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A B S T R A C T   

Revealed and stated choice data are fundamental inputs to understanding individuals’ prefer-
ences. Owning to the distinctive characteristics and complementary nature of these two types of 
data, making joint inference based on their combined information content represents an attractive 
approach to preference studies. However, complications may arise from the different decision 
protocols under the two distinct choice contexts. In this study, a Bayesian hierarchical model is 
proposed to make joint inference from combined RP and SP data, with special attention paid to 
capturing the behavioural differences between the two choice contexts. In addition to the well- 
recognised issues of decision inertia and scale differences, the proposed model also takes into 
account other behavioural characteristics such as a decision-maker ignoring situation constraints, 
non-attending attributes, and misinterpreting attributes. An empirical analysis of a combined RP 
and SP dataset of travel mode choices is used to demonstrate the advantageous features of the 
model. Upon examining the empirical evidence, two main advantages emerge: the model provides 
direct measures of the effect of behavioural issues arising from ignoring situation constraints and 
non-attending attributes, as well as evidence for the misinterpretation of attributes.   

1. Introduction 

The modelling and inference of individuals’ preferences are fundamental in many areas of research. In transport, the analysis of 
travellers’ mode choices provides valuable information for designing policies, evaluating projects and managing infrastructure (e.g., 
Bhat 1997; Miller et al. 2005; Vij et al. 2013; Ye and Titheridge 2017). In marketing, the investigation of consumers’ preferences for 
brands or products is central to predicting purchase intent and uncovering market dynamics (e.g., Guadagni and Little 1983; Andrews 
and Srinivasan 1995; Cobb-Walgren et al. 1995; Erdem and Keane 1996; Shin et al. 2012). In labour economics, the study of the factors 
related to work participation is fundamental for understanding workforce diversity (e.g., Baanders 2002; Broadway et al., 2017; Garcia 
et al., 2018). In health and environmental economics, the understanding of the public’s attitudes and preferences is essential for 
evaluating health or environmental programs (e.g., Adamowicz et al., 1997; Whitehead et al., 2008; Mentzakis et al. 2011; Andersson 
et al. 2016). 

In the aforementioned contexts, the collected data normally consist of observations of individual choices. Depending on how choice 
outcomes are obtained, data are typically categorised into two types: Revealed Preference (RP) data contain the observed choices of 
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individuals making actual choices, whereas Stated Preference (SP) data contain the choices made by individuals under hypothetical 
and controlled situations. Numerous researchers claim that RP data are more reliable than SP data because they represent actual choice 
situations, whilst the validity of the inferred preferences based on SP data alone may be questionable because of their hypothetical 
nature (e.g., M. Ben-Akiva et al., 1994; Louviere et al., 2000; Hensher et al. 2005). It is worth noting that RP data can also be imperfect, 
for example decision-makers may not know the exact attribute values of non-chosen alternatives (e.g. the travel time of the non-chosen 
bus and the towing capacity of the non-chosen SUV). Despite the known limitations of SP data, they have played and will continue to 
play an important role in preference studies and are accepted as a valid method for understanding preference behaviour. Their 
popularity is related to having a complementary nature to RP data, an ability to explicitly vary attribute values across alternatives, an 
advantage derived from designed experiments typical of SP studies, and being an ideal method for obtaining information on prefer-
ences for currently unavailable market offerings. 

Due to the complementary nature of RP and SP data, making joint inferences from combined RP and SP data has emerged as an 
attractive approach to preference studies (M. Ben-Akiva et al., 1994; Brownstone et al. 2000; Bhat and Castelar 2002; Hensher et al. 
2008; Cherchi and Juan de Dios Ortúzar, 2011). Combining RP and SP data allows inferences to be made based on all available in-
formation and leads to increased sample size and outcome robustness. However, additional challenges arise from making joint in-
ferences, with two widely recognised issues being decision inertia and scale difference (Moshe Ben-Akiva and Morikawa, 1990; Bradley 
and Daly 1997; Brownstone et al. 2000; Morikawa et al. 2002; Cherchi and Juan de Dios Ortúzar, 2006; Börjesson 2008). Decision 
inertia — or state dependence —refers to the tendency of individuals to repeat the same choice: for example, SP choices may be 
influenced by familiarity with previously chosen alternatives or repetition of recent RP choices. Scale differences refer to the 
magnitude of utility coefficients being different: for example, SP estimated parameters may differ from RP estimated parameters not 
only because of an actual difference, but because of differences in the number of omitted factors affecting the choice across the RP and 
SP contexts — thus affecting the scale of the parameter estimates. 

The decision inertia of decision-makers is usually captured within the utility function by incorporating an indicator variable that, 
for example, takes value one if the current choice in the SP data was also chosen by the same individual in the RP data — and 
essentially enables the testing of significance of the influence of one choice on the other. In contrast, scale difference is usually captured 
by normalising to the scale of the RP data and estimating de facto the ratio of the scale parameters that captures whether the SP data 
have less or more variance. While the consideration of decision inertia and scale difference represents an important aspect of pref-
erence studies from combining RP and SP data, additional features should also be considered when making joint inference. 

Conceptually, the aforementioned issues arise from one fundamental source — the differences in choice behaviour under con-
trasting situations. For example, decision inertia arises when an individual’s decision protocol under hypothetical situations minimises 
the cost of evaluating unfamiliar information — instead relying more heavily on past choice behaviour. In another example, scale 
differences arise when different sets of attributes are employed for uncovering preferences. Both of these examples highlight the 
underpinning nature of preference studies, namely that the heterogeneous behaviour of individuals requires careful capturing and 
modelling of complex decision making. 

However, these two issues do not cover the gamut of issues from combining SP and RP data, and the present study contributes to the 
literature by delving into the details of how behavioural differences in the two contrasting choice contexts can be better captured in a 
model. Specifically, the present study combines serval well-established modelling techniques and proposes a modelling framework 
that accounts not only for the vastly investigated issues of decision inertia and scale differences, but also for the largely overlooked 
issues of decision-makers ignoring situation constraints, non-attending attributes and misinterpreting attributes. These issues have 
been long suspected to emerge from the two choice contexts on a conceptual level (Morikawa et al. 2002; Ben-Akiva et al., 2019), but 
have not been tackled in an integrated statistical model. 

The remainder of the paper is organised as follows. Section 2 describes the behavioural constructs and underpinnings that motivate 
the model. Section 3 introduces the utility functions and the Bayesian estimation procedure of the model. Section 4 illustrates the 
application of the proposed model using a joint RP and SP travel mode choice dataset. Section 5 draws conclusions from the study and 
proposes further research avenues. 

2. The conceptual framework 

Given the differences between the RP and the SP choice contexts, any model seeking to make joint inferences from a combined 
dataset should account for the potential deviations of individuals’ choice behaviour from their underlying preference. With this 
premise, a natural starting point for the present study is to look at the behavioural perspective by identifying major differences and 
their potential impact on inferred preferences, and the modelling perspective by designing a strategy that addresses unexplored issues. 

2.1. Behavioural perspective 

From the behavioural perspective, five potential discrepancies have been identified to exist between the decision protocols in SP 
and RP contexts (Morikawa et al. 2002).  

1) Respondents tend to make the same choice.  
2) Questionnaires are used as opinion statements.  
3) Situation constraints are ignored.  
4) Respondents only consider the most important attributes. 
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5) Attributes are misinterpreted. 

