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A B S T R A C T

We develop a theoretical framework and propose a relevant empirical analysis of the soybean-
complex prices’ cointegration relationships in a high-frequency setting. We allow for hetero-
geneous expectations among traders on the multi-asset price dynamics and characterize the
resulting market behaviour. We demonstrate that the asset prices’ autoregressive matrix rank
and the speed of reversion towards the long-term equilibrium are related to the market realized
and potential liquidity, unlike the cointegrating vector. Our empirical application to the soybean
complex, where we control for volatility, supports our theoretical results when the price idleness
of the different assets is properly accounted for. Our analysis further suggests that the presence
of cointegration among assets is related to the time of day and the contract maturities traded
at a given time.

. Introduction

Financial markets offer the opportunity for a wide variety of economic agents to express their economic expectations. The
esulting price-discovery process reflects the agents’ respective levels of information and investment capacities. With the advent
f electronic financial markets and automated trading, the development of index investing accelerated over the last two decades for
ifferent financial markets, including commodity markets. This new financial environment is often referred to as the financialization
f commodity markets and raises questions about the influence of index investing on the real economy and the commodities’
rice-discovery process (Brogaard et al., 2018; Brown et al., 2020; Bond and García, 2021; Goldstein and Yang, 2022). Our
aper contributes to this literature by developing a multivariate micro-economic equilibrium model for cointegrated assets with
eterogeneous agent expectations. Furthermore, relying on our theoretical model, we study the potential effects of index investing
n the soybean complex in a high-frequency setting. The latter is particularly interesting for our equilibrium study for two reasons:
irst, the derivatives exchanges offer futures contracts both on soybean and on its processed products, soyoil and soymeal, but
heir liquidity and market participants are different. Beyond the traditional hedgers and speculators, the well-known GSCI index,
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for instance, only invests in soybean futures contracts1 but does not include related soybean meal and soybean oil contracts.2
Such behaviour could lead to short-term asynchronicity among the cointegrated markets and market inconsistencies, such as non-
synchronous financial bubbles or even the oft-decried financialization of commodities markets (Basak and Pavlova, 2016; Shang
et al., 2018). The second interesting aspect of the soybean complex is the cointegration among its three components. This has been
demonstrated at daily frequency in several studies (Barrett and Kolb, 1995; Simon, 1999; Mitchell, 2010; Marowka et al., 2020). In
this context, our paper is structured around two questions: First, what are the identification conditions under which the activities
at high frequency by different agents ultimately coordinate futures prices and make their cointegration materialize over a longer
time horizon, such as a trading day? Second, What are the driving forces behind cointegration if it exists?

We answer these questions by applying a novel volume-adapted price-cointegration framework to the soybean complex as we
examine how the short-term market microstructure influences the price-discovery processes of multiple related assets. We indeed
contribute to the price-discovery-process literature by extending the cointegration multivariate long-term price equilibrium model
with a short-run microeconomic equilibrium framework which allows different groups of agents to invest independently – or not
invest at all – in individual cointegrated markets. Furthermore, we contribute to the literature studying the price–volume relationship
as our theoretical microstructure model establishes the link between information heterogeneity, the assets’ traded volumes, and
the strength of the cointegration relationships at high-frequency levels for multiple related assets. While existing works in this
field are using both univariate or multivariate model settings (Epps and Epps (1976), Tauchen and Pitts (1983), He and Velu
(2014), Duchin and Levy (2010), Darolles et al. (2017), Atmaz and Basak (2018)) when investigating the relationship between
price and volume, none of them has considered heterogeneous beliefs in a multivariate cointegrated equilibrium setting. Studying
the price and volume relationship through the lens of such a market-price equilibrium permits to clearly specify the impact of
partially informed traders’ decisions and the central role of manufacturers in the commodity price-discovery process and the related
market efficiency. Subsequently, using both the high-frequency traded prices and aggregated quantity data (i.e., daily traded volumes
and limit order books’ daily average liquidity measurements) for the soybean complex, our empirical study confirms the theoretical
model we proposed by revealing a relationship between price cointegration and the traded or available volumes in each individual
asset’s LOB.

Observing this cointegration relationship in a high-frequency setting turns out to be challenging, given that microstructure noise3

as well as lagged information among agents and markets disturb the latent joint price-discovery process (Janzen and Adjemian,
2017; Couleau et al., 2019). To deal with microstructure noise and non-synchronicity among markets, many statistical models have
been considered in high-frequency price-dynamic modelling. The state–space representation of the vector error correction model
(VECM) described in Seong et al. (2013) considers the Expectation Maximization algorithm proposed by Dempster et al. (1977)
to cope with mixed-frequency or asynchronous data in cointegrated time-series models. More recently, Buccheri et al. (2021b)
demonstrated that this filtering methodology adequately deals with microstructure noise and the information lag that exists among
markets at the high-frequency level. Employing a slightly different approach, our filtering model deals with the problems of price
idleness.4 Our empirical study demonstrates that the soybean complex is significantly cointegrated and close to the underlying
physical relationships. On the contrary, a noise-sensitive approach, such as Johansen’s inference method (Johansen, 1995), yields
inconsistent and unstable cointegrating vectors upon convergence in comparison with physical relationships. Furthermore, our high-
frequency analysis confirms the central role played by realized and potential market liquidity5 in the asset prices’ multivariate
dynamics, in particular for cointegrated assets. This confirms the findings by Arzandeh and Frank (2019), which emphasize the
interest in considering LOB information in the price-discovery process. To validate our cointegration framework, we demonstrate
that it is the crush-spread-associated adjustment space rather than the cointegrating space that turns out to be closely related to
market microstructure.

This paper is organized as follows: The second section is devoted to the theoretical framework, which highlights the potential
drivers of price cointegration. Consistent with the synthesis by Behrendt and Schmidt (2021), we find a non-linear relationship
between volumes and prices. The third section describes the statistical methodologies retained to test the stationarity of our price
data and to identify price cointegration at an intraday level, taking into account price idleness as defined by Bandi et al. (2020). The
fourth section provides a description of the soybean complex and the retained data. In the fifth section, our results are commented
and analysed, where we find that our filtering method outperforms traditional methodologies that ignore issues associated with
multivariate high-frequency data (i.e., microstructure noise and non-synchronicity). We empirically test the relationship between
volume and the strength of the cointegration, add more potential explanatory variables, and conduct several robustness checks. Our
empirical results show that volume is significantly related to crush-spread cointegration in certain markets, particularly soymeal.
We demonstrate how this relationship may affect the hedging efficacy of different rollover approaches. A conclusion completes the
analysis.

1 See also the S&P GSCI Index methodology document available from:
https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-gsci.pdf.
2 As of June 2021, the Bloomberg commodity index, formerly known as the Dow Jones-UBS Commodity Index, is invested in these three assets with long-only

ositions of about 5% in soybean, 2.3% in soybean meal, and 2.9% in soybean oil. Thus, it does not observe the CME crush spread, nor the proportions commonly
ccepted in the crushing industry. The Thomson Reuters Commodity Research Bureau index only includes soybeans futures contracts.

3 The microstructure frictions can be associated with the bid–ask bounces, the discreteness of the price grid but also the technique used to construct the
igh-frequency price dataset (Hansen and Lunde, 2006).

4 Staleness is defined according to Bandi et al. (2020) as a lack of price adjustments yielding zero returns with a traded volume associated whereas idleness
orresponds to staleness without any trading activity.

5 Potential liquidity is reflected by the depth of the LOB and defined by Kyle (1985) as the size of an order-flow innovation currently required by the market
articipants to change the price of a given amount.
2
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2. Theoretical framework

Since the seminal papers of Epps and Epps (1976) and Tauchen and Pitts (1983), a large and still living literature strives to
odel the relationship between time series of financial prices and traded volumes.6 Assuming certain market frictions or market-

microstructure characteristics, these models boil down to first representing how information flows change the price expectations of
market participants. Then equilibrium rules lead to fluctuations in volumes and asset prices. By and large, the existing academic
contributions mainly focus on univariate dynamics modelling (O’Hara, 2015). In this article, we develop a multi-asset theoretical
model that takes into account long-term equilibrium relationships. By taking into account heterogeneity in market participants’
expectations, our theoretical framework sheds light on the short to mid-term dynamics of cointegrated time series conditional on
the market participants’ typologies.

