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A B S T R A C T

Discrete mixture (DM) models recognize the presence of heterogeneity across individuals in
a given population. In the context of a public land use discrete choice experiment, we use
DM models to allow for respondent behavior to probabilistically mix over multiple competing
process heuristics. We pairwise combine the Random Utility Model (RUM), Contextual Concav-
ity Model (CCM), and Random Regret Minimization (RRM) heuristic into three DM models,
in which the probability of an individual adhering to a particular heuristic is modeled as a
function of sociodemographic characteristics. We present a comprehensive Bayesian analysis
for which we explicitly describe prior selection, inferential procedures, and model comparison
metrics. We use a fully Bayesian information criterion to rank the models. We find evidence that
responses are best modeled using random regret. After accounting for preference heterogeneity,
the DM models estimate two latent groups of decision makers. For the DM models, we develop a
novel algorithm to calculate posterior-weighted willingness to pay estimates for improvements
in different public park amenities in Polk County, Iowa.

. Introduction

The discrete choice experiment is an important nonmarket valuation tool. When analyzing data from a discrete choice experiment
DCE), researchers usually assume respondents are utility maximizing, and use the random utility framework to model the data.
espondents’ indirect utility is typically specified as a linear function of predictor variables explaining a choice from an array of
ptions. Within the random utility maximization (RUM) framework, there are a number of studies modeling preference heterogeneity
n novel ways (Mueller et al., 2017; Scarpa et al., 2021; Admasu et al., 2021). Recently, however, a variety of studies have explored
odeling DCE data using process heuristics other than RUM (Hensher, 2014; Leong and Hensher, 2015).

A complicating matter is that of imposing, ex ante, a single process heuristic on a sample of respondents. Several studies, especially
n the value of travel time saved (VTTS) literature, have analyzed DCE data through the lens of multiple process heuristics. The
tudies can be grouped into two basic categories. The first set of studies simply compares two process heuristics to see if one
utperforms the other (Chorus and Bierlaire, 2013; Hensher et al., 2013; Leong and Hensher, 2014, 2015; Hensher et al., 2016;
asiero et al., 2019). A second category of studies deal with this issue by nesting multiple process heuristics in a single model. In

oint heuristic models, respondents are allowed to weight multiple types of heuristics simultaneously to make a decision (Leong and
ensher, 2012b; Hensher et al., 2018). Latent class models, on the other hand, place an individual into a single latent heuristic group
p to an estimated probability (Boeri et al., 2014; Hess et al., 2012; Schaak and Musshoff, 2020). A confounding factor in identifying
ultiple process heuristics is accounting for preference heterogeneity, and several studies have addressed this issue. Balbontin

t al. (2017a,b, 2019) all tackle this using joint heuristics or latent class-based models, in addition to developing a combined
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WTP or elasticity measures for the nested model results. van Cranenburgh and Alwosheel (2019), on the other hand, address the
confounding issue by developing a non-latent class based model called an Artificial Neural Network to identify multiple process
heuristics within the data. Chorus (2014) suggests the issue is knotty enough that DCE data might not contain enough information
to identify heterogeneity in process heuristics, though Gonzalez-Valdes et al. (2022) recently developed a set of necessary conditions
to do just that in the presence of preference heterogeneity.

Within the literature examining different process heuristics, there is evidence that respondents may not treat all changes in
ttribute levels equally when making decisions in a DCE. Extremeness aversion (EA) is a phenomenon in which respondents are
bserved to be averse to choosing the more ‘‘extreme’’ levels of a particular attribute or set of attributes. Two different models have
een employed to account for the EA effect in the data. The first, Random Regret Minimization (RRM), assumes that instead of utility
aximizing, respondents seek to minimize future regret. RRM is the most prevalent in the alternative heuristic literature because

t is econometrically as parsimonious as the RUM (Chorus et al., 2014; Dekker, 2014; Masiero et al., 2019; Thiene et al., 2012).
he second, called the Contextual Concavity Model (CCM), assumes respondents are utility maximizing and uses a nonlinear utility
unctional form to estimate an additional set of parameters that identifies the extent to which extremeness aversion occurs for each
ttribute in the data. Since the initial effort of Kivetz et al. (2004) examining choice behavior around desktop computers, additional
esearchers in the marketing literature (Geyskens et al., 2010), operations research (Bechler et al., 2021), and the transportation
hoice literature (Chorus and Bierlaire, 2013; Hensher et al., 2018; Leong and Hensher, 2012a) have also estimated the CCM in an
ffort to identify extremeness aversion. Despite evidence uncovered in other fields, there remains a paucity of studies estimating the
CM and the RRM in the environmental and natural resource nonmarket valuation literature, with the notable exceptions of Thiene
t al. (2012) and Boeri and Longo (2017).

We contribute to this latter small body of literature that incorporates multiple decision heuristics into one model. We develop
hat is, to the best of our knowledge, the first Bayesian discrete mixture model (DM) embedding multiple process heuristics with

andom parameters. Indeed, aside from Gonzalez-Valdes and Raveau (2018), this represents only the second study to model a DM
nalyzing multiple process heuristics with DCE data using Bayesian methods. While others have incorporated both preference and
rocess heterogeneity within a latent class framework, Bayesian methods allow us to do so without relying on asymptotic methods,
hich in turn produces exact inference. With these estimates, we develop a single, posterior-weighted WTP (PWWTP) estimate.
ecause WTP is a highly nonlinear function, the use of Bayesian methods means we are better able to quantify uncertainty around
ur posterior-weighted willingness to pay estimates. Finally, this study is the first to exploit our proposed methodology using data
rom an environmental nonmarket valuation DCE.

The rest of the paper proceeds as follows. In Section 2 we review three decision making heuristics, develop a discrete mixture
odel incorporating two heuristics simultaneously, and also describe the Bayesian methods and model selection techniques.

ection 3 describes the survey and resulting data for the empirical application. Section 4 discusses the results of the analysis, and
ection 5 concludes.

. Methods

To set notation, we lay out the simplest models as building blocks to the more complicated models that capture the two sources
f heterogeneity. In the random utility formulation of McFadden (1974), the researcher is able to elicit indirect utility as a function
f varying attribute levels. We represent indirect utility using the formulation below, as a weighted linear combination of an action
ndicator and attribute levels. Let 𝑖 index individual, 𝑗 index alternative, and 𝑠 index choice scenario:

𝜂𝑅𝑈𝑀
𝑖𝑗𝑠 = 𝛼𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗𝑠 +

∑

𝑎
𝛽𝑎𝑥𝑎𝑖𝑗𝑠 + 𝛽𝑝𝑟𝑖𝑐𝑒𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠 (1)

where 𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗𝑠 is a dummy variable that takes on the value 1 if alternative 𝑗 is action (as opposed to status quo) and is 0 otherwise.
Therefore, 𝛼 controls for status quo bias, and picks up the tendency of individuals to go with the status quo. 𝛽𝑎 and 𝛽𝑝𝑟𝑖𝑐𝑒 are the
oefficients corresponding to the 𝑎th attribute and price level, respectively.

Let 𝑌𝑖𝑗𝑠 represent the random variable associated with the 𝑖th individual’s binary choice when presented with the 𝑗th alternative
in the 𝑠th choice scenario. Then, the probability of a particular choice is represented as:

𝑃𝑅𝑈𝑀 (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑅𝑈𝑀 ) =
𝑒𝑥𝑝(𝜂𝑅𝑈𝑀

𝑖𝑗𝑠 )
∑

𝑗 𝑒𝑥𝑝(𝜂
𝑅𝑈𝑀
𝑖𝑗𝑠 )

.

