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A B S T R A C T   

When estimating random coefficients models from choice data, decisions relating to the multi-
variate density function assumed to describe preference heterogeneity across the population raise 
questions about stochastic (in)dependence between preference dimensions, uni- vs. multi- 
modality, potential point masses, bounds and/or constraints on support regions, among other 
concerns. Parametric representations of population distributions have generally implied un-
comfortable compromises to achieve estimation tractability. It would seem preferable to sidestep 
such issues by estimating individual preferences in a distribution-free manner, but this freedom of 
form implies a large number of parameters since we lose the parsimony enabled by parametric 
densities and must deal directly with estimation of individual decision maker preferences. I 
propose a hybrid distribution-free estimator for individual parameter logit models that uses a 
genetic algorithm as first stage, the solution from which becomes a starting point for a gradient- 
based search to obtain the final posterior maximum likelihood estimates of individual prefer-
ences. This estimator is described in detail, its parameter recovery capability is tested with Monte 
Carlo data generation simulations, and a case study is developed in some detail to illustrate its use 
in policy analysis. The estimator can be applied to both stated and revealed preference data, 
requiring only that sufficient choice replications be available for individual observation units 
consistent with extant estimation methods. Computational experience shows the estimator to 
require CPU times comparable to extant simulation-based estimation methods, meaning that its 
use is practical for the exploration of the parameter space through multiple trials.   

1. Introduction 

The Mixed Logit generalization of the Multinomial Logit (MNL) model is a key specification for capturing preference heterogeneity 
in a sample of individuals from choice data. This heterogeneity is generally described through a population-level multivariate density 
function hβ, which the analyst must provide prior to estimation of distribution parameters underlying the preference heterogeneity. 
The model was introduced to the literature through several empirical papers involving Kenneth Train (Revelt and Train 1998; 
Brownstone et al., 1999; Train 1998; Brownstone et al., 2000) just before the turn of the 21st century. One of the model’s main at-
tractions stems from Theorem 1 in McFadden and Train (2000), which established the specification’s ability to approximate other 
choice model forms arbitrarily closely. Mixed Logit has been widely used in subareas of applied economics, among them trans-
portation, marketing, environment, labor, and health, with its use spanning both revealed and stated preference data generating 
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mechanisms. The extensive recent review in Haghani, Bliemer and Hensher (2021), though not focused on the Mixed Logit per se, is 
nonetheless very informative with respect to its impact in the choice modeling discipline. Soekhai et al. (2019), in a systematic review 
focused on the application of choice experiments in the health care area, shows in their Table 2 that the use of the Mixed Logit model is 
increasing significantly over time in that domain. 

For some applications, inferring the population preference distribution hβ is not per se the analyst’s objective, rather it is obtaining 
reliable estimates of individual preferences to enable better predictions at the individual level, improving understanding about the 
joint distribution of marginal rates of substitution in support of product customization, improving estimates of welfare distribution 
implications driven by policy changes, eliminating potential confounds or bias while testing an (unrelated) substantive hypothesis, or 
even improving characterization of the existence and extent of non-compensatory evaluation rules through the parameters of the 
utility function (see Johnson and Meyer 1984, Swait and Adamowicz 2001a,b). Thus, for some modelers and policy analysts in certain 
applications, the interest in one or another parametric distributions to describe preferences in a population is just the means to the end 
goal of individual parameter estimates in a sample. 

However, imposing parametric preference distributions on the data generation process nearly always raises questions about the 
desirability and tenability of the specific distributions adopted. To make concrete some of the difficulties surrounding this selection, 
consider these issues the analyst must think about to define a candidate hβ.  

• Dimensionality and Dependence Across Dimensions – Is hβ to be defined as multivariate and expressing some form of dependence 
among specific preferences (e.g., Multivariate Normal joint distribution)? Or specified as hβ = hβ1•hβ2 … •hβK, expressing that the 
preference dimensions are stochastically independent of one another? Or some version in between?  

• Uni- vs. Multi-Modal Distributions – Certain quality attributes may evince strong positive or negative reactions in different people, 
suggesting bimodal population preferences. To accommodate such disparate preferences, mixtures of unimodal distributions can be 
considered, but this significantly adds to the complexity of the estimation problem since one would have to specify the number of 
modes for each attribute thus affected, and there might be multiple such attributes.  

• Discrete-Continuous Distributions – This is related to multi-modality. Consider preference for a quality that is distributed in some 
continuous fashion in the population, but with a particular segment of consumers having a disproportionate representation of one 
or more discrete values (essentially, point masses at particular values, say, zero). This will lead to a preference distribution that is a 
mixture of a continuous distribution over the support region, plus point masses at specific values. Representation of this phe-
nomenon is … complicated (see, e.g., Swait 2009).  

• Bounded or Unbounded Support Region – In early empirical work with the Mixed Logit, it was common to specify the heterogeneity of 
all coefficients to be (independently) normally distributed; this included variables like price, for which the a priori expectation is 
that preferences should be strictly non-positive. Since the support region of the normal distribution is unbounded, there is always a 
non-zero probability of positive price coefficients. For such situations workarounds have been given in the literature, as discussed in 
Daly et al. (2012), among others. These workarounds carry their own issues and imply specific analyst burdens. 

In response to such concerns, Train (2016) states that enabling greater flexibility in the specification of the parametric distribution 
of underlying preferences “… shifts the emphasis for future research from overcoming distributional constraints to developing richer 
datasets that can more clearly distinguish among the variety of shapes that the parameter distribution might take” (Train, 2016, p. 41). 
Seeking flexibility is certainly one direction that can be taken, but what if instead we were able to estimate individual preferences in a 
distribution-free manner, letting the data reveal these jointly distributed preferences as reflected therein, unencumbered by parametric 
distributional decisions often made simply for analyst convenience? 

This question gives rise to the research objectives of this paper: (1) to conceptualize, implement and test a distribution-free esti-
mator for individual-level preferences based on the logit model, and (2) to do so without imposing any a priori requirements on number 
of modes, peculiar discrete mass points, regions of support and independence across dimensions of preference, as would be required in 
estimation of population level multivariate density function hβ. 

To meet these objectives I have elaborated a hybrid estimation procedure that uses an evolutionary algorithm in its first stage to 
directly explore the K-dimensional individual preference space for N decision makers, for each of which we have observed R ≥ 2 choice 
replications. This initial broad search uses maximization of the posterior log likelihood as the figure-of-merit (FOM). In a second stage, a 
good (and hopefully, near to optimal) solution from the evolutionary algorithm can be submitted to a traditional optimization routine 
to finalize individual-level parameter estimates, based on the same FOM. The contribution I make, therefore, is to harness together the 
evolutionary algorithm and nonlinear optimization algorithm to maximize the posterior maximum likelihood, in the process creating a 
distribution-free estimator for the posterior individual parameters logit (IPL) model. This combination is able to handle the very high 
dimensionality (NxK parameters) imposed by the distribution-free requirement, and is able to do so mainly due to the evolutionary 
algorithm. Since a genetic algorithm (GA) is employed in the first stage, I’ll term this the IPL-GA estimator. The proposed method is 
easily adapted to other kernels and model formulations, so it should be viewed as a more general tool than what is directly illustrated 
here. 

The paper is structured as follows: 1) the implementation of IPL-GA is discussed in some detail in both its evolutionary and 
optimization phases; 2) a simulation study investigates the algorithm’s ability to recover individual-level preference parameters under 
known circumstances; and 3) IPL-GA is applied to a fabric softener scanner panel data set to illustrate its use with revealed preference 
(RP) panel data having large choice sets at each purchase occasion (59 alternatives), many parameters (K = 30) and variable number of 
replications (R in [2,…,40]) per decision-maker. We close the paper with a discussion of selected topics, future directions, software 
availability and other considerations. 
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2. A hybrid evolutionary þ gradient search method for estimating the individual parameters logit model 

To briefly recap the Mixed Logit model before continuing to the proposed estimation method, the goal is to characterize the 
preference heterogeneity (1xK) row vector βn for a person n, as jointly characterized over a population of decision makers by some 
parametric distribution hβ, often taken to be the Multivariate Normal (MVN) distribution: 

βn ∼ MVN
(
β,Σβ

)
, (1)  

where β is the mean and Σβ is the covariance matrix of the preference distribution. This description of the preferences is then applied to 
a “kernel” choice model Pan, a an alternative, here assumed to be the MNL model, thus: 

Pan|β =
exp(βXan)
∑

j∈Cn

exp
(
βXjn

), a ∈ Cn, (2) 

Xan a Kx1 vector of explanatory variables, Cn the choice set of alternatives over which selection is exercised. This expression of the 
choice probability is conditional on a realization βn = β from density function hβ, so the unconditional probability must be obtained by 
integrating over the multivariate preference distribution and parameter space θ: 

Pan =

∫

θ

Pan|θ hθ dθ (3) 

Expressions (1)–(3) characterize the Mixed Logit model. Variants have been proposed (e.g., the Multinomial Probit model as 
kernel), but these have not been as widely used as the above specification. Different numerical and simulation methods exist for 
estimation of K preference parameters as well as parameters of density hβ, with choice of method being driven by considerations such 
as the dimensionality K of the preference vector, the structure of the covariance matrix (i.e., the correlation structure assumed among 
preference components) and the number of parameters implied by the representation, the number of measurement replications per 
respondent/decision-maker, and the number of decision makers. Simulation combined with nonlinear optimization methods has 
proven to be the most common method of estimation (simulated maximum likelihood, see Train 2009). 

