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A B S T R A C T

This paper studies the information inferred from the Carr and Wu’s (2020) formula based on a
new option pricing framework in the United States Oil Fund (USO) options. We first document
the term structure and dynamics of the risk-neutral variance and covariance rates which lead to
a ‘‘U’’-shaped implied volatility smile with a positive curvature. We then investigate the return
predictability of the innovations in the risk-neutral variance and covariance rates (𝐷𝑅𝑁𝑉 and
𝐷𝑅𝑁𝐶) and their term structures (𝑇𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶) and find that 𝐷𝑅𝑁𝐶 is a significant and
robust predictor to forecast daily, weekly and monthly USO excess returns in both statistical
and economic terms based on in-sample and out-of-sample tests.

. Introduction

This paper studies the information inferred from the (Carr and Wu, 2020) formula based on a new option pricing framework in
he United States Oil Fund (USO) option market and examines whether the information is correlated with the future USO excess
eturns. The no-arbitrage formula links the implied volatility smile to the risk-neutral implied volatility variance and covariance with
he security return. The risk-neutral variance and covariance estimates extracted from the formula could contain useful information
egarding the future underlying asset returns and provide complementary information for risk management and investment decisions.
ur research is the first effort that examines the information content of the risk-neutral estimates in the crude oil market. We also

nvestigate the predictability of the extracted risk-neutral information in forecasting the future crude oil returns.
Compared with the traditional option pricing models (e.g., Black–Scholes model), which links the values of all option contracts to

single reference dynamics specification, the new option pricing framework links the current value of one option contract’s implied
olatility to current conditional moments of log changes in the security price and the given contract’s implied volatility. Under the
ew framework, the implied volatility surface does not need to start with the full specification of the underlying security price and
olatility dynamics. Instead, one can start with analyzing the co-movement structure on the percentage implied volatility changes
f contracts across maturity and moneyness levels. This is the main motivation why we use (Carr and Wu, 2020) framework.

Crude oil is the most important commodity in the world and plays a major role in global economic activity. A large literature
ocuments how crude oil prices significantly affect the real economy and financial markets (Hamilton, 1983, 2011; Driesprong et al.,
008; Kilian, 2009; Awartani et al., 2016; Nonejad, 2020). USO tracks the price of near-month West Texas Intermediate (WTI) light,
weet crude oil futures contracts, providing investors with easy access to the oil market.1 It has become the largest and most liquid
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opic which is left for further research.
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crude oil exchange-traded fund (ETF) traded on the New York Stock Exchange (NYSE) with the inception date of April 10, 2006,
with an asset value of over 4.7 billion dollars and an average daily volume of over 5.2 million contracts as of October 5, 2020. As
for a tradable asset, studying the future return predictability is important for investors and researchers. Therefore, this paper mainly
focuses on the study of return predictability in the USO market.

According to the no-arbitrage formula of the new framework, both the variance and covariance rates determine the shape of the
mplied volatility smile. The variance rate is the risk-neutral conditional variance rate of the implied volatility percentage change
nd the covariance rate is the risk-neutral conditional covariance rate of the implied volatility change and the underlying security
eturn. Under commonality assumptions, the market-expected variance and covariance rates can be extracted from the observed
hape of the implied volatility smile. There are a few methodologies to quantify the implied volatility smile. Goncalves and Guidolin
2006), Chalamandaris and Tsekrekos (2011) and Kearney et al. (2019) fit the whole implied volatility surface by using functions of
oneyness and time to maturity. Zhang and Xiang (2008) and Soini and Lorentzen (2019) use a second-order polynomial to describe

he implied volatility–moneyness function and quantify the shape of the implied volatility smile. They all model the implied volatility
mile or surface by using the assumed functions rather than functions derived from theories. In contrast, Carr and Wu (2020) derive
no-arbitrage formula from a new pricing theory, which is completely different from others.

In this paper, we first interpolate to construct the floating series of the implied volatility levels on a target maturity-moneyness
rid by using the filtered USO option data from May 9, 2007 to June 28, 2019. We document the term structure of the implied
olatility smile of USO options, which shows a ‘‘U’’-shaped implied volatility smile with a positive curvature. On the basis of the
o-arbitrage formula of the new framework, we extract the positive variance and negative covariance estimates from the implied
olatility smile.

