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A B S T R A C T   

This study examines the role of daily volatility persistence in transmitting information from 
macro-economy in the volatility of energy markets. In crude oil and natural gas markets, macro- 
economic factors, such as the VIX, the credit spread and the Baltic exchange dirty index, impact 
volatility, and this impact is channeled via the volatility persistence. Further, the impact of 
returns and variances is primarily transmitted to volatility via the daily volatility persistence. The 
dependence of volatility persistence on market and macro-economic conditions is termed con-
ditional volatility persistence (CVP). The variation in daily CVP is economically significant, 
contributing up to 18% of future volatility and accounting for 29% of the model’s explanatory 
power. Inclusion of the CVP in the model significantly improves volatility forecasts. Based on the 
utility benefits of volatility forecasts, the CVP adjusted volatility models provide up to 160 bps 
benefit to investors compared to the HAR models, even after accounting for transaction costs and 
varying trading speeds.   

1. Introduction 

The volatility of energy markets plays an integral role in the global economy. Information from asset classes such as macro- 
economy and equity has a material impact and carries significant predictive power for the future evolution of energy market vola-
tility. In the spirit of Ross (1989), cross-market information becomes synonymous with volatility. Accordingly, empirical evidence has 
demonstrated the importance of this information transmission in modelling and forecasting volatility in commodity markets. Beyond 
the fundamentally important objective to ensure (statistical and economic) forecasting gain, this study further reveals the essential role 
of volatility persistence in transmitting this information in the volatility of energy markets. Although many studies find a wide range of 
variables affect future volatility, the information from lagged volatilities remains the most significant predictive channel (Patton and 
Sheppard (2015); Bollerslev et al. (2016); Bollerslev et al. (2018)). The correlation between today’s and tomorrow’s volatility, 
captured by volatility persistence, is a fundamental block of future volatility. Therefore, divulging the determinants and empirical 
characteristics of volatility persistence would lead to a more comprehensive understanding of how information is channeled in the 
volatility of energy markets. 

In this paper, we quantify and gauge the importance of volatility persistence in trans-mitting information from economic market 
variables to the daily volatility of two key energy markets: crude oil and natural gas. We study a heterogeneous autoregressive (HAR) 
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model that allows volatility persistence to vary with returns, lagged volatility and economic variables. The corresponding volatility 
persistence is termed conditional volatility persistence (CVP). As expected, we find that returns and realized variance are important 
determinants of volatility persistence in energy markets, while other economic variables also affect volatility persistence. The daily 
CVP of crude oil is negatively related to the credit spread and the Baltic exchange dirty tanker index,1 but positively related to the VIX.2 

Further, the impact of financial variables on the volatility persistence of natural gas markets is limited; only Treasury bills are posi-
tively related to CVP. These findings provide new evidence of the economic determinants of volatility persistence in energy markets. 

Three (interrelated) results further underscore the economic significance of volatility persistence as the information-transmitting 
mechanism in the volatility dynamics of energy markets. First, the impact of returns is transmitted to future volatility via the volatility 
persistence channel. After accounting for volatility persistence, the direct impact of returns on future volatility is reduced considerably 
and/or becomes statistically insignificant (in natural gas). The impact of the economic variables is also transmitted to the energy 
volatility via the volatility persistence channel, rather than directly to the volatility level. Thus, CVP plays an important role in 
transmitting information from macro-economic and market conditions in future volatility. Second, the CVP determinants notably 
contribute to the volatility variation. The VIX, the credit spread and the Baltic exchange dirty tanker index are particularly important 
for the volatility persistence in crude oil markets. Collectively, the CVP-based variables explain 15%–23% of the variation in daily 
volatility across the two energy markets, accounting for 25%–38% of the regression R2.3 Thus, these variables are not only key de-
terminants of volatility persistence but also transmit a material impact on future volatility that jointly accounts (via CVP) for about one 
quarter of the variation in future volatility. Third, daily volatility persistence in energy markets is considerable and has large daily 
variations.4 This evidence of a statistical and economic significance of daily CVP presents a challenge to models with constant volatility 
persistence and to the standard practice of modelling and estimating the return impact on the volatility level, and not on its persistence. 

Further, we demonstrate that models calibrating the correlation between current and future volatility and incorporating infor-
mation from macro-economic variables offer enhanced predictive accuracy for energy market volatility. In the spirit of Bollerslev et al. 
(2018), we assess the economic value of the forecasting models by employing realized utility per unit of wealth, accounting for 
transaction costs and trading speed. The empirical results reveal superior statistical and economic benefits in incorporating infor-
mation from macro-economic variables in the daily volatility persistence, particularly in the oil market.5 

Our findings regarding the economic significance of volatility persistence contribute to two strands of literature. The first strand 
deals with modelling and analysing the empirical characteristics of volatility persistence. Following the success of the GARCH family 
models, a wide range of explanations have been proposed with mixed empirical support.6 However, as Bollerslev et al. (2018) state, 
“[T]he economic forces behind volatility clustering per se remain poorly understood.“7 Several recent studies explored the de-
terminants of volatility persistence in equity markets. Patton and Sheppard (2015) show that daily volatility persistence is largely 
driven by negative semi-variance, i.e., the sum of squared negative intraday returns. Bollerslev et al. (2016) demonstrate that the 
measurement errors in daily volatility reduce its information content and its impact on future volatility. Wang and Yang (2018) find 
strong support for CVP in the S&P 500 index and stocks in the S&P 100 index. By using a leveraged quantile HAR model, Baur and 
Dimpfl (2019) demonstrate that volatility persistence and asymmetry are associated with high volatility regimes. Chen and Wang 
(2020) show that global return and volatility are more important than their local counter-parts in determining local volatility 
persistence in international equity markets. We add to this literature by identifying key macro-economic determinants of daily CVP in 
energy markets and demonstrate that by linking volatility persistence to economic conditions, our models produce statistically and 
economically significant benefits relative to recent advances in modelling volatility dynamics. 

The other strand of literature is associated with forecasting commodity market volatility (in particular, in the crude oil market) by 
conditioning on macro-economic variables. Pan, Wang, Wu, and Yin (2017) use a GARCH-MIDAS models to show that 
macro-economic variables improve forecasting of oil price volatility, while macroeconomic uncertainty is a strong predictor of 
volatility in energy markets (Bakas and Triantafyllou (2019)). Nonejad (2020) documents that the informational affinity between 

1 Credit spreads and the Baltic tanker index are positively associated with energy market volatility. An unexpected increase in credit spreads or the 
tanker index tends to increase the energy market volatility. This volatility reflects the gross information flow over a short period of time (e.g., a day) 
associated with more priced information, thus the arrival of less correlated information, meaning low volatility persistence.  

2 Ross (1989) suggests that volatility reflects information flow, thus effects transmitted between different markets reflect cross-market information 
flows. Correlated information, defined as information urged by the same underlying economic change, e.g., a shock in the VIX, tends to arrive within 
a short period of time causing volatility clustering and thus increased volatility persistence.  

3 The contribution of these determinants is assessed by the means of the Shapley R2. The Shapley R2 measures the marginal contributions of a set 
of explanatory variables to the variation of the dependent variable.  

4 The mean CVP is 54.6% in crude oil and 46.4% in natural gas, while the volatility of the CVP is 8.5% for crude oil and 7.7% for natural gas 
(which are larger than the standard deviations of daily volatility).  

5 We compare the forecasting performance of our model against those of the Corsi (2009) HAR model, the Patton and Sheppard (2015) HAR with 
semi-variance (HAR-SV) model, and the Bollerslev et al. (2016) HAR with realized quarticity (HAR-RQ) model.  

6 A partial list includes volatility regime shifts (Lamoureux and Lastrapes (1994)), persistence of information arrivals (Laux and Ng (1993); 
Andersen and Bollerslev (1997)), parameter uncertainty and investor learning (Brock and LeBaron (1996); Johnson (2001)), heterogeneous trading 
frequencies (Müller, Dacorogna, Dav’e, Olsen, Pictet, and von Weizsäcker (1997); Xue and Gençay (2012)) and investors’ sensitivity to infor-mation 
(Liesenfeld (2001); Berger et al. (2009)).  

7 This echoes an observation by Diebold and Lopez (1995) that “a consensus economic model producing persistence in conditional variance does 
not exist.” Goodhart and O’Hara (1997) comment that “[P]erhaps the most serious problem of GARCH modelling is that we do not yet have a good 
theory to explain such persistence.” 
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macro-economic variables and monthly oil volatility is stronger after 2008, while Nguyen and Walther (2020) focus on longer-term 
forecasting and use MIDAS to be able to accommodate macro-economic variables at different frequencies. An emerging literature 
using high-frequency data analyses shor-term realized volatility forecasting in commodity markets, see Degiannakis and Filis (2017), 
Zhang, Ma, Shi, and Huang (2018b), Degiannakis and Filis (2018), Ma et al. (2018), Prokopczuk et al. (2019), Alam et al. (2019), Luo 
et al. (2020) and Bissoondoyal-Bheenick et al. (2020) and literature within. Degiannakis and Filis (2017) demonstrate that stocks, 
Forex, commodities and macro-economic information enhances the predictability of oil price volatility, and Degiannakis and Filis 
(2018) find predictive benefits in oil market volatility by using volatility and returns of financial markets. Alam et al. (2019) study 
sources of volatility asymmetries in oil market and show that bad volatility dominates good volatility in terms of shock transmissions. 
We find that the impact of economic variables is channeled to the volatility via volatility persistence. Further, when macro-economic 
variables matter, calibrating the variation of volatility persistence with macro-economic variables offers a significant forecasting 
benefit. 

This study underscores the economic importance of the volatility persistence as an information transmitting mechanism in energy 
markets, thus it infers material implications on several aspects of energy markets dynamics. Since the financialization of commodity 
markets (Tang and Xiong (2012), Silvennoinen and Thorp (2013) and Cheng and Xiong (2014)), it has been argued that volatility in 
these markets, in particular, crude oil, has been integrated with equity markets, and volatility spillovers are evident between them 
(Chiang et al. (2015), Basak and Pavlova (2016) and Aromi et al., 2019). Energy market volatility has also a notable impact on the 
shape of futures curves, risk premiums and the asymmetric nature of the return-volatility relation which has become more pronounced 
following the financialization of commodity markets.8 Further, macro-economic and financial variables, such as industrial production, 
term and credit spreads, the US dollar index and the VIX are key determinants of the dynamics in energy markets (in particular, oil 
markets) (Chiang et al. (2015), Prokopczuk et al. (2019) and Kang et al. (2020)). The magnitude of this impact differs across energy 
markets, thus the economic determinants of volatility persistence and their impact would potentially differ.9 From a practical 
perspective, the physical energy markets have experienced significant structural changes in recent years, e.g., the expansion of the 
shale oil and gas markets (Kilian (2016)). Thus, investments in transportation facilities, production planning and inventory man-
agement are affected by the determinants of the volatility dynamics and their transmission channels (e.g., volatility persistence). 
Moreover, volatility forecasting in energy markets is critical for trading and investment performance, derivatives pricing and hedging 
decisions. Accounting for information flows from economic variables in energy market volatility would potentially offer forecasting 
gains. 

The remainder of the paper is structured as follows. In Section 2, we outline the model specifications for conditional volatility 
persistence. Section 3 describes the data. We analyse volatility persistence in energy markets and identify its determinants in Section 4. 
Using forecasting considerations, the statistical and economic benefit of volatility persistence is further examined in Section 5. Section 
6 concludes. 

2. Modelling volatility persistence 

The increasing availability of high-frequency data has improved the estimation and the forecasting of return-based realized 
variance (RV) measures (Bucci (2017)). The HAR model proposed by Corsi (2009) has emerged as the most popular model capturing 
the dynamics of daily RV. This model reproduces the empirically observed long memory of financial markets and has equal or better 
forecasting performance than more complicated models (Corsi (2009) and S’evi (2014)). We adapt HAR models to embed the feature of 
time-varying volatility persistence that may depend on market variables, such as returns, volatility and macro-economic factors. Thus, 
we discuss the formulation of volatility persistence in classical HAR models, and we introduce a novel approach to model conditional 
volatility persistence in HAR models. 

2.1. Classical HAR models and volatility persistence 

We denote as RVt,D the daily realized variance that is estimated as the sum of squared. 

