random coefficients. We used a Normal
istribution in one of the specifications, estimating its mean (𝜇) and variance (𝜎), and in the other, we used a triangular distribution,
here we estimate its mode (𝑏) and spread (𝑣) parameters. Finally, to see how the number of draws affected the decision tree, we

ried 1000, 5000, and 10.000 Halton draws to see how sensitive the tree structure was to the quality of the approximation of the
og-likelihood and score functions.

.2.2. The LC and LC-MIXL models
We also estimated LC and LC-MIXL models to the same data, where we estimated two specifications for each model which differ

n term of their allocation model. The first one only includes a constant (𝜆𝑠), and the second one includes an allocation model that
ncludes sociodemographic variables. We selected those variables using the MOB algorithm as a diagnostic tool (See Section 6). We
isplay the results we obtained, using the data from De La Maza et al. (2021), in Table 6. We observe that out of the 10 possible
artition variables, only 5 created partitions in the sample and that 53% of the time no split was found. Additionally, the largest
ercentage of root splits was found with the variable Visit which was used 25% of the time. The rest of the variables that were
elected as partitions were Age, Electric Bill, Signed Oath and Income. We estimated different versions of the LC and LC-MIXL models
equentially adding variables from the most relevant to the least relevant based on the relevance metric obtained from the MOB
lgorithm. We estimated each of those models using two and three classes each. Additionally, for the LC-MIXL model, we assume
he same distributions as for the MIXL model used in the MOB algorithm, namely Cost follows a restricted triangular distribution
nd Forest and Morbidity follow Normal distributions. For the LC-MIXL, we used 2500 Halton draws for the simulated maximum
ikelihood estimation. Finally, we estimated LC-MIXL and LC models, 50 and 100 times8, respectively, using different starting points
see Footnote 5) to avoid local optima and selecting the model that attained the highest log-likelihood value function.

Table 6
Summary of the MOB-MNL algorithm over bootstrapped De La Maza et al.’s data.

None Visit Age Electric bill Signed oath Income

Root node split (%) 53 25 9 5 5 3
Average number of splits – 0.29 0.16 0.12 0.09 0.05
Average number of splits after pruning – 0.29 0.16 0.12 0.08 0.05

7.3. Results

7.3.1. The MOB-MIXL: Coefficients with a normal distribution
Fig. 6 presents the resulting tree assuming Normal distributions for the coefficients of the attributes Forest and Morbidity and

sing 10,000 Halton draws to estimate the MIXL models. The 𝑝-value of the stability test for each partition variable is displayed
elow its name in each node. We present the number of individuals (𝑁) and the number of choice situations (𝑇 ) present in each
ata segment at the end leaves. From Fig. 6, we observe that the first partition created by the tree is based on the variable Visit.
ubsequently, another partition is created for the segment of the sample that has not visited the potentially affected areas based on
ndividuals’ Age. Additionally, for respondents older than 32 years old, three subsequent partitions are created based on how much
hey paid in their current Electricity Bill. Here it is important to mention that, when using 1000 draws, the tree grew the partition
or Visit (Node 1 ) and Age (Node 2 ) only. However, when increasing the number of draws to 5000, the tree created the first

partition in terms of Electric Bill, and only when using 10,000 draws the algorithm finds the tree presented in Fig. 6. Accordingly, the
tree depends on the approximation of the integral in Eq. (8), hence large number of draws is necessary for a proper approximation
of the score functions we use to construct the stability test. In terms of computation time, it took 35 min, 8.85 h, and 1.23 days
respectively, to grow the tree using 1000, 5000, and 10,000 draws. Finally, we perform a post pruning procedure that searches
to minimize the global tree’s BIC, and it kept only the first partition. The pruned tree is presented in Fig. 7 and the parameter
estimates of the each of the branches (nodes 2 and 3 ) and the model fitted to the entire sample (node 1 ) are presented in

able 7. Additionally, a graphical comparisson of the parameter estimates of the different nodes is presented in Fig. 8.
In terms of goodness-of-fit, we can see that the MOB-MIXL model’s fit is better in terms of AIC (84 points less) and BIC (26

oints less) compared to the MIXL model fitted to the entire sample. Additionally, in Table 7 we can see the parameters’ differences
etween the end leaves. From Table 7, we observe that the differences in the parameter estimates across the end leaves are not very
ronounced. The only exception is that the ASC related to the Status Quo option has a larger negative effect for those people that
ave visited potentially affected areas.

