
Journal of Choice Modelling 46 (2023) 100399

Available online 31 December 2022
1755-5345/© 2023 Elsevier Ltd. All rights reserved.

A control-function correction for endogeneity in random 
coefficients models: The case of choice-based 
recommender systems 

Mazen Danaf a,*, C. Angelo Guevara b,c, Moshe Ben-Akiva d 

a Uber Freight, 433 W Van Buren St, Chicago, IL, 60607, USA 
b Departamento de Ingeniería Civil, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile 
c Instituto Sistemas Complejos de Ingeniería (ISCI), República 695, Santiago, Chile 
d Edmund K. Turner Professor of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 
MA, 02139, USA   

A R T I C L E  I N F O   

Keywords: 
Discrete choice models 
Endogeneity 
Control-function 
Recommender systems 
Logit mixture 
Random parameters 

A B S T R A C T   

Applications of discrete choice models in personalization are becoming increasingly popular 
among researchers and practitioners. However, in such systems, when users are presented with 
successive menus (or choice situations), the alternatives and attributes in each menu depend on 
the choices made by the user in the previous menus. This gives rise to endogeneity which can 
result in inconsistent estimates. Our companion paper, Danaf et al. (2020), showed that the es
timates are only consistent when the entire choice history of each user is included in estimation. 
However, this might not be feasible because of computational constraints or data availability. In 
this paper, we present a control-function (CF) correction for the cases where the choice history 
cannot be included in estimation. Our method uses the attributes of non-personalized attributes 
as instruments, and applies the CF correction by including interactions between the explanatory 
variables and the first stage residuals. Estimation can be done either sequentially or simulta
neously, however, the latter is more efficient (if the model reflects the true data generating 
process). This method is able to recover the population means of the distributed coefficients, 
especially with a long choice history. The variances are underestimated, because part of the inter- 
consumer variability is explained by the residuals, which are included in the systematic utility. 
However, the population variances can be computed from the estimation results. The modified 
utility equations (which include the residuals) can be used in forecasting and model application, 
and provide superior fit and predictions.   

1. Introduction 

Applications of discrete choice models in personalization are becoming increasingly popular among researchers and practitioners 
(Chaptini, 2005; Danaf et al., 2019; Song et al., 2017, 2018; Teo et al., 2016; Zhu et al., 2019; etc.). These models overcome several 
limitations associated with traditional recommendation and personalization methods. According to Chaptini (2005), discrete choice 
models can account for all the available data including user-specific, item-specific, and contextual information (while some traditional 
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methods rely mainly on item and user profiling). In addition, they express utility as a function of attributes, which enables us to 
recommend new items that have not been chosen or rated before. Finally, while other personalization methods struggle with finding a 
balance between relevance and diversity, choice models integrate both (relevance and diversity) in a unified utility-based framework 
(Jiang et al., 2014). 

Many of the recent applications of choice models in recommender systems rely on the logit mixture model, primarily because it can 
explicitly account for unobserved inter-consumer heterogeneity. By conditioning on the observed choices for each user, we can extract 
user-specific parameters, which can be used in personalization (Revelt and Train, 2000). However, our companion paper Danaf et al. 
(2020) showed that estimating discrete choice models in adaptive contexts (such as recommender systems and adaptive stated 
preferences (ASP) surveys) can - in some cases - result in substantial biases due to endogeneity. In order to obtain consistent estimates 
of the population parameters, we recommended including the entire choice history of each user in estimation. While this might be 
feasible in some applications involving small datasets (such as ASP surveys), choice-based recommender systems can be limited by data 
availability and computational constraints. In this paper, we propose a control-function (CF) correction for addressing endogeneity in 
such cases. 

Endogeneity arises in discrete choice models due to several factors including measurement errors, selection bias, omitted variables, 
and simultaneity, and results in inconsistent estimates of the model parameters (Guevara, 2015). The textbook definition of endo
geneity is a correlation between the independent/observed variables in the model and the unobserved additive error term. In the 
presence of taste heterogeneity, endogeneity can also be attributed to correlations between the explanatory variables and the het
erogeneity (i.e., the individual-specific parameters) (Wooldridge, J.M., 2015). 

Several corrections have been proposed for endogeneity in discrete choice models, mainly falling into two categories; the BLP 
method (Berry et al., 1995), and the CF method (Heckman, 1978; Hausman, 1978). CF methods use extra variables in the utility 
specification that are obtained using exogenous instruments. These instruments are variables that must exhibit two characteristics. 
First, they should be relevant, meaning that they are correlated with the endogenous variable. Second, they should be exogenous, which 
means that they should not be correlated with the unobserved error term. 

Different control-functions have been proposed, the most common of which are by Petrin and Train (2010), Villas-Boas and Winer 
(1999), Blundell and Powell (2003), Guevara and Ben-Akiva (2006, 2010), and Guevara and Polanco (2016). These methods are 
convenient because they are easier in implementation, and because they apply to cases where BLP cannot be used (Train, 2009). Most 
of the proposed CF methods address the issue of correlation between the explanatory variables and the unobserved additive error term. 
On the other hand, very limited research has addressed the correlation between the explanatory variables and the unobserved het
erogeneity, which applies to endogeneity under taste variation (e.g., choice-based recommender systems). 

Common examples of endogeneity under taste variation include adaptive stated preferences (ASP) designs, choice-based self-se
lection, personalized advertisement, and recommender systems. In ASP surveys, the design is updated during the data collection phase 
as knowledge of the true parameters increases (Kanninen, 2002; Johnson et al., 2006, 2013). Bradley and Daly (1993) analyzed several 
variations of ASP designs and concluded that endogenous SP designs might result in bias in the presence of taste variation in the 
sample. Similarly, Fowkes (2007) analyzed endogeneity bias in the Leeds Adaptive Stated Preferences (LASP) survey (Fowkes and 
Shinghal, 2002; Shinghal, 1999), and found significant bias when the models are calibrated over several respondents. Toubia et al. 
(2003) and Abernethy et al. (2007), also developed polyhedral methods for survey designs that “reduce the feasible set of parameters 
as rapidly as possible” but concluded that these methods are susceptible to endogeneity bias. 

SP designs that are constructed based on the revealed preferences (RP) choices can also be susceptible to endogeneity bias if 
estimation is done using the SP data only. Train and Wilson (2008, 2009) propose a full information maximum likelihood (FIML) 
solution, which overcomes this problem by using a specially designed maximum simulated likelihood method. On the other hand, 
Guevara and Hess (2019) propose a limited information maximum likelihood (LIML) approach based on a control-function that uses 
RP attributes as instruments. However, both cases consider correlations between the explanatory variables and the unobserved error 
term, and not between the explanatory variables and the individual-specific effects. 

In this paper, we extend the CF method proposed by Wooldridge (2015) and Garen (1984), and apply it to the case of choice-based 
personalization methods. Our CF method uses the attributes of non-personalized recommendations (i.e., what we would recommend or 
advertise to an average individual) as instruments to address cases where historical data are excluded from estimation. We apply this 
method to a Monte Carlo dataset mimicking a choice-based recommender system that recommends the “best” alternatives to users 
based on their estimated individual-specific preferences, and a real dataset that is modified to introduce endogeneity resulting from 
personalized advertising. Finally, we extend the analysis of Guevara and Ben-Akiva (2012) to illustrate how the residuals obtained 
from the first stage estimation can be used in forecasting and in model application. 

Although this paper is primarily motivated by choice-based personalization, the proposed CF correction applies to various ap
plications associated with panel data. Such applications are usually encountered in dynamic choice contexts, where serial correlation 
(e.g., preference heterogeneity) and the inter-dependence of successive choices give rise to the initial conditions problem. In such 
cases, model estimation under the assumption that the initial conditions or the relevant pre-sample history are exogenous might result 
in biased and inconsistent parameter estimates. Examples are common in transportation, including cases where individuals with a 
higher time sensitivity tend to relocate closer to their workplace (resulting in shorter travel times), or where individuals with a higher 
preference towards transit purchase a transit pass (resulting in a lower cost). 