To a significant extent, our model, like the aforementioned literature, stresses the role of information and tends to refute the
rational-expectations assumption. For instance, Fishe et al. (2014) show theoretically that the rational-expectations equilibrium
implies zero correlation between price and position changes, which is usually contradicted by available data. To reproduce well-
known empirical features of financial asset prices, the literature has relied on the ‘‘difference-of-opinion’’ hypothesis, whereby
economic agents agree to disagree on, for instance, public information. In the early paper by Tauchen and Pitts (1983), the economic
agents disagree in a linear manner on the expected price of one commodity; by contrast, Epps and Epps (1976) formulate a non-
linear disagreement function around the expected price. Later, He and Velu (2014) extend the linear approach of Tauchen and Pitts
(1983) to a multi-asset settings approach by assuming that certain market announcements impacting the common latent factors can
jointly affect the traded volume or the price of several assets, proportional to their respective latent-factor loadings. However, in
their model, He and Velu (2014) do not consider the effect of belief heterogeneity among participants while, as shown by Duchin
and Levy (2010) through simulations, disagreement on expected prices or on the expected price-variance–covariance matrix has a
significant impact on asset prices and traded volumes. In the same vein, recent papers introduce market frictions (Darolles et al.,
2017), heterogeneous discount factors (Beddock and Jouini, 2020), or a continuum of economic agents (Atmaz and Basak, 2018).
While all of these extensions provide richer relationships between price, volume, and volatility, none have considered heterogeneous
beliefs in a multivariate cointegrated setting.

In the financial microeconomics literature, the types of investors are often differentiated according to their respective levels
of information and risk aversion. While less informed traders are generally assumed to be genuinely uninformed (when studied
in a single market), we propose instead to consider these investors partially informed. By this, we mean that they focus on a
single asset without considering the other assets linked by cointegration relationships. We could typically associate this investor
profile with the commodity index traders or the index-tracking ETFs who go long on a specific futures contract because of its
appealing liquidity, ignoring the less liquid cointegrated futures contracts. As a result, these indices are trading in and focusing on a
given market based on private or publicly available information without necessarily considering the structural relationships of the
physical assets. The second group of partially informed investors concerns the cash-and-carry arbitragers. Enticed by a theoretical
arbitrage-risk-free gain, they reduce the basis volatility and force the prices of the underlying asset and its derivatives to converge at
maturity, guaranteeing hedging efficiency by mitigating any non-convergence risk (although storage frictions may lead to structural
non-convergence, Garcia et al., 2015). Nevertheless, this strategy of cash-and-carry (or reverse cash-and-carry) arbitrage is generally
deployed on a single-asset basis and remains within the arbitrager’s risk capacity (Hong and Yogo, 2012; Acharya et al., 2013). Only
the last group of investors, manufacturers, are likely to consider joint equilibrium relationships among multiple underlying assets
in the physical markets and could thus be considered fully informed. Through their commercial activities, manufacturers have the
capacity to build synchronous positions in the cointegrated physical markets and eventually hedge their margin exposure through
opposite trades in the associated futures contracts (Li and Hayes, 2022).

Our theoretical framework builds on the (Epps and Epps, 1976) framework. We consider 𝑖 = 1,… , 𝑛 commodity markets and
𝑗 = 1,… , 𝑚 potentially risk-averse economic agents. Like many previous papers, we simplify the analysis by assuming CARA
preferences, a zero risk-free rate, and a finite horizon. Rather than expressing the inverse demand, we start with agent 𝑗’s demand
for assets. With 𝑄𝑗,𝑡−1 representing the (𝑛 × 1) vector of demand of assets by agent 𝑗 at time 𝑡 − 1, 𝑃𝑡−1 the vector of asset prices
at time 𝑡 − 1, 𝑆𝑗 the expected price-covariance matrix by agent 𝑗 (assumed constant over time), 𝜉𝑗 their risk aversion7 (constant as
well) and 𝑋𝑗,𝑡−1 their expected final-prices column vector for the 𝑛 assets at time 𝑡 − 1, we obtain :

𝑄𝑗,𝑡−1 = (𝜉𝑗𝑆𝑗 )−1(𝑋𝑗,𝑡−1 − 𝑃𝑡−1) (1)

This can be rewritten as:

𝑄𝑗,𝑡−1 = 𝜆𝑗 (𝑋𝑗,𝑡−1 − 𝑃𝑡−1) (2)

If an agent never participates in market 𝑖, this is reflected by a corresponding null row 𝑖 in the 𝜆𝑗 matrix.
At the equilibrium, we assume that ∑

𝑗 𝑄𝑗,𝑡−1 = 0. Then the economic agents receive new information and process it into a
new price expectation, so 𝑋𝑗,𝑡−1 becomes 𝑋𝑗,𝑡. Agent 𝑗’s demand changes from period 𝑡 − 1 to period 𝑡 and likely creates a market
disequilibrium, which can be restored through appropriate price changes. From period 𝑡 − 1 to period 𝑡, we thus have :

𝑄𝑗,𝑡 −𝑄𝑗,𝑡−1 = 𝜆𝑗 (𝑋𝑗,𝑡 −𝑋𝑗,𝑡−1 − (𝑃𝑡 − 𝑃𝑡−1)) (3)

6 Please refer to Behrendt and Schmidt (2021) for a literature review.
7 It is worth highlighting that our model allows for considering a flexible and realistic framework including heterogeneity in investor risk aversion. Although

his is not equivalent to the CRRA preferences hypothesis, it still allows for indirectly coping with investors’ initial wealth disparity.
3
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𝑉𝑗 = 𝜆𝑗 (𝛿𝑗 − 𝛥𝑃 ) (4)

ith 𝛥𝑃 = 𝑃𝑡 − 𝑃𝑡−1, 𝛿𝑗 denoting the change in price expectations, and 𝑉𝑗 the volume traded by agent 𝑗.
Then we follow (Epps and Epps, 1976) in specifying the change in price expectations as8:

𝛿𝑗 |𝑃𝑡−1 = 𝛿 + 𝛼𝑗 (𝑃𝑡−1)𝐴𝐵𝑆(𝛿)(1∕𝛾) (5)

with 𝛾 being a positive constant and 𝛼𝑗 a (𝑛× 𝑛) matrix of strictly positive IID random variables that potentially depends on current
prices in nonlinear ways, while 𝛿 corresponds to the average change of price expectations across economic agents. We thus impose
that ∑

𝑗 𝛼𝑗 (𝑃𝑡−1) = 0𝑛×𝑛, such that ∑

𝑗 𝛿𝑗∕𝑚 = 𝛿. This multi-asset framework allows for more general specification than (Epps and
Epps, 1976), who assume that 𝛼(𝑃𝑡−1) is simply the inverse function.

Let us interpret this crucial specification by computing the extent of disagreement between one agent and the market participants
before the price change:

𝛿𝑗 − 𝛿 = 𝛼𝑗 (𝑃𝑡−1)𝐴𝐵𝑆(𝛿)(1∕𝛾) (6)

The extent of disagreement increases with the absolute value of the average change of price expectations. The economic logic
of this specification is the following: when all economic actors expect small (positive or negative) price changes, i.e. due to new
public information, their disagreement is likely to be small. On the other hand, if some economic actors receive private information
and formulate new price expectations that are very different from their previous expectations while other economic actors did not
access this information, the new agents’ price expectations will be much more widely dispersed around a new average change of
price expectations.

The specification of the stochastic matrix 𝛼𝑗 recognizes that there may be variation in the logic described above. For instance,
if a substantial new piece of public information is received and similarly interpreted by all economic agents, the average change
of price expectations can be high and disagreement low. Conversely, if many economic agents receive the same significant private
information, interpret it differently, and consequently formulate new price expectations in opposite directions, the average of the
new price expectations can be equal to that of the previous price expectations, despite a higher dispersion.

The presence of the inverse of current prices in the extent of disagreement is not economically interpreted by Epps and Epps
(1976) and appears as a convenient price normalization. A complementary economic interpretation for storable commodity markets
is that economic actors take into account the current market situation while forming new price expectations after receiving new
information. For instance, when current prices are relatively low compared to historical prices, this may lead economic actors to
believe that commodity stocks are plentiful, and thus spot or physical (as well as futures) prices cannot change significantly due to
the mitigating effect of stocks (Williams et al., 1991). Accordingly, some economic actors should make limited efforts to gather and
process information to form new price expectations. In such an environment, even though significant private information received
by some market participants cannot lead to significant (physical and futures) price changes, it will lead to more dispersed price
expectations around the average value. Conversely, when current prices are relatively high compared to historical prices, many, if
not all, economic actors concerned by a potential price bubble will gather and process public information. In this instance, price
expectations should be characterized by a lower dispersion once a new piece of information has been released, as all the economic
agents will be looking for it.