8 We only estimated 50 different starting values for LC-MIXL models because of how computationally demanding those models are. In our case, it took
14

round 3 days to complete the 50 runs using different starting values using 5000 draws for each model.
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Fig. 6. Pre-pruning tree using normal distributions.

Fig. 7. Post-pruning tree using normal distributions.
15
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Fig. 8. Point estimates and 95% confidence interval of the end leaves of tree in Figure Fig. 7.

Table 7
Parameter estimates of the end leaves of tree in Fig. 7.

2 3 1

cte𝑠𝑞 −0.31 −1.78*** −0.57***
(0.19) (0.41) (0.17)

cte𝐴 0.17*** 0.25** 0.19***
(0.06) (0.12) (0.05)

Location −0.24** −0.44** −0.30***
(0.10) (0.19) (0.09)

Land −0.02*** −0.01 −0.02***
(0.00) (0.01) (0.00)

Forest (𝜇) −0.06*** −0.03 −0.06***
(0.02) (0.03) (0.02)

Forest (𝜎) 0.23*** 0.17*** 0.22***
(0.01) (0.03) (0.01)

Morbidity (𝜇) −0.37*** −0.21 −0.34***
(0.09) (0.15) (0.08)

Morbidity (𝜎) 0.80*** 0.98*** 0.86***
(0.07) (0.14) (0.06)

Cost (𝑏 = 𝑣) −0.56*** −0.69*** −0.59***
(0.03) (0.08) (0.03)

Num.Obs. 3439 956 4395
Log.Lik. −3217.08 −827.6 −4095.87
Num.Param. 18 9
AIC 8125.36 8209.74
BIC 8240.34 8267.26

Clustered standard errors in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01.
16
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7.3.2. The MOB-MIXL: Coefficients with a triangular distribution
We repeat the exercise using triangular distributions for the Forest and Morbidity attributes where we estimate their mode (𝑏)

and spread (𝑣) parameters, while keeping all the other specification, of the models unaltered. Fig. 9 displays the resulting tree
hen using 10,000 draws, and we see that the change in the distribution of those two attributes drastically changed the resulting

ree. For instance, the first data partition was created using the variable Income dividing the sample between the people with the
lowest income in the sample and the other individuals. Additionally, it created a data partition using Visit and then two subsequent
partitions using Electric Bill and Age. Here it is worth mentioning that, differently from the previous case using Normal distributions,
the tree estimated with a different number of draws remains the same. Additionally, in terms of running time, it took 1.38 h, 17.46 h,
and 1.06 days respectively, to grow the tree using 1000, 5000, and 10,000 draws. Finally, after pruning the final tree minimizing
the BIC, only the partitions using the variables Income and Visit remain. Table 8 show the parameter estimates of the pruned tree
for the different partitions (nodes 2 , 4 and 5 ) and the model fitted to the entire sample (node 1 ). Additionally, a graphical
comparisson of the parameter estimates of the different nodes is presented in Fig. 11.

In this case, using triangular distributions, we see a larger improvement in model fit from the model fitted to the entire sample,
both in AIC (272 units less) and BIC (157 units less) compared to the case using normal distributions in Section 7.3.1. Additionally,
when we compare the parameter estimates among the partitions, we see, for example, that individuals in the lowest income segment
(node 2 ) present a larger cost sensitivity than those with higher income that have not visited the potentially affected areas (node
4 ), but smaller than those who visited such places (node 5 ). Also, we observe that people with higher income who have visited

the sites have a larger parameter for the ASC related to the Status Quo situation. On the other hand, we observe that people from the
lower-income segment have larger parameter estimates for the ASC related to alternative A. Finally, we notice that some parameters
that were statistically significant when the model was fitted to the entire sample, are not significant for some of the segments, as it
happens, for example, with Location and the mode parameter of the Forest attribute in node 2 .