The remainder of this paper is organized as follows. Section 2 presents a brief background on endogeneity in recommender systems. 
Section 3 presents the proposed CF methodology and its application in forecasting. This methodology is applied to simulated and real 
data in Section 4. Section 5 presents a discussion on estimation considerations, consistency, and simultaneous estimation. Finally, 
Section 6 concludes the paper by discussing the contributions, limitations, and future research directions. 
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2. Background: endogeneity in recommender systems 

2.1. Problem statement 

Recommender systems are software tools and techniques providing suggestions for items to be of use to a user (Ricci et al., 2015). 
These techniques are used to cope with information overload and to identify a subset of items from a much larger set (the inventory) that 
best matches a user’s interest (Chaptini, 2005; Jiang et al., 2014). In choice-based recommender systems, recommendations are usually 
generated using individual-specific coefficients that are fed into an assortment optimization, which maximizes hit-rate or 
consumer-surplus (CS) in the form of log-sum (Song et al., 2017, 2018). 

Danaf et al. (2020) analyzed endogeneity bias in choice-based recommender systems using a Monte Carlo experiment and found 
that the estimates are only consistent when the likelihood function accounts for the full data generation process. This can be achieved 
by using exogenous initialization of the system and using all the data in estimation. This section provides a brief theoretical analysis of 
endogeneity in adaptive choice contexts and explains why excluding historical data from estimation results in inconsistency. For more 
details, we refer the reader to Danaf et al. (2020). 

We consider a system in which the underlying behavioral model is a logit mixture with the utility specification shown in Equation 
(1). We use the indices n for individuals (n = 1,2,…,N), m for menus (m = 1,2,…Mn), and j for alternatives (j = 1,2,…, Jmn). 

Ujmn = − Pjmn +Xjmnβn +
1

exp (αn)
εjmn (1)  

βn ∼ N(B,Ω) (2)  

Ujmn is individual n’s utility of alternative j in menu m, Pjmn is the price associated with this alternative, Xjmn is a vector of attributes, βn 
is a vector of individual-specific parameters following a Normal distribution with population mean B and covariance matrix Ω, εjmn is 
an error term distributed as Extreme Value I with location zero and scale 1, and αn is a scale parameter (exponentiation is used to 
guarantee that the scale is positive for all individuals). The model is specified in the willingness-to-pay (WTP) space; the cost coefficient 
is fixed to − 1 and a scale parameter is estimated. Therefore, all the coefficients represent the WTP values for their corresponding 
attributes (see Ben-Akiva et al., 2019; Train and Weeks, 2005). Finally, we assume that the alternative-specific constants are included 
in Xjmn as vectors of ones. 

In adaptive choice contexts, menus (or choice situations) are generated using the previous choices. Without loss of generality, we 
assume that:  

1. The system is initialized with one or more menus having exogenous attributes Xn0. The choices in these menus are denoted as dn0.  
2. A known function (Q) is used for generating menu m with alternative attributes Xnm based on the user’s previous choices 

(dn0,…, dn,m− 1) and attributes (Xn0,…,Xn,m− 1) (where Q(Xnm
⃒
⃒Xn0,…,Xn,m− 1,dn0,…,dn,m− 1) represents the probability of menu Xnm 

conditional on these choices and attributes). 

In recommender systems, the Q function is an assortment optimization that generates a personalized menu of alternatives based on 
the estimated individual-specific coefficients βn and αn. 

Ideally, the likelihood function used in model estimation should include:  

3. The probability of the observed choices conditional on the attributes P(dnm|Xnm, βn,αn) (which depends on the true model 
parameters).  

4. The probability of menu with attributes Xnm conditional on the previous choices and attributes Q(Xnm
⃒
⃒dn0,…,dn,m− 1,Xn0,…,Xn,m− 1): 

This is dependent on the true model parameters only through the choices. 

The joint likelihood of the choices and attributes (up to menu m) is presented in Equation (3). 

P(dn0,…, dnm,Xn1,…,Xnm|Xn0, βn, αn)= P(dn0 |Xn0, βn, αn)Q(Xn1|dn0,Xn0)P(dn1|Xn1, βn,αn)…Q
(
Xnm

⃒
⃒dn0,…, dn,m− 1,Xn0,…,Xn,m− 1

)
P(dnm|Xnm, βn, αn)

(3)  

2.2. Consistent estimation 

When a typical model estimation is done, modeling is often limited to the series of choices, and therefore, the likelihood function (of 
an individual) that is being considered is: 

P(dn0,…, dnm |Xn, βn,αn)=P(dn0, dn1,…, dnm|Xn0,Xn1,…,Xnm, βn, αn)= P(dn0|Xn0, βn,αn)P(dn1|Xn1, βn,αn)…P(dnm|Xnm, βn, αn) (4) 

Although this looks different from the likelihood function shown in Equation (3), this is not always problematic. When the full 
choice history is used, the probability of the recommended alternatives in menu m, conditional on the previous choices, is a constant. 
For example, in a recommender system with a deterministic function Q, given the previous choices and menus presented to an in
dividual, the recommendation becomes deterministic: 
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Q(Xn1|dn0,Xn0)=…=Q
(
Xnm

⃒
⃒dn0,…, dn,m− 1,Xn0,…,Xn,m− 1

)
= 1∀m (5) 

As a result, these constant terms can be dropped from the likelihood without having any effect on the estimation results: 

P(dn0,…, dnm,Xn1,…,Xnm|Xn0, βn,αn)=Constant × P(dn0 |Xn0, βn, αn)P(dn1|Xn1, βn, αn)…P(dnm|Xnm, βn, αn) (6) 

Therefore, the two likelihood functions presented in Equations (3) and (4) are equivalent, and endogeneity is not a concern. This 
shows that using the entire choice history results in consistent estimation results. 

2.3. Inconsistent estimation 

When the likelihood function does not reflect the data generation process, the obtained estimates might be inconsistent. For 
example, when the first menu ({dn0,Xn0}) is excluded from estimation, the correct likelihood function can be derived from Equation 
(3), by integrating the partial likelihood function over the distribution of Xn0 and summing over dn0, as shown in Equation (7): 

P(dn1,…dnm,Xn1,…,Xnm| βn, αn)=

∫

Xn0

∑

dn0

P(dn0|Xn0, βn,αn)Q(Xn1|dn0,Xn0)P(dn1|Xn1, βn,αn)…  

…Q
(
Xnm

⃒
⃒dn0,…, dn,m− 1,Xn0,…,Xn,m− 1

)
P(dnm|Xnm, βn,αn)f(Xn0)dXn0  

= Q
(
Xn1,…,Xnm

⃒
⃒dn1,…, dn,m− 1, βn,αn

)
P(dn1|Xn1, βn,αn)…P(dnm|Xnm, βn, αn) (7)  

where Q(Xn1,…,Xnm
⃒
⃒dn1,…, dn,m− 1, βn,αn) is the marginal probability of observing menus Xn1,Xn2 …,Xnm conditional on the previous 

choices: 

Q
(
Xn1,…,Xnm

⃒
⃒dn1,…, dn,m− 1, βn,αn

)
=

∫

Xn0

∑

dn0

P(dn0|Xn0, βn,αn)Q(Xn1|dn0,Xn0)…Q
(
Xnm

⃒
⃒dn0,…, dn,m− 1,Xn0,…,Xn,m− 1

)
f(Xn0)dXn0 (8) 

Equation (8) shows that when the first menu is excluded from estimation, Xn1,Xn2 …,Xnm depend on βn and αn, resulting in 
endogeneity. In this equation, f(Xn0) is determined by the analyst (or the design of the recommender system). The Q terms cannot be 
treated as constants and dropped from the likelihood as before; they are equal to one only for a specific combination of {dn0,Xn0}

(which yields the observed values of Xn1,Xn2 …,Xnm), and zero otherwise. 
Therefore, when a model is estimated only with a series of choices, similar to Equation (4), the misspecified likelihood function is: 

P(dn1, dn2,…, dnm |Xn, βn,αn)=P(dn1, dn2,…, dnm|Xn1,Xn2,…,Xnm, βn,αn)=P(dn1|Xn1, βn,αn)P(dn2|Xn2, βn,αn)…P(dnm|Xnm, βn,αn)

(9) 

By ignoring the term Q(Xn1,…,Xnm
⃒
⃒dn1,…, dn,m− 1, βn,αn), this estimation will result in inconsistent estimates. 

In conclusion, using the incorrect likelihood function (with only part of the historical data) will result in a dependency of the 
explanatory variables (Xn1,Xn2 …,Xnm) on the individual-specific parameters (βn,αn). The above results can be generalized to conclude 
that excluding any menu (that is used in generating future recommendations) will result in inconsistent estimates. On the other hand, 
using all the data might not be feasible, either because of data availability, or because of computational constraints. In order to address 
the issue of endogeneity, we use a variation of the CF method described in Sections 3.2. 