We investigate the USO return predictability of the risk-neutral information inferred from the no-arbitrage formula at daily,
eekly and monthly frequencies. Following Dennis et al. (2006), Ang et al. (2006) and Chang et al. (2013), we choose the innovations

n the risk-neutral estimates, which are the first differences in variance and covariance estimates (𝐷𝑅𝑁𝑉 and 𝐷𝑅𝑁𝐶) at one-
month maturity, as predictors for forecasting the future USO excess returns.2 As Vasquez (2017) suggests, the implied volatility
term structure conveys information about the future option returns. We are motivated to find whether the term structures of the
variance and covariance rates contain information about the future excess returns on USO. We define the difference between the risk-
neutral variance rate at one-year maturity and the one at one-month maturity (𝑇𝑅𝑁𝑉 ) and the difference between the risk-neutral
covariance rate at one-year maturity and the one at one-month maturity (𝑇𝑅𝑁𝐶). Empirically, we find that 𝐷𝑅𝑁𝐶 is a strong
predictor of future USO returns at daily, weekly and monthly horizons based on in-sample and out-of-sample tests. It outperforms
existing forecasting variables, including first differences in risk-neutral volatility, skewness and excess kurtosis (𝐷𝑉 𝑂𝐿, 𝐷𝑆𝐾𝐸𝑊
and 𝐷𝐾𝑈𝑅𝑇 ), variance risk premia (𝑉 𝑅𝑃 ) and risk-neutral drift of implied volatility changes (𝑅𝑁𝐷). The significant predictive
power of 𝐷𝑅𝑁𝐶 still holds after controlling for crude oil market-specific variables and macroeconomic variables. In addition, 𝐷𝑅𝑁𝐶
can generate significantly large Sharpe ratio (SR) gains and the certainty equivalent (CE) gains that exceed those provided by other
predictors, indicating the economic significance of 𝐷𝑅𝑁𝐶 ’s predictive ability. In addition, 𝑇𝑅𝑁𝐶 and 𝐷𝑅𝑁𝑉 have some in-sample
predictive power at short forecasting horizons.

This paper contributes to the literature that studies the informational content of the implied volatility smile. Xing et al. (2010)
show that the shape of the volatility smirk has significant cross-sectional predictive power for future equity returns. Yan (2011)
and Atilgan et al. (2015) find a negative relation between the slope of the implied volatility smile and future stock returns. Han
and Li (2021) argue that aggregate implied volatility spread is significantly and positively related to future stock market returns
at daily, weekly, and monthly to semi-annual horizons.3 These papers highlight the importance of the implied volatility smile on
forecasting underlying asset returns. In this paper, we study the new information extracted from the no-arbitrage formula which links
the implied volatility smile to the risk-neutral implied volatility variance and covariance with the security return and investigate
the return predictability of the extracted risk-neutral information.

Our paper also contributes to the return predictability in the crude oil market. Yin and Yang (2016) investigate the capacity of
technical indicators to directly forecast the oil returns and compare their performance with that of macroeconomic variables. Kang
and Pan (2015) and Da Fonseca and Xu (2017) examine the return predictability of 𝑉 𝑅𝑃 on oil future returns in the crude oil
market. Ruan and Zhang (2018) study the return predictability for the crude oil market by using risk-neutral moments and the
differences in them. Jia et al. (2021) use the information from the dynamics of the term structure of implied volatility smile
parameters to forecast future oil excess returns. However, our paper differs from the previous literature. We study the oil return
predictability by using the risk-neutral variance and covariance estimates from the no-arbitrage formula.

The rest of the paper is organized as follows. Section 2 presents the data and the control variables. Section 3 gives the
methodology. Section 4 provides the empirical results, and Section 5 concludes the paper.