The contextual concavity model of Kivetz et al. (2004) is built upon the principle of diminishing marginal returns, which can be
odeled mathematically by allowing indirect utility to be a concave function of the attributes. Context is incorporated by focusing

n the difference between the attribute level and the least desirable attribute level of the choice set. In our specification of indirect
tility below, note that 𝛽𝑎 and 𝛽𝑝𝑟𝑖𝑐𝑒 enter linearly while the attribute and price levels are taken to a power:

𝜂𝐶𝐶𝑀
𝑖𝑗𝑠 = 𝛼𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗𝑠 +

∑

𝑎
𝛽𝑎(𝑥𝑎𝑖𝑗𝑠)𝜙𝑎 + 𝛽𝑝𝑟𝑖𝑐𝑒

( ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠
)𝜙𝑝𝑟𝑖𝑐𝑒

𝑃𝐶𝐶𝑀 (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝐶𝐶𝑀 ) =
𝑒𝑥𝑝(𝜂𝐶𝐶𝑀

𝑖𝑗𝑠 )
∑ 𝐶𝐶𝑀 (2)
2

𝑗 𝑒𝑥𝑝(𝜂𝑖𝑗𝑠 )
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where ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠 is the maximum price seen in scenario 𝑠 seen by person 𝑖.1 As
( ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠

)

increases, we might expect a person’s
utility to increase as well, and therefore expect 𝛽𝑝𝑟𝑖𝑐𝑒 to be positive to reflect this. Similarly, we would expect each 𝛽𝑎 to be positive.
𝜙𝑎 represents the extremeness aversion parameter associated with attribute 𝑎. Values of 𝜙 < 1 indicate extremeness aversion, while
> 1 is an indication of extremeness seeking. 𝜙 > 0 by necessity, and in fact is constrained to be positive by the prior we impose.
The two process heuristics presented thus far represent mathematical models for maximizing utility, but there are many reasons

hy an individual might instead choose to minimize their regret. Boeri et al. (2014) lists several of these drivers which include
essimism, already being content, and the fear of choices being judged by someone with different values. Recently, van Cranenburgh
t al. (2015) found the 𝜇RRM model improves model fit over the traditional RRM. In it, an additional 𝜇 parameter is estimated to
escribe profundity of regret. We use this more flexible model in our estimation.

Like utility, regret is modeled as a function of an action indicator and the levels of the attributes. More specifically, regret
orresponding to choice 𝑗 is determined by the deviation of attribute levels 𝑗 from the remaining 𝐽 − 1 levels:

𝜂𝑅𝑅𝑀𝑖𝑗𝑠 = 𝛼𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗𝑠 +
∑

𝑎

∑

𝑗′
𝜇𝑙𝑛

(

1 + 𝑒𝑥𝑝
(

𝛽𝑎
𝜇
(𝑥𝑎𝑖𝑗′𝑠 − 𝑥𝑎𝑖𝑗𝑠)

))

+
∑

𝑗′
𝜇𝑙𝑛

(

1 + 𝑒𝑥𝑝
( 𝛽𝑝𝑟𝑖𝑐𝑒

𝜇
(𝑝𝑟𝑖𝑐𝑒𝑖𝑗′𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠)

))

Minimizing regret is mathematically equivalent to maximizing the negative of regret, resulting in choice probabilities:

𝑃𝑅𝑅𝑀 (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑅𝑅𝑀 ) =
𝑒𝑥𝑝(−𝜂𝑅𝑅𝑀𝑖𝑗𝑠 )

∑

𝑗 𝑒𝑥𝑝(−𝜂
𝑅𝑅𝑀
𝑖𝑗𝑠 )

(3)

In the context of DCEs, our discrete mixture models specify that individuals can identify with multiple decision heuristics
according to given probabilities. We limit the scope of our investigation to the possibility of two heuristics (denoted 𝑚,𝑚′ ∈
{𝑅𝑈𝑀,𝐶𝐶𝑀,𝑅𝑅𝑀}) being present in the population. The membership of an individual in a particular heuristic group while
viewing choice set 𝑠 is controlled by a latent categorical variable, 𝑧𝑖𝑠. We start by writing the distribution of the response conditional
on this variable.

𝑃 (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑚,𝜽𝑚′
, 𝑧𝑖𝑠) =

{

𝑃𝑚(𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑚) if 𝑧𝑖𝑠 = 1
𝑃𝑚′ (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑚′

) if 𝑧𝑖𝑠 = 0

where the 𝑃𝑚(𝑌𝑖𝑗𝑠 = 1 ∣ 𝜽𝑚) formulations are as described in (1), (2), and (3).
We then let 𝑧𝑖𝑠 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜌𝑖). 𝑧𝑖𝑠 is traditionally summed out of the model for computational purposes, resulting in the marginal

likelihood typically presented in the literature. That is,

𝑃 (𝑌𝑖𝑗𝑠 ∣ 𝜽𝑚,𝜽𝑚
′
, 𝜌𝑖) = 𝜌𝑖𝑃

𝑚(𝑌𝑖𝑗𝑠 ∣ 𝜽𝑚) + (1 − 𝜌𝑖)𝑃𝑚′
(𝑌𝑖𝑗𝑠 ∣ 𝜽𝑚

′
)

where 𝜌𝑖 is further modeled as the logit of a linear combination of sociodemographic characteristics in order to meaningfully explain
membership probabilities.2

We let 𝑙𝑜𝑔𝑖𝑡(𝜌𝑖) = 𝒅𝑇
𝑖 𝜸 where 𝒅𝑖 is a vector of the aforementioned socidemographic characteristics. We estimate a discrete mixture

model for the three potential heuristic pairs.
Model heterogeneity can come in the form of heuristic heterogeneity, as described above, or in the form of preference

heterogeneity. In any of the aforementioned models, individuals may display varying preferences that manifest in the form of varying
coefficients. Therefore, it makes sense to test whether the data support use of a model with heuristic heterogeneity, preference
heterogeneity, or a combination of both. Thus, we additionally incorporate random effects (RE) coefficients into each of the six
models, resulting in twelve competing models.

2.1. Bayesian estimation

We use Bayesian methods to estimate the models largely because they allow for exact (non-asymptotic) inference, and also allow
us to more effectively answer our research questions. Let 𝜃 represent the collection of unknown parameters we wish to learn about
and 𝑦 represent the set of data. Bayesian methods focus on estimating 𝑝(𝜃 ∣ 𝑦) using Bayes’ rule, which states 𝑝(𝜃 ∣ 𝑦) ∝ 𝑝(𝑦 ∣ 𝜃)𝑝(𝜃).
Intuitively, 𝑝(𝜃 ∣ 𝑦) represents our beliefs about the unknowns 𝜃 after seeing the data. We obtain it by specifying the data model,
𝑝(𝑦 ∣ 𝜃), and priors, 𝑝(𝜃), which describe our beliefs about the unknowns before seeing the data.