3. Control-function correction for endogeneity 

Before presenting our methodology, we provide a brief background of the control function method in Section 3.1, which is used 
when one or more explanatory variables are correlated with the error term. This has been extensively discussed in the literature. For a 
more thorough discussion, we refer the reader to Train (2009). 

3.1. Correction for correlation with additive error terms 

The basic version of the CF method addresses correlation between one or more explanatory variables and the error term. For 
explanatory purposes, we consider first the simple utility depicted in Equation (10): 

Ujmn = βyyjmn + XjmnβX + εjmn (10)  

where yjmn is the endogenous variable that is correlated with the error term (εjmn), and Xjmn is a vector of explanatory variables that are 
uncorrelated with εjmn. 

The CF method uses exogenous instrumental variables, Zjmn, which are correlated with the endogenous variable yjmn, but not with 
εjmn to estimate the residuals in the first stage shown in Equation (11). 

yjmn =E
(

yjmn
⃒
⃒Zjmn,Xjmn

)
+ μjmn, (11) 
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where the first term, E(yjmn

⃒
⃒
⃒Zjmn,Xjmn), is uncorrelated with εjmn (because it is a function of the instrument Zjmn, and Xjmn which are 

uncorrelated with εjmn), while the second term, μjmn retains the endogeneity in yjmn. 
The error term (εjmn) can be assumed to consist of two terms as shown in Equation (12): an extreme value error (ε̃jmn), and a 

normally distributed term that is correlated with yjmn, ζjmn (Train, 2009). 

εjmn = ε̃jmn + ζjmn (12) 

ζjmn can be expressed as a function of its mean conditional on μjmn, denoted by E(ζjmn
⃒
⃒μjmn), as shown in Equation (13). This con

ditional expectation is referred to as the control-function, 

ζjmn =E
(
ζjmn

⃒
⃒μjmn

)
+ νjmn (13)  

and is usually assumed to be linear: E(ζjmn

⃒
⃒
⃒μjmn) = λμjmn, which follows from assuming that ζjmn and μjmn are jointly normal with zero 

mean and constant covariance matrix for all j (Train, 2009). When the endogenous variable yjmn is continuous, a linear regression is 
usually used to estimate the residuals, μjmn. The parameters λ are then estimated along with βX and βy by including the control-function 
in the utility equation, as shown in Equation (14): 

Ujmn = βyyjmn + XjmnβX + λμjmn + νjmn + ε̃jmn (14) 

Estimation of a logit mixture model using the utility equation presented in Equation (14) results in consistent estimates of βX and βy 
subject to a scale (and under the linearity assumptions in Equation (13), and the first stage specification in Equation (11)). 

3.2. Correction for correlation with individual-specific parameters 

The simple case presented above assumes that endogeneity arises as a result of the correlation between the endogenous variable(s) 
and the unobserved additive error term. However, in the presence of taste heterogeneity, endogeneity can also arise if the individual- 
specific parameters are correlated with the explanatory variables. In this section, we extend the CF method presented above to the case 
of random coefficients, and correlations between the attributes and the individual-specific effects. In Section 4, we demonstrate that 
this methodology can reduce the bias substantially1 using a Monte Carlo experiment, and result in superior predictions. 

3.2.1. Model specification 
In order to demonstrate the proposed CF correction, we consider the model shown in Equation (1). We can multiply all the elements 

in this equation by exp(αn), in order to obtain error terms that are independently and identically distributed as Extreme Value EV(0,1), 
as shown in Equation (15): 

Ujmn = exp(αn)
(
− Pjmn +Xjmnβn

)
+ εjmn, (15) 

To obtain consistent estimation results, the distributions of heterogeneity need to be uncorrelated with the covariates (see 
Wooldridge, 2015). This is because the integration in Equation (16) requires that the distribution f(βn,αn|γ) does not depend on X.
Ignoring this dependence results in a correlation between the explanatory variables and the error term, and thus endogeneity bias 
might arise. 

P(d|X, γ)=
∫

βn ,αn

P(d|X, βn, αn)f (βn,αn|γ)dβndαn, (16)  

where γ represents hyper-parameters of the joint distribution of βn and αn. 
Since βn are normally distributed with means B, we can express Equation (15) as: 

Ujmn = exp(αn)
(
− Pjmn +Xjmn(B+ νn)

)
+ εjmn (17)  

where νn are normally distributed with means 0 and covariance matrix Ω. In this case, endogeneity is expected if the individual-specific 
parameters, νn are correlated with the explanatory variables, Xjmn. Such cases are frequently observed in traditional choice contexts (e. 
g., individuals with a higher time sensitivity tend to relocate closer to their workplace, resulting in shorter travel times). However, our 
research is motivated by recommender systems,2 in which individuals with a higher preference towards a certain attribute k (i.e., 
individuals with a higher value of νkn) are recommended alternatives having higher values of this attribute. 

Our CF correction uses instruments Zjmn that are correlated with Xjmn, but not with νn. We can carry out the first stage estimation as 
before, and obtain the residuals μjmn: 

1 In this paper, we refer to “bias” as the difference between the true values of the model parameters and their corresponding estimates (i.e., finite 
sample empirical bias).  

2 In recommender systems, the dependence of the distribution of νn on Xjmn is implied by the recommendation function, Q(X| βn) (see Equation 
(8)). 
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Xjmn =E
(
Xjmn

⃒
⃒Zjmn

)
+ μjmn (18) 

In addition to the instrumental variables (Zjmn), this equation includes an intercept and other exogenous variables, if they exist. 
The individual-specific parameters can be expressed as: 

νn =E
(
νn
⃒
⃒μjmn

)
+ ν∗

n (19) 

Afterwards, we can substitute Equation (19) into the utility equation as shown in Equation (20): 

Ujmn = exp(αn)
(
− Pjmn +Xjmn

(
B+E

(
νn
⃒
⃒μjmn

)
+ ν∗

n

))
+ εjmn (20) 

If we assume νn and μjn to be jointly normal, Equation (19) becomes: 

νn = μjnλ + ν∗
n (21)  

where μjn is a vector of residuals over all choice situations (with elements μjmn; m = 1,2,…Mn), and λ is a vector of coefficients to be 
estimated. The model can be simplified by restricting the elements of λ to be the same across all menus (assuming that the menus 
presented to the same individual are similar, which is a reasonable assumption in the long-run operation), which is the same as using 
the mean of μjn across all menus (μjn) in Equation (21). 

Finally, the modified utility equation can be expressed as: 

Ujmn = exp(αn)
(
Xjmn

(
B+ ν∗

n + λμjn
))

+ εjmn (22)  

= exp(αn)
(
Xjmnβ∗

n +Xjmnλμjn

)
+ εjmn  

where β∗
n = B+ ν∗n, which is not correlated with Xjmn (because the instruments Zjn are not correlated with the individual-specific ef

fects). The resulting model is a logit mixture (with random parameters β∗
n), which also includes the control-functions Xjmnλμjn in the 

utility equations. This extends the standard CF method presented in Section 3.1 by including interactions between the residuals and the 
explanatory variables. Since Xjmn includes a vector of ones (to allow for an intercept), λμjn will also be included in the utility equations 
without being interacted with any variables. This is also relevant to recommender systems where we observe correlations between the 
individual-specific intercepts and one or more variables (for example, in a personalized travel advisor, individuals who prefer transit 
might be presented with alternatives having a lower transit cost or time). 

The model can be generalized as suggested by Wooldridge (2015), Train (2009), and Card (1993) to account for more complicated 
cases. For example, if there is a nonzero correlation between βjn and Xj′ mn for j ∕= j′ (i.e., correlation between the preferences towards 
one alternative and an attribute of another alternative), then the conditional expectation of β∗

jn is modeled as a function of μj′ n (i.e., 
generally, the residuals for all alternatives enter the utility for each alternative). 

3.2.2. Model estimation 
The model shown in Equation (22) is a standard logit mixture model, with additional terms in the utility equation multiplied by the 

residuals. Therefore, the model can be estimated using frequentist estimation procedures, such as simulated maximum-likelihood 
(MSL) or Bayesian procedures, such as Hierarchical Bayes (HB)/Gibbs sampling (Train, 2009). In this paper, we use the Hierarchi
cal Bayes procedure described in Train (2009), due to its simplicity and computational efficiency. 

