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A B S T R A C T

High frequency crude oil option data is used to extract the higher order risk-neutral moments
from the crude oil market. These risk-neutral moments include the variance, third central
moment and the recently developed tail risk variation measures. We find it is beneficial to
disaggregate these risk-neutral moments into their semi-moments, and to work with their log
differences instead of the level. The log differences of the second and third semi-moments, and
to a lesser extent, the log differences of the tail risk measures, are found to explain returns in
the crude oil and S&P 500 futures at high frequency. We also provide evidence that the efficient
market hypothesis holds at high frequency in these markets.

. Introduction

Crude oil is the world’s largest and most actively traded commodity. Crude oil has both a deep spot market and an exchange
vailable to trade derivatives on them. The derivatives on crude oil are available to be traded 23-h a day, 6-days a week on the New
ork Mercantile Exchange (NYMEX), and accounted for over 50% of the total volume traded in energy contracts in 2015 (Kyriakou
t al., 2016). Further to this, crude oil prices are commonly monitored by multiple stakeholders, including consumers and producers
f oil, investors, and policy makers. As such, it is necessary to have a deep understanding behind the underlying dynamics in the
rude oil market.

The underlying dynamics of crude oil can be explained through the use of risk-neutral moments. These risk-neutral moments
an be extracted through options, and have been extensively studied in the literature. For example, the ubiquitous Chicago Board of
xchange (CBOE) Volatility Index (VIX) is based on the risk-neutral second moment that is extracted from options, and is directly
sed by many as a measure of volatility in the market. Carr and Wu (2009) use options at a daily frequency to study the variance risk
remium in the U.S. equities markets through the means of a variance swap contract, which is the difference between the risk-neutral
econd moment and the realised variance. Building on their methodology, Kozhan et al. (2013) also use options at a daily frequency,
xtend the analysis to include the third moment, and find that the second and third risk-neutral moments can both explain the S&P
00 excess returns. Similar studies on the risk-neutral moments extracted from option prices have also been conducted in the crude
il market. For example, Chatrath et al. (2015) forecast volatility using the risk-neutral second and third moment, Prokopczuk et al.
2017) study the variance risk present in the commodity markets, Ruan and Zhang (2018) look at the second and third risk-neutral
oments in the crude oil market at the daily frequency, Gagnon and Power (2020) utilise the risk-neutral moments to investigate

rude oil market integration and spillovers between the Brent and West Texas Intermediate (WTI) and Indriawan et al. (2020)
nvestigate the semi-variance moments on oil, gas, gold and silver ETFs.

An area coming more recently into focus involves the tails of the return distribution. There is increasing evidence that the
ajority of the predictability in the variance risk premium, which involves the risk-neutral second order moment, is actually from
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the tails of the variance, in particular the left tail. This is demonstrated in Bollerslev et al. (2015) for the S&P 500 and Andersen
et al. (2021) for the Nikkei 225. In addition, Andersen et al. (2015b, 2020), using daily option data and parametric models that
explicitly account for the tail risk component, find that when the variance risk premium is stripped of the left tail variation, it has
insignificant forecasting power on the U.S. and European indices. Ellwanger (2017) investigates the tail variation in the crude oil
markets at the monthly frequency, and finds the tail variations can partially predict the monthly crude oil futures and spot returns.

Research on high frequency option data is an area that is relatively (compared to the daily frequency) unexplored. There are a
ouple of reasons for this. For example, high frequency, intraday stock returns are subject to considerably more noise than is typically
ound at a lower daily frequency. Adding to this, options have two further dimensions, namely the strike price and time-to-maturity.
hus, moving even from a single asset to the options written on that asset increases the dimensionality of the problem significantly.
aving said that, the use of high frequency option data is not a foreign concept in the literature. For example, Andersen et al. (2015a)
tilise tick-by-tick S&P 500 option data to construct a VIX measure that is more robust to idiosyncratic changes arising from the
ime variant strike range. Griffin and Shams (2018) show using high frequency S&P 500 option data that the VIX is susceptible
o manipulation. Beckmeyer et al. (2019) use high frequency S&P 500 option data to show that the tail variation, extracted from
&P 500 options, also predicts returns in the period just before the Federal Open Market Committee (FOMC) announcements. In
ll of these cases, the insights gained from these works would not be possible without the use of high frequency option data.
o the best of our knowledge, high frequency crude oil option data has not yet been exploited in analysing the relationships
etween the risk-neutral moments and their options’ underlying assets’ returns at high frequency.1 These important relationships

have been extensively studied at the daily frequency in the literature (see, for example, Martens and Zein (2004), Da Fonseca and
Xu (2017), Ruan and Zhang (2018) and Andersen et al. (2021)). Investigating these relationships at high frequency, however, is
by no means straightforward. Indeed, as shown in Aït-Sahalia et al. (2013), even the well-known leverage effect, the empirically
observed negative correlation between an asset’s return and its volatility, is difficult to estimate at high frequency and can have
damaging consequences on the hedging of options if estimated incorrectly. The work of Andersen et al. (2015a) also demonstrates
the correlation of S&P 500 returns with the VIX at high frequency underestimates the leverage effect, further illustrating the difficulty
of obtaining meaningful results when working with high frequency options. These relationships are all-the-more important to look
at high frequency since crude oil options are commonly traded at these high frequencies.

We contribute to the literature by answering the following three research questions. First, can the risk-neutral moments (variance
and third moment), semi-moments (semi-variance and semi-third moment) and tail measures extracted from crude oil options at
high frequency explain or partially explain the high frequency crude oil futures returns? In investigating this, we discover the
relationships of the risk-neutral moments and returns observed at low-frequency (such as daily and monthly) are also preserved at
high frequency. Second, do these results hold even in a cross-asset perspective? That is, can the crude oil (semi-)moments and tail
measures explain or partially explain the S&P 500 futures high frequency returns? Third, does the weak form of the efficient market
hypothesis (EMH) of Fama (1970) holds for both the crude oil futures and S&P 500 futures at high frequency?

To address these questions, we use high frequency crude oil options traded on the NYMEX and extract the higher moments as
defined in Carr and Wu (2009) and Kozhan et al. (2013), and tail measures as defined in Bollerslev et al. (2015). We follow Kilic
and Shaliastovich (2019) and decompose the second moment into semi-variances, while the third moment is decomposed into its
semi-moments as in Da Fonseca and Xu (2017). Using these semi-moments, as well as the tail measures, we show that they can
explain the high frequency crude oil futures returns, as all of the contemporaneous regressions display significant coefficients. We
then show that these semi-moments and tail measures can explain the high frequency crude oil futures returns even with only
partial information. These results when combined with the contemporaneous regression results give evidence that the EMH holds
at high frequency in the crude oil futures. In addition, we look at the difficult case of a cross-asset point of view, where the crude
oil (semi-)moments and tail measures are used to explain the S&P 500 futures returns. This also leads to significant results. Lastly,
we find that the weak form of the EMH of Fama (1970) does indeed hold for both the crude oil futures and S&P 500 futures at high
frequency.

The remainder of this article is presented as follows. In Section 2 we present the methodology behind deriving our higher
order risk-neutral moments, which include the risk-neutral variance, third moment and tail variations. In Section 3 we describe the
dataset used for the analysis and provide a brief description on the risk-neutral moments derived for our dataset. Section 4 studies
the explanatory power of the semi-moments on the crude oil and S&P 500 futures returns through the use of the risk measures. We
conclude in Section 5.

2. Methodology

2.1. Variance

Let (𝛺, ,F,P) be a complete filtered probability space with the filtration F = 𝑡∈[0,𝑇 ] on which we will define any price process
and P the historical probability measure. Assume now that the futures price 𝑓𝑡 evolves according to the following jump diffusion

𝑑𝑓𝑡
𝑓𝑡

= 𝜇𝑡𝑑𝑡 +
√

𝑉𝑡𝑑𝑊𝑡 + ∫R
(𝑒𝑥 − 1)�̃�P

𝐽 (𝑑𝑥, 𝑑𝑡), (1)

1 We are also unaware of any study of that investigates these relationships for the equity index option market at high frequency.
2
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where 𝑊𝑡 is a Wiener process under P, the drift 𝜇𝑡 and instantaneous variance 𝑉𝑡 are assumed to have cádlág paths, but are left
unspecified otherwise, 𝑥 is the size of the jump in the log-price, �̃�P

𝐽 (𝑑𝑥, 𝑑𝑡) ≡ 𝜇(𝑑𝑥, 𝑑𝑡) − 𝜈P𝑡 (𝑑𝑥)𝑑𝑡 is a martingale measure under P,
here 𝜇(𝑑𝑥, 𝑑𝑡) is a counting measure for jumps in 𝑓𝑡 and 𝜈P𝑡 (𝑑𝑥)𝑑𝑡 is its corresponding jump compensator.

The variability of the price over the period [𝑡, 𝑡 + 𝜏] is measured by the quadratic variation which is defined as

𝑄𝑉𝑡,𝜏 = ∫

𝑡+𝜏

𝑡
𝑉𝑠 𝑑𝑠 + ∫

𝑡+𝜏

𝑡 ∫R
𝑥2 𝜇(𝑑𝑥, 𝑑𝑠). (2)

The quantity Eq. (2) is in essence the variance in the price which is contributed by both the diffusive movements in the futures
price and the jumps in the futures price. One way to estimate future expected variance is to construct a financial instrument that
has payout Eq. (2) with no intermediary cash flows. If we are able to do so, then the expected variance of 𝑓𝑡 over the period [𝑡, 𝑡+𝜏]
would be in theory EQ

𝑡 [𝑄𝑉𝑡,𝜏 ], where Q is the equivalent risk-neutral measure. Annualising this security we have

𝑣𝑎𝑟𝑡,𝜏 = 1
𝜏
EQ
𝑡

[

∫

𝑡+𝜏

𝑡
𝑉𝑠 𝑑𝑠 + ∫

𝑡+𝜏

𝑡 ∫R
𝑥2 𝜇(𝑑𝑥, 𝑑𝑠)

]

. (3)

It is well understood in the literature that a trading strategy with payoff Eq. (2) can be approximately replicated with a portfolio of
European call and put options and risk-free interest bearing instruments. Assume there exist European call/put options with time
to maturity 𝜏 and strike price 𝐾 with time 𝑡 price denoted respectively by 𝐶𝑡,𝜏 (𝐾) / 𝑃𝑡,𝜏 (𝐾), and that these options are written on
the futures contract 𝑓𝑡 which expires after the expiration of the options. Further assume that these options trade on a continuum of
strike prices. Then

𝑣𝑎𝑟𝑡,𝜏 ≈ 2𝑒𝑟𝑡,𝜏
𝜏

[

∫

𝐹𝑡,𝜏

0

𝑃𝑡,𝜏 (𝐾)
𝐾2

𝑑𝐾 + ∫

∞

𝐹𝑡,𝜏

𝐶𝑡,𝜏 (𝐾)
𝐾2

𝑑𝐾

]