In the six model frameworks that do not account for preference heterogeneity, the elements of 𝜷 and 𝛼 are assigned independent
runcated 𝑁𝑜𝑟𝑚𝑎𝑙(0, .25) priors. The truncation is either on the positive or negative side of the density to constrain resulting WTP
stimates to a reasonable domain. A priori we expect no association but consider it not unlikely that the absolute magnitudes of
he effects are anywhere between 0 and 3. For the random effects models that account for preference heterogeneity, we assume
∼ 𝑁(𝜇𝛽 , 𝜎2𝛽 ) where 𝜇𝛽 and 𝜎2𝛽 are further given priors of 𝑁(0, .25) and 𝑁+(0, .1), respectively. In the CCM formulation, each

1 The least desirable level of each of the attributes is 0.
2 Other factors could be included in the membership function, of course. For example, Hensher et al. (2021) note that experience can systematically explain

ifferences in preferences.
3
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element of 𝝓 is given independent 𝑁+(0.5, 1) priors. This represents the prior belief that it is most likely individuals are extremeness
verse but accommodates non-negligible probabilities that the extremeness aversion parameter is larger than 1. To complete the
pecification of the DM model, we assign the elements of 𝜸 independent 𝑁(0, 1).

Follett and Vander Naald (2020) demonstrated the importance of carefully assigning prior distributions and avoiding distributions
hat unduly influence the posterior or even contradict the information supplied by the likelihood. We thus use weakly informative
riors on all of the unknowns. This should be contrasted with extremely diffuse, or even uniform (the limit of an increasingly
iffuse probability distribution), priors. These are often used in an attempt to let the data speak for itself. These strategies are
isguided, however, as they can result in the overstatement of attribute effects by placing an irrational amount of prior mass in

he extremes (Gelman et al., 2017). The Uniform(𝑎, 𝑏) prior with arbitrarily chosen bounds 𝑎, 𝑏 has the potential to be extremely
nfluential, since the posterior mean and variability can be highly sensitive to the choice of those bounds, especially if the truth lies
nywhere near them. Instead, following the advice in Gelman et al. (2008), we choose our priors from the 𝑡-distribution family in
rder to stabilize the model estimation and to reflect our genuine beliefs about the parameters.

.2. Inferential procedures

Any theoretical quantity can be estimated using the posterior samples. For example, we estimate the posterior means of the 𝛽𝑎
arameters using samples 𝑟 = 1,… , 𝑅 by

𝐸(𝛽𝑎 ∣ 𝒚) = ∫ 𝑝(𝛽𝑎 ∣ 𝒚)𝛽𝑎𝑑𝛽𝑎 ≈
1
𝑅

𝑅
∑

𝑟=1
𝛽(𝑟)𝑎 (4)

here 𝛽(𝑟)𝑎 represents the 𝑟th draw of 𝛽𝑎 from the posterior distribution. For any parameter, posterior means will serve as point
stimates, analogous to the frequentist maximum likelihood estimates.

In the Bayesian framework, we use posterior probabilities to answer our research questions in lieu of the traditional frequentist
-value used in hypothesis testing. For example, in the CCM heuristic, we quantify evidence of extremeness aversion for a certain
ttribute by using an estimate of 𝑃 (𝜙𝑎 > 1 ∣ 𝒚), the posterior probability the extremeness aversion parameter is greater than 1. We

estimate this from the posterior as:

𝑃 (𝜙𝑎 > 1 ∣ 𝒚) = 𝐸(𝐼(𝜙(𝑟)
𝑎 > 1) ∣ 𝒚) ≈ 1

𝑅

𝑅
∑

𝑟=1
𝐼(𝜙(𝑟)

𝑎 > 1) (5)

where 𝐼() is the indicator function taking on a value of 1 if the logical statement is true and a value of 0 otherwise. Intuitively, we
re calculating the proportion of times out of 𝑅 posterior samples that 𝜙𝑎 exceeds 1 to measure the extent to which the posterior

favors a concave shape on the utility function. 𝑃 (𝜙𝑎 > 1 ∣ 𝒚) approaching 0 is evidence that attribute 𝑎 is subject to extremeness
aversion. 𝑃 (𝜙𝑎 > 1 ∣ 𝒚) approaching 1 is evidence of extremeness seeking behavior for attribute 𝑎. Probabilities that are close to 0.5
suggest that 𝜙𝑎 is not meaningfully different from 1 and, thus, the indirect utilities are close to being linear in the attribute levels.
In the second case mentioned, the posterior distribution of 𝜙𝑎 is likely mounded around 1.

In this paper, we aim to estimate the amount individuals are willing to pay for a one unit increase (improvement) in the 𝑎th
attribute. Of particular interest is whether these amounts vary according to the type of heterogeneity modeled. WTP is estimated
as the ratio of marginal utilities for the attribute and price. Regardless of heuristic, for the 𝑎th attribute,

𝑊 𝑇𝑃𝑎 = −

𝜕𝜂𝑗𝑠
𝜕𝑥𝑎𝑗𝑠
𝜕𝜂𝑗𝑠

𝜕𝑝𝑟𝑖𝑐𝑒𝑗𝑠

(6)

approximates the instantaneous rate of change of price relative to the 𝑎th attribute at the value 𝑥𝑎𝑖𝑗𝑠. This is the amount a person
s willing to pay for a one unit increase in the 𝑎th attribute, all else held constant.

WTP is a fairly simple calculation for the RUM since both parameters and attribute covariates enter 𝜂𝑗𝑠 linearly:

𝑊 𝑇𝑃𝑅𝑈𝑀
𝑎 = −

𝛽𝑎
𝛽𝑝𝑟𝑖𝑐𝑒

(7)

For the contextual concavity model we have
𝜕𝜂𝑖𝑗𝑠
𝜕𝑥𝑎𝑖𝑗𝑠

= 𝜙𝑎𝛽𝑎𝑥
𝜙𝑎−1
𝑎𝑖𝑗𝑠 (8)

𝜕𝜂𝑗𝑠
𝜕𝑝𝑟𝑖𝑐𝑒𝑗𝑖𝑠

= −𝜙𝑝𝑟𝑖𝑐𝑒𝛽𝑝𝑟𝑖𝑐𝑒
( ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠

)𝜙𝑝𝑟𝑖𝑐𝑒−1 (9)

hich leads to an estimand of

𝑊 𝑇𝑃𝐶𝐶𝑀
𝑎 =

𝜙𝑎𝛽𝑎𝑥
𝜙𝑎−1
𝑎𝑖𝑗𝑠

𝜙𝑝𝑟𝑖𝑐𝑒𝛽𝑝𝑟𝑖𝑐𝑒
( ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠

)𝜙𝑝𝑟𝑖𝑐𝑒−1
. (10)

The interpretation of 𝑊 𝑇𝑃𝐶𝐶𝑀
𝑎 is dependent on the highest price seen ( ̃𝑝𝑟𝑖𝑐𝑒𝑖𝑠), as well as the level of the attribute and price

currently assumed, (𝑥𝑎𝑖𝑗𝑠, 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠). Conditioning on a maximum price, we calculate the posterior mean of the above quantity for
4

varying values of price and attribute levels, resulting in WTP curves for each unique level of price.
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We obtain an analogous quantity for the RRM heuristic, though it lacks the microeconomic underpinnings that support 𝑊 𝑇𝑃𝐶𝐶𝑀

and 𝑊 𝑇𝑃𝑅𝑈𝑀 (Chorus, 2012):