This interpretation of the inclusion of current prices in the disagreement specification extends to our multi-asset case. Indeed,
our general formulation 𝛼𝑗 (𝑃𝑡−1) allows for rich specifications, where the current prices of some assets may impact the changes in
price expectations of other assets. We could also imagine the changes in price expectations being a function of the current price’s
deviation from a long-term cointegration relationship. For instance, if certain actors, i.e. manufacturers, find that the current price
levels are significantly spreading out from the long-term physical relationships, they will expect the prices to progressively revert
towards their long-run equilibrium.

With a demonstration provided in Supplementary Material A, we derive the relationship between asset-price changes and traded
volumes as follows:

𝛥𝑃 = 𝛺(𝑉1)𝛾𝐷𝑖𝑎𝑔
(

𝑆𝑔𝑛(𝛿)
)

+

(

∑

𝑗
𝜆𝑗

)−1
∑

𝑗
𝜆𝑗𝛼𝑗 (𝑃𝑡−1)𝛺(𝑉1) (7)

where:

𝛺(𝑉1) =
⎡

⎢

⎢

⎣

𝛼1(𝑃𝑡−1) −

(

∑

𝑗
𝜆𝑗

)−1
∑

𝑗
𝜆𝑗𝛼𝑗 (𝑃𝑡−1)

⎤

⎥

⎥

⎦

−1

𝜆−11 𝑉1

Eq. (7) generalizes the price-change Equation (21) obtained by Epps and Epps (1976), which does not include the second term on
the right hand side. This expression makes clear that we have a non-linear relationship between the price changes and the volumes
traded by one agent participating in all markets.

8 To avoid cumbersome notations, we will refrain from the conditional formulation in the remainder of the paper.
4
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Proposition 1. Let us assume a two-commodity setting, where three investors are characterized by different levels of risk aversion and/or
ifferent variance–covariance matrices are forecast, while retaining 𝛾 = 1,9 as well as the particular specifications (20) for the traders’

forecast matrices 𝛼𝑖=1,…,3. Then, the assets’ joint price dynamics are characterized by a vector-error-correction-model (VECM) relationship
if and only if the matrix 𝜫⋆(𝑉1), which is a function of the volume traded by agent 1, is low-rank in the following expression (for a
demonstration, see Supplementary Material B):

𝛥𝑃 = 𝛼1(𝑃𝑡−1)−1𝐀𝑉1 + 𝐁𝑉1
= 𝜫⋆(𝑉1)𝑃𝑡−1 + 𝐁𝑉1 (8)

where:

𝜫⋆ = Φ𝐀𝑉1𝛽′

Φ =
(

𝜙1 0
0 𝜙2

)

𝐀 = 𝐷𝑖𝑎𝑔
(

𝑆𝑔𝑛(𝛿)
) [

𝐼2 − 𝜆⋆
]−1 𝜆−11

𝐁 = 𝜆⋆
[

𝐼2 − 𝜆⋆
]−1 𝜆−11

𝜆⋆ =

(

∑

𝑗
𝜆𝑗

)−1
(

𝜆111 − 𝜆112 0
0 𝜆221 − 𝜆223

)

here 𝐼2 is an identity matrix of dimension 2 × 2 and 𝛽 and 𝜅(𝑉1) = Φ𝐀𝑉1 two low-rank matrices of dimension (2 × 1).10 This means
hat, if we assume the cointegrating vector 𝛽 to be stable over time, both elements of the vector 𝜅, denoted 𝜅1 and 𝜅2, respectively, and
ssociated with the speed of reversion towards the long-term cointegration relationship are a function of the volumes traded by agent 1 in
oth markets. By assuming that only one trader is trading in both markets, we also assume that this agent has no arbitrage limit and can
hus match the number of contracts that the two other agents would like to sell or buy on each individual market. This explains why the
heoretical relationship does not involve the other agents’ positions or trades per asset but only their risk aversion and variance–covariance
xpectations. Thus, only the volumes associated with the agent participating in both markets are considered capable of affecting both prices
nd revealing a multivariate cointegration relationship in a high-frequency setting.

Another important point to make for our empirical study is that, in studying the link between 𝜅 and traded volumes, we are
conditioning our analysis to the assumption that the system is cointegrated. However, the matrix 𝜫 could itself be a function of
traded volumes without being low rank, which would mean that the auto-regressive matrix of the asset prices would be a function
of volumes but not necessarily the cointegration process itself. To demonstrate that the traded volumes play a determining role in
the cointegration process itself, we thus need to verify that not only 𝜅, but also the rank of matrix 𝜫 is related to volumes. Put
differently, the rank of matrix 𝜫 – which determines whether or not a cointegration relationship exists – and the low-rank matrix
𝜅 must both be a function of the volumes traded of each asset to justify the conclusion that the cointegration process is intrinsically
linked to the volumes traded in the financial markets.

Finally, we notice that the traded volumes also impact the constant term in Eq. (8). Nevertheless, if we assume that all traders
are characterized by the same level of risk aversion and forecast the same variance–covariance matrix, that is 𝜆𝑗=1,…,3 = 𝜆1, the
matrices 𝜆⋆ equal zero and, by definition, the matrix 𝐵 equals zero as well. Eq. (8) thus simplifies to:

𝛥𝑃 = 𝛼1(𝑃𝑡−1)−1𝐷𝑖𝑎𝑔
(

𝑆𝑔𝑛(𝛿)
)

𝜆−11 𝑉1 (9)

which also points to a VECM relationship, though without the constant term.
To empirically validate our model and the associated hypotheses, we propose to test and investigate the dynamics of the intra-

daily cointegration among assets as a function of the daily traded volume and order-book depth of individual assets. Once the
stability over time of the cointegrating vector 𝛽 has been demonstrated, we will also investigate how, under the hypothesis of
cointegrated time series, the dimension of the adjustment space spanned by the loading vector 𝜅 can be affected by traded volumes.
Nevertheless, studying dynamics at such a high level of granularity has its inherent statistical challenges, including microstructure
noise and asynchronicity of traded prices. To address these challenges, cointegration dynamics must be written in a state–space
form.

3. Econometric models

Our theoretical model leads to a VECM model that links prices and volumes for cointegrated assets. The same VECM has already
been considered in the high-frequency literature on the econometric representation of the price-discovery process between two
closely related securities. Initially adapted by Hasbrouck (1995) to describe the joint dynamics of closely linked securities traded

9 This hypothesis is not a necessary condition to express the cointegration relationship as a function of the traded volumes. Indeed, if we assume that 𝛾 ≠ 1,
e then obtain a nonlinear error-correction model (NEC) with a polynomial functional (Escribano and Mira, 2002; Escribano, 2004; Tjøstheim, 2020).
10 In our two-commodity setting, we obtain a (2 × 1) vector. Nevertheless, if more assets are taken into account, two matrices, 𝜷 and 𝜿, of dimension (𝑛 × ℎ)
5

re thus obtained, whereby 𝑛 denotes the number of assets and ℎ the number of cointegration relationships among the assets.
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in different markets, the cointegration model has ever since been considered in high-frequency settings to capture the lead–lag
relationship between related assets, such as underlying spot prices and related futures or options prices, or equities issued by the
same company in different markets (Foucault et al., 2017; Hasbrouck, 2019; Brugler and Comerton-Forde, 2019). These studies
generally used cointegration to represent very high-frequency joint dynamics resulting from financial arbitrage strategies, such as
cash-and-carry or triangular arbitrage (Foucault et al., 2017). Conversely, this paper focuses on cointegration relationships stemming
from the physical characteristics of each asset, such as the relationship between a given commodity and its byproducts, where
no genuine arbitrage gain is to be expected. The supply and demand disequilibrium associated with the commodity itself or its
byproducts could indeed consistently or temporarily change the associated spread levels. This rich strain of literature does not,
however, shed light on high-frequency data features such as asynchronicity, microstructure noise, or price staleness and idleness,
which we need to take into account in order to reduce the risk of model misspecification.