2 First differencing can remove most of the autocorrelation of time series covariance and variance rates. The daily, weekly and monthly time series of the
𝑅𝑁𝐶 and 𝐷𝑅𝑁𝑉 are more stationary than the original time series.
3 Xing et al. (2010) and Atilgan et al. (2015) use the implied volatility difference between out-of-the-money put options and at-the-money call options to

easure the slope of the implied volatility smile which can also be interpreted as the implied volatility spread. Yan (2011) defines the difference between the
mplied volatilities of one-month-to-expiration put and call options with deltas equal to −0.5 and 0.5 as the slope of the implied volatility smile or the implied

volatility spread. Han and Li (2021) calculate the implied volatility spread for each stock as the difference in the implied volatilities for a pair of at-the-money
2

call and put options with 30-day time to maturity.



Journal of Commodity Markets 31 (2023) 100334X. Jia et al.

m

a

Table 1
Descriptive statistics for excess returns.

Mean Std.dev. Skewness Kurtosis Min Max

Panel A: USO

Daily excess returns −0.0481 2.1630 −0.1934 5.3354 −11.2996 9.1691
Weekly excess returns −0.2328 4.5758 −0.4291 4.4101 −19.5223 16.6934
Monthly excess returns −1.0065 9.7959 −0.7543 4.2730 −38.9758 24.0114

Panel B: WTI

Daily excess returns −0.0045 2.3875 0.0853 7.6734 −13.0654 16.4097
Weekly excess returns −0.0238 4.9313 −0.1083 5.6408 −22.7284 23.3456
Monthly excess returns −0.0942 9.6680 −0.7201 4.5404 −39.5760 26.0165

Panel C: Correlations

Daily Weekly Monthly

Correlation 0.9124 0.8684 0.9515

The table reports the summary statistics and correlations for USO ETF and WTI crude oil excess returns (in percentage)
at different horizons (daily, weekly and monthly). Both the USO ETF and WTI crude oil futures data are downloaded
from Bloomberg from May 9, 2007 to June 28, 2019. The excess return on USO (WTI) is the return on USO ETF (WTI
crude oil futures) in excess of the risk-free rate. The risk-free rate is the one-month Treasury bill rate from the Kenneth
R. French Data Library.

2. Data

2.1. USO ETF

USO ETF data are downloaded from Bloomberg for the period from May 9, 2007 to June 28, 2019. USO tracks the price of near-
onth WTI oil futures contracts.4 USO buys WTI oil futures in the nearest monthly contract, rolling to the next month’s contract two

weeks before expiration. When contracts in the future are priced higher (a situation called contango), USO requires fewer contracts
to maintain the ETF’s value. Over the long term, the cost of rolling adds up, negatively affecting the performance of the fund.
Although the USO performance deviates slightly from the WTI oil prices because of the cost of rolling over oil futures contracts,
both have the similar volatility.

We define the USO excess return as the log return on the USO ETF minus the risk-free rate,

𝑟𝑡 = ln(𝑆𝑡∕𝑆𝑡−1) − 𝑟𝑓𝑡, (1)

where 𝑆𝑡 is the USO ETF price at time t, and 𝑟𝑓𝑡 is the one-month Treasury bill rate from the Kenneth R. French Data Library.5 The
daily USO ETF excess returns and the WTI crude oil excess returns are shown in Fig. 1. We find that they follow the similar pattern.
Table 1 reports the summary statistics for USO and WTI crude oil excess returns (in percentage) at different horizons (daily, weekly
and monthly). First, the means of both crude oil excess returns at different frequencies are negative, varying from −0.0045% to
−1.0065%, even though the average WTI excess returns are very small in absolute value. Second, the standard deviations of the
WTI returns and the USO returns are similar, even though the mean of both are different. In other words, USO and WTI have the
similar historical volatility. Third, all the skewness of the USO and WTI returns for various time horizons are negative except for
the daily WTI excess returns. For example, the skewness of the monthly USO returns is −0.7543 with a negative mean return of
−1.0065%, which indicates that the return distribution has a longer left tail in physical measure. Finally, from Panel C, we find
that the correlations between the excess returns on USO and WTI at daily, weekly and monthly horizons are high, over 86.84%.
Therefore, we consider the WTI excess returns as the alternative market returns to investigate the return predictability of risk-neutral
estimates.