Intra-day returns over a day, thus given by RVt,D =
∑M

i=1
r2
i where M is the number of intra-day observations. The HAR model is based 

8 See Chiarella, Kang, Nikitopoulos, and T^o (2016), Nikitopoulos et al. (2017), Prokopczuk et al. (2017), Christoffersen and Pan (2018), Baur and 
Dimpfl (2018) and Prokopczuk et al. (2019) for related literature.  

9 Silvennoinen and Thorp (2013) show that macro-economic variables affect crude oil, but not natural gas. Recent empirical studies provide 
strong evidence of the decoupling of oil and gas prices mainly due to the shale gas revolution (Zhang and Ji (2018) and Zhang, Shi, and Shi (2018a)). 
Ji, Geng, and Tiwari (2018) show that oil and its refining products act as information transmitters, while natural gas markets act as information 
receivers. 
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on the notion that the unobservable variance of returns is a linear function of the lagged squared return sampled over different time 
horizons, reflecting the impact of an investor with varying trading frequencies (Corsi (2009)). To account for the heterogenous effects 
of returns on volatility, namely, the leverage effect, the lagged daily, weekly and monthly returns are also included in the model 
specifications.10 Accordingly, the basic (leveraged) HAR model is estimated via the following regression: 

RVt+1,D = α + βDRVt,D + Zt + εt+1, (1)  

where 

Zt = βW RVt,W + βMRVt,M + θ+
Dr+t,D + θ−

Dr−t,D + θW rt,W + θMrt,M , (2) 

With RVt,W and RVt,M representing the (non-overlapping)11 averages of the lagged weekly and monthly realized variances, 
approximated by RVt,W = 1

4
∑4

i=1RVt− i, D, and RVt,M = 1
17
∑21

i=5RVt− i, D, respectively. The negative and positive daily returns are 
captured by r−t,D = rtI(rt<0) and r+t,D = rtI(rt> 0), respectively, and the lagged weekly and monthly returns are constructed as rt,W =

1
4
∑4

i=1rt− i, D and rt,M = 1
17
∑21

i=5rt− i, D, respectively. The HAR model specifications (1)–(2) infer constant daily volatility persistence, 
represented by βD, and ensure that statistically and economically significant variables impacting future daily RV been used as controls 
including long-run dependence from weekly and monthly RV. 

Patton and Sheppard (2015) introduce the negative semi-variance (NSV) and the positive semi-variance (PSV) which capture the 
influence of negative returns and positive returns on RV, respectively. They demonstrate empirically that in equity markets negative 
shocks matter more to future volatility than positive shocks. The leveraged HAR model incorporating these semi-variances is denoted 
as the HAR-SV model, and it is estimated as 

RVt+1,D = α + βPSV PSVt,D + βNSV NSVt,D + Zt + εt+1, (3)  

where Zt is given by (2), with NSVt,D =
∑n

i=1
r2

i, t I(ri,t<0) and PSVt,D =
∑n

i=1
r2

i, t I(ri,t>0) . Although it is not directly inferred, the model’s 

specifications entail a daily volatility persistence which is sensitive to the size and type of shocks - high negative shocks lead to high 
volatility persistence.12 

The first explicit reference of the volatility persistence depending on market conditions was proposed by Bollerslev et al. (2016). 
The daily realized variance, which is computed using high frequency returns, is influenced by market microstructure noise (e.g., 
bid-ask bounce and tick size) and new events, see Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2011). The realized 

quad-power quarticity (RQ) captures the variance of these measurements errors and it is estimated as RQt = n
3
∑n

i=1
r4
i,t. High RQt means 

more noise and less information in RVt,D, therefore less impact from RVt,D on RVt+1,D. Thus, as documented by Bollerslev et al. (2016), 
this is a systemic variation associated with RVt,D. The square root of RQt interacts with the lagged realized variance, and it is added to 
the HAR model to produce the (leveraged) HAR-RQ model as 

RVt+1,D = α +
(
βD + βRQRQ1/2

t

)
RVt,D + Zt + εt+1, (4)  

where Zt is determined by (2). Next, we propose a new class of HAR models with conditional volatility persistence. 

2.2. HAR models with conditional volatility persistence 

The dynamic nature of daily volatility persistence is impacted by market conditions and macro-economic shocks and is captured by 
the so-called conditional volatility persistence (CVP). Empirical evidence in equity markets suggests that daily volatility persistence de- 
pends on observed market conditions, such as returns and volatility, see Wang and Yang (2018). The net price impact of an information 
event, following positive and negative re-turns, triggers the arrival of correlated information the next day which leads to an increase in 
volatility persistence. A high-volatility market environment (high daily RV) is a signal that the market processes new information more 
rapidly, and there is less unpriced information thus induces a reduction in volatility persistence the next day (Andersen (1996)). 
Accordingly, daily volatility persistence depending on returns and volatility, can be formulated by the following HAR-CVP model: 

10 In the seminal work by Corsi and Ren o
′

(2012) and subsequent work, the leverage effect is captured by the negative (daily, weekly and monthly) 
returns. It is well documented that in equity markets the impact of negative returns on future volatility is more pronounced than positive returns, 
which motivates this representation. However, energy markets are known to react to either large negative or positive returns (Silvennoinen and 
Thorp (2013) and Baur and Dimpfl (2018)). This study aims to identify the impact of positive and negative returns on future RV. Accordingly, we 
consider a variation of the classical HAR model proposed in the literature by including the negative and positive daily returns (Wang and Yang 
(2018)).  
11 Non-overlapping averages allow to isolate the impact of RVt,D on RVt+1,D.  
12 If we let θ−t,D = NSVt,D/RVt,D, then model (3) can be rewritten as RVt+1,D = α + [βNSVθ−t,D +βPSV(1 − θ−t,D)]RVt,D + Zt + εt+1. Then, the daily volatility 

persistence of the HAR-SV model is expressed as βNSVθ−t,D + βPSV(1 − θ−t,D) = βPSV + (βNSV − βPSV)θ−t,D. Based on Patton and Sheppard (2015)’s 
findings for equity markets, βNSV ≫ βPSV > 0, thus high θ−t,D will lead to high daily volatility persistence. 
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RVt+1,D = α + CVPtRVt,D + Zt + εt+1, (5)  

where 

CVPt = βD + β−
r r−t,D + β+

r r+t,D + βRV RVt,D, (6)  

with β−
r , β+

r , and βRV as the CVP coefficients and Zt given again by (2). Note that the HAR-CVP model also includes non-overlapping 
long-run variances (RVt,W and RVt,M) and returns (rt,W and rt,M). Wang and Yang (2018) show that in equity markets, the coefficients 
β−

r < 0, β+
r > 0, and βRV < 0, inferring a positive relation between daily returns and volatility persistence, and a negative relation 

between volatility and volatility persistence. 
We hypothesize that volatility persistence is conditional not only to market conditions such as returns and volatility, but also to 

macro-economic factors. Thus, we extend the afore-mentioned concept of the CVP to include financial indicators, such as S&P 500 
returns and credit spreads, and energy sector variables, such as the Baltic exchange dirty tanker index. The information of these macro- 
economic factors is represented by the set of conditioning variables CVt . To identify the information transmission channels of these 
macro-economic factors, we further allow the set of conditioning variables to impact the dynamics of the volatility in two ways: by 
their direct effect on the daily realized variance and their indirect effect via the volatility persistence. Thus, this model formulation 
would not only identify the macro-economic determinants of daily volatility persistence in energy markets but also disentangle the 
information channels of these macro-economic factors on future volatility. Accordingly, we propose the following extension of model 
(5)–(6) to incorporate impact from economic factors, namely the HAR-CVP-CV model, which is estimated as 

RVt+1,D = α + CVPtRVt,D + Zt + δCV CVt + εt+1, (7)  

where the CVP (6) is extended and estimated by 

CVPt = βD + β−
r r−t,D + β+

r r+t,D + βRV RVt,D + βCV CVt, (8) 

With Zt be represented in (2). The CVP now contains the market conditions variables r−t,D, r+t,D, RVt,D, as well as the macro-economic 
conditioning variables CVt. Thus, the corresponding regressors of CVP are r−t,DRVt,D, r+t,DRVt,D, RV2

t,D and CVtRVt,D, respectively. Note 
that, δCV and βCV represent vectors of the coefficients for the corresponding macro-economic conditioning variables in the daily realized 
variance dynamics and in its volatility persistence, respectively. This representation provides the flexibility to assess the direct impact 
of the conditioning variables on the realized variance and the contribution of the conditional volatility persistence on transmitting the 
(indirect) impact of the conditioning variables to the realized variance. 

The HAR models can be estimated with ordinary least square (OLS), as in Corsi (2009) and Corsi and Ren′o (2012). However, daily 
RV exhibits frequent spikes, see Fig. 1. As pointed out by Patton and Sheppard (2015), these spikes tend to have a large influence on the 
estimated coefficients in the OLS estimation. Accordingly, we estimate the HAR models with weighted least squares (WLS), with 
weights the inverse of the fitted values of the error standard deviations, retrieved from the OLS estimation. Appendix A presents the 
details. 

3. Data and preliminary analysis 

We study the volatility persistence of two key energy markets, crude oil and natural gas, from January 2009 to August 2019.13 We 
employ the corresponding energy prices and a set of conditioning variables to estimate the daily realized variances using the different 
specifications of volatility persistence. 

3.1. Energy futures 

We use the prices of the nearest continuous futures contracts of the two energy commodities traded on the New York Mercantile 
Exchange (NYMEX). The daily RV, a measure of ex-post volatility, is constructed using the mid-quotations prices (average of. 

The figure plots the time series of the daily prices and the realized variances of the crude oil and natural gas front-month futures 
contracts between January 2009 and August 2019. RV is scaled by 104. 

Bid and ask prices) sampled at 5-min intervals.14 All futures prices are collected from Thomson Reuters Tick History (TRTH). The 
data filter process for reducing the thin trading bias (Bollerslev et al. (2018)) is outlined in Appendix B. 

13 We decided to start our analysis from 2009 based on liquidity considerations for energy contracts, see also Bissoondoyal-Bheenick et al. (2020). 
The energy contracts were thinly traded (at a high-frequency level) prior to this period. Since our daily volatility measure (RV) is constructed using 
5-min returns, we require that most contracts be traded over a 5-min window (with no major gaps in between). In Appendix B (Figure B1), we 
demonstrate that inclusion of thinly trading days can significantly overstate the average daily RV (four times more than its actual value), partic-
ularly for natural gas contracts. Similarly, during periods of low liquidity, we observe that the correlation between squared return (another proxy for 
daily volatility) and daily RV measure is weak. Hence, discarding the low liquidity periods removes noise in the proposed volatility proxy.  
14 In the literature, the consensus is to aggregate returns into 5-min intervals as they usually provide the best RV approximation (Liu et al. (2015)). 
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We measure the daily volatility of the two energy markets by using the RV based on 5-min returns.15 Some energy markets display 
seasonality and failing to account for it may distort the pricing, hedging and forecasting performance of the associated models 
(Suenaga et al. (2008); Mart’ınez and Torr’o (2015); Arismendi et al. (2016)). In spirit of Auer et al. (2014), we test for seasonality in 
the RV time series using the Kruskal and Wallis (1952) (KW) test and confirm that there is a day of the week and month of the year 
effect in natural gas volatility, but not in crude oil volatility.16 

Accordingly, we deseasonalize the natural gas RV time series based on the approach used by Hameed et al. (2010) and Wang 
(2013). This approach ensures that the adjusted and original RV time series mean and variance remain unchanged (i.e. they share the 
same statistical properties). Appendix C summarises the details of the seasonality adjustments and tests. 

The time series of the daily prices and the RV of the two energy markets are depicted in Fig. 1. Between 2009 and 2014, energy 
prices trended upward, on average, as the economic recovery from the Global Financial Crisis and increasing demand from emerging 
economies drove oil prices up to $125 per barrel. However, by the end of 2014, oil and natural gas prices plummeted driven by the 
slower economic growth of emerging countries and the rapid expansion of shale markets that led to a global oversupply of oil (oil glut). 
The impact of the oil glut was evident not only in the prices but also in the RV series of the crude oil market. Interestingly, the RV time 
series reveal that natural gas had more clusters of volatility over the years compared to the other commodities. In recent years, natural 
gas markets are not correlated to oil markets, which is evident from the price dynamics of these markets in Fig. 1.17 Unlike the oil 
market, natural gas prices are mainly determined by supply and demand controlled by weather and production levels, with less impact 
from economic growth conditions. Natural gas production has increased dramatically from shale drilling, keeping natural gas prices 
low in recent years, with the occasional spikes driven mostly by extreme weather conditions, such as the one in November 2018.18 

3.2. Macro-economic variables 

We hypothesize that general macro-economic factors, such as financial indicators and commodity sector variables, can affect the 
daily volatility persistence in energy markets and transmit this impact to the volatility of these markets. To capture these effects, we use 
HAR models for the RV of energy markets that integrate the direct impact of macro-economic factors on volatility, but also gauge their 
indirect impact on volatility via (conditional) volatility persistence. We term these factors conditioning variables, and we consider two 

Fig. 1. Daily prices and realized variances.  