Bayesian estimation is used to replicate maximum likelihood estimates (and standard errors) at a lower computational cost. The 
point estimates of the population means and variances are obtained by averaging the posterior draws of these parameters, which 
pertains to minimizing the quadratic loss function (Koop et al., 2007). Because of the uninformative priors and the large sample size, 
Bayesian and classical estimates are virtually identical, despite their algorithmic differences (Ben-Akiva et al., 2019; Huber and Train, 
2001; Train, 2009), according to the Bernstein-von Mises theorem. Train (2009) shows that the mean of the posterior is equivalent to 
the maximum likelihood estimator, and the standard deviations of the posterior provide classical standard errors for the estimator. 
Huber and Train (2001) extend this result to show that the individual-specific parameters obtained from both estimation methods are 
identical. Therefore, estimation using MSL does not affect the estimation results, and hence the findings of this paper. 

The HB estimator is based on a four-step Gibbs sampler with two embedded Metropolis-Hastings algorithms. The Gibbs steps are: 

1. Step 1: drawing from the conditional posterior of the population means B|Ω∗, ζn, λ using a Normal Bayesian update with un
known mean and known variance, where ζn = [β∗

n,αn] ∼ N(B,Ω∗).3 The conditional posterior is given by Equation (23): 

K(B|ζn∀n,Ω∗, λ)∝f (ζn|B,Ω∗)k(B) (23)  

Where k(B) is a noninformative Normal prior (with a very large variance). A draw from this conditional posterior is obtained by 

sampling from the distribution N
(

ζi− 1
,Ω∗ i− 1

N

)
, where i is an iteration index, and: 

3 Here we assume that B and Ω∗ include also the population mean and variance of the scale parameter. 
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ζi− 1
=

1
N
∑

n
ζi− 1

n (24)   

2. Step 2: drawing from the conditional posterior of the covariance matrix Ω∗|B, ζn using a Normal Bayesian update with known 
mean and unknown variance. The conditional posterior on Ω∗ is given by: 

K(Ω∗|B, ζn∀n, λ)∝f (ζn|B,Ω∗)k(Ω∗) (25)  

Where k(Ω∗) is a Hierarchical Inverted Wishart prior (Huang and Wand, 2013). A draw from this conditional posterior is obtained by 
sampling from the distribution IW(v + N + K − 1,V + 2vD), where: 

V =
1
N

∑

n

(
ζi− 1

n − Bi)( ζi− 1
n − Bi)′

(26)  

and D is a diagonal matrix with diagonal elements element λi which follow the inverse Gamma distribution λk ∼ IG
(

1
2,

1
a2

k

)
. 

The value of v is recommended to be 2 (Huang and Wand, 2013) and ai are parameters specifying how informative the distribution 
is, where larger values lead to arbitrarily weakly informative priors on the corresponding standard deviation term. 

3. Step 3: drawing from the conditional posterior of the individual-specific parameters ζn|B,Ω∗, λ using the Metropolis-Hastings 
(MH) algorithm. For simplicity, we use the random-walk MH algorithm defined in Train (2009). 

A draw from the conditional posterior, ̃ζ
i
n, is obtained as ̃ζ

i
n = ζi− 1

n + ρLη, where L is the Choleski factor of Ω∗ i, η are draws from the 
standard normal density, and ρ is a scalar specified by the researcher, and adjusted within the iterative process to achieve a desirable 
acceptance rate. 

The draw is accepted if: 

L
(
dn
⃒
⃒ζ̃

i
n, λ

i− 1)φ
(
ζ̃

i
n

⃒
⃒Bi,Ω∗ i)

L
(
dn
⃒
⃒ζi− 1

n , λi− 1)φ
(
ζi− 1

n

⃒
⃒Bi,Ω∗ i) ≥ u (27)  

Where u is a draw from the standard uniform distribution. If the new draw is rejected, the previous draw, ζi− 1
n , is maintained. 

4. Step 4: drawing from the conditional posterior of the coefficients that do not vary among individuals, such as λ, using another 
Metropolis-Hastings (MH) algorithm. 

A draw from the conditional posterior, ̃λ
i
, is obtained as ̃λ

i
= λi− 1 + ρληλ, where ηλ is a draw from the standard normal density, and 

ρλ is a scalar specified by the researcher, and adjusted within the iterative process to achieve a desirable acceptance rate. 
The draw is accepted if: 

L
(
dn
⃒
⃒ζi

n, λ̃
i)

L
(
dn
⃒
⃒ζi

n, λ
i− 1) ≥ u (28)  

Where u is a draw from the standard uniform distribution. If the draw is rejected, the previous draw, λi− 1, is maintained. 
In some cases, the number of parameters in λ might be large, due to the presence of multiple endogenous variables. For example, in 

the example we show in Section 4.1, there are 60 additional coefficients to be estimated. Sampling from all of these 60 coefficients at 
once in Step 4 might slow down the convergence of the Gibbs sampler. There are two ways in which this can be addressed (however, it 
is necessary to estimate a full covariance matrix using either method):  

1. Carrying out Step 4 in batches, by dividing the vector of λ’s into multiple vectors, and sampling from each vector separately, or  
2. Modifying Step 1 to include a multivariate linear regression instead of a Normal Bayesian update. This way, we can rewrite the 

model as: 

Ujmn = exp(αn)
(
Xjmnδn

)
+ εjmn (29)  

where: 

δn = β∗
n + λμjn = B + λμjn + ν∗

n (30) 

We need to draw from the conditional posterior of Λ = [B,λ]. Therefore, we construct a matrix of explanatory variables as: 
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Хμ =

⎡

⎣
1 ⋯ μJ1
⋮ ⋱ ⋮
1 ⋯ μJn

⎤

⎦ (31)  

And the individual-specific parameters are specified as a matrix of independent variables: 

Δ=

⎡

⎣
δ11 ⋯ δ1K
⋮ ⋱ ⋮

δN1 ⋯ δNK

⎤

⎦ (32) 

Then we estimate the vector of coefficients, Λ̂, as (Х ′

μXμ)
− 1
Х ′

μΔ. We obtain a draw from the conditional posterior on vec(Λi) as 

N(vec(Λ̂),Ω∗ i− 1⨂(Х ′

μXμ)
− 1
). We carry out Steps 2 and 3 as before, but using the fitted values of δi

n to calculate V in Equation (26) instead 
of Bi (and we adjust the degrees of freedom of the posterior distribution to reflect the dimensionality of the multivariate regression 
model). We also use these fitted values instead of Bi in Equation (27). 

3.2.3. Model application 
This method is able to recover the true population means for the random coefficients (which are the same as the means of β∗

n). 
However, the variances of βn are not directly recovered because we estimate the variances of β∗

n (by conditioning on the control −
function). Since βn is expressed as β∗

n + λμjn, the variability in βn is partially explained by λμjn (which is included in the systematic part of 
the utility equation). Therefore, we expect the estimated variances to be smaller than the true variances of βn (However, the variances 
of βn can be imputed by adding var(λμjn) to the estimated variances of β∗

n). 
This implies that we need to use the control-function residuals in forecasting and model application as proposed by (Guevara and 

Ben-Akiva, 2012). Model application is performed using Equation (33): 

P(jmn = 1|B̂, Ω̂
∗
, λ̂)=

∫

P
(
jmn = 1

⃒
⃒β∗

n,αn, λ̂
)
f
(
β∗

n,αn
⃒
⃒B̂, Ω̂

∗)
dβ∗

ndαn (33)  

where B̂ and Ω̂
∗

are the estimated mean and covariance matrix of β∗
n, and: 

P
(
jmn = 1

⃒
⃒β∗

n,αn, λ̂
)
=

exp
(

V∗
jmn

)

∑Jmn

i=1
exp

(
V∗

imn
)

(34)  

and: 

V∗
jmn = exp(αn)

(
− Pjmn +Xjmnβ∗

n +Xjmn λ̂μjn
)

(35)  

3.2.4. Model consistency 
Model assumptions: According to Wooldridge (2015), the consistency of the CF estimator depends on two assumptions: the first 

stage being correctly specified (Equation (18)), and the linearity assumptions (Equation (21)), which follow from the joint normality 
assumption of the residuals and the individual-specific effects. Previous research using a similar method in the context of a dynamic 
model with non-linear panel data found that the control-function correction substantially reduces bias, but does not completely 
eliminate it (Orme, 2001). 