Our model can be cast in a state–space formulation of the VECM model, whereby the idle prices are considered as missing
ata, unlike in Buccheri et al. (2019, 2021b) and Buccheri et al. (2021a).11 Initially proposed by Shumway and Stoffer (1982) and

extended to the cointegrated processes by Seong et al. (2013), missing-data models consist in filling the database using a latent-
process expected mean, conditional on given parameters. We use the same filtering technique proposed by Seong et al. (2013),
whereby observation noise is added to cope with microstructure noise, as described by Buccheri et al. (2019, 2021b) and Buccheri
et al. (2021a). Nevertheless, our model should not be confused with the model proposed in the latter two contributions, as the
information associated with zero returns is treated differently in our model when the traded volume associated is null or positive.12

3.1. VECM state–space representation

Let us assume ℎ cointegration relationships among 𝑛 non-stationary financial asset prices; we will denote 𝑃𝑡 the 𝑛 dimension row
vector of the asset prices at time 𝑡; then Eq. (8) can be written as the following vector-error-correction model (VECM):

𝛥𝑃𝑡 = 𝑐0 +𝛱𝑃𝑡−1 +
𝑝−1
∑

𝑗=1
𝛤𝑗𝛥𝑃𝑡−𝑗 + 𝑒𝑡 (10)

where the low-rank matrix 𝛱 = 𝜅𝛽′ can be decomposed into two rank ℎ-matrices 𝜅 and 𝛽 of dimensions (𝑛 × ℎ) and 𝑒𝑡 ∼ 𝑁(0, 𝛴).
The constant term in Eq. (8), denoted as 𝑐0 here, can be removed and included as an intercept term in the cointegration
relationships, as demonstrated in Lütkepohl (2005).13 This VECM formulation can thus be equivalently written as a VAR(p) model,
such that Lütkepohl (2005):

𝑃𝑡 =
𝑝
∑

𝑗=1
𝛷𝑗𝑃𝑡−𝑗 + 𝑒𝑡 (11)

where 𝛷1 = 𝐼𝑛 +𝛱 + 𝛤1, 𝛷𝑗 = 𝛤𝑗 − 𝛤𝑗−1 for 𝑗 = 2,… , 𝑝 − 1 and 𝛷𝑝 = −𝛤𝑝−1.
Following Buccheri et al. (2019, 2021b) and Buccheri et al. (2021a), we assume that this discretized multivariate dynamics

is latent in a high-frequency setting and thus inaccurately observed on account of the ubiquitous microstructure noise present in
financial markets. A state–space representation is thus fully justified, with the transition equation following from expression (11):

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝐺𝑒𝑡 (12)

where 𝑥𝑡 = (𝑃 ′
𝑡 , 𝑃

′
𝑡−1,… , 𝑃 ′

𝑡−𝑝+1)
′ and where we define 𝐹 as the following 𝑛𝑝 × 𝑛𝑝 transition matrix:

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛷1 𝛷2 ⋯ 𝛷𝑝
𝐼𝑛 𝑂𝑛 ⋯ 𝑂𝑛
𝑂𝑛 𝐼𝑛 ⋯ 𝑂𝑛
⋮ ⋮ ⋯ ⋮
𝑂𝑛 𝑂𝑛 ⋯ 𝑂𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and the 𝑛𝑝 × 𝑛 matrix 𝐺 as:

𝐺 =
[

𝐼𝑛
𝑂(𝑛𝑝−𝑛)×𝑛

]

The following expression corresponds to the observation equation:

𝑦𝑡 = 𝐻𝑡𝑥𝑡 +𝑤𝑡 (13)

where 𝑤𝑡 is a zero mean, normally distributed uncorrelated 𝑞 × 1 noise vector with 𝑅 as 𝑞 × 𝑞 covariance matrix. Moreover, 𝐻𝑡
corresponds to a 𝑞×𝑛𝑝 observation design matrix, which converts the unobserved 𝑛𝑝×1 vector 𝑥𝑡 into the 𝑞×1 imperfectly observed

11 For the sake of completeness, a potential missing-data modification for their algorithm is mentioned in the technical appendix of Buccheri et al. (2021b).
12 Using a continuous time semi-martingale model, Bandi et al. (2020) indeed differentiated between the impact of idleness and staleness upon parameter
stimations.
13 As demonstrated in Lütkepohl (2005), if we keep the constant in Eq. (10), we should then constrain it for the model estimation, such that 𝑐0 = −𝜅𝛽′𝜇0,
6

here 𝜇0 is the adjusted constant. This avoids generating a linear trend in the mean of 𝑃𝑡.
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series 𝑦𝑡. It is worth highlighting that the dimensions of the matrix 𝐻𝑡 may change over time. Indeed, 𝑞 < 𝑛 when all the assets
are not trading simultaneously. This observation equation is different from the one proposed by Buccheri et al. (2019, 2021b)
and Buccheri et al. (2021a), where the matrix 𝐻𝑡 = 𝐻 =

[

𝐼𝑛, 𝑂𝑛×(𝑛𝑝−𝑛)
]

. In our state–space model, we thus distinguish the situations
where one of the assets has simultaneously traded with the others or not. With 𝐻 =

[

𝐼𝑛, 𝑂𝑛×(𝑛𝑝−𝑛)
]

, the measurement error associated
with an idle price is first assumed to be zero-mean and finite-variance white noise. Furthermore, this measurement error is mixed
with the potential observation error when the cointegrated assets are simultaneously trading. This assumption can have significant
impact on the cointegration model’s estimation and the interpretation of results, as demonstrated in our empirical study. This is
due to the fact that price idleness and staleness convey relevant information related to the data-generation process (Bandi et al.,
2020). Our empirical study buttresses this conclusion, showing that cointegration results differ significantly depending on whether
we assume that the matrix 𝐻 =

[

𝐼𝑛, 𝑂𝑛×(𝑛𝑝−𝑛)
]

or not. Provided that this state–space formulation is linear and Gaussian, we can apply
the conventional Kalman filter and Kalman smoother, under the assumption that the parameters 𝜃 = {𝛷𝑗 , 𝛴,𝑅} are known.14

3.2. Model estimation

3.2.1. The EM algorithm
Whereas the rank and the parameters denoted 𝜃 are assumed to be known in the filtering and smoothing steps described in

the previous section, Dempster et al. (1977) developed an Expectation Maximization algorithm, which consists in maximizing the
complete data log likelihood and which assumes all data 𝑥1∶𝑇 to be available, conditional to the data 𝑦1∶𝑇 that we observed:

log(𝜃; 𝑥1∶𝑇 , 𝑦1∶𝑇 ) = −1
2
log |𝛬| − 1

2
(𝑥0 − 𝛿)′𝛬−1(𝑥0 − 𝛿)

− 𝑇
2
log |𝛴| − 1

2

𝑇
∑

𝑡=1
(𝐴𝑥𝑡 − 𝛤𝐵𝑥𝑡−1)′𝛴−1(𝐴𝑥𝑡 − 𝛤𝐵𝑥𝑡−1)

− 𝑇
2
log |𝑅| − 1

2

𝑇
∑

𝑡=1
(𝑦𝑡 −𝐻𝑡𝑥𝑡)′𝑅−1(𝑦𝑡 −𝐻𝑡𝑥𝑡) (14)

where:

𝐴 =
[

𝐼𝑛 − 𝐼𝑛 𝑂𝑛×(𝑛𝑝−2𝑛)
]

;

𝛤 =
[

𝜅 𝛤1 𝛤2 … 𝛤𝑝−1
]

;

and

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛽′ 𝑂ℎ×𝑛 𝑂ℎ×𝑛 …
𝐼𝑛 −𝐼𝑛 𝑂𝑛 …
𝑂𝑛 𝐼𝑛 −𝐼𝑛 …
⋮ ⋮ ⋮ ⋱
𝑂𝑛 … … 𝐼𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with a normalized 𝛽 = [𝐼ℎ 𝛽′0], 𝛽0 being the (𝑛 − ℎ) × ℎ matrix to be estimated,15 and 𝑥0 ∼ 𝑁(𝛿, 𝛬). The EM algorithm then consists
in a two-step recursive procedure16:

(𝑖) the Expectation step: a given set of parameters 𝜃𝑙 associated with the 𝑙-iteration is used to calculate the expected value of the
complete-data log-likelihood, conditional on 𝜃𝑙, represented by the operator 𝐸𝑙, and the observed data 𝑦1∶𝑇 :

𝑄(𝜃|𝜃𝑙) = 𝐸𝑙{𝑙𝑜𝑔(𝜃; 𝑥1∶𝑇 , 𝑦1∶𝑇 |𝑦1∶𝑇 )} (15)

where the latent process-expectation and covariance-matrix estimators conditional on the observed data are provided by the
combination of the Kalman filter and smoother.

(𝑖𝑖) The Maximization step: we maximize this conditional expectation of the complete-data log likelihood using the analytical
gradient.17 to obtain a new set of parameters 𝜃𝑙+1 that we use in the next iteration of the algorithm. We then go back to the E-step.