15 Alternative RV measures are also considered, namely, the realized quad-power quarticity (RQ), the negative semi-variance (NSV) and the 
positive semi-variance (PSV). See Appendix D for a discussion of their statistical properties.  
16 Crude oil markets display significant volatility spillovers and integration with equity markets, which may distort effects driven by potential oil 

market seasonal factors such as inventory (Cheng and Xiong (2014), Chiang et al. (2015), Basak and Pavlova (2016), Bampinas and Panagiotidis 
(2017), and Kang et al. (2020)).  
17 Following the liberation of natural gas prices from oil indexation, in recent years there is strong empirical evidence of the decoupling of crude oil 

and natural gas prices (particularly in United States) (Geng, Ji, and Fan (2016a) and Zhang and Ji (2018)). The shale gas evolution has further 
affected the relation betweenthe two markets (Geng, Ji, and Fan (2016b) and Caporin and Fontini (2017)).  
18 See https://www.eia.gov/todayinenergy/detail.php?id=37713. 
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groups: financial indicators and commodity sector variables. These factors are drawn by the empirical literature identifying key de-
terminants of returns and volatility in energy markets.19 Volatility is the main channel of volatility persistence, thus potentially they 
share the same determinants. However, we further aim to determine the importance of volatility persistence in transmitting this impact 
to volatility dynamics. 

The first group of (volatility and) volatility persistence determinants is financial indica-tors. We consider the following five 
financial indicators: the S&P 500 return (SP500), the VIX, the US dollar index (USDI), the credit spread (CS), the 3-month Treasury bill 
(TB) and the term spread (TS). The second group of conditioning variables is the commodity sector variables, including the S&P 
Goldman Sachs Commodity Index (SPGSCI), the Commodity Research Bureau (CRB) raw materials index (CRB) and the Baltic ex-
change dirty tanker index (BDI).20 We report the summary statistics of the conditioning variables in Table 1. Based on results of the 
Augmented Dickey-Fuller (ADF) test, we take the first difference of the USDI, TB, TS, SPGSCI and CRB individual time series. 

4. The role of volatility persistence in energy markets 

In this section, we identify the determinants and gauge the importance of volatility persistence in energy markets. First, we identify 
the macro-economic determinants of volatility persistence, and we discuss the role of volatility persistence in transmitting macro- 
economic information in volatility. Then, we re-assess the role of two well-known determinants of volatility persistence, namely 
returns and variances. We also examine the economic significance of volatility persistence by evaluating the contribution of CVP 
determinants to volatility variation and by detecting the drivers of the CVP variation. Last, we discuss the statistical properties of the 
CVP. 

4.1. Macro-economic information and volatility persistence 

The impact of the macro-economic variables on future volatility and daily volatility persistence can be assessed by estimating the 
model HAR-CVP-CV (see equations (7) and (8)). Table 2 and Table 3 present the estimation results of this model in the crude oil and 
natural gas markets, respectively.21 

We find that in oil markets, VIX and credit spreads are significant financial determinants of daily volatility persistence, and the 
Baltic exchange dirty tanker index is one of the commodity sector determinants of volatility persistence, see Table 2. Specifically, the 
VIX impacts future oil volatility in two ways; directly by decreasing volatility levels and indirectly by increasing volatility persistence 
and consequently increasing volatility. Correlated information, driven by a shock in the VIX, tends to arrive within a short period of 

Table 1 
Descriptive statistics of conditioning variables.   

Mean St. Dev. Median Skewness Exc.Kurtosis min max ADF 

Financial Indicators 
SP500(%) 0.045 1.046 0.063 0 5 − 6.896 6.837 14.466*** 
VIX 18.377 7.429 16.16 2 3 9.14 56.65 − 4.495*** 
USDI 4.401 0.101 4.371 0 − 2 4.22 4.573 − 2.742 
CS 1.064 0.441 0.96 3 9 0.53 3.35 − 4.344*** 
TB 0.491 0.744 0.13 2 1 0 2.49 2.822 
TS 2.019 0.918 2.01 0 0 − 0.52 3.83 − 2.583 
Commodity sector variables 
SPGSCI 5.888 0.152 5.838 0 − 1 5.551 6.245 − 2.596 
CRB 5.492 0.149 5.445 − 1 1 5.154 5.864 − 2.679 
BDI 7.037 0.846 7.039 − 5 40 0 8.447 − 5.338*** 

This table details the descriptive statistics of the conditioning variables: SP500, VIX, USDI, CS, TB, TS, SPGSCI, CRB, and BDI. Based on results of the 
ADF test, we take the first difference of the USDI, TB, TS, SPGSCI and CRB individual time series. 

19 See Morana (2013), Anzuini et al. (2015), Hitzemann (2016), Prokopczuk et al. (2019) and Kang et al. (2020).  
20 The data sources and the role of each determinant of energy markets dynamics are discussed with associated literature in Appendix E. Other 

macro-economic factors could have been included in this study, such as inventory, hedging pressure and industrial production. However, these 
factors are available on weekly or even monthly frequency. For this study, we focus on factors available in daily frequency. Inventory may have 
medium-to long-term effects on weekly/monthly volatility (Kogan et al. (2009), Haugom, Langeland, Moln’ar, and Westgaard (2014) and Niki-
topoulos et al. (2017)). However, short-term volatility, e.g daily volatility computed from high-frequency data, tends to be more sensitive to 
macro-economic factors (Kang et al. (2020)). Energy inventory data are available on weekly frequency, and a price-based proxy could have been 
used to counteract for the difference in the frequency (Ng and Pirrong (1994); Robe and Wallen (2016); Bruno et al. (2017)). Empirical evidence 
though shows that even though inventories and futures interest-adjusted spreads are highly associated, their interactions with volatility may vary 
(Nikitopoulos et al. (2017)). Thus, a price-based estimate of inventory may not represent a robust proxy. Accordingly, we do not control for in-
ventories (or a price-based proxy of inventories).  
21 Even though some of the control variables are highly correlated, their coefficients have the appropriate sign and plausible magnitude and are 

statistically significant. Accordingly, multicollinearity should not be a major concern, see page 173 of Brooks (2008). Further, the Ljung-box sta-
tistics for serial correlation in the residuals for the HAR-CVP-CV models validates that missing variables bias is not present in our model specifi-
cations, see the last two rows in Tables 2 and 3. 
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Table 2 
The HAR-CVP-CV models for crude oil.  

α 1.45E-05*** 2.95E-05*** 1.46E-05*** 1.86E-05*** 1.45E-05*** 1.38E-05*** 1.34E-05*** 1.37E-05*** 1.26E-05* 1.95E-05**  
(4.351) (3.554) (3.963) (2.886) (4.250) (4.082) (3.980) (3.973) (1.662) (2.014) 

βD 0.436*** 0.420*** 0.438*** 0.487*** 0.435*** 0.442*** 0.429*** 0.431*** 0.562*** 0.630***  
(14.176) (11.551) (14.339) (14.591) (14.084) (14.477) (14.126) (14.143) (8.073) (9.089) 

β−
r − 0.136*** − 0.143*** − 0.152*** − 0.153*** − 0.156*** − 0.134*** − 0.139*** − 0.142*** − 0.159*** − 0.117***  

(-3.974) (-4.141) (-3.967) (-3.991) (-4.272) (-3.759) (-4.213) (-4.359) (-4.178) (-3.583) 
β+

r 0.050 0.050 0.055 0.051 0.051 0.055 0.056* 0.057 0.054 0.059*  
(1.426) (1.547) (1.511) (1.528) (1.504) (1.609) (1.646) (1.633) (1.534) (1.948) 

βRV − 0.006** − 0.009*** − 0.006** − 0.006** − 0.006** − 0.006** − 0.006** − 0.006** − 0.007** − 0.011***  
(-2.064) (-2.944) (-2.172) (-2.023) (-2.093) (-2.124) (-2.221) (-2.328) (-2.361) (-3.332) 

βW 0.307*** 0.291*** 0.298*** 0.288*** 0.300*** 0.305*** 0.307*** 0.306*** 0.300*** 0.292***  
(11.708) (10.413) (11.196) (10.914) (11.103) (11.475) (11.353) (11.382) (11.450) (10.140) 

βM 0.159*** 0.155*** 0.160*** 0.170*** 0.159*** 0.154*** 0.163*** 0.162*** 0.155*** 0.162***  
(6.680) (6.165) (6.892) (6.816) (6.604) (6.552) (6.657) (6.665) (6.541) (6.846) 

θ−D − 0.178* − 0.231** − 0.204* − 0.198* − 0.202* − 0.222** − 0.211** − 0.195* − 0.196* − 0.218**  
(-1.733) (-2.277) (-1.852) (-1.853) (-1.934) (-2.114) (-2.082) (-1.928) (-1.826) (-2.160) 

θ+D 0.027 0.019 0.002 0.012 0.009 0.019 0.039 0.031 0.012 0.059  
(0.280) (0.215) (0.016) (0.124) (0.101) (0.199) (0.418) (0.324) (0.128) (0.659) 

θW − 0.153** − 0.145** − 0.135** − 0.146** − 0.136** − 0.135** − 0.144** − 0.137** − 0.137** − 0.170**  
(-2.376) (-2.285) (-2.155) (-2.361) (-2.116) (-2.104) (-2.227) (-2.120) (-2.116) (-2.734) 

θM − 0.187 − 0.206 − 0.225 − 0.134 − 0.209 − 0.206 − 0.200 − 0.196 − 0.206 − 0.172  
(-1.294) (-1.474) (-1.536) (-0.935) (-1.468) (-1.465) (-1.419) (-1.391) (-1.430) (-1.265) 

βSP500 − 1.491         − 0.138  
(-1.113)         (-0.113) 

βVIX  0.004*        0.009***   
(1.805)        (2.837) 

βUSDI   3.732       2.059    
(1.189)       (0.607) 

βCS    − 0.029      − 0.098**     
(-1.198)      (-2.468) 

βTB     0.227     − 0.035      
(0.236)     (-0.036) 

βTS      − 0.500**    − 0.290       
(-2.704)    (-1.347) 

(continued on next page) 
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Table 2 (continued ) 

βSPGSCI       − 0.028   − 0.049        
(-1.460)   (-1.056) 

βCRB        − 0.025  0.047         
(-1.187)  (0.892) 

βBDI         − 0.017* − 0.028***          
(-1.820) (-2.834) 

δSP500 − 4.96E-04         − 4.25E-04  
(-1.503)         (-1.249) 

δVIX  − 1.28E-06**        − 1.77E-06**   
(-2.091)        (-2.166) 

δUSDI   − 1.06E-03       − 1.04E-03    
(-1.445)       (-1.267) 

δCS    − 9.67E-06      9.72E-06     
(-1.167)      (0.904) 

δTB     5.73E-05     4.69E-05      
(0.331)     (0.256) 

δTS      − 2.59E-05    − 3.62E-05       
(-0.549)    (-0.588) 

δSPGSCI       − 1.84E-04   4.79E-04        
(-0.423)   (0.524) 

δCRB        − 2.76E-04  − 1.07E-03         
(-0.618)  (-1.061) 

δBDI         1.67E-07 1.02E-06          
(0.150) (0.872) 

adj R2 0.675 0.672 0.671 0.670 0.673 0.676 0.674 0.674 0.672 0.679 
AIC − 40,486 − 40,491 − 40,454 − 40,501 − 40,470 − 40,493 − 40,492 − 40,492 − 40,469 − 40,542 
LB(Q*) 5.04** 1.49 5.46** 7.42*** 4.82** 7.01*** 5.13** 4.56** 4.53** 3.41*  

(0.02) (0.22) (0.02) (0.01) (0.03) (0.01) (0.02) (0.03) (0.03) (0.06) 

This table reports the estimation results of the following regressions in the crude oil: RVt+1,D = α + (βD +β−
r r−t,D + β+

r r+t,D +βRVRVt,D + βCVCVt,D)RVt,D + Zt + δCVCVt,D + εt+1,D, where Zt is defined by (2). 
The t-statistic (in parentheses) is estimated using the Newey–West standard errors. AIC is the Akaike information criteria. LB(Q*) is the Ljung-Box test statistics and its p-value is reported in parentheses. *, 
**, *** denotes the 10%, 5% and 1% level of significance, respectively.  
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Table 3 
The HAR-CVP-CV models for natural gas.  