The proposed method is mechanically similar to the Wooldridge method (Wooldridge, 2005), which is used to address the initial 
conditions problem in nonlinear dynamic panel data mixture models, using an auxiliary distribution of the unobserved individual 
effects which is conditioned on the initial values and exogenous variables. However, in our case, the auxiliary distribution uses the 
estimated residuals instead of the initial values. According to Akay (2012), the Wooldridge method works very well for long panels 
(more than 5–8 periods), but still results in significant bias for shorter panels. 

Model Instruments: In order to apply our CF correction to recommender systems, we need relevant instruments that are correlated 
with the endogenous explanatory variables (i.e., the attributes of the recommended alternatives), but not with the individual-specific 
parameters. In choice-based recommender systems, we propose to use non-personalized recommendations as instruments, representing 
what we would recommend to an average individual (from the same universal sets), without observing their previous choices. These 
instruments can be easily obtained from the recommendation engine, and satisfy both conditions:  

- Exogeneity: since the estimated user-specific parameters are not used in generating these instruments. Unlike the endogenous 
attributes, these instruments are not generated by the function Q(Xnm

⃒
⃒dn1,…, dn,m− 1, βn, αn, Inm), but rather by a similar function 

Q(Znm|B̂, Ω̂, Inm), where Inm is the initial set or inventory of items to recommend from. There are different tests for instrument 
exogeneity proposed in the literature, including the overidentification-based refutability and modified refutability tests, and the 
Hausman test (Guevara, 2018; Hausman, 1978). These tests were originally developed for the correlation with the error term as 
discussed in Section 3.1, but can be extended in future work to account for the correlation with individual-specific effects. 
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- Relevance: non-personalized recommendations are correlated with the endogenous attributes (because they are obtained from the 
same initial set or inventory, Inm). However, in some cases (e.g., if Inm is a large set), weak instruments can result in inconsistent 
estimation and, consequently, invalid statistical inference. To test for this issue, Frazier et al. (2020) proposed a novel test that can 
consistently detect weak identification in commonly applied discrete choice models. 

4. Monte Carlo experiments 

In this section, we present two examples of applying the above methodology to simulated and real datasets. In the first example, we 
use simulated data to show how our control-function correction addresses endogeneity bias. We carry out 30 repetitions, holding the 
sample size and the length of the choice history constant, in order to show that the estimated coefficients are generally centered around 
the true values of the parameters. In the second example, we vary the sample size and the length of the choice history to analyze how 
sensitive are our estimates to these two factors. 

4.1. Example 1: personalized recommendations using Monte Carlo data 

In the first example, we simulate a personalized recommender system following the methodology of (Danaf et al., 2019; Song et al., 
2017, 2018), mimicking the choice of Mobility-as-a-Service (MaaS) plans. This system recommends the “best” alternatives to a user (e. 
g., alternatives that are most likely to be chosen), based on the estimated individual-specific parameters. In a similar application, Danaf 
et al. (2020) showed that the estimates are only consistent if the entire choice history of each individual is included in estimation. In the 
following section, we assume that some observations are excluded from estimation, and then we apply the CF method presented in 
Section 3.2 to correct for endogeneity. 

4.1.1. Data set description 
The Monte Carlo data assumes that 10,000 individuals are presented with 12 successive menus. A sufficiently large sample size is 

used because we are interested in analyzing the consistency of the estimates (lower samples result in larger standard errors, which 
makes it difficult to distinguish bias from statistical discrepancies and simulation errors). While this sample is large compared to 
traditional applications, it is typical in web or app-based contexts such as recommender systems (where the number of users is large). 
In addition, endogeneity bias is not a concern when dealing with small samples, as we can usually include the entire choice history in 
estimation. 

Each menu/choice situation includes three alternatives (different MaaS plans) with varying attributes and an opt-out alternative. 
Each plan has a different monthly price and three attributes: access to transit, access to bike sharing, and the number of on-demand 
trips (e.g., taxi, Uber, Lyft etc.) per month. Table 1 shows the distributions of the attributes in the data. The dependent variable is the 
choice between the three different plans or opting-out (indicating that the individual does not purchase any of the MaaS plans, or 
chooses an outside alternative). 

The utility equations (normalized to the opt-out alternative) are presented in Equation (36): 

Ujmn ≡ − 1×Pjmn + βT,nTjmn + βB,nBjmn + βD,nDjmn + βq,n +
1

exp (αn)
εjmn  

Uopt− out,mn ≡ 0 +
1

exp (αn)
εopt− out,mn (36)  

where:  

• n is an index for users (n = 1,2,…,N), m is an index for menus (m = 1,2,…,Mn), and j is an index for alternatives in the menu (j =

1, 2,…, Jmn).  
• Ujmn represents the utility of alternative j in menu m faced by individual n, and Uopt− out,mn is the opt-out utility.  
• Pjmn is the monthly price (in $100’s) of alternative j in menu m faced by individual n, with its coefficient normalized to − 1.  
• Tjmn, Bjmn and Djmn represent access to transit, access to bike sharing, and the number of on-demand trips per month of alternative j 

with coefficients βT,n, βB,n, and βD,n respectively.  
• βq,n is a constant term for choosing any plan (rather than opting out).  
• αn is a scale parameter (exponentiation used to guarantee that the scale is positive). 

Table 1 
Monte Carlo attributes and levels.  

Attribute Symbol Levels 

Monthly Price P $0 to $480a 

Transit T Available (1) or unavailable (0) 
Bike Sharing B Available (1) or unavailable (0) 
On-Demand Trips D 2 to 12 trips/month  

a Price is positively correlated with all other attributes. 
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• εjmn is an error component following the extreme value distribution (EV(0,1)). 

The model uses the money-metric utility specification as in Ben-Akiva et al. (2019), whereby the price coefficient is fixed to − 1 and 
a scale parameter is estimated. This specification is advantageous because in it all other coefficients represent the willingness-to-pay 
for the corresponding attributes (Train and Weeks, 2005), and because we can directly distinguish the impact of endogeneity on the 
ratio of the model coefficients (Guevara and Ben-Akiva, 2012). Since the price coefficient is fixed, the scale parameter αn can be 
estimated. We can multiply all the elements of Equation (36) by exp(αn) in order to obtain Equation (37), where the error term εjmn is 
distributed as EV(0,1). 

Ujmn ≡ exp(αn)×
(
–1× Pjmn + βT,nTjmn + βB,nBjmn + βD,nDjmn + βq,n

)
+ εjmn  

Uopt− out,mn ≡ 0 + εopt− out,mn (37) 

All coefficients are normally distributed in the sample. The true values of the population means, and inter-consumer covariance 
matrix, are shown in Table 2. The true values of the individual specific coefficients are generated only once from their corresponding 
distributions, and then used in generating the choices in each menu. However, the attributes of the alternatives are different across 
different individuals and different menus. 

The choices are simulated by calculating the systematic utilities (using the true individual-specific coefficients and the attributes) 
and adding EV(0,1) error terms to these systematic utilities to obtain the total utilities. The alternative with the highest total utility is 
chosen. 

4.1.2. Personalized recommendations 
In this section, we use the methodology proposed by Danaf et al. (2019, 2020) and Song et al. (2017, 2018) in order to generate 

personalized recommendations. We assume that each individual is presented with 12 menus, however, we only have access to the last 
four menus. In these menus, the “best” three alternatives are recommended from the universal set. We use menus 9,10, and 11 for 
estimation, and the last menu (12) for validation and model application (discussed in Section 4.1.5) 

The recommended alternatives are determined by the individual-specific parameters estimated using the previous menus (which 
are assumed to be unavailable). These parameters can be obtained using the Hierarchical Bayes (HB)) estimator in Train (2009). We 
first calculate the systematic utility of each alternative in the universal set as per Equation (38), and then recommend the three al
ternatives with the highest systematic utilities. 

V̂jmn ≡ exp(α̂n)
(
– Pjmn + β̂T,nTjmn + β̂B,nBjmn + β̂D,nDjmn + β̂q,n

)
;  

j= 1, 2,…, 10,m = 9, 10, 11 (38) 

In each menu, the choice among the three MaaS plans and opting-out is simulated using the true individual-specific parameters 
(and not their estimates). 