This iterative procedure has been shown to provide a non-decreasing likelihood towards the maximum incomplete-data log-
likelihood innovations form (Dempster et al., 1977; Shumway and Stoffer, 1982) that we use to determine at each iteration when
the algorithm should be stopped.

14 Bear in mind that the matrices 𝛷𝑗 include the parameters of sub-matrices 𝜅, 𝛽, and 𝛤𝑗 . The lag used for the VECM model is determined with the Bayesian
Information Criterion (BIC). Furthermore, in Supplementary Material C, a detailed description can be found of both the filter and the smoother used to estimate
the conditional expectation, as well as of the conditional covariance matrix associated with the latent process.

15 It is interesting to note that 𝐴𝑥𝑡 = 𝛥𝑃𝑡, while 𝛤𝐵𝑥𝑡−1 = 𝛱𝑃𝑡−1 +
∑𝑝−1

𝑗=1 𝛤𝑗𝛥𝑃𝑡−𝑗 .
16 Supplementary Material D provides a detailed description of the algorithm.
17
7

A detailed derivation of the gradient is provided in Supplementary Material D.
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3.2.2. The rank estimation
While we have thus far assumed the rank of the 𝛱 = 𝜅𝛽′ matrix to be known, we perform the conditional likelihood ratio test to

estimate it conditionally with respect to 𝜃̂, the EM-estimated parameters, and the observed data 𝑦1∶𝑇 . For this likelihood ratio test,
we postulate the following null hypothesis:

𝐻0 ∶ 𝑟𝑎𝑛𝑘(𝛱) = 𝑟0 with 0 ≤ 𝑟0 < 𝑛

where 𝑟0 is the specific matrix rank to be tested. The alternative hypothesis is:

𝐻1 ∶ 𝑟0 < 𝑟𝑎𝑛𝑘(𝛱) ≤ 𝑟1

Using the respective complete-data log likelihoods associated with 𝜃⋆𝑟0 , the EM-estimated optimal set of parameters assuming
𝑟𝑎𝑛𝑘(𝛱) = 𝑟0, and 𝜃⋆𝑟1 , which denotes the optimal parameters with 𝑟𝑎𝑛𝑘(𝛱) = 𝑟1, the LR statistic 𝜆𝐿𝑅(𝑟0, 𝑟1) is equal to:

𝜆𝐿𝑅(𝑟0, 𝑟1) = −2 log

[ 𝑠𝑢𝑝𝜃⋆𝑟0


𝑠𝑢𝑝𝜃⋆𝑟1


]

= −2
[

𝑙𝑜𝑔(𝑟1) − 𝑙𝑜𝑔(𝑟0)
]

(16)

With a preliminary panel-stationarity test, we ensure all the asset prices follow unit-root processes, hence 𝑟𝑎𝑛𝑘(𝛱) < 𝑛. Then
e considered in our empirical study the likelihood-ratio-test statistic (16), with 𝑟0 = 0 and 𝑟1 = 1, to assess the 𝑝-value for a rank

of 𝛱 equal to 0.18 This rank-associated probability is then considered an ordinal number to detect whether or not asset prices are
cointegrated on a daily basis and to establish the strength of this cointegration relationship throughout a given day. Regarding the
non-standard asymptotic distribution of 𝜆𝐿𝑅(𝑟𝑖, 𝑟𝑖+1) under the null hypothesis, we refer to the 99% critical value of 7.02 as provided
by the table (15.1) in Johansen (1995).

4. Data: The soybean complex

For our empirical study, we use the soybean crush spread, a well-known commodity complex that has been extensively studied
in the futures markets literature (Johnson et al., 1991; Rechner and Poitras, 1993; Simon, 1999; Mitchell, 2010; Liu and Sono,
2016; Marowka et al., 2020; Li and Hayes, 2022). This spread is often studied for its presence of cointegrated multivariate time
series19 and also because soybean futures are among the most traded commodity derivatives contracts in the world, with a double
quotation on the US and Chinese derivatives markets. Other cointegrated financial assets could have been considered, such as interest
rates (Bradley and Lumpkin, 1992; Dewachter and Iania, 2011) or equities (Chen et al., 2002; Awokuse et al., 2009).

For this study, we have used the data from the soybean complex (soybeans, soybean oil, and soybean meal) quoted at the CME
(Chicago Mercantile Exchange). Matching the product codes at the CME Globex, we abbreviate soybean to ZS, soybean oil to ZL,
and soybean meal to ZM; in Eq. (10), the prices vector 𝑧𝑡 will observe the same order, such that 𝑧1𝑡 represents the soybean price,
𝑧2𝑡 stands for the soyoil price, and 𝑧3𝑡 denotes the soymeal price, all at time 𝑡.

The high-frequency data used in this study covers the total trading activity of 2015, amounting to 243 trading days. The data
is retrieved from the CME, which stores the data in a sequence of messages, each with a millisecond-resolution timestamp and
representing an update of the security. Such an update can be an executed trade, a change in the limit order book, or the daily
open-interest statistic. Note that these messages only arrive at updates; hence, the frequency of updates (messages) is based on, and
reflects the activity in the market.

By iterating these messages sequentially, and updating the LOB accordingly, the LOB can be reconstructed at any point in time.
Next, this time series of LOBs with irregular time intervals can be resampled into any arbitrarily chosen snapshot size. In this
study, we opted for one-minute snapshots in order to limit the Epps effect (Epps, 1979), which describes sample correlation bias as
moving towards zero as the data frequency in the analysis increases.20 Moreover, we distinguish two periods within a trading day:
the electronic trading session from 7 PM to 7.45 AM (session 1) and the market trading session from 8.30 AM to 1.20 PM (session
2). While the latter trading session is shorter, it contains the most trading activity.21 For the robustness check, we use multiple
methods to generate snapshots, which are described below. In addition, the XLM is calculated for each snapshot, so as to measure
the liquidity of the market at any point in time (Gomber et al., 2015).

18 For the selection of the model, we also tested in our empirical study the presence of more than one cointegration relationship using appropriate 𝑟0 and 𝑟1.
19 Based on long-term time series, Simon (1999), Mitchell (2010), and Liu and Sono (2016) demonstrate in their empirical studies the existence of a stationary

ombination of soybean, soyoil, and soymeal futures prices. This cointegration relationship can be interpreted as a long-term market-price equilibrium for the
o-called crush spread, combined with transitory seasonality and a consistent trend. More recently, Marowka et al. (2020) presented evidence that the crush-spread
ointegrating vector and the associated cointegrating space display significant time instability on a yearly basis, which is detrimental to soybean processors who
edge their physical exposure on financial markets.
20 In order to identify any side effects from the method used to generate the one-minute snapshot time series, a robustness check has been added in the

upplementary materials: Instead of collecting the asset prices for each snapshot at the first second of each minute, asset prices at the 30th second are used. For
his data sample (30s Monthly Rollover), the Monthly Rollover technique has been used.
21 The CME closed its agricultural futures trading pits in July 2015 while leaving open the options trading pits. In our case, the ’’market trading session’’
8

orresponds to agricultural commodities’ trading hours on the floor of the exchange until 2 July and on its electronic trading platform (Globex).
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The XLM (Exchange Liquidity Measure) calculates the round-trip liquidity premium for buying and selling a chosen volume,
.e., how much the average transaction price deviates from the mid-price. Eq. (19) shows how to calculate the XLM:

𝑋𝐿𝑀𝐵,𝑡(𝑉 ) = 10, 000
𝑃𝐵,𝑡(𝑉 ) −𝑀𝑃𝑡

𝑀𝑃𝑡
(17)

𝑋𝐿𝑀𝑆,𝑡(𝑉 ) = 10, 000
𝑀𝑃𝑡 − 𝑃𝑆,𝑡(𝑉 )

𝑀𝑃𝑡
(18)

𝑋𝐿𝑀𝑡(𝑉 ) = 𝑋𝐿𝑀𝐵,𝑡(𝑉 ) +𝑋𝐿𝑀𝑆,𝑡(𝑉 ) (19)

where, 𝑀𝑃𝑡 is the mid-price at time 𝑡, 𝑃𝐵,𝑡(𝑉 ) is the average transaction price of a buy-initiated market order with dollar value
𝑉 at time 𝑡, 𝑃𝑆,𝑡(𝑉 ) is the average transaction price of a sell-initiated market order with dollar value 𝑉 at time 𝑡, and 𝑋𝐿𝑀𝑡(𝑉 )
the round-trip liquidity premium at time 𝑡. In this research, the dollar value is set to be the median dollar value of the order book
spanning the full year.