= 2𝑒𝑟𝑡,𝜏 𝜏

𝜏 ∫

∞

0

𝑀𝑡(𝜏, 𝐾)
𝐾2

𝑑𝐾, (4)

where 𝑟𝑡,𝜏 is the risk free interest over [𝑡, 𝑡+ 𝜏], 𝑀𝑡,𝜏 (𝐾) = min{𝐶𝑡,𝜏 (𝐾), 𝑃𝑡,𝜏 (𝐾)}, and 𝐹𝑡,𝜏 is the time 𝑡 forward price of the underlying
futures contract with maturity 𝑡 + 𝜏.2 A call (put) option is labelled out-of-the-money (OTM) for a specific strike 𝐾 if 𝐾 > 𝐹𝑡,𝜏
(𝐾 < 𝐹𝑡,𝜏 ), at-the-money when 𝐾 = 𝐹𝑡,𝜏 , which is when 𝐶𝑡,𝜏 (𝐹 ) = 𝑃𝑡,𝜏 (𝐹 ), and in-the-money (ITM) if 𝐾 < 𝐹𝑡,𝜏 (𝐾 > 𝐹𝑡,𝜏 ). Since the
forward price 𝐹𝑡,𝜏 can be implied from the put–call parity then Eq. (4) in turn only requires OTM options to be computed. Going
forward, we set

𝑣𝑎𝑟𝐿𝑡,𝜏 = 2𝑒𝑟𝑡,𝜏
𝜏 ∫

𝐹𝑡,𝜏

0

𝑃𝑡,𝜏 (𝐾)
𝐾2

𝑑𝐾, 𝑣𝑎𝑟𝑅𝑡,𝜏 = 2𝑒𝑟𝑡,𝜏
𝜏 ∫

∞

𝐹𝑡,𝜏

𝐶𝑡,𝜏 (𝐾)
𝐾2

𝑑𝐾, (5)

to represent the ‘left’ and ‘right’ semi-moment for the second order risk-neutral moment.3 An important note to recognise is that
since

𝑣𝑎𝑟𝑡,𝜏 = 𝑣𝑎𝑟𝐿𝑡,𝜏 + 𝑣𝑎𝑟𝑅𝑡,𝜏 , (6)

then the aggregated risk-neutral second moment 𝑣𝑎𝑟𝑡,𝜏 could be thought of as a portfolio that is comprised of two components; one
component is long put options 𝑣𝑎𝑟𝐿𝑡,𝜏 , and the other is long call options 𝑣𝑎𝑟𝑅𝑡,𝜏 , and thus the return of 𝑣𝑎𝑟𝑡,𝜏 in Eq. (6) is the sum of
the returns of 𝑣𝑎𝑟𝐿𝑡,𝜏 and 𝑣𝑎𝑟𝑅𝑡,𝜏 .

One of the key problems with Eq. (4) is the requirement of having accurate pricing information for the options on a continuum
of strike prices. This assumption is obviously not met as options do not trade on a continuum of strikes, but rather on a finite set of
actively traded strike prices. This requires the necessary truncation of the strike price range in the calculation of Eq. (4) and leads
naturally to the approximation

𝑣𝑎𝑟𝑡,𝜏 = 2𝑒𝑟𝑡,𝜏
𝜏

𝑁
∑

𝑗=1

𝛥𝐾𝑡,𝑗

𝐾2
𝑡,𝑗

𝑀𝑡,𝜏 (𝐾𝑡,𝑗 ) (7)

= 2𝑒𝑟𝑡,𝜏
𝜏

𝐹
∑

𝑗=1

𝛥𝐾𝑡,𝑗

𝐾2
𝑡,𝑗

𝑃𝑡,𝜏 (𝐾𝑡,𝑗 ) +
2𝑒𝑟𝑡,𝜏
𝜏

𝑁
∑

𝑗=𝐹+1

𝛥𝐾𝑡,𝑗

𝐾2
𝑡,𝑗

𝐶𝑡,𝜏 (𝐾𝑡,𝑗 ) (8)

= 𝑣𝑎𝑟𝐿𝑡,𝜏 + 𝑣𝑎𝑟𝑅𝑡,𝜏 . (9)

Here 𝐾𝑡,𝑗 are the strike prices where we have available information, and 𝐾𝑡,𝐹 is the first available strike price less than the forward
price 𝐹𝑡,𝜏 , i.e., 0 < 𝐾𝑡,1 < ⋯ < 𝐾𝑡,𝐹 < 𝐹𝑡,𝜏 < 𝐾𝑡,𝐹+1 < ⋯ < 𝐾𝑡,𝑁 and 𝛥𝐾𝑡,𝑗 = (𝐾𝑡,𝑗+1 −𝐾𝑡,𝑗−1)∕2.4

The CBOE VIX for the S&P 500 equity index is defined as the square root of the expected variation (in percentage) over the fixed
horizon of 30 calendar days 𝜏𝑀 = 30

365 . The VIX methodology uses two options sets with time to maturities 𝜏1, 𝜏2 which are qualified

2 We acknowledge there is an approximation error in Eq. (4). As noted in Andersen et al. (2021) the r.h.s. of Eq. (4) is equal to 1
𝜏
∫ 𝑡+𝜏
𝑡 EQ

𝑡 [𝑉𝑠] 𝑑𝑠+
2
𝜏
∫ 𝑡+𝜏
𝑡 (𝑒𝑥 −

1 − 𝑥)EQ
𝑡 [𝜈

Q
𝑠 (𝑑𝑥)], which is only equal to 1

𝜏
EQ
𝑡 [𝑄𝑉𝑡,𝜏 ] up to a third order term (in an expansion around zero). However, as outlined in Carr and Wu (2009),

Eq. (4) already provides a very good approximation to the future return variation even when jumps are present, and thus we ignore the approximation error
going forward.

3 The ‘left’ and ‘right’ are used here in relation to the forward price 𝐹 . The ‘left’ semi-moment are the options with strike prices left of the forward price 𝐹
(the put options), and the ‘right’ semi-moment are the options with strike prices right of the forward price 𝐹 (the call options).

4

3

At the boundaries, in-line with the CBOE definition we define 𝛥𝐾𝑡,1 = 𝐾𝑡,2 −𝐾𝑡,1 and 𝛥𝐾𝑡,𝑁 = 𝐾𝑡,𝑁 −𝐾𝑡,𝑁−1.
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as the near-term and far-term, except those with less than 7 calendar days to expiry such that 7
365 < 𝜏1 < 𝜏𝑀 = 30

365 < 𝜏2 and linearly
combines the variances 𝑣𝑎𝑟𝑡,𝜏1 and 𝑣𝑎𝑟𝑡,𝜏2 to obtain an estimate for the expected variance at 𝜏𝑀 . Formally, the CBOE defines the VIX
as

VIX𝑡 = 100

√

[

𝜏1𝑣𝑎𝑟𝑡,𝜏1𝑤1 + 𝜏2𝑣𝑎𝑟𝑡,𝜏2𝑤2

] 1
𝜏𝑀

, (10)

where 𝑤1 = 𝜏2−𝜏𝑀
𝜏2−𝜏1

and 𝑤2 = 𝜏𝑀−𝜏1
𝜏2−𝜏1

such that 𝑤1 + 𝑤2 = 1. Going forward, similar to the VIX methodology, using an annualised

0-day measure for 𝑣𝑎𝑟𝑡,𝜏𝑀 , 𝑣𝑎𝑟𝐿𝑡,𝜏𝑀 and 𝑣𝑎𝑟𝑅𝑡,𝜏𝑀 , we set

𝑣𝑎𝑟𝑡,𝜏𝑀 = 1
𝜏𝑀

[

𝜏1𝑣𝑎𝑟𝑡,𝜏1𝑤1 + 𝜏2𝑣𝑎𝑟𝑡,𝜏2𝑤2

]

, (11)

𝑣𝑎𝑟𝐿𝑡,𝜏𝑀 = 1
𝜏𝑀

[

𝜏1𝑣𝑎𝑟
𝐿
𝑡,𝜏1

𝑤1 + 𝜏2𝑣𝑎𝑟
𝐿
𝑡,𝜏2

𝑤2

]

, (12)

𝑣𝑎𝑟𝑅𝑡,𝜏𝑀 = 1
𝜏𝑀

[

𝜏1𝑣𝑎𝑟
𝑅
𝑡,𝜏1

𝑤1 + 𝜏2𝑣𝑎𝑟
𝑅
𝑡,𝜏2

𝑤2

]

. (13)

The quantities 𝑣𝑎𝑟𝐿𝑡,𝜏𝑀 and 𝑣𝑎𝑟𝑅𝑡,𝜏𝑀 are the contribution to the expected 30-day variance from the put and call options respectively.
As an aside, from the necessary nature of truncating the integral in Eq. (4), prior work has demonstrated this introduces

idiosyncratic changes in the VIX due to the sudden inclusion of OTM options at the boundaries that were previously truncated
from either inactivity, or due to a zero bid price. As highlighted in Andersen et al. (2015a), this can create non-trivial short-lived
deviations that can appear as a ‘jump’ in volatility, but which actually arise from the inclusion of previously dormant options in the
VIX calculation. Andersen et al. (2015a) suggest instead to use a temporally and economically coherent index by using a truncation
method that is not so sensitive to these boundary options, but rather one that captures the main information of the VIX and truncates
these liquidity-sensitive options. However the truncation method used in Andersen et al. (2015a) is a bit troublesome as it requires
both the OTM and ITM options to be actively traded. In our case the ITM options were not liquid enough to enable analysis using
this method. Furthermore, the problem of the inclusion with the previously dormant options is partly mitigated with a flexible
enough choice of the rolling window in the ‘previous tick’ method we describe later. Finally, the crude oil options that we use in
our dataset are more liquid than the S&P 500 options used in Andersen et al. (2015a). By not actively truncating the tail options
it allows us to explore the tail distribution which has been coming more into focus in the recent literature. As such, going forward
we knowingly use these tail options, even though they can create idiosyncratic changes in the second moment, since we intend to
exploit these tail options explicitly later on.