α 2.76E-05*** 5.75E-05** 2.74E-05** 8.61E-05** 2.93E-05*** 2.79E-05** 2.70E-05** 2.78E-05** 1.93E-05 7.34E-05*  
(3.022) (2.458) (2.763) (2.645) (3.153) (2.796) (2.697) (2.758) (0.492) (1.884) 

βD 00.414*** 0.346*** 0.416*** 0.311*** 0.407*** 0.414*** 0.416*** 0.413*** 0.385*** 0.281***  
(8.812) (5.038) (9.425) (4.390) (9.073) (9.527) (9.205) (9.172) (4.273) (3.122) 

β−
r − 0.077*** − 0.075*** − 0.078*** − 0.077*** − 0.079*** − 0.077*** − 0.075*** − 0.075*** − 0.075*** − 0.071***  

(-3.532) (-3.443) (-3.427) (-3.559) (-3.610) (-3.392) (-3.327) (-3.308) (-3.406) (-3.361) 
β+

r 0.070*** 0.067*** 0.068*** 0.067*** 0.068*** 0.066*** 0.067*** 0.067*** 0.067*** 0.068***  
(3.302) (3.308) (3.435) (3.377) (3.397) (3.227) (3.324) (3.251) (3.414) (3.653) 

βRV − 0.003** − 0.005** − 0.003** − 0.005** − 0.003* − 0.003** − 0.003** − 0.003* − 0.003** − 0.005**  
(-2.004) (-2.799) (-2.341) (-2.517) (-1.935) (-2.085) (-2.011) (-1.859) (-2.106) (-2.428) 

βW 0.314*** 0.308*** 0.313*** 0.318*** 0.312*** 0.311*** 0.311*** 0.311*** 0.311*** 0.322***  
(8.293) (8.381) (8.250) (8.124) (8.256) (8.430) (8.268) (8.289) (8.298) (8.365) 

βM 0.145*** 0.144*** 0.145*** 0.137*** 0.146*** 0.145*** 0.145*** 0.145*** 0.145*** 0.131***  
(5.626) (5.240) (4.485) (4.279) (4.981) (4.491) (4.527) (4.514) (4.838) (4.685) 

θ−D 0.041 0.027 0.044 0.035 0.052 0.038 0.017 0.022 0.027 − 0.021  
(0.447) (0.295) (0.477) (0.392) (0.575) (0.423) (0.189) (0.244) (0.305) (-0.229) 

θ+D 0.296** 0.319** 0.310** 0.304** 0.322** 0.322** 0.319** 0.323** 0.319** 0.300**  
(2.194) (2.310) (2.460) (2.210) (2.211) (2.490) (2.484) (2.477) (2.325) (2.462) 

θW − 0.142 − 0.145 − 0.148 − 0.199 − 0.142 − 0.148 − 0.138 − 0.141 − 0.132 − 0.150  
(-1.219) (-1.216) (-1.184) (-1.381) (-1.125) (-1.184) (-1.113) (-1.123) (-1.083) (-1.190) 

θM − 0.122 − 0.153 − 0.102 − 0.166 − 0.099 − 0.112 − 0.136 − 0.107 − 0.091 − 0.263  
(-0.589) (-0.726) (-0.515) (-0.783) (-0.489) (-0.573) (-0.701) (-0.548) (-0.423) (-1.276) 

βSP500 − 0.644         − 0.591  
(-0.373)         (-0.368) 

βVIX  0.005        0.001   
(1.481)        (0.191) 

βUSDI   − 3.047       − 2.789    
(-1.196)       (-0.950) 

βCS    0.131*      0.096     
(1.936)      (1.430) 

βTB     3.039***     3.162***      
(2.813)     (2.896) 

βTS      − 0.227    − 0.184       
(-0.707)    (-0.531) 

βSPGSCI       − 0.005   0.044 

(continued on next page) 
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Table 3 (continued )        

(-0.264)   (0.791) 
βCRB        − 0.010  − 0.056         

(-0.513)  (-0.933) 
βBDI         0.004 0.007          

(0.336) (0.675) 
δSP500 − 1.10E-04         − 3.93E-04  

(-0.128)         (-0.505) 
δVIX  − 2.13E-06        − 8.09E-07   

(-1.463)        (-0.556) 
δUSDI   1.28E-03       1.20E-03    

(0.988)       (0.879) 
δCS    − 6.93E-05*      − 4.56E-05     

(-1.911)      (-1.293) 
δTB     − 1.02E-03***     − 1.11E-03***      

(-3.481)     (-3.548) 
δTS      6.08E-05    5.70E-05       

(0.558)    (0.413) 
δSPGSCI       1.21E-03**   1.94E-04        

(2.016)   (0.113) 
δCRB        1.18E-03*  1.35E-03         

(1.839)  (0.728) 
δBDI         1.21E-06 7.03E-07          

(0.211) (0.176) 
adj R2 0.568 0.568 0.569 0.564 0.574 0.567 0.572 0.569 0.568 0.570 
AIC − 34,892 − 34,911 − 34,893 − 34,874 − 34,923 − 34,899 − 34,909 − 34,900 − 34,901 − 34,938 
LB(Q*) 2.34 0.95 2.91* 0.01 2.34 2.18 2.29 2.40 2.58 1.03  

(0.13) (0.33) (0.09) (0.91) (0.13) (0.14) (0.13) (0.12) (0.11) (0.31) 

This table reports the estimation results of the following regressions for the natural gas: RVt+1,D = α + (βD +β−
r r−t,D + β+

r r+t,D +βRVRVt,D + βCVCVt,D)RVt,D + Zt + δCVCVt,D + εt+1,D, ∕= where Zt is defined by 
(2). The t-statistic (in parentheses), is estimated using the Newey–West standard errors. AIC is the Akaike information criteria. LB(Q*) is the Ljung-Box test statistics and its p-value is reported in pa-
rentheses. *, **, *** denotes the 10%, 5% and 1% level of significance, respectively.  
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time triggering volatility clustering, and thus increased volatility persistence. As the impact of the indirect channel via volatility 
persistence is far more pronounced than the direct one, VIX would positively affect oil volatility. Following the financialization of 
commodity markets, volatility spillovers and co-movements between oil and equity markets are well documented (Tang and Xiong 
(2012); Basak and Pavlova (2016)) providing compelling evidence of a positive relation between VIX and oil market volatility (Sil-
vennoinen and Thorp (2013), Kang et al. (2020) and Wang et al. (2020)). Credit spreads have also been identified as an important 
predictor of crude oil volatility (Hitzemann (2016) and Prokopczuk et al. (2019)). Worsening of credit conditions in the economy 
implies higher inflation compensation and volatility (Chen et al. (2014)). As a sudden increase in credit spreads would increase oil 
market volatility, this gross information flow over a short period of time (e.g., a day) is associated with more priced and thus less 
correlated information, reflecting a drop in volatility persistence (Hasbrouck (1995) and Andersen (1996)). This justifies the negative 
relation between credit spreads and oil volatility persistence. The Baltic exchange dirty tanker index - which represents the physical 
factor that influences the supply of energy commodities - tends to decrease volatility persistence. Empirical literature suggests that BDI 
and future volatility are positively related (Breitenfellner et al. (2009), Kilian (2009) and Fan and Xu (2011)), and this impact is 
transmitted to volatility via a reduction in the oil market’s volatility persistence. 

The Treasury bill, a proxy for monetary policy, is the only financial factor affecting volatility persistence in the natural gas market. 
Indeed, the indirect impact of the Treasury bill via the volatility persistence channel implies that the Treasury bill increases volatility 
persistence, i.e., the CVPt variable, which subsequently indicates that the impact of volatility persistence on realized volatility is 
positive. There is also a direct negative impact of Treasury bills on volatility levels. Typically, low interest rates lead to high demand for 
inventories, which among other economic channels, puts upward pressure on future prices and potentially, volatility in energy markets 
(Arora and Tanner (2013); Frankel (2014); Cheng, Nikitopoulos, and Schlögl (2018); Kang et al. (2020)). Based on the argument that 
high volatility reflects better priced and thus less correlated information, a reduction in volatility persistence is stipulated. Another 
financial variable that directly affects the daily volatility levels in natural gas is the credit spreads, a well-accepted predictor of 
volatility in energy markets (Table 3). Conversely to the oil markets, commodity sector variables such as the S&P GSCI Non-Energy 
index and CRB Raw Materials Index have a direct influence on the daily volatility in the natural gas market. 

Empirical studies demonstrate that financial indicators and commodity sector variables play an important role in determining 
volatility in energy markets (Robe and Wallen (2016), Prokopczuk et al. (2019) and Kang et al. (2020)). We find that the impact of 

Table 4 
Contribution of the CVP-CV determinants to volatility variation (shapley R2).   

SP500 VIX USDI CS TB TS SPGSCI CRB BDI 

Panel A: HAR-CVP-CV model for Crude Oil 

RVt 18.10% 16.43% 18.94% 17.02% 19.12% 18.35% 18.40% 18.32% 15.63% 
r−t,DRVt,D 2.68% 3.37% 3.74% 3.63% 3.95% 3.39% 3.33% 3.19% 3.38% 
r+t,DRVt,D 3.47% 1.93% 2.61% 1.89% 2.37% 2.90% 2.65% 2.64% 2.41% 
RV2

t,D 9.56% 8.65% 10.36% 8.53% 10.46% 9.70% 10.00% 9.89% 10.09% 
CVt,DRVt,D 2.73% 7.47% 0.45% 7.28% 0.11% 2.78% 1.52% 1.86% 7.06% 
ĈVPt,D 18.44% 21.42% 17.16% 21.32% 16.90% 18.76% 17.49% 17.57% 22.94% 
CVt,D 1.03% 0.96% 0.04% 0.77% 0.05% 0.52% 0.24% 0.34% 1.11% 
RVt,W +

RVt,M 

25.99% 24.27% 26.82% 23.98% 26.94% 25.08% 26.80% 26.58% 24.32% 

r−t,D + r+t,D 3.93% 3.49% 3.63% 3.38% 3.77% 4.20% 3.81% 4.13% 2.86% 
rt,W + rt,M 0.00% 0.59% 0.50% 0.57% 0.47% 0.67% 0.62% 0.48% 0.34% 
R2 67.50% 67.16% 67.08% 67.03% 67.26% 67.59% 67.36% 67.42% 67.20% 

ĈVPt,D/ R2 27.33% 31.89% 25.58% 31.81% 25.13% 27.76% 25.97% 26.05% 34.13% 

Panel B: HAR-CVP-CV model for Natural Gas 

RVt 17.06% 13.17% 17.07% 13.01% 16.89% 17.02% 17.14% 17.00% 12.57% 
r−t,DRVt,D 2.65% 2.14% 2.69% 1.92% 2.71% 2.68% 2.58% 2.36% 2.17% 
r+t,DRVt,D 3.15% 2.56% 3.17% 2.71% 3.20% 3.16% 3.12% 2.98% 2.69% 
RV2

t,D 9.41% 7.28% 9.44% 7.34% 9.43% 9.42% 9.34% 9.33% 8.39% 
CVt,DRVt,D 0.04% 7.83% 0.08% 7.56% 0.34% 0.02% 0.38% 0.23% 8.20% 
ĈVPt,D 15.25% 19.80% 15.38% 19.53% 15.68% 15.28% 15.41% 14.91% 21.45% 
CVt,D 0.04% 0.65% 0.01% 0.11% 0.17% 0.01% 0.27% 0.01% 0.92% 
RVt,W +

RVt,M 

22.09% 20.89% 22.00% 21.27% 22.06% 21.95% 21.92% 22.77% 19.60% 

r−t,D + r+t,D 2.31% 1.73% 2.34% 2.00% 2.47% 2.34% 2.33% 2.08% 2.20% 
rt,W + rt,M 0.04% 0.54% 0.06% 0.51% 0.10% 0.06% 0.08% 0.15% 0.03% 
R2 56.79% 56.77% 56.86% 56.43% 57.37% 56.67% 57.15% 56.91% 56.77% 

ĈVPt,D/ R2 26.85% 34.88% 27.04% 34.61% 27.33% 26.97% 26.96% 26.20% 37.78% 

This table reports the Shapley decomposition of the regression R2 in the HAR-CVP-CV models in the crude oil and natural gas market: 
RVt+1,D = α + (βD + β−

r r−t,D + β+
r r+t,D + βRVRVt,D + βCVCVt,D)RVt,D + Zt + δCVCVt,D + εt+1,D, with ĈVPt,D = r−t,DRVt,D + r+t,DRVt,D + RV2

t,D + CVt,DRVt,D, 
and Zt is defined by (2).  
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these economic determinants is transmitted to future oil market volatility via its volatility persistence channel (and not directly to the 
volatility levels). Natural gas is less integrated with the oil market, and volatility is mostly driven by fundamentals,22 thus the impact of 
financial indicators on volatility is moderate (only via credit spreads and Treasury bills). Furthermore, most of the macro-economic 
factors impact volatility directly in natural gas markets. 