Fig. 9. Pre-pruning tree using triangular distributions.

Fig. 10. Post-pruning tree using triangular distributions.
17
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Fig. 11. Point estimates and 95% confidence interval of the nodes end of tree in Fig. 10.

Table 8
Parameter estimates of the nodes end of tree in Fig. 10.

2 4 5 1

cte𝑠𝑞 −0.72 −0.28 −1.81*** −0.69***
(0.50) (0.21) (0.42) (0.17)

cte𝐴 0.71*** 0.11* 0.21* 0.19***
(0.14) (0.07) (0.12) (0.05)

Location 0.30 −0.31*** −0.52*** −0.28***
(0.25) (0.11) (0.19) (0.09)

Land −0.03** −0.01*** −0.02* −0.02***
(0.01) (0.00) (0.01) (0.00)

Forest (𝑏) 0.02 −0.07*** −0.03 −0.04**
(0.05) (0.02) (0.03) (0.02)

Forest (𝑣) 1.11*** 0.52*** 0.42*** 0.83***
(0.09) (0.04) (0.09) (0.03)

Morbidity (𝑏) −0.08 −0.42*** −0.31** −0.38***
(0.24) (0.09) (0.16) (0.08)

Morbidity (𝑣) 4.12*** −1.84*** 2.25*** 4.11***
(0.48) (0.17) (0.38) (0.15)

Cost (𝑏 = 𝑣) −0.64*** −0.50*** −0.77*** −0.49***
(0.10) (0.03) (0.09) (0.03)

Num.Obs. 622 2876 897 4395
Log.Lik. −526.42 −2744.01 −765.01 −4189.81
Num.Param. 27 9
AIC 8124.90 8397.63
BIC 8297.38 8455.12

Clustered standard errors in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01.
18
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7.3.3. Results of the latent class models
To avoid ending up in a local optimum, we estimated each LC model 100 times using different starting values (see Section 7.2.2).

e reported the model with the highest likelihood function for each model specification. We estimated LC models that include two
nd three classes. Additionally, we sequentially included the variables suggested by the MOB algorithm (see Table 6) from the most
elevant to the least relevant ones based on the average number of splits created per variable.

We present the model fit of all these models in Fig. 12 where we compared it with the constant-only allocation model, which
as zero variables included in the allocation model. Fig. 12 shows that for the two-class model (LC-2), the best model in terms
f AIC is the one that includes the first four most relevant variables. However, in terms of BIC, a model including the suggested
ariables does not outperform the constant-only model. On the other hand, for the three-class model (LC-3), the best model in terms
f BIC is the one that includes only one variable, and the best model in terms of AIC is the one that includes four variables in
he allocation model. Additionally, we present parameter estimates of the best-performing models together with the constant-only
odel in Table 9. From Table 9, we can see that all the variables included in the models were statistically different from zero for at

east one of the classes. This result is promising because it shows that, using the guidance from the MOB algorithm when selecting
ariables for the allocation model, we were able to outperform the constant-only latent class model with three classes.

Fig. 12. Information criterion for LC models with different allocation model.
Furthermore, the best performing model in terms of BIC (column LC-3-A-1 in Table 9) model has similarities with the results

btained from the MOB-MIXL algorithm where, for instance, different cost sensitivities are observed across classes. However, the
ifferences are much more noticeable than those captured by the MOB-MIXL algorithm. For example, class number one has a negative
ost coefficient at least three times larger than what we observe in the decision tree, while class three has a cost coefficient virtually
qual to zero. Regarding the ASC variables, we also see drastically different preferences across classes. For example, the Status
uo constant of the first class is positive and statistically significant; however, it is negative for the second class. More generally,
e observe that class number three presents larger values for the estimated parameters. In contrast, class number three is almost

ndifferent to the observed attributes, which differs from what we see in the tree estimates, which are relatively similar, with only
ubstantial differences in two or three coefficients, like Cost, Location and the ASC parameters.
19
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Table 9
LC models estimates using data from De La Maza et al. (2021).