4.1.3. Control-function correction 
As explained in Section 3.2, we use the attributes of non-personalized recommendations as instruments. In order to obtain better 

results, we treat the ranked recommendations for each menu as different alternatives and use the ranked instruments as well. For 
example, P1mn represents the price of the first (best) recommendation, and P3mn represents the price for the third (worst) recom
mendation. We denote the instruments by P1mn, P2mn,…,D2mn,D3mn. This indicates that D1mn represents the on-demand trips corre
sponding to the best recommendation in the non-personalized menu, and D3mn represents the on-demand trips corresponding to the 
worst recommendation in this menu. 

In the first stage, we regress each of the endogenous variables (P1mn,P2mn,…,D2mn,D3mn) on all the instruments (P1mn,P2mn,…,D2mn,

D3mn). For the binary variables (transit and bike-sharing access), we use probit regressions and calculate the generalized residuals 
(Wooldridge, 2015) using the Inverse Mills Ratios obtained from the probit estimates. 

The first stage regressions result in 12 sets of residuals (3 utility equations and 4 endogenous variables) denoted by (μ̂P1mn, μ̂P2mn,…,

μ̂D3mn), which are averaged over all menus of each individual to obtain μP1n,μP2n,…,μD3n. These averaged residuals can be used to model 
the conditional expectation of each individual-specific parameter, as shown in Equation (39), showing an example for the conditional 

Table 2 
True values of the parameters.  

Parameter True mean Covariances 

βT,n βB,n βD,n βq,n αn 

βT,n 1 2 0.7 − 0.5 0 0 
βB,n 0.5 0.7 1.2 − 0.3 0 0 
βD,n 1.5 − 0.5 − 0.3 1.5 0 0 
βq,n − 0.5 0 0 0 1 0 
αn − 0.75 0 0 0 0 0.25  
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expectation of the transit parameter: 

βT,n =BT + νT,n  

= BT +E
(
νT,n

⃒
⃒μP1n, μP2n,…, μD3n

)
+ ν∗

T,n  

= BT + λT1μP1n + λT2μP2n + … + λT12μD3n + ν∗
T,n  

= β∗
T,n + λT1μP1n + λT2μP2n + … + λT12μD3n (39)  

where β∗
T,n = BT + ν∗T,n is distributed across individuals with mean and variance to be estimated, and λT1, λT2,…, λT12 are parameters to 

be estimated as well. We also estimate a full covariance matrix for the distributed parameters {β∗
T,n,β

∗
B,n,β

∗
D,n, β∗

q,n}. The modified utility 
equations are given by Equation (40): 

Vjmn ≡ exp
(
α∗

n + λα1μP1n + λα2μP2n +…+ λα12μD3n
)
×

(
–Pjmn + β∗

T,nTjmn + β∗
B,nBjmn + β∗

D,nDjmn + β∗
q,n +

Tjmn ×(λT1μP1n + λT2μP2n +…+ λT12μD3n)+

Bjmn ×(λB1μP1n + λB2μP2n +…+ λB12μD3n)+

Djmn ×(λD1μP1n + λD2μP2n +…+ λD12μD3n)+

λQ1μP1n + λQ2μP2n +…+ λQ12μD3n) ; j = 9, 10, 11 (40)  

Vopt− out,mn ≡ 0 

Note that we also express the scale and the constant as functions of the residuals, because these are also individual-specific pa
rameters that can be susceptible to endogeneity. 

4.1.4. Results 
The model was estimated using the Gibbs sampler described in Section 3.2.2. A random walk MH was used in the third and fourth 

layers of the Gibbs sampler. We used two million Gibbs iterations which were more than enough to guarantee convergence (according 
to the Gelman and Rubin’s convergence diagnostic, and the Heidelberger and Welch’s convergence diagnostic, which are available in 
the R package ‘coda’, by Plummer et al., 2020). The first million draws were discarded, and each 10,000th draw from the second 
million was saved, to arrive at a final sample of 1000 posterior draws for each estimated parameter. 

The results presented in Table 3 indicate that the CF correction can recover the population means of the transit, bike-sharing, and 
on-demand parameters, in addition to the intercept, as expected. On the other hand, if we do not apply any correction, the parameters 
of transit, bike-sharing, and on-demand will be biased upwards, and statistically different from the true values at the 95% level of 
confidence. We also note that the magnitude of bias (with no correction) decreases as more menus are included. This is consistent with 
the empirical results found by Danaf et al. (2020), Fowkes (2007), Abernethy et al. (2007), and Akay (2012). 

On the other hand, the estimated variances are smaller than the true values as expected (see Section 3.2). This is because the 
estimated variances are those of β∗

n, and not βn. Since βn is expressed as β∗
n + λμjn, the variability in βn is partially explained by λμjn, 

Table 3 
Estimation results: posterior means (and standard deviations in parentheses) with and without the CF correction.  

Population Means  

True Means No Correction (1 menu) CF (1 menu) No Correction (3 menus) CF (3 menus) 

Transit 1.0 2.098 (0.085) 1.105 (0.058) 1.131 (0.034) 0.994 (0.024) 
Bike Sharing 0.5 1.320 (0.093) 0.509 (0.057) 0.604 (0.031) 0.480 (0.022) 
On-Demand 1.5 2.646 (0.125) 1.489 (0.083) 1.694 (0.045) 1.510 (0.033) 
Constant − 0.5 − 2.671 (0.263) − 0.551 (0.107) − 0.342 (0.054) − 0.515 (0.038) 
Scale 0.75 0.033 (0.062) 0.981 (0.093) 0.473 (0.021) 0.724 (0.023)  

Population Variances  

True Variances No Correction (1 menu) CF (1 menu) No Correction (3 menus) CF (3 menus) 

Transit 2.0 3.444 (0.361) 1.08 (0.203) 1.781 (0.097) 0.763 (0.050) 
Bike Sharing 1.2 2.329 (0.264) 1.132 (0.162) 1.324 (0.080) 0.719 (0.042) 
On-Demand 1.5 3.887 (0.682) 1.174 (0.211) 1.548 (0.135) 0.653 (0.067) 
Constant 1.0 32.914 (3.058) 1.067 (0.264) 2.852 (0.236) 0.957 (0.094) 
Scale 0.25 1.066 (0.117) 1.714 (0.335) 0.764 (0.069) 0.537 (0.064)  
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which results in a smaller unobserved variance. Therefore, the variances shown in Table 3 cannot be directly compared to the true 
values shown in Table 2. Even though these parameters are not estimated consistently, this is not problematic because the estimated 
residuals can be used in forecasting, as discussed in Section 3.2.3. This is demonstrated in Section 4.1.5. 

In order to show that the results presented in Table 3 are not accidental, we present the distribution of the estimated means ob
tained from 30 replications from the same data generation process in Figs. 1 and 2. These results indicate that the distributions ob
tained with the CF correction are usually centered around the true values of the estimates, while those obtained without any correction 
are not. 

Finally, in order to estimate the population covariance matrix, we need to account for the variances and covariances implied by 
Equation (39). The variances presented in Table 3 correspond only to β∗

n. The population variances can thus be approximated by adding 
the estimated variances to the variance of λμjn (because they are uncorrelated by construction). The results (with 3 menus) are shown in 
Table 4. 

4.1.5. Model application 
In this section, we apply the estimated model to out-of-sample data using the procedure explained in Section 3.2. We use the 

estimation results with three choice situations per individual (9, 10, 11) in order to predict the choice in the last menu/choice situation. 
Our analysis is based on the log-likelihood and the average predicted probability of the chosen alternative. The results are presented in 
Table 5. In calculating the log-likelihood, we used the posterior means of the estimated parameters (as mentioned in Section 3.2, 
Bayesian estimation is used to replicate maximum likelihood estimates by using uninformative priors). In estimating the conditional 
choice probability and hit-rate, we used all the draws from the posterior distributions of the individual-specific parameters. 

The results indicate that the predictions obtained using the control-function correction are substantially better than those obtained 
without any correction. In addition, these predictions are even better than those obtained using the true values of the population means 
and the covariance matrix. This is because the residuals explain part of the random taste variation, which exploits the information in 
the attributes. These results are similar to the findings of Danaf et al. (2019b), Bhat (2000), and Horsky et al. (2006), who found that 
models with systematic taste heterogeneity (i.e., preference heterogeneity that is explained by covariates) outperform models with 
random taste heterogeneity in terms of predictions. 