2.2. Third centralised moment

Higher risk-neutral moments of the future’s return distribution have also been explored previously in the literature. Kozhan
et al. (2013) exploit the risk-neutral third moment to study the risk-neutral skew of the S&P 500 market. They demonstrate that the
following portfolio of OTM European call and put options locally approximates the third central moment of returns:5

𝜅𝑡,𝜏 = 6𝑒𝑟𝑡,𝜏
𝜏

[

∫

∞

𝐹𝑡,𝜏

𝐾 − 𝐹𝑡,𝜏

𝐾2𝐹𝑡,𝜏
𝐶𝑡,𝜏 (𝐾)𝑑𝐾 − ∫

𝐹𝑡,𝜏

0

𝐹𝑡,𝜏 −𝐾
𝐾2𝐹𝑡,𝜏

𝑃𝑡,𝜏 (𝐾)𝑑𝐾

]

. (14)

e will also denote the following left and right side of the third moment

𝜅𝑅
𝑡,𝜏 = 6𝑒𝑟𝑡,𝜏

𝜏 ∫

∞

𝐹𝑡,𝜏

𝐾 − 𝐹𝑡,𝜏

𝐾2𝐹𝑡,𝜏
𝐶𝑡,𝜏 (𝐾)𝑑𝐾, 𝜅𝐿𝑡,𝜏 = 6𝑒𝑟𝑡,𝜏

𝜏 ∫

𝐹𝑡,𝜏

0

𝐹𝑡,𝜏 −𝐾
𝐾2𝐹𝑡,𝜏

𝑃𝑡,𝜏 (𝐾)𝑑𝐾, (15)

which are positive by construction, so that

𝜅𝑡,𝜏 = 𝜅𝑅
𝑡,𝜏 − 𝜅𝐿

𝑡,𝜏 . (16)

Hence, using the similar arguments that were used for 𝑣𝑎𝑟𝑡,𝜏 , 𝜅𝑡,𝜏 could be thought of as a portfolio that is comprised of two
components; one component that is long call options 𝜅𝑅

𝑡,𝜏 and the other short put options 𝜅𝐿
𝑡,𝜏 . Then the return of 𝜅𝑡,𝜏 is given

by the difference of the returns from 𝜅𝑅
𝑡,𝜏 and 𝜅𝐿

𝑡,𝜏 .
Similar to the variance, the integral in Eq. (14) requires truncation. This leads us to the following estimators for the third central

moment6

𝜅𝑡,𝜏 = 6𝑒𝑟𝑡,𝜏
𝜏

𝑁
∑

𝑗=𝑓+1
𝛥𝐾𝑡,𝑗

𝐾𝑡,𝑗 − 𝐹𝑡,𝜏

𝐾2
𝑡,𝑗𝐹𝑡,𝜏

𝐶𝑡,𝜏 (𝐾𝑡,𝑗 ) −
6𝑒𝑟𝑡,𝜏
𝜏

𝑓
∑

𝑗=1
𝛥𝐾𝑗

𝐹𝑡,𝜏 −𝐾𝑡,𝑗

𝐾2
𝑡,𝑗𝐹𝑡,𝜏

𝑃𝑡,𝜏 (𝐾𝑡,𝑗 ) (17)

5 Note that the second moment defined in Eq. (4) and third moment in Eq. (14) differ from those defined in Bakshi et al. (2003). Section 1.3 of Kozhan
t al. (2013) explains the advantages of these choices.

6 For both the second moment Eq. (4) and the third moment Eq. (14), the integrals are discretised and no interpolation between the discrete market quotes
re used. There is an abundant literature dealing with alternative approximations of those integrals, see e.g., Byun and Kim (2016) and Hollstein and Prokopczuk
2016). However, section A.2.3 of Kozhan et al. (2013) shows that more refined approximations of those integrals, in particular using splines, do not significantly
4

hange the results.
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= 𝜅𝑅
𝑡,𝜏 − 𝜅𝐿

𝑡,𝜏 . (18)

As an aside, if we normalise the third moment 𝜅𝑡,𝜏 by 𝑣𝑎𝑟3∕2𝑡,𝜏 , then we have the implied skewness measure 𝑠𝑘𝑒𝑤𝑡,𝜏 defined as

𝑠𝑘𝑒𝑤𝑡,𝜏 =
𝜅𝑡,𝜏

𝑣𝑎𝑟3∕2𝑡,𝜏

, (19)

where the relevant skewness estimator of Kozhan et al. (2013) would be given by

𝑠𝑘𝑒𝑤𝑡,𝜏 =
𝜅𝑅
𝑡,𝜏

𝑣𝑎𝑟3∕2𝑡,𝜏

−
𝜅𝐿
𝑡,𝜏

𝑣𝑎𝑟3∕2𝑡,𝜏

. (20)

In this article we only study the third moment. Using a similar approach to the CBOE’s VIX methodology, we look at the third
central moment of returns along with their ‘left’ and ‘right’ components over thirty calendar days, (i.e., 𝜅𝑡,𝜏𝑀 , 𝜅𝐿

𝑡,𝜏𝑀
and 𝜅𝑅

𝑡,𝜏𝑀
) and

o this through linear interpolation of the near and far terms of the option maturities. As such we set our estimators as

𝜅𝑡,𝜏𝑀 = 1
𝜏𝑀

[

𝜏1𝜅𝑡,𝜏1𝑤1 + 𝜏2𝜅𝑡,𝜏2𝑤2

]

, (21)

𝜅𝐿
𝑡,𝜏𝑀

= 1
𝜏𝑀

[

𝜏1𝜅
𝐿
𝑡,𝜏1

𝑤1 + 𝜏2𝜅
𝐿
𝑡,𝜏2

𝑤2

]

, (22)

𝜅𝑅
𝑡,𝜏𝑀

= 1
𝜏𝑀

[

𝜏1𝜅
𝑅
𝑡,𝜏1

𝑤1 + 𝜏2𝜅
𝑅
𝑡,𝜏2

𝑤2

]

, (23)

where again 𝑤1 =
𝜏2−𝜏𝑀
𝜏2−𝜏1

and 𝑤2 =
𝜏𝑀−𝜏1
𝜏2−𝜏1

such that 𝑤1 +𝑤2 = 1.

.3. Tail risk

An increasingly important area of study is the risk of extreme tail movements. This area has recently been put under focus as the
ail risk appears to have strong predictability power, and perhaps even consumes most of the predictability power that is available
rom the variance risk premium. We aim to utilise these tail risk measures for the crude oil market, and we are, to the best of our
nowledge, the first to study the tail risk variations in the crude oil markets.

The following subsection definitions and results are based on the work of Bollerslev et al. (2015). We define the left and right
isk-neutral jump variation over the period [𝑡, 𝑡 + 𝜏] by

𝐿𝐽𝑉 Q
𝑡,𝜏 = ∫

𝑡+𝜏

𝑡 ∫𝑥<−𝑞𝑡
𝑥2𝜈Q𝑢 (𝑑𝑥)𝑑𝑢, 𝑅𝐽𝑉 Q

𝑡,𝜏 = ∫

𝑡+𝜏

𝑡 ∫𝑥>𝑞𝑡
𝑥2𝜈Q𝑢 (𝑑𝑥)𝑑𝑢, (24)

where 𝑞𝑡 > 0 is a chosen time-varying cutoff for the log-jump size. We define the risk measures 𝐿𝐽𝑉 and 𝑅𝐽𝑉 as the expectation
f the quantities in Eq. (24)

𝐿𝐽𝑉𝑡,𝜏 = 1
𝜏
EQ[𝐿𝐽𝑉 Q

𝑡,𝜏 ], 𝑅𝐽𝑉𝑡,𝜏 = 1
𝜏
EQ[𝑅𝐽𝑉 Q

𝑡,𝜏 ]. (25)

The tail variations 𝐿𝐽𝑉 and 𝑅𝐽𝑉 represent the contribution to the variance 𝑣𝑎𝑟 that is only from extreme (tail) price jump risk.
As shown in Bollerslev and Todorov (2014), we can obtain estimators for EQ

𝑡 [𝐿𝐽𝑉
Q
𝑡,𝜏 ] and EQ

𝑡 [𝑅𝐽𝑉
Q
𝑡,𝜏 ] solely from option data.

urthermore, taking the difference between 𝐿𝐽𝑉 and 𝑅𝐽𝑉 leads us to

𝐿𝐽𝑉𝑡,𝜏 − 𝑅𝐽𝑉𝑡,𝜏 = 1
𝜏

(

EQ
𝑡 [𝐿𝐽𝑉

Q
𝑡,𝜏 ] − EQ

𝑡 [𝑅𝐽𝑉
Q
𝑡,𝜏 ]

)

. (26)

This difference represents the excess risk investors place that is attributed to the possibility of abrupt negative price movements
over the possibility of abrupt positive price movements. It can be interpreted as the pricing of negative tail events, or as argued
in Bollerslev et al. (2015) as a proxy of fear in the markets. Similar to before, the difference could be thought of as a portfolio
comprised of the two components that are long in 𝐿𝐽𝑉𝑡,𝜏 and short in 𝑅𝐽𝑉𝑡,𝜏 , and hence the returns of 𝐿𝐽𝑉𝑡,𝜏 − 𝑅𝐽𝑉𝑡,𝜏 in Eq. (26)
are given by the difference in returns from 𝐿𝐽𝑉𝑡,𝜏 and 𝑅𝐽𝑉𝑡,𝜏 .

The estimation of EQ[𝐿𝐽𝑉 Q
𝑡,𝜏 ] and EQ[𝑅𝐽𝑉 Q

𝑡,𝜏 ] is done following Bollerslev and Todorov (2014). They impose a general
specification on the (extreme) risk-neutral jump intensity process, from which they are able to estimate the Q jump tail measures
based on this specification. Suppose that the extreme jumps follow the specification

𝜈Q𝑡 (𝑑𝑥) =
(

𝜙+
𝑡 × 𝑒−𝛼

+
𝑡 𝑥1{𝑥>0} + 𝜙−

𝑡 × 𝑒−𝛼
−
𝑡 |𝑥|1{𝑥<0}

)

. (27)

his specification allows for the left (−) and right (+) jump tails to differ, and is very flexible in that it allows for time-varying level
hifts and shape governed by the parameters 𝜙±

𝑡 and 𝛼±𝑡 respectively, compared to the usual parametric option pricing model which
typically fixes the shape of the jump.

Now let 𝑂𝑡,𝜏 (𝑘) be the price of an OTM option on the futures 𝑓𝑡, with log-moneyness7 𝑘 and time to maturity 𝜏. With specification
Eq. (27), and using the results derived in Bollerslev and Todorov (2011, 2014), we have the following approximations for short dated

7 Log-moneyness for an option with strike price 𝐾 and forward price 𝐹 is defined as 𝑘 = ln(𝐾∕𝐹 ).
5
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𝑂𝑡,𝜏 (𝑘) ≈

⎧

⎪

⎨

⎪

⎩

𝜏𝑒−𝑟𝑡,𝜏𝐹𝑡,𝜏𝜙−
𝑡

𝑒𝑘(1+𝛼
−
𝑡 )

𝛼−𝑡 (𝛼
−
𝑡 +1)

, 𝑘 < 0,

𝜏𝑒−𝑟𝑡,𝜏𝐹𝑡,𝜏𝜙+
𝑡

𝑒𝑘(1−𝛼
+
𝑡 )

𝛼+𝑡 (𝛼
+
𝑡 −1)

, 𝑘 > 0.
(28)

tilising the approximations in Eq. (28), we obtain estimates of 𝛼±𝑡 and 𝜙±
𝑡 through the following optimisation problems

𝛼±𝑡 = arg min
𝛼±

1
𝑁±

𝑡

𝑁±
𝑡

∑

𝑗=1

|

|

|

|

|

ln
( 𝑂𝑡,𝜏 (𝑘𝑡,𝑗 )
𝑂𝑡,𝜏 (𝑘𝑡,𝑗−1)

)

(𝑘𝑡,𝑗 − 𝑘𝑡,𝑗−1)−1 −
(

1 ± (−𝛼±)
)

|

|

|

|

|

, (29)

𝜙±
𝑡 = arg min

𝜙±

1
𝑁±

𝑡

𝑁±
𝑡

∑

𝑗=1

|

|

|

|

|

ln
( 𝑒𝑟𝑡,𝜏𝑂𝑡,𝜏 (𝑘𝑡,𝑗 )

𝜏𝐹𝑡,𝜏

)

−
(

1 − ∓𝛼±𝑡
)

𝑘𝑡,𝑗 + ln
(

𝛼±𝑡 ∓ 1
)

+ ln
(

𝛼±𝑡
)

− ln(𝜙±)
|

|

|

|

|

, (30)

where 𝑁±
𝑡 is the total number of calls (puts) used in the estimation with log-moneyness 0 < 𝑘𝑡,1 < ⋯ 𝑘𝑡,𝑁+

𝑡
(0 < −𝑘𝑡,1 < ⋯ < −𝑘𝑡,𝑁−

𝑡
).

