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A B S T R A C T   

Estimation of discrete outcome specifications involves significant hypothesis testing, including 
multiple modelling decisions which could affect results and interpretation. Model development is 
generally time-bound, and decisions largely rely on experience, knowledge of the problem context 
and statistics. There is often a risk of adopting restricted specifications, which could preclude 
important insights and valuable behavioral patterns. This study proposes a framework to assist in 
testing hypotheses and discovering mixed-Logit specifications that best capture discrete outcome 
behavior. The proposed framework includes a mathematical programming formulation and a bi- 
level constrained optimization algorithm to simultaneously test various modelling assumptions 
and produce meaningful specifications within a reasonable time. The bi-level framework illus
trates the integration of a population-based metaheuristic with model estimation procedures. In 
addition, the optimization algorithm allows the analyst to impose assumptions on the models to 
test specific hypotheses or to ensure compliance with literature. Numerical experiments are 
conducted using different datasets and behavioral processes to illustrate the efficacy of the pro
posed extensive hypothesis testing in terms of interpretability and goodness-of-fit. Results illus
trate the ability of the proposed algorithm to reveal important insights that can potentially be 
overlooked due to limited and/or biased hypothesis testing. In addition, the proposed extensive 
hypothesis testing generates multiple acceptable solutions, thereby suggesting potential di
rections for further investigation. The proposed framework can serve as a decision-assistance 
modelling tool in various applications, involving many variables and outcomes, such as road 
safety analysis, consumer choice behavior, and integrated land-use and travel choice models.   

1. Introduction 

1.1. Modelling discrete outcome problems 

Discrete outcome models have been an integral part of behavioral studies, including but not limited to, transport and land-use 
planning, pathology analysis and market research. Even with the advent of advanced Machine Learning (ML) methods, discrete 
outcome models are still widely used because of their ability to capture behavior and estimate causality. Over the years, extensions and 
capabilities have been added to better capture behavior and explain influencing factors (Bierlaire, 1998). This development has led to a 
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variety of modelling approaches, each with its own strengths and limitations (Mannering et al., 2016). 
The process of developing discrete outcome specifications is highly involved as it requires an analyst to take several critical 

modelling decisions, including (1) selection of variables to be tested during model specification; (2) identification of variable forms and 
transformations (e.g., linear or non-linear); (3) variables to be tested with fixed or random coefficients; (4) distributional assumptions 
for random coefficients and error terms; and (5) selection of methods to deal with potential correlation, among others. Analysts 
generate candidate specifications or hypotheses and iteratively modify them until an acceptable model is obtained. The process is 
generally time-bound, often resulting in limited and slow testing of hypotheses, which can potentially introduce errors (Paz et al., 
2019), leading to misspecifications, estimation biases, and erroneous predictions (Han et al., 2020). 

The decisions during the specification process represent fundamental hypotheses, which can significantly affect results and 
interpretation of underlying behavior captured by models. Variables included in the model and their functional form represent hy
potheses on how they influence a discrete outcome. Specifications assumed with a linear-in-parameters structure are generally a 
limited representation of reality (Kim et al., 2016). For example, empirical evidence suggests that travelers perceive a 10-min waiting 
time differently when travel time changes from 20 min to a few hours (Koppelman, 1981). A linear specification, however, imposes 
symmetrical behavior and is unable to capture potential empirical inflection point(s) showing sudden shift(s) in preferences (Mandel 
et al., 1997). Popular methods to capture nonlinearity in discrete outcome models include variable transformations, such as loga
rithmic (Ben-Akiva et al., 1987), hyperbolic (Kitazawa, 2012), exponential (Gaudry, 1981), and piecewise regression (Kim et al., 
2014). Although these methods have been found to capture more information on causality compared to linear specifications, the type 
of transformation and the associated variables need to be predetermined. Some studies have applied Box-Cox transformations (Box and 
Cox, 1964) to approximate a linear, logarithmic, or exponential effect depending on an estimated transformation coefficient. The 
Box-Cox relieves the analyst from predefining a transformation, thereby alleviating misspecification to some extent (Kim et al., 2016; 
Orro et al., 2005). However, the selection of variables to be tested with a transformation still largely relies on the analyst. 

Studies have demonstrated a significant improvement in terms of goodness-of-fit and explanatory power when random coefficients 
are included in the specification (Anowar and Eluru, 2018; Sillano and Ortúzar, 2005; Train, 2003). While statistical tests are available 
(Fosgerau and Hess, 2009), the analyst needs to perform a series of analyses to determine variables to be estimated with random 
coefficients along with the mixing distribution. Hence, overall model results, including interpretability and goodness-of-fit, should be 
used to select distributions. Hensher and Greene (2003) tested the effect of different distributional assumptions in a transportation 
mode choice study. They found that a proportion of the sample with a negative value of travel-time savings changed depending on the 
assumed distribution from 19.21% to 37.92% and 39.33% for normal to uniform and triangular distributions, respectively. These 
results suggest that a data-driven approach involving testing multiple hypothesis is essential to support the corresponding modelling 
decisions and get the best possible interpretation and goodness-of-fit. Alternative approaches using flexible distributions have also 
been recommended to alleviate the need for testing multiple random distributions for an adequate representation of unobserved 
heterogeneity. Examples include those proposed by Train (2008); Train (2016); and Keane and Wasi (2013), and non-parametric and 
semi-parametric distributions that are used in latent class models (Greene and Hensher, 2003; Vij and Krueger, 2017). However, a 
careful consideration of the trade-offs between model flexibility and data overfitting is required to support the specification selection 
(Fosgerau and Bierlaire, 2007). 

Similarly, multiple sources of correlation can exist within the data depending upon the study context (Hess and Rose, 2012). Crucial 
information could be lost when a restricted covariance structure is imposed a priori on the specification. Studies had also reported a 
change in coefficient signs when variables were allowed to correlate, indicating potential misspecification issues if the correlation is 
unaccounted for (Fountas et al., 2018). Based on a detailed review, Hess and Train (2017) recommend testing different restrictions on 
the covariance matrix and selecting an appropriate approach. 

Although there is vast literature to provide guidance to test flexible model specifications for non-linearities, random and correlated 
random parameters, there is limited opportunity and resources for analysts to test large numbers of associated hypotheses and 
methods. Hence, restricted specifications with limited capabilities to address modelling challenges are frequently adopted (Fiebig 
et al., 2010; Paz et al., 2019; Train, 2007; Walker and Ben-Akiva, 2002). Further, the availability of highly dimensional datasets often 
makes the analysis more laborious and challenging. Considering that problem size grows substantially as data dimensionality increases 
(Vinterbo and Ohno-Machado, 1999), an exhaustive hypothesis testing searching for a solution that addresses all data and modelling 
aspects is not feasible (Fan and Li, 2006). 

1.2. Relevant studies and proposed contribution 

Seeking to develop alternatives to statistical-based models and address some of the above modelling challenges, several applica
tions of Machine Learning (ML) can be found in the discrete-outcome modelling literature, including Neural Networks (Dia and 
Panwai, 2010; Ma et al., 2020; Ramsey and Bergtold, 2020; Sifringer et al., 2018; Wang et al., 2020a; Wang et al., 2020b), Decision 
Trees (Brathwaite et al., 2017), Random Forests (Wang and Kim, 2019; Zhao et al., 2020), and Support Vector Machines (Martín-Baos 
et al., 2021). The ML-based approaches typically outperform predictions of standard statistical methods as they utilize complex model 
specifications. However, standard measures to interpret behavior, such as estimation of willingness to pay (WTP), have been found 
inconsistent with ML-based models (Ramsey and Bergtold, 2020; Zhao et al., 2020). Alternative approaches for estimating substitution 
patterns, including numerical approximation (Zhao et al., 2020), such as gaussian quadrature methods (Ramsey and Bergtold, 2020) 
have been proposed. However, case-specific methods need to be applied based on the ML technique, while computational cost required 
by such methods is often high. In addition, there are concerns regarding potential over-fitting and estimation issues associated with 
hyperparameters required by ML-based approaches (Han et al., 2020; Martín-Baos et al., 2021). 
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Integrated approaches have also been proposed to maintain behavioral interpretability, while aiming to alleviate modelling de
cisions. Brathwaite et al. (2017) developed a Bayesian decision tree framework to model semi-compensatory choice behavior. The 
study developed a method using Bayesian trees to link ML-based techniques with random utility theory. However, the framework is 
unable to consider a combination of behavioral features, such as nonlinearity and heterogeneity (Brathwaite et al., 2017). Hybrid 
specifications have also been proposed in which utility is partly prespecified by the analyst and partly estimated using ML techniques 
(Sifringer et al., 2018; Sifringer et al., 2020). Han et al. (2020) added a neural network component to a manual specification embedded 
to model heterogeneity in choice preferences. Semi-nonparametric approaches have also been applied to preserve the validity of 
standard WTP measures. The objective is to ease the distributional assumptions of the error term using compound functions, such as 
flexible Fourier forms (Creel and Loomis, 1997) and Hermite-polynomial methods (Arouna and Dabbert, 2012). Integrated approaches 
coupling statistical modelling with ML techniques have shown improved accuracy in predictions along with some behavioral inter
pretation (van Cranenburgh et al., 2021). However, the proposed approaches do not assist the analyst in making critical decisions 
required for model development. In addition, model performance was compared with standard restrictive specifications. Therefore, 
potential trade-offs of using the integrated approaches over specifications that simultaneously consider nonlinear, heterogeneous, and 
correlated effects are yet to be investigated in detail. 