Variables LC-2-A-0 LC-2-A-4 LC-3-A-0 LC-3-A-2 LC-3-A-4

cte𝑠𝑞,1 −1.01(0.17)*** −1.01(0.17)*** 2.24(0.66)*** −2.03(0.32)*** −2.00(0.31)***
cte𝐴,1 0.12(0.04)** 0.12(0.04)** 0.14(0.16) 0.02(0.06) 0.02(0.06)
cte𝑠𝑞,2 1.06(0.44)* 1.04(0.43)* −1.94(0.39)*** 0.18(0.31) 0.20(0.33)
cte𝐴,2 0.21(0.14) 0.22(0.14) 0.02(0.07) 0.37(0.09)*** 0.38(0.08)***
cte𝑠𝑞,3 0.20(0.32) 2.23(0.64)*** 2.20(0.63)***
cte𝐴,3 0.40(0.09)*** 0.15(0.16) 0.16(0.16)
Forest 1 −0.07(0.02)*** −0.07(0.02)*** −0.47(0.10)*** −0.09(0.02)*** −0.09(0.02)***
Forest 2 −0.18(0.06)** −0.18(0.06)** −0.09(0.02)*** −0.01(0.04) −0.01(0.03)
Forest 3 0.00(0.04) −0.46(0.09)*** −0.46(0.09)***
Morbidity 1 −0.33(0.08)*** −0.33(0.08)*** −2.04(0.44)*** −0.45(0.10)*** −0.45(0.10)***
Morbidity 2 −0.67(0.29)* −0.65(0.28)* −0.45(0.10)*** 0.03(0.16) 0.04(0.16)
Morbidity 3 0.05(0.17) −2.04(0.41)*** −2.00(0.41)***
Cost 1 −0.18(0.02)*** −0.18(0.02)*** −2.43(0.49)*** −0.25(0.03)*** −0.25(0.03)***
Cost 2 −0.92(0.15)*** −0.91(0.15)*** −0.25(0.04)*** −0.04(0.05) −0.03(0.05)
Cost 3 −0.03(0.06) −2.43(0.42)*** −2.37(0.45)***
Land 1 −0.01(0.00) −0.01(0.00) 0.02(0.02) −0.01(0.00)* −0.01(0.00)*
Land 2 −0.01(0.01) −0.01(0.01) −0.01(0.00)* −0.01(0.01) −0.01(0.01)
Land 3 0.00(0.01) 0.02(0.02) 0.02(0.02)
Location 1 −0.27(0.08)*** −0.27(0.08)*** −0.87(0.37)* −0.44(0.12)*** −0.44(0.12)***
Location 2 0.14(0.24) 0.15(0.24) −0.43(0.12)*** 0.26(0.16) 0.27(0.17)
Location 3 0.29(0.18) −0.86(0.35)* −0.83(0.35)*

𝜆2 −0.73(0.12)*** −1.11(0.48)* 0.64(0.20)** −1.27(0.44)** −0.73(0.58)
Visit 𝛾2 −0.87(0.33)** −1.81(0.46)*** −1.75(0.46)***
Age 𝛾2 0.01(0.01) 0.03(0.01)* 0.02(0.01)*
Electric bill 𝛾2 −0.02(0.01) −0.02(0.01)
Signed oath 𝛾2 0.56(0.25)* −0.11(0.37)

𝜆3 0.14(0.24) −1.81(0.48)*** −1.30(0.54)*
Visit 𝛾3 −1.11(0.38)** −1.19(0.37)**
Age 𝛾3 0.03(0.01)** 0.02(0.01)*
Electric bill 𝛾3 −0.02(0.01)*
Signed oath 𝛾3 0.66(0.31)*