𝑊 𝑇𝑃𝑅𝑅𝑀
𝑎 =

∑

𝑗′ 𝛽𝑎(1 + 𝑒𝑥𝑝
(

− 𝛽𝑎
𝜇 (𝑥𝑎𝑖𝑗′𝑠 − 𝑥𝑎𝑖𝑗𝑠)

)

)−1

∑

𝑗′ 𝛽𝑝𝑟𝑖𝑐𝑒(1 + 𝑒𝑥𝑝
(

− 𝛽𝑝𝑟𝑖𝑐𝑒
𝜇 (𝑝𝑟𝑖𝑐𝑒𝑖𝑗′𝑠 − 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠)

)

)−1
. (11)

𝑊 𝑇𝑃𝑅𝑅𝑀
𝑎 is dependent upon the alternate 𝑥𝑎𝑖𝑗′𝑠 levels seen in a choice set, the alternate 𝑝𝑟𝑖𝑐𝑒𝑖𝑗′𝑠 levels seen in a choice set, and

he set (𝑥𝑎𝑖𝑗𝑠, 𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠) at which the WTP is being calculated. We calculate the posterior means of 𝑊 𝑇𝑃𝑅𝑅𝑀
𝑎 for each combination

een in the DCE and display the variability in posterior means corresponding to the varying alternate levels.
We use the posterior draws from the full posterior to obtain posterior draws of 𝑊 𝑇𝑃𝑚

𝑎 for model 𝑚, which effectively quantifies
our posterior beliefs about the true state of 𝑊 𝑇𝑃𝑚

𝑎 . For 𝑚 = 𝐶𝐶𝑀 we would calculate

𝐸(𝑊 𝑇𝑃𝐶𝐶𝑀
𝑎 ∣ 𝒚, 𝑥, 𝑝𝑟𝑖𝑐𝑒, ̃𝑝𝑟𝑖𝑐𝑒)

= ∫ 𝑝(𝜙, 𝛽 ∣ 𝒚)
⎛

⎜

⎜

⎝

𝜙𝑎𝛽𝑎𝑥𝜙𝑎−1

𝜙𝑝𝑟𝑖𝑐𝑒𝛽𝑝𝑟𝑖𝑐𝑒
( ̃𝑝𝑟𝑖𝑐𝑒 − 𝑝𝑟𝑖𝑐𝑒

)𝜙𝑝𝑟𝑖𝑐𝑒−1

⎞

⎟

⎟

⎠

𝑑(𝜙, 𝛽)

≈ 1
𝑅

𝑅
∑

𝑟=1

𝜙(𝑟)
𝑎 𝛽(𝑟)𝑎 𝑥𝜙

(𝑟)
𝑎 −1

𝜙(𝑟)
𝑝𝑟𝑖𝑐𝑒𝛽

(𝑟)
𝑝𝑟𝑖𝑐𝑒

( ̃𝑝𝑟𝑖𝑐𝑒 − 𝑝𝑟𝑖𝑐𝑒
)𝜙(𝑟)𝑝𝑟𝑖𝑐𝑒−1

.

The above formulas are valid for estimating WTP based on samples that are homogeneous in terms of heuristic. The DM models,
owever, assume the presence of at least two distinct groups of individuals. Thus, the WTP surface can change depending on which
euristic an individual with demographics characteristics �̃� belongs to. We propose a method to calculate WTP that appropriately
onsiders the probability with which individuals fall into the two latent groups. Let �̃� represent the latent membership variable which
akes on the value 1 if the individual falls into group 𝑚 and 0 otherwise. Then, the hypothetical individual’s WTP for attribute 𝑎 is
̃𝑊 𝑇𝑃𝑚

𝑎 +(1− �̃�)𝑊 𝑇𝑃𝑚′
𝑎 . Just as there is uncertainty associated with 𝑊 𝑇𝑃𝑚

𝑎 , �̃� is not known with certainty. We incorporate posterior
eliefs about �̃� by averaging over the posterior samples to estimate

�̃�𝑊 𝑇𝑃𝑚
𝑎 + (1 − �̃�)𝑊 𝑇𝑃𝑚′

𝑎 (12)

sing the Algorithm 1.
Algorithm 1 Estimating WTP based on posterior samples {𝜽 ∶ 𝑟 = 1,… , 𝑅}.

1. Sample parameters 𝜽(𝑟) from their joint conditional posterior distribution, 𝑓 (𝜽|⋅).
2. Compute 𝜌(𝑟) = 𝑙𝑜𝑔𝑖𝑡−1(�̃�𝑇 𝜸(𝑟)).
3. Sample �̃�(𝑟) from Bernoulli(𝜌(𝑟)).
4. Compute 𝑊 𝑇𝑃𝑚(𝑟)

𝑎 and 𝑊 𝑇𝑃𝑚′(𝑟)
𝑎 .

5. Compute �̃�(𝑟)𝑊 𝑇𝑃𝑚(𝑟)
𝑎 + (1 − �̃�(𝑟))𝑊 𝑇𝑃𝑚′(𝑟)

𝑎 .

The above procedure effectively integrates over posterior uncertainty in the unknown parameters and latent decision heuristic
tates. The result is an estimate that reflects our posterior beliefs about how much an individual with demographics �̃� is WTP for

an attribute. We note that, while our estimate is a weighted average, it is weighted over the appropriate posterior, not the survey
sample. The quantity (12) is for a fixed demographic �̃� that can be chosen based on relevant population characteristics.

We do not expect Bayesian and frequentist point estimates to differ substantially and so do not claim this estimation method is
better in that sense. However, one advantage of using Bayesian estimation relative to frequentist estimation is that the distribution
of 𝑊 𝑇𝑃𝑎 – or that of any nonlinear function of parameters – does not have to be calculated analytically or approximated using
asymptotic theory. Importantly, Algorithm 1 produces exact estimates of the distribution using samples drawn from the posterior
distribution. That means we are not required to use asymptotic methods such as the Delta method, which make strong assumptions
that are often questionable under practical sample sizes, especially for heavily parameterized models. We obtain exact inference
about the variability and, more generally, the distribution of 𝑊 𝑇𝑃𝑎, simply by examining the distribution of the posterior samples.
This is because MCMC samples naturally incorporate the variability of, and correlations between, each involved component.

To compare the twelve models and gather evidence for (or against) incorporating varying levels of heterogeneity, we use a
Bayesian model comparison measure. The deviance information criterion (DIC, Van Der Linde, 2005) is the Bayesian analog to
the frequentist AIC and BIC and has traditionally been used to compare multiple competing models in Bayesian DCEs (Gonzalez-
Valdes and Raveau, 2018; Thomas et al., 2006). However, this measure is not fully Bayesian because it uses a point estimate
plug-in method to compute. As Vehtari et al. (2017) points out, this can lead to further issues including the potential for negative
estimates of the number of effective parameters. A second information criterion, called the WAIC, is asymptotically equivalent to
cross validation techniques that estimate out-of-sample prediction accuracy and it improves on the DIC method by using the entire
posterior distribution. The expected log posterior density (ELPD), a third information criterion, is even more robust than WAIC in
many situations. It arises from the leave-one-out cross validation (LOO) method proposed by Vehtari et al. (2017). We compare
each of the twelve competing models using the ELPD.
5
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Table 1
Attributes and levels.
Attribute Survey group Attribute levels N

Water clarity 1 [0, 50, 100] 502
Game fish 1 [0, 50, 100] 502
Bird diversity 1 [0, 10, 20] 502
Park land 1 [10, 20, 30] 502
Trails 1 [10, 20, 30] 502
Cost 1 [5, 25, 50, 75, 100, 150] 502

3. Data

3.1. Experimental design

In November 2012, residents of Polk County, Iowa passed the ten-year, $50 million Polk County Water and Legacy Bond. The
verarching goal of the bond was to protect water quality around the watersheds of the two largest rivers converging in Des Moines.
ne projected outcome of the bond was an improvement to recreational opportunities at watershed dependent public parks in Polk
ounty. Using a discrete choice experiment, we estimate willingness to pay for improvements in different park amenities.