Studies have used data-driven metaheuristics to assist discrete outcome model development while testing hypotheses (Ortelli et al., 
2021; Rodrigues et al., 2019). The general idea is to engage an impartial mechanism to explore multiple model structures and best-fit 
combinations of features from the dataset to include them in the specification. Paz et al. (2019) used simulated-annealing (SA) for 
developing mixed-Logit models with random parameters while selecting potential explanatory variables and the corresponding 
densities for their coefficients. Ortelli et al. (2021) adopted a variable neighborhood search method to generate discrete choice 
specifications. Rodrigues et al. (2019) used automatic relevance determination in a Bayesian framework to identify important features 
from the data by restricting a preference parameter for irrelevant features to zero. These data-driven approaches were found to 
significantly reduce analysts’ efforts while preserving causal interpretability. However, each of the previous studies focused on specific 
features of the model development process. Both Ortelli et al. (2021) and Rodrigues et al. (2019) contributed to the identification of 
important variables and their functional forms but limited the search to multinomial and nested logit models. In contrast, Paz et al. 
(2019) generated mixed-Logit models using a linear-in-parameters specification and uncorrelated coefficients. While the methods 
proposed by Paz et al. (2019) and Ortelli et al. (2021) identified adequate specifications with improved goodness-of-fit relative to 
benchmark solutions from the literature, a detailed analysis to illustrate the significance of an optimization framework to perform an 
extensive hypothesis testing to capture important behavioral patterns is not available. 

This study seeks to move towards the development of an unbiased and efficient framework to perform extensive hypothesis testing 
considering simultaneously multiple modelling decisions, including potential explanatory variables, the type of parameters to be 
estimated (outcome-specific or generic), presence of unobserved heterogeneity, non-linearity, and correlations. Simultaneous 
consideration of these modelling decisions significantly increases problem complexity and the required hypothesis testing. Previous 
studies have attempted to develop frameworks to assist with critical modelling decisions, while preserving behavioral realism (Ortelli 
et al., 2021; Paz et al., 2019). This study adds to the literature by developing an efficient optimization framework to simultaneously test 
many modelling assumptions and assist in discovering behavioral insights beyond those often reported in the literature using restricted 
specifications. A bi-level optimization approach is proposed to perform the required extensive hypothesis testing. The proposed 
framework enables the investigation and estimation of specifications for a large range of applications, including those involving many 
variables, outcomes, and behavioral nuances. 

The remaining of this manuscript is organized as follows. Section 2 presents the proposed methodological framework, including the 
problem formulation and extensive hypothesis testing framework. Section 3 provides numerical experiments conducted using the 
proposed framework and comparative analyses with existing methods. Finally, section 5 delivers conclusions and identifies future 
research directions. Throughout this paper, the words “specification” and “solution” are used interchangeably. 

2. Methodology 

A mathematical programming formulation is presented below including an objective function, decision variables and associated 
constraints. Similarly, a metaheuristic-based solution algorithm is developed, implemented, and tested to search for adequate mixed- 
Logit specifications. The proposed framework provides flexibility to include any a priori knowledge about data or problem context that 
can guide the hypothesis testing. For example, level-of-service attributes such as travel time and cost are typically important aspects 
while estimating travel demand. Analysts would often require testing of such specific effects irrespective of their statistical signifi
cance. Flexibilities are, therefore, essential to align the specification search with the study objectives. 
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2.1. Mathematical programming problem 

2.1.1. Notation and definitions 
This subsection introduces notation and definitions used to formulate the proposed mathematical programming problem and 

solution algorithm for extensive hypothesis testing during the estimation of mixed-Logit models.  

Data Inputs 
Set 
N Set of individual observations; N = {1,…,N}; indexed on n ∈ N 
J Set of discrete outcomes; J = {1,…,J}; indexed on j ∈ J 
T Set of time events when observations n were collected; T = {1,…,T}; indexed on t ∈ T 
K Set of potential alternative-specific attributes; K = {1,…,K}; indexed on k ∈ K 
M Set of potential characteristics associated with individual observations; M = {1,…,M}; indexed on m ∈ M 
F Set of possible probability density functions considered for the estimation of coefficients; F = {lognormal,normal,uniform, truncated normal, triangular}
Index 
l Subscript to denote a base outcome; l ∈ J 
p Subscript to denote an alternative-specific attribute; p ∈ K 
Observed Variables 
xt

nj Vector containing measurements of alternative-specific attributes K for alternatives considered by individual n in t∀k ∈ K and j ∈ J; xt
nj = [xt

nj1,…,xt
njk,

…,xt
njK]

zn Vector containing measurements of observation-specific characteristic m for individual observation n∀m ∈ M; zn = [zn1,…, znm ,…, znM ]

yt
nj Binary variable taking value 1 if j is the observed outcome n at t; 0 otherwise 

Pre-specifications 
α̂jk Binary variable taking value 1 if xt

njk is pre-specified to be included in the model; 0 otherwise 
̂̈αjm Binary variable taking value 1 if znm is pre-specified to be included in the specification for alternative j; 0 otherwise 
ℶk,m Binary variable taking value 1 if a variable interaction is pre-specified between xt

njk and znm; 0 otherwise 
ĝ(znm, xt

njk) Pre-specified functional form for interaction between xt
njk and znm 

ω̂k Binary variable taking value 1 if transformation is pre-specified for xt
njk; 0 otherwise 

μk Binary variable taking value 1 if λk is pre-specified for xt
njk; 0 otherwise 

λ̂k Pre-specified value of λk for xt
njk 

γk Binary variable taking value 1 if fk is pre-specified; 0 otherwise 
f̂ k Pre-specified random distribution; f̂ k ∈ F 
φ̂k,p Binary variable taking value 1 if correlation between βnjk and βnjp is pre-specified; 0 otherwise ∀n ∈ N; k, p ∈ K and p ∕= k 
Decision variables 
αj Vector containing binary variables αjk taking value 1 if xt

njk is included in the specification for j; 0 otherwise ∀j ∈ J and k ∈ K; αj = [αj1 ,…αjk,…,αjK] 
α̈j Vector containing binary variables α̈jm taking value 1 if znm is included in the specification for alternative j ∀m ∈ M; 0 otherwise; α̈j = [α̈11,…α̈jm ,…,

α̈jM]

ωk Binary variable taking value 1 if a variable transformation is applied on xt
njk; 0 otherwise 

λ Vector of coefficients used to determine a transformation for variables in xt
nj; ; λ = [λ1,…,λk,…,λK ]

βn Matrix of size N × J × K containing coefficients for xt
nj∀k ∈ K and j ∈ J; βn = [βn11,…,βnjk,…,βnJK]

f Vector of probability density functions for βn; f = [f1,…, fk,…, fK],∀fk ∈ F 
θj Vector of coefficients for zn for alternative j ; θj = [θj1,…,θjm,…,θjM]

βjk Location parameter of the random distribution corresponding to βnjk 

σjk Scale parameter of the random distribution corresponding to βnjk 

σjk,jp Cholesky coefficients for the covariance matrix Σ of β ∀k,p ∈ K 
Γ Matrix of size J × K with elements τjk,1 ≤ τjk ≤ J, which are indicators enabling the estimation of βnjk as a generic or outcome-specific coefficients 
φk,p Indicator variable taking value 1 ⟺ βnjk and βnjp are correlated; 0 otherwise ∀k, p ∈ K and p ∕= k 
δ Number of estimable parameters in the specification  

2.1.2. Problem formulation 
The observed utility associated with outcome j and individual n in observation t is given by vt

nj eqn. (1). Depending on the 
contribution to fit and intuitive behavioral meaning, βnjk can be estimated as a fixed, random, or random-correlated coefficients, as 
given by eqn. (2). For observation-specific characteristics zn, such as socio-demographic variables or household attributes used in 
discrete choice analysis, the corresponding coefficients θjm are estimated as alternative-specific. Eqn. (3) is used to normalize the base- 
alternative coefficients to 0, ensuring that a maximum of J − 1 coefficients are estimated for the given observation-specific charac
teristic. 

vt
nj = α̈jθjzn + αjβnxt

nj
(λ) (1)  

βnjk =

⎧
⎨

⎩

βjk if βnjk estimated as fixed coefficient∀n ;

fk(βjk, σjk

)
if βnjk estimated as random uncorrelated coefficient;

fk(βjk, σjk,jp

)
if βnjk estimated as random correlated coefficient.

(2) 
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θjm =

{
0 if j = l∀m ∈ M;

θjm otherwise (3) 

The extensive hypothesis testing required to estimate mixed-Logit models is viewed in this study as a bi-level non-linear mixed- 
integer optimization problem. The lower-level objective function is to maximize the log-likelihood estimate (LL) given by eqn. 
(4) , including the following decision variables (D):  

(i) coefficients βnjk∀αjk = 1,  
(ii) coefficients θjm∀α̈jm = 1,  

(iii) coefficients λk to determine a transformation for xt
njk∀αjk = ωk = 1,  

(iv) coefficients σk,p ∀αjk = αjp = φk,p = 1. 

The log-likelihood estimate is defined using the generalized linear modelling framework with an unobserved component of utility 
assumed to be i.i.d extreme value. In the present form, the proposed formulation can be applied to estimate multinomial and mixed- 
Logit models, while investigating for nonlinear interactions, heterogeneity, and correlated effects. Mixed-Logit models are highly 
flexible and can be approximated to any random utility model (McFadden and Train, 2000), when specified correctly including 
adequate distributions. Mixed-Logit models overcome the three fundamental limitations of standard Logit models by allowing pref
erence heterogeneity, unrestricted substitution patterns and correlation in unobserved factors over time (Train, 2003). In addition, the 
approximate maximum likelihood estimations using simulation methods have further facilitated mixed-Logit applications. 