Finally, we use our estimates of the individual-specific parameters from the three menus to predict the estimated hit-rate, defined as 
the percentage of cases where individuals chose the alternative with the highest predicted probability. In addition, we compare our 
predictions to those obtained from the individual-specific parameters obtained by conditioning on the true values of the mean and 

Fig. 1. Distribution of the estimates of the population means with and without the CF correction (obtained with 3 menus per individual).  
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covariance matrix and the observed choices. The results in Table 5 also indicate that the CF predictions perform better than the un
corrected model. 

4.2. Example 2: personalized advertisement using a real dataset 

In the second example, we present a case study with a real dataset obtained from the mlogit R package (Croissant, 2014). However, 
we modify the data to introduce endogeneity in the form of personalized advertisement. The original dataset (Jain et al., 1994) 

Fig. 2. Distribution of the estimates of the population means with and without the CF correction (obtained with 1 menu per individual).  

Table 4 
Estimating the covariance matrix (posterior means).   

True Covariance Matrix  Estimated Covariance Matrix 

βT,n βB,n βD,n βq,n αn βT,n βB,n βD,n βq,n αn 

βT,n 2 0.7 − 0.5 0 0 0 βT,n 1.902 0.632 − 0.379 − 0.079 0.003 
βB,n 0.7 1.2 − 0.3 0 0 βB,n 0.632 1.316 − 0.273 − 0.123 0.001 
βD,n − 0.5 − 0.3 1.5 0 0 βD,n − 0.379 − 0.273 1.506 0.036 − 0.096 
βq,n 0 0 0 1 0 βq,n − 0.079 − 0.123 0.036 1.033 − 0.092 
αn 0 0 0 0 0.25 αn 0.003 0.001 − 0.096 − 0.092 0.548  

Table 5 
Predictions on the third menu using models estimated on the first two menus.   

Log-Likelihood Mean Prob. Mean Conditional Prob. Hit-Rate 

Control Function − 7 128.0 0.575 0.686 0.741 
No Correction − 11065.5 0.400 0.561 0.617 
True Values − 10966.2 0.404 0.741* 0.810* 

* The true individual-specific parameters are used in estimating these two values. 
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contains annual scanner data on the purchasing choice between Heinz and Hunts tomato catsup for a panel of 300 households over 
approximately two years. Heinz is the major brand with three different sizes, Heinz 40, Heinz 32, and Heinz 28, with market shares of 
0.065, 0.521, and 0.304, respectively. The other brand is Hunt’s 32 with a share of 0.110. In addition to the price of each alternative, 
the dataset includes two variables: (1) whether there is a special display for brand j (labelled as dispj) and whether brand j had a 
featured advertisement in the newspaper (featj). 

4.2.1. Model estimation 
As in the original paper, we consider the three sizes of Heinz and as three different brands. We use the random coefficients choice 

model shown in Equation (41) to estimate the initial model. The estimation results are shown in Table 6. 

Ujnm = − pjnm + ASCjn + βdisp,n ∗ dispjnm + βfeat ∗ featjnm +
1

exp (α)εjmn (41)  

where:  

• Ujnm is household n’s random utility of alternative j in choice situation m.  
• pjnm is the price of alternative j in choice situation m seen by household n’s. As before, the price coefficient is fixed to − 1 (money- 

metric utility) and a scale parameter (α) is estimated.  
• dispjnm and featjnm are binary variables indicating whether alternative j had a special display or newspaper feature.  
• ASCjn represent household-specific alternative-specific constants (ASCs). The ASC of Hunts catsup is fixed to 0.  
• βdisp,n is a random household-specific coefficient for display. A full covariance matrix is used for the parameters ASCjn and βdisp,n. 
• βfeat and α are the newspaper feature coefficient and the scale parameter respectively. These were not treated as random param

eters, because heterogeneity was found to be insignificant. 

In the initial model estimation, the posterior means of the population variances of the “Featured” coefficient and the scale were very 
close to zero, but their posterior standard deviations were large. In a frequentist context, these variances would be deemed insig
nificant. Therefore, we have dropped them from the model. 

4.2.2. Simulation with endogeneity 
We modify the dataset to introduce endogeneity by making the “display” attribute a function of the household’s previous choices, 

mimicking personalized advertisement. The underlying assumption is that the displayed brands for a particular household are those 
that are most likely of being purchased by this household. 

We use the original dataset to generate simulated data, where we assume that the coefficients estimated in Table 6 are the true 
values. Using these preference distributions, we generate a sample of 5000 households. For these households, we generate two syn
thetic datasets: (1) an exogenous dataset (6 choices per household) used to estimate the household-specific parameters, and (2) an 
endogenous dataset (5 choices per household) in which the display variable is determined by the household’s estimated preferences. 
The display attribute is set to 1 for the two alternatives that are most likely to be chosen by a particular household, based on the 
household’s estimated parameters from the initial dataset. For each household n, we calculate the systematic utility of each brand 
(without the display variable) as shown in Equation (42). Afterwards, the two brands with the highest systematic utilities are assigned 
a display value of 1, and the remaining two are assigned 0. 

V̂ jnm = − pjnm + ÂSCjn + βfeat ∗ featjnm, j = 1, 2, 3, 4 (42) 

As noted in section 2, if we carry out estimation using the two datasets combined, the estimates will be consistent. However, if we 
carry out estimation using the endogenous dataset only, we observe substantial bias as shown in Table 7. The parameter of display has 
a positive bias, and the scale parameter has a negative bias. 

4.2.3. Control-function correction 
As in the previous example, we can apply the CF correction described in Section 3.2 to address endogeneity. However, in this 

example, the only endogenous variables are dispjnm. The instruments can be obtained using Equation (32), but substituting the esti

mated household-specific parameters ÂSCjn by the estimated population parameters ̂ASCj, in order to obtain what would have been 
displayed to an average household. As explained before, these instruments are correlated with the personalized display variable (because 
both are partially determined by the price and feature attributes), but not with the estimated household-specific parameters. The 
residuals of the four display attributes (for each alternative) are then obtained from probit regressions where the display variables (for 

Table 6 
Posterior means for the catsup dataset (standard deviations are shown in parentheses).   

ASC - Heinz41 ASC - Heinz32 ASC - Heinz28 Display Featured Scale 

Population means 1.236 1.184 1.951 0.583 0.651 0.681 
Population variances 1.665 1.492 1.362 0.243 (No significant heterogeneity)  
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each alternative) are the dependent variables, and the instruments are the independent variables. The vector of residuals, referred to as 
μ̂n, constitutes of the four residuals {μHeinz41, μHeinz32, μHeinz28, μHunts32} averaged over the household’s choice situations. The modified 
utility equations are shown in Equation (43). 

Vjnm =
(
− pjnm +ASCjn + λj μ̂n +

(
βdisp,n + μ̂n

)
∗ dispjnm + βfeat ∗ featjnm

)
∗ exp (α) (43) 

As explained in Section 3.2, the control function term is not only included as a separate term in the utility equation, but also 
interacted with the display attribute, dispjnm. 

The model is estimated using the same Gibbs sampler explained in Section 3.2.2, and convergence is checked using the Gelman and 
Rubin’s convergence diagnostic, and the Heidelberger and Welch’s convergence diagnostic, which are available in the R package 
‘coda’. 

Similar to the above example, we used two million draws, from which we discarded the first one million, and saved every 10,000th 

draw from the remaining million. The estimation results shown in Table 7 indicate that the CF correction reduces the bias substantially, 
but does not completely eliminate it. In the following section, we assess the performance of this method to different sample sizes and 
panel lengths (choice histories). 

4.2.4. Varying sample and history size 
In the above example, we used a sample size of 5000 individuals, and a history of 5 choices per individual. In this section, we 

Table 7 
Posterior means using the endogenous dataset using the uncorrected model and the CF correction (standard deviations in parentheses).   