Given these discrepancies, the preferences inferred from SP contexts could differ from those extracted from RP contexts, and the 
estimated parameters from SP choices (and hence from combined SP and RP choices) could be biased. Consequently, an important 
feature of a joint modelling framework is the ability to account for the potential biases arising from these discrepancies. Arguably, a 
joint modelling framework would be desirable that can disentangle the possible biases originated from the different discrepancies. 

Let us first examine the five discrepancies. Decision inertia corresponds clearly to the first one, whereas scale difference corre-
sponds reasonably to a blending of the remaining four. The second discrepancy describes bias that might arise from respondents 
overstating their preference for one alternative over the others in order to promote its acceptance, support or realisation. The third 
discrepancy relates to bias from a hypothetical choice construct; as examples, a decision-maker does not experience congestion in a 
hypothetical route choice nor does a decision-maker bear the financial burden in a hypothetical vehicle purchase. The last two dis-
crepancies describe possible biases that might arise from respondents avoiding the high cost of acquiring information about alter-
natives in RP and SP contexts, and difference in included and omitted attributes across both contexts. Accordingly, the attributes 
considered in the SP and RP contexts may be different across decision-makers because of behavioural and specification reasons: (i) 
influential attributes may differ across choice contexts from a behavioural perspective; (ii) an SP choice experiment may include 
irrelevant but covarying attributes, or may omit important attributes. The potential impact of non-attended attributes are typically 
absorbed by the model error term, and hence a variance (scale) difference for the error terms would emerge in addition to differences in 
the magnitudes of estimated model parameters. 

A desirable joint modelling framework should address the use of questionnaires as opinion statements to correct for biases towards 
an alternative, should consider situation constraints that affect choices in the RP situations (but are ignored in the SP context), and 
should correct for the omission and/or misinterpretation of attributes when the model specification across the SP and RP attribute sets 
are different. In a nutshell, the list of discrepancies provides a roadmap for the modelling strategy presented in the following section — 
and is the motivation for exploring the model specification and empirical testing described in this paper. 

2.2. Modelling perspective 

From the modelling perspective, the list of behavioural discrepancies translates to model features that aim to capture biases and 
scale differences. Given this behavioural roadmap, we describe a modelling approach that requires four features.  

1) An indicator variable is used to capture decision inertia.  
2) A scale parameter is used to capture scale difference.  
3) Alternative-specific intercepts are used to allow for adjustments of bias that arise from decision-makers using questionnaires as 

opinion statements and from ignoring situation constraints.  
4) Parameter expansion for all attributes as a product of a random indicator parameter and a magnitude parameter allows adjustments 

of bias from non-attendance and/or misinterpretation of attributes. 

The first three model features are extracted from the existing literature. The first feature introduces an indicator that captures the 
decision inertia in the SP situations. The second feature establishes an indicator that accounts for differences in the variance of the 
error term and the unobserved utilities between the SP and RP data. And the third feature uses alternative-specific intercepts with the 
idea of correcting the bias for alternatives that are chosen to promote their acceptance and realisation (using questionnaires as opinion 
statements), as well as bias that might arise from ignoring the situation constraints not present in SP contexts. Specifically, the in-
tercepts correct for the excess utility arising from these two biases. 

The last model feature allows for the expansion of each parameter to capture additional choice complexity — akin to how a zero 
inflated model captures a dual state process in count data. To do this, an individual-specific indicator parameter captures the existence 
of influence of the attributes, while a magnitude parameter captures the level of non-zero attribute effects. The indicator parameter is 
estimated to correct for the bias from non-attendance of attributes, by estimating not only which attributes have been considered in the 
choice contexts, but also to which extent. Specifically, a prior distribution is assigned to all individual-specific indicator parameters in a 
Bayesian hierarchical framework to capture the relative importance of each attribute in terms of the probability of being considered in 
the choice context. The magnitude parameter captures the non-zero effect of each attribute and corrects for the bias from misinter-
preting the attribute by separating non-attendance from the non-zero effect of the parameter. From a methodological point of view, the 
way of using indicator variables is similar to that in Bayesian variables selection (O’Hara and Sillanpää 2009). However, it will be 
demonstrated that important and novel interpretations regarding the behaviour of respondents can be derived when it is used in the 
decision-making contexts. 

To summarise, the model contains four features that correct for the biases from the five behavioural discrepancies: the first feature 
corrects for choice inertia, the second feature captures scale differences, and the third feature captures situation constraints, whilst the 
fourth feature captures attribute non-attendance and misinterpretation. 

3. Model specification 

The foundational model specification is the mixed logit commonly used for discrete choice modelling (McFadden 1974). In both the 
frequentist and Bayesian approaches, the probability Pnit of individual n choosing alternative i on choice occasion t is expressed as a 
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function of unknown parameters β and explanatory variables X. Given the dataset D = {Y,X} that includes choice outcomes Y, the 
probability P(Y|β,X) of the observed sequence of all individuals’ choice outcomes in all choice occasions given D and β is expressed as 
follows: 

P(Y|β,X)=
∏N

n=1

∏T

t=1

∏I

i=1
[Pnit(Y|β,X)]

ynit (1)  

where ynit is a choice indicator variable (equal to one when individual n chooses alternative i in choice occasion t, and zero otherwise), 
N is the number of individuals, T is the number of choice occasions, and I is the number of alternatives, respectively. 

Furthermore, the probability Pnit(Y|β,X) of individual n choosing alternative i on choice occasion t is expressed as: 

Pnit(Y|β,X)=
eVnit (β,X)

∑I

i=1
eVnit(β,X)

(2)  

where Vnit(β,X) is the deterministic part of the utility function. The functional form of Vnit(β,X) may be assumed to be linear: 

Vnit(β,X)= β
′

niXnit (3)  

where the elements of column vector βni are parameters that are specific for individual n and alternative i, and the elements of column 
vector Xnit are the corresponding explanatory variables that are specific for individual n and alternative i on occasion t. The size of both 
column vectors equal to M+1, where M is the number of attributes. 

3.1. The utility function 

Eqs. (1)–(3) as a whole form the core of the likelihood function of the observed choices. In light of the conceptual background from 
the behavioural and modelling perspective, modifications to the utility function in eq. (3) are made to accommodate the aforemen-
tioned four behavioural features. 

The first two features correct for decision inertia and scale differences (Brownstone et al. 2000; Bhat and Castelar 2002), and the 
utility function Vnit(β,X) is modified from eq. (3) by considering scale parameters λnt and inertia parameters θni: 

Vnit(β,X)= λntvnit(β,X) (4)  

λnt =DRP
nt + λ

(
1 − DRP

nt

)
(5)  

vnit(β,X)= β
′

niXnit + θni
(
1 − DRP

nt

)
1{∑T

t=1
DRP

nt ynit>0

} (6) 

In eq. (5), DRP
nt is an indicator variable (equal to one if the observation of individual n on occasion t is made in an RP context, and 

zero otherwise), and λ is a parameter that allows for the scale of the utility to deviate from one for the RP data to λ for the SP data. In eq. 
(6), the utility vnit(β,X) of alternative i for individual n on occasion t in SP contexts is adjusted by an amount equal to θni if individual n 
has chosen alternative i at least once in the RP situation (as expressed by the term 1