Then we have

EQ
𝑡 [𝐿𝐽𝑉

Q
𝑡,𝜏 ] = 𝜏𝜙−

𝑡 𝑒
−𝛼−𝑡 |𝑞𝑡|(𝛼−𝑡 𝑞𝑡(𝛼

−
𝑡 𝑞𝑡 + 2) + 2)∕(𝛼−𝑡 )

3, (31)

EQ
𝑡 [𝑅𝐽𝑉

Q
𝑡,𝜏 ] = 𝜏𝜙+

𝑡 𝑒
−𝛼+𝑡 |𝑞𝑡|(𝛼+𝑡 𝑞𝑡(𝛼

+
𝑡 𝑞𝑡 + 2) + 2)∕(𝛼+𝑡 )

3. (32)

For the estimation procedure of the tail parameters 𝛼±𝑡 and 𝜙±
𝑡 we rely on the use of deep OTM options. This is done through

filtering out options that are relatively close to ATM options. Following Bollerslev et al. (2015) and Andersen et al. (2021) we only
use put options with log-moneyness less than −2.5 times the maturity-normalised ATM Black–Scholes implied volatility (BSIV) for
the left-tail parameters and call options with log-moneyness in excess of the maturity-normalised BSIV. The choice for a more lenient
cut-off for the call options arises from the fact that the call options in the S&P 500 options are far less liquid in comparison to their
put option counterparts. Although this is not as necessary for the crude oil options due to similar levels of liquidity for the call and
put options, we do this so our methodology falls in line with the previous works of Bollerslev et al. (2015) and Andersen et al.
(2021).8

To minimise the effect of microstructure noise in our estimates of 𝛼±𝑡 and 𝜙±
𝑡 , we only allow 𝛼±𝑡 to change daily and for 𝜙±

𝑡 to
change only every 5-min. Previous works of the authors Bollerslev et al. (2015) and Andersen et al. (2021) work with option data at
a daily frequency where they only allow 𝛼±𝑡 to change weekly and 𝜙±

𝑡 to change daily, and Ellwanger (2017) works with option data
that is pooled into a monthly statistic, and thus their 𝛼±𝑡 and 𝜙±

𝑡 are only allowed to change monthly.9 By utilising data available
at higher frequencies we can allow the tail risk parameters to change more frequently than would otherwise be possible at lower
frequencies.

We mention as an aside that the tail risk measures can be easily worked under the framework of risk premiums. Bollerslev et al.
(2015) and Andersen et al. (2021) work explicitly with risk premiums instead of only the risk neutral tail variation measures. One
key caveat to mention is they do this through the assumption that the realised jump tail risk is symmetric, which in turn leads to
the difference cancelling out the historical measure component. This by consequence means their risk premium is equivalent to the
difference in Eq. (26). Since we do not use risk premiums in this article, and further to this, use an assumption that essentially
cancels out the realised component, we do not delve into the historical component.

3. Data

Our dataset is comprised of tick-by-tick quotes of the monthly WTI crude oil options that trade on the New York Mercantile
Exchange (NYMEX), their underlying monthly WTI crude oil futures, and the S&P 500 futures. The sample covers the period of 1
January 2016 to 31 December 2019, and we restrict the hours of our analysis to 09:30–16:00 Eastern Time (ET) Monday to Friday,
the primary trading hours of the New York Stock Exchange. All data is downloaded from Refinitiv Datascope in the form of best
ask and best bid at the tick-by-tick frequency. For the futures, we are in particular interested in the shortest term maturity available
with more than seven calendar days to maturity. Fig. 1 shows the evolution of the price of the lead-term futures of WTI and S&P
500 index. The four years in our sample contain the crude oil 2014–2016 supply glut noted by the sharp drop in the crude oil price
at the beginning of our sample and the 2018–2019 drop which was spurred by fears of an escalating trade war between the United
States and China.

The WTI options are American style and are written on a WTI futures contract that is deliverable in the next calendar month after
expiration of the crude oil option. While the theory developed in the previous section is derived with European style options, we
instead work with American options on crude oil for the following reasons. First, the American options listed on the NYMEX are by
far the most liquid and actively traded crude oil option. To illustrate the difference in liquidity between the American and European
options, for our data set there was an average daily volume of 74,920 American style contracts traded with an average daily open

8 We did find however having a symmetric cut-off for the call options did not materially change our results.
9 It is important to note that typical parametric models in the literature, including the affine jump diffusion models of Duffie et al. (2000), impose a constant

ail shape parameter 𝛼+
𝑡 = 𝛼−

𝑡 = 𝛼 and that the scale parameters describe both tails identically 𝜙+
𝑡 = 𝜙−

𝑡 . Allowing the parameters to change even weekly affords
6

s a very flexible model even when compared to the most advanced parametric models.
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Fig. 1. Price of the crude oil futures and the S&P 500 futures. Note. Left 𝑦-axis is the price of the crude oil (CL) lead-month futures (blue solid). Right 𝑦-axis is
the price of the S&P 500 (SP) lead month-futures (orange dashed). Prices are plotted over the sample period Jan 1, 2016 to Dec 31, 2019. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

interest of 680,670 contracts per day. In comparison, the European style options (which are also listed on the NYMEX) only had an
average daily volume of 258 contracts traded and an average daily open interest of 12,760 contracts. Since the underlying contract
sizes are the same for both the American and European options, the American style options would embed far more timely and
material information regarding the crude oil prices while their European counterpart’s quotes would be stale. Second, while it is
true that American style options have a pricing premium when compared to their European style counterparts, this premium arises
solely from their early exercise rights. Since we only use OTM options for all the aforementioned metrics, then the benefit of the
early exercise premium will be at a minimum.10 Furthermore, while there are crude oil options that expire weekly traded on the
NYMEX which could then be used to supplement our analysis, we also found them to have insufficient liquidity to work with at
high frequency.

We use all available tick-by-tick quotes except for those with a time-to-maturity of less than 7 days and days that have insufficient
quote activity. We end up with 985 trading days in our sample after discarding 38 trading days due to insufficient quotes on those
days. For our dataset, we have an extensive amount of quotes to work with. On average there are 4.19 (4.10) million OTM put
(call) option quotes per day, and we have in total 4.12 (4.04) billion OTM put (call) option quotes for our entire sample.11

Quote activity varies significantly within the trading day and across moneyness. To highlight quote activity within the trading
ay, Fig. 2 plots the percentage of the total daily OTM option quotes recorded every 5-min for our dataset. Quote activity is slightly
levated at the open, with approximately 2% of the daily quotes arriving every 5-min until 11:30, from which there is a lull in activity
ntil approximately 14:00 in the afternoon. Quote activity spikes at 14:30, which is when Trade at Settlement (TAS) finishes for
he day in the crude oil futures.12 During the 5-min of 14:25–14:30 approximately 3.28% of the daily quotes are recorded, more
han double the daily average of 1.28% being recorded every 5-min. After TAS, the average quote activity is very subdued where
very 5-min only approximately 0.44% of the daily quotes arrive, close to one-third of the daily average. Fig. 3 provides insight
nto quote activity across the options moneyness. Here quote activity is highly concentrated around the ATM options for both the
ear term and far term options. For the near (far) term options 52.9% (44.4%) of the total OTM option quotes are from options
ith moneyness between (0.9, 1.1) and 79.3% (78.2%) of the quotes between the moneyness range (0.75, 1.25). The near term
ptions quotes are more concentrated than their far term counterpart, likely arising from the lower likelihood of the OTM options
ecoming ITM as time-to-maturity is lower.

For our subsequent analysis we begin by splitting the option and futures quotes into 15 s intervals using the ‘previous tick
ethod’, similar to the method employed in Andersen et al. (2015a). The last available quote is used if there is no arrival of a quote

n the 15 s interval. Similar to Andersen et al. (2015a) we limit how far back we use the last available quote to prevent staleness in
ur measures. We further employ some light data cleaning filters to remove any erroneous quotes and outliers. The details of the
ata cleaning procedure are listed in Appendix A. After applying the filters, we have for every 15 s interval an average of 30 (34)

10 It is customary in the literature to convert American options prices to European prices by using the Barone-Adesi and Whaley (1987) approximation. It
ould be of interest to use it and assess the impact of using directly American options in place of the converted European options. We leave this very computer

ntensive question for future work. We would like to thank the anonymous referee for bringing this to our attention.
11 To give an insight into how actively quoted these options are, the equivalent period for the S&P 500 options on the CBOE has an average of 0.90 (0.41)
illion OTM put (call) option quotes per day and in total 876 (406) million OTM put (call) option quotes for the entire sample.
12 TAS is a mechanism employed by NYMEX that allows parties to the futures contract to execute the futures contract within a spread around the current
7

aily settlement price.
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Fig. 2. Average OTM quote activity within the trading day. Note. Percentage of the daily OTM quotes arriving in 5-min intervals. For example, the value of
3.28% at 14:30 means 3.28% of the daily OTM quotes arrived between 14:25–14:30.

Fig. 3. Average OTM quote activity across moneyness. Note. Percentage of daily quotes across moneyness for the near term (solid blue) and far term (dashed
range). Moneyness of the option is defined as 𝐾∕𝐹 , where 𝐾 is the strike price of the option and 𝐹 is the forward price of the underlying asset. Moneyness

is grouped by values of 0.05. For example, the value of 17.6% at 1 for the near term means 17.6% of the daily quotes are from the options with a moneyness
between (0.95, 1).

strikes of OTM put (call) quotes for the near term maturity and an average of 42 (52) strikes of OTM put (call) quotes for the far
term maturity. Lastly, we aggregate our 15 s intervals into 5-min intervals in order to limit the effect of microstructure noise. We
then compute our various risk measures based on the 5-min series.

The higher order risk-neutral moments and their respective semi-moments are displayed in Figs. 4 and 5 respectively, and Table 1
displays summary statistics for them. The variance changes substantially over time, as evidenced by the elevated state in 2016 and
then a subdued state in 2017 to late 2018, with the 75th percentile being 0.1574 while the maximum is 0.7586. Standard deviation
is large as well, being 0.0891, while the mean is 0.1303. Globally, the third central moment 𝜅 is negative on average with a mean
f −0.0079 and the 75th percentile being negative at −0.0018. The third central moment 𝜅 is also negatively skewed, and contains
eptokurtic tails with a kurtosis of 8.1555. The difference in the left and right jump variations is positive on average with a mean of
.0315 and the 25th percentile at 0.0140. The difference is positively skewed and similar to the third moment, and contains heavy
ails with a kurtosis of 9.6055.