In developing the DCE, we used best practices outlined in Johnston et al. (2017). Like managers of other public lands, Polk County
onservation must decide how to allocate scarce dollars across the functions of maintaining and improving their parks. Therefore,
he attributes and levels used in the DCE were determined in consultation with experts from Polk County Conservation. In the final
urvey, six attributes were considered. The attribute most commonly affecting visitor experience across all Polk County parks is
ater quality. The visible representation of water quality improvements is increased water clarity, which is the first attribute. High
ater clarity was described as the visible outcome of good water quality. Scientists typically measure water clarity using a Secchi
isk. When water is turbid or polluted, one will not be able to see the Secchi disk very far below the surface. Conversely, when
ater is clear, Secchi disk depth is greater. The levels of improved water clarity were 0%, 50%, and 100%. A co-benefit of improved
ater quality is an improved ability for desirable, or good, game fish to thrive in water bodies. Levels of improvement were 0%,
0%, or 100%. Another co-benefit of healthy water is more desirable habitat for birds. Increases in bird diversity levels were 0%,
0%, and 20%. From the built environment perspective, many users are interested in the amount of park land available (10%, 20%,
0%), as well as the network of nature and multi-use trails (10%, 20%, 30%). Finally, the cost attribute had potential values of
5, $25, $50, $75, $100, and $150. The payment vehicle was described as a one-time increase in annual property taxes. To avoid
ominated strategies within choice tasks between alternatives, larger improvements in attributes were always more expensive than
maller improvements. A summary of the attributes and levels is shown in Table 1.

We used a D-optimal fractional factorial design to create 24 different choice tasks, which were then split into 12 blocks of two
asks. Each respondent was randomly allocated to one of the twelve blocks of two tasks. Each task contained three alternatives: two
‘action’’ alternatives containing a combination of attributes and levels different from the status quo, and one status quo alternative,
ontaining attribute levels that remained constant across choice tasks. Within choice tasks, each alternative was described according
o the six attributes previously discussed.

The survey was broken into three sections. The first section asked questions about respondents’ travel to the park: from where
hey traveled, the number of people in their party, primary activities while visiting the park, substitute activities, frequency of
isits, expenditures, and substitute locations. The second section presented respondents with two choice scenarios in which they
ere asked to make tradeoffs between different park attributes at an annual cost to their household. Each choice scenario included

hree distinct choices. Each choice contained different levels of the six attributes, and a picture depicting what water clarity would
e given the option they choose. Each choice scenario contained one status quo option, for which the respondent paid nothing
nd resulted in the worst water clarity. A sample choice scenario is shown in Fig. 1. The final section collected sociodemographic
nformation.

The choice experiment was administered by pen and paper in summer 2017 by pen and paper using random intercept sampling
t three different parks managed by Polk County Conservation: Easter Lake Park, Fort Des Moines Park, and Jester Park. The three
arks vary in their available activities. For example, Easter Lake Park offers a multi-use trail circumventing the lake, which itself
s available for swimming, fishing, and boating. Fort Des Moines park offers boating, fishing, and hiking. Jester Park, the largest of
he parks, offers the full range of activities previously listed, as well as a natural playscape, a bison herd, and overnight camping.
etween the three parks, the nearly full suite of activities available at all of the 20 parks managed by Polk County Conservation.

Visitors to these parks are users, so the survey has salience to them. The majority of the users come from the Des Moines metro
rea, but vary in their origin. To ensure the survey effort was spread across different types of visitors, both the time of day and
ay of the week during which surveying occurred was systematically varied. Surveying occurred in two blocks: from 7 a.m. to 1
.m., and 1 p.m. to 7 p.m. During those times, systematic sampling of potential respondents occurred. The roll of a six-sided die
etermined which subjects to survey on a given day (e.g., every 𝑛th person, where n is determined by the die roll). While not a true

random sample, this method provided a sample with reasonable heterogeneity of sociodemographic characteristics (Landry et al.,
2016).
6
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Fig. 1. Example choice scenario.

3.2. The sample

After dropping respondents for incomplete, protest, and nonsensical responses, 502 complete surveys remained. Since each
respondent completed two choice tasks with three alternatives, the result was 3012 observations available for estimation. Descriptive
statistics are presented in Table 2. The sample is compared to average statistics for Polk County in parentheses. The average age of
the sample is 45.2 (median = 35.8), 48% of the sample is female (mean = 50.7%), 36% obtained an education of at least a bachelor’s
degree (36.1%), the average household income is $86,060 (median = $68,291). Moreover, 38% reported that they either belong,
or have donated, to an environmental organization. 18% of respondents owned property near the park, with the average value of
that property being about $160,000.

4. Results and discussion

To estimate each of the 12 models, we used Stan (Stan Development Team, 2018), an open-source probabilistic programming
language which employs the No-U-Turn sampler (NUTS).3 We ran four chains of length 10,000, discarding the first 5000 of each as
burn-in, resulting in 𝑅 = 20,000 samples from 𝑝(𝜽 ∣ 𝑦). We assessed convergence by monitoring effective sample size and �̂�. Plots
of resulting convergence diagnostics are shown in Fig. 2. The Stan code from which we obtained the results is publicly available on
Github.4

4.1. Model selection

To determine our preferred model, we estimate the expected log predictive density (ELPD) using Bayesian leave-one-out (LOO)
methods, as described in Section 2. Larger model-based probabilities of unseen data imply a better description of the underlying

3 NUTS is considered to be an improvement over standard Gibbs sampling as it uses first-order derivatives to inform jumping behavior and, thus, improve
convergence especially in high-dimensional models with correlated parameters (Hoffman et al., 2014).

4 https://github.com/LendieFollett/Heterogeneous-Decision-Paradigms
7
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Fig. 2. Convergence diagnostics.
Convergence diagnostics for all model parameters of each of the six models. Effective sample size (top panel) and �̂� (bottom panel). Lowest 𝑛𝑒𝑓𝑓 is 162 (100
used as rule-of-thumb minimum) and largest �̂� is 1.0203 (1.05 used as rule-of-thumb maximum).

data generating process (DGP), which increases our confidence in the WTP estimates. Table 3 presents these ELPD estimates. A
larger ELPD (smaller magnitude in absolute value when negative) means the model has better predictive ability on unseen data
than a model with a smaller ELPD. Strong evidence in favor of one model over another is gathered when the difference in ELPD
is several times the standard error. The ELPD, in this case, appears to strongly favor models incorporating regret minimization and
preference heterogeneity.