{
∑T

t=1
DRP

nt ynit>0}
). An alternative method for dealing 

with decision inertia could be the use of autocorrelated error terms as in Allenby and Lenk (1994). 
The third model specification feature corrects for the bias from using questionnaires as opinion statements and ignoring situation 

constraints. Both behavioural discrepancies are at the root of possible bias that might shift upwards the latent utility of the affected 
alternatives with respect to the utilities of the unaffected alternatives, regardless of the values of the attributes considered in the utility 
function. These shifts in the latent utilities reflect changes in the values of the intercepts when making choices across the RP to the SP 
contexts, and importantly, these changes can affect not only the relative scale of the latent utilities, but also their ordering. The 
proposed model accounts for these changes with intercepts that (i) are allowed to vary based on the observation being in the RP or the 
SP data, and (ii) are alternative-specific. The utility function vnit(β,X) is then modified as follows: 

vnit(β,X)= βRP
0niD

RP
nt + βSP

0ni

(
1 − DRP

nt

)
+ β

′

1niXnit  

+θni
(
1 − DRP

nt

)
1{∑T

t=1
DRP

nt ynit>0

} (7)  

where the elements of the vector βni are separated into two components: the intercepts and the parameters associated with the 
explanatory variables (the attributes). The intercepts are further decomposed into the individual and alternative-specific intercepts βRP

0ni 

and βSP
0ni (for the RP and SP data, respectively). The remaining parameters associated with the attributes are elements of the M× 1 

vector β1ni. 
The fourth model specification feature corrects for the bias arising from non-attendance or misinterpretation of attributes. An 

attribute might be considered only in the RP or SP contexts, or both, although its impact might be different across the RP and SP 
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contexts. It should be noted that attributes might capture situation constraints as well: imagine for example income being captured in 
both RP and SP data, but being more influential in RP choices than in hypothetical SP choices. The proposed model accounts for the 
possible non-attendance and misinterpretation of attributes by redefining each parameter for each attribute as the product of an in-
dicator parameter (capturing the attendance of the attribute in the individual’s choice process) and a magnitude parameter (isolating 
the effect of the corresponding attribute): 

vnit(β,X)= αRP
0i IRP

0n DRP
nt +αSP

0i ISP
0n

(
1 − DRP

nt

)
+ α′

1iInXnit  

+αθiIθn
(
1 − DRP

nt

)
1{∑T

t=1
DRP

nt ynit>0

} (8)  

where the intercepts βRP
0ni and βSP

0ni are expressed as the product of the respective indicator parameters IRP
0n and ISP

0n (taking value zero or 
one) and the respective magnitude parameters αRP

0i and αSP
0i , the parameters associated with the attributes formulated as the product of a 

M × M diagonal matrix In of indicator parameters and the respective M × 1 vector α1i of magnitude parameters for all the attributes, 
and the inertia is captured with the product of the inertia indicators Iθn and the inertia magnitudes αθi.1 It should be noted that, for 
notational simplicity, α1i and In denote vectors and matrices containing both the RP and the SP parameters: the number of the cor-
responding explanatory variables and the observations for each variable are hence doubled approximately, and the variables corre-
sponding to an RP-specific parameter have value zero for SP observations, and vice versa. 

Notably, combining the utility function in eq. (8) with the probability formulations in eqs. (1) and (2) provides the probability of 
the observed sequence of RP and SP choices while having all the four model features incorporated to capture the five behavioural 
discrepancies. 

3.2. Prior specifications 

The proposed model is estimated in a Bayesian framework that requires the specification of prior distributions. A hierarchical prior 
structure is also needed to shift the focus of the inference since preference studies usually focus on the population rather than the 
individual level.2 Moreover, a hierarchical prior over individual specific parameters allows us to impose parameter restriction that is 
beneficial for both model estimation and inference. 

The prior structure applies to the population distributions for the context-specific magnitude parameters (αRP
0i , αSP

0i , α1i, and αθi) and 
individual-specific indicator parameters (IRP

0n , ISP
0n, IN, and Iθn) in the utility function vnit(β,X) presented in eq. (8). It should be noted that 

we refer to a mixed logit model, in that the population distribution is obtained from the individual-specific or context-specific pa-
rameters rather than the traditional parameterisation most commonly described in the literature. 

For the context-specific magnitude parameters, the idea is to infer the effect of any attribute on individuals’ decision process under 
the assumption that there is a certain level of attendance of the attributes captured by the indicator parameters. The magnitude pa-
rameters for each attribute are assumed to be different across the RP and SP data, although it is possible that they are invariant in cases 
when behavioural discrepancies do not manifest across the two contexts. The priors are assumed not only to be different for the RP and 
SP data, but also specific to each attribute and each alternative. Moreover, the following distributions are assumed for population 
parameters: normal distributions (N ) for real valued parameters, inverse gamma distributions (I G ) with the scale parameter for 
positive real valued parameters, and beta distributions (Beta) for parameters taking values between zero and one. These distributions 
are the standard conjugate priors, and other alternative distributions can be found in the works of Gelman (2006), Gelman et al. (2013) 
and Huang and Wand (2013). 

For the individual-specific indicator parameters, the aim is to infer whether an attribute is attended in an individual’s decision 
process. The indicator parameters for each individual and each attribute are assumed to be the same across alternatives: two indicator 
parameters are generated for each individual from two independent population distributions, one for RP data and the other for the SP 
data. This specification accommodates potential differences in the sets of attributes that could be related to the individuals’ choices 
under different situations, thus correcting for not only attribute non-attendance, but also situation constraints. The priors are assumed 
to be independent across the RP and SP data, and Bernoulli distributions (B ) are used as the population distributions of the two 
indicator parameters. 

Given the model specification and desire for computational efficiency, the hierarchical priors in the proposed model take the 
following specification: 

pmd ∼ Beta(ap
md, b

p
md) m∈{0,…,M}, d ∈ {RP, SP} (9) 

1 In a related study (Gilbride and Allenby 2004), similar indicator parameters are used for the purposes of selecting alternatives instead of the 
attributes of alternatives. In our case, the indicator parameter associated with each attribute is used to identify the existence of the impact of that 
particular attribute on the probability of the chosen alternative, whereas in their case, the indicator parameter is included to identify the existence of 
the effect of each alternative’s utility on the chosen alternative.  

2 Henceforth, population distribution will refer to the distribution of individual-specific or context specific parameters: “population” does not 
mean all the individuals in a sample or in any larger scope. 
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μ0di ∼ N (μμ
0di, σ

μ
0di) d ∈{RP, SP}, i ∈ {1,…, I} (10)  

σ0di ∼ I G
(
aσ

0di, b
σ
0di

)
d ∈{RP, SP}, i ∈ {1,…, I} (11)  

μmi ∼ N (μμ
mi, σ

μ
mi) m∈{1,…,M}, i ∈ {1,…, I} (12)  

σmi ∼ I G
(
aσ

mi, b
σ
mi

)
m∈{1,…,M}, i ∈ {1,…, I} (13)  

λ
⃒
⃒aλ, bλ ∼ I G

(
aλ, bλ) (14)  

Id
mn ∼ B (pmd) m∈{0,…,M}, d ∈{RP, SP}, n ∈ {1,…,N} (15)  

αd
0i ∼ N (μ0di, σ0di) d ∈{RP, SP}, i ∈ {1,…, I} (16)  

αd
mi ∼ N (μmi, σmi) m∈{1,…,M}, d ∈{RP, SP}, i ∈ {1,…, I} (17)  

where m is the index for the M + 1 attributes including the intercept (m = 0) and the inertia indicators, and d is the index for the RP and 
SP data. With the exception of the use of d to indicate RP or SP data, the superscripts indicate the hyper-prior parameters, namely the 
parameters of the population distributions, which are specified as weakly informative. 