The proposed method shifts its focus from the multivariate prior population preference density function hβ, instead placing it on the 
direct maximization of the sample posterior log likelihood to obtain individual preference estimates. This is also the focus of Train 
(2009), Chapter 11, wherein he explores the implications of estimating the individual parameters logit model vis-à-vis the mixed logit 
model in expression (3). The reader is directed to Train for a clear exposition of the differences between methods. In a direct sense, the 
proposed approach frees us from the need to specify the details of the prior population distribution by directly estimating the posterior 
preference parameters. Frischknecht et al. (2014), who focus on the estimation of individual parameters logit using a weighted 
maximum likelihood method, is also a direct precursor work to this article. 

Stage 1: Estimation of Individual Preferences Through Evolutionary Search Methods 

Classical nonlinear unconstrained optimization search methods, such as the Newton-Raphson, BHHH, gradient/steepest descent or 
secant methods (see Berndt et al., 1974 for BHHH; Gill et al., 1981 on other methods), work on the principle of moving from a current 
to an improved point in the solution space, where improvement is measured through the figure-of-merit (FOM) or objective function. 
This is repeated until a (perhaps local) optimum is found. These methods all make use of first- and/or second-order information in the 
form of the gradient and Hessian of the FOM (or approximations of these in the secant methods), which gives them their search power 
but is also the source of their weakness: this information “biases” them to seek out locations where the gradient is zero, regardless of 
whether these be local optima, global optima, or even saddle points. 

Evolutionary algorithms work on quite another principle: they seek to improve a set of candidate solutions (the population, or 
candidate pool) following genetic/evolutionary principles, motivated by biological or evolutionary metaphors to generate better so-
lutions. The pool advances from one generation to another by building on the strong members (i.e., those that provide good FOMs) in 
the hopes of producing an even better population of solutions. This is done repeatedly until convergence and/or stopping criteria are 
satisfied. 

Common operators used in the Genetic Algorithm (GA), arguably the most common evolutionary paradigm, to improve population 
strength are essentially different reproduction actions: 

1) Pairing (splicing) of two members through some selection process, where mating produces offspring that inherit different com-
ponents from each parent;  

2) Recombination of two members, essentially a convex combination of the parental components;  
3) Cloning of (strong) members, thus passing them through into the next generation; and  
4) Mutations applied to any of the outcomes of actions 1–3, which introduces random exogenous perturbations to the pool to avoid 

stagnation of the population. 

The key to evolutionary methods lies in the mechanics of selection and reproduction, which therefore vary (sometimes widely) 
from one method to another. Besides the GA, common implementations using different evolutionary metaphors are differential 
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evolution (DE) (e.g., Storn and Price 1997) and particle swarm (PS), among others. I refer the reader to the more general literature on 
the topics of evolutionary and genetic algorithms (e.g., Banzhaf et al., 1998; Fogel 2006; Goldberg 1989; Schmitt 2001, among many 
others), but recommend Dorsey and Mayer (1995) and Chaterjee et al. (1996) for their focus on statistical parameter estimation 
problems. 

Evolutionary methods have a long history in the optimization literature, particularly for problem types that have difficult, 
discontinuous and/or non-differentiable objective functions (see Holland 1975; De Jong 1975). They were employed to solve opti-
mization problems in biology, engineering and operations research (see, e.g., Goldberg 1989), where they are routinely employed to 
this day for what can be termed “global search” since they are viewed as methods that are more likely to help achieve global optimality, 
either by avoiding local optima, or being less likely to get “trapped” by them. 

The application of evolutionary methods in statistics and econometrics has grown in the past 30 years,1 but they still do not seem 
well diffused in econometric empirical work (though see Gilli and Winker 2008; Drake and Marks 2002, with a focus on finance and 
macroeconomic forecasting). One of the reasons for this may be the heavy reliance on maximum likelihood methods in econometrics, 
both as a methodology and as an orientation/perspective on the necessary requirements for estimators. In this view, anything short of 
the global optimum is unsatisfactory as the basis for hypothesis testing, inference and prediction. However, as emphasized by both 
Dorsey and Mayer (1995) and Chaterjee et al. (1996), one perspective on evolutionary algorithms is that due to the more global nature 
of their search behavior, they can provide “better” starting points for optimization algorithms to achieve global optimality. It is from 
this perspective that the algorithmic development herein is positioned. 

I have not found papers in the evolutionary algorithm literature oriented towards the estimation of individual preferences using the 
type of disaggregate choice data commonly associated with choice modeling. The one near exception is Padmanabhan and Barfar 
(2021), who seek to infer preferences for groupings of television shows associated with political and social interests, using 1) 
disaggregate but anonymous TV panel viewership data, and 2) aggregate voting or political affiliation data with no specific rela-
tionship to the viewership data other than temporal and geographic commonality. Their goal is principally the identification of clusters 
of TV shows that can be used to target associated attitudes. 

The focal estimation problem we address has many parameters, specifically NxK preferences, N the number of respondents and K 
the number of preference parameters. For a sample of 500 respondents used to estimate 10 marginal utilities per decision maker, that 
translates to 5 000 parameters … ! This size challenge is shared by other classes of problems, among them image processing, statistical 
engineering and hydrology (see Holloman et al., 2006). Evolutionary algorithms, such as the one examined here, have played a role in 
tackling such high-dimensional parameter estimation problems. In discussing this class of problems, Holloman et al. say that they are 
“… plagued by multimodality or other problematic structures in the likelihood or posterior” (Holloman et al., 2006, p. 878). The 
estimation problem we address here shares these difficulties, which require satisfactory addressing. 

I will describe the implementation of the genetic algorithm used in IPL-GA in some detail, to make concepts as concrete as possible. 
It is also my hope that this specificity and subsequent algorithmic details will enable the diffusion of the method. However, it is first 
necessary to make a number of definitions. Let Πg be the population/pool for generation g, defined as 

Πg =
{

π1g,…, πMg
}

(4)  

πmgbe a point in the K − dimensional preferences space Ω, the m − th member of the g − th generation pool; (5)  

for g = 0,1, …,G, m = 1, …,M. For a given pool member m in the g-th generation pool, and assuming independence within subject across 
replications, the likelihood of decision-maker n’s observed choices over R choice replications is given by 

ln|mg =
∏R

r=1

∏

a∈Cnr

[
Pan
(
πmg
⃒
⃒Xanr

)]δanr
, (6)  

where Pan() is the choice probability model (e.g., expression 3) evaluated at pool member πmg, with independent variables Xanr on 
choice set Cnr. The δanr are choice indicators, equal to 1 for the single chosen alternative and 0 otherwise. The posterior preferences β̂ng 

for decision-maker n are calculated by applying Bayes Theorem over the M pool members in Πg, thus: 

β̂ng =

∑

m
πmg · ln|mg

∑

m
ln|mg

, n = 1,…,N. (7) 

The posterior log likelihood for the sample is calculated from the following expression, using these posterior preferences: 

LNg =
∑

n
lnln
(

β̂ng
)
, (8)  

where 

1 A simple Web of Science search on the term “econometrics genetic algorithm” yields just 40 documents from 1996 to 2021, indicating that 
during that rather extended period little work in genetic algorithms has focused on econometric issues. 
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ln
(

β̂ng
)
=
∏

r

∏

a

[
Pan
(

β̂ng

⃒
⃒Xanr

)]δanr (9) 

Expression (8) defines the objective function, or FOM, being optimized, while expressions (6) and (7) show how the posterior 
preferences are related to candidate pool members at generation g. As the generations evolve, the impacts of changes therein filter 
through as changes (and hopefully improvements) to the posterior log likelihood. 