N 4395 4395 4395 4395 4395
LL −3961.59 −3950.62 −3816.91 −3799.67 −3793.32
Num.Params 15 19 23 27 31
AIC 7953.19 7939.25 7679.82 7653.34 7648.63
BIC 8049.01 8060.62 7826.75 7825.83 7846.67

�̄�1 %67.38 %67.23 %24.68 %45.52 %45.98
�̄�2 %32.62 %32.77 %46.86 %29.81 %29.1
�̄�3 %28.46 %24.67 %24.92

Clustered standard errors in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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7.3.4. Results of the latent class model with random coefficients
As we did for the LC models, to avoid local optima, we estimated each model specification 50 times using different starting values

nd reported the model with the highest likelihood value. In addition, we estimated LC-MIXL models with two and three classes, and
e sequentially added the variables suggested by the MOB-MNL algorithm to the allocation model from the most relevant to the least

elevant based on the average number of splits per variable. We present the model fit of the different models in Fig. 13. Similarly
o the LC models, we observe that the inclusion of demographic variables for the two-class model (LC-MIXL-2) did not improve
he model performance in terms of BIC with respect to the constant-only model. However, in terms of AIC, the best model was the
ne that included the four most relevant variables suggested by the MOB algorithm. On the other hand, for the three-class model
LC-MIXL-3), the best models included two and four variables when selecting the best model based on the BIC and AIC, respectively.
dditionally, we present the best performing models and the constant-only LC-MIXL models in Table 10. From Table 10 we can see

hat for the three-class models only one of the included variables in the allocation model (Electric bill) was not statistically different
from zero. Again, this result suggests that we could improve the constant-only model performance by using the MOB algorithm as
an intermediate step for variable selection for the allocation model.

Fig. 13. Information criterion for LC-MIXL models with different allocation model.
Finally, the best model performance in terms of BIC is the three-class model that includes two variables in the allocation model

column LC-MIXL-3-A-2 in Table 10). In general, we observe the same patterns for the LC models, where the differences among the
lasses are much more pronounced than those obtained by the MOB-MIXL algorithm. We also observe that the ASC variable have
ery different signs and magnitudes across classes. For instance, the Status Quo variable has a positive value for the third class while
eing negative for the second class. We also observe the same behavior for the cost sensitivity, where the third class is much more
ost sensitive than the second and the first. For the rest of the parameters, the parameter estimates are relatively similar as in the
C model.
21
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Table 10
LC-MIXL models estimates using data from De La Maza et al. (2021).