A straightforward extension of the formulation to estimate nested Logit models can also be achieved by including constraints to 
define nesting structures. Furthermore, the lower-level objective function can be reformulated using other modelling approaches, 
including Bayesian methods, which use deviance under the posterior estimates (Geedipally et al., 2014), or ordinary least squares 
(OLS) which uses the sum of squared errors (Khadka et al., 2018), and global maximum likelihood estimation methods (Liu and 
Mahmassani, 2000). 

Max.LL=
∑N

n=1

∫

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏T

t=1

∏J

j=1

⎛

⎜
⎜
⎜
⎝

eα̈jθjzn+αjβnxt
nj
(λ)

∑J

j=1
eα̈jθjzn+αjβnxt

nj
(λ)

⎞

⎟
⎟
⎟
⎠

yt
nj
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

f(βn|β,Σ)dβn (4) 

A critical aspect during model development is having a selection criterion or objective function that enables to achieve the desired 
outcomes. For the estimation of a large range of models, both the Akaike Information Criteria (AIC) (Akaike, 1998) and Bayesian 
Information Criteria (BIC) (Schwarz, 1978) have provided better results than log-likelihood, because they include a penalizing factor 
based on the number of model parameters. The BIC has provided stability in problems involving a large number of observations and 
modelling parameters (Wu et al., 2020). Similarly, the BIC was selected as the objective function to ensure that quality models were 
generated during the search while maintaining parsimony (Khadka and Paz, 2017; Khadka et al., 2018; Veeramisti et al., 2021). Paz 
et al. (2019) used the BIC, whereas Ortelli et al. (2021) proposed a multi-objective framework, including maximization of the 
log-likelihood and minimization of the number of model parameters. Eqn. (5) provides the general form of AIC and BIC (Román et al., 
2017; Vrieze, 2012): 

AIC or BIC = − 2LL(β) + ηρ (5)  

where LL(β) is the log-likelihood estimate of a model with ρ parameters, η is a penalty coefficient taking value 2 for AIC and log of 
number of observations for BIC. The penalty coefficient offers a check on overfitting while selecting an adequate subset of predictor 
variables to explain an outcome. Although none of these criteria guarantees the identification of optimal solutions (Parady et al., 
2021), BIC has been widely used in discrete outcome modelling due to its heavier penalty coefficient, which enables the identification 
of specifications with relatively better estimates using lesser model parameters (Ortelli et al., 2020; Román et al., 2017; Vij et al., 
2018). In this study, the upper-level objective function is to minimize the BIC given by eqn. (6), including the following decision 
variables, which define a specification (M):  

(i) αjk indicating whether variable xt
njk is included in the specification ∀ j ∈ J,k ∈ K,  

(ii) α̈jm in dicating whether variable znm is included in the specification ∀ m ∈ M,  
(iii) ωk indicating whether a transformation is applied to xt

njk∀j ∈ J,k ∈ K,  
(iv) density function fk for coefficient βjk ∀ f ∈ F, j ∈ J,k ∈ K,  
(v) τjk indicating whether βjk is estimated as a generic or outcome-specific coefficients ∀j ∈ J,k ∈ K, and  

(vi) φk,p indicating whether βjk and βjp are correlated ∀ f ∈ F, j ∈ J,k,p ∈ K and p ∕= k. 
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Min. BIC= δ ln(N) − 2 ∗

⎡

⎢
⎢
⎢
⎣

∑N

n=1

∫

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏T

t=1

∏J

j=1

⎛

⎜
⎜
⎜
⎝

eα̈jθjzn+αjβnxt
nj
(λ)

∑J

j=1
eα̈jθjzn+αjβnxt

nj
(λ)

⎞

⎟
⎟
⎟
⎠

yt
nj
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

f(βn|β,Σ)dβn

⎤

⎥
⎥
⎥
⎦

(6)  

subject to: 

αjk, α̈jm,ωk,φk,p, α̂jk, ̂̈αjm, ω̂k, μk, γk, φ̂k,p,ℶm,k ∈{0, 1}∀m, j, k, and p, p ∕= k (7)  

xt
njk

(λk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt
njk − 1

λk
if xt

njk ∈ R,ωk = 1 and λk ∕= 0∀xt
njk ;

ln xt
njk if xt

njk ∈ R+,ωk = 1 and λk = 0∀xt
njk;

xt
njk if ωk = 0∀xt

njk

(8)  

If τjk = τrk, then βjn = βrn∀j, r ∈ J and j ∕= r (9)  

If α̂jk = 1, then αjk = 1∀j and k (10)  

If ̂̈αjm = 1, then α̈jm = 1∀m (11)  

If ω̂k = 0, thenωk = 0∀k (12)  

if ω̂k = 1 andμk = 0, thenωk = 1∀k (13)  

if ω̂k = μk = 1, then ωk = 1 and λk = λ̂k∀k (14)  

If ℶm,k = 1, then xt
njk′ = ĝ

(
znm, xt

njk

)
∀j,m and k, and k

′

∕= k (15)  

if γk = 1, then fk = f̂ k∀k (16)  

if φ̂k,j = 1, then φk,p = 1∀k and p, p ∕= k (17) 

Constraints (7) ensure that variables αjk, α̈m,ωk,φk,p, α̂jk, ̂̈αm, ω̂k, μk, γk, φ̂k,p,ℶm,k only take values zero or one to test a particular 
hypothesis in the specification as provided in their definition under section 2.1.1. Constraints (8) are used to capture a generalized 
effect of variables on outcomes as proposed by Bierlaire (1998); Orro et al. (2005). Coefficient λk applies a Box-Cox transformation on 
xt

njk by testing linear, logarithmic, and power functional forms. 
Constraints (9) impose the estimation of βjk either as generic or outcome-specific for all xt

njk. If all values in the kth column of Γ are 
unique, alternative-specific coefficients are estimated for the corresponding kth explanatory variable. Conversely, if the kth column of Γ 
have the same values, a generic coefficient is estimated. For example, if τ1k ∕= τ2k, then alternative-specific β1k and β2k will be esti
mated, but if τ1k = τ2k , a generic coefficient β1k = β2k will be estimated for alternatives j = [1,2]. 

Pre-specifications are imposed using constraints (10)-(17) to include any a priori knowledge into the model development. Con
straints (10) and (11) impose pre-specified variables into the specification. Constraints (12) ensure that xt

njk, if included in the spec
ification, enters as linear-in-parameters. Constraints (13) ensure that the transformation of xt

njk is determined by estimating λk. 

Constraints (14) impose a pre-specified transformation on xt
njk using λ̂k. A new variable xt

njk′ can be defined based on a pre-specified 
functional form between xt

njk and znm using constraints (15) to represent an interaction effect between specific individual character
istics and alternative attributes that may be essential in some behavioral analysis (Espino et al., 2006). For example, travel demand 
analysis has used the interaction of travel cost and income, to analyze the sensitivity of behavior to travel budget (Blaine et al., 2015). 
In addition, the coefficient distribution (constraints (16)) and/or estimation of correlated coefficients (constraints (17)) can be 
included or tested in the specification even when the associated statistics do not necessarily warrant them. These pre-specifications 
ensure that the generated models align with the problem objectives and enable the consideration of important practical aspects 
beyond the statistics as often required in causal analyses. 

The proposed mathematical programming problem illustrates how multiple modelling decisions can be considered simultaneously 
for an extensive hypothesis testing. However, the proposed problem formulation does not include testing all random parameter dis
tributions, nor all forms of interactions and nonlinear transformations. Additional constraints and the corresponding search capa
bilities in the solution algorithm are required to consider other modelling decisions such as testing flexible distributions including 
mixture-of-normal (Fosgerau and Hess, 2009; Keane and Wasi, 2013), nonparametric finite mixture distributions (Vij and Krueger, 
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2017), and other forms of variable interactions and nonlinear transformations, for instance piecewise linear approximations 
(Ben-Akiva et al., 1985). 

2.2. Extensive hypothesis testing algorithm 

A metaheuristic algorithm is proposed to solve the above mathematical programming problem. The upper level is a mixed-integer 
programming problem involving highly dimensional and non-linear hypotheses testing (search space), including potential explanatory 
variables, parameter type (outcome-specific or generic), unobserved heterogeneity, transformations, and correlations. The upper-level 
problem is solved using an improved global-best harmony search (IGBHS) (Xiang et al., 2014) to generate and test potential model 
specifications. Harmony search is a population-based metaheuristic inspired by music improvisation processes (Geem et al., 2001), 
wherein musicians improve initial harmonies by iteratively adjusting their pitch. 

Harmony search and its variants have been effectively used to solve relevant optimization problems involving many decision 
variables such as the calibration of traffic flow simulation models (Cobos et al., 2020), selection of optimal routes and frequencies for 
bus rapid transit systems (Ruano-Daza et al., 2018), identifying optimal signal settings for a road transport network (Ceylan and 
Ceylan, 2012), and optimizing production and scheduling for a supply chain management problem (Guo et al., 2017). The IGBHS has 
been adopted in this study because of its distinctive capabilities, including (1) multiple start points to escape potential local optima 
(Diao and Shen, 2012), (2) utilization of multiple search strategies such as opposition-based learning and greedy-based search ap
proaches, (3) exploitation near potential solutions, (4) low sensitivity to changes and relatively simple tuning of hyperparameters (Alia 
and Mandava, 2011; Kattan et al., 2010), and (5) ability to conduct an effective search within pre-set constraints. 