The left and right semi-moments are very similar in shape. The left semi-moment is larger in scale than the corresponding
ight semi-moment for all the variables, indicating the left semi-moment is the main contributor to the aggregated higher order
isk-neutral moments. This is more or less confirmed in Table 1, where each of the left semi-moments have higher means, quantiles
nd standard deviations than their corresponding right semi-moments. The tail measure 𝐿𝐽𝑉 mean of 0.0052 is larger than the
𝐽𝑉 mean of 0.0026 by a factor of two. This is in contrast to the results found in Bollerslev et al. (2015) and Andersen et al. (2021)
here they found respectively that for the S&P 500 and Japanese equity markets the left tail variation 𝐿𝐽𝑉 is about ten times larger
8
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Fig. 4. Risk measures. Note. Each panel displays the higher order risk-neutral moments over the sample period Jan 1, 2016 to Dec 31, 2019. The top panel
isplays the 30-day expected variance 𝑣𝑎𝑟 from Eq. (11). The middle panel displays the third central moment 𝜅 from Eq. (21). The bottom panel displays the

difference between the left jump variation and right jump variation from Eq. (26).

Table 1
Summary statistics for the level higher order risk-neutral moments and their semi-moments.

Mean Std.dev. Skewness Kurtosis Min Q1 Q2 Q3 Max

𝐿𝐽𝑉 − 𝑅𝐽𝑉 0.0315 0.0263 2.4457 9.6055 −0.0542 0.0140 0.0250 0.0400 0.2475
𝑣𝑎𝑟 0.1303 0.0891 2.5777 8.7882 0.0281 0.0751 0.0984 0.1574 0.7586
𝜅 −0.0079 0.0094 −2.4164 8.1555 −0.0839 −0.0099 −0.0053 −0.0018 0.0275
𝐿𝐽𝑉 0.0052 0.0036 2.5046 8.2085 0.0014 0.0028 0.0040 0.0062 0.0299
𝑅𝐽𝑉 0.0026 0.0020 3.4481 16.0279 0.0006 0.0015 0.0019 0.0028 0.0201
𝑣𝑎𝑟𝐿 0.0756 0.0526 2.4494 8.5727 0.0153 0.0416 0.0580 0.0923 0.4528
𝑣𝑎𝑟𝑅 0.0552 0.0366 2.6130 9.1577 0.0124 0.0332 0.0422 0.0666 0.3385
𝜅𝐿 0.0016 0.0018 3.3733 15.0954 0.0001 0.0006 0.0010 0.0019 0.0162
𝜅𝑅 0.0009 0.0011 3.8950 19.7896 0.0001 0.0004 0.0006 0.0010 0.0110

Note. The table presents the mean, standard deviation, skewness, kurtosis and the quantiles for the level higher order risk-neutral moments and their semi-moments.

than the right tail variation 𝑅𝐽𝑉 , which allows them to safely ignore the right tail for their analyses. Our results indicate that the
ight tail is as important as the left tail in the crude oil markets, and cannot be ignored. Our results are also inline with the analysis
one in Ellwanger (2017), where they also found the mean for the 𝐿𝐽𝑉 is roughly twice as large as the mean for the 𝑅𝐽𝑉 when

analysing the crude oil market over the years 1989–2013 at a monthly frequency. Interestingly, the author in Ellwanger (2017)
provides evidence that the tail variation historical measures can be safely ignored for the crude oil market when working with
risk premia, as they are approximately 100 times smaller than their risk-neutral counterparts. These results suggest the crude oil
market is more concerned (relatively speaking) about tail price increases compared to the S&P 500 market, which can be potentially
explained by the fact that consumers of crude oil care about price increases almost as much as price decreases, where the S&P 500
market tends to be more concerned with extreme price decreases than increases. It is also interesting that the kurtosis for the right
semi-moment is larger than its left counterpart, indicating the right semi-moment is more heavy tailed than the left semi-moment.
9
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Fig. 5. Higher order semi-moments. Note. Each panel displays the higher order risk-neutral semi-moment over the sample period of Jan 1, 2016 to Dec 31,
019. The top panel displays the left and right semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 from Eqs. (12)–(13). The middle panel displays the left and

right semi-moments of the third moment 𝜅𝐿 and 𝜅𝑅 from Eqs. (22)–(23). The bottom panel displays the left and right jump variations 𝐿𝐽𝑉 and 𝑅𝐽𝑉 from
qs. (31)–(32).

. Regressions

In this section we aim to explain the high frequency, intraday crude oil and S&P 500 futures returns through the use of our
vailable high frequency risk-neutral semi-moments. The literature has demonstrated that the use of risk-neutral moments (through
isk premiums) are able to partly explain the excess returns of equity indexes at lower frequencies, such as daily and monthly (see,
or example, Carr and Wu (2009), Kozhan et al. (2013), Da Fonseca and Xu (2017) and Kilic and Shaliastovich (2019)). These
tudies were conducted using daily data, which are then used to explain the futures excess returns over a monthly horizon.

Here we adjust the methodology of the previous works in the literature in order to explain high frequency futures returns. The
se of the risk premium framework is untenable in our situation. The realised component requires the entire month of futures
eturns, which is unavailable when we are trying to explain the very same intraday returns. Since the risk neutral semi-moments
re available to us at these high frequencies, we instead focus our efforts on extracting the information embedded in these moments.
10
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As a means to this end, we utilise the commonly used regression:
1
ℎ̄2

𝑌 𝑗
𝑡,𝑡+ℎ2

= 𝛾0(ℎ1, ℎ2)𝑗 + 𝛾1(ℎ1, ℎ2)𝑗𝑟(𝑡, ℎ1) + 𝑢𝑗𝑡,𝑡+ℎ2 , 𝑡 = 1,… , 𝑇 𝑗 , (33)

where 𝑗 is either the crude oil or S&P 500 futures, 𝑡 refers to the specific 5-min period we are inspecting, ℎ is the number of 5-min
periods (i.e., ℎ1 = 1 means 5-min), 𝑌𝑡,𝑡+ℎ2 = ln(𝑓𝑡+ℎ2 ) − ln(𝑓𝑡) are the log returns of the relevant futures over the period [𝑡, 𝑡 + ℎ2]
which are annualised by the scaling factor ℎ̄2 =

ℎ2
288×365 and 𝑟(𝑡, ℎ1)𝑡 are the log differences of the explanatory variable  over the

period [𝑡, 𝑡+ ℎ1] that overlaps with our regression interval (i.e., 0 < ℎ1 ≤ ℎ2). Concretely, the log difference13 𝑟(𝑡, ℎ1) is defined by

𝑟(𝑡, ℎ1) = ln(𝑡+ℎ1 ) − ln(𝑡), (34)

where 𝑡 is the explanatory variable of interest at time 𝑡, for example, such as the variables 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅, the left and right
semi-moments of the variance.14 We restrict our regressions to intraday to remove any potential overnight effects. To account for
overlap, we rely on the regular heteroskedasticity and autocorrelation robust (HAR) 𝑡-statistic of Newey and West (1987) with a
lag of 2ℎ1, consistent with the approach of Bollerslev et al. (2015) and Andersen et al. (2021). We first look at contemporaneous
regressions by setting ℎ1 = ℎ2, and then subsequently at the case of explaining the futures returns with partial information through
setting ℎ1 < ℎ2.

Since we have built higher order risk-neutral measures and even decomposed them into their semi-measures, we intend to use
these measures to see the extent to which these factors can explain the returns of the crude oil futures similar to what has been done
in the literature. An important note to recognise regarding the studies from Carr and Wu (2009), Kozhan et al. (2013), Bollerslev
et al. (2015) and Andersen et al. (2021) is that the authors use a return to explain the returns of the futures. Carr and Wu (2009)
and Kozhan et al. (2013) use precisely a return through the construction of synthetic swaps in the S&P 500 market and Da Fonseca
and Xu (2017) do the same for the crude oil markets at the daily frequency (see, for example, Eq.(9) from Carr and Wu (2009),
Eq.(29)-(30) from Kozhan et al. (2013) and Eq.(15)-(16) from Kilic and Shaliastovich (2019) for further details). The tail risk
premiums are similar to a return in the sense that they ‘long’ the risk-neutral option portfolio and ‘short’ the realised component.
Since our dataset affords us the ability to calculate the higher order risk-neutral moments at high frequencies, it is natural to consider
explaining the returns of the high frequency futures with the log differences on our high frequency risk-neutral moments.

Our main explanatory variables of choice are the higher order crude oil risk-neutral semi-moments. This is done primarily to
isolate the effects from either the put or call options and to see whether the left or right semi-moments of the higher order moments
are more important in explaining the futures returns at these higher frequencies. Moreover, by using the semi-moments we are able
to utilise the deeper information available within them, over the aggregated risk-neutral moments.15

To demonstrate the benefit of the semi-moments, we also create a synthetic series of the aggregated higher order moment log
differences for comparison. Since the risk-neutral third central moment and difference between the left and right jump variations
can be positive or negative, as seen in Fig. 4, creating a series of log differences with them directly is not possible. As such, we
create these differences by utilising the portfolio component argument laid forth in Section 2. We label these synthetic series of
differences as the synthetic tail variation difference (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′, the synthetic variance 𝑣𝑎𝑟′, and the synthetic third central
moment 𝜅′, and they are created by appropriately summing or differencing the differences of the individual semi-moments laid out
by the relationships defined in Eqs. (6), (16) and (26). Formally, the log differences of (𝐿𝐽𝑉 −𝑅𝐽𝑉 )′, 𝑣𝑎𝑟′, and 𝜅′ over the period
[𝑡, 𝑡 + ℎ1] are given by

𝑟((𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′𝑡 , ℎ1) =
[

ln(𝐿𝐽𝑉 𝐿
𝑡+ℎ1

) − ln(𝐿𝐽𝑉 𝐿
𝑡 )

]

−
[

ln(𝑅𝐽𝑉 𝑅
𝑡+ℎ1

) − ln(𝑅𝐽𝑉 𝑅
𝑡 )

]

, (35)

𝑟(𝑣𝑎𝑟′𝑡 , ℎ1) =
[

ln(𝑣𝑎𝑟𝐿𝑡+ℎ1 ) − ln(𝑣𝑎𝑟𝐿𝑡 )
]

+
[

ln(𝑣𝑎𝑟𝑅𝑡+ℎ1 ) − ln(𝑣𝑎𝑟𝑅𝑡 )
]

, (36)

𝑟(𝜅′
𝑡 , ℎ1) =

[

ln(𝜅𝑅
𝑡+ℎ1

) − ln(𝜅𝑅
𝑡 )

]

−
[

ln(𝜅𝐿
𝑡+ℎ1

) − ln(𝜅𝐿
𝑡 )
]

. (37)

able 2 presents the correlations between the explanatory variables when the log difference is taken at 15-min (i.e., ℎ1 = 3).16 The
orrelations between explanatory variables are generally weak. The correlation between 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 is −0.82, which is reasonably

strong but somewhat expected given the inverse relationship between 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 relative to the futures price. However, this
correlation indicates multicollinearity will not be an issue if we use both 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 as a pair of explanatory variables in a
regression. All of the correlations suggest none of the explanatory variables will have multicollinearity issues if we were to pair
them, even when using unnatural pairs such as 𝑅𝐽𝑉 and (𝐿𝐽𝑉 −𝑅𝐽𝑉 )′ at −0.85, which is the difference between the log-differences
of 𝐿𝐽𝑉 and 𝑅𝐽𝑉 .