After processing (i.e., reconstructing and resampling into snapshots) each individual futures contacts, the multiple time series are
merged into a single non-ending time series. This technique is called rollover. Merging of contracts is required since, at any point
in time, there are multiple futures contracts available for trading with a separate open interest and maturity date. For example,
soybean futures are available at the CME – in each specific year – as January, March, May, July, August, September, and November
contracts, whereas soymeal and soyoil have additional October and December contracts but no November contracts. Different
rollover techniques can be considered to combine all contracts, i.e., create a single time series per commodity that captures the
most relevant information (Carchano and Pardo, 2009).

For the robustness check, three different rollover techniques will be compared in this paper. The first rolling technique is based
on the soybean open interest (ZS Open interest). All three contracts are rolled to the next maturity based on the soybean open-
interest crossover day (i.e., the first day on which the next futures contract has a higher open-interest value) (Carchano and Pardo,
2009). This method ensures that the rollover of all time series occurs at the same time, with the open interest of soybean being
the determining factor. The second rolling technique is an independent open-interest rollover (Independent Rollover), where each
contract’s open-interest crossover triggers the associated roll position. The final rolling technique is the monthly rollover (Monthly
Rollover), which has been applied in most of the existing literature (Frank and Garcia, 2011; Trujillo-Barrera and Garcia, 2012;
Gorton et al., 2013; Etienne et al., 2014, 2015; Dorfman and Karali, 2015; Han et al., 2016; Fernandez-Perez et al., 2016; Fan et al.,
2020). With this rolling technique, the current contract is rolled to the second nearby contract at the end of the month preceding
contract expiration.

5. Econometric results

To validate the theoretical model proposed in this article and thus demonstrate the relationship between asset-price cointegration
and individual traded volumes, we divided our results analysis into four subsets. We first verify the intraday non-stationarity of the
marginal dynamics, as well as the cointegration among these dynamics. We take this opportunity to demonstrate how time of day
may affect the joint stationarity of the soybean complex. Following our Proposition 1, we then validate the hypothesis that the rank
of matrix 𝛱 is indeed a function of the volume traded on each market. In particular, we demonstrate that the presence or absence of
cointegration among the soybean-complex components at the high-frequency level – and thus the intraday efficiency of the complex
futures markets – is related to the volumes traded in each of these markets.

Furthermore, as stated in our proposition, the presence in the markets of traders with sufficient arbitrage capacity to enforce the
cointegration relationship should manifest through 𝜅, the speed of reversion towards the long-term trend, whereas the cointegrating
vector should, on average, remain close to the physical weights following from the industrial soybean trituration. We thus verify
in the following that the intraday cointegrating vector and loading matrix display such features. Finally, we demonstrate how our
findings could influence the design of optimal rolling techniques.

5.1. Stationarity and cointegration of the high-frequency soybean complex

For the unit-root test, we considered the panel test introduced by Hadri (2000) and applied it to the 243 trading days in 2015
for which we observe 1-minute data samples. According to Table 1, based on calendar order,22 we demonstrate that the three
intraday-price time series are non-stationary for almost all panels, which justifies the performance of a high-frequency cointegration
analysis.

As mentioned earlier, one of the main problems when studying the joint dynamics of high-frequency time series is the non-
synchronicity of the markets, which hampers the estimation of the dependence structure among the time series significantly (Lo and
MacKinlay, 1990). This impact on the estimation of the parameters manifests itself when comparing an EM-algorithm-based estimate
with a basic Johansen approach at a high-frequency level. To carry out the Johansen test on non-synchronous high-frequency data,
we had to apply ad hoc matching, which implies matching the price of a given asset that has just traded with the last-traded price
of the other assets (denoted below as ’all price’), depending on the frequency considered. In addition, to investigate the potential

22 Other ordering variables for panel construction have been considered, for instance relative to daily traded volumes. The stationary hypothesis was always
9

ejected.
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Table 1
ZS open interest rollover panel stationarity test.
30 days panela ZS dif(ZS) ZL dif(ZL) ZM dif(ZM)

1 5006.1 −7.5*** 4829.5 1.9*** 4602.3 −4.5***
2 4488.9 1.0*** 3573.5 0.8*** 4681.2 1.9**
3 4693.7 3.3 3792.2 8.5 4813.0 −29.7***
4 4381.8 −11.6*** 3604.6 −32.6*** 85.1 −40.5***
5 5314.4 −1.6*** 4547.3 −3.7*** 4983.6 0.0***
6 5685.0 −5.3*** 4730.4 −3.3*** 5677.9 −11.1***
7 4297.1 −11.3*** 406.0 −33.4*** 305.7 −40.2***
8 5211.1 −4.4*** 710.6 −40.3*** 379.2 −40.3***

aThis table records panel stationarity test statistics for 30-day samples of session 2 one-minute data considering the ZS open
interest rollover technique. First, we sort the T-stat of the KPSS test according to the calendar order of the three assets, from
the lowest value to the highest value for 8 panels (30 days per panel). Second, we calculate the panel stationarity test statistics
for each panel (Hadri, 2000), where the critical values in the one-tail test are 1.282 for the 10% significance level, 1.645 for
the 5% significance level, and 2.326 for the 1% significance level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

Table 2
Cointegration test for session 2 — 1 min data.
Johansen cointegration testa Day Month Quarter

ZS open interest rollover_all priceb 64 1 0
ZS open interest rollover_ZSmatch 69 6 1
ZS open interest rollover_ZLmatch 70 6 1
ZS open interest rollover_ZMmatch 68 5 1

Missing data filtered cointegration testa Day Month Quarter

ZS open interest rolloverc 180 11 3

aThis table shows the number of cointegrated days, months and quarters for 2015. It compares
the results of the Johansen approach and the missing-data filtering techniques described in
Section 3.1.
b ’All price’ represents the trading-time approach, whereby the idle prices are not considered
missing and are still assumed to be fair prices for the given assets until the next trade. ’ZSmatch’,
’ZLmatch’, and ’ZMmatch’ represent the trading-time approach, where we match the trades for
a particular asset with the idle prices of the two other assets.
cIn this data set, idle prices are not considered informative and have been removed. As such,
only the missing-data filtering technique can be applied.

ead effect of a specific asset on the other lagged assets, we applied an asset-based matching algorithm. This method matches
he last trading price of either soybeans, soybean oil, or soybean meal (hereinafter denoted as ZSmatch, ZLmatch, and ZMmatch,
espectively) with the most recent trading prices of the two other assets. We thus constrained our sample time stamp to a specific
sset and presumed the lead–lag structure of the data.

Hardly any cointegration was detected using Johansen’s approach, regardless of the matching method applied. After filtering
or microstructure noise and time-series asynchronicity, however, the number of cointegrated days detected becomes significantly
igher, as shown in Table 2. Since we know that the frequency of the data versus the period of data acquisition can impact the
stimation of cointegration models (Hakkio and Rush, 1991), we increased the sample size to facilitate the detection of cointegration
y Johansen’s model. Whichever sample scheme we considered – daily, monthly, or quarterly – Johansen’s approach without data
iltering performed poorly compared to the EM-algorithm approach. For the sake of robustness, we verified that these results were
ot affected by the various rolling techniques and the data-frequency choices.23 Furthermore, we discovered the presence of a diurnal

effect with regard to cointegration. A high level of cointegration is indeed observed during session 2 trading hours, which fades away
during session 1.24 Another interesting result is the stronger intraday cointegration observed on average on USDA announcement
days, although the number of observations available is limited.

5.2. Intraday cointegration and traded volumes

To determine whether the intraday price-cointegration process depends on the volume traded of each asset, we first have to verify
that the rank of the product matrix 𝜫 = 𝜿′𝜷∗ in Eq. (10) is a function of the daily traded volumes. The Granger representation
theorem indeed states that an error-correction representation exists if low-rank matrices 𝜿′ and 𝜷∗ both occur. To verify that the
presence or absence of cointegrated time series is a function of the traded volume, we analyse the daily likelihood-ratio-test time
series calculated based on the intraday asset-price vectors, in particular the likelihood ratio of the null-rank versus the rank-one
hypothesis. This specific ratio indicates whether the matrix is statistically closer to a null-rank matrix or a rank-one matrix. If the

23 A description of the test results is provided in Supplementary Material G.
24 The results are provided in Supplementary Material G.1.
10
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matrix rank is zero, all of the soybean complex components are integrated but no cointegration has been statistically detected.
Conversely, if the matrix is rank one, at least one cointegration relationship has been detected.

The interest of the likelihood-ratio-based statistic we proposed to retain is that we know its asymptotic distribution and can thus
etermine a set of critical values for the test. Studying intraday data on a daily basis allows us to detect the presence of cointegration
nd then compare it with the daily traded volumes.