A single best specification may not exist for a given problem unless it is for a synthetically generated dataset. The IGBHS stores 
multiple candidate specifications after suboptimal solutions undergo improvisation. Therefore, alternative specifications are available 
for selection and further improvisation to obtain “most suitable and parsimonious” solution. It is important to emphasize that the 
objective is not to replace or substitute the analyst but rather facilitate extensive hypotheses testing within a reasonable time. 

The lower-level solution, whose estimates provide inputs to evaluate the upper-level objective function, is illustrated in Fig. 1. A 
specification or solution M, containing vectors of decision variables generated in the upper level, is used as an input to solve the lower- 
level problem. A simulated maximum likelihood estimation (MLE) procedure involving a gradient-based search is used to solve the 
lower-level problem, including the corresponding decision variables D. Search and evaluation continues until all decision variables, 
which were not pre-specified, are statistically significant according to a desired significance level p∗. 

The algorithm utilized to solve the entire specification problem is illustrated in Fig. 2. A critical aspect that affects the performance 
of most solution algorithms is the fine-tuning of hyperparameters (Emaasit and Paz, 2018). In this study, hyperparameters were 
defined in the ‘Initialization’ step using covering arrays. These values include harmony memory size (HMS), minimum and maximum 
harmony memory consideration rate (HMCRmin and HMCRmax), minimum and maximum pitch adjustment rate (PARmin and PARmax), 
maximum number of iterations (itermax), proportion of iterations to be completed before initiating local search (ρ), and threshold to 
compare new solutions with those in HM (Δ). 

A harmony memory (HM) of size HMS is initiated with randomly generated specification M. Known or anticipated specifications, 
such as the ones in Stated Preference experiments, can also be included in HM to save time and/or test improvements and their quality. 
An opposition-based learning (OBL) algorithm (Rahnamayan et al., 2008) is then implemented to initialize an opposite harmony 
memory (OHM). For each specification M in HM, an opposite model specification (OM) is generated using features that were not 
included in M to ensure extensive hypothesis testing (search). The two sets of random specifications provide multiple start points for 

Fig. 1. Flowchart illustrating the algorithm used to solve the lower level of the proposed mathematical programming problem.  
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Fig. 2. Flowchart illustrating the algorithm used to solve the proposed mathematical programming problem.  
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the search and significantly improve exploration. The two memories are then combined to generate an initial harmony memory of size 
HMS after sorting the specifications based on their goodness-of-fit. 

An ‘Improvise harmony’ step is initiated where the solutions in memory are perturbed based on dynamic values of HMCR and PAR 
given by eqns. (18) and (19), respectively (Xiang et al., 2014). The use of dynamic HMCR and PAR has been proposed to avoid 
premature convergence. A new solution is created either by considering previous specifications in memory or by generating a new 
combination of decision variables, representing a new hypothesis to test. The pitch adjustment step follows wherein the specification is 
fine-tuned by adding or removing some features. At each of these steps, the new specification is tested against the worst in memory, 
which is replaced if a better solution is found. 

HMCRiter =

[

HMCRmin +

(
HMCRmax − HMCRmin

itermax

)

iter
]

(18)  

PARiter =

[

PARmin +

(
PARmax − PARmin

itermax

)

iter
]

(19) 

The local search step is initiated towards the final stages when iterations reach a pre-defined threshold. A greedy-based strategy is 
deployed, wherein the best specification in memory is exploited to seek a better fit. For every change in the feature combination, the 
objective function is evaluated to check for an improvement in fit. If the new solution is unique and better than any other solution in 
memory by a tolerance value Δ, the worst solution in HM is replaced. The tolerance value ensures a significant distinction between all 
solutions stored in memory. The search, or hypothesis testing, ends when the maximum number of iterations is reached or if there is no 
improvement registered for solutions in HM over a predefined number of iterations. The final HM consists of a set of best-fit solutions 
that were found during the search. 

3. Numerical experiments 

Numerical experiments were conducted to test the performance of the proposed framework and solution algorithm. Four exper
iments are presented to illustrate different aspects of the algorithm, including the ability to (1) find specifications that closely represent 
observed behavior, (2) reveal additional behavioral insights from the data, which were not captured using restrictive specifications, (3) 
include any a priori knowledge or preference into the specification, and (4) simultaneously test many modelling hypotheses. A 
different dataset was used in each of the four experiments to illustrate applicability to various study contexts and data characteristics. 
Covering arrays were used to define hyperparameters for the experiments. The hyperparameter ranges were set based on recom
mendations provided in the literature (Cobos et al., 2020; Xiang et al., 2014). Similar methods have been applied in previous studies 
and have been found efficient for hyperparameter tuning (Ordoñez et al., 2018; Ruano-Daza et al., 2018). Table 1 presents the resulting 
covering arrays used in this study. 

Sensitivity analysis was conducted to investigate the sensitivity of the solution algorithm to changes in hyperparameters. Fig. 3 
presents the search performance using a test dataset for the twenty unique combinations of hyperparameters provided in Table 1. The 
convergence was seen to be achieved at BIC of 9496 for most cases, suggesting that the search is not significantly sensitive to 
hyperparameters for the given problem. 

For the first experiment, a synthetic discrete outcome problem was designed to have full control and test the effectiveness of the 
proposed solution algorithm to capture underlying behavioral aspects which are known. Publicly available datasets and the corre
sponding specifications from the literature were used in the following three experiments to enable comparative analyses and 
benchmarking. For the second experiment, travel mode choice behavior was analyzed using the popular Swiss metro dataset provided 
by Bierlaire et al. (2001). Hyperparameters used for the first and second experiments include: HMS = 5; HMCRmin = 0.6; HMCRmax =

0.95; PARmin = 0.2; PARmax = 0.8; μ = 80%; Δ = 15; and itermax = 500. 
Data from Sagebiel et al. (2018) was used in the third experiment to study the behavior of residents regarding car-free city centers 

in Berlin. For the fourth experiment, preferences for electricity plan was analyzed using data collected by the Electric power research 
Institute (Goett, 1998). The hyperparameters used for the third and fourth experiments include HMS = 5; HMCRmin = 0.6; HMCRmax =

0.9; PARmin = 0.3; PARmax = 0.45; μ = 75%; Δ = 30; and itermax = 150. Experiments were performed using 10 cores and 40 Gigabytes 
of Ram with GPU estimation capabilities. For estimation of random coefficients, 1,000 random draws were used for the first exper
iment to ensure convergence of the benchmark model. 200 draws were used for the remaining experiments. The solution algorithm was 
implemented in Python, and the software, along with the experiment results, can be accessed from Beeramoole et al. (2022). The 
lower-level objective function was estimated using searchlogit (Beeramoole et al., 2022) in-house modelling tools in Python, which is a 
significant extension of xlogit, developed by Arteaga et al. (2021). 

4. First experiment- synthetic dataset 

4.1. Data description 

The Synthetic Specification used for data generation for this experiment is provided in Table 2 (column 1). A total of 10,000 
discrete outcome observations from 500 unique individuals were simulated, for three alternative outcomes, and sixteen explanatory 
variables (x1, ..., x16). Variables x1 to x9 were designed to have fixed coefficients, while the remaining were provided with random 
coefficients that followed different distributions, as shown in column 1. To increase complexity and generate a representative case 
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study including multiple aspects and potential real-world behavioral characteristics, non-linear transformations were applied to 
variables x12 and x13. Similarly, correlation was imposed among coefficients for x14, x15 and x16. In addition, three non-significant 
explanatory variables x7, x8 and x9, were included to test the algorithm’s ability to identify variables that did not contribute to the 
outcomes and subsequently exclude them during the extensive hypothesis testing to facilitate the discovery of the best-fit specification. 
The estimated coefficients for the same specification using the maximum likelihood approach are also presented in Table 2 (column 2). 
This enables fair benchmarking using the specification generated with the help of the proposed solution algorithm. 

4.2. Results & analysis 

Table 2 (column 3) provides the experiment results. The proposed algorithm was able to identify all significant explanatory var
iables during the search and exclude those that were not statistically significant. For the given number of iterations, the proposed 
solution algorithm was able to find a specification with the goodness of fit values very close to the Benchmark Specification. The 
proposed algorithm was able to identify the existence of random heterogeneity in coefficients x12 to x16. In addition, the algorithm was 
able to accurately identify nonlinear transformations for both x12 and x13, along with the distributions for coefficients associated with 
x14 and x16. The algorithm was also able to accurately estimate correlated coefficients for x14, x15 and x16. The main differences, 
however, between the Benchmark Specification and the Estimated Specification by the proposed algorithm were the coefficient dis
tributions for other variables. The proposed solution algorithm was able to recover most behavioral aspects from the Synthetic 
Specification within the given constraints and search iterations. However, further research is required to ensure that misspecifications 
are alleviated. Adaptation of the proposed methods using analytical properties of the proposed problem to seek global optimal so
lutions is a promising area of open research. For example, the goodness-of-fit measures alone are not sufficient to assess if the selected 
random distribution adequately approximates an underlying heterogeneity in preferences. Therefore, the selection of random dis
tributions should in fact take into consideration the properties of the corresponding density functions. This could be achieved by 
including distribution tests as constraints within the proposed framework, such as the semi nonparametric test proposed by Fosgerau 
and Bierlaire (2007) to alleviate misspecifications. 

Fig. 4 shows convergence of the objective functions, BIC, and Log-likelihood (LL), over iterations for the synthetic dataset. The BICs 
estimated at current iteration can be observed trending towards convergence while continuing to attempt to escape potential local 
minima. A total of 1009 unique specifications were estimated in less than 5 h by using the GPU-assisted fast estimation techniques 
proposed by Arteaga et al. (2021). The BIC improved from 21,197 to 13,637 in 500 iterations, while the log-likelihood maximized from 
− 10,585 to − 6753. 