The first block of the prior specification (eqs. (9)–(14)) describes the population parameters to be drawn. These parameters include: 
the probability parameter pmd for each attribute m and data type d; the parameters for the population distributions of the two (RP and 
SP) intercepts of each alternative i, each with mean μ0di and standard deviation σ0di; the parameters for the population distributions of 
the magnitude parameters of all attributes or inertia indicator m of each alternative i, each with mean μmi and standard deviation σmi; 
and the scale parameter λ. 

The second block of the prior specification (eqs. (15)–(17)) defines the individual-specific or context-speicfic parameters that are 
drawn on the basis of the population parameters from the first block. These parameters include: the indicator parameters Id

mn for each 
attribute m and individual n of data type d, which are conditional on the probability parameters pmd; the magnitude parameters αd

0i of 
the intercepts of each alternative i and data type d; the magnitude parameters αd

mi of each attribute or inertia indicator m of each 
alternative i and data type d. 

In this prior structure, it should be noted that one distinct population distribution is assumed for the magnitude parameters of each 
attribute m and each alternative i, and this distribution is the same for the RP and SP data with the exception of the intercepts. This 
allows for the parameters of the population distributions to be jointly estimated from the choices made in both the RP and SP contexts, 
and for the underlying population preference over the attributes to be inferred. Notably, the different distributions for the intercepts 
enable the model to account for the possible bias arising from behavioural discrepancies such as using questionnaires as opinion 
statements and ignoring situation constraints. 

Finally, the population distributions for indicator parameters are different across the RP and SP contexts, but the same across 
alternatives. This allows for the parameters of the population distribution to be jointly estimated to infer the importance of attributes in 
individuals’ decision protocols in the two different choice contexts, regardless of which specific alternative is affected by the attributes. 
Notably, these distributions enable the model to account for attendance levels of attributes, misinterpretation of attributes, and 
ignored situation constraints. 

3.3. Posterior sampling 

Considering the utility function vnit(β,X) in eq. (8) and the likelihood function P(Y|β,X) of the observed sequence of all individuals’ 
choice outcomes in all choice occasions, the joint posterior for all the unknown parameters β given the data D is defined as: 

P(β|Y,X)∝ P(Y|β,X)×Pβn

(
βn

⃒
⃒βp

)
× Pβp

(
βp

⃒
⃒β0

)
(18)  

where the population parameters βp have joint probability Pβp (βp
⃒
⃒β0) conditional on the hyper-prior parameters β0, and the individual 

level parameters βn have joint probability Pβn (βn
⃒
⃒βp) conditional on the population parameters βp. Accordingly, the parameters β 

include both βn and βp: 

β={βn} ∪
{

βp
}

(19) 

Consider the hyper-prior parameters β0: 

β0={ap
md,b

p
md;m∈{0,…,M},d∈{RP,SP}}∪

{
μμ

0di,σ
μ
0di,a

σ
0di,b

σ
0di;d∈{RP,SP},i∈{1,…,I}

}
∪
{

μμ
mi,σ

μ
mi,a

σ
mi,b

σ
mi;m∈{1,…,M},i∈{1,…,I}

}

∪
{

aλ,bλ}

(20) 

Then, the probability Pβp (βp

⃒
⃒β0) of the population parameters is calculated conditional on the hyper-prior parameters β0: 
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Pβp

(
βp

⃒
⃒β0

)
=

∏

m∈{0,…,M}

d∈{RP,SP}

Beta(pmd|ap
md,b

p
md)×

∏

d∈{RP,SP}
i∈{1,…,I}

(
N (μ0di|μ

μ
0di,σ

μ
0di)I G

(
σ0di

⃒
⃒aσ

0di,b
σ
0di

))
×

∏

m∈{1,…,M}

i∈{1,…,I}

(
N (μmi|μ

μ
mi,σ

μ
mi)I G

(
σmi

⃒
⃒aσ

mi,b
σ
mi

))

×I G
(
λ
⃒
⃒aλ,bλ)

(21)  

where the population parameter βp are: 

βp ={pmd;m∈{0,…,M}, d ∈{RP, SP}}∪ {μ0di, σ0di; d ∈{RP, SP}, i∈{1,…, I}}∪ {μmi, σmi; m∈{1,…,M}, i∈{1,…, I}} ∪ {λ} (22) 

Then, the probability Pβn (βn

⃒
⃒βp) of the individual level parameters is calculated conditional on the population parameters βp: 

Pβn

(
βn

⃒
⃒βp

)
=

∏

m∈{0,…,M}

d∈{RP,SP}
n∈{0,…,N}

B
(
Id

mn

⃒
⃒pmd

)
×

∏

d∈{RP,SP}
i∈{1,…,I}

N
(
αd

0i

⃒
⃒μ0di, σ0di

)
×

∏

m∈{1,…,M}

d∈{RP,SP}
i∈{1,…,I}

N
(
αd

mi

⃒
⃒μmi, σmi

)
(23)  

where the individual level parameters βn are: 

βn =
{

Id
mn;m∈{0,…,M}, d ∈{RP, SP}, n∈{1,…,N}

}
∪
{

αd
0i; d ∈{RP, SP}, i∈{1,…, I}

}

∪
{

αd
mi;m∈{1,…,M}, d ∈{RP, SP}, i∈{1,…, I}

}
(24) 

Lastly, conditional on the individual level parameters βn and the population parameters βp, the probability of the sequence of the 
observed choice outcomes is given by substituting the values of the parameters in the utility function vnit(β,X) in eq. (8) and then using 
eqs. (2) and (1). 

From the computational perspective, the joint posterior distribution of all the unknown parameters β in eq. (19) can be approxi-
mated by using Markov Chain Monte Carlo sampling (Hastings 1970; Gelfand and Smith 1990). It might appear that the posterior 
sampling is computationally demanding since the posterior distribution is a product of functions for all individuals, all alternatives, all 
attributes, and both choice contexts. However, only a small portion of the above expressions change depending on the specific pa-
rameters being sampled in the sampling process. For example, the Metropolis algorithm (Gelman et al., 2013) can be used to sample βn 
for one individual at a time, conditional on the parameters for the other individuals. Consequently, the ratio of the posterior probability 
of the proposed move with respect to the current position would depend only on the probability for that individual and the corre-
sponding population distribution of the parameters being sampled. Moreover, Gibbs steps can be used in the sampling of all the 
population parameters (βp) on the basis of the closed form conditional posterior distributions (Gelman et al., 2013). 

These considerations reveal that, in addition to the behavioural motivations at the root of the proposed model, computational 
considerations apply. Notably, the proposed model uses individual-specific indicator parameters, leading to the formulation of each 
parameter for each attribute as the product of a magnitude and an indicator parameter. Essentially, this approach aligns with the 
commonly used Bayesian variable selection method (Kuo and Mallick 1998; Smith and Kohn 2002; Sillanpää and Bhattacharjee 2005). 
However, this approach differs from the traditional variable selection in that the indicator parameters in the proposed model are 
individual-specific rather than common to all observations. This difference is appealing not only from the behavioural perspective, as 
intuitively there are anticipated differences across individuals in the decision protocols and the set of attributes considered, but also 
from the methodological perspective, as it is essential for the successful implementation of the proposed model. 