13 The terminology of using log difference is used to alleviate any confusion on the concept of financial returns. While the explanatory variables of choice
the risk-neutral moments) in this paper are portfolios of options, and thus are tradeable instruments, we have decided to use log difference to make it clear
e are interested in the relative change in the value of this portfolio. We would like to thank the anonymous referee in providing this suggestion.
14 The norm in the literature is to work with excess returns, which is the excess of the log return less the risk-free rate. As our horizon is over short periods

i.e., up to an hour) the risk-free return over such a small period is effectively zero. In either case, the log returns on the futures are equivalent to the excess
eturns on the spot (as the initial cost of the futures is zero).
15 We also considered using the level higher order risk neutral moments. The level higher order moments had no explanatory power and the coefficients from

he univariate regression were not statistically significant at the 10% level on a forecasting horizon of 15, 30 and 60 min. For brevity, we omit these results,
ut they are available upon request.
16 The correlations of the explanatory variables at the other log-difference intervals (e.g., when ℎ1 = 1) are quantitatively similar. These results are available
pon request.
11



Journal of Commodity Markets 31 (2023) 100331P. Wong

p

s
(
t
(

p

Table 2
Correlations of the log differences of the higher order risk-neutral semi-moments and synthetic aggregated moments.

𝐿𝐽𝑉 𝑅𝐽𝑉 𝑣𝑎𝑟𝐿 𝑣𝑎𝑟𝑅 𝜅𝐿 𝜅𝑅 (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ 𝑣𝑎𝑟′ 𝜅′

𝐿𝐽𝑉 1
𝑅𝐽𝑉 0.17 1
𝑣𝑎𝑟𝐿 −0.19 −0.27 1
𝑣𝑎𝑟𝑅 0.36 0.37 −0.82 1
𝜅𝐿 0.28 0.10 0.34 0.17 1
𝜅𝑅 0.22 0.19 0.27 0.24 0.66 1
(𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ 0.37 −0.85 0.15 −0.16 0.06 −0.06 1
𝑣𝑎𝑟′ 0.37 0.28 −0.08 0.63 0.76 0.79 −0.07 1
𝜅′ −0.09 0.11 −0.09 0.07 −0.44 0.38 −0.15 0.00 1

Note. The table presents the correlations of the log differences of the higher order risk-neutral semi-moments defined by Eq.
(34), including the left and right tail jump variations 𝐿𝐽𝑉 and 𝑅𝐽𝑉 , the left and right variances 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅, the left and
right third central moment 𝜅𝐿 and 𝜅𝑅 and the synthetic tail variation difference (𝐿𝐽𝑉 −𝑅𝐽𝑉 )′, the synthetic variance 𝑣𝑎𝑟′ and
the synthetic third central moment 𝜅′ defined respectively by Eqs. (35), (36) and (37) when ℎ1 = 3 (15-min).

4.1. Explaining crude oil futures returns

In this subsection we aim to explain the returns of the crude oil futures using the risk-neutral semi-moments. We follow the
extensive literature including Carr and Wu (2009), Kozhan et al. (2013), Da Fonseca and Xu (2017) and others in that we conduct
contemporaneous regressions by setting ℎ1 = ℎ2 in Eq. (33). It gives us a mechanism to investigate how the intraday futures returns
are generated.

Tables 3 and 4 conduct contemporaneous regressions at 5 and 60 min on the crude oil futures returns respectively.17 The results
are quite compelling in that the higher order risk-neutral semi-moments are able to reasonably explain the crude oil futures returns
at all the time intervals considered. Globally speaking, the semi-moments for 𝑣𝑎𝑟 and third moment 𝜅 have more explanatory power
over the futures returns than the tail risk variation measures. At both time intervals, the coefficients of the semi-moments are always
negative and highly significant for all variables. The negative sign of the left and right semi-moments of the variance aligns closely
with the leverage effect observed in the crude oil markets (Kang et al., 2020). When the variance increases (decreases) then both
the crude oil futures decrease (increase) on average. The negative signs on the jump variations align with the previous findings
in Bollerslev et al. (2015) and Andersen et al. (2021) which means futures are priced higher when the perceived risk of a tail
movement in either direction is lower. Furthermore, in all but one case (at 5-min for the third moment) the coefficients of the left
semi-moment of the risk measure are larger (in absolute terms) then the corresponding right semi-moment of the risk measure,
suggesting the left semi-moment carries more information than its corresponding right semi-moment.

The difference in explanatory power between the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′, and (𝐿𝐽𝑉 −𝑅𝐽𝑉 )′ and their semi-moments
is also interesting. In each case, the synthetic series did not perform as well as the equivalent semi-moment regression seen through
lower adjusted 𝑅2’s, clearly underlining the benefit of decomposing the aggregated risk-neutral moments into their semi-moments.
The difference in performance is potentially attributed to the fact that by splitting the moments into their respective semi-moments,
it allows the more prevalent information in the regression to be highlighted rather than being lost due to aggregation.

Through the utilisation of our high frequency dataset, we were able to show that the information embedded in high frequency
options contains strong explanatory power over the futures returns. Through creating variables with the log differences of the high
frequency higher order risk-neutral moments, we demonstrated that these log differences were able to partly explain the crude oil
futures returns, and it does highlight that even at intraday frequencies, there is some sort of leverage effect present.18 Recovering
the leverage effect at high frequency is important as obtaining estimates of leverage at high frequency is notoriously difficult (see
for example Aït-Sahalia et al. (2013)). Failing to account for the leverage effect can lead to an incorrect hedging ratio for options
as shown in Eq.(21) of Bakshi et al. (1997). These questions are all the more important for crude oil options as they are commonly
traded at high frequency.

4.2. Explaining crude oil futures returns with partial information

In this subsection we investigate the problem of now explaining the crude oil futures returns but with only partial information,
instead of contemporaneous information through the setting of ℎ1 < ℎ2.19 Specifically, the following regressions are set up so that we

17 We also conducted these contemporaneous regressions at other time intervals of interest. The results at these time intervals are similar to the results
resented, and hence we omit these regressions.
18 The leverage effect is the description given to the phenomena observed in the equity markets where volatility in a share tends to increase inversely to its

hare price with the common interpretation that a company’s leverage increases as a proportion of the company’s equity (see Black (1976) and Aït-Sahalia et al.
2013) for further details). Different economic interpretations of the leverage effect present in the commodity markets have been explained through different
heories, and for more details we refer the interested reader to Ng and Pirrong (1994), Basak and Pavlova (2016), Chiarella et al. (2016), Baur and Dimpfl
2018), Kang et al. (2020) and their references within for further details. We would like to thank the anonymous referee for bringing this to our attention.
19 We rely on regressions with partial information because when there is no overlapping, which is commonly called prediction, the results were extremely
oor.
12
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Table 3
Regression results for 5-min crude oil futures returns using contemporaneous log differences of the risk measures.

(1) (2) (3) (4) (5) (6)

Const. −0.06 −0.06 −1.37∗∗ −0.96 −0.73 0.02
(−0.09) (−0.09) (−2.41) (−1.63) (−1.22) (0.04)

𝐿𝐽𝑉 −83.06∗∗∗

(−7.89)
𝑅𝐽𝑉 −53.69∗∗∗

(−7.37)
(𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ 18.08∗∗∗

(3.02)
𝑣𝑎𝑟𝐿 −6185.28∗∗∗

(−37.81)
𝑣𝑎𝑟𝑅 −4661.56∗∗∗

(−38.52)
𝑣𝑎𝑟′ −3628.58∗∗∗

(−42.03)
𝜅𝐿 −929.65∗∗∗

(−5.13)
𝜅𝑅 −6065.01∗∗∗

(−20.49)
𝜅′ −2138.42∗∗∗

(−15.33)
Adj. 𝑅2 (%) 0.4 0.0 19.4 12.9 19.6 2.3

Note. This table reports contemporaneous regressions for the 5-min log returns on the crude oil futures using the log differences
of the higher order risk-neutral semi-moments which is the log difference of the variable at 𝑡+ℎ1 less the variable at 𝑡, formally
defined by Eq. (34) and the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′ and (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ defined respectively by Eqs. (36), (37) and
(35). Columns (1) and (2) display the results for the left and right components of the tail jump variation 𝐿𝐽𝑉 and 𝑅𝐽𝑉 and
the synthetic tail variation difference (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ respectively. Columns (3) and (4) display the results for the left and right
semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 and the synthetic variance 𝑣𝑎𝑟′ respectively. Columns (5) and (6) display the
returns for the left and right semi-moments of the third central moment 𝜅𝐿 and 𝜅𝑅 and the synthetic third central moment
𝜅′ respectively. The constant and slope coefficients are reported with the regular heteroskedasticity and autocorrelation robust
(HAR) 𝑡-statistic of Newey and West (1987) with a lag of 2 in parenthesis below. Adjusted 𝑅2 is reported in percentage form.
The symbol *** indicates significance at 𝑝 < 0.01, ** indicates significance at 𝑝 < 0.05 and * indicates significance at 𝑝 < 0.1.

ary ℎ1 = 1,… , 4 between 5-min to 20-min, and we set ℎ2 = 12 to be one hour.20 Since the overlapping period does not cover the full
nterval (unlike the contemporaneous regressions of the previous section) the regressions will in effect weaken the signal to noise
f our explanatory variable due to less information being available, with less becoming available as ℎ1 decreases. The following
nalysis only uses the higher order semi-moments.21 We conducted similar regressions with the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′

nd (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′, but we found that, similar to the contemporaneous regressions, the semi-moments perform uniformly better,
nd hence we omit them.

Table 5 contains regressions with partial information for the hourly returns of the crude oil futures matched with the log
ifferences of the semi-higher order risk neutral moments. The top panel contains the regression from the log differences of the
eft and right jump variations from Eq. (31)–(32). The coefficients estimated are all negative with significance at the 1% level. The
egative coefficient implies that when there is a decrease (increase) in the expected jump variation, crude oil returns are expected to
ncrease (decrease). This result is consistent with the equity markets when studied at a daily frequency (see Bollerslev et al. (2015)
nd Andersen et al. (2021)) and is consistent with the leverage effect. The coefficient for the log differences on the 𝐿𝐽𝑉 is larger
in absolute terms) and is more significant than the log differences of the 𝑅𝐽𝑉 . This indicates that, similar to the equity markets,
he left tail of extreme returns are more significant than the right tails (i.e., market participants demand greater compensation for
xtreme drops in the price, but not as much for extreme increases). These results are quite strong considering they are in line with
he what is found in Andersen et al. (2021) when the forecasting period is 3-months or less, even though high frequency returns
re much more noisy and difficult to explain than monthly returns. Further to this, the coefficients remain statistically significant
t the 1% level across all periods considered here, where the coefficients in Andersen et al. (2021) are significant at the 5% level
ypically.