5. Second experiment-travel mode choice in Switzerland 

5.1. Data description 

Mode choice preferences were analyzed using the stated preference dataset by Bierlaire et al. (2001) collected in Switzerland in 
1998 to study the potential impact of a new transport mode – the Swissmetro. Each respondent was presented with nine hypothetical 
choice scenarios and was asked to choose from three transport modes (train, car, and Swiss metro). Potential explanatory variables 
considered for the choice analysis included1 travel time (in minutes), travel cost (in CHF), headway for public transport modes (Train 
and Swiss metro), presence of luggage with traveler (no luggage, one, and more than one), seat configuration for Swiss metro (dummy 
variable indicating if the seats are arranged like airlines or not), dummy variable indicating if the traveler had an annual public 
transport ticket or not, traveler class (dummy variable to indicate first-class traveler), age, gender, income, and travel-cost bearer (self, 
employer, or shared by both). 

5.2. Results & analysis 

The objective of this experiment was to illustrate an application of the proposed extensive hypothesis testing for a transport-related 
analysis and to investigate its ability to reveal valuable behavioral insights relative to an available specification (Bierlaire et al., 2001). 
Table 3 shows the Estimated Specification by the proposed solution algorithm along with the one estimated by Bierlaire et al. (2001). 
The Likelihood ratio test showed a significant improvement in fit by the specification estimated using the proposed algorithm 
(Chi-square score = 3314; P-value <0.00001 at 95% confidence interval). Variables such as travel time, travel cost and headway were 
identified as important and explanatory during the search, similar to the specification by Bierlaire et al. (2001). However, significant 
non-linearity in the effects of travel time, cost and headway was found by the Estimated Specification. In addition, socioeconomic 
characteristics, and trip-related attributes, including age, presence of luggage, and availability of annual public-transport ticket were 
found to be significant factors influencing transport mode choices. 

While the alternative-specific constants in the specification by Bierlaire et al. (2001) suggest a higher preference for the car mode, 
the Estimated Specification suggests a higher preference for the train mode. More than 58% of the observed sample chose train as their 
preferred mode. The alternative-specific constants from the Estimated Specification possibly capture the unobserved utilities for the 

1 A detailed description of the dataset can be found in Antonini et al. (2007). 
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train due to factors such as comfort. The socioeconomic characteristics included in the Estimated Specification reveal some interesting 
behavioral insights. For example, the Estimated Specification suggests that as travelers age increases, they are less likely to drive, 
which possibly captures the age-related inconvenience associated with driving. The Estimated Specification also captured the inter
action between annual public transport ticket and travel costs. On further investigation, it was found that for travelers with annual 
public transport ticket, the cost of the ticket was used as travel cost for analysis. As a result, the travel cost ranges were very high for 
travelers with annual ticket. The interaction, therefore, was able to segment the population and estimate the associated disutility of 
costs for those without an annual public transport ticket. 

Significant heterogeneity in the effects of attributes, including travel cost, travel time and headway was captured during the 
extensive hypothesis testing. The random coefficients for travel time were negative for 56% of the observed sample. The random 
coefficients captured the associated high variances in the cost that occurred as a result of using the annual public transport ticket price 
as travel cost for those with the ticket. The estimated individual-specific coefficients for the other attributes suggest an overall 
associated disutility. However, the effect significantly varied across the observed sample. For example, the significant random coef
ficient for headway suggests that some travelers had a greater dislike towards waiting, indicating the likely influence of factors such as 
inconvenience. 

To illustrate the significance of an unbiased and efficient specification, the marginal utilities from the two specifications are 
presented in Table 4. The mean marginal utilities estimated based on individual-specific coefficients from the specification found using 
the proposed solution algorithm provides an improved representation when compared to the over-estimated WTP values estimated 
from the restricted specification. The potential risks of misspecification can be clearly observed when restricted specifications are used 
without extensive hypothesis testing. 

Table 5 presents a comparison of the best specification estimated by Ortelli et al. (2021) with the one estimated with the help of the 
proposed solution algorithm for the same dataset. The proposed extensive hypothesis testing enables to find parsimonious 

Table 1 
Covering arrays used for tuning hyperparameters.  

Case ID HMS HMCRmin HMCRmax PARmin PARmax itermax 

1 5 0.5 0.99 0.2 0.7 300 
2 5 0.6 0.95 0.2 0.8 500 
3 5 0.8 0.95 0 0.95 400 
4 5 0.9 0.97 0.15 1 400 
5 10 0.5 0.85 0.25 0.7 1000 
6 10 0.9 0.85 0.25 0.7 400 
7 10 0.9 0.97 0.1 0.95 600 
8 20 0.1 0.99 0.25 0.9 300 
9 20 0.6 0.85 0.05 0.85 700 
10 40 0.5 0.9 0.25 0.7 1000 
11 40 0.7 0.9 0.25 1 500 
12 60 0.1 0.99 0.25 0.85 1000 
13 60 0.5 0.8 0.2 0.7 1000 
14 60 0.6 0.8 0.1 0.9 600 
15 60 0.7 0.85 0 0.8 400 
16 80 0.5 0.9 0.05 0.7 1000 
17 80 0.5 0.97 0 0.85 1000 
18 80 0.8 0.8 0.05 0.95 2000 
19 80 0.8 0.8 0.2 0.95 400 
20 80 0.8 0.9 0.15 0.85 700  

Fig. 3. Sensitivity analysis of Hyperparameters.  
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specifications with improved explanatory power. Further, the out-of-sample measures also show a significant improvement, in terms of 
model interpretability, over the approach proposed by Ortelli et al. (2021) to assist in the specification search. 

Evidently, the Estimated Specification provides substantial information on travel behavior compared to a the specification reported 
in literature. While goodness-of-fit is a crucial measure that indicates whether a given specification is representative of the observed 
behavior, the best-found model may not necessarily capture the behavioral aspects essential for a given study context. Therefore, the 
proposed solution algorithm is designed to provide multiple solutions at the end of the search, with varying properties and goodness- 
of-fit. Table 6 provides three such selected specifications found during the extensive hypothesis testing. The analyst can utilize these 
solutions as starting points and continue the model development process in line with the study context. As illustrated in the experi
ment, the proposed solution algorithm enables extensive hypothesis testing to provide detailed insights into behavior, which could be 
useful in developing new policy alternatives for transport infrastructure planning. 

The final model was selected after a strategic hypothesis testing from a total of 1375 specifications, which were estimated in 12 h. 
Fig. 5 shows convergence of the objective functions, BIC from 10,624 to 9,913, and LL from − 5264 to − 4905. 

6. Third experiment-preferences for a car-free city center 

6.1. Data description 

A stated preferences choice survey was conducted in Berlin to study the behavior of residents regarding car-free city centers 
(Gundlach et al., 2018). A total of 347 respondents were asked to choose between three alternatives, wherein two were for car-free city 

Table 2 
Specification used to generate the synthetic dataset along with the corresponding estimates.   

1 2 3 

Synthetic Specification used for data 
generation 

Benchmark Specification Estimated Specification by the proposed extensive hypothesis 
testing 

Number of individuals: 500 

Number of observations: 10,000   

Estimate fb Estimate fb t-ratioa Estimate fb t-ratioa 

Fixed Parameters 
x1  − 0.48  − 0.46  − 12.2*** − 0.44  − 11.8*** 
x2  0.40  0.37  10.2*** 0.37  9.9*** 
x3  0.60  0.65  17.2*** 0.65  17.5*** 
x4  0.55  0.51  13.5*** 0.49  12.7*** 
x5  0.88  0.81  24.3*** 0.79  24.0*** 
x6  0.36  0.39  10.9*** 0.37  10.5*** 
x7  0.00  0.00      
x8  0.00  0.00      
x9  0.00  0.00      
Random Parameters 
x10 mean 0.53  0.52  13.8*** 0.49  13.8***  

s.d. 0.31 u 0.45 u 3.2**    
x11 mean 0.90  0.89  21.3*** 0.85  22.1***  

s.d. 0.32 t 0.92 t 5.8***    
Random Parameters with nonlinear transformations 
x12 mean − 1.49  − 1.30  − 22.8*** − 0.57  − 20.2*** 
λ12  0.4  0.4       

s.d. 1.37 n 1.08 n 22.1*** 1.21 t 22.0*** 
x13 mean 0.61  0.55  9.86*** 0.56  9.4*** 
λ13  0.3  0.3   0.3    

s.d. 1.29 n 1.09 n 21.1*** 2.56 t 22.3*** 
Random Correlated Parameters 
x14  0.77 n 0.65 n 12.5*** 0.64 n 12.0*** 
x15  0.99 n 0.99 n 18.1*** 0.95 t 16.1*** 
x16  − 1.27 n − 1.19 n − 20.5*** − 1.15 n − 17.9*** 
Cholesky factors 
x14,x14  1.00  1.00  18.7*** 0.97  17.8*** 
x15,x14  0.25  0.40  5.6*** 0.40  5.9*** 
x15,x15  0.97  0.93  15.9*** 2.21  16.7*** 
x16,x14  0.40  0.41  5.1*** 0.42  5.3*** 
x16,x15  0.413  0.38  4.4*** 0.91  4.4*** 
x16,x16  0.82  0.87  13.5*** 0.89  13.8*** 
LL    − 6701   − 6753   
BIC    13,545   13,637    

a weakly significant (p < 0.10, t > 1.645), ** = significant (p < 0.05, t > 1.96), *** = strongly significant (p < 0.01, t > 2.58). 
b n = normal; u = uniform; t = triangular; ln = lognormal. 
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Fig. 4. BIC versus Iterations for the experiment using the synthetic dataset.  