2.2. USO ETF options

USO option data are obtained from OptionMetrics. The sample period is from May 9, 2007 to June 28, 2019. We impose several
filters on the option data. We first discard options with zero bid price, zero ask price and implied volatility less than 0.01. Then we
delete options with less than seven days to expiration. Table 2 reports the trading summary of the USO ETF options by maturity
categories after cleaning the data. The statistical variables are mean number of strikes, number of observations, mean daily trading
volume, and mean daily open interest. After filtering, we have a total of 1,464,666 observations with a mean number of strikes of
32, a mean daily trading volume of over 78 thousand contracts and a mean daily open interest of over 1.4 million contracts. For
the maturity group from 30 days to 90 days, the four statistical variables have the largest values. For maturities less than 90 days,
the trading volume and the open interest account for a huge proportion of the total value. That indicates that the shorter the time
to maturity, the higher the liquidity. Options investors prefer to trade options for short-term profits.

4 After April 17, 2020, USO changed the exposure from holding specifically front-month contracts to holding 80% of its portfolio in front-month contracts
nd 20% in second-month contracts.

5 Kenneth French’s website is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
3

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Fig. 1. Daily USO excess returns and WTI oil excess returns.
This figure shows daily time series of the USO ETF excess returns and WTI crude oil futures excess returns from May 9, 2007 to June 28, 2019. All data are
downloaded from Bloomberg.

Table 2
Descriptive statistics for daily USO options.

Overall < 30 30–90 90–180 180–360 > 360

Number of observations 1,464,666 213,834 432,668 324,876 293,612 199,676
Mean number of strikes 32 25 32 41 38 27
Mean daily trading volume 78,664 32,951 33,668 9,384 5,331 2,341
Mean daily open interest 1,400,951 309,247 476,649 297,943 246,980 146,181

This table shows the number of observations, the mean daily number of strikes, trading volume and open interest of the USO
ETF options overall and for each maturity category after cleaning the options data.

2.3. Control predictors

To test whether our main risk-neutral predictor has distinct forecasting ability for future USO returns, we consider a set of control
variables, which includes crude oil market-specific variables and macroeconomic variables (Hong and Yogo, 2012; Kang and Pan,
2015).

The crude oil market-specific predictors are described as follows:
4
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1. Crude oil basis (BASIS): Difference between the current crude oil futures price and the spot price. Both prices are obtained
rom U.S. Energy Information Administration (EIA)’s website.

2. Net short positions of hedgers (NSHORT): Short hedge positions minus long hedge positions, and then divided by total hedge
ositions (short positions plus long positions), as in Kang and Pan (2015). The short and long positions data are from the Commodity
utures Trading Commission (CFTC)’s Commitments of Traders reports.6

3. Open interest growth (OIG): 12-month geometric average of open interest changes, proposed by Hong and Yogo (2012). The
pen interest data are from CFTC’s reports.

4. Historical returns (HRET): 12-month geometric average of crude oil futures returns, as in Kang and Pan (2015). The crude oil
utures prices are sourced from EIA’s website.

5. Crude oil storage data (STORAGE): The log growth of the U.S. field production of crude oil from EIA’s website.
6. Global economic activity index (KI): The index is based on a global index of dry cargo single voyage freight rates, and it is

ound to significantly influence crude oil prices, proposed by Kilian (2009).7
7. USO ETF volatility index (OVX): Market’s expectation of 30-day volatility of crude oil prices by applying the VIX methodology

o the USO Fund. We consider the log change in 𝑂𝑉 𝑋. The daily 𝑂𝑉 𝑋 is downloaded from the website of the Chicago Board Options
xchange (CBOE).

A number of macroeconomic predictors are also included (Bollerslev et al., 2009; Atilgan et al., 2015; Kang and Pan, 2015),
hich are obtained from the Federal Reserve Bank of St. Louis.