Model preference matters for land use policy more broadly. Since there are typically several nonmarket benefits associated with
public land use, it is important that WTP estimates be based on a realistic sense of the underlying DGP. If respondents in this
sample are erroneously constrained to use a single process heuristic, that will not be the case. LOO estimates consistently suggest
8
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Table 2
Sample statistics.
Variable N mean sd min max

Age 2976.00 45.21 15.97 15.00 87.00
Is female 2988.00 0.48 0.50 0.00 1.00
Income 2694.00 86.06 54.82 7.50 220.00
Political preference 2916.00 4.14 1.64 1.00 7.00
At least Bachelor’s degree 2988.00 0.36 0.48 0.00 1.00
Environmental group 2670.00 0.38 0.49 0.00 1.00
Owns property near park 2988.00 0.18 0.38 0.00 1.00
Value of property near park 486.00 160.19 62.89 25.00 250.00

Table 3
LOO estimates.

ELPD Difference in ELPD
(1) (2) (3) (4)
estimate se estimate se

DM RRM-RUM −674.86 17.24 −249.40 15.86
CCM −672.74 16.36 −247.29 16.53
RUM −670.89 16.41 −245.44 16.05
RRM −670.86 16.46 −245.41 16.15
DM CCM-RUM −669.76 16.56 −244.30 15.96
DM CCM-RRM −669.68 16.57 −244.23 15.97
RP CCM-RUM −580.97 15.31 −155.51 9.04
RP RUM −544.12 17.11 −118.67 6.50
RP CCM −532.64 16.16 −107.19 6.52
RP CCM-RRM −502.30 13.12 −76.84 6.66
RP RRM-RUM −462.44 11.04 −36.98 7.88
RP RRM −425.45 15.66 0.00 0.00

*Difference in ELPD based on baseline of RP RRM model.

hat the data is best represented by a DM model incorporating multiple process heuristics with random parameters, which suggests
illingness to pay estimates derived from these models are more likely to reflect the truth. In what follows, we focus on the six
odels incorporating preference heterogeneity as they are highly favored over fixed parameter models.

.2. Parameter estimates

Table 4 displays the results of six random parameter models. Here, 𝛽 coefficient estimates represent estimates of the shared
ean of the random parameters. The first three columns show, respectively, results from the RUM, CCM, and 𝜇RRM models. In

ach, every respondent has a single process heuristic imposed upon them. Results of Model 1, the RUM, are displayed in the top
anel of the table. For all 𝛽𝑅𝑈𝑀

𝑎 except 𝛽𝑅𝑈𝑀
𝑝𝑟𝑖𝑐𝑒 , the interpretation is the marginal utility of a one percentage point increase in the

ttribute from its current level. 𝛽𝑅𝑈𝑀
𝑝𝑟𝑖𝑐𝑒 represents the marginal utility of a one dollar increase in the cost of an option. Model 2

hows the results of imposing the CCM on all respondents. The quantity 𝛽𝐶𝐶𝑀
𝑎 𝜙𝑎(𝑥

𝜙𝑎−1
𝑎 ) is interpreted as the marginal utility of

one percentage point increase in the attribute from its current level. A positive coefficient indicates more of attribute 𝑎 being
esirable, although the extent to which this is true depends on the reference value of 𝑥𝑎. Model 3 shows the results of imposing
he 𝜇RRM on all respondents. The coefficients for the 𝜇RRM results, 𝛽𝑅𝑅𝑎 , are interpreted differently than those of the utility-based
odels. Each 𝛽𝑅𝑅𝑎 is a coefficient corresponding to a difference. A positive 𝛽𝑅𝑅𝑎 means that regret increases as the unchosen level

ncreases (performs better) relative to the chosen level of attribute 𝑎.5 The �̂� indicates the degree to which the 𝜇RRM model is likely
o be different in fit and profundity of regret when compared to the simple linear RRM model. In model 3, �̂� = 0.848, suggesting
he results from our 𝜇RRM model are not different from the linear RRM model in both fit and profundity of regret. Columns 4–6
isplay results from three discrete mixture models: the RUM-RRM DM model, the CCM-RRM DM model, and the CCM-RUM DM
odel, respectively.

We compare the parameter estimates across all relevant models to gauge whether splitting by latent group changes interpretations
nd, ultimately, WTP calculations. For each of RUM, CCM, and RRM process heuristics, there is at least one case of a parameter
iffering in magnitude across representations. This suggests that WTP may be highly dependent on model choice.

As described in Section 2, class membership probabilities were specified as an inverse logit function of an intercept term (𝛾0),
ender, environmental organization membership, political preferences, and income. Table 5 displays posterior summaries for the
embership class parameters, 𝜸, estimated for each of the six DM models. In each column, the model that appears first in the name

5 When the alternative level 𝑗′ is less than level 𝑗, regret is approximately 0.
9
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Table 4
Main results.

RUM (1) CCM (2) RRM (3) RUM-RRM (4) CCM-RRM (5) CCM-RUM (6)

𝛼𝑅𝑈𝑀 0.612 0.362 0.008
(0.203) (0.992) (0.098)

𝛽𝑅𝑈𝑀
𝑏𝑑 0.006 0.289 0.065

(0.014) (0.22) (0.055)
𝛽𝑅𝑈𝑀
𝑔𝑓 0.013 0.263 0.066

(0.004) (0.142) (0.067)
𝛽𝑅𝑈𝑀
𝑝𝑙 0.027 0.169 0.074

(0.014) (0.228) (0.061)
𝛽𝑅𝑈𝑀
𝑝𝑟𝑖𝑐𝑒 −0.007 −0.083 −0.022

(0.004) (0.042) (0.02)
𝛽𝑅𝑈𝑀
𝑡𝑟 0.055 0.026 0.15

(0.016) (0.24) (0.094)
𝛽𝑅𝑈𝑀
𝑤𝑞 0.029 0.14 0.137

(0.006) (0.106) (0.054)

𝛼𝐶𝐶 1.323 0.039 0.045
(0.55) (0.249) (0.098)

𝛽𝐶𝐶
𝑏𝑑 0.064 0.151 0.082

(0.057) (0.108) (0.08)
𝛽𝐶𝐶
𝑔𝑓 0.095 0.259 0.117

(0.07) (0.138) (0.098)
𝛽𝐶𝐶
𝑝𝑙 0.178 0.174 0.331

(0.173) (0.126) (0.192)
𝛽𝐶𝐶
𝑝𝑟𝑖𝑐𝑒 0.036 0.157 0.175

(0.028) (0.118) (0.13)
𝛽𝐶𝐶
𝑡𝑟 0.1 0.147 0.342

(0.08) (0.123) (0.179)
𝛽𝐶𝐶
𝑤𝑞 0.118 0.225 0.221

(0.05) (0.148) (0.15)
𝜙𝑏𝑑 0.461 0.916 0.48

(0.305) (0.55) (0.352)
𝜙𝑔𝑓 0.587 1.046 0.459

(0.159) (0.597) (0.281)
𝜙𝑝𝑙 0.438 0.599 0.52

(0.277) (0.446) (0.365)
𝜙𝑝𝑟𝑖𝑐𝑒 0.679 0.408 0.621

(0.095) (0.247) (0.239)
𝜙𝑡𝑟 0.739 0.472 1.134

(0.166) (0.363) (0.287)
𝜙𝑤𝑞 0.699 0.458 0.95

(0.103) (0.294) (0.211)

𝛼𝑅𝑅 −0.104 −0.778 −0.06
(0.242) (0.863) (0.251)