We apply a stepwise logit regression with a binomial distribution (denoted GLM) to model the cointegrated/non-cointegrated
inary variable as a function of the daily traded volumes. To interpret the coefficients for each regressor, we report the associated
arginal effects (Greene, 2003).

Since traded volumes can be closely related to a market’s price volatility (Bessembinder and Seguin, 1993), we propose a set of
ine control variables stemming from high-frequency literature. This includes assessments of the average intraday variance realized,
ipower variation, and the XLM index for each of the three components of the soybean-crush spread. The XLM index allows us to
istinguish between the influence of the daily traded volumes and the average depth of the book order, which could be defined
s the average potential tradable volume for each individual market. While bipower variation and realized variance, as defined
n Couleau et al. (2020), are two measures of integrated volatility, bipower variation offers the specificity of being a robust metric
or identifying rare jumps as well as a model-free estimator of integrated variance. One of the alternatives to this estimator is the
ealized variance measure.

GLM stepwise regression can be found in Supplementary Material E.1, the result of which shows that daily volumes are significant
n explaining the rank of matrix 𝛱 and thus the cointegration process in markets and that volatility measurement, such as the

bipower variation, is statistically insignificant. We also demonstrate that the volumes of soybean byproducts are the most important
variables for exchanges to monitor. As a complement to the linear GLM approach, in Supplementary Material E.2, we propose a set
of panel cointegration tests provided by Larsson et al. (2001) that allows for the capturing of non-linear relationships. We again
demonstrate that the traded volumes integrate information that volatility measures are not taking into account.

5.3. Long-run equilibrium dynamics and traded volumes

While, in the previous section, we demonstrated how the rank of matrix 𝜫 is positively related to the assets’ traded volumes,
the following subsections provide a detailed analysis of the joint and marginal dynamics components that cause this phenomenon.
Conditional on the (low) rank of matrix 𝜫 and whether the time series are cointegrated, we can rewrite this matrix as the product
of two ℎ × 𝑛 sub-matrices 𝜅 and 𝛽, with ℎ < 𝑛. The former, i.e. the loading matrix, is interpreted as the adjustment of each asset’s
rices to the long-run equilibrium or error-correction term. The latter, i.e. the cointegrating vector, renders the integrated initial data
tationary. Following our theoretical model, the expected value of the cointegrating vector should equal the trituration-associated
eights as expected and enforced by the traders that intervene in the individual markets for all three crush-spread components.
onversely, the loading matrix should be a function of the volume traded for each asset, provided there is at least one cointegration
elationship.

.3.1. Adjustment space
In this section, we investigate how the traded volumes impact the cointegration process. To do so, we simultaneously study

heir impact on two related components of the cointegration process by calculating ’Relative market-information share.’ This
easurement was proposed by Hasbrouck (1995), while (Baillie et al., 2002) demonstrated that it is equivalent to the ratio of

he respective components of the vector 𝜅⟂ weighted by the variance–covariance matrix of the innovations.25

Following our theoretical model, if we assume that 𝛽⟂ in the VAR representation associated matrix 𝛯26 is not related to the traded
volumes, then the relative market information share should thus, through 𝜅 and 𝜅⟂ components, be a function of the 𝑖𝑗{𝑖≠𝑗;𝑖,𝑗=1,2,3}
elative traded volumes 𝑉 𝑜𝑙𝑖∕𝑉 𝑜𝑙𝑗 . Furthermore, given that the variance of asset prices is closely related to the volume traded (Epps
nd Epps, 1976, among others.), we assume the scaling multiplier in (51), which is the 𝛴 matrix components’ ratio, to be equal
o one, and we focus our analysis on the squared values of the ratios of the vector 𝜅⟂’s components,27 𝜅̃𝑖𝑗 = (𝜅⟂,𝑖)2∕(𝜅⟂,𝑗 )2. We
hen regressed it on the relative traded volumes and the same control variables that we previously considered: the high-frequency
ipower-variation measure, the realized-variance measure, and the XLM index.

We could thus conclude that, if the volumes traded in the byproducts’ markets are sufficiently high relative to those in
he bean market (meaning a simultaneous increase of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑆 and decrease of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑀), the meal price will
ore significantly Granger cause the other market prices (higher 𝜅̃3,2 and 𝜅̃3,1). However, the more disconnected the volume of

he bean market from that of the byproducts’ markets (meaning a simultaneous decrease of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑆 and increase of
𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑀), the less related the three markets (lower 𝜅̃3,2, 𝜅̃1,2 and 𝜅̃3,1).

The results displayed in Table 3 validate our model’s assumption by showing significant linear relationships between three 𝜅̃𝑖𝑗
ratios and three traded volume ratios, whereas all other ratios or control variables prove to be insignificant. In addition, these linear
relationships show that the contribution of soybean to the common factor relative to that of soyoil is positively related to the ratio
of the traded volumes of soyoil and soybean. This means that the higher the volume of soyoil relative to soybean, the more soybean

25 Please refer to Supplementary Material F for more details.
26 A formal definition of 𝛯 is provided in Supplementary Material F.
27 According to Baillie et al. (2002), the ratio 𝜅̃𝑖𝑗 is equivalent to the relative information share of market 𝑖 versus market 𝑗, as defined in Hasbrouck (1995),

provided that the scaling multiplier, i.e. the 𝛴 matrix components ratio, is set to one and that there is no correlation between the error terms 𝛴 = 0.
11
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Table 3
Regression of 𝜅̃𝑖𝑗 ratios.

Regressora 𝜅̃1,2 𝜅̃1,3 𝜅̃2,3 𝜅̃2,1 𝜅̃3,1 𝜅̃3,2
Vol_ZS 0.097 0.613 −0.579 −0.528 −0.453 0.673
Vol_ZL 0.331 1.366 −0.525 −0.498 −1.078 1.107
Vol_ZM −0.586 −0.115 −0.442 −0.443 −0.365 0.186
Vol_ZS/Vol_ZL 0.806 −0.42 −0.249 −0.22 −0.706 1.312
Vol_ZS/Vol_ZM 0.643 0.366 −0.255 −0.213 −0.204 0.396
Vol_ZL/Vol_ZM 0.748 1.785 −0.197 −0.161 −2.71*** 0.251
Vol_ZL/Vol_ZS 2.5*** 0.908 −0.03 −0.047 −0.974 2.47**
Vol_ZM/Vol_ZS −1.019 −0.691 0.19 0.1 −0.639 −0.836
Vol_ZM/Vol_ZL −0.016 −1.114 −0.07 −0.093 −1.034 1.072
RV_ZS −0.215 0.215 −0.309 −0.281 −0.884 −0.336
RV_ZL 1.008 1.249 −0.668 −0.626 −1.732 1.859
RV_ZM −0.096 −0.063 −0.515 −0.479 −0.726 0.273
BV_ZS −0.337 0.704 −0.346 −0.304 −0.756 −0.454
BV_ZL 0.765 1.663 −0.634 −0.592 −1.734 1.67
BV_ZM −0.475 0.213 −0.518 −0.478 −0.32 −0.275
XLM_ZS 0.055 −0.046 −0.988 −0.949 −0.116 −0.412
XLM_ZL 0.766 0.157 −0.954 −0.872 −1.362 1.138
XLM_ZM 0.156 −0.038 −1.103 −1.07 −0.917 0.562

aUsing daily sets of one-minute data from session 2 and the ZS open interest rollover technique, this table records the coefficients
and p-values associated to the regression of 𝜅̃𝑖𝑗 on the daily realized variance (RV), bipower variation (BV), traded volumes (Vol),
and XLM index (XLM); ZS stands for soybean, ZL for soybean oil, and ZM for soybean meal. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

Table 4
Missing data filter — daily cointegrating vector 𝛽 descriptive statistics.