As described earlier, the transition of Πg to Πg+1 occurs by a selection and reproduction process. Two key concepts underlie this 
updating: a) members of the pool have a “fitness” or “eligibility measure” for reproduction; and b) the selection process is elitist, in that 
high fitness members are more likely to reproduce, while low fitness members are less likely or even prohibited from reproducing. An 
obvious metric for fitness is the contribution that the pool member makes towards improving the FOM (expression 8). The GA 
implementation herein employs a closely related fitness measure fmg that counts how often pool member m produces the highest in-
dividual likelihood across the N sample members: 

fmg =
∑

n
1
(
ln|mg ≥ ln|m′ g, all m′

∕=m
)
,m= 1,…,M, (10)  

where 1(A) = 1 if event A is true, = 0 otherwise, and ln|mg is given by expression (6). The reason for using this indirect measure is to 
make the fitness measure easy/cheap to compute, as opposed to the direct use of the individual posterior log likelihood (expression 9). 

With this background, the updating of one generation to another occurs according to the following algorithmic logic2 

Algorithm. UCP (Update Candidate Pool) 

Sorting the starting pool by fitness, discarding the lower d percentile of the pool before reproduction and choosing mating pairs as a 
random selection of a higher fitness member with a lower fitness member (what might be termed “uplift”), jointly make this an elitist 
genetic algorithm. Elitism accelerates the improvement of the candidate pool with respect to the fitness measure (10) and the objective 
function (8), and is at the heart of the GA’s ability to find good solutions. 

2 Note that in the algorithm outline, indentation indicates nesting of instructions, and is thus substantive. 
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Allowing mutations is a means to preserve diversity in the candidate pool, which is critical to enabling the algorithm to be more 
global or expansive in its exploratory behavior. The likelihood of mutations is controlled through the probability threshold γg, which 
has been made to vary over generations in this implementation. This promotes wider search performance in earlier generations; in later 
generations it puts a damper on mutation likelihood, which can be useful to stabilize the pool to preserve good solutions without 
adding noise by needlessly replacing good pool members. In the implementation, threshold γg evolves according to this functional 
form, which is a direct modification of a proposal by Kim and Lee (2012): 

γg =max
(

μmin , μmax · χq
g · exp

(
c · g
K2

))

, g= 1,…,G, (12)  

where. 

μmin, μmax are the analyst-specified minimum and maximum mutation rates; 
χg is a measure of diversity of the pool at generation g, defined below; 
q is a power exponent on diversity, which can be either negative or positive; 
c is a rate parameter dictating the decrease (if c < 0) or increase (if c > 0) in mutation rate between subsequent generations. 

Equation (12) builds in a floor for the mutation rate, which may be useful to preserve some degree of change in the pool mem-
bership even in later generations. Finally, note that a useful implementation should allow γg to be fixed across generations. 

The diversity measure is defined so as to capture the multi-dimensional dispersion of the members of the pool, and is implemented 
thus: 

χg =
Dg

rmax,g
, g = 1,…,G, (13)  

where. 
Dg is the average Euclidean distance between points in the pool, which is scaled relative to rmax,g; rmax,g is the radius of the circle 

enclosing the pool members in Ξ-space and centered at the origin of the Cartesian coordinate system. This is the largest distance from 
the origin to a pool member. 

Thus, as Dg increases the diversity of the pool increases, for a fixed radius. 
Algorithm UCP defines the transition from one generation/pool to the next. The GA algorithm progresses through generations until 

some pre-specified stopping criteria are met. One straightforward strategy (termed Strategy = Best) is to execute G updates of Al-
gorithm UPC, recording the posterior parameters (7) corresponding to the best solution found for measure (8), and using that as the 
Stage 1 Solution (S1S): 

β̂n,S1S≝β̂n,gbest
(14)  

where gbest is the generation at which the best FOM was achieved. This strategy uses the evolutionary algorithm as an optimization tool. 
A somewhat more elaborate solution strategy (Strategy = AVERAGE) is to average posterior parameters (7) over a number of 

generations (say, T»1 of them) after the exploration process has stabilized in a region where FOMs are relatively similar (i.e., achieved 
steady state, in direct analogy to MCMC estimation methods). Define the following measure of stability of the FOM during a window of 
H (≥2) successive generations: 

Δ̃Hg =
σ̃HNg

L̃HNg
, (15)  

where 

L̃HNg =
1
H

∑H− 1

h=0
LN,g− h (16)  

σ̃HNg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
H − 1

∑H− 1

h=0

(
LN,g− h − L̃HNg

)2

√
√
√
√ (17) 

Stability criterion Δ̃Hg is the coefficient of variation (standard deviation over mean) of the FOM over H generations from (g-H+1) to 
the current generation g. If this criterion becomes smaller than or equal to the threshold Δ at generation gs(Δ), we deem the search 
stabilized. To promote achievement of stability by reaching steady state, it is customary to impose a burn-in period of gburn generations, 
so require that gs > gburn. S1S is then defined as the average posterior parameters over generations gs, …,gs + T-1, according to 
expression (18): 

β̂n,S1S =
1
T
∑gs+T− 1

g=gs

β̂ng, n = 1,…,N, (18) 
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with corresponding FOM 

LS1S
Ng =

∑

n
lnln
(

β̂n,S1S
)

(19) 

This last expression is used for both estimators (14) and (18). 
It will be noted that the two solution strategies outlined above produce point estimates of the NxK preferences of interest. During 

the course of obtaining the Strategy = AVERAGE solution, one will have observed T points in K-parameter space for each respondent. 
Therefore, it is possible to construct the posterior parameter distributions for each individual, in direct analogy to a Bayesian MCMC 
method. We leave this further development to future research, and focus on estimators BEST and AVERAGE, particularly the latter. 

The complete expression of the Genetic Algorithm follows: 

Algorithm. EvGA (Search Figure-of-Merit Space) 

It is possible to halt the pursuit of optimal individual parameter estimates and perform prediction with the S1S. The classical 
statistician or econometrician might be dissatisfied with this intermediate solution, but I’d like to note that appropriate care in 
specifying the parameters of IPL-GA will lead to quite good solutions particularly for the averaging across stable generations (Strategy 
= AVERAGE). In my relatively extensive computational experience with this algorithm over a period of years, I found that the esti-
mates provided by (18) have low gradient norms (though not necessarily zero) and are generally not “far away” from the optimal 
solution found in Stage 2 optimization searches. More on this topic subsequently. 

Before turning our attention to the Stage 2 procedure to bring estimates to optimality, I first deal with the topic of imposing sign 
constraints on parameters in Stage 1. Stage 1 turns out to be a more convenient phase at which to impose constraints due to the 
simplicity of doing this, as we shall see below. The alternative is to use a constrained maximum likelihood procedure in the optimi-
zation phase, which is more difficult empirically and less tractable theoretically. With evolutionary algorithms it is far more common 
to handle constraints (e.g., sign restrictions) by “incentivizing” pool evolution to favor pool members with fewer and fewer constraint 
violations, eventually eliminating such violations entirely from the pool. This requires redefining fitness function (10) to reflect sign 
violations in pool members: 

f ρ
mg =

∑

n
1
(
ln|mg ≥ ln|m′ g

)
− ρ

∑

k:κk∕=0
1
(
sgn
(
πmgk

)
∕= κk

)
, all m′

∕=m,m= 1,…,M, (20) 
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where 

κk =

⎧
⎨

⎩

− 1
0
+1

if k must be ≤ 0
if no sign restriction

if k must be ≥ 0

⎫
⎬

⎭
, k= 1,…,K, (21)  

expresses the sign requirements on dimension k, and 

sgn(x)=

⎧
⎨

⎩

− 1
0
+1

x < 0
x = 0
x > 0

⎫
⎬

⎭
(22) 

Due to the second term in the penalized fitness measure fρ, pool members with sign violations become less likely to reproduce. 
Parameter ρ ≥ 0 is a penalty weight that accelerates the purification of the pool. This value can be relatively large (10, 100, 1000, …, 
106, …) depending upon the problem data. Setting ρ = 0 returns us to the original fitness function (10). 

This scheme for handling simple sign constraints is very consistent with the evolutionary conceptualization of Stage 1. Experience 
has shown it works remarkably well with the type of choice data common to this problem setting. While mutations make it possible 
that sign violations are occasionally re-introduced, the penalized fitness measure usually soon rids the population of undesirable 
candidates. Calibrating/adjusting the penalty ρ to the particular data helps to (relatively) quickly produce pools with no sign viola-
tions, and the elitist reproduction rules help to keep them that way. The key to successful employment of this form of constraint 
imposition is to drive the sign violations to zero early in the evolutionary search, which can be accomplished through judicious choice 
of the penalty parameter ρ and by performing multiple trials to explore different regions of feasible space. In addition, it should be 
noted that using larger pool sizes to improve posterior preference estimates also implies that the absolute number of sign violations to 
be eliminated will likely increase, which may require increasing penalty ρ. 