The middle and bottom panel of Table 5 contain regressions for the hourly returns of the crude oil futures with partial information
xplained by the semi-moments of the variance 𝑣𝑎𝑟 and third moment 𝜅 respectively. The coefficients of the semi-moments for the
ariance and third moment are both highly significant and deeply negative for all periods considered. Similar to the jump variations,
he signs of the coefficients are negative, implying that the crude oil futures tend to increase (decrease) when the variance decreases
increases), echoing the notion that market participants invest when perceived risk is lower. The coefficient of the left variance

20 We also conducted the regressions with partial information when we fix ℎ1 = 1 (5-min) and vary ℎ2 = 3, 6, 12, 24. These results are available in the Online
Supplementary Appendix in Section B.1.

21 We performed the same regressions with partial information on the second and third moments detailed in Bakshi et al. (2003), which differs in construction
to that in Eqs. (4) and (14) as a form of a robustness check. We found the regressions with partial information are robust to the construction of the second and
13

third moments and provide almost identical results. These results are provided in the Online Supplementary Appendix in Section B.2.
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Table 4
Regression results for 60-min crude oil futures returns using contemporaneous log differences of the risk measures.

(1) (2) (3) (4) (5) (6)

Const. −0.03 0.02 −1.06 −0.95∗ −0.71 −0.13
(−0.06) (0.03) (−1.83) (−1.64) (−1.27) (−0.20)

𝐿𝐽𝑉 −143.79∗∗∗

(−17.18)
𝑅𝐽𝑉 −21.29∗∗∗

(−7.80)
(𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ −20.87∗∗∗

(−7.76)
𝑣𝑎𝑟𝐿 −552.93∗∗∗

(−27.54)
𝑣𝑎𝑟𝑅 −394.54∗∗∗

(−24.19)
𝑣𝑎𝑟′ −442.16∗∗∗

(−25.68)
𝜅𝐿 −531.13∗∗∗

(−21.91)
𝜅𝑅 −118.78∗∗∗

(−3.65)
𝜅′ 259.33∗∗∗

(9.61)
Adj. 𝑅2 (%) 5.8 0.3 23.8 21.6 23.5 2.3

Note. This table reports contemporaneous regressions for the 60-min log returns on the crude oil futures using the log differences
of the higher order risk-neutral semi-moments which is the log difference of the variable at 𝑡+ℎ1 less the variable at 𝑡, formally
defined by Eq. (34) and the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′ and (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ defined respectively by Eqs. (36), (37) and
(35). Columns (1) and (2) display the results for the left and right components of the tail jump variation 𝐿𝐽𝑉 and 𝑅𝐽𝑉 and
the synthetic tail variation difference (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ respectively. Columns (3) and (4) display the results for the left and right
semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 and the synthetic variance 𝑣𝑎𝑟′ respectively. Columns (5) and (6) display the
returns for the left and right semi-moments of the third central moment 𝜅𝐿 and 𝜅𝑅 and the synthetic third central moment
𝜅′ respectively. The constant and slope coefficients are reported with the regular heteroskedasticity and autocorrelation robust
(HAR) 𝑡-statistic of Newey and West (1987) with a lag of 2 in parenthesis below. Adjusted 𝑅2 is reported in percentage form.
The symbol *** indicates significance at 𝑝 < 0.01, ** indicates significance at 𝑝 < 0.05 and * indicates significance at 𝑝 < 0.1.

Table 5
Regression results for 60-min crude oil futures returns based on partial information of the log differences of the pairs 𝐿𝐽𝑉 and
𝑅𝐽𝑉 , 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅, and 𝜅𝐿 and 𝜅𝑅.

5-min 10-min 15-min 20-min

Const. 0.04 0.03 −0.00 0.01
(0.11) (0.08) (0.00) (0.03)

𝐿𝐽𝑉 −9.47∗∗∗ −18.45∗∗∗ −77.86∗∗∗ −48.14∗∗∗

(−5.68) (−9.64) (−14.93) (−16.70)
𝑅𝐽𝑉 −4.45∗∗∗ −8.29∗∗∗ −14.94∗∗∗ −10.15∗∗∗

(−4.39) (−6.91) (−6.73) (−8.24)
Adj. 𝑅2 (%) 0.0 0.2 0.8 0.7

Const. −0.19 −0.30 −0.46 −0.61
(−0.38) (−0.72) (−0.98) (−1.22)

𝑣𝑎𝑟𝐿 −541.28∗∗∗ −550.40∗∗∗ −549.75∗∗∗ −550.50∗∗∗

(−22.58) (−25.10) (−25.63) (−25.96)
𝑣𝑎𝑟𝑅 −406.49∗∗∗ −414.29∗∗∗ −411.63∗∗∗ −410.94∗∗∗

(−22.44) (−24.89) (−25.28) (−25.47)
Adj. 𝑅2 (%) 1.9 4.1 6.2 8.3

Const. −0.07 −0.18 −0.30 −0.41
(−0.19) (−0.44) (−0.64) (−0.82)

𝜅𝐿 −120.77∗∗∗ −209.44∗∗∗ −281.35∗∗∗ 332.80∗∗∗

(−4.54) (−8.07) (−10.62) (−12.36)
𝜅𝑅 −528.09∗∗∗ −465.11∗∗∗ −394.28∗∗∗ −337.56∗∗∗

(−17.08) (−17.67) (−14.45) (−11.86)
Adj. 𝑅2 (%) 2.0 3.9 5.9 7.7

Note. This table reports regressions for the 60-min log returns on the crude oil futures with partial information using the log
differences of the higher order risk-neutral moments which is the log difference of the variable at 𝑡 + ℎ1 less the variable at 𝑡,
formally defined by Eq. (34). The top panel displays the results for the left and right components of the tail jump variation
𝐿𝐽𝑉 and 𝑅𝐽𝑉 . The middle panel displays the results for the left and right semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅. The
bottom panel displays the returns for the left and right semi-moments of the third central moment 𝜅𝐿 and 𝜅𝑅. The constant and
slope coefficients are reported with the regular heteroskedasticity and autocorrelation robust (HAR) 𝑡-statistic of Newey and West
(1987) with a lag of 2ℎ1 in parenthesis below. Adjusted 𝑅2 is reported in percentage form. The symbol *** indicates significance
at 𝑝 < 0.01, ** indicates significance at 𝑝 < 0.05 and * indicates significance at 𝑝 < 0.1.
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semi-moment is larger (in absolute terms) then the coefficient of the right variance semi-moment, suggesting put options changes
have more information embedded in them compared to their respective call options.

The log differences of the left and right third moment are also highly significant at the 1% level across all levels. Their coefficients
re negative at all the time periods considered, but since the third moment is defined as the difference between the right and
eft semi-moment, global interpretation is not possible. What is interesting however, is that as more partial information becomes
vailable the left third moment is increases in scale and becomes more statistically significant, but for the right third moment this
ffect is reversed, and becomes smaller in scale while also becoming less statistically significant. We are not sure what causes this
henomena, but note it as a potential open question for the literature. We also conducted out-of-sample experiments to confirm the
tability of the semi-moments out-of-sample, and we found the semi-moments are robust to out-of-sample data. These results are
rovided in the Online Supplementary Appendix in Section B.3.

For all of the semi-moments we consider we observe that the explanatory power decreases as the amount of partial information
ecreases (i.e., as ℎ1 decreases). This is first seen through all the variables having a lower adjusted 𝑅2 than their contemporaneous

counterpart, and then by the decreasing adjusted 𝑅2 relative to ℎ1 decreasing. For the regressions of the variances in the middle
panel of Table 5 the adjusted 𝑅2 is 8.3% when ℎ1 is set to 20-min, but decreases to 4.1% when ℎ1 is halved to 10-min and 1.9% when
ℎ1 is 5-min. A similar trend is observed for the tail variation measures and the third semi-moment. These results provide evidence
that the weak form of the EMH by Fama (1970) holds at high frequency in the crude oil futures.22 These results are important to
recover as it shows investors process new information quickly, and utilise the risk-neutral moments in their pricing, even making
use of the jump variation measures which can be interpreted as a fear index (Bollerslev and Todorov, 2011).

4.3. Cross-market analysis between crude oil and S&P 500

We now turn our attention to explaining the S&P 500 futures using high frequency crude oil risk-neutral semi-moments.23

There is increasing evidence that the commodity and equity markets are becoming more and more interlinked with the increasing
financialisation of the commodity markets (Basak and Pavlova, 2016). For example, the correlation of the 60-min log returns of
the crude oil and S&P 500 futures returns is 0.34. Thus, an interesting question to observe is whether the information embedded in
the crude oil options can be used to deepen our understanding of the S&P 500 market. We investigate the explanatory value of the
crude oil risk-neutral moments by using the same regression structure in Eq. (33), but instead with the S&P 500 futures returns as
the dependent variable. We demonstrate that the crude oil options are able to explain the S&P 500 futures even in a scenario with
partial information, albeit to a lesser degree than the crude oil futures.

4.3.1. Explaining S&P 500 futures returns
Here we set out with the goal of explaining the high frequency S&P 500 futures returns using the log differences of the high

frequency crude oil semi-moments.24 Similar to the tables presented in Section 4.1, Table 6 reports the results for the 60-min
contemporaneous regressions on the S&P 500 futures using the log differences of the high frequency risk-neutral semi-moments
and the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′ and (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ which are defined in Eqs. (36), (35) and (37) respectively.25 There
are clear similarities between the dynamics of the S&P 500 futures returns and the crude oil futures returns. The results are good,
with the adjusted 𝑅2 being 6.1% and 6.2% for the semi-moments of the variance and third moment. Here, the coefficients on each
semi-moment are negative, similar to the results from the previous section. Further to this, the coefficient of each left semi-moment
is larger (in absolute terms) than the coefficient of the right semi-moment. This indeed indicates there is a systematic information
differential present in the put options and call options in the crude oil options even when used in a cross-market setting. On top of
this, each of the coefficients of the left semi-moments are significant at the 1% level, and so are the right semi-moments with the
exception of 𝜅𝑅 that is significant at 10% only. Similar to the results found in the crude oil futures, the variance and third moment
contain more explanatory power over the S&P 500 futures than the tail risk measures. Finally, even across different markets, the
benefit of utilising the semi-moments over the regular higher order moments is apparent with the synthetic aggregated series failing
to perform as well as the decomposed semi-moments.

4.3.2. Explaining S&P 500 futures returns with partial information
Finally, we also focus on explaining the S&P 500 futures returns with partial information using the log differences of the high

frequency semi-moments. Similar to the analysis in Section 4.2, we set ℎ1 < ℎ2, fix ℎ2 = 12 (one hour) and vary the overlapping
period ℎ1 = 1,… , 4 between 5-min to 20-min.