Table 3 
Specifications found by Bierlaire et al. (2001) and by the proposed extensive hypothesis testing.    

Specification by Bierlaire 
et al. (2001) 

Estimated Specification by the proposed solution 
algorithm 

Number of respondents: 924 

Number of observations: 8316 

Parameter Estimate t-ratioa λk
c Estimate t-ratioa fb 

For Swiss metro 
Seat configuration  0.16 2*     
Travel cost mean − 0.001 − 19.6*** Log − 3.01 − 15.1***  

s.d.    7.98 22.8*** u 
Travel time mean − 0.01 − 24.3*** Square root − 0.58 − 23.3***  

s.d.    1.00 22.0*** t 
Headway mean − 0.01 − 7.8*** Log − 0.59 − 10.0***  

s.d.    0.58 9.1*** n 
For Car 
Mode-specific constant  0.062 1.2  − 3.02 − 6.6***  
Age mean    − 0.61 − 2.5* ln 

s.d.    0.86 8.73***  
Luggage mean − 0.12 − 2.5**  − 2.84 − 7.8***   

s.d.    5.37 14.2*** n 
Travel cost Mean − 0.001 − 19.6*** Log − 3.01 − 15.1***  

s.d.    7.98 22.8*** u 
Travel time mean − 0.01 − 24.3*** Square root − 0.58 − 23.3***  

s.d.    1.00 22.0*** t 
For Train  
Mode-specific constant  − 1.16 − 10.4***  2.44 14.3***  
Annual public transport ticket  7.49 21.9***     
Age  0.19 6.1***     
Travel cost for travelers without annual public transport ticket Mean    − 0.06 − 13.0***  

s.d.    0.07 12.1*** u 
Travel cost Mean − 0.001 − 15.8*** Logc − 3.01 − 15.1***  

s.d.    7.98 22.8*** u 
Travel time Mean − 0.01 − 15*** Square rootc − 0.58 − 23.3***  

s.d.    1.00 22.0*** t 
Headway Mean − 0.007 − 7.8*** Logc − 0.59 − 10.0***  

s.d.    0.58 9.1*** n 
LL  ¡6565    ¡4908  
BIC  13,211    9913   

a * = weakly significant (p < 0.10, t > 1.645), ** = significant (p < 0.05, t > 1.96), *** = strongly significant (p < 0.01, t > 2.58). 
b n = normal; u = uniform. 
c Travel cost, travel time and headway entered as linear-in-parameters in specification by Bierlaire et al. (2001), whereas non-linearly in the 

Estimated Specification by the proposed solution algorithm. 
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centers with varying attribute levels, and the third alternative was the status quo (or “as today”). A panel dataset was collected by 
presenting each respondent with nine scenarios, which varied based on: (i) availability of biking infrastructure (as today, availability of 
bike lanes, separate car-free road network for cyclists), (ii) walking distance to the nearest public transport stop (as today, 6 min, 3 
min), (iii) public transport frequency (as today, higher than today, highest), (iv) park & ride facilities at destinations close to 
city-center (as today, unguarded parking facility, guarded parking lots), (v) price of public transport (free, 75% lesser than today, 50% 
less, 25% less, as today, 25% more), and (vi) recreational areas in the city center (as today, 20% more, 40% more). Socio-economic 
characteristics included car ownership, resident within the city-center, frequency of public transport usage, and the respondent’s 
gender and age. A car-free factor (CF = 1), along with the socio-economic characteristics were included in the utility specified for the 
car-free city center alternative.2 

6.2. Results & analysis 

This experiment was performed to illustrate the flexibility of the proposed extensive hypothesis testing algorithm to allow the use of 
a priori knowledge in model development. Some of the assumptions imposed on Gundlach’s Specification were included as pre- 
specifications in the experiment. The car-free factor was forced into the specification, and socio-economic variables (interacted 
with CF) were restricted to be estimated with fixed coefficients. Many characteristics in the dataset, such as income, bicycle ownership 
and number of children, which were not previously included in Gundlach’s Specification, were also considered during the model 
search. Table 7 presents the Estimated Specification found by the proposed algorithm along with Gundlach’s Specification for 
comparison. 

A parsimonious specification, Estimated Specification, with a better fit was found with the help of the proposed algorithm, with 
several variables from Gundlach’s Specification eliminated after extensive and rigorous hypothesis testing. The likelihood-ratio test 
values suggest that the specification estimated by the proposed algorithm achieved a significant improvement in fit (Chi-square score 
= 370.72; P-value <0.001 at a 95% confidence level). Among the socio-economic characteristics considered during the search, only the 
car-ownership factor was found to be statistically significant and therefore retained in the final model. Using the pre-specification 
constraints enabled by the proposed solution algorithm, the analyst can still retain the excluded socio-economic characteristics if 
they are essential factors for policy analysis. Further, other specifications in memory, as explained in section 5.2, can also be 
considered for analysis if they provide greater relevance to the study. 

For variables estimated with random coefficients, the mean values from both Estimated and Gundlach’s Specifications had the same 
signs. However, considering that they were estimated based on different distributional assumptions, their behavioral interpretation 
varied considerably for some variables. The random coefficients from Gundlach et al. (2018) implied that a significant portion of the 
sample associated a disutility with cycling infrastructure (33% for availability of bike-lanes, and 39% for separate bike-lanes) for 
choosing a car-free city center. In contrast, the Estimated Specification showed that all of the observed samples associated a utility with 
the availability of bike lanes, and only 23% of the sample disliked having a separate car-free cycling infrastructure. Considering that 
the study area is Berlin, which is well-known for its large bicycle-loving society, the results from the Estimated Specification were more 
consistent with observed behavior. Further, given that only 19% of the sample owned cars, the higher preference for car-free cycling 
infrastructure in the city center is justified. The heterogeneity in taste for the availability of recreational facilities is similarly captured 
by both models. The public transport fare coefficient in Gundlach et al. (2018) was estimated with a lognormal distribution to restrict 
signs. However, even without imposing such distributional assumptions, the corresponding random coefficient in the Estimated 
Specification indicated that all of the observed samples associated a disutility with public transport cost. The Estimated Specification 
also indicates a significant variation in the public-transport fare preferences, which potentially captures the influence of 
individual-specific public-transport usage patterns. 

While the specification by Gundlach et al. (2018) found a significant disutility for a 6-min walking distance to the nearest public 
transport stop, the Estimated Specification found a significant utility for a 3-min walking distance. As discussed by Gundlach et al. 
(2018), 84% of the observed sample reported their current walking distance, from residence to the nearest public transport stop, as less 
than 6 min. Therefore, the preference for a car-free center would evidently increase if this distance further reduced. The Estimated 
Specification found that the availability of park & ride facilities or improvement in public transport frequency did not significantly 
influence the preferences for car-free city centers and therefore were excluded from the final model. 

In addition, allowing for correlated coefficients was found to significantly improve model fit. Table 8 presents the correlation 
matrix from the Estimated Specification. Critical insights for policy design were obtained from the correlation analysis. A counter- 
intuitive finding is the strong correlation found between preferences for shorter walking distances to public transport and availabil
ity of recreational areas. The correlation potentially captures the latent preferences of residents for a greener and sustainable city 
center. 

Fig. 6 presents a comparative analysis of the estimated choice probabilities for different policy alternatives as described in 
Gundlach et al. (2018). The specification estimated using the proposed extensive hypothesis testing framework provided a similar 
preference for car-free city centers, to the specification by Gundlach et al. (2018). A higher sensitivity was observed towards public 
transport (PT) fares, which is indicated by the lowest estimated choice probabilities for a policy alternative with strong measures but 
increased PT fare. Policy alternatives that focus on improving the bicycle network is preferred the most. However, a significant 

2 Refer Gundlach et al. (2018) for a detailed description of the data and the collection methods adopted. The data is open source and can be found 
in Sagebiel et al. (2018). 
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Table 4 
Mean marginal utilities estimated from Bierlaire et al. (2001) and the Estimated Specification.   

Mean willingness to pay additional travel costs in CHF 

Estimates using Bierlaire et al. (2001)’s 
specification 

Estimates using the specification by the proposed extensive hypothesis 
testing 

To reduce travel time by 1 
min 

10 0.59 

To reduce headway by 1 min 10 0.005  

Table 5 
Comparison of Specifications estimated by Ortelli et al. (2021) and the proposed extensive hypothesis testing.   

LL Model parameters Out-of-sample LLa 

Specification by Ortelli et al. (2021) − 6136 28 − 1568 
Specification estimated by the proposed solution algorithm − 4905 14 − 1239  

a The out-of-sample LL was estimated using a testing dataset which included 2079 observations that were not included in model training. 

Table 6 
Selected model specifications found during the extensive hypothesis testing along with their best goodness-of-fit.  