In fact, when the indicator parameters are assumed to be the same across individuals as in the traditional Bayesian variable se-
lection literature, it is found that the values of the indicators hardly change (O’Hara and Sillanpää 2009). The reason is that, once the 
indicator takes value zero, the proposed moves of the corresponding magnitude parameters would be evaluated entirely on the basis of 
the probability determined by other magnitude parameters with the corresponding indicators taking value one. Consequently, the 
Markov chains do not tend to stay within the high posterior probability region of those magnitude parameters with the corresponding 
indicators taking value zero. In turn, the relevant indicators would hardly flip back to one, resulting in a poor mixing of the chains. The 
proposed model largely alleviates this issue because of the use of population distributions that allow the proposed moves of the 
magnitude parameters for the individuals having the corresponding indicators equal to zero to be guided by other individuals with 
corresponding indicators equal to one. Moreover, using individual-specific indicators allows for a better mixing of the chains because 
the ratio between the posterior probability of indicator parameters at the proposed value Pp

n and at the current value Pc
n would be equal 

to Pp
n/Pc

n rather than being a product of the ratios for all individuals. 
Moreover, the proposed model considers the difference in the amount of observations for the SP and the RP data. Typically, the SP 

part of a dataset contains a number of choice outcomes for each individual in several scenarios that are each represented by a different 
set of values for the SP-specific attributes, while the RP part of a dataset represents one scenario. This feature leads to a much higher 
number of observations in the SP part of the data and leads to parameter estimates for the attributes that are in both the RP and SP 
situations to be determined mainly on the SP choices. Although this might not be an issue depending on prior beliefs, the proposed 
model re-weighs the likelihood function so that for each individual the total number of the RP choices will have the same weight as the 
total number of the SP choices. Accordingly, the re-weighing leads to the joint inference on parameter estimates being determined 
equally across RP and SP observations. Although arbitrary, the re-weighing may be considered as a way of reflecting the prior belief of 
the modeller and may be seen as a natural fit into the Bayesian framework where the posterior distribution obtained from the RP data is 
used as a prior belief (distribution) for the model of the SP data. Then, the strength of this prior is represented by the weight that can be 
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interpreted as the credibility of each RP observation in comparison to that of each SP response. 

4. An application to travel mode choice 

Given the behavioural motivation and the model specification, the proposed model was estimated on a joint RP and SP dataset of 
travel mode choices. In this application, an initial 10,000 iterations were done as the burn-in period. During the burn-in period, the 
proposal distribution of the sampler is updated periodically based on previous iterations. Another 5000 iterations after the burn-in 
period are used as the approximation to the posterior distribution for inference purposes. The convergence of the chain is judged 
by using trace plots of the sampled parameters and the values of log-likelihood. 

From a behavioural standpoint, the term attribute is used for representing both a characteristic of an alternative and that of an 
individual in this section. However, the attendance or non-attendance of an attribute is used exclusively in the context of alternatives, 
not for decision-maker characteristics. For the effect of individual attribute (characteristics), it is referred to as the importance of an 
attribute (of a characteristic in reflecting the choice behaviour). 

4.1. Data 

The dataset contains travel mode choices of 1433 individuals in Australia who participated in an RP survey and a set of SP ex-
periments. The participants were asked to provide information about their actual recent trips and about the same trips under 4 hy-
pothetical scenarios detailing climate changes and mobility market changes related to self-driving vehicles and shared vehicles. More 
specifically, in the first stage of the experiment, sociodemographic information was collected form the respondents in the form of a 
questionnaire. Subsequently, the respondents were asked to provide the actual recent trip information such as the number of trips, 
modes, durations, etc. In the second stage, 4 hypothetical situations such as varying degree of mobility market changes, climate 
changes, etc. were given to the respondents, and the respondents were asked to choose a travel mode for each of the trips reported in 
the first stage. The travel modes available were private vehicles (“Private”), public transport (“Public”), walk or bike (“ActiveTravel”), 
hail and ride (“Hail”), and shared vehicles (“Share”). More detailed description on the experimental context can be found in Zhou et al. 
(2020). 

Table 1 shows a list of the variables considered in the model. Sociodemographic variables for the participants include gender, age, 
income, education, number of cars, and number of two-wheelers. Indicator variables capture whether a participant provided or not 
gender or income information. The number of trips from the day before the interview was derived from the reported trip information, 
and then SP-specific variables included the percentage of shared trips, the percentage of self-driving vehicles and the level of climate 
change. Lastly, the indicator “RPInd” corresponds to the indicator DRP

nt in eq. (8) identifying the choices made in the RP context. 

4.2. Inferred preferences 

The estimated model consists of the posterior samples of all the unknown parameters β in eq. (19). Most relevantly, the probability 
parameters pmd allow inferring the attendance/importance of each attribute m in the choice process, the mean parameters of the 
intercepts μ0di and the mean parameters of the magnitude parameters μmi for each attribute m allow inferring the averaged effect of the 
intercept and each attribute among those individuals who have taken the attributes into consideration in the choice process or have the 
attributes as important determining factors, and the scale parameter λ allows inferring potential difference in choice uncertainty under 
different situations. 

4.2.1. Level of attendance or importance of attributes 
Table 2 shows the estimated medians and the 90% credible intervals for the probability parameters pmd of each attribute in the RP 

and SP data. The estimates in this table can be interpreted as the proportions of respondents who considered the corresponding 

Table 1 
Variables in the mode choice dataset.  

Name Description Domain 

Gender indicator of females {0, 1} 
GenderDummy indicator of respondents with unidentified gender {0, 1} 
Income household income (17 categories) {1, …, 17} 
IncomeDummy indicator of respondents with unknown income {0, 1} 
Age age of the respondents (8 categories) {1, …, 8} 
Education education of the respondents (6 categories) {1, …, 6} 
TotalCars number of cars owned by the household {0, …, 5} 
TotalTW number of two-wheelers owned by the household {0, …, 5} 
TripCount number of trips of the respondents from the day before {0, …, 30} 
ShareTripPerc percentage of shared trips (SP-specific, 4 categories) {1, …, 4} 
SelfDrivePerc percentage of self-driving vehicles (SP-specific, 4 categories) {1, …, 4} 
ClimChange level of climate change (SP-specific, 3 categories) {1, …, 3} 
RPInd indicator of RP observations {0, 1} 
Intercept constant {1}  
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attributes in their choices or have the attributes as important determining factors. 
The parameter estimates reveal that the probabilities of education as attributes having non-zero effect differ significantly in the RP 

and SP situations (0.203 vs. 0.499). Personal characteristics seem to be important in hypothetical situations far more than in actual 
situations, where situational constraints play a far more significant role. In fact, parameter estimates reveal that income has a non-zero 
effect in RP situations more likely than in SP ones (0.738 vs. 0.504). Not surprisingly, the income level is a constraint when choices are 
made in actual situations because of real financial cost considerations, whereas is considered less when choices are made in hypo-
thetical situations because of the non-realisation of the financial costs. Also, parameter estimates reveal that age shows an even greater 
difference between the RP and SP situations (0.763 vs. 0.479). Not surprisingly, age implies physical limitations that manifest in actual 
situations but are ignored in hypothetical ones. 

The parameter estimates also show that the estimated probabilities for “TotalCars”, “TotalTW” and “TripCount” are very different 
between the RP and SP situations. The estimates for “TotalCars” and “TripCount” show higher importance in the RP situations (0.855 
and 0.953) than in the SP situations (0.480 and 0.515). Possibly, the opportunity cost of owning cars, the time constraints and 
availability of public transport, the physical constraints of active travel, and the financial constraints for hail and ride, tend to be 
ignored more often in hypothetical situations. Interestingly, the estimates for “TotalTW” indicate a higher importance in the SP sit-
uations (0.010 vs. 0.559). Possibly, two-wheelers are used in Australia as a secondary mode because of a number of reasons (e.g., 
weather conditions, comfort level) that are downplayed or ignored in hypothetical situations. 