Table 5 
The HAR and HAR-CVP models.   

Crude Oil Natural Gas 

HAR HAR-CVP HAR HAR-CVP 

Panel A: Model estimation 

α 9.79E-06*** 
(3.265) 

1.45E-05*** 
(4.276) 

1.37E-05* 
(1.957) 

2.76E-05** 
(2.716) 

βD 0.435*** 
(18.234) 

0.436*** 
(13.970) 

0.453*** 
(12.439) 

0.415*** 
(9.584) 

β−
r  − 0.156*** 

(-4.331)  
− 0.077*** 
(-3.400) 

β+
r  0.052 

(1.531)  
0.067*** 
(3.309) 

βRV  − 0.006** 
(-2.124)  

− 0.003* 
(-2.208) 

βW 0.301*** 
(11.161) 

0.299*** 
(10.759) 

0.309*** 
(8.511) 

0.311*** 
(8.452) 

βM 0.159*** 
(6.608) 

0.159*** 
(6.455) 

0.140*** 
(4.809) 

0.145*** 
(4.485) 

θ−D − 0.665*** 
(-7.453) 

− 0.198* 
(-1.910) 

− 0.260** 
(-2.952) 

0.040 
(0.442) 

θ+D 0.155* 
(1.705) 

0.009 
(0.094) 

0.592*** 
(5.780) 

0.317* 
(2.499) 

θW − 0.116* 
(-1.787) 

− 0.135** 
(-2.078) 

− 0.127 
(-1.055) 

− 0.145 
(-1.161) 

θM − 0.189 
(-1.304) 

− 0.208 
(-1.464) 

− 0.101 
(-0.500) 

− 0.110 
(-0.565) 

R2 0.668 0.672 0.563 0.568 
AIC − 40,448 − 40,465 − 34,885 − 34,898 

Panel B: Shapley R2 

RVt,D 25.50% 19.13% 25.34% 17.07% 
Δ%  − 24.98%  − 32.62% 
r−t,DRVt,D  2.34%  2.68% 
r+t,DRVt,D  3.99%  3.17% 
RV2

t,D  10.49%  9.43% 

ĈVPt,D  16.83%  15.28% 
RVt,W +

RVt,M 

33.62% 26.99% 27.40% 22.01% 

Δ%  − 19.73%  − 19.68% 
r−t,D + r+t,D 6.24% 3.73% 3.51% 2.35% 
Δ%  − 40.19%  − 32.97% 
rt,W + rt,M 1.43% 0.48% 0.08% 0.06% 
Δ%  − 66.54%  − 21.44% 
R2 66.80% 67.16% 56.33% 56.77% 

ĈVPt,D/ R2  25.05%  26.91% 

This table reports the estimation results of the following regressions in the crude oil and natural gas markets: 
HAR : RVt+1,D = α + βD RVt,D + Zt + εt+1,D, HAR − CVP : RVt+1,D = α + (βD + β−

r r−t,D + β+
r r+t,D + βRVRVt,D)RVt,D + Zt + εt+1,D, with ĈVPt,D =

r−t,DRVt,D + r+t,DRVt,D + RV2
t,D, and Zt is defined by (2). Panel A details the estimation results for two regression models in the crude oil and natural 

markets, outlined above. The t-statistic (in parentheses) is estimated using the Newey–West standard errors. AIC is the Akaike information criteria. *, 
**, *** denotes the 10%, 5% and 1% level of significance, respectively. Panel B reports the Shapley decomposition of the regression R2 in the HAR and 
HAR-CVP models. Δ% is the percentage change of the Shapley R2 in the HAR-CVP model compared to the HAR model.  

22 Geng et al. (2016a) find that supply and demand are the main determinants of natural gas prices in United States, while oil prices play a key role 
in determining natural gas prices in Europe and Japan. 
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4.2. Impact of returns and past volatility 

Two well-known determinants of volatility include returns and past RV; thus, we re-assess the impact of these two market con-
ditions on volatility and the role of volatility persistence in transmitting this impact. We consider firstly the classical HAR model 
specifications (that infer constant volatility persistence (represented by βD)) and then compare these with the conditional volatility 
persistence HAR models, namely HAR-CVP and HAR-CVP-CV models (see Section 2.2), in which the volatility persistence is modeled 
via the CVP that depends on the RV, (positive and negative) returns and macro-economic variables. Reflecting an in-sample estimation, 
Panel A of Table 5 displays the impact of returns and RV on the next day’s volatility for the classical HAR (see equations (1) and (2)) 
and the HAR-CVP models. Tables 2 and 3 present the in-sample estimation results of the HAR-CVP-CV models in the crude oil and 
natural gas markets, respectively. We find two main results. First, we confirm that daily returns and RV are important drivers of future 
volatility. Daily RV increases the next day’s volatility, and daily returns decrease future volatility in the HAR models. Second and most 
importantly, the conditional volatility persistence HAR models estimation reveals that daily returns and RV are also significant de-
terminants of volatility persistence and play a prominent role in transferring the impact of returns and RV to future volatility. 

When using HAR models (see the first and third columns of Table 5), crude oil future volatility is determined by weekly returns and 
(positive and negative) daily returns, with the impact of negative daily returns higher than the positive daily returns and the weekly 
returns. Past (positive and negative) daily returns are also key determinants of future volatility in natural gas markets, yet the impact of 
positive daily returns is more pronounced (compared to negative daily returns), a behavior reflecting the inverse leverage effect. This is 
consistent with the theory of storage and the impact of fundamental commodity supply and demand factors (Ng and Pirrong (1994) 
and Geng et al. (2016a)).23 Nevertheless, in the last decade, energy markets have been very actively traded markets and popular 
investment vehicles, justifying the similarity of the behavior of the crude oil market to the equity markets (Chiang et al. (2015) and 
Basak and Pavlova (2016)). Further, in the energy markets, past (daily, weekly and monthly) RV is highly significant and positively 
related to the next day’s volatility, with the impact of short-term volatilities more pronounced compared to the impact of monthly 
volatilities. Accordingly, short-term trading in energy markets seems to be more influential on future daily volatility compared to 
longer-term trading (Ma et al. (2018)). 

The effects on volatility persistence are determined from the (in-sample) estimation of the HAR-CVP models reported in Panel A of 
Table 5 (see the second and forth columns). Daily returns and RV are important determinants of volatility persistence in energy 
markets. Negative returns affect volatility persistence in crude oil market, and negative returns increase future oil volatility directly 
and indirectly via the volatility persistence channel. In the natural gas market, positive24 and negative returns determine volatility 
persistence, and their impact is transmitted to future volatility entirely via volatility persistence. A negative return of 1% leads to an 
average increase in daily volatility persistence of 28.6% in the crude oil market and 16.6% in the natural gas market.25 Note that, the 
impact of positive returns on natural gas volatility persistence is marginally higher compared to the impact of negative returns. The RV 

Table 6 
CVP variance decomposition.   

HAR-CVP 

w(r−t,D) w(r+t,D) w(RVt,D)

Crude Oil 

Mean 87.1% 5.3% 7.5% 
Median 86.7% 5.5% 7.8% 
Min 76.0% 0.0% 0.1% 
Max 99.9% 11.1% 15.4% 

Natural Gas 

Mean 52.5% 38.4% 9.0% 
Median 52.7% 38.6% 8.8%ss 
Min 29.4% 15.1% 0.1% 
Max 75.2% 61.3% 18.2% 

This table reports the summary statistics of the weights w(r−t,D), w(r+t,D) and w(RVt,D) in the HAR-CVP model 
across six permutations in the orthogonalization process, respectively. The weights represent the percentages of 
the variance of CVPt,D decompose into the variances of its orthogonalized components r−t,D, r+t,D and RVt,D in the 
HAR-CVP model.  

23 In principle, low inventory (among other reasons and commodity shortage) drives commodity prices and volatility up, implying a positive 
relation between returns and volatility.  
24 The short-term effect of positive returns on natural gas volatility is consistent with the inverse leverage effect, thus for natural gas, fundamentals 

dominate in the short run.  
25 In Table 5, β−

r = − 0.156 for crude oil and − 0.077 for natural gas, while in Table 7, the mean level of CVP is 0.546 for crude oil and 0.464 for 
natural gas. Accordingly, the average increase in daily volatility persistence is 0.156/0.546 = 28.6% for crude oil and 0.077/0.464 = 16.6% for 
natural gas. 
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matters to the volatility persistence of crude oil and natural gas and is negatively associated with the CVP. On an average volatility day, 
volatility persistence is expected to decline by 4.4% in crude oil and 4.0% in natural gas.26 Similarly to the HAR models, past (daily, 
weekly and monthly) RV remains highly significant and positively related to the next day’s volatility. However, some of the RV impact 
is transmitted to future volatility via the CVP, and it has an inverse effect on volatility persistence. This can be justified by the argument 
that high volatility allows more information to be priced, resulting in lower volatility persistence (Andersen (1996)). Finally, results 
from Tables 2 and 3 for the HAR-CVP-CV models reveal that the addition of the macro-economic variables does not affect the statistical 
significance of the other predictors of future volatility and daily volatility persistence, such as positive and negative returns and RV. 
Therefore, we conclude that volatility persistence plays an important role in transmitting the impact of returns and RV to volatility of 
energy markets.27 

Table 7 
Statistical properties of CVP.  

Panel A: Descriptive Statistics  

Mean St. Dev. Median Skewness Exc. Kurtosis Min Max $LB(1)$ 

Crude oil 0.546 0.085 0.521 2.071 7.384 0.373 1.336 400.111 
Natural Gas 0.464 0.077 0.455 0.926 4.520 0.155 1.073 4.541 

Panel B: Correlation  
r+D r−D RVD VIXD CSD TBD BDID  

Crude oil 0.074*** − 0.753*** 0.429*** 0.506*** 0.160*** – − 0.238***  
Natural gas 0.349*** − 0.488*** 0.146*** – – 0.617*** –  

The CVP is calculated as: CVPt,D = βD + β−
t r−t,D + β+

t r+t,D + βRVRVt,D + βCVCVt,D.This table reports the statistical properties of CVP in the crude oil and 
natural gas market. Panel A is the descriptive statistics of CVP in the energy markets. LB(1) is the Ljung-Box test statistics at 1 lag. Panel B is the 
correlation between the CVP and individual components of the CVP. We only consider the conditional variables having a significant impact on future 
RV to construct CVPt,D. *, **, *** denotes the 10%, 5% and 1% level of significance, respectively.  

Fig. 2. Daily conditional volatility persistence (CVP) and histogram of CVP with conditioning variables.  

26 This is computed by combining information from Table 5, Table 7 and Table D2 from Appendix D. For crude oil is computed as 0.006 × 4.035/ 
0.546 = 4.4% and for natural gas, is 0.003 × 6.206/0.464 = 4.0%, accordingly.  
27 The HAR-CVP model can be extended to include variations of the RV measure: the semi-variances (SV) of Patton and Sheppard (2015) and the 

Bollerslev et al. (2016) realized quad-power quarticity (RQ). We use these extensions of the HAR-CVP model, namely, HAR-CVP-SV and 
HAR-CVP-RQ, as robustness tests and we find that the results are robust for these HAR-CVP model extensions, see Appendix F for details. 
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4.3. Economic significance of daily CVP 

To further appreciate the contribution of the daily CVP to future volatility, we assess the economic significance of the daily CVP. We 
gauge the contribution of CVP determinants to the volatility variation and then identify the drivers of the CVP variation. 