I have also implemented a bound-constrained nonlinear search in Stage 2, which supports this Stage 1 penalized approach. 
Together, these methods promote the elimination of sign violations if bounds are imposed. On the issue of imposing sign constraints in 
the case of coefficients such as price, it should be noted that this may generate the same issues of unstable WTP (see McFadden 2022) 
that can arise from the use of lognormal distributions in parametric heterogeneity distributions due to individual posterior estimates 
around the boundary value of zero. 

Stage 2: Completing the Estimation of Individual Preference Parameters Through Gradient-Based Search Methods 

As noted earlier, many algorithms exist for optimizing continuous, twice-differentiable figure-of-merit functions such as expression 
(8). I do not intend to discuss the technical details of these algorithms since they are extensively described in other sources (see, e.g., 
Gill et al., 1981, Dennis and Schnabel 1983, for gradient and gradient secant methods, Berndt et al., 1974 for the BHHH algorithm). 
What I wish to discuss is how these algorithms have been adapted to the problem of estimating individual preference parameters for a 
sample of N decision-makers, starting from the S1S. 

In the maximization of a function f(X|θ), X being a data matrix and θ a parameter vector, the nonlinear search methods to which we 
refer make use of a gradient vector ∇θf(X|θ) to decide good directions of search. Thus, optimization proceeds by repeated movement 
over some set of θ-points that lead to the norm of ∇θf(X|θ) being small enough to stop the search at a stationary point. That final θ is 
taken as the (possibly local) optimal solution, θ*. 

The issue to hand is that we effectively have a functional with N individual parameter vectors βn to be estimated, rather than a 
parametric characterization of these via some distribution function hβ. In the search approaches I have explored to date, the search 
direction is determined at the sample level and the step size is assumed to be the same for all individuals. In detail, the updating of the 
posterior individual preference estimates proceeds by simply applying the same step size to the individual preferences of all n = 1, …,N 
decision-makers, thus (I assume no boundaries to the parameter space): 

βn,j+1 = βnj + φ ·Δj, (23)  

where j is an iteration of the search, Δj is the multidimensional direction of movement for all n at iteration j, and φ is the scalar step-size 
to be taken. For the gradient/steepest ascent search method, the direction Δj at iteration j is 

Δj =
∑

n
∇βlnln

(
βnj
)
, (24)  

whereas for the BHHH method the dimensional changes are given by (Berndt et al., 1974) 

Δj =A− 1
j

(
∑

n
∇βlnln

(
βnj
)
)

, (25)  

where Aj is a KxK crossproduct matrix (or the Jacobian of the log likelihood function) defined as 
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Aj =

(
∂ln ln

∂βnj

)t(∂ln ln

∂βnj

)

. (26) 

The partial derivatives in (24-26) are the gradient of the individual log likelihood functions ln ln (expression 9), evaluated at the 
posterior taste estimates for the individual, and contains one column per parameter, producing thus an NxK matrix. This makes the 
crossproduct matrix KxK in expression (26), which results in a dimensionally consistent matrix product in (25), and yields a uniform 
Kx1 change vector for all individuals. One of the characteristics of Aj is that it is everywhere positive definite, guaranteeing that its 
inverse exists for obtaining direction Δj (Berndt et al., 1974). 

Customarily, for the gradient and BHHH search methods, one first attempts φ = 1 to obtain a better FOM; if no improvement 
pertains, successively reduce φ, e.g., by halving the step size or performing an optimization assuming a quadratic function approxi-
mation, until a FOM improvement is obtained.3 The crucial point about updating equation (23) is that the direction and step size are 
the same for all decision-makers. Future work should examine the possibility of making the updates individual-specific. 

So, Stage 2 proceeds as described below: 

Algorithm. GradSrch (Optimize Figure-of-Merit) 

The global search by Algorithm EvGA plus the local search by GradSrch is a potent combination to help identify the global opti-
mum. However, once we move beyond the MNL model and linear-in-parameters utility function, the likelihood for which is guaranteed 
to have a single (therefore, global) optimum, we cannot be sure that maximum likelihood (ML) solutions reported by econometric 
estimation software are, in fact, global optima. Unfortunately, few choice modelers understand just how little knowledge we have 
about the topography of the likelihood function based on the interplay of a highly nonlinear model form with low density (i.e., sparse) 
choice data. Practically speaking, current best practice is to start ML optimization from Q random points (generally, Q is relatively 
small, likely below 10, and perhaps most often, simply one), and accept as global optimum the best solution thus found. Another option 
is to employ an exploratory algorithm less prone to getting stuck at local optima, e.g., Stage 1 in the current algorithmic combination, 
to provide good starting points for the optimization. In a sense, these first-stage algorithms are being used to map out the topography of 
the parameter space, with some care to avoid getting trapped by local optima. Despite these “global search” capabilities, however, 
these methods still cannot eliminate convergence to local optima, so it is still advisable to try multiple random starts. 

Fig. 1 illustrates this abundantly clearly, by mapping out the posterior log likelihood values over about 300 generations for the 11 
best S1S solutions from a 50-trial search for a particular DCE data set. Each trial corresponds to a different, randomly generated starting 
candidate pool. The prototypical evolution of each search is very similar, as the GA improves the candidate pool until it stabilizes after 
some 200 generations. These curves demonstrate the variety of solutions found, with significant variability in the posterior log 
likelihood, indicating the likely existence of many optima. And to remind the reader, these are only the 11 best S1S solutions, implying 
that the 39 searches not shown depict an even broader spectrum of search performance. In addition, the graph also shows the gap 
between the best S1S solution and the optimal S2S solution found by algorithm GradSrch starting from that best: the gap is on the order 
of about 200 log likelihood units, a non-negligible magnitude. Fig. 1 both illustrates the exploratory search behavior of the genetic 
algorithm during Stage 1 of the search, and the incremental but crucial benefit of the Stage 2 optimization search. 

2.1. Estimation of standard errors at the individual level 

The optimization of FOM LN (expression 8) should be followed by calculation of standard errors for β̂S2S at the individual decision- 
maker level. Multiple methods are available: the straightforward method requires calculating the information matrix of the posterior 
log likelihood (expression 9) for each individual decision maker, over the R replications of the individual; another is to use the inverse of 
the individual cross-product matrix from the BHHH method (expression 26), based on the equality of this matrix and the information 

3 If φ becomes too small, usually the result of difficult topography of the likelihood function (e.g., saddle points, flatness around optima, 
collinearity between dimensions), it is necessary to take appropriate steps. These search methods are subject to scaling effects of the X matrix, so re- 
scaling of the independent variables so they are approximately of the same magnitude can be helpful in circumventing this issue. 
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matrix for maximum likelihood estimators, under the assumption that the data generation process is correctly specified and that the 
global optimum has been found. These procedures can rely on numerical differentiation, or can use analytical expressions since the 
first- and second-order derivatives for the MNL model are readily derived or available from the literature (e.g., in Ben-Akiva and 
Lerman 1985, expressions 5.34–5.35 respectively specify its gradient and Hessian elements). 

Computational experience with straightforward implementations of these two ideas has amply demonstrated to me the difficulties 
inherent to them in this estimation setting. Specifically, achieving optimality of the sample posterior log likelihood does not, of course, 
guarantee that each individual’s posterior log likelihood is at an optimum. Empirically, this leads to individual-level information 
matrices often (even generally) not being positive definite, which means they’re not proper estimators of the information matrix. This 
is a problem previously (and commonly) encountered in control systems theory, among others. It is addressed by Spall (2005), who 
proposes a combination Monte Carlo simulation and bootstrap approach to estimating both the matrices mentioned above. Initial 
testing with this method shows some improvement over the deterministic no-simulation method, but at least presently is still prob-
lematic from my perspective. 

I have opted instead to directly apply the jackknife or bootstrap methods (Efron and Tibshirani 1993) to calculate individual 
decision-maker standard errors for parameter solutions. Bootstrapping and the jackknife have a long history in statistics and the 
sciences (e.g., Efron and Tibshirani 1993). Both methods involve 1) manipulations to the data set to configure alternative samples 
based on the original sample, 2) followed by application of Algorithm GradSrch to these samples to estimate the statistics of interest, 
namely the individual preferences, and 3) use of the variability in individual level preference parameters across samples as the basis for 
calculating standard errors. 