1. Default yield spread (DEF): Difference between the yields on Moody’s BAA- and AAA-rated corporate bonds.
2. Term spread (TERM): Difference between the yields on the 10-year Treasury bond and three month Treasury bill.
3. Stochastically detrended risk-free rate (RREL): Yield on the one-month Treasury bill minus its one-year backward moving

verage.
4. Chicago Fed National Activity Index (CFNAI): A measure of overall economic activity.
5. Industrial Production growth (IP): Log growth in industrial production over the last 12 months, as in Kang and Pan (2015).
Among the above control variables, 𝑂𝑉 𝑋, 𝐷𝐸𝐹 , 𝑇𝐸𝑅𝑀 and 𝑅𝑅𝐸𝐿 are available at daily, weekly and monthly frequencies.

𝐵𝐴𝑆𝐼𝑆 and 𝑁𝑆𝐻𝑂𝑅𝑇 are available at weekly and monthly frequencies. 𝑂𝐼𝐺, 𝐻𝑅𝐸𝑇 , 𝑆𝑇𝑂𝑅𝐴𝐺𝐸, 𝐾𝐼 , 𝐶𝐹𝑁𝐴𝐼 and 𝐼𝑃 are only
available monthly.

Table 3 shows the descriptive statistics for the control predictors at different frequencies. In Panel A, the daily mean of 𝐷𝐸𝐹 is
1.119%, with a standard deviation of 0.510%, and the daily mean of 𝑇𝐸𝑅𝑀 is 2.024%, with a standard deviation of 0.914%. Both
are larger than the statistical values in Bollerslev et al. (2009). The average 𝑅𝑅𝐸𝐿 is negative, which is consistent with the result
of Bollerslev et al. (2009). We find that in Panels B and C, the three control variables show statistical values similar to the values in
Panel A. Compared with Kang and Pan (2015), our sample averages of 𝐵𝐴𝑆𝐼𝑆 and 𝑁𝑆𝐻𝑂𝑅𝑇 are higher and the averages of 𝑂𝐼𝐺
and 𝐻𝑅𝐸𝑇 are lower. One explanation for this phenomena might be due to the different sample periods. 𝑁𝑆𝐻𝑂𝑅𝑇 has a positive
mean of 0.157% per month, indicating that commercials tend to take short positions in the crude oil futures market to hedge the
price risk. 𝑂𝐼𝐺, 𝑆𝑇𝑂𝑅𝐴𝐺𝐸, 𝑂𝑉 𝑋 and 𝐼𝑃 also have positive sample averages, which suggest that open interest, crude oil storage,
crude oil volatility and industrial production are growing in general.

3. Methodology

3.1. The no-arbitrage formula based on a new framework

Carr and Wu (2020) develop a new option pricing framework that links the pricing of a security to its daily profit and loss
attribution (P&L) without directly referring to the terminal payoffs of the investment. The framework uses the Black–Scholes option
pricing formula to attribute the short-term option investment risk to variation in the underlying security price and the option’s
implied volatility. Taking risk-neutral expectation and demanding no dynamic arbitrage result in an option pricing relation (see
Theorem 1 in Appendix A).8

Proposition 1 (Carr and Wu, 2020 Formula). According to the Theorem 1 and Assumption 1 in Appendix A, a no-arbitrage formula from
the new framework can be arrived at

𝐼2𝑡 − 𝐴2
𝑡 = 2𝛾𝑡𝑧+ + 𝜔2

𝑡 𝑧+𝑧−, (2)

where 𝐼𝑡 is the implied volatility on date 𝑡, 𝐴𝑡 is the at-the-money implied volatility on date 𝑡, 𝜔2
𝑡 denotes the risk-neutral conditional variance

of the implied volatility percentage change, 𝛾𝑡 is the conditional covariance between the implied volatility percentage change and underlying
security return, and the terms 𝑧± = (𝑘± 1

2 𝐼
2
𝑡 𝜏), where 𝜏 is the time to maturity, represent the convexity-adjusted moneyness of the call under

the risk-neutral measure.9

6 This variable measures the supply and demand imbalance of commercial traders (hedgers) in CFTC’s reports.
7 Prof. Lutz Kilian’s webpage is https://sites.google.com/site/lkilian2019/research/data-sets.
8 Carr and Wu (2016) also propose a new theoretical framework by directly modeling the near-term implied volatility dynamics and deriving no-arbitrage

onstraints on the shape of the implied volatility surface.
9 When deriving the no-arbitrage formula, the first terms contained 𝜇𝑡 in Eqs. (A.6) and (A.7) are eliminated (see Appendix A). This means that the shape

of the implied volatility smile only depends on its variance and covariance with the USO return, not on the risk-neutral rate of implied volatility changes.
5

Therefore, our research focuses more on the risk-neutral variance and covariance estimates.

https://sites.google.com/site/lkilian2019/research/data-sets
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Table 3
Summary statistics for control predictors.