The attributes that are specific to the SP experiments are all attended by a considerable portion of the respondents, and the pro-
posed model allows to observe that the percentages of shared trips (0.698) is considered more often than the percentages of self-driving 
vehicles and the level of climate change (0.457 and 0.407). Moreover, the parameter estimates show that non-zero inertia effects exist 
for all the transport modes, with higher inertia for shared vehicles (0.708) and lower inertia for hail rides (0.511). The presence of SP- 
specific attributes likely explains the difference in attendance of non-zero intercepts of travel modes with respect to the RP part of the 
data (0.563vs. 0.967). When additional information is not recorded in the dataset, as in this case happens for the actual observations, 
the proposed model controls for potential bias that may appear in the parameter estimates. 

4.2.2. Magnitude effect of attributes 
Table 3 presents the population distributions of the magnitude parameters of the attributes and the SP scale parameter. The 

behavioural interpretation of the medians of the posterior samples is quite intuitive: private vehicles are more likely to be chosen by 
individuals with lower education level, higher number of cars, lower number of two-wheelers and lower number of trips, as well as by 
older females; public transport is more probable to be chosen by younger individuals with higher education and lower number of cars 
and trips; hail and shared rides are more likely to be chosen by individuals with lower number of trips. When looking at the SP-specific 
attributes, a higher percentage of shared trips is related to a higher probability of choosing shared rides, a higher percentage of self- 
driving vehicles is associated with a decrease in the probability of choosing private transport. 

The magnitudes of the inertia parameters show that the higher level of inertia is for public transport (0.624) whereas the lower one 
is for hail and shared rides. Possibly, in hypothetical situations individuals would repeat sustainable transport choices more than 
others. Moreover, the presence of SP-specific attributes implies that the magnitude of the intercepts is lower for the SP with respect to 
the RP situations, also a pattern similar to the one of the respective indicators. 

The estimated scale parameter is larger than one (2.153), which is an indication of a larger variance in the SP choices. This result is 
in line with the existing literature about choice making in hypothetical situations, but the estimate of the scale ratio is larger than the 
usual values observed in the existing literature (e.g., Hensher and Bradley 1993; Brownstone et al. 2000). However, the proposed 

Table 2 
Estimated distributions of the probabilities pmd of attribute attendance/importance in RP and SP situations (medians and 90% credible intervals).   

RP SP 

Median 90% interval Median 90% interval 

Gender 0.890 (0.790,0.984) 0.555 (0.490,0.623) 
GenderDummy 0.223 (0.002,0.666) 0.521 (0.215,0.794) 
Income 0.738 (0.566,0.896) 0.504 (0.459,0.548) 
IncomeDummy 0.386 (0.065,0.724) 0.488 (0.412,0.566) 
Age 0.763 (0.716,0.814) 0.479 (0.429,0.525) 
Education 0.203 (0.111,0.301) 0.499 (0.463,0.537) 
TotalCars 0.855 (0.823,0.884) 0.480 (0.429,0.524) 
TotalTW 0.010 (0.001,0.191) 0.559 (0.491,0.631) 
TripCount 0.953 (0.848,0.998) 0.515 (0.486,0.545) 
InertiaDPrivate   0.548 (0.513,0.579) 
InertiaDPublic   0.523 (0.487,0.556) 
InertiaDActiveTravel   0.588 (0.539,0.633) 
InertiaDHail   0.511 (0.322,0.712) 
InertiaDShare   0.708 (0.385,0.891) 
ShareTripPerc   0.698 (0.614,0.787) 
SelfDrivePerc   0.457 (0.383,0.524) 
ClimChange   0.407 (0.305,0.512) 
Intercept 0.967 (0.936,0.985) 0.563 (0.508,0.624)  
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model isolates the scale parameter from other behavioural discrepancies between the SP and RP data, such as ignoring situation 
constraints, non-attending attributes, and misinterpreting attributes. Hence, the large value of the estimated scale parameter un-
derlines the importance of correcting for the biases associated with each of the behavioural discrepancies rather than combining most 
of them (with the exception of decision inertia) within the estimation of the scale parameter. 

4.2.3. Effect of attributes 
Having presented the indicator and the magnitude parameters, it is informative to explore their joint distribution in order to 

illustrate the effect of attributes at the individual level. Fig. 1 illustrates the joint distributions of the posterior samples of individual 
specific parameters associated with the key attributes. Generally, the joint distributions present a peak at zero, corresponding largely to 
the observations with indicator parameter equal to zero, and the values from the product of indicator and magnitude parameters, 
corresponding to the effects of the attributes. It should be noted that the distributions on the RP part of the observations are different 
from the ones on the SP part because of the scale parameter effect: the non-zero effect of any attribute is harder to be discerned from the 
zero in the noisier SP part of the observations. 

Fig. 2 explores the joint distributions of the posterior samples of individual specific parameters (Id
mnαd

mi) associated with the SP- 
specific attributes “ShareTripPerc”, “SelfDrivePerc” and “ClimChange”. The joint distributions mostly present a dispersion around 
the value zero, but an interpretation different from the previous one applies to this case. In fact, the attendance indicator for attribute 
“ShareTripPerc” is quite high (0.698) in comparing with those for the other two SP-specific attributes or for all SP attributes. Then, the 
joint distributions suggest that individuals have very different non-zero effect in terms of both the magnitude and the sign. This implies 
that there exists high heterogeneity across the individuals for the attribute “ShareTripPerc”, but in this case the heterogeneity is 

Table 3 
Estimated parameters for the population distributions of the magnitude parameters μ0di, μmi and λ (medians with 90% credible intervals in brackets).   

Private Public ActiveTravel (baseline) Hail Share 

Gender 0.098 − 0.001 – 0.120 − 0.006 
(0.024,0.176) (-0.085,0.086)  (-0.106,0.429) (-0.199,0.187) 

GenderDummy − 0.240 0.242 – − 0.085 − 0.053 
(-0.635,0.237) (-0.213,0.670)  (-1.000,0.654) (-0.748,0.653) 

Income 0.010 0.008 – 0.014 − 0.003 
(-0.002,0.023) (-0.006,0.023)  (-0.015,0.054) (-0.028,0.023) 

IncomeDummy 0.048 0.099 – 0.165 − 0.049 
(-0.104,0.208) (-0.086,0.274)  (-0.222,0.664) (-0.343,0.247) 

Age 0.042 − 0.091 – 0.020 0.009 
(0.013,0.069) (-0.121,-0.060)  (-0.055,0.145) (-0.055,0.070) 

Education − 0.045 0.031 – 0.021 0.002 
(-0.065,-0.025) (0.008,0.052)  (-0.020,0.069) (-0.034,0.037) 

TotalCars 0.264 − 0.152 – − 0.007 0.035 
(0.223,0.310) (-0.200,-0.104)  (-0.109,0.104) (-0.049,0.119) 

TotalTW − 0.110 0.026 – − 0.024 − 0.013 
(-0.165,-0.053) (-0.031,0.086)  (-0.153,0.077) (-0.099,0.082) 

TripCount − 0.018 − 0.066 – − 0.080 − 0.061 
(-0.036,-0.000) (-0.086,-0.046)  (-0.180,-0.020) (-0.122,-0.018) 

InertiaDPrivate 0.589 – – – – 
(0.492,0.689)     

InertiaDPublic – 0.624 – – –  
(0.540,0.714)    

InertiaDActiveTravel – – 0.548 – –   
(0.475,0.621)   

InertiaDHail – – – 0.293 –    
(0.124,0.475)  

InertiaDShare – – – – − 0.197     
(-0.480,0.039) 