The jackknife requires deleting one observation at a time from the original sample of N to create estimation sample Si = {1,2, …,i-1, 
i+1, …,N}, i = 1, …,N, each with (N-1) of the original observations, then executing Algorithm GradSrch starting at β̂S2S to obtain 
estimate β̂ i of (N-1)xK individual preference parameters. This subsampling-estimation cycle is repeated N times. The standard error of 
a particular element k of person n’s preferences is then given by 

σJnk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
(N − 2)

∑N

s=1,s∕=n

(βnks − βnk)
2

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(N − 1)
(N − 2)

(
E
(
β2

nks

)
− E(βnk)

2)
√

, k= 1,…,K, n= 1,…,N, (27)  

where 

E(βnk)=
1

(N − 1)
∑

s=1..N,s∕=n

β̂nks,E
(
β2

nks

)
=

1
(N − 1)

∑

s=1..N,s∕=n

β̂2
nks, k= 1,…,K, n= 1,…,N. (28) 

Expression (27) differs slightly from Efron and Tibshirani (1993, p. 141) by having a factor (N-1)/(N-2) rather than (N/(N-1)) inside 
the square root operator. This follows from the explicit consideration of the number of samples (N-1) in which a given sample member 
n is present, and defining the unbiased standard error estimator divisor to therefore be (N-2). For N > 10, the difference between these 
factors is minuscule in absolute terms. 

The bootstrap uses a somewhat different scheme to produce samples: B independent bootstrap samples of size N are drawn by 
random sampling with replacement from among the original decision makers. Let these samples be indexed by i = 1,…,B, and the 
resulting estimators termed β

…
i. Note that each individual n may be present in bootstrap samples a different number of times, which we 

will denote as 1≤Bn≤B. The bootstrap standard error calculation for person n and parameter k is (Efron and Tibshirani, 1993, p. 47) 

σBnk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Bn

(Bn − 1)
(
E
(
β2

nks

)
− E(βnk)

2)
√

, k= 1,…,K, n= 1,…,N, (29)  

Fig. 1. Illustration of generational evolution of posterior log likelihood for best eleven feasible constrained solutions.  
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where 

E(βnk)=
1
Bn

∑

s=1..Bn

β
…

nks,E
(
β2

nks

)
=

1
Bn

∑

s=1..Bn

β2
…

nks, k= 1,…,K, n= 1,…,N. (30) 

Despite the increased amount of computation time needed to calculate these standard error estimators, my experience has shown 
that the requirements are quite reasonable relative to the total estimation time for the sample sizes and replication numbers that are 
usual in Discrete Choice Experiments and panel RP data sets used by choice modelers. And an advantage not to be discounted is that the 
resampling methods make direct use of algorithms already developed and debugged to produce the point parameter estimates, and 
thus require little extra effort on the programmer’s part to implement. 

2.2. A note on forecasting 

Working directly with individual posterior preferences requires that in-sample forecasting be done by sample enumeration. Out-of- 
sample forecasting with the same individuals is similarly handled since there is a one-to-one mapping between in- and out-of-sample 
decision-makers. To obtain confidence intervals for predictions and other quantities, individual preferences can be drawn from the 
individual-level distributions characterized through the standard errors calculated above. But the truth of the matter is that with 
individual posterior parameters for a sample of respondents, we are limited to 1) making statements only about the sample, and/or 2) 
weighting statistics of interest to the population level, though recognizing that these are necessarily conditioned on the observed 
sample choices used to calculate the individual posterior parameters. This places the burden of sampling strategy squarely on the 
shoulders of the analyst, where it should reside anyway. 

Out-of-sample predictions are a challenge based on the posterior taste distributions we have estimated through IPL-GA. The basic 
issue is that we have the multivariate distribution of posterior taste parameters for a sample of respondents rather than an estimate of 
the prior population distribution of tastes hβ. If we had hβ, we could integrate figures-of-merit like elasticities, marginal rates of 
substitution, consumer surplus, etc., over the multivariate density to obtain population estimates of statistics of interest. Since we don’t 
have hβ, we are forced to consider methods such as synthetic samples and weighting to predict out-of-sample with the IPL-GA esti-
mates. Again, either of these methods will produce statistics conditioned on the observed sample choices. 

2.3. Backtracking to answer an important question: but does it work? 

I undertook a Monte Carlo simulation exercise to investigate the capability of the hybrid evolutionary and gradient search algo-
rithms to recover known individual-level parameters. Table 1 specifies the (many) details of the exercise, arrayed in the following 
order: 1) sample and choice process characterization; 2) parameters of Algorithm EvGA; 3) parameters of Algorithm GradSrch; and 4) 
replications of the core simulation. Two separate population preference structures were simulated: a) Unimodal preferences (UP), with 
all K preferences of N sample members drawn from independent uniform distributions U[-4,+4]; b) Bimodal preferences (BP), with 
sample members drawn with equal probability from either of two distributions, U[-5,-1] and U[1,5], for each of K preference di-
mensions. The BP experiment represents a two-segment population, one group having all negative preferences and the other all 
positive preferences, and is included to represent the possibility of multi-modal preferences. Below I present an overview of the most 
important details to give the reader a sense of the purpose and scope of the exercise, but will purposely leave other (lesser) details for 
perusal in the table. 

The simulation has a sample size of N = 500 decision-makers, with individual preferences drawn at random from the distributions 
specified above. One implication of this selection of distribution is that all preference dimensions are independent (i.e., zero corre-
lation). The number of preference dimensions is varied systematically over K = 4, 8, 16, and for the number of replications over R = 4, 
8, 16, 32. The ranges for K and R are quite broad, once we consider that most models with parameter heterogeneity have 16 or so 
parameters including stochastic distribution parameters (such as variances), and present-day practice for DCEs is to implement around 
16 replications at most. The choices for the individuals in each replication are simulated to obey the utility maximizing rule underlying 
the MNL model, using each person’s true preference parameters to calculate systematic utility, which is then perturbed with a Gumbel 
(unit scale) stochastic error. 

The combinations of the K and R factors define 12 individual conditions/cells of the (K,R) experiment, for each of UP and BP 
conditions. For each of the 12 cells, 25 data set replications are generated randomly according to the criteria given in Table 1. In the 
replications within a study cell, each individual maintains the same preferences throughout. The solution strategy adopted is to 
calculate average posterior parameters as the S1S, then optimize using the BHHH algorithm to obtain the S2S solution. Ten solution 
attempts using random starting candidate pools are made for each of the 25 data sets. 

Stage 2 solutions β̂S2S were obtained for each data set using the full hybrid algorithm. These were compared to the true parameters 
in two ways: 1) the root mean square error normalized by true parameter range (referred to as RMSE_T), and 2) the average correlation 
between the estimated and true parameters at the individual level (RHO). These statistics are defined at the data set level, then 
averaged over replications within experimental cell. 

Fig. 2 presents these summary statistics as a function of the number of replications R, for each of UP (Panel a1) and BP (Panel a2) 
experiments. In evaluating these statistics in the following paragraphs, I remind the reader that the number of parameters being 
recovered is very large (=N•K = 500 K in this exercise) compared to usual simulation studies of this type, in which we would be 
considering the recovery of K parameters. 
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Taking these statistics in turn, Fig. 2a (Panel a1) demonstrates that with small K (=4) in the UP population, RMSE_T decreases 
sharply with replications, reflecting the benefit of more replications in improving the accuracy of recovering parameters. With K = 8, 
RMSE_T is much lower than at R = 4, then decreases somewhat with R = 8 replications, then increases marginally with R > 8. For K =
16, RMSE_T remains of comparable magnitude to the average RMSE_T of K = 8, so additional replications do not decrease the vari-
ability in parameter recovery. Both levels and patterns seem to hold generally for the Bimodal (BP) condition, suggesting that the 
estimation method may be robust to number of modes in preference distributions. The important takeaway may be that, whatever the 
underlying distribution, one should have sufficient replications at the individual level to support reliable estimation of individual 
preferences; how preferences are distributed at the sample level is of secondary importance, since they will be accurately recuperated if 
accurate estimates of individual preferences are obtained. 

Fig. 2b presents graphs of RHO as a function of replications R, for different numbers of predictors K. We note to no surprise that for 
all K, the more data/replications R are available, the more accurate the estimator is at recovering the known individual parameters. For 
the UP condition, with K = 4 the proposed algorithm sequence recuperates true parameters over the 500 individual decision-makers 
with RHO ranging above 0.80 with as few as 4 replications per person. Increasing to K = 8 dimensions increases the error of recovery to 
an average RHO ranging from a minimum of 0.65 to a high of 0.91 for 32 replications. Finally, for K = 16 RHO varies from 0.48 to 0.81 
as R varies from 4 to 32. For the BP condition, this same general pattern again holds, but interestingly does so with higher average 
RHO. This may be due to the construction of the two sub-populations in the BP condition, since one sub-population has all negative 
preferences and the other has all positive preferences. Nonetheless, these results suggest that the proposed estimation algorithm re-
cuperates preferences relatively accurately, given sufficient choices at the individual level. 