The results of our regressions on the log differences of the semi-moments are outlined in Table 7, which contains the regressions
n the tail variations, variance and third moment. The coefficients of the tail variation measures are significant at the 1% level,
xcept when ℎ1 is 5-min which is significant at the 5% level. The signs are negative and the coefficient for the left jump variation

is larger (in absolute terms) than the right jump variation, similar to the crude oil market.

22 These results are consistent with the lack of prediction as mentioned in a previous footnote. We would like to thank the anonymous referee for suggesting
he interpretation of the results.
23 An alternative research question would be to use the S&P 500 risk-neutral (semi-)moments and / or tail measures to explain or predict the S&P 500 futures

eturns. We thank the anonymous referee for this suggestion.
24 We conducted similar regressions with the level risk measures. We found the level risk measures provided no explanatory value and all the coefficients
ere insignificant at the 10% level, and thus we do not report them.
25
15

The regressions were conducted at other time intervals of interest, however the results are quite similar and are not reported here.
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Table 6
Regression results for 60-min S&P 500 futures returns using contemporaneous log differences of the risk measures.

(1) (2) (3) (4) (5) (6)

Const. 0.24 0.25 0.03 0.05 0.09 0.21
(0.95) (0.98) (0.12) (0.21) (0.39) (0.85)

𝐿𝐽𝑉 29.18∗∗∗

(−11.03)
𝑅𝐽𝑉 −3.22∗∗∗

(−4.02)
(𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ −5.05∗∗∗

(−6.32)
𝑣𝑎𝑟𝐿 −111.50∗∗∗

(−14.42)
𝑣𝑎𝑟𝑅 −79.25∗∗∗

(−13.46)
𝑣𝑎𝑟′ −88.95∗∗∗

(−13.95)
𝜅𝐿 −114.75∗∗∗

(−11.66)
𝜅𝑅 −16.94∗∗

(−2.11)
𝜅′ 59.68∗∗∗

(6.93)
Adj. 𝑅2 (%) 1.5 0.1 6.1 5.5 6.2 0.8

Note. This table reports contemporaneous regressions for the 60-min log returns on the S&P 500 futures using the log differences
of the higher order risk-neutral semi-moments which is the log difference of the variable at 𝑡+ℎ1 less the variable at 𝑡, formally
defined by Eq. (34) and the synthetic aggregated series 𝑣𝑎𝑟′, 𝜅′ and (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ defined respectively by Eqs. (36), (37) and
(35). Columns (1) and (2) display the results for the left and right components of the tail jump variation 𝐿𝐽𝑉 and 𝑅𝐽𝑉 and
the synthetic tail variation difference (𝐿𝐽𝑉 − 𝑅𝐽𝑉 )′ respectively. Columns (3) and (4) display the results for the left and right
semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅 and the synthetic variance 𝑣𝑎𝑟′ respectively. Columns (5) and (6) display the
returns for the left and right semi-moments of the third central moment 𝜅𝐿 and 𝜅𝑅 and the synthetic third central moment
𝜅′ respectively. The constant and slope coefficients are reported with the regular heteroskedasticity and autocorrelation robust
(HAR) 𝑡-statistic of Newey and West (1987) with a lag of 2 in parenthesis below. Adjusted 𝑅2 is reported in percentage form.
The symbol *** indicates significance at 𝑝 < 0.01, ** indicates significance at 𝑝 < 0.05 and * indicates significance at 𝑝 < 0.1.

Table 7
Regression results for 60-min S&P 500 futures returns based on partial information of the log differences of the pairs 𝐿𝐽𝑉 and
𝑅𝐽𝑉 , 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅, and 𝜅𝐿 and 𝜅𝑅.

5-min 10-min 15-min 20-min

Const. 0.25∗ 0.25 0.24 0.25
(1.86) (1.50) (1.29) (1.20)

𝐿𝐽𝑉 −1.13∗∗ −2.89∗∗∗ −13.11∗∗∗ −8.00∗∗∗

(−1.97) (−4.36) (−6.87) (−7.93)
𝑅𝐽𝑉 −0.48 −1.40∗∗∗ −2.15∗∗∗ −1.61∗∗∗

(−1.53) (−3.77) (−2.90) (−4.22)
Adj. 𝑅2 (%) 0.0 0.0 0.1 0.1

Const. −0.23∗ 0.19 0.16 0.133
(1.67) (1.16) (0.87) (0.65)

𝑣𝑎𝑟𝐿 −82.82∗∗∗ −91.36∗∗∗ −95.09∗∗∗ −98.13∗∗∗

(−8.14) (−9.60) (−10.84) (−11.82)
𝑣𝑎𝑟𝑅 −63.40∗∗∗ −71.31∗∗∗ −73.71∗∗∗ −74.85∗∗∗

(−8.24) (−9.89) (−11.14) (−11.93)
Adj. 𝑅2 (%) 0.3 0.7 1.2 1.7

Const. 0.24∗ 0.21 0.19 0.17
(1.74) (1.28) (1.02) (0.83)

𝜅𝐿 −19.56∗∗ −37.44∗∗∗ −52.94∗∗∗ 64.75∗∗∗

(−2.12) (−3.61) (−4.92) (−6.03)
𝜅𝑅 −79.32∗∗∗ −74.08∗∗∗ −63.87∗∗∗ −54.39∗∗∗

(−9.22) (−8.78) (−7.42) (−6.29)
Adj. 𝑅2 (%) 0.3 0.7 1.1 1.5

Note. This table reports regressions for the 60-min log returns on the S&P 500 futures with partial information using the log
differences of the higher order risk-neutral moments which is the log difference of the variable at 𝑡 + ℎ1 less the variable at 𝑡,
formally defined by Eq. (34). The top panel displays the results for the left and right components of the tail jump variation
𝐿𝐽𝑉 and 𝑅𝐽𝑉 . The middle panel displays the results for the left and right semi-moments of the variance 𝑣𝑎𝑟𝐿 and 𝑣𝑎𝑟𝑅. The
bottom panel displays the returns for the left and right semi-moments of the third central moment 𝜅𝐿 and 𝜅𝑅. The constant and
slope coefficients are reported with the regular heteroskedasticity and autocorrelation robust (HAR) 𝑡-statistic of Newey and West
(1987) with a lag of 2ℎ1 in parenthesis below. Adjusted 𝑅2 is reported in percentage form. The symbol *** indicates significance
at 𝑝 < 0.01, ** indicates significance at 𝑝 < 0.05 and * indicates significance at 𝑝 < 0.1.
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The coefficients for the left and right variance moments outlined in the middle panel of Table 7 are significant at the 1% level
cross all time intervals considered. Similar to the results in the crude oil futures, the left variance’s coefficient is larger than the
ight variance’s coefficient. What is also interesting is the negative signs in the variance suggests there is a ‘cross-market leverage’
ffect happening. When the variance in the crude oil increases, the expected return for the S&P 500 futures decreases.

Finally, the regressions of the third moment are reported in the bottom panel of Table 7. The coefficients for the third moment
re all negative, similar to the findings in Table 5. The scale of the third moment displays the similar pattern found in the crude
il futures, in that when the overlapping period is small, the right third moment’s coefficient is larger in scale than the left third
oment’s coefficient and is statistically significant at the 1% level. However, when more partial information is present, the left

hird moment’s coefficient is larger. We are not quite sure what is creating this dynamic, but it is interesting to document that this
henomenon translates across into the S&P 500 futures returns.

Similar to the crude oil futures, the crude oil risk-neutral semi-moments explanatory power for the S&P 500 futures decreases as
he amount of partial information also decreases. This is observed through the adjusted 𝑅2 of each explanatory variables decreasing

as the amount of partial information available decreases, similar to the results found in the crude oil futures. For example, for the
third semi-moment regression in Table 7 the adjusted 𝑅2 is 1.5% when ℎ1 is 20-min and 0.3% when ℎ1 is 5-min, with a similar
ffect observed for the other risk-neutral moments. This shows the EMH of Fama (1970) holds for S&P 500 futures with respect to
he risk-neutral moments in the crude oil markets.

. Conclusion

In this article we investigate the dataset of high frequency crude oil options. The use of these options allows us to extract the
igher order risk neutral moments as in Carr and Wu (2009) and Kozhan et al. (2013), their semi-moments as in Da Fonseca and Xu
2017) and Kilic and Shaliastovich (2019), and also the tail variation measures used in Bollerslev et al. (2015), Ellwanger (2017)
nd Andersen et al. (2021), at a high frequency - a first for the crude oil market. We document that the second moment and third
oment have more explanatory power over both the tail risk measures, in slight contrast to the results found at the daily frequency,

ut nevertheless, the tail risk measures’ coefficients are highly significant at all time intervals and contain some explanatory power
ver the crude oil futures and S&P 500 futures. We decompose these moments into semi-moments and find that the ‘left’ component,
he put options, are larger than their ‘right’ counterpart, which suggests the put options are the main contributor to the overall higher
rder moment. We also find that the semi-moments are able to explain the crude oil and S&P 500 futures high frequency returns.
e demonstrate the benefit of using semi-moments by comparing our regressions to regressions on synthetic moments designed to

eproduce the aggregated risk-neutral moments; the semi-moments unambiguously perform better. Our results also highlight that
he efficient market hypothesis of Fama (1970) holds at high frequency for both the crude oil futures and S&P 500 futures. Overall,
ur results show that high frequency options, despite being challenging to handle, provide relevant information for the difficult
roblem of explaining returns at high frequency and provides evidence to the efficient market hypothesis at high frequency.
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ppendix A. Data cleaning

The following filters are applied to the individual option quotes for the entire dataset.

(F1) When multiple quotes have the same timestamp, we replace all these with a single entry with the median bid and median
ask price (Barndorff-Nielsen et al., 2009).

(F2) Delete entries for which the spread is negative (Barndorff-Nielsen et al., 2009).
(F3) Delete entries for which the spread is more that 50 times the median spread on that day (Barndorff-Nielsen et al., 2009).
(F4) Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations from a rolling centred median

(excluding the observation under consideration) of 50 observations (25 observations before and 25 after) (Barndorff-Nielsen
et al., 2009).
17
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(F5) Delete entries in which prices exceed 9 times the rolling standard deviation over the past 2-min and either (1) 75% of this
price movement is reversed within 1-min or (2) 80% of this price movement is reversed within 2-min. (The Bounceback Filter
from Andersen et al., 2015a)

(F6) The last available quote in the past 5-min is used. When there is no quote for more than 5-min the option is removed from
the calculations until a new quote becomes available (Andersen et al., 2015a).

These filters are mild and are there to primarily guard against errant option quotes which would influence the final risk measure
calculation. Filter (F1) is used to combine multiple quotes with the same timestamp. (F2) removes serious quote errors. (F3) and
(F4) are used to remove excessive outliers that can arise out of a mistake in the dissemination of the quote data. Here we use 50
rolling observations similar to Barndorff-Nielsen et al. (2009). (F5) is the Bounceback filter from Andersen et al. (2015a) which is
also used to remove outliers that end up reversing themselves within 2-min. This reversal is typically created from an error in the
outlier quote that is then subsequently corrected. (F6) is used to prevent staleness in the option quotes.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcomm.2023.100331.
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