4.3.1. Contribution of CVP determinants to the volatility variation 
We have identified returns, RV and macro-economic variables such as the VIX, credit spreads and Treasury bills as significant 

determinants of CVP in the oil and natural gas markets. We use the Shapley-Owen decomposition of the regression R2 to measure the 
marginal contribution (via their explanatory power) of each variables to the volatility variation captured by the conditional volatility 
persistence HAR models.28 

Panel B of Table 5 presents the decomposition of the CVP regressors, namely, r+t,DRVt,D, r−t,DRVt,D, and RV2
t,D in the HAR-CVP models. 

We find that the CVP regressors explain 16.83% of future variations in crude oil’s RV and 15.28% of future variations in natural gas’s 
RV. Further, the CVP accounts for 25.05% of the model’s explanatory power in crude oil and 26.91% of the model’s explanatory power 
in natural gas. Among the CVP regressors, RV2 makes the stronger contribution (higher explanatory power) with a Shapley R2 of 

Table 8 
Out-of sample Forecasting Performance.  

Panel A: Loss functions comparison  

HAR HAR-SV HAR-RQ HAR-CVP HAR-CVP-CV 

Crude Oil 

MSE-ln 
Mean 0.236 0.294 0.211 0.185 0.155 
Median 0.073 0.074 0.073 0.061 0.057 
St. Dev. 0.558 1.054 0.419 0.420 0.333 
QLIKE 
Mean 0.035 0.036 0.036 0.030 0.028 
Median 0.037 0.034 0.037 0.033 0.032 
St. Dev. 0.590 3.278 0.326 0.412 0.265 

Natural Gas 

MSE-ln 
Mean 0.287 0.310 0.291 0.287 0.289 
Median 0.077 0.088 0.077 0.076 0.079 
St. Dev. 0.810 0.894 0.803 0.778 0.773 
QLIKE 
Mean 0.125 0.131 0.127 0.126 0.127 
Median 0.039 0.042 0.039 0.038 0.040 
St. Dev. 0.280 0.283 0.282 0.282 0.279  

Panel B: DM tests  

Crude Oil Natural Gas 

HAR-CVP  

HAR HAR-SV HAR-RQ HAR HAR-SV HAR-RQ 

MSE-ln − 3.666*** − 4.254*** − 2.628** − 0.128 − 3.991*** − 1.777* 
QLIKE − 2.537** − 2.532** − 1.261 0.968 − 1.601 − 1.071 
HAR-CVP-CV  

HAR HAR-SV HAR-RQ HAR HAR-SV HAR-RQ 

MSE-ln − 6.294*** − 5.470*** − 5.853*** 0.383 − 3.614*** − 0.851 
QLIKE − 4.303*** − 2.819** − 3.819*** 1.441 − 1.281 − 0.231 

Panel A reports a comparison of loss functions, namely MSE-ln and QLIKE loss functions, across different HAR models for crude oil and natural gas 
market. Panel B reports the DM test statistics of the HARi against the HAR − CVP and the HAR − CVP − CV model, where i is the HAR, HAR-SV and 
HAR-RQ model. A negative value means that the HAR − CVP and/or HAR − CVP − CV model has lower loss values compared to the competing 
models. *, **, *** denotes the 10%, 5% and 1% level of significance, respectively.  

28 We follow the Lahaye and Neely (2018) and Wang and Yang (2018) approach to estimate the Shapley R2. Henceforth, the total R2 is the sum of 
the estimated Shapley R2 for each variable. The Shapley R2 decomposition helps to better assess the contribution of the CVP regresssors (as well as 
other regressors) to the HAR model. One advantage of the Shapley R2 regression over the general linear regression technique is that it takes care of 
multicollinearity. 
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Table 9 
Realized Utility  

Panel A: Realized utility with varying coefficient of risk aversion   
HAR HAR-SV HAR-RQ HAR-CVP HAR-CVP-CV HAR HAR-SV HAR-RQ HAR-CVP HAR-CVP-CV 

Crude Oil 
T.Costs Spread γ = 2 γ = 4 

Zero  8.24% 7.04% 8.44% 8.49% 8.61% 4.12% 3.52% 4.22% 4.24% 4.31% 
Full Full 8.19% 6.97% 8.38% 8.44% 8.57% 4.10% 3.49% 4.19% 4.22% 4.29% 
Full Half 8.22% 7.00% 8.41% 8.46% 8.59% 4.11% 3.50% 4.20% 4.23% 4.30% 
Gradual Full 8.24% 7.03% 8.43% 8.48% 8.60% 4.12% 3.51% 4.21% 4.24% 4.30% 
Gradual Half 8.24% 7.03% 8.43% 8.48% 8.61% 4.12% 3.52% 4.22% 4.24% 4.30% 

Natural Gas 
T.Costs Spread γ = 2 γ = 4 

Zero  11.52% 11.49% 11.50% 11.51% 11.50% 5.76% 5.75% 5.75% 5.75% 5.75% 
Full Full 11.42% 11.42% 11.40% 11.41% 11.39% 5.71% 5.71% 5.70% 5.70% 5.70% 
Full Half 11.47% 11.46% 11.45% 11.46% 11.45% 5.74% 5.73% 5.72% 5.73% 5.72% 
Gradual Full 11.50% 11.48% 11.48% 11.49% 11.48% 5.75% 5.74% 5.74% 5.75% 5.74% 
Gradual Half 11.51% 11.49% 11.49% 11.50% 11.49% 5.76% 5.74% 5.75% 5.75% 5.75%  

Panel B: Differential in realized utility and DM tests   
HAR-CVP HAR-CVP-CV HAR-CVP HAR-CVP-CV   
HAR HAR-SV HAR-RQ HAR HAR-SV HAR-RQ HAR HAR-SV HAR-RQ HAR HAR-SV HAR-RQ 

Crude Oil 
T.Costs Spread γ = 2 γ = 4 

Zero  24.321** 
(2.275) 

144.892** 
(2.363) 

5.147 
(0.880) 

36.663*** 
(3.858) 

157.234** 
(2.575) 

17.489*** 
(3.244) 

12.160** 
(2.275) 

72.446** 
(2.363) 

2.574 
(0.880) 

18.331*** 
(3.858) 

78.617** 
(2.575) 

8.744*** 
(3.244) 

Full Full 24.929** 
(2.270) 

146.872** 
(2.358) 

5.727 
(0.867) 

38.448*** 
(3.836) 

160.392** 
(2.568) 

19.246*** 
(3.201) 

12.464** 
(2.270) 

73.436** 
(2.358) 

2.864 
(0.867) 

19.224*** 
(3.836) 

80.196** 
(2.568) 

9.623*** 
(3.201) 

Full Half 24.632** 
(2.286) 

145.926** 
(2.371) 

5.438 
(0.911) 

37.566*** 
(3.906) 

158.860** 
(2.590) 

18.373*** 
(3.341) 

12.316** 
(2.286) 

72.963** 
(2.371) 

2.719 
(0.911) 

18.783*** 
(3.906) 

79.430** 
(2.590) 

9.186*** 
(3.341) 

Gradual Full 24.424** 
(2.301) 

145.264** 
(2.383) 

5.236 
(0.953) 

36.949*** 
(3.973) 

157.788** 
(2.611) 

17.761*** 
(3.478) 

12.212** 
(2.301) 

72.632** 
(2.383) 

2.618 
(0.953) 

18.475*** 
(3.973) 

78.894** 
(2.611) 

8.881*** 
(3.478) 

Gradual Half 24.380** 
(2.273) 

145.122** 
(2.361) 

5.193 
(0.874) 

36.817*** 
(3.848) 

157.559** 
(2.572) 

17.630*** 
(3.223) 

12.190** 
(2.273) 

72.561** 
(2.361) 

2.597 
(0.874) 

18.409*** 
(3.848) 

78.779** 
(2.572) 

8.815*** 
(3.223) 

Natural Gas 
T.Costs Spread γ = 2 γ = 4 

Zero  − 1.144 
(-1.216) 

1.378 
(0.595) 

0.647 
(0.708) 

− 1.760 
(-1.612) 

0.762 
(0.330) 

0.030 
(0.028) 

− 0.572 
(-1.216) 

0.689 
(0.595) 

0.323 
(0.708) 

− 0.880 
(-1.612) 

0.381 
(0.330) 

0.015 
(0.028) 

Full Full − 1.812* 
(-1.864) 

− 1.554 
(-0.664) 

0.689 
(0.721) 

− 3.216** 
(-2.781) 

− 2.958 
(-1.264) 

− 0.715 
(-0.611) 

− 0.906* 
(-1.864) 

− 0.777 
(-0.664) 

0.345 
(0.721) 

− 1.608** 
(-2.781) 

− 1.479 
(-1.264) 

− 0.357 
(-0.611) 

Full Half − 1.478 
(-1.550) 

− 0.086 
(-0.037) 

0.668 
(0.717) 

− 2.489** 
(-2.222) 

− 1.097 
(-0.473) 

− 0.342 
(-0.304) 

− 0.739 
(-1.550) 

− 0.043 
(-0.037) 

0.334 
(0.717) 

− 1.244** 
(-2.222) 

− 0.549 
(-0.473) 

− 0.171 
(-0.304) 

Gradual Full − 1.244 
(-1.318) 

0.941 
(0.406) 

0.654 
(0.711) 

− 1.980* 
(-1.800) 

0.206 
(0.089) 

− 0.082 
(-0.074) 

− 0.622 
(-1.318) 

0.470 
(0.406) 

0.327 
(0.711) 

− 0.990* 
(-1.800) 

0.103 
(0.089) 

− 0.041 
(-0.074) 

Gradual Half − 1.194 
(-1.267) 

1.161 
(0.501) 

0.651 
(0.710) 

− 1.871* 
(-1.707) 

0.485 
(0.210) 

− 0.026 
(-0.024) 

− 0.597 
(-1.267) 

0.581 
(0.501) 

0.325 
(0.710) 

− 0.935* 
(-1.707) 

0.242 
(0.210) 

− 0.013 
(-0.024) 

Panel A report the average realized utility (UoW) with varying coefficient of risk aversion. The realized utility is estimated under five scenarios: no transaction costs (“Zero”), with transaction costs equal to 
the average full (“Full”) and half (“Half”) spreads with investment positions fully rebalanced at the close of each business day (“Full”) and with transaction costs equal to the average full (“Full”) and half 
(“Half”) spreads with investment positions rebalanced gradually (‘′Gradual”). The full and half spreads are the difference between the ask and bid prices divided by the midquote and half the full spread 
over the past nine months, respectively. The full spread is equal to 1.90 and 5.20 bps (basis points) in the crude oil and natural gas markets. The half spread stands at 0.95 and 2.60 bps in the respective 
markets. Panel B reports the reports the differential in realized utility between the classical HAR models and the HAR-CVP models and their respective DM tests (in parentheses). The differential in utility is 
reported in bps. A positive DM value means that the HAR-CVP and/or HAR-CVP-CV model has higher realized utility compared to the classical HAR models. *, **, *** denotes the 10%, 5% and 1% level of 
significance, respectively. 
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10.49% for crude oil and 9.43% for natural gas.29 Further, the direct influence of past short- and long-term returns and RV on future RV 
is significantly reduced in the two markets (with the effect more pronounced in crude oil market) for the HAR-CVP models (compared 
to the HAR models). Moreover, in the oil market large negative returns have greater impact on future volatility than large positive 
returns, a feature shared with equity markets, providing support for the notion of volatility spillovers between energy and equity 
market.30 

The Shapley decomposition of the regression R2 for the HAR-CVP-CV models is presented in Table 4 for crude oil and natural gas, in 
Panel A and Panel B, respectively. The CVP regressors, i.e., r+t,DRVt,D, r−t,DRVt,D, RV2

t,D and CVt,DRVt,D, explain up to 18% of future 
variations in RV and account for up to 29% of the models’ explanatory power. RV2 generally, has the most explanatory power (with a 
Shapley R2 up to 10%), but the CVt,DRVt,D reaches similar explanatory power for the models associated with key determinants of CVP, 
such as the VIX (7.47%), credit spreads (7.28%) and the Baltic exchange dirty tanker index (7.06%). This underscores the economic 
significance of the conditioning variables in explaining variation in future volatility, an effect that is channeled via volatility persis-
tence. In fact, the indirect impact of each conditioning variable on future volatility (via CVP) reaches a Shapley R2 of up to 7.5%, while 
comparatively, the direct impact of the same variables on future RV is much lower (reaching only 1%). Similar to the WLS regression 
results, the Shapley R2 of the CVP regressors representing the conditioning variables is higher in the crude oil market compared to the 
natural gas market. Thus, the contribution of the conditioning variables is stronger to volatility persistence than the direct impact on 
volatility levels. This result is consistent with our previous findings which demonstrate that these variables are key determinants of 
volatility persistence and transmit their impact to future volatility via the volatility persistence channel. This impact is considerable 
and jointly accounts, via the CVP, for more than a quarter of the variation in future volatility. 