Mean Std.dev. Skewness Kurtosis Min Max

Panel A: Daily

OVX 0.000 0.049 0.767 12.270 −0.440 0.425
DEF (%) 1.119 0.510 2.567 10.368 0.530 3.500
TERM (%) 2.024 0.914 −0.202 2.672 −0.350 4.010
RREL (%) −0.109 0.572 −2.174 8.396 −3.539 0.719

Panel B: Weekly

BASIS 0.002 0.013 18.182 403.963 −0.038 0.283
NSHORT 0.154 0.093 −0.058 2.053 −0.040 0.352
OVX −0.003 0.050 1.432 14.538 −0.198 0.425
DEF (%) 1.119 0.511 2.587 10.502 0.540 3.490
TERM (%) 2.017 0.909 −0.181 2.660 −0.290 3.870
RREL (%) −0.112 0.572 −2.161 8.215 −3.086 0.677

Panel C: Monthly

BASIS 0.001 0.006 2.951 20.349 −0.019 0.038
NSHORT 0.157 0.094 −0.028 2.065 −0.020 0.352
OIG 0.003 0.012 −0.412 2.320 −0.025 0.027
HRET −0.001 0.030 −0.417 2.666 −0.066 0.059
STORAGE 0.006 0.030 −1.981 33.965 −0.230 0.176
KI −4.189 77.092 0.925 3.287 −159.644 190.729
OVX 0.002 0.163 0.456 4.286 −0.394 0.621
DEF (%) 1.121 0.520 2.618 10.593 0.540 3.430
TERM (%) 1.999 0.912 −0.286 2.820 −0.350 3.890
RREL (%) −0.108 0.567 −2.186 8.389 −2.585 0.597
CFNAI −0.209 0.560 −2.497 10.764 −2.900 0.550
IP 0.003 0.050 −1.832 6.344 −0.166 0.082

This table shows the mean, standard deviation, skewness, kurtosis, minimum and maximum of daily, weekly
and monthly control predictors from May 9, 2007 to June 28, 2019. 𝑂𝑉 𝑋 stands for the log change of the
USO ETF volatility index, the market’s expectation of 30-day volatility of crude oil prices. 𝐷𝐸𝐹 stands for the
difference between the yields on Moody’s BAA- and AAA-rated corporate bonds. 𝑇𝐸𝑅𝑀 stands for the difference
between the yields on the 10-year Treasury bond and three-month Treasury bill. 𝑅𝑅𝐸𝐿 stands for the yield
on the one-month Treasury bill minus its one-year backward moving average. 𝐵𝐴𝑆𝐼𝑆 is the spread between
futures prices and spot prices. 𝑁𝑆𝐻𝑂𝑅𝑇 is calculated as the commercials net short position (short positions
minus long positions) as a proportion of commercials total positions (short positions plus long positions). 𝑂𝐼𝐺
is the 12-month geometric average of open interest changes. 𝐻𝑅𝐸𝑇 is the 12-month geometric average of crude
oil futures returns. 𝑆𝑇𝑂𝑅𝐴𝐺𝐸 is stands for the log growth of the U.S. field production of crude oil. 𝐾𝐼 stands
for Kilian’s (2009) real global economic activity index from the website of Prof. Lutz Kilian. 𝐶𝐹𝑁𝐴𝐼 is Chicago
Fed National Activity Index. 𝐼𝑃 is the log growth in industrial production over the last 12 months.