Missing data filtera Johansen modela

ZS ZL ZM ZS ZL ZM

Median 1 −0.11 −0.19 1 −0.13 −0.17
Average 1 −0.09 −0.21 1 −0.29 −0.02
quartile 25% 1 −0.17 −0.24 1 −0.24 −0.25
quartile 75% 1 −0.06 −0.14 1 −0.05 −0.07
StDev 0 0.28 0.28 0 0.5 0.47
CME (physical) 1 −0.11 −0.22 1 −0.11 −0.22

aUsing daily sets of one-minute data from session 2 and the ZS open-interest rollover technique, this table records descriptive
statistics associated to the daily cointegrating vectors components for cointegrated days only (based on the missing data filtered
and the Johansen cointegration test). ZS stands for soybean, ZL for soybean oil, and ZM for soybean meal.

ill Granger cause soyoil (positive sign of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑆 coefficient in the 𝜅̃1,2 regression). We find the same interpretation for the
relative contribution of soymeal relative to soyoil. If the traded volumes of soyoil relative to soybean increase, we can expect soymeal
to even more significantly Granger cause the soyoil dynamics (positive sign of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑆 coefficient in the 𝜅̃3,2 regression).
Nevertheless, the lower the traded volumes of soymeal relative to soyoil, the less soymeal prices will Granger cause soybean prices
(negative sign of 𝑉 𝑜𝑙_𝑍𝐿∕𝑉 𝑜𝑙_𝑍𝑀 coefficient in the 𝜅̃3,1 regression).

.3.2. Cointegrating vector
In this subsection, we investigate whether the cointegrating vector remains stable over time and close to the physical weights

esulting from the trituration of soybeans. Furthermore, we verify that the cointegrating vector does not depend on the assets’ traded
olumes, as assumed in our model.

As shown in Table 4, the average and median values of the cointegrating vector components remain rather centred near
he physical quantities relayed by the CME and displayed in this table. By comparison, when considering the basic Johansen’s
ointegration test without dealing with the markets’ non-synchronicity, one can clearly notice from Table 4 that the average value is
ignificantly biased in this case, while the standard deviation is twice the value obtained with an appropriate state–space formulation
nd the filtering technique described earlier.

To validate the initial hypothesis of our theoretical model, we need to demonstrate that, when there is efficient cointegration,
t mainly occurs through the adjustment space and not the cointegrating space, which is preserved from the disequilibrium in
raded volumes. To this end, and as for the 𝜅 vector components, we investigate whether there is any statistically significant linear
elationship between the ratios of the components of the cointegrating vector 𝛽 and the traded volume ratios combined with the
sual control variables. The results are available on demand, but no significant relationship has been found for any of the ratios at
he 1% or 5% critical levels. At the 10% critical level, the 𝛽 components ratios start to be slightly affected by the relative volumes
Vol_ZL/Vol_ZM and Vol_ZL/Vol_ZS), but this concerns two pairs of 𝛽 vector components whose associated 𝜅̃𝑖𝑗 ratios were not related
o traded volume (namely 𝛽 and 𝛽 ).
12
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Fig. 1. Using daily sets of one-minute data from session 2 and the ZS open-interest rollover technique, this figure shows the values of the daily cointegration
test statistics. T-stats beyond 7.02 mean that the cointegration is statistically significant. The light green lines represent the rolling dates.

5.4. Futures contracts rollover and cointegration relationships

Another observable consequence of the relationship between the strength of the intraday cointegration and the traded volumes
associated with each market concerns the optimal rollover periods of futures contracts. As we can see in charts 1 and 2, the soybean-
roll (ZS Open interest) and the month-end (Monthly Rollover) methods show particular differences before the month of October.
Provided that intermediary but less-traded maturities are in place for the months of August (ZSQ5) and September (ZSU5), we
should expect a conflict between these maturities and the highest open-interest contract for October (ZSX5), which trades at the
same time.

We first notice that the choice of the rolling technique, described in Section 4, creates a very significant difference in cointegration
strength among derivatives assets, as measured by the daily rank-test statistics. The month-end rollover approach suffers from the
traded-volume weakness that characterizes the previously mentioned, less liquid intermediary maturities. The soybean-roll technique
skips these contracts and directly trades the November contract (ZSX5) since it benefits from a higher open interest over the same
period of time (cf. Fig. 3). This result underpins our theoretical model, which tells us that the traded volumes are key variables in
understanding and modelling multi-asset joint dynamics.

Moreover, our model also states that some agents seek to enforce cointegration among assets and, to this end, build their
expectations on the dynamics in the physical markets and on the fundamental or physical properties of the underlying commodities
or assets. The futures with maturity in November (ZSX5) are indeed generally preferred by the crushing industry as they correspond
to the new crop season in the northern hemisphere.28

Finally, we also noticed that the soybean-roll technique is not necessarily optimal for crush-spread hedging near the end of the
year and might be improved by considering different rollover dates for each asset, which we leave for future studies.

6. Conclusion

Great efforts have been made in the academic literature to quantify the impact of commercial and non-commercial investors’
behaviours on market prices by scrutinizing the Commitment of Traders (COT) report published on a weekly basis by the CFTC (for
instance Fishe et al., 2014; Büyükşahin and Robe, 2014; Kang et al., 2020). However, these results are contingent on the CFTC’s
investors’ classification and the reports’ weekly frequency of publication. This paper chooses a different approach using high-
frequency LOB data, whereby the typology of investors submitting market or limit orders is not pre-defined. Our approach

28 Though maturity in May corresponds to the South American new crop season, it does not have the same effect on intermediary maturities (cf. Fig. 3).
13
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Fig. 2. Using daily sets of one-minute data from session 2 and the end-of-the-month rollover technique, this figure shows the values of the daily cointegration
test statistics. T-stats beyond 7.02 mean that the cointegration is statistically significant. The light green lines represent the rolling dates.

Fig. 3. This figure displays the open interest associated to each contract maturity at a given time. The respective contracts correspond to the months of January
(ZSF5), March (ZSH5), May (ZSK5), July (ZSK5), August (ZSQ5), September (ZSU5), November (ZSX5) of the year 2015, while the final contract corresponds to
January 2016 (ZSF6).
14
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utilizes both traded prices and aggregated quantity data (i.e., daily traded volumes and limit order books’ daily average liquidity
measurements) to shed light on the relationship between price cointegration and the realized or potential daily volumes.

We specify the influence of hedgers and partially informed traders through a high-frequency price-cointegration framework in
hich market microstructure influences the price-discovery processes of several interrelated assets. Our market-equilibrium model
emonstrates how partially informed traders, who only focus on some rather than all of these markets, may influence long-term
tructural relationships such as price cointegration. We show that an agent with a global view of the markets is necessary to restore
he equilibrium, which raises the question of partially informed traders’ capacity to enforce this equilibrium. We indeed demonstrate
nd observe that the traded volumes on commodity byproducts, such as soybean meal and soybean oil, positively influence the
ank of the auto-regressive matrix associated with the soybean complex dynamics and hence the presence or absence of intraday
ointegration among related assets. Conversely, important potential trading volumes in the main market, the soybean market in our
ase, or a lack of liquidity in the secondary markets, i.e., soybean meal and oil, act as a counterbalance and may discourage the
ully informed traders from building correcting trades to enforce the cointegration relationship.

Furthermore, it has been empirically proven in this article that traded volumes, epitomizing disagreement on market expectations,
ainly influence the speed of convergence towards the stationary cointegrated joint process, rather than the cointegrating vector

tself. This finding underpins the relevance of a time-varying cointegrated relationship with respect to market liquidity, so as to
odel a dynamic market equilibrium among interrelated assets. Consequently, we can confirm that asset prices may deviate from

he market equilibrium and that market liquidity conveys crucial information about the joint dynamics of asset values, which is
omplementary to the information associated with volatility measures.

From a methodological standpoint, we show that, at high-frequency granularity, filtering techniques are necessary to observe
ointegration relationships and that Epps effects, microstructure noise, and idle prices significantly affect parameter estimation.
everal robustness tests using different data sets and methodologies confirm our findings and support our theoretical model.

Interestingly, for the regulator and the exchanges, our paper shows that the traded volumes, the associated open interest, and
he liquidity of a market should be considered within a multivariate setting. As a consequence, before issuing or authorizing any
ew derivative contract on a commodity, the relative sizes of interrelated markets should be taken into consideration as the latter
ay significantly influence the price-discovery process of the former and thus its interest for hedgers, especially when large index
roducts include one asset and not the others. We also demonstrate that the role of traded volumes in the market’s capacity to
evert to equilibrium, and thus enforce the cointegration of asset prices, shrinks during electronic trading sessions. This diurnal
henomenon questions the importance of having 24-hour access to electronic markets, when it only contributes to adding noise
nd does not convey information about assets’ fundamental values. As far as the hedgers are concerned, our last micro-economic
tudy based on futures-contracts rollover further revealed that the presence of cointegration among assets is related to the contract
aturities traded at a given time. Indeed, some intermediary contract maturities are not considered by informed traders throughout

he year, thus leaving unused their capacity to counterbalance on an intraday basis the disturbing influence of partially informed
raders. An interesting extension in future work could focus on considering CRRA preferences and the bid–ask spread.
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