𝛽𝑅𝑅𝑏𝑑 0.022 0.031 0.032
(0.017) (0.027) (0.029)

𝛽𝑅𝑅𝑔𝑓 0.027 0.016 0.016
(0.009) (0.016) (0.016)

𝛽𝑅𝑅𝑝𝑙 0.047 0.061 0.061
(0.024) (0.043) (0.038)

𝛽𝑅𝑅𝑝𝑟𝑖𝑐𝑒 −0.005 −0.012 −0.014
(0.004) (0.01) (0.01)

𝛽𝑅𝑅𝑡𝑟 0.096 0.132 0.141
(0.032) (0.06) (0.051)

𝛽𝑅𝑅𝑤𝑞 0.061 0.101 0.117
(0.018) (0.038) (0.035)

RRmu 0.848 0.613 0.561
RRmu (0.413) (0.388) (0.397)

*Posterior means of all parameters in models involving random parameters. Standard deviations in parentheses.

represents a ‘‘positive’’ event. A positive membership probability coefficient for a sociodemographic characteristic in a particular
DM model indicates that individuals with the sociodemographic characteristic are more likely to be modeled by the first process
heuristic relative to individuals without it. Alternatively, a negative membership probability coefficient indicates that individuals
with the sociodemographic characteristic are less likely to be modeled by the first process heuristic. Notably, including random
parameters significantly influences the inferences we get from these estimates as sign changes are common. Comparisons across
traits is possible since we standardize income as in Gelman (2008) by subtracting the mean and dividing by two times the standard
10
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Table 5
Gamma estimates.

RUM-RRM CCM-RRM CCM-RUM

𝛾0 −0.943 −0.87 −0.207
(0.188) (0.198) (0.512)

𝛾𝑐𝑜𝑛𝑠 −0.12 −0.145 −0.031
(0.199) (0.203) (0.233)

𝛾𝑑𝑜𝑛𝑎𝑡𝑒 −0.143 −0.109 −0.099
(0.228) (0.213) (0.24)

𝛾𝑓𝑒𝑚𝑎𝑙𝑒 −0.008 −0.036 −0.091
(0.218) (0.214) (0.231)

𝛾𝑖𝑛𝑐𝑜𝑚𝑒 0.354 0.402 0.146
(0.225) (0.226) (0.328)

*Standard deviations in parentheses. Positive events (𝑚) are: *RUM-RRM(RUM),
CCM-RRM(CCM), CCM-RUM(CCM).

end. If 𝛾𝑖𝑛𝑐𝑜𝑚𝑒 > 0, then the odds that an individual on the high end of the income spectrum identifies with heuristic 𝑚 are larger
than those of an individual on the lower end of the income spectrum. In the random parameter RUM-RRM DM model, the odds of
an individual on the high end of the income spectrum having their decisions more appropriately modeled by the RUM are about
𝑒0.354 = 1.42 times (42% greater than) those of an individual on the lower end of the income spectrum. Similar patterns are observed
in the CCM-RRM model where we again see lower income individuals being more likely to be modeled by RRM. Further, there is
moderately strong evidence of a relationship between income and membership probability as the posterior means are large relative
to the posterior standard deviations, suggesting high posterior probabilities of the form 𝑃 (|𝛾| > 0 ∣ 𝒚). Indeed, most of the posterior
mean estimates of 𝜙𝑎 in Table 6 are well below one, even relative to their corresponding standard errors. The estimated posterior
probability of exceeding 1, 𝑃 (𝜙𝑎 > 1 ∣ 𝒚), is usually less than 0.1, indicating strong evidence of extremeness aversion for all five
attributes. The exceptions to this are 𝜙𝑏𝑑 and 𝜙𝑔𝑓 in the CCM-RRM model which are largely centered around 1 and have estimates
.412 and .418, respectively, for 𝑃 (𝜙𝑎 > 1 ∣ 𝒚).

4.3. Willingness to pay

Ultimately, we are interested in how well our models can inform policy. The ELPD measure of model fit favors random parameter
models over fixed parameter models. Moreover, models incorporating regret-minimization also fare better than models without
regret in them, meaning WTP estimates from these models should be more appropriate than WTP estimates from models with the
other process heuristics. To calculate WTP, we use what, intuitively, is a weighted average of the heuristic-implied WTP values over
MCMC posterior samples.

Fig. 3 displays posterior means and 95% credible intervals of WTP estimates based on each of the six random parameter DM
models. A unique and important feature of this algorithm is that the overall WTP estimates can be calculated for any collection of
sociodemographic traits �̃�, influencing the membership probability 𝜌. We set �̃� at the means observed in the sample, and thus the
WTP estimates reflect the posterior probability that an ‘average’ sampled individual will adhere to either of the particular heuristics.
The DM model often, but not always, suggests a WTP estimate that is in between the WTP estimates derived from the appropriate
two single-heuristic models. That not all DM model WTP estimates fall within the range of the individual model WTP estimates is
consistent with Hensher et al. (2018), and could occur because of model misspecification. Importantly, Fig. 3 incorporates variability
due to parameter uncertainty, heuristic heterogeneity, and preference heterogeneity. We note the asymmetry, and in particular
right-skewedness, indicated by the means and 95% credible intervals in Fig. 3. This suggests that some conventional methods, such
as the Delta method, may be unreliable for quantifying WTP uncertainty as it would tend to underestimate the upper and lower
bounds of the distribution.

Inasmuch as nonmarket values play a role in benefit-cost analysis, the policy implications of these results are potentially quite
large. Suppose, for example, that we were interested in using the WTP for a one percentage point increase in the number of
nature/multiuse trails in a public park for policy purposes. If we imposed the usual process heuristic of RUM instead of allowing the
flexibility of the RRM-RUM DM model preferred by the ELPD, we would underestimate WTP by 31.87-11.47 = $20.40, a three-fold
difference.6

5. Conclusion

It is frequently assumed that respondent decisions in DCE studies can be modeled using a linear RUM model. Implicitly,
this also means that decisions are assumed to conform to a single process heuristic. In the context of public park land use
decisions, those assumptions may not hold. This paper developed a Bayesian discrete mixture model that allows for multiple process
heuristics to describe respondent choices in DCE data while also controlling for preference heterogeneity. For the first time in

6 See Table 8 in Appendix A for exact figures.
11
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Fig. 3. Posterior means.
Posterior means (black line) and 95% posterior credible intervals (gray line) for a one unit increase in each attribute, as estimated by each random parameter
model. Posterior means for DM models are based on Algorithm 1. Attribute levels and price levels are set at lowest non-baseline in survey and $50.00, respectively.
In the case of RRM, we average posterior quantities over all survey scenarios.

the environmental nonmarket valuation literature, we estimated a Bayesian DM model and developed a transparent algorithm to
calculate a posterior-weighted WTP estimate for each DM model.

In the empirical application, the ELPD goodness of fit measure indicated that models including preference heterogeneity
ominated models without preference heterogeneity. Moreover, the models including the RRM process heuristic outperformed
odels with other process heuristics. Contrary to our expectations, the model with the best fit was the single heuristic version

f the RRM. This data-dependent result is supported by the fact that the two DM models containing RRM ranked below the single
euristic version of the model and above the models containing the other heuristics, in terms of goodness of fit. Finally, we illustrate
ow the implications of failing to allow for flexible process heuristics when estimating WTP are potentially large.