4.3.2. Determinants of CVP variation 
Beyond the determinants of the CVP, we seek to also identify the determinants of CVP variation. To this end, we decompose the 

variance of CVPt,D into the variances of its orthogonalized components r−t,D, r+t,D, and RVt,D The weights w(r−t,D), w(r+t,D), and w(RVt,D)

denote the contributions of r−t,D, r+t,D, and RVt,D to the variance of CVPt,D, respectively.31 

The contribution of CVP variables (r−t,D, r+t,D, and RVt,D) to the variance of CVP for the HAR-CVP models is reported in Table 6. 
Negative returns account for 87.1% and 52.5% of the CVP variance in the HAR-CVP models for crude oil and natural gas, respectively. 
The volatility level (RV) makes up approximately 7.5% of the CVP variance in the crude oil market, and 9.0% of the CVP variance in the 
natural gas market. The variance decomposition of the CVP variables reveals that negative return, rather than positive return, is the 
strongest driver of the variance of volatility persistence in the crude oil market. However, in natural gas markets, positive returns are 
the strongest driver of variation in volatility persistence. The combined effect of positive and negative returns accounts for 90–92% of 
the CVP variation across all markets. 

4.4. Statistical properties of daily CVP 

The daily CVP for the two energy markets are estimated by equation (7) and their statistical properties are reported in Table 7.32 

The time series and histogram of the daily CVP for each market are displayed in Fig. 2. 
Volatility persistence in energy markets fluctuates over time and exhibits significant variability. The mean of the daily volatility 

persistence reaches 54.6% in the crude oil market and 46.4% in the natural gas market, while its variation is 8.5% in the crude oil. 
The figure plots the daily conditional volatility persistence and the corresponding histogram for crude oil and natural gas front- 

month futures contracts between January 2009 and August 2019. 
Market and 7.7% in the natural gas markets. The histograms in Fig. 2 show that the mean CVP is larger than the median (long right- 

hand tail) in both energy markets. Specifically, the crude oil market has a higher proportion of positive outliers (with 0.11% and 0.08% 
of the sample days having a CVP greater or equal to one, respectively). The cross-correlation between CVP and its components (r−D , r+D , 

29 Empirical evidence in equity markets shows that r+t,DRVt,D has the most explanatory power for future RV and equity markets exhibit lower RV and 
volatility of RV than the energy markets (Wang and Yang (2018)).  
30 The explanatory power of CVP has also been considered for the HAR-SV and HAR-RQ models, and we found similar results, see Appendix F for 

details. Thus, these results are robust under the different HAR and HAR-CVP model specifications.  
31 We follow the Wang and Yang (2018) variance decomposition approach to assess the marginal contribution of return and volatility level on the 

CVP. We assume that y = ax1 + bx2 + cx3. y represents the CVP, and xi represents the three CVP regressors (r−t,DRVt,D, r+t,DRVt,D, RV2
t,D). As there 

are three regressors, y = ax1 + bx2 + cx3 can be rewritten in 6 ways (3! = 6 permutations). We extract the residuals u21 and u31 from the 
following equations: (1) x2 = α0 + α1x1 + u21 and (2) x3 = β0 + β1x1 + u31. Then, û31 = λû21 + u32 is estimated, and u32 is retrieved. With 
the previously estimated coefficients and regressors, y can be further decomposed asy = ax1 + b(α̂0 +α̂1x1 + û21) + c(β̂0 +β̂1x1 + û31). Thus,y =

(a+bα̂1 +cβ̂1)x1 + (b+cλ̂)û21 + cû32 + constant, which simplifies to= Ax1 + Bû21 + cû32 + constant. The variance of y is given by var(y) =

A2var(x1) + B2var(û21) + c2var(û32). The weights of each regressor are estimated as w(x1) ≡
A2var(x1)

var(y) , w(x2) ≡
B2var(x2)

var(y) and w(x3) ≡
c2var(x3)

var(y) . Ul-

timately, RVt,D is replaced by RQ1/2
t,D as a CVP regressor in the HAR-CVP-RQ model.  

32 We identify the conditioning variables that have a significant impact (directly and indirectly) on future RV from the last column of Tables 2 and 
3 for the two energy commodities. The HAR-CVP-CV regression model is re-estimated, and their coefficients are extracted to compute CVPt,D = βD +

β−
t r−t,D + β+

t r+t,D + βRVRVt,D + βCVCVt,D. 
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RVD and CVt,D) is also presented in Panel B of Table 7. As expected, in the crude oil markets, the correlation between volatility 
persistence and negative returns is much stronger compared to the positive returns, while the reverse holds in the natural gas market. 
Daily volatility persistence is positively related (averaging 0.29) to RV in all markets.33 The VIX and Treasury bills are positively 
correlated to volatility persistence, while credit spreads and the Baltic exchange dirty tanker index are negatively correlated with 
volatility persistence. These results are consistent with the results of the in-sample estimation of the HAR-CVP-CV models (see the last 
column of Tables 2 and 3). 

5. Forecasting performance 

We assess next the out-of-sample forecasting performance of the conditional volatility persistence HAR models in predicting daily 
volatility, compared to classical HAR models. Beyond the statistical significance of forecasting daily energy market volatility, we also 
con-sider a utility-based methodology to evaluate the economic significance of the forecasts. 

5.1. Models and loss functions 

Aiming to gauge the role of embedding macro-economic information in improving predictive accuracy, we compare the out-of- 
sample performance of three classical HAR models (HAR, HAR-SV, HAR-RQ) and two conditional volatility persistence HAR 
models (HAR- CVP and HAR-CVP-CV), see Section 2 for models description. We use the fixed rolling window out-of-sample forecast 
(Patton and Sheppard (2015) and Bollerslev et al. (2016)), where the rolling window is set to 1, 000 days representing approximately 4 
years.34 The HAR models are estimated using the WLS regressions. We use two loss functions (measuring the prediction error between 
two competing volatility models): the log of the mean squared errors (MSE-ln) and the quasi-likelihood (QLIKE) loss functions defined 
as 

L
(
RVt+1,D, R̂V t+1,D

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
lnRVt+1,D − lnR̂V t+1,D

)2
; forMSE − ln,

RVt+1,D

R̂V t+1,D
− RVt+1,Dln

RVt+1,D

R̂V t+1,D
; forQLIKE,

(9)  

where R̂Vt+1,D is the forecast of RVt+1,D. Derived from the mean squared errors loss function, the MSE-ln reduces the impact of large 
forecast errors (RVt+1,D − R̂Vt+1,D). Alternatively, QLIKE measures the difference in the ratio of RVt+1,D/ R̂Vt+1,D. The MSE-ln and QLIKE 
have been used extensively in the equity related literature (Patton (2011)) and commodity (Byun and Cho (2013), Li and Li (2015) and 
Zhu et al. (2017)). Using the loss functions, the forecasting accuracy is also assessed with the Diebold and Mariano (1995) (DM) test.35 

The pair-wise loss difference (dt+1,D(HARk)) against the two HAR-CVP models is defined as: 

dt+1,D(HARk)=L
(
RVt+1,D, R̂V t+1,D;HAR − CVP

)
− L
(
RVt, R̂V t+1,D;HARk

)
,

where k represents the three classical HAR models (HAR, HAR-SV and HAR-RQ). The DM test statistic, DM[dt+1,D(HARk)], is estimated 
via the following specification: 

DM

[

dt+1,D

(

HARk

)]

=
dt+1,D

(
HARk

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Var
[
dt+1,D

(
HARk

)]/
T

√ ),

where dt+1,D(HARk) is the mean value of dt+1,D(HARk), Var[dt+1,D(HARk)] is the variance of dt+1,D(HARk) and T is the number of 
forecasts. 

33 We rely on the Ljung-Box test to measure persistence over a day, see Table 7.  
34 We use a fixed rolling window estimation that ensures that the rolling window and out-of-sample size stay constant. As we do not impose any 

restrictions on the parameters in the rolling window estimation, the forecasts can potentially be negative. Although negative forecasts rarely occur in 
this analysis, we apply an “insanity filter”. This ensures that the negative forecasts are replaced by the minimum positive RV within each rolling 
window, see Patton and Sheppard (2015). We also replace the RV forecasts that exceed (fall behind) the maximum (minimum) observed RV in the 
rolling window with the mean observed RV in each rolling window (Swanson and White (1995), Bollerslev et al. (2016) and Bollerslev et al. (2018)). 
While the latter affects only 0.36% of the RV forecasts in the crude oil market, the natural gas market is unaffected by this. We reassess the 
out-of-sample forecasting performance of the HAR models without the Swanson and White (1995) filtering process or an alternative “insanity filter” 
where the “insane” forecasts are replaced with the dumb forecasts (Hyndman and Koehler (2006) and Lux and Kaizoji (2007)) and the results 
obtained are quantitatively similar.  
35 The DM test serves as a measure for comparing the forecasting accuracy of two competing models. It is a well-recognised forecasting evaluation 

statistic that has been widely used in empirical studies in equity markets (Han et al. (2015), Sharma and Vipul. (2016) and Wang and Yang (2018)) 
and commodity markets (Jiang et al. (2015), Herrera et al. (2018) and Gong and Lin (2018)). 
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5.2. Forecast comparison 

We find that the conditional volatility persistence HAR models, on average, outperform the classical HAR models in forecasting 
accuracy (see Panel A of Table 8). The improvement in crude oil market is significant (with the lowest mean and median loss values for 
both loss functions (MSE-ln and QLIKE)), while the improvement in natural gas is marginal. The DM test statistics, reported in Panel B 
of Table 8, corroborate the loss function results in Panel A. These results confirm significant benefits in out-of-sample daily forecasting, 
when information from market and macro-economic variables is integrated in the model (Degiannakis and Filis (2017) and Luo et al. 
(2020)). In the crude oil market, the impact of macro-economic variables, such as the VIX and credit spreads, is substantial, and it is 
channeled in the oil price volatility via its persistence. Accounting for this information transmission channel brings significant fore-
casting gains. However, in the natural gas market, most of these macro-economic variables do not affect volatility persistence, thus the 
proposed HAR-CVP- CV models would not improve forecasting performance. Prices and volatility in the natural gas market are pre-
dominantly driven by commodity sector factors, such as demand and inventory considerations and the recent shale gas expansion 
(Geng et al. (2016a) and Caporin and Fontini (2017)). This underscores the need for more robust forecasting models, which account for 
a wider range of macro-economic conditions that have a measurable impact on price dynamics of the oil and natural gas markets, such 
as demand and inventory (Geng et al. (2016b) and Kang et al. (2020)).36 

Although conditional volatility persistence HAR models provide statistically stronger forecasts, from a practical perspective, the 
models should also outperform when these volatility forecasts are implemented in risk management investment strategies, as discussed 
next. 