Variables LC-MIXL-2-A-0 LC-MIXL-2-A-4 LC-MIXL-3-A-0 LC-MIXL-3-A-2 LC-MIXL-3-A-4

cte𝑠𝑞,1 1.85(0.86)* 1.77(1.02) 0.03(0.25) 0.08(0.25) 0.05(0.25)
cte𝐴,1 0.02(0.22) 0.02(0.20) 0.38(0.07)*** 0.37(0.07)*** 0.37(0.07)***
cte𝑠𝑞,2 −0.77(0.20)*** −0.78(0.20)*** −3.35(0.50)*** −3.46(0.51)*** −3.47(0.53)***
cte𝐴,2 0.16(0.05)** 0.15(0.05)** −0.11(0.11) −0.07(0.11) −0.08(0.11)
cte𝑠𝑞,3 1.94(0.73)** 1.89(0.74)* 1.90(0.74)*
cte𝐴,3 −0.07(0.22) −0.08(0.22) −0.06(0.23)
Forest (𝜇1) −0.45(0.14)** −0.42(0.16)** −0.04(0.03) −0.04(0.03) −0.04(0.03)
Forest (𝜇2) −0.05(0.02)* −0.05(0.02)* −0.07(0.03)* −0.07(0.03)* −0.07(0.03)*
Forest (𝜇3) −0.49(0.09)*** −0.48(0.10)*** −0.48(0.10)***
Forest (𝜎1) 0.51(0.13)*** 0.47(0.11)*** −0.15(0.03)*** 0.14(0.02)*** −0.14(0.02)***
Forest (𝜎2) −0.16(0.02)*** −0.16(0.02)*** −0.11(0.05)* −0.12(0.03)*** −0.12(0.04)***
Forest (𝜎3) 0.55(0.08)*** 0.54(0.08)*** 0.53(0.09)***
Morbidity (𝜇1) −2.88(0.94)** −2.78(1.13)* −0.10(0.14) −0.10(0.13) −0.09(0.13)
Morbidity (𝜇2) −0.24(0.09)** −0.25(0.09)** −0.43(0.16)** −0.43(0.14)** −0.44(0.14)**
Morbidity (𝜇3) −3.27(0.50)*** −3.27(0.50)*** −3.24(0.53)***
Morbidity (𝜎1) 1.48(0.43)*** −1.44(0.48)** −0.61(0.16)*** 0.54(0.09)*** −0.55(0.10)***
Morbidity (𝜎2) −0.66(0.07)*** −0.66(0.07)*** 0.73(0.21)*** 0.77(0.15)*** −0.78(0.16)***
Morbidity (𝜎3) −1.57(0.27)*** −1.60(0.28)*** −1.58(0.28)***
Cost (𝑏1 = 𝑣1) −2.02(0.71)** −2.00(0.84)* −0.03(0.02) −0.03(0.02) −0.03(0.02)
Cost (𝑏1 = 𝑣2) −0.11(0.02)*** −0.11(0.02)*** −0.23(0.04)*** −0.22(0.04)*** −0.23(0.04)***
Cost (𝑏1 = 𝑣3) −2.40(0.42)*** −2.47(0.44)*** −2.42(0.50)***
Land 1 −0.01(0.02) −0.01(0.03) −0.01(0.01) −0.01(0.01) −0.01(0.01)
Land 2 −0.01(0.00)* −0.01(0.00)* −0.02(0.01)* −0.02(0.01)* −0.02(0.01)*
Land 3 0.00(0.02) 0.00(0.02) 0.00(0.02)
Location 1 −1.19(0.59)* −1.11(0.72) 0.20(0.14) 0.18(0.14) 0.19(0.14)
Location 2 −0.26(0.10)** −0.26(0.10)** −0.84(0.17)*** −0.75(0.17)*** −0.77(0.17)***
Location 3 −1.38(0.36)*** −1.38(0.37)*** −1.36(0.37)***

𝜆2 0.81(0.17)*** 1.47(0.52)** −0.41(0.19)* 1.06(0.47)* 1.04(0.61)
Visit 𝛾2 0.56(0.36) 1.56(0.44)*** 1.44(0.46)**
Age 𝛾2 −0.01(0.01) −0.04(0.01)*** −0.04(0.01)***
Electric bill 𝛾2 0.01(0.01) −0.01(0.01)
Signed oath 𝛾2 −0.68(0.25)** 0.58(0.33)

𝜆3 −0.38(0.15)* −0.50(0.45) −0.48(0.53)
Visit 𝛾3 0.33(0.41) 0.20(0.42)
Age 𝛾3 0.00(0.01) 0.00(0.01)
Electric bill 𝛾3 −0.01(0.01)
Signed oath 𝛾3 0.83(0.28)**

N 4395 4395 4395 4395 4395
LL −3812.50 −3805.01 −3647.36 −3629.54 −3624.06
Num.Params 19 23 29 33 37
AIC 7663.01 7656.02 7352.71 7325.08 7322.12
BIC 7784.38 7802.95 7537.97 7535.89 7558.49

�̄�1 %30.75 %30.44 %42.5 %41.4 %41.69
�̄�2 %69.25 %69.56 %28.31 %29.73 %29.34
�̄�3 %29.2 %28.87 %28.97

Clustered standard errors in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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8. Discussion and conclusions