There are several limitations to this work, in which we reveal a number of different opportunities for future research. We
ere interested in developing a WTP estimator using a DM incorporating alternative process heuristics specifically related to
xtremeness aversion in decision-making. However, there are other process heuristics (e.g., attribute-nonattendance, relative
dvantage maximization) to consider in the context of DCE data, and they could all be incorporated into the DM model developed
n this paper. Moreover, preference and process heterogeneity could still be confounded in our data, and there are other methods
vailable to identify heterogeneous process heuristics in the data, such as the Artificial Neural Network (ANN) method. Further, our
ample is limited to public park users. Specific inference concerning behavioral characteristics and, in particular, WTP, is limited to
he population of park users. Finally, we considered only cases of one or two underlying behavioral groups. Future research might
ocus on a modeling scheme that is more flexible, and should carefully consider the implications of imposing a particular process
euristic on DCE data.
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Table 6
Posterior means of all parameters for models not involving random parameters. Standard deviations in

parentheses.
RUM (1) CCM (2) RRM (3) RUM-RRM (4) CCM-RRM (5) CCM-RUM (6)

𝛼𝑅𝑈𝑀 0.509 0.577 0.009
(0.206) (0.225) (1.012)

𝛽𝑅𝑈𝑀
𝑏𝑑 0.011 0.008 0.775

(0.006) (0.006) (0.512)
𝛽𝑅𝑈𝑀
𝑔𝑓 0.005 0.001 0.622

(0.001) (0.001) (0.354)
𝛽𝑅𝑈𝑀
𝑝𝑙 0.003 0.006 0.315

(0.006) (0.005) (0.387)
𝛽𝑅𝑈𝑀
𝑝𝑟𝑖𝑐𝑒 −0.003 −0.004 −0.158

(0.001) (0.002) (0.151)
𝛽𝑅𝑈𝑀
𝑡𝑟 0.02 0.014 0.934

(0.006) (0.007) (0.605)
𝛽𝑅𝑈𝑀
𝑤𝑞 0.011 0.011 1.653

(0.002) (0.003) (0.745)

𝛼𝐶𝐶 −0.545 −0.416 −0.44
(0.562) (0.597) (0.603)

𝛽𝐶𝐶
𝑏𝑑 0.083 0.106 0.107

(0.071) (0.097) (0.097)
𝛽𝐶𝐶
𝑔𝑓 0.129 0.106 0.108

(0.108) (0.108) (0.11)
𝛽𝐶𝐶
𝑝𝑙 0.328 0.366 0.368

(0.331) (0.354) (0.353)
𝛽𝐶𝐶
𝑝𝑟𝑖𝑐𝑒 0.062 0.395 0.391

(0.064) (0.265) (0.262)
𝛽𝐶𝐶
𝑡𝑟 0.383 0.378 0.39

(0.343) (0.358) (0.365)
𝛽𝐶𝐶
𝑤𝑞 0.15 0.247 0.246

(0.144) (0.19) (0.192)
𝜙𝑏𝑑 0.39 0.378 0.385

(0.323) (0.326) (0.333)
𝜙𝑔𝑓 0.336 0.308 0.316

(0.269) (0.26) (0.273)
𝜙𝑝𝑙 0.235 0.26 0.259

(0.219) (0.225) (0.227)
𝜙𝑝𝑟𝑖𝑐𝑒 0.295 0.2 0.2

(0.256) (0.155) (0.157)
𝜙𝑡𝑟 0.417 0.334 0.328

(0.264) (0.256) (0.249)
𝜙𝑤𝑞 0.505 0.313 0.31

(0.229) (0.238) (0.235)

𝛼𝑅𝑅 −0.347 0.015 0.017
(0.237) (0.994) (1.001)

𝛽𝑅𝑅𝑏𝑑 0.007 1.036 0.757
(0.004) (0.774) (0.528)

𝛽𝑅𝑅𝑔𝑓 0.003 1.013 0.591
(0.001) (0.527) (0.312)

𝛽𝑅𝑅𝑝𝑙 0.005 0.555 0.303
(0.003) (0.534) (0.356)

𝛽𝑅𝑅𝑝𝑟𝑖𝑐𝑒 −0.002 −0.137 −0.078
(0.001) (0.094) (0.075)

𝛽𝑅𝑅𝑡𝑟 0.014 1.022 0.954
(0.005) (0.8) (0.628)

𝛽𝑅𝑅𝑤𝑞 0.008 0.582 1.591
(0.001) (0.466) (0.735)

𝜇𝑅𝑅 0.901 0.938 0.993
(0.575) (0.596) (0.581)
13
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Table 7
Posterior means and standard deviations (in parentheses) of shared parameters

in non-random parameters DM models. Positive events (𝑚) are: RUM-RRM(RUM),
CCM-RRM(CCM), CCM-RUM(CCM).

RUM-RRM CCM-RRM CCM-RUM

𝛾0 1.306 0.767 0.78
(0.24) (0.349) (0.35)

𝛾𝑐𝑜𝑛𝑠 0.3 0.198 0.201
(0.318) (0.26) (0.27)

𝛾𝑑𝑜𝑛𝑎𝑡𝑒 0.09 −0.157 −0.154
(0.335) (0.282) (0.289)

𝛾𝑓𝑒𝑚𝑎𝑙𝑒 0.013 −0.283 −0.286
(0.329) (0.29) (0.297)

𝛾𝑖𝑛𝑐𝑜𝑚𝑒 −0.963 −0.689 −0.685
(0.314) (0.292) (0.283)

Table 8
Posterior means and 95% credible intervals of WTP for random parameter models only.

Model Mean Lower Upper

Bird diversity CCM 1.38 0.03 4.47
Bird diversity RUM −4.44 −5.52 5.34
Bird diversity RRM 6.46 0.35 24.51
Bird diversity CCM-RRM 11.49 0.19 59.49
Bird diversity CCM-RUM 3.63 0.38 7.13
Bird diversity RRM-RUM 3.75 0.13 13.65
Game fish CCM 1.83 0.66 4.45
Game fish RUM 2.67 0.93 6.89
Game fish RRM 5.88 1.11 20.56
Game fish CCM-RRM 26.16 0.06 137.49
Game fish CCM-RUM 2.52 0.23 4.85
Game fish RRM-RUM 2.13 0.11 7.26
Park land CCM 2.62 0.11 7.94
Park land RUM 5.38 1.03 16.29
Park land RRM 16.85 2.18 60.40
Park land CCM-RRM 10.82 0.32 46.76
Park land CCM-RUM 5.28 1.04 9.38
Park land RRM-RUM 6.31 −0.77 26.43
Trails CCM 7.16 1.52 19.94
Trails RUM 11.47 3.65 32.62
Trails RRM 31.87 6.09 113.40
Trails CCM-RRM 15.09 0.26 59.80
Trails CCM-RUM 10.71 2.58 18.38
Trails RRM-RUM 13.21 −2.25 53.24
Water clarity CCM 4.78 2.18 10.94
Water clarity RUM 5.90 2.45 15.43
Water clarity RRM 16.12 3.74 55.49
Water clarity CCM-RRM 10.36 0.26 39.25
Water clarity CCM-RUM 6.66 1.02 12.12
Water clarity RRM-RUM 8.54 0.48 30.57
14
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Appendix B. Survey instrument
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