BIC Variable Coefficient type Transformation Random coefficients 

9925 Constant Alternative-specific   
Travel cost for travelers without annual public-transport ticket Alternative-specific  uniform 
Gender Alternative-specific   
Age Alternative-specific  logarithm 
Presence of luggage   normal 
Travel time Generic Logarithmic triangular 
Travel Cost Generic Square root uniform 
Headway Generic Logarithmic normal 

9945 Constant Alternative-specific   
Seats Alternative-specific   
Presence of luggage Alternative-specific  normal 
Travel cost for travelers without annual public-transport ticket Alternative-specific  uniform 
Travel time Generic Logarithmic triangular 
Travel Cost Generic Square root uniform 
Headway Generic Logarithmic normal 

9983 Constant Alternative-specific   
Seats Alternative-specific   
Income Alternative-specific  normal 
Travel cost for travelers without annual public-transport ticket Alternative-specific  triangular 
Presence of luggage Alternative-specific  triangular 
Travel time Generic Logarithmic uniform 
Travel Cost Generic Logarithmic triangular 
Headway Generic  triangular  

Fig. 5. BIC vs Iterations for the experiment regarding the mode-choice preferences using Swiss metro dataset.  
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difference can be observed in the estimated choice probabilities from the two models for the “status quo” policy alternative. The 
improved specification suggests that the observed sample has higher preference towards car-free city centers even in status-quo 
conditions, wherein there is no other improvement introduced. While the two models provide very similar sensitivity patterns for 
other policy alternatives, the analyst efforts required to estimate the improved specification was significantly less than using con
ventional methods. Further, pre-specifications can also be used in similar manner, as shown in this experiment, to test other policy 
measures by fixing specific aspects of the model that are essential for analysis. 

The total estimation time to find the Estimated Specification was 2 h and 21 min, in which 20 potentially explanatory variables 
were included during extensive hypothesis testing, investigating the presence of taste heterogeneity and correlation while considering 
knowledge provided by the analyst. Fig. 7 illustrates the convergence of the objective functions over iterations. A total of 904 spec
ifications were estimated with a 7% improvement in BIC and 7.5% improvement in the Log-likelihood. For every x number of variables 
in the data, there exists 2x number of unique combinations. An exhaustive search is not performed in practice. However, if an 
exhaustive hypothesis testing was performed to determine potential explanatory variables from 20 considered, the total unique 
specifications would easily go up to 220 = 1,048,575. These unique combinations would further increase if the testing included non- 
linear transformations, random coefficients, and potential correlation. In practice, the specification search is often restricted based on 
knowledge, experience, and sometimes subjective selection of hypothesis (Ortelli et al., 2021; Paz et al., 2019), while still requiring the 
analyst to spend substantial time testing specifications. 

7. Fourth experiment-electricity-supplier choice in California 

7.1. Data description 

For the fourth experiment, the choice of electricity supplier was analyzed using data collected in California by the Electric Power 
Research Institute (Goett, 1998). A stated-preference survey was conducted on 361 residential customers to study their preferences 
regarding electricity plans. The panel dataset includes a total of 4308 observations wherein each customer faced up to 12 choice 
scenarios with four different plans to choose from. Each choice scenario was designed using six attributes, including a fixed price for an 
electricity plan (7 or 9 cents/kWh), contract length during which a penalty is imposed if the customer chooses to switch plans (no 
contract, 1 year or 5 years), a dummy variable indicating if the supplier was well-known, time of the day rates (11 cents/kWh from 
8AM to 8PM and 5 cents/kWh from 8PM to 8AM), seasonal rates (10 cents/kWh for summer, 8 cents/kWh for winter and 6 cents/kWh 
in spring and fall) and, a dummy variable indicating if the supplier was a local. 

7.2. Results & analysis 

The proposed extensive hypothesis testing framework was utilized to generate and estimate a discrete choice model while 
simultaneously investigating the presence of unobserved heterogeneity in preferences, potential correlation between variables and 
their non-linear interactions. Table 9 shows the best model, Estimated Specification, found by the proposed solution algorithm along 
with the specifications found by Revelt and Train (2000) and Paz et al. (2019). 

The BIC and Likelihood values show significant improvement in fit for the Estimated Specification relative to the one by Revelt and 
Train (2000) as well as Paz et al. (2019). The specification found in this study performs significantly better than those in the literature, 
particularly due to the extensive hypothesis testing, which includes investigating non-linear and correlated effects of attributes on 
choice behavior. The likelihood ratio test (Chi-square score = 418; p-value <0.001) suggests that the compared specifications are 
significantly different. However, the solution algorithm identified significant explanatory variables as same as those in the specifi
cation by Revelt and Train (2000). The associated disutility of fixed price of an electricity plan, seasonal and time of the day rates, and 
contract length are accurately captured by the negative coefficients and are consistent with expectations based on general economic 
theory. In addition, the model generated with the help of the proposed framework includes non-linear effects of fixed price on the 
choice of plans. Fig. 8 suggests that the linear specification by Paz et al. (2019) overestimates the disutility as the fixed price increases. 
On further investigation, it was observed that plans offered with lesser fixed prices entailed a variable price component that includes 
time-of-the day and seasonal rates. However, the variable costs were 0 for the plans with higher fixed prices. Therefore, it is likely for 
customers to perceive a relatively lesser disutility at higher fixed prices due to the associated concessions in the variable price 
component. 

The proposed algorithm tested and found significant heterogeneity for all variables, including price. Various distributions were 
tested for coefficients, including normal, truncated-normal, lognormal, uniform, and triangular, and those that provided the best-fit 
were retained. The random parameters in the Estimated Specification show that almost all customers associated a disutility with 
cost-related attributes, which aligns with the interpretation from Paz et al. (2019). In addition, the heterogenous preferences for 
time-of-the-day and seasonal rates reveal how customers’ electricity-usage patterns affect their preferences. The coefficients in the 
Estimated Specification also show that the observed sample prefers local over known suppliers but with a significant variation in taste. 
The heterogeneity possibly reflects the influence of previous experience with local and well-known suppliers. The random coefficients 
also show that none of the samples prefer unknown suppliers indicating that the entrant offers were not attractive enough for cus
tomers to prefer new suppliers, which aligns with the inferences derived from Revelt and Train (2000). 

The Estimated Specification shows that the observed sample associated a disutility with contract length. Further, the estimated 
variances for the contract length capture varying levels in tastes of customers. While a significant portion of the sample perceived a 
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total disutility, the remaining sample perceived a utility from contract length due to the influence of insurance. Plans offered with 
contracts had an insurance that locked the fixed price for the stipulated period, which is likely to make contracts attractive for some 
customers. However, the model in literature estimated a normally distributed coefficient to capture the effect of contract length, 
whereas the proposed extensive hypothesis testing estimated the corresponding coefficient using a triangular distribution. The 
probability density plots for the two coefficients are presented in Fig. 9 for comparison. 

The mean and standard deviation estimates for both normal and triangular distributions were close to − 0.2 and 0.4, respectively. 
However, the two distributions indicate a substantial difference in the proportion of sample that perceives utility from contract length. 
While the normal distribution indicates that 29% of the sample perceived a utility from contract length, the triangular distribution 
suggests that only 10% of the sample are likely to find contract length attractive. Consequently, the two specifications can provide 
substantially different market shares and associated behavioral inferences for different policy scenarios. These findings further validate 
the need for an extensive hypothesis testing framework to improve model specification and associated behavioral outcomes. 

Table 10 presents a correlation matrix using the Estimated Specification, which provided additional insights about customer 

Table 7 
Specifications found by Gundlach et al. (2018) and by the proposed extensive hypothesis testing.    

Gundlach’s Specificationa Estimated Specification by the proposed extensive hypothesis testing 

Number of respondents: 347 

Number of observations: 3123 

Parameter  Estimate t-ratioc fb Estimate t-ratioc fb 

Socio-economic characteristics 
CF  3.61 12.3*** – 0.52 3.2***  
CF × owns car  − 3.11 − 30.6*** – − 2.04 − 7.2***  
CF × public transport usage  − 0.47 − 10.9*** –    
CF × male  − 0.50 − 6.8*** –    
CF × resident  0.17 2.3** –    
CF × age  0.001 − 0.1 –    
Attributes of city center 
Recreational areas Mean 0.38 9.9***  0.45 6.4***  

s.d. 0.89 32.6*** n 0.90 24.6*** n 
Public Transport fare mean − 0.43 − 36.2***  − 0.73 − 14.2***  

s.d. 2.02 336*** n 0.69 22.8*** u 
Bike lanes available mean 1.39 16***  1.49 14.6***  

s.d. 3.12 34.3*** n   - 
Separate car-free bike lanes mean 1.7 17.8***  1.8 10.1***  

s.d. 5.98 68*** n 2.49 23.2*** n 
Three-min walking to nearest public transit Mean 0.55 6.6***  0.64 6***  

s.d. 1.49 16*** n 0.8 28*** u 
Six-min walking to nearest public transit Mean − 0.14 − 1.5     

s.d. 1.65 13.6*** n    
Unguarded parking facility for Park & Ride mean − 0.06 − 0.7     

s.d. 2.07 18.4*** n    
Guarded parking facility for Park & Ride mean − 0.40 − 4.6***     

s.d. 1.58 16.1*** n    
Highest frequency of public transport mean 0.26 3.1***     

s.d. 1.60 14.9*** n    
Higher frequency of public transport mean 0.22 2.6***     

s.d. 2.79 29.3*** n    
LL  ¡2137    ¡1977  
BIC  4366    4053   

a * = weakly significant (p < 0.10, t > 1.645), ** = significant (p < 0.05, t > 1.96), *** = strongly significant (p < 0.01, t > 2.58). 
b n = normal; u = uniform. 
c The specification developed in Gundlach et al. (2018) is used for a comparative analysis. The estimated coefficients, however, are slightly different 

from that reported in literature due to the difference in the number of observations used for model estimations. 

Table 8 
Correlation matrix for Berlin using the Estimated Specification by the proposed algorithm.   

Separate car-free bike 
lanes 

Three-min walking to nearest public 
transit 

Public Transport 
fare 

Recreational 
areas 

Separate car-free bike lanes 1.0    
Three-min walking to nearest public 

transit 
0.01 1.0   

Public Transport fare − 0.3 − 0.5 1.0  
Recreational areas 0.28 0.8 − 0.5 1.0 

Note: Strong correlations highlighted in bold. 
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Fig. 6. Estimated choice probabilities for different policy alternatives of car-free city centers.  