An important point worth mentioning is the similarity of the models resulting from the MOB-MIXL algorithm and from the
C and LC-MIXL models. The MOB-MIXL algorithm resembles what those latter models can produce by generating different taste
arameters for different groups of individuals. However, the LC and LC-MIXL models provide the econometrician with probabilistic
profiles or fuzzy breaks of individuals, meaning that given individual-specific characteristics, we can compute the probability of an
individual to belong to a given class. On the other hand, the MOB-MIXL algorithm captures the heterogeneity using hard breaks that
work as a deterministic function of individual-specific variables; that is to say, it allocates people to different tree leaves based on
their individuals’ characteristics not allowing for uncertainty.

Although the assumption of deterministic or hard breaks in the taste parameters based on individual characteristics might seem
too ‘‘crude’’ at first, it is based on statistical arguments of the stability of the parameter estimates. Additionally, it provides some
advantages compared to latent class models. First, given that the algorithm splits the data set, the groups are easily identifiable
in terms of the characteristics of the individuals. Hence it could be very interesting for segmentation policies highly used in, for
example, marketing contexts. Second, there is no need to select the variables to be included in the allocation model beforehand.
Instead, the algorithm automatically identifies which variables are relevant to create a partition and grows a decision tree
accordingly. Finally, LC and LC-MIXL models can also benefit from the MOB algorithm used as a diagnostic tool to identify the
most relevant variables to be included in the allocation model, as illustrated in Section 6.

To summarize, this article illustrated the use of the MOB algorithm (Zeileis et al., 2008) in a discrete choice context. The algorithm
allows the modeler to grow a decision tree that divides the sample based on individual characteristics. To the best of the authors’
knowledge, it is also the first decision tree used in the discrete choice literature that allows for the inclusion of random coefficients
in the models used at the end leaves. To illustrate the usage of the proposed algorithm, we presented three simulation studies. The
first showed that the algorithm could correctly recover different tree-like data generation processes when these are present in the
data. In the second one we showed how a latent class model would behave when hard breaks are present on the data. This simulation
study showed that exploding parameters in the allocation model are caused by having hard breaks in the taste parameters. The third
imulation study illustrated the use of the MOB algorithm as a variable selection step for the latent classes’ allocation model via
ootstrapping.

Additionally, we illustrated how the MOB-MIXL algorithm performs on real data using stated choice data of the preferences for the
nvironmental impact of (hypothetical) energy generation plans in Chile. The results showed that the model obtained outperforms
he MIXL model fitted to the whole sample in terms of model fit. Besides, we observed that the resulting tree is sensitive to the
istributions of the random coefficients and needs enough draws to obtain a stable tree structure. Furthermore, we also compared
he MOB-MIXL results with other models conventionally used in discrete choice applications, such as LC and LC-MIXL models. For
hose models, we used the MOB algorithm as a variable selection step when selecting the variables to be included in the allocation
odel, and by doing so, we were able to outperform the latent classes with constant-only allocation models in terms of information

riterion. Furthermore, we observe that the LC and LC-MIXL models produced parameter estimates that are much more different
cross the classes than those produced by the MOB algorithm.

To conclude, we claim that the MOB algorithm is not only a data-driven method in itself, which grows a fully interpretable
ecision tree based on statistical tests, but it can also be helpful as a heuristic to perform variable selection for the allocation
odels of LC and LC-MIXL models. Finally, future research using the MOB algorithm in combination with ensemble methods, such

s bagging or boosting, might be worthwhile if the purpose is to attain a model with high predictive power.
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Fig. A.1. Left panel: Estimated score functions (Eq. (13)) sorted by variable Age. Right panel: Empirical fluctuation process (Eq. (14)) of variable Age.