ShareTripPerc − 0.001 − 0.008 – − 0.011 0.018 
(-0.013,0.012) (-0.022,0.006)  (-0.030,0.006) (0.002,0.035) 

SelfDrivePerc − 0.013 0.000 – 0.001 − 0.001 
(-0.027,-0.001) (-0.014,0.015)  (-0.018,0.019) (-0.019,0.014) 

ClimChange − 0.000 0.001 – − 0.005 − 0.020 
(-0.018,0.016) (-0.017,0.021)  (-0.029,0.018) (-0.042,0.002) 

ScaleSP – – 2.153 – –   
(1.897,2.464)   

Intercept RP 1.564 2.418 – − 3.266 − 1.535 
(1.018,2.099) (1.825,2.989)  (-8.332,-1.216) (-3.039,-0.514) 

Intercept SP 0.000 − 0.044 – − 0.453 − 0.228 
(-0.129,0.130) (-0.190,0.087)  (-0.667,-0.275) (-0.388,-0.085) 

Lastly, it is important to note that the estimated parameters in Table 3 are obtained conditional on the corresponding individual-specific indicators 
being one, namely they are estimated on a subset of observations. Accordingly, the behavioural interpretation should use a word of caution when 
commenting on modes where a subset is extracted from an already small number of observations. 
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actually because of different preferences for the travel modes rather than the result of non-attendance of attributes. It should be noted 
that this interpretation is possible because the proposed model has already accounted for inertia, scale difference, situation constraints, 
and attribute attendance. 

From the behavioural perspective, the heterogeneity for the attribute “ShareTripPerc” can emerge from their possible misinter-
pretation. In the SP experiment, respondents were asked to choose while considering the three additional attributes “ShareTripPerc”, 
“SelfDrivePerc” and “ClimChange”. It is possible for example that the respondents had different knowledge about what shared trips 
are, different interpretation of the percentage as the whole market or the specific trip, different perception of how self-driving the 
vehicles will be, and different feel for rising sea levels and increasing average temperatures. The joint distributions in Fig. 2 reflect this 
misinterpretation that creates the heterogeneity in preferences (again, after having corrected for the other four behavioural dis-
crepancies between the SP and RP contexts). Moreover, the joint distributions in Fig. 1 allow for a large proportion of indicator pa-
rameters being zero, which makes it easier to interpret attributes. This is the benefit of having carefully designed the prior structure 
and the parameter expansion in the proposed model, tapping into the potential of uncovering detailed information on the choice 
behaviour of the individuals without confounding heterogeneity from the attendance of attributes (which are easy to interpret) with 
heterogeneity from preferences for attributes (which are more difficult to interpret). 

Having provided a visual representation of the joint distributions of the indicator and magnitude parameters, for completeness 
Table 4 shows the medians and 90% credible intervals for the joint distributions of the parameters associated to each attribute. 

In line with what is observed in Figs. 1 and 2, the estimates show that zero belongs to most of the credible intervals, and the non- 
zero effects of attributes in the RP situation are more apparent than the ones in the SP situation. Most likely, these patterns arise 
naturally from the larger uncertainty in the SP experiments (as captured by the scale parameter). Moreover, the non-zero effects of the 
attributes are more evident for the first three modes than the remaining two. Most probably, these patterns arise from the selection of a 
subset of observations from an already limited number of observations for the less frequently chosen travel modes. Lastly, it should be 
noted that these estimates are different from the ones traditionally used for inference on the basis of a random parameter model. In 
fact, Table 4 reports the estimates for the product of one individual-specific parameter and one context-specific parameter rather than 
the traditional parameters of the population distributions. Accordingly, the estimates presented in Table 4 capture not only the un-
certainty in the estimation of the population parameters, but also the one in the estimation of the individual-specific parameters and 
the context-specific parameters, which are at the root of the high level of heterogeneity observed in the joint distributions. 

Fig. 1. Joint distributions of indicator and magnitude parameters (Id
mnαd

mi) for selected attributes of travel modes “Private” and “Share” (90% 
credible intervals are indicated as dotted vertical lines). 

Z. Li et al.                                                                                                                                                                                                               



JournalofChoiceModelling47(2023)100419

12

Fig. 2. Joint distributions of indicator and magnitude parameters (Id
mnαd

mi) for the SP-specific attributes of the four travel modes (90% credible intervals are indicated as dotted vertical lines).  
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Table 4 
Estimated parameters of the joint distributions of indicator and magnitude parameters Id

mnαd
mi (medians with 90% credible intervals in brackets).   

Private Public ActiveTravel (baseline) Hail Share 

RP SP RP SP RP SP RP SP RP SP 

Gender 0.189 0.000 − 0.018 0.003 – – 0.217 − 0.001 0.000 0.000 
(0.000,0.359) (-0.031,0.019) (-0.191,0.125) (0.000,0.061)   (-0.179,0.841) (-0.068,0.000) (-0.377,0.368) (-0.039,0.023) 

GenderDummy 0.000 − 0.041 0.000 − 0.029 – – 0.000 0.000 0.000 0.000 
(-0.561,0.389) (-0.442,0.000) (0.000,1.300) (-0.518,0.000)   (-0.994,0.767) (-0.306,0.072) (-0.710,0.902) (-0.330,0.037) 

Income 0.000 0.006 0.000 0.002 – – 0.012 0.000 0.000 0.000 
(-0.015,0.030) (0.000,0.019) (-0.020,0.032) (0.000,0.016)   (-0.022,0.104) (-0.007,0.004) (-0.051,0.043) (-0.008,0.004) 

IncomeDummy 0.000 0.000 0.000 0.000 – – 0.000 0.000 0.000 0.000 
(-0.335,0.083) (0.000,0.289) (-0.080,0.403) (-0.024,0.097)   (-0.163,1.040) (-0.090,0.064) (-0.518,0.312) (-0.085,0.061) 

Age 0.048 0.000 − 0.177 0.000 – – 0.007 0.000 0.012 0.000 
(0.000,0.108) (0.000,0.033) (-0.247,0.000) (-0.000,0.021)   (-0.096,0.270) (-0.017,0.008) (-0.071,0.159) (-0.040,0.000) 

Education 0.000 0.000 0.000 0.000 – – 0.000 0.000 0.000 0.000 
(-0.084,0.000) (-0.031,0.000) (0.000,0.068) (0.000,0.020)   (-0.005,0.069) (0.000,0.026) (-0.039,0.019) (0.000,0.022) 

TotalCars 0.505 0.000 − 0.241 0.000 – – − 0.010 0.000 0.037 0.000 
(0.000,0.603) (-0.001,0.026) (-0.342,0.000) (-0.068,0.000)   (-0.230,0.171) (0.000,0.042) (-0.103,0.216) (-0.003,0.030) 

TotalTW 0.000 − 0.121 0.000 0.000 – – 0.000 0.000 0.000 0.000 
(-0.000,0.000) (-0.174,0.000) (0.000,0.000) (-0.038,0.008)   (0.000,0.000) (-0.036,0.020) (0.000,0.000) (-0.035,0.017) 

TripCount − 0.084 0.039 − 0.105 − 0.015 – – − 0.146 0.000 − 0.111 0.000 
(-0.121,0.000) (0.000,0.058) (-0.147,0.000) (-0.033,0.000)   (-0.347,0.000) (-0.020,0.000) (-0.237,0.000) (-0.015,0.001) 

InertiaDPrivate – 0.510 – – – – – – – –  
(0.000,0.673)         