5.3. Economic significance of the forecasts 

Motivated by Bollerslev et al. (2018), we employ a realized utility-based approach based on volatility forecasts to assess the 
economic benefit of implementing the proposed HAR models.37 This approach assumes that rational investors38 trade in a risky asset (i. 
e. energy asset) with time-varying volatility and earn a constant risk-adjusted return or Sharpe ratio (SR).39 Investors seek to keep a 
constant level of risk and adjust their optimal portfolio size accordingly. Therefore, the risk/volatility target (RT) is set to reflect the 
annualized volatility in the respective market.40 Bollerslev et al. (2018) assume that the coefficient of risk aversion, γ (metric of in-
vestors’ degree of risk aversion), is the same across all asset classes. Gauging the actual degree of investors’ risk aversion in different 
energy markets is not trivial, thus we assume two levels of risk aversion; γ = 2 and 4. Because the RT is estimated by dividing the 
annualized SR by γ, the SR is retrieved accordingly. Moreover, we use various combinations of the SR in the respective markets to 
derive the optimal γ.41 

The expected return of an investor’s strategy, optimal targeted position (OTP), is estimated by multiplying the SR by the RT. 
Because of the disutility of risk, as pointed out in Bollerslev et al. (2018), the net optimal targeted position (NOTP) is halved. Under a 
perfect risk model, the value of a risky asset is worth NOTP% of wealth. For instance, if γ = 2, then the NOTP is equal to 9% and 13% in 
the crude oil and natural gas markets, respectively.42 Given that investors choose an initial investment position of xθ

t+1,D = RT/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Et(RVθ
t+1,D)

√

, the average realized utility per unit of wealth (UoWθ) associated with each HAR model43 is estimated for the crude oil 
and natural gas markets as follows: 

36 We recognize that inventory is an important driver of commodity markets price and volatility dynamics. The theory of storage induces a 
monotonic relation between inventories and volatility where low inventory levels are associated with high volatility due to the increased risk of 
inventory exhaustion, see Working (1949) and Brennan (1958). However, recent empirical studies reveal that inventory holds an asymmetric V- 
shaped relation with oil price volatility as high inventory levels reflect inelastic supply and limited inventory adjustments that cause an increase in 
volatility (Kogan et al. (2009), Haugom et al. (2014) and Nikitopoulos et al. (2017)). Empirical evidence further suggests that the dearth of in-
ventories and storage capacity affect prices non-linearly (Büyükcahin et al., 2013), while this non-linearity extends also to the second moment, 
particularly implied volatilities (Robe and Wallen (2016)),) which can also affect commodity arbitraging (Ederington et al. (2021)).  
37 Commodity (with energy a commodity subclass) volatility is the highest among the different asset classes (such as equity or bond), and thus, is 

prone to more frequent shocks. Therefore, we use a dynamic approach to portfolio rebalancing and assume it happens daily. As Bollerslev et al. 
(2018) examine the aggregate volatility of different asset classes, they assume that portfolio rebalancing occurs monthly (less frequently).  
38 We assume that investors have mean-variance preferences, i.e., they want low risk and high return.  
39 In this setting, the SR is measured by SR = Et(re

t+1,D)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Et(RVt+1,D)

√
, where the excess return (re

t+1,D) is equal to the return on the risky asset 
(rt+1,D) less the return on a risk-free asset (rf

t,D).  
40 In the crude oil and natural markets, the average annualized RV (over the sample period) stands at 30% and 36%, respectively.  
41 The estimated realized utility using varying SR in each market is reported in Appendix G.  
42 Similarly, for a SR of 0.6 and 0.7 and γ = 4, the NOTP is 5% and 6% in the crude oil and natural gas markets, respectively.  
43 θ represents the HAR, HAR-SV, HAR-RQ, HAR-CVP and HAR-CVP-CV models accordingly. 
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UoWθ
CO =

1
T
∑T

t,D

⎛

⎜
⎜
⎝18%

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RVθ

t+1,D

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Et

(
RVθ

t+1,D

)√ − 9%
RVθ

t+1,D

Et

(
RVθ

t+1,D

)

⎞

⎟
⎟
⎠,

UoWθ
NG =

1
T
∑T

t,D

⎛

⎜
⎜
⎝25%

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

RVθ
t+1,D

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Et

(
RVθ

t+1,D

)√ − 13%
RVθ

t+1,D

Et

(
RVθ

t+1,D

)

⎞

⎟
⎟
⎠,

where RVθ
t+1,D and Et(RVθ

t+1,D) represent the actual RV and the forecasted RV, respectively. The economic intuition behind the utility- 
based framework is that models with better forecasting accuracy provide a higher level of realized utility (economic benefit). 

We also examine the effect of the transaction costs on the realized utility by adopting an approach similar to that of Bollerslev et al. 
(2018). Transaction costs can have a damaging effect on investors’ position, particularly for less informed (na ̈i ve) investors (Palc-
zewski et al. (2015)). Taking into account the actual cost of implementing risk-targeted positions causes a loss in utility. Transaction 
costs are estimated by using the “full-spread” (median bid-ask spread)44 and the “half-spread” (half of the median bid-ask spread) over 
the previous nine months. Under this approach, the linear trading cost may vary with the absolute magnitude of the change in the 

positions, 
⃒
⃒
⃒xθ

t,D − xθ
t+1,D

⃒
⃒
⃒. We emulate the trading strategy of G â rleanu and Pedersen (2013), G â rleanu and Pedersen (2016) and 

Bollerslev et al. (2018) and allow the investment positions to be rebalanced gradually. Only 15% of the positions are traded toward the 
zero-cost optimal target every day. This adjustment makes up for the fact that trading is done partially, and therefore, the loss in utility 
is not heavily penalised. The results of the average realized utility under five scenarios of transaction costs are reported in Table 9. 
Panel A shows the estimated realized utility with varying coefficients of risk aversion, and Panel B reports the differential in the 
realized utility between the classical HAR models and the conditional volatility persistence HAR models and their respective DM tests. 

We find that the conditional volatility persistence HAR models consistently outperform the classical HAR models in the crude oil 
market. When γ = 2, the utility benefits of HAR-CVP and HAR-CVP-CV are 8.486% and 8.610%, and these levels of utility benefits are 
24.3 bps and 36.7 bps above the benefits of the basic HAR model (respectively and in the no transaction cost case), see Panel A of 
Table 9. To put this in an economic perspective, the utility benefits of the model incorporating information from macro-economic 
variables (HAR-CVP-CV) imply that investors are willing to pay 36.7 bps to use the HAR-CVP-CV model for risk management 
rather than to use the basic HAR models. This is a comparative significant level of utility benefits for risk management which is 
marginally below the institutional fees typically required for active asset management (Bollerslev et al. (2018)). The improvement the 
conditional volatility persistence HAR models offer compared to the HAR with semi-variances is more than fivefold, reaching 144.9 
bps for HAR-CVP and 157.2 bps for HAR-CVP-CV (no transaction cost and for γ = 2). Interestingly, the HAR with realized quarticity 
and the HAR-CVP provide very similar benefits to investors, potentially because both models accommodate time-varying volatility 
persistence that depends on market conditions. However, including the additional information from macro-economic variables (by 
using the HARR-CVP-CV model) improves the realized utility for crude oil by 17.5 bps under no transaction costs and even more than 
that when transaction costs are involved. Furthermore, when γ = 4, the utility benefits of HAR-CVP and HAR-CVP-CV are 4.243% and 
4.305%, respectively (in the no transaction cost case), which is 12.2 bps and 18.4 bps above the utility benefits of the basic HAR model. 
Although these benefits are lower than the benefits of a less risk-averse investor (γ = 2), this still represents a substantial level of utility 
benefits in the crude oil market. The results are quantitatively the same for the four scenarios concerning transaction costs and trading 
speed. Using the full-spread (as a proxy for the transaction costs) causes the largest reduction in realized utility in all markets. 
However, the utility benefit differential reaches 38.5 bps for the HAR-CVP-CV model (over the basic HAR) when γ = 2 and 19.2 bps 
when γ = 4. The “Gradual” trading has a marginal impact on the utility benefits for all models. The DM tests, presented in Panel B in 
Table 9 confirm further the validity of the results above. These findings underscore the substantial economic benefits of embedding 
information from macro-economic factors in volatility forecasting applications, information that is transmitted in volatility via its 
persistence. 

In the natural gas market, the benefits are marginal (and not statistically significant) between the models. Assuming different 
degrees of risk aversion and no transaction costs, the utility benefits are up to 1.4 bps higher for the conditional volatility persistence 
HAR models (compared to the HAR-SV and HAR-RQ models). At the different levels of trading speed, the utility benefits of the HAR- 
CVP or HAR-CVP-CV models over competing HAR model is (almost completely) lost, especially for the “full” transaction costs scenarios 
where trading is the slowest. These results are mainly driven by the substantial impact of the relatively high transaction costs occurring 
in the natural gas market. The estimated transaction costs in the natural gas market (5.2 bps) is almost threefold higher than in the 
crude oil market (1.9 bps), see Bollerslev et al. (2018).45 Furthermore, the impact of the macro-economic variables (considered in this 
study) in the volatility of natural gas market is marginal and mostly direct (as it is not channeled via the volatility persistence), thus 
using models that incorporate information from the underlying market variables would not offer any benefits in forecasting 

44 We calculate the spread by using the difference between the ask and bid prices divided by the mid-quote.  
45 We re-estimate the realized utility in the natural gas market while assuming the same level of transaction costs as in the crude oil market, i.e. 1.9 

bps, and we find that the transaction costs are no longer penalizing the realized utility to the same extent. These results are available upon request 
from the authors. 
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performance.46 When information from the macro-economy matters in the volatility dynamics and it is transmitted to the volatility via 
its persistence, as it happens in the crude oil market, then the conditional volatility persistence HAR models would provide substantial 
utility benefits. Thus, recognising volatility persistence as an important information transmission channel in volatility forecasting 
brings statistically significant forecasting performance and substantial utility gains in risk management strategies.47 

6. Conclusion 

We explore the role of daily volatility persistence in shaping the dynamics of future volatility in two energy markets, crude oil and 
natural gas. By allowing the daily volatility persistence to be time-varying in the HAR model, we identify the determinants of volatility 
persistence, and we analyse its contribution to predicting future volatility. We further hypothesize that macro-economic variables 
impact daily volatility persistence, and we investigate the role of volatility persistence in transmitting the impact of these variables to 
future volatility. The ability of these models to forecast short-term volatility in energy markets is examined, and their benefits for 
investment strategies are accordingly evaluated. 

Returns, volatility and macro-economic variables are key determinants of volatility persistence. Generally, negative returns impact 
volatility persistence in crude oil market, while positive returns matter more in volatility persistence in natural gas market. 
Furthermore, the Baltic exchange dirty index and financial indicators, including the VIX, the credit spreads and the 3-month Treasury 
bill rate, affect volatility persistence in energy markets, in particular, the crude oil market. This impact is transmitted to the volatility 
dynamics mostly indirectly via the volatility persistence channel, rather than directly to the volatility levels. In crude oil market, 
volatility persistence plays a dominant role in diffusing the impact of returns, RV and macro-economic conditions in future volatility. 
The statistical properties of daily CVP in the energy markets reveal that negative (positive) returns have a greater impact on oil (natural 
gas) volatility persistence, and that the mean volatility persistence reaches 50.5%. The out-of-sample forecasting analysis demonstrates 
that the conditional volatility persistence HAR models economically and statistically outperform the classical HAR models. The utility 
benefit can reach up to 160 bps (subject to the Sharpe ratio and the risk target) for the models accommodating the information from 
macro-economic variables. 

Several practical implications have emerged from this study. The volatility of energy markets displays distinct characteristics, but 
the energy markets are becoming more integrated with equity markets. The contribution of volatility persistence in forecasting daily 
realized variance (ex-post volatility) is measurable and indicative of volatility persistence being a priced risk factor. Thus, the 
modelling consideration of volatility persistence is important and provides useful insights to the energy market participants, from 
institutional investors to energy producers and in particular, to short-term traders. Based on the superior forecasting performance and 
economic gains achieved by the proposed daily CVP models, they offer a robust approach for assessing and managing short-term risk 
exposures relevant to daily and momentum trading strategies and dynamic hedging applications. Further, the COVID-19 pandemic 
underscores the role of energy markets in the stability of global economies, when we witnessed negative oil prices at the climax of the 
outbreak.48 As the aftermath of the COVID-19 pandemic is unfolding, the volatility of energy markets (along with the volatility of 
financial markets) is the main concern. Consequently, effective modelling and accurate forecasting of volatility are extremely 
important. These findings have also opened new directions for research including the effects of volatility persistence on longer-term 
volatility forecasting and expanding to embed the effects of a wider range of macro-economic volatility determinants in energy 
markets. 
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46 While oil markets act as information transmitters, natural gas markets act as information receivers (Ji et al. (2018)).  
47 To account for structural breaks, we split the data sample into two subperiods: pre-2015 (January 2009 to December 2014) and post-2015 

(January 2015 to August 2019) and find quantitatively similar results (Asai et al. (2020) and Dahl et al. (2020)). The detailed results and dis-
cussions of this analysis are presented in Appendix H.  
48 On 20 April 2020, for first time in history the US oil benchmark dropped into deep negative territory as a combined result of the sinking oil 

demand in a system with limited storage capacity and inability to take delivery of the long position of (deliverable) oil futures contracts. 
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