The combination of 8≤K≤16 dimensions and 8≤R≤16 replications is something of a “sweet spot” for DCE studies, and we see that 
the hybrid algorithm performs quite well in these conditions with UP: RHO≥0.79 for K = 8 and RHO≥0.60 for K = 16 (per Fig. 2b Panel 
b1); and BP: RHO≥0.93 for K = 8, 16. It is the rare researcher who ventures into the region of R ≥ 16, but this region is of course very 
helpful for success of the algorithm, since RHO is estimated to be around 0.8 for K = 16 parameters in the UP condition and 0.9 in the 
BP condition. 

These simulations help establish that the proposed algorithm is capable of reliable preference parameter recovery at the individual 

Table 1 
Setup details for parameter recovery simulations.  

Symbol Description Value, Range or Definition 

Sample and Choice Process Characterization 
N Sample size (number of decision-makers) 500 
R Number of choice replications per decision-maker 4,8,16,32 
J Number of alternatives a in a replication 3 
K Number of independent variables Xnra 4,8,16 
Xnra K predictor variables drawn from independent normals for each person, replication, and 

alternative 
Attribute Xnrak ~ Normal mean = 0, 
variance = 4, k = 1, …,K; cov(Xnrak, Xnral) 
= 0, l∕=k 

εnra Gumbel (scale) error term to perturb utilities ~Gumbel(1) 
Vtrue

nra Systematic true utility of alternative a, replication r, person n = βtrue
n Xnra 

Utrue
nra Full utility of alternative a, replication r, person n = Vtrue

nra + εnra 

δnra Choice indicator for alternative a, replication r, person n = 1 ifUtrue
nra > Utrue

nrj all j∕=a  
= 0 otherwise 

Population Taste Structure 
βtrue

n 1xK vector of true individual preferences Homogeneous: Heterogeneous: 
~U[-4,+4] C1 (p = 0.5): ~U[-5,-1]  

C2 (p = 0.5): ~U[1,5] 
Parameters for Algorithm EvGA 
Strategy Estimator for individual preference parameters AVERAGE 
G Number of generations simulated Max(200,gs + T) 
M Pool size 10,000 
gs Burn-in generations 100 
T Number of required stable generations for implementing AVERAGE estimator 100 
D Lower fitness percentile of pool discarded before update 10% 
(αP,αR,αCL,αCR) Probabilities of Pairing, Recombination, Clone Left and Clone Right (0.20, 0.20, 0.30, 0.30) 
μmin,μmax Minimum and maximum mutation probability 0.05, 0.20 
Q Mutation adjustment rate based on diversity 0.5 
C Mutation time rate − 1.0 
H Width of window (in generations) for calculating stability criterion 10 
Δ Stability criterion threshold Variable 
Parameters for Algorithm GradSrch 
Method Method for calculating directions during iterative updating Gradient 

Maximum iterations 10000 
Convergence tolerance for norm of gradient 0.05 
Convergence tolerance for change in FOM 10− 10 

Simulation Specification 
ND Number of datasets per (R–K) condition 25 
Ntrials Number of solution trials per dataset 10  
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level, particularly within bounds of 8–16 variables and 8–16 replications. More predictor variables than the range tested naturally 
impose a higher burden on the estimator for it to perform acceptably, and so require more replications than are likely to be available in 
stated preference studies. However, in some studies it may be possible to extend into these realms, as we will demonstrate in the 
following section of the paper. 

3. An application of IPL-GA using revealed preference household-level scanner panel data 

I now illustrate that the proposed estimator is practical for larger scale applications with revealed preference (RP) data. Scanner 
panel data from marketing is one of the better known panel RP data sources: participating households in focal markets have all their 
supermarket (and certain other retail channels) purchases recorded in proprietary databases. Historically, the marketing discipline has 
used these data to develop choice models to characterize basket purchasing patterns, preferences for product attributes, price elas-
ticities and market structure analysis, impact of brand positioning, consumer segmentation, and so forth. 

Swait and Erdem (2002) examined how temporal consistency in the marketing mix (product, price, channel and advertising) plus 
consistency in availability on store shelves impact buyer preferences. They employed fabric softener scanner panel data first used by 
Fader and Hardie (1996) to understand how product attributes influence choice. I also use these data, which pertain to a single su-
permarket for the period January 1990 to June 1992, and covers 59 different products or SKUs (stock keeping units). The attributes for 
each SKU are brand (# levels = 10), form factor (4), size (4), and formula (4). The marketing mix variables accounted for in the data, 
and collected independently of the purchases, are in-stock availability, regular price, promotion savings, display status and feature 
insert status. The data set has 594 households, which Swait and Erdem (2002) split randomly into two equal-sized data sets, one for 
estimation and another for out-of-sample prediction testing (thus, each with 297 observation units). I make use here only of their 
estimation data set. The interested reader is directed to the aforementioned papers for further information on the data. 

The utility function has 30 predictor variables: nine brand constants, three form factor dummies, three size dummies, three 
formulation dummies, a regular price effect, a promotional discount (price cut) effect, display status, feature status, four measures 
pertaining to marketing mix consistency (see Swait and Erdem 2002), and brand, form, size and formulation “loyalty” measures (prior 
choice effects). 

As a test bed for the IPL-GA algorithm, this is at the larger end of the problem size scale: K = 30, variable 2≤R ≤ 40 (mean = 6.2 

Fig. 2. Monte Carlo simulation study: Parameter recovery for unimodal and bimodal taste distributions.  
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purchases per household), and up to 59 alternatives in each choice set (product availability information was independently collected 
on a daily basis, which is an unusual feature of this data set compared to other scanner panel data). The N = 297 households made a 
total of 1 970 purchases, and there are 101,581 cases in the data. I estimate two models for this data set: 1) a “standard” Mixed Logit 
model with the common assumption of multivariate normal preferences with heteroscedastic diagonal covariance matrix (assuming, 
thus, independence between preference dimensions), estimated by simulated maximum likelihood with 2 000 Halton draws; and 2) a 
constrained IPL-GA model, for which no a priori distributional assumptions about preferences need be made, with 10,000 members in 
the candidate pool. In the latter model, the coefficients for Regular Price and Price Cut are, respectively, constrained to be non-positive 
and non-negative. Ten trials are made for the IPL-GA model to determine the reported solution.4 

Table 2 presents the estimation results for these models. During estimation it was necessary to restrict certain variance parameters 
to zero in Model 1 (Mixed Logit), as noted in the table through the fixed -∞ values (note that the simulation estimator implementation 
estimates the natural logarithm of each variance). Model 1 has a posterior log likelihood of − 2396.3, and Model 2 (IPL-GA Con-
strained) presents that measure at − 2308.8. To put this result into context, the expectation is that these estimators should achieve 
comparable solutions, with the advantage generally being in favor of IPL-GA since it does not restrict heterogeneity distributions to any 
specific parametric family. An eyeball comparison of the means of the 30 parameters shows that only two (the Brand6 constant, and the 
Refill (base = Sheets) dummy) are markedly different across the models. Omitting these two parameters, the correlation between the 
estimated mean preference vectors from the two models is approximately 0.90. 

Differences between the two models occur also at the parameter level. I highlight the parameter Concentrated form factor, which 
captures its impact relative to a base form (Sheets). In Model 1, the prior distribution of preference heterogeneity in this utility source is 
assumed to be an independent normal distribution with estimated parameters (μ≈ 0.02, σ2 ≈ 9.1), hence it necessarily has a single 
peak at μ. In contrast, the posterior preference estimates by IPL-GA feature a two-mode distribution, one with a negative mean and the 
other positive. A second example concerns the Regular Price parameter. First note that the simulation estimates of the prior for Regular 
Price can always produce positive prior and posterior coefficients values because the support region for the normal distribution is 
unbounded, but IPL-GA does not in this case because we specified a sign constraint. Fortunately, Model 1 shows that only one posterior 
price parameter is positive in this sample, so empirical use of the model can proceed. Several approaches, described earlier, could be 
used to deal with this condition, but we shall put this issue aside for purposes of this paper. By construction, the IPL-GA solution does 
not have any undesirable sign violations. More importantly, there is a notable difference in shape across the model inferences about 
price sensitivities: simulation estimates impose the symmetry implied by the normal prior density, whereas IPL-GA captures a distinct 
negative skew, allowing for a depiction of more negative price sensitivities than in Model 1. It is no doubt these kinds of differences 
between these heterogeneity estimators that are behind the somewhat better goodness-of-fit of the IPL-GA. 