InertiaDPublic – – – 0.538 – – – – – –    
(0.000,0.697)       

InertiaDActiveTravel – – – – – 0.500 – – – –      
(0.000,0.609)     

InertiaDHail – – – – – – – 0.101 – –        
(0.000,0.437)   

InertiaDShare – – – – – – – – – − 0.102          
(-0.448,0.002) 

ShareTripPerc – 0.000 – − 0.003 – – – − 0.005 – 0.013  
(-0.012,0.011)  (-0.020,0.005)    (-0.028,0.003)  (0.000,0.033) 

SelfDrivePerc – 0.000 – 0.000 – – – 0.000 – 0.000  
(-0.024,0.000)  (-0.010,0.011)    (-0.013,0.014)  (-0.014,0.011) 

ClimChange – 0.000 – 0.000 – – – 0.000 – 0.000  
(-0.013,0.011)  (-0.013,0.015)    (-0.023,0.011)  (-0.036,0.000) 

Constant 1.546 0.000 2.395 0.000 – – − 3.208 − 0.323 − 1.511 − 0.121 
(0.843,2.085) (-0.111,0.104) (1.650,2.981) (-0.168,0.067)   (-8.330,-0.751) (-0.628,0.000) (-3.031,-0.186) (-0.358,0.000)  

Z. Li et al.                                                                                                                                                                                                               



Journal of Choice Modelling 47 (2023) 100419

14

4.3. Discussion 

Given the presentation of the parameter estimates in the tables and figures in this section, it appears relevant to ask which type of 
parameter estimates should be preferred when making inference on the basis of joint RP and SP data. 

The immediate answer is that the parameters to be preferred would be the population parameters presented in Table 3 because they 
are close to the ones used for inference with random parameter models. However, a more accurate answer is that it is important to 
know, at least approximately, how many observations played a role in the estimation of the population parameters presented in 
Table 3. To this extent, Table 2 provides a picture of the level of attendance/importance of each attribute and Table 4 goes full circle by 
introducing the joint distributions of indicator and magnitude parameters related to each attribute. 

In light of the model formulation, it appears also relevant to ask whether the proposed model would complicate the interpretation 
of the parameter estimates or the calculation of some useful quantity such as the marginal rate of substitution. One might argue that 
there is a disadvantage in missing a general standard such as the traditionally used significance level. One might also argue that there 
are more parameters to comment upon and there are more distributions containing zero, and then perhaps question whether the means 
of the population distributions are significantly different from zero. However, the means of the population distributions at zero have a 
behavioural interpretation in the proposed model, and the advantages of the proposed modelling framework are substantial in terms of 
behavioural interpretation when considering the bias corrections that the proposed model is able to accommodate. Most notably, these 
corrections allow the proposed model to disentangle the impact caused by decision inertia for each alternative, scale parameter for the 
SP situations, level of attendance for each attribute and each choice situation, situation constraints, and possible misinterpretation of 
attributes. 

For example, the model has a substantial advantage in disentangling the heterogeneity because of the level of attendance/ 
importance of attributes (as in Fig. 1) from the actual heterogeneity because of different preference structures across individuals (as in 
Fig. 2). Traditionally, heterogeneity would be observed and modelled without reflecting about its causes, and possibly non-significance 
of the mean of the random parameter distribution would be found. In fact, traditionally the mean of the random parameters provides 
information about the average effect of the parameter over the entire sample. Instead, the distributions of the population parameters 
differentiate the percentage of the sample with non-zero effects from the magnitude of the effect itself, giving a more informative 
interpretation of the effects of attributes while looking at the choice process at the individual level. Thus, the proposed model is more 
informative and sensible by considering an attribute only influencing the choice behaviour of a proportion of respondents in a large 
sample rather than assuming that there is an average effect of the attribute for all the sample. 

In light of the model formulation, it is natural to ask whether the proposed model would have a good potential for forecasting. 
Traditionally, forecasting would respond to a change in the value of attributes with the calculation or the choice-based simulation of 
average probabilities for all the alternatives. Implicitly, the assumption would be that the change in the value of attributes would occur 
for all the sample, including the individuals who might have ignored some attributes, with consequent bias in the prediction of the 
change in probabilities. The proposed model overcomes this issue, since the non-attendance of attributes for each individual is taken 
into account, and hence the change of an attribute would be considered only for the individuals that actually attend the same attribute. 
As a result, the predicted probabilities may be more accurate and in line with what the individuals actually considered in their choice 
behaviour. As mentioned previously, it should be noted that the introduction of indicator parameters corresponds to a variable se-
lection approach that is commonly used in the forecasting literature (Smith 2000; Jochmann et al. 2010). 

5. Conclusions 

This study recognised that RP and SP data are two fundamental sources of information for preference studies across various dis-
ciplines and, owing to the distinctive advantages of each data type and their complementary nature, there is a substantial interest in 
making joint inferences from the combination of these two types of data. This allows one to not only combine the advantages of each 
type of data, but also make better inferences on the basis of all available information. 

This study also recognised that there exist five behavioural discrepancies between the RP and SP data (decision inertia, scale 
difference, ignorance of situation constraints, non-attendance of attributes, and misinterpretation of attributes), and that the existing 
literature has traditionally tackled a few explicitly (i.e., decision inertia), and the others implicitly with the estimation of scale pa-
rameters. The main contribution of this study lies in disentangling these five behavioural discrepancies in an integrated modelling 
framework. The proposed model is inspired by the principles of variable selection and parameter expansion to correct for the biases 
introduced by these behavioural discrepancies, and are accommodated in a hierarchical Bayesian framework. 

The design of the model formulation, the proposition of the hierarchical prior structure for model estimation, and the application to 
a travel mode choice case study illustrate the model is capable of not only accounting for the biases introduced by the aforementioned 
behavioural discrepancies, but also providing insights into parameter interpretation. Specifically, the traditional way of interpreting 
parameter estimates is substituted by a more informative way where the level of attendance of an attribute is disentangled from the 
measurement of the effect of the same attribute. The use of individual-specific indicators allows obtaining population distributions of 
parameter estimates that suggest the importance of knowing which attributes individuals consider in their choice behaviour, in 
combination with the well-established importance of knowing how much individuals consider those attributes. The discussion suggests 
that the model is more informative, again because of the features that allow disentangling attendance and magnitude of parameters. 
The most interesting result is the differentiation of the nature of heterogeneity as originated by either non-attending attributes or 
having different preference structures. 

The proposed model might be argued to be elaborate and computationally demanding. Obviously, there does not exist a universally 
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superior model as it generally depends on the research question, time constraints, etc. However, there exists a balanced model able to 
provide informative answers to behavioural questions. The Bayesian hierarchical framework for the proposed model provides a 
flexible way of modelling RP and SP data for making joint inferences and solving behavioural issues that were recognised long ago 
(Morikawa et al. 2002) but only partially solved. Future research could look at the potential forecasting capability of the proposed 
model and the calculation of useful quantities such as marginal rate of substitution, the possibility to relax the assumption that the 
attendance indicators have the same value across the alternatives, which would make it possible to further disentangle the issues with 
misinterpretation of attributes, as well as the assumption that the scale parameter has the same value across the observations. Of 
course, further elaboration of the model should consider research question and data availability to have a balanced and flexible model 
for the problem at hand. At last, a detailed comparison between the proposed model and similar alternatives could also provide 
valuable information on the potential ways for future improvements. But in such comparison, the use of likelihood value may not be 
informative due to the difference in model complexity. A more meaningful approach may be comparing the different information and 
inference that can be drawn from each alternative. 
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