ASC - Heinz41 ASC - Heinz32 ASC - Heinz28 Display Featured Scale 

Population Means 
True values 1.236 1.184 1.951 0.583 0.651 0.681 
CF Correction 1.213 (0.028) 1.130 (0.024) 1.945 (0.026) 0.692 (0.036) 0.660 (0.026) 0.652 (0.018) 
Uncorrected 1.331 (0.044) 1.233 (0.036) 2.011 (0.038) 1.813 (0.059) 0.624 (0.034) 0.298 (0.022) 
Variances (imputed for the CF correction) 
True values 1.665 1.492 1.362 0.243 No heterogeneity 
CF Correction 1.511 (0.056) 1.373 (0.039) 1.340 (0.042) 0.424 (0.038) 
Uncorrected 2.535 (0.157) 2.043 (0.116) 1.844 (0.121) 0.737 (0.074)  

Fig. 3. Sensitivity analysis with respect to sample and history size: posterior means of the population means.  
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consider additional samples of 3000 and 10,000 individuals, and for each of these samples, we consider a choice history of 3, 5, or 10 
choices. 

The results of these estimations are shown in Figs. 3–5. These results indicate that endogeneity introduces significant bias not only 
in the coefficient of the endogenous variable, but in most of the other population means, variances, and in the scale parameter. They 
also confirm the results of Danaf et al. (2020), which showed that bias tends to decrease with longer choice histories. 

The control-function correction reduces the magnitude of bias substantially across most parameters. However, bias is still present 
even after correction, especially with very short histories (M = 3). With 10 choices per individual, the magnitude of bias is negligible 
and not statistically significant for most of the estimated parameters. These results are also consistent with the findings of Orme (2001), 
who found that a control-function correction reduced bias substantially in dynamic non-linear panel data models, but did not 
completely eliminate it. 

These results are also consistent with the findings of Akay (2012), who found that the Wooldridge method works very well for 
panels of moderately long duration (longer than 5–8 periods) in dynamic panel data models. The latter study also concluded that the 
performance of the Wooldridge method for short panels may be highly sensitive to the specification of the auxiliary distribution of the 
unobserved individual-effects and the explanatory variables entering into the specification, which in our case, are the estimated 
residuals. 

In both examples discussed in Sections 4.1 and 4.2, the CF correction reduces the bias substantially. This is also the case even when 
the estimated individual/household-specific parameters are obtained from a misspecified model (for example, if these are estimated 
using an endogenous dataset instead of an exogenous one), as long as the correlation between the instruments and the endogenous 
variables is maintained. 

5. Discussion 

The method presented in Section 3.2 corrects for endogeneity bias resulting from the correlation between the explanatory variables 
and the individual-specific effects. Recommendation systems and personalized advertisement are common examples of the latter case 
because individuals with a higher preference for a specific attribute are more likely to be presented with alternatives having higher 
values of this attribute. The CF correction described in Section 3.2 can apply to various contexts when relevant instruments are 
available. For example, in travel mode choice, individuals with a higher time sensitivity might choose to live near their workplace, 
resulting in lower travel times. 

Most of the control-function applications in discrete choice models are not suitable for addressing this issue, because they consider 
only correlations between one or more attributes, and the unobserved error term εjmn. However, it is not sufficient to include the 
residuals in the utility equations in such cases; both the residuals and their interactions with the attributes should be included. 

5.1. Consistency of the estimates 

The proposed control-function method reduces the observed bias in the parameter estimates substantially. However, according to 
Wooldridge (2015), the consistency of the CF estimator depends on two assumptions: the first stage being correctly specified (i.e., 
Equation (18)), and the linearity assumptions in Equation (21). 

In the above examples, we used a linear specification in the first stage for continuous attributes, and a probit model for binary 
attributes. However, more flexible specifications can be adapted in order to exploit the information in the exogenous instruments 
(including non-linearities) while avoiding overfitting, such as random forests. Future research should look into flexible specifications 
of the first stage that improve the consistency of the control-function estimator. 

Finally, in the above applications, we used the attributes of non-personalized recommendations (e.g., recommendations to an 

Fig. 4. Sensitivity analysis with respect to sample and history size: posterior means of the fixed parameters.  
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average individual) as instruments. This is relevant for this specific example because these instruments are correlated with the at
tributes of the recommended alternatives (both recommended sets are generated from the same inventory), and uncorrelated with the 
individual-specific effects. However, in some cases, non-personalized recommendations might result in weak instruments, because of 
large heterogeneity, or large cardinality of the inventory. Future work should look into extensions of statistical tests of relevance and 
exogeneity, to the context discussed in this paper. 

5.2. Simultaneous estimation 

The CF method described above can be estimated simultaneously in order to recover the correct standard errors directly (from the 
inverse of the information matrix in frequentist estimation, or as the posterior standard deviations in Bayesian estimation). Sequential 
estimation usually underestimates the standard errors because the residuals used in the second stage are estimated in the first stage 
(Guevara and Hess, 2019; Villas-Boas and Winer, 1999). 

Bootstrapping and the delta method can be used in order to estimate the standard errors with sequential estimation. However, 
Bootstrapping is computationally expensive especially in logit mixture models (which require simulation using HB or Maximum 
Simulated Likelihood (MSL)). In addition, simultaneous estimates would still be more efficient (smaller standard errors), assuming the 
model captures the true data generation process, because they can attain the Cramér–Rao lower bound. 

We can use the approach proposed by Villas-Boas and Winer (1999) and Park and Gupta (2009) which is the simultaneous esti
mation of the first stage and the choice model. In Bayesian estimation, the first stage regressions are included in the Gibbs sampler and 
residuals are updated at each iteration. 

5.3. Alternative methods 

In the context of recommendation systems, the CF method described in this paper is only relevant when the historical data cannot 
be included in estimation. As demonstrated by Danaf et al. (2020), correction is not needed when the entire choice history of each 
individual can be used. However, in such systems, the number of individuals and choices per individual can be large, resulting in 
computational constraints. In addition, Danaf et al. (2020) show that with large enough panels (i.e., number of observations per in
dividual), the bias diminishes to negligible levels. 

An alternative method would be to use a full information maximum likelihood estimator, by modeling the choice probability and 
recommendation probability jointly. This involves approximating the expression in Equation (8), in order to model the probability of 

Fig. 5. Sensitivity analysis with respect to sample and history size: posterior means of the population variances.  
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recommending attributes Xm conditional on the individual-specific parameters βn (for example, we can use a choice model repre
senting the recommender system’s choice of recommendations from the initial inventory). Ongoing research is focusing on exploring 
alternative correction methods and comparing them to CF estimators. 

6. Conclusion 

This paper presented a control-function correction for endogeneity that arises in random coefficients models as a result of corre
lation between the explanatory variables and the individual-specific parameters. This method extends the standard CF method by 
including interaction terms between the first stage residuals and the explanatory variables. 

In such cases, relevant instruments need to be correlated with the explanatory variables, but not with the individual-specific co
efficients. In our application to a choice-based recommender system, we used non-personalized recommendations as instruments. This 
can be extended to other contexts. For example, in endogenous SP designs (e.g., SP profiles that are constructed based on RP data), the 
instruments can either be the RP attributes (as proposed by Guevara and Hess (2019)), or profile attributes that are generated to an 
average individual for a similar choice situation. 

While this method results in good estimates of the population means, the original covariance matrix is not consistently estimated. 
The estimated variances are deflated because part of the inter-consumer heterogeneity is explained by the residuals. However, this is 
harmless because we can include the residuals in forecasting and model application. Our simulation results show that using residuals in 
model application can even outperform the predictions of the true parameters. In addition, we can recover the true variances from the 
estimation results as demonstrated in Section 4.1.5. 

One of the main limitations of this method is that it assumes that the parameters are normally or log-normally distributed. Future 
research should focus on extending the CF method or proposing new methods that can deal with other mixing distributions. Another 
limitation of this method is that in some cases, it might require the estimation of too many auxiliary parameters. In the Monte Carlo 
experiment presented in Section 4.1, 60 additional parameters were estimated even though there were only four endogenous variables. 
In some cases, this might require larger sample sizes, and result in longer estimation times. 

In ongoing research, Xie et al. (2022) are applying a similar control-function correction to the case of dynamic choice models with 
preference heterogeneity (where the utility of an alternative at a given time period depends on the individual’s choice at the previous 
time period), as an alternative to the Wooldridge (2005) and Heckman (1978) corrections. The CF method and the Wooldridge method 
exhibit some similarities when there is a single continuous endogenous variable; in both cases, the random parameters are expressed as 
a function of exogenous variables or instruments derived from these exogenous variables. Our preliminary results in Monte Carlo 
experiments indicate that both methods result in similar parameter estimates with reduced bias (compared to the uncorrected model). 
However, the CF method results in smaller standard errors. 
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