Model 3, an IPL-GA estimator using the AVERAGE operator but no optimization phase, is also presented in Table 2. To remind, the 
AVERAGE operator implements (18) to obtain the mean posterior parameters over T (=100 here) stable generations. The parameter 
values for Model 3 correspond to β̂S1S, the Stage 1 Solution used as starting point for the optimization that leads to β̂S2S, reported as 
Model 2. The posterior log likelihood of β̂S1S is − 2553.36, compared to − 2308.78 for β̂S2S. The purpose of showing this last model is 
two-fold: first, to illustrate the benefit of the optimization performed in Stage 2, which was significant in this data set; but secondarily, 
to show that the AVERAGE operator yields a rather good solution which may have value on its own merits. A comparison of the 
parameters between Models 2 and 3 shows that they do not differ much in magnitude, though the former are optimal for the posterior 
log likelihood function. Future work should examine the relative benefit of employing only the first stage of the solution procedure, 
despite its lack of optimality. 

We finish this example with Fig. 3, which shows the demand impact on Brand 4’s portfolio (represented in the data through 15 
SKUs, indexed 13–27 in the data) that arise from a pricing repositioning strategy: a) prices of all SKUs in the portfolio are jointly varied 
over the range [− 20%,+20%] change, b) price cuts are eliminated/discontinued and c) pricing consistency over time is enhanced. 
Essentially, Brand 4’s pricing strategy is changed from periodic discounting to always being the same undiscounted price, either below, 
at or above the current situation. The resulting changes in demand for Brand 4 are shown in the graph, as percent differences compared 
to the 0% condition (i.e., the status quo described in the data set, including price cuts and pricing consistency). Each of the three 
models in Table 2 was used to make predictions, using individual-level posterior parameter estimates. To remind, the Model 1 has no 
heterogeneity associated with a mean positive price consistency effect, but both the other models do allow for both positive and 
negative price consistency preferences. This latter result is to be expected, as argued in Swait and Erdem (2002): the positive effect for 
individuals who value price predictability, but a negative effect for those who value promotional savings. The IPL-GA (IPL-GA 
AVERAGE) model depicts the sample of decision makers as being 33% (43%) with negative price consistency preferences, hence 67% 
(57%) with positive preferences. 

Despite model differences, the results of these policy simulations are largely consistent across models: departure from the status quo 
will result in demand losses for Brand 4, according to Model 1 and IPL-GA, and largely losses for IPL-GA AVERAGE. For this latter 
model, portfolio-wide price decreases of greater than 15% are predicted to increase demand relative to the status quo. Price increases 
are quite impactful: a 20% consistent price increase in the regular prices of Brand 4 SKU’s and elimination of discounts will result in a 
41% decrease in demand according to Model 1, 32% for the IPL-GA, and 45% for the IPL-GA AVERAGE, ceteris paribus. Thus, the best 

4 Just over 24 h of elapsed time were needed to estimate the 10 trials, for an average of 145 elapsed minutes per trial. The computational platform 
was a dedicated 64-bit Linux OS machine with 32 MB RAM memory, 8 cores running at 3.4 GHz, using specialty Fortran95 code with parallel 
processing, and compiled with gfortran v9.3. 
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Table 2 
Estimation results for fabric softener data set.  

Estimator Mixed Logit Simulation Estimator IPL-GA Estimator 

Solution Type Optimal Optimal AVERAGE 

Constraint Status Unconstrained Constrained Constrained 

# Sign Violations in Posterior 
Parameters 

1 0 0  

[95% Confidence Interval] [0.025, 0.975] percentiles 
Prior Mean lnσ2 a Posterior Mean Posterior Mean 

Brand1 − 0.7976 [-1.6901,0.0949] 0.7347 [-0.2640,1.7334] − 1.2891 [-3.0441,2.1853] − 1.4286 [-3.1837,2.0458] 
Brand2 0.4264 [-0.149,1.0018] − 0.6988 

[-2.1299,0.7323] 
− 0.5666 [-3.0282,3.9875] − 0.2580 [-2.7197,4.2961] 

Brand3 − 0.8618 [-1.7305,0.0069] 1.2052 [0.4525,1.9579] − 0.8375 [-2.5987,3.3341] − 0.9370 [-2.6982,3.2347] 
Brand4 0.7746 [0.3197,1.2294 − 0.4109 

[-1.1235,0.3017] 
0.4348 [-2.3838,4.609] 1.3049 [-1.5136,5.4792] 

Brand5 − 0.0235 [-0.7325,0.6856] 1.6693 [1.3569,1.9817] 0.0455 [-2.5582,4.8209] 0.1384 [-2.4653,4.9138] 
Brand6 − 7.7983 [-10.8011,- 

4.7955] 
3.5076 [2.9014,4.1138] − 1.4542 [-3.5413,3.6687] − 1.3627 [-3.4498,3.7601] 

Brand7 − 1.6801 [-2.2842,-1.076] 1.4095 [0.9635,1.8555] − 1.0130 [-3.7479,4.0865] − 1.5811 [-4.316,3.5185] 
Brand8 0.2217 [-0.2603,0.7036] 0.4141 [0.0069,0.8214] − 0.0252 [-3.4187,4.556] 0.3890 [-3.0045,4.9702] 
Brand9 0.5017 [-0.0906,1.0939] − 0.0122 

[-1.2662,1.2419] 
0.3454 [-2.3145,3.733] − 0.0616 [-2.7215,3.3259] 

Concentrated (base = Sheets) 0.0211 [-0.3231,0.3654] 2.2055 [1.8165,2.5945] − 0.3779 [-3.9796,4.0768] − 0.3097 [-3.9114,4.145] 
Refill (base = Sheets) 1.2405 [0.617,1.864] 2.3367 [1.9409,2.7326] 0.9529 [-1.726,5.338] 1.4228 [-1.2561,5.808] 
Liquid (base = Sheets) − 14.6333 [-23.2576,- 

6.009] 
4.377 [3.4504,5.3036] − 2.5668 [-4.7546,0.479] − 1.7941 [-3.9818,1.2518] 

Small (base = X-Large) − 1.7376 [-2.3812,-1.094] − 0.0502 
[-0.6348,0.5344] 

− 1.1882 [-3.8476,2.1397] − 1.2292 [-3.8885,2.0987] 

Medium (base = X-Large) − 0.1879 [-0.6248,0.249] -∞ 0.5989 [-3.7712,3.2605] 1.315 [-3.0551,3.9767] 
Large (base = X-Large) 0.0923 [-0.2785,0.4631] -∞ − 0.2422 [-2.6885,3.3755] 1.0174 [-1.4289,4.6351] 
Regular Scent (base = Unscen) − 0.0515 [-0.3761,0.273] -∞ − 0.5326 [-3.0402,2.5168] − 0.7935 [-3.3011,2.2559] 
Light Scent (base = Unscen) 0.6695 [0.3102,1.0289] 0.675 [0.2315,1.1185] 0.9082 [-3.4716,3.8746] 0.8613 [-3.5186,3.8277] 
Stainguard (base = Unscen) − 0.2220 [-0.7875,0.3434] − 0.0212 

[-1.5649,1.5225] 
− 0.3425 [-2.3859,2.5597] − 0.3371 [-2.3805,2.5652] 

Regular Price of SKU − 1.1377 [-1.3479,-0.9275] − 1.1810 [-1.581,-0.781] − 1.8543 [-4.7623,- 
0.1589] 

− 2.9618 [-5.8742,- 
1.2708] 

Price Cut of SKU 1.8134 [1.5996,2.0272] − 0.9018 [-1.497,- 
0.3066] 

2.9369 [1.4391,4.7639] 4.5703 [3.0724,6.3972] 

Display 1.1801 [0.8939,1.4663] -∞ 1.2902 [-1.1731,4.7912] 1.0662 [-1.397,4.5673] 
Feature 0.5915 [0.2223,0.9608] -∞ 0.4723 [-1.9184,3.6426] 0.3563 [-2.0344,3.5266] 
Price Consistency 0.7308 [0.4457,1.016] -∞ 0.4154 [-2.5626,2.9329] 0.0607 [-2.9174,2.5781] 
Display Consistency 0.5186 [-0.0637,1.1008] -∞ 0.7179 [-1.5157,2.8254] 1.1196 [-1.114,3.2271] 
Feature Consistency − 0.4338 [-0.9734,0.1058] -∞ − 0.4992 [-2.7134,2.1381] − 0.3807 [-2.595,2.2566] 
Shelf Availability Consistency − 4.6569 [-5.8558,-3.4581] -∞ − 3.4125 [-4.9392,- 

1.6125] 
− 1.096 [-2.6227,0.704] 

Brand Loyalty 0.3113 [0.121,0.5015] -∞ − 0.2862 [-3.2764,2.9256] 0.1267 [-2.8634,3.3385] 
Form Loyalty 0.2684 [-0.0366,0.5735] − 0.5719 

[-1.5482,0.4045] 
0.7552 [-2.3037,3.378] 1.1980 [-1.8608,3.8209] 

Size Loyalty 0.1206 [-0.0347,0.2758] -∞ − 0.0890 [-2.7896,2.9183] − 0.1330 [-2.8337,2.8743] 
Formula Loyalty 0.1752 [-0.0363,0.3868] -∞ − 0.0140 [-3.9472,2.1158] 0.0182 [-3.915,2.148]  

Log Likelihood − 4963.87    
Posterior LL − 2396.31  − 2308.78 − 2553.36 
Halton Draws or Pool Members 2 000  10,000 10,000 
N 297    
# choice sets 1970    
# cases 101,581    

Notes. 
a Heterogeneity given by independent normal distributions Nk(βk,σ2

k), k a preference dimension. Mean and lnσ2estimates shown in table.  
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fitting model (IPL-GA) depicts the demand impact of the price repositioning to be less significant than predicted by the other models, 
but clearly indicates that the status quo pricing policy remains the best course to follow for this sample. 