Appendix A. Illustration of the empirical fluctuation process

For the sake of illustration of the empirical fluctuation process and its relationship with the score functions, suppose we estimate
a hypothetical model with a single attribute (𝑘 = 1) in the utility specification. Additionally, let us assume that his parameter
is the ‘‘total cost’’ of a given route and that we estimate the parameter without using random coefficients. That is to say, only
one parameter is estimated. Besides, assume we are interested in analyzing whether the estimated parameter is stable across the
age of the individuals in our sample. In Fig. A.1 we plotted the score function (Eq. (13)) sorted by individuals’ age (left panel),
and the empirical fluctuation process (Eq. (14)) of the variable age (right panel). The figure shows that the score function does not
fluctuate around zero, which serves as a diagnosis of the instability of the estimated parameter. In particular, we can see that it
systematically fluctuates below zero for individuals younger than 40 years and above zero for individuals older than 40 years. This
fact implies that a model ignoring this parameter instability in our hypothetical situation would overestimate the cost parameter
of younger individuals and underestimate it for older ones. Therefore, using this fact, we could get better local models (e.g., with
score functions fluctuating randomly around zero) if we fit two separate models; one for people younger than 40 years and one for
people older than 40 years.

It is important to notice that the visualization described in Fig. A.1 is only possible because our hypothetical model just has
one parameter (𝑘 = 1), and therefore also, one single score function. In general, we will have as many score functions as estimated
parameters. The formal statistical tests presented in Section 4.2 and in Appendix B, also work in multivariate parametric spaces.

Appendix B. Stability tests for categorical variables

In this Appendix we briefly present the test for non-ordered categorical and ordered categorical variables. In the first case, if the
partition variable 𝑍𝑝 is a non-ordered categorical variable, having 𝐶 different categories (e.g., gender, geographical areas, marital
status, etc.), the following test statistic was initially proposed by (Zeileis et al., 2008)

𝜙𝜒2 (𝑾 (𝑝)) =
𝐶
∑

𝑐=1

(

|

|

𝐼𝑐 ||
𝑇

)−1 𝐾∗
∑

𝑘=1

[

𝑤(𝑝)
𝑐𝑘

]2
, (B.1)

where |

|

𝐼𝑐 || represents the number of observations in class 𝑐. The test captures the increments of the empirical fluctuation process over
the observations in category 𝑐 ∈ {1,… , 𝐶}. In other words, it computes the square of the elements of the 𝑾 (𝑝) matrix’s rows scaled
by the inverse of the percentage of participation of each category (|

|

𝐼𝑐 || ∕𝑇 ) and then it sum them up across all the categories. The
test is invariant to the ordering of the categories (e.g., it is insensitive to the ordering of the 𝐶 labels). The asymptotic distribution is
a 𝜒2 distribution with 𝐾∗×(𝐶 − 1) degrees of freedom where 𝐾∗ is the number of estimated parameters. The corresponding 𝑝-values
can be computed as in Hjort and Koning (2002).

A modified test that does consider the ordering of the different classes (e.g., educational level, income range, etc.) is proposed
by Merkle et al. (2014), the so-called ordinal maximum Lagrange multiplier statistic

𝜙max LM(𝑾 (𝑝)) = max
𝑠=𝑠1 ,…,𝑠𝑚

( 𝑠
𝑇

× 𝑇 − 𝑠
𝑇

)−1 𝐾∗
∑

𝑘=1

[

𝑤(𝑝)
𝑠𝑘

]2
. (B.2)

The test is similar to the one proposed in Eq. (15), but it considers bins of individuals at each level of the given ordinal variable.
That is to say, instead of aggregating 𝑠 = 1,… , 𝑇 choice situations, it first computes the empirical fluctuation process of the 𝑚 levels
(𝑠𝑚) of the considered partition variable, with 𝑚 the number of levels of the ordinal categorical variable. In other words, instead
of computing the maximum over the total number of choice situations, it calculates the maximum value over the total number of
possible levels of the first 𝑚 − 1 levels in the partition variable. The asymptotic distribution for the statistic is derived in Merkle
et al. (2014), yet no closed-form solution is available. Instead, critical values and corresponding 𝑝-values can be obtained repeatedly
24

simulating Brownian bridges, which can be computed, for example, by using the strucchange R package (Zeileis, 2006).
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