Fig. 7. BIC versus iterations for the experiment regarding car-free center preferences in Berlin.  

Table 9 
Specifications found by Revelt and Train (2000), Paz et al. (2019) and the proposed extensive hypothesis testing.   

Specification by Revelt and Train 
(2000) 

Specification by Paz et al. 
(2019) 

Estimated Specification by the proposed extensive 
hypothesis testing 

Number of respondents: 361 

Number of observations: 4308 

Parameter Estimate t-ratioa fb Estimate t-ratioa fb λk
c Estimate t-ratioa fb 

Fixed price mean − 0.90 − 27.4***  − 0.96 − 27.3***  log − 7.02 − 22.5***  
s.d.    0.18 16.1*** n  4.92 21*** u 

Length of contract mean − 0.21 − 10***  − 0.23 − 16.2***   − 0.20 − 8.9***  
s.d. 0.4 19.1*** n 0.38 20.3*** n  0.40 22.5*** t 

Time of day rates mean − 8.74 − 19.6***  − 9.35 − 30.4***   − 16.00 − 25.1***  
s.d. 2.57 − 28.7*** n 2.26 17.9*** n  10.89 20.8*** u 

Seasonal rates mean − 9.05 − 29.1***  − 9.33 − 30.7***   − 16.16 − 25***  
s.d. 2.014 17.4*** n 1.53 11.3*** n  10.53 20.8*** u 

Local supplier Mean 2.16 20.7***  2.30 26.1***   2.43 17.7***  
s.d. 1.61 14.9*** n 2.80 18.4*** u  2.28 24.5*** tn 

Well-known supplier Mean 1.55 18.4***  1.56 23.2***   1.92 19.2***  
s.d. 1.05 12.1*** n 1.1 14.9*** n  1.4 22.3*** t 

LL ¡3938   ¡3914    ¡3705   
BIC 7942   7928    7568    

a * = weakly significant (p < 0.10, t > 1.645), ** = significant (p < 0.05, t > 1.96), *** = strongly significant (p < 0.01, t > 2.58). 
b Tn = truncated- normal; u = uniform; t = triangular. 
c Fixed price entered as linear-in-parameters in the specification by Paz et al. (2019), whereas non-linearly (log) in the Estimated Specification by 

the proposed solution algorithm. 

P.B. Beeramoole et al.                                                                                                                                                                                                



Journal of Choice Modelling 47 (2023) 100409

19

preferences in comparison to the specification found by Paz et al. (2019). A strong correlation can be observed between most of the 
variables indicating that the assumption of uncorrelated coefficients in the Specification by Paz et al. (2019) is violated. A positive 
correlation between cost-related variables can be observed, suggesting that the associated disutility increases with an increase in 
usage. In addition, the customers’ utility for local suppliers increases with the utility for well-known suppliers. The associated disutility 
from cost-related variables decreases as the utility from local and well-known suppliers increase, suggesting that customers are willing 
to negotiate on the cost if suppliers are local and well-known. Insights from correlation, which can be helpful in designing more 
attractive plans, can be easily missed when restricted specifications are used without extensive hypothesis testing. 

The mean marginal utilities obtained using the Estimated Specification are compared with the analysis conducted by Revelt and 
Train (2000) in Table 11 to illustrate the significance of the proposed framework. The mean WTP values are estimated from the 
individual-specific values, and therefore representative of the observed sample. Table 3 suggests a significant difference between WTP 
estimates from both models. The higher sensitivity of customers for time of day and seasonal rates is captured by both models, but with 
significantly lower values given by the Estimated Specification. 

Fig. 10 shows the convergence of the objective functions over iterations for the best solution found by the proposed algorithm for 
electricity choice behavior. The BIC was minimized from 9753 to 7568 while Log-likelihood improved from − 4859 to − 3705 in 150 
iterations. The total execution time was 6 h, 832 models were estimated, and the best five were saved in the memory. 

8. Conclusion 

This study proposed an extensive hypothesis testing framework to assist analysts during the estimation of discrete outcome models, 
focusing on mixed-Logit specifications. The framework includes a mathematical programming formulation and a bi-level constrained 
optimization algorithm involving a maximum likelihood estimation and a population-based metaheuristic to simultaneously consider 
multiple modelling decisions. This study contributes to the literature by proposing a framework that enables extensive hypothesis 
testing to simultaneously consider potential explanatory variables, their functional forms, the distributional assumptions of co
efficients, and correlations. The proposed formulation and solution algorithm provides flexibility to pre-specify or impose certain 
modelling aspects to enable testing of specific hypotheses or ensure compliance with well-established theories from relevant fields, 
including economics and behavioral sciences. BIC was chosen as an upper-level objective function to seek parsimonious specifications 
while addressing potential overfitting (Khadka and Paz, 2017; Paz et al., 2019; Schwarz, 1978). The proposed framework is not 
envisioned to substitute or replace the analyst, but rather to enable extensive hypothesis testing considering simultaneously non-linear 
effects, unobserved heterogeneity, and correlations. Future research is recommended to consider alternative objective functions to 
seek model generalizability and/or out-of-sample estimates. Similarly, future extensions are recommended to consider simultaneously 
multiple objectives including but not limited to in- and out-of-sample estimates to address overfitting, maximize interpretability, and 
extract as much insights as possible from the data. 

Four experiments, including different data sets and behavioral processes, were conducted to illustrate the significance of the 
proposed solution algorithm in discovering important insights that could be critical for behavioral analysis. All experiments include 
benchmark models either developed by independent research teams and published in the literature or created using synthetic data to 
enable full knowledge and control. The results illustrate the significance of the extensive hypothesis testing for discovering important 
influential or contributory factors, along with hidden patterns of nonlinearity, heterogeneity, and correlation, which can potentially be 
overlooked due to limited or biased searches. All experiments showed the ability of the proposed algorithm to generate specifications 
that closely capture empirical behavior within a reasonable time. 

A primary goal of any modelling is to capture as much information, insights, empirical truth, and underlying behavior as possible. 
Results using the synthetic dataset suggests that the proposed algorithm can capture most of the behavioral information from the data, 
which otherwise would require an exhaustive search. However, further research is required to capture all aspects of the behavior 
available in the data. Perhaps, the integration of metaheuristics with deterministic methods as expansions to the one proposed in this 
study is required to capture the complete behavioral characteristics. Similarly, a single “best” specification that explains all aspects of 
an empirical dataset may not exist. Hence, as shown by the results using the Swiss metro dataset, the proposed solution algorithm can 
generate multiple acceptable solutions with varying properties and goodness-of-fit. For example, one specification captured those 
factors as significant and explanatory, which were excluded from the specification used in the literature, whereas others captured the 
effect of unobserved factors on mode choice preferences using different non-linear transformations or coefficient distributions. The 
results validate that the proposed framework can act as a decision-support tool during model development by providing relevant and 
meaningful starting points to the analyst. However, a thorough knowledge of the problem context and a detailed investigation of the 
data is still essential to support the final model selection and interpretation. This knowledge can be included both using constraints 
available in the framework as well as through evaluation and conventional modelling processes considering insights and outputs 
obtained from the proposed solution algorithm. 

Regardless of the model development approach, analyst’s knowledge and experience are necessary to guide the specification search 
in line with the study context. Results using the Berlin dataset on car-free city center preferences illustrate the flexibility of the pro
posed framework to utilize knowledge from the analyst and seek additional insights from the data by conducting constrained hy
pothesis testing. For example, the proposed semi-supervised hypothesis testing was able to find a strong correlation between the 
preferences of Berlin residents for improved public-transport accessibility and recreational facilities, which are important insights for 
policy analysis. The final specification found using the proposed algorithm for electricity choices in California also illustrate the 
significance of extensive testing to obtain more and better insights. An extension to improve the proposed framework is the inclusion of 
advanced mixed logit specifications including flexible error structures to capture unobserved heterogeneity, and to investigate the 
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Fig. 8. Difference in the change in utility for fixed price between the Estimated Specification and the one by (Paz et al., 2019).  

Fig. 9. Normal and triangular coefficient distributions for the effect of contract length on electricity supplier choice.  

Table 10 
Correlation matrix using the Estimated Specification for electricity choice behavior in California.   

Contract length Local supplier Fixed price Seasonal rates Time of day rates Well-known supplier 

Contract length 1      
Local supplier 0.43 1.00     
Fixed price 0.19 0.95 1.00    
Seasonal rates 0.18 0.91 0.98 1.00   
Time of day rates 0.20 0.91 0.96 0.97 1.00  
Well-known supplier 0.26 0.77 0.84 0.79 0.79 1 

Note: Strong correlations highlighted in bold. 

Table 11 
Mean marginal utilities estimated from Revelt and Train (2000) and the Estimated Specification.   

Mean willingness to pay additional fixed price in cents per kWh 

Estimates using Revelt & Train’s 
specification 

Estimates using the specification by the proposed extensive hypothesis 
testing 

To reduce contract length by 1 year 0.23 0.12 
To reduce time of day rates by 1 cent/ 

kWh 
9.74 1.50 

To reduce seasonal rates by 1 cent/kWh 10 1.28 
To choose plan from a local Supplier 2.42 0.02 
To choose plan from a well-known 

supplier 
1.74 0.25  
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effect of latent preferences on observed behavior (Ben-Akiva et al., 2002). Inclusion of advanced specifications is likely to significantly 
increase computational complexity given the large number of model parameters involved. Hence, this extension is proposed for future 
research. 
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