4. Summary and conclusion 

This paper has examined the potential for employing evolutionary algorithms, specifically a genetic algorithm, as the front end of a 
two-stage estimation process to obtain posterior individual preference parameters for the logit model. The main distinguishing feature 
(and practical advantage) of this algorithm is that it is distribution-free: the analyst does not have to specify an arbitrary set of 
parametric densities to which the preference dimensions must adhere. The choice data, through replications at the individual decision 
maker level, will dictate the forms of posterior preference distributions supported by the kernel choice probability formulation. These 
distributions may turn out to be symmetric or skewed, single- or multi-modal, have point masses in addition to continuous repre-
sentation, and are bounded by construction. In addition, correlations between some or all preference dimensions will arise as part of 
the solution process, not through the imaginations of analysts. The cost of adopting a distribution-free algorithm does create a large 
estimation problem, since NxK parameters are in play. 

I have laid out the details of this two-stage estimator (termed IPL-GA), which combines the genetic algorithm to obtain good (even 
near optimal) solutions that can then be used as starting points with a traditional gradient- or hessian-based search algorithm. The 
example applications in the paper used an implementation of the BHHH search method (Berndt et al., 1974), but many other algo-
rithms can be used. IPL-GA combines the power of evolutionary algorithms to search the parameter space more “globally”, increasing 
the chances of avoiding local optima (which gradient-based searches are built to find if they are “nearby locally”). It is hoped that the 
hand-off to the traditional search algorithm with a better starting solution will increase the chance that the estimator converges to the 
global optimum. While there are no guarantees that this ideal state will ensue in any given application, the combination of methods 
increases the likelihood of this occurring, particularly when the estimator is embedded in a systematic course of multiple random 
starting candidate pools. 

The use of evolutionary algorithms as a means to generate good starting solutions for optimization routines is far from unique to 
this research. There is a sizeable and still expanding literature on global optimization methods,5 which often employ combinations of 
specific procedures to search for global optima. Historically, an early hybrid algorithm was the combination of a gradient-free method 
like the Nelder-Mead algorithm (Nelder and Mead 1965) – which uses only objective function values to optimize a function – as the first 
stage, with a second stage based on a gradient-type method. Other examples of front ends would include taboo searches, simulated 
annealing, heuristics of many flavors, direct random searches, random direction searches, and multi-resolution genetic algorithms 
(Holloman et al., 2006). 

Genetic algorithms have traditionally been applied to find optimal or near-optimal solutions to optimization problems. In IPL-GA, I 
have used the GA as a parameter-space exploration procedure to map the topography of the posterior log likelihood function. This 
gives the method a somewhat computational Bayesian flavor; the literature has recognized this link between genetic algorithms and 
Markov Chain Monte Carlo methods (see, e.g., Strens 2003, ter Braak, 2004; Holloman et al., 2006). Differently from Bayesian 
methods, however, there is no requirement for the specification of priors on the parameters. 

The Monte Carlo experiment with systematic generation of replicate data sets was used to evaluate IPL-GA’s capability to recu-
perate individual preference parameters, for both uni- and bi-modal uniform preferences. This experiment demonstrated that the IPL- 

Fig. 3. Price repositioning analysis for brand 4 portfolio.  

5 I direct the reader to the archive at https://arnold-neumaier.at/glopt.html. It purports to cover all things global optimization, and contains 
references, free code, people to follow, etc. 
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GA is capable of reliably recuperating preferences, given sufficient choice replications R commensurate with the number of preference 
dimensions K. (This statement is also true of other estimation methods, of course.) The method is quite effective when operating in 
conditions equivalent to common Discrete Choice Experiment sizes: K = 8–16 dimensions and R = 8–16 replications. Naturally, more 
replications are always beneficial and preferable, particularly as K increases beyond this range; this may not, however, be empirically 
practical to implement during data collection (though see the scanner panel data example in the prior section of the paper). 

In the several applications for which I have used IPL-GA, beyond what is presented in this paper, the second (optimization) phase of 
the estimator is always helpful in identifying a better solution than obtained by the first (evolutionary) phase. That said, the im-
provements can be relatively modest (even small) in terms of posterior log likelihood value, depending on the tuning parameters for 
the GA. But at times the improvement has been substantial. The availability of a maximal posterior log likelihood solution facilitates 
inferences since maximum likelihood theory applies for hypothesis testing purposes, so the extra effort is worth expending from that 
perspective. For predictions, the case is not so clear cut for full-blown optimization. 

Beyond forecasting within the limitations I discussed earlier, having individual parameter estimates opens up the possibility of 
reviving an ancient custom of conjoint practitioners, which was the application of clustering techniques to preference estimates to 
obtain insights into preference regularities and segments in the sample. A related technique is archetypal analysis (Cutler and Breiman 
1994), which identifies archetypes (or pure types) that form the basis for characterizing all other decision makers. From a market 
management and product development perspective, this is rich knowledge indeed, since the clusters and archetypes may form a strong 
basis for firm decision making and action. 

One of the maintained conditions in this research is that individual parameters are considered constant across a set of replications. 
This restriction can of course be removed, as suggested by Swait et al. (2016) for latent class (mixture) models, and more recently, by 
Kreuger et al. (2021) for the Mixed Logit model. Both allow for intra-person variation in preference parameters, over and above 
inter-personal preference heterogeneity. Both employ maximum likelihood methods to estimate parameters, the latter with simula-
tion. Krueger et al. cite other literature that explores alternative approaches to this broader problem using neural networks, regression 
trees, and so forth. Extensions to models that comport both intra- and inter-personal preference heterogeneity can be explored in future 
through the combination of evolutionary and optimization methods. 

As noted earlier in the manuscript, I implemented the two-stage algorithm described here in Fortran95, compiled with gfortran (a 
freely available compiler for Windows and Linux, see https://gcc.gnu.org/wiki/GFortranBinaries). This choice was based on prior 
familiarity with the language and the desire for high computational speed, particularly through the availability of parallel computation 
capabilities (in this case, through use of the OpenMP library – see www.OpenMP.org – with which gfortran is well integrated). 
However, Fortran does not have a monopoly on computational speed: C, C++, Gauss, and Julia, among others, are all possible 
development environments for algorithms such as described here. I originally prototyped the GA described here in Gauss, which has an 
integrated parallel computation capability, but eventually thought it worthwhile to transfer to Fortran for faster execution to handle 
larger data sets and multiple starting points. In practice it is my expectation that medium-to large-sized choice modelling problems 
using evolutionary algorithms will require implementations in languages such as Fortran, C and C++, simply to achieve reasonable 
execution times. 

With respect to tapping into available evolutionary algorithm implementations, some simple web searching yields at least three 
“black box” options: MATLAB has a toolbox of evolutionary algorithms which might be adaptable for this purpose, as does the julia 
language. R users should examine package rgenoud, which implements genetic search with a FOM optimizer using derivative infor-
mation (Mebane and Sekhon 2011). I cite these as examples, but I have not used any of them myself or evaluated their suitability for 
inclusion in a parameter estimation algorithm with high dimensionality. In my view, there is no shortage of evolutionary algorithm 
ideations and implementations in the literature, so adoption of these evolutionary first stages in estimation algorithms should not be 
overly difficult. But, as ever, caveat emptor! 

In bringing this paper to a close, I should note that I have also implemented both Differential Evolution (DE) and Particle Swarm 
(PS) evolutionary algorithms for the problem to hand. They have both performed similarly to the GA on the data sets I have tried them 
on, but my initial thought is that they seem better suited to work with a solution strategy seeking an explicit optimal solution (like 
SOLUTION=BEST) rather than a summary solution strategy (like SOLUTION = AVERAGE). My overall impression is that the GA works 
better for choice data than these other evolutionary exemplars, but this opinion is based on selective and idiosyncratic experience that 
has emphasized GA over the others, so it should be taken with a grain of salt. Each of these algorithms has parameters which need to be 
“tuned” to the data, so any of them might perform better in a given setting than the others. 
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