The local commonality assumption on variance and covariance rates is that the variance and covariance rates of implied
olatilities across a range of strikes at the same maturity are the same,

𝜔2
𝑡 (𝑘) ≐ 𝜔2

𝑡 , 𝛾𝑡(𝑘) ≐ 𝛾𝑡, (3)

or all 𝑘 within a certain strike range.
Under the local commonality assumption, the risk-neutral variance and covariance rates (𝜔2

𝑡 , 𝛾𝑡) can be estimated by performing
cross-sectional regression of the implied variance difference from the at-the-money level (𝐼2𝑡 − 𝐴2

𝑡 ) on the two convexity-adjusted
oneyness measures 2𝑧+ and 𝑧+𝑧−.10

.2. Construct floating series of implied volatility levels

To estimate the risk-neutral variance and covariance rates, we first construct floating series of implied volatility levels. We
efine a maturity-moneyness grid (𝜏, 𝑥), where the time to maturity (𝜏) is 1, 2, 3, 6 and 12 months and the moneyness is
= 0,±0.5,±1,±1.5,±2. The standardized moneyness measure is 𝑥 ≡ 𝑧+∕𝐼𝑡

√

𝜏.
We estimate the implied volatility level 𝐼𝑡 at each interpolation grid point following the Carr and Wu (2020) weighting schemes.

ince the out-of-the-money option contract is more liquid, we put more weight on it. For the option contract with an absolute
orward delta less than 80%, we define one minus the absolute delta as its weight. For the option contract with an absolute delta

10 Other methodologies modeling the shape of the implied volatility smile or surface (Goncalves and Guidolin, 2006; Zhang and Xiang, 2008; Soini and
orentzen, 2019; Kearney et al., 2019) use assumed implied volatility functions and the coefficients of the functions are constants. In contrast, for the no-
rbitrage formula shown in PROPOSITION 1, the coefficients (𝜔2

𝑡 , 𝛾𝑡) are variables. Only under the local commonality assumption in Eq. (3), can the coefficients
6

be viewed as constants.
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Table 4
Summary statistics of at-the-money implied volatility levels.

Maturity 1 2 3 6 12

Mean 0.365 0.362 0.361 0.358 0.355
Std.dev. 0.115 0.110 0.107 0.102 0.098
Min 0.160 0.163 0.165 0.168 0.172
Max 0.855 0.819 0.804 0.780 0.758

The table reports summary statistics for the at-the-money implied volatility levels at maturities of 1, 2, 3, 6, and
12 months in the crude oil market. The statistics include mean, standard deviation, minimum and maximum.

Table 5
Mean implied volatility smile.

Maturity Moneyness

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

1 0.401 0.391 0.381 0.372 0.365 0.361 0.362 0.365 0.370
2 0.399 0.389 0.379 0.369 0.362 0.359 0.359 0.362 0.366
3 0.398 0.388 0.377 0.368 0.361 0.357 0.356 0.359 0.364
6 0.395 0.385 0.375 0.365 0.358 0.353 0.353 0.355 0.359
12 0.392 0.382 0.372 0.363 0.355 0.350 0.349 0.350 0.354

The table shows the sample mean of the implied volatilities across nine moneyness levels at each of the five interpolated
maturities in the crude oil market. The maturities are 1, 2, 3, 6 and 12 months and the moneyness are 0,±0.5,±1,±1.5,±2.

ver than 80%, we set its weight at zero. We also weight each contract 𝑖 based on its distance to the target log time to maturity
(ln 𝜏) and its distance to the target moneyness level (𝑥). Taken together, we define the weight of each contract 𝑖 as

𝑤𝑖 = (1 − |

|

𝛿𝑖||)𝐼|𝛿𝑖|<.8 exp

(

−
(𝑥𝑖 − 𝑥)2

2ℎ2𝑥

)

exp

(

−
(ln 𝜏𝑖 − ln 𝜏)2

2ℎ2𝜏

)

, (4)

here 𝛿𝑖 denotes the BMS forward delta of the option, and (ℎ𝑥, ℎ𝜏 ) denote the two bandwidths based on a bivariate Gaussian kernel.11

According to the weight, we interpolate to construct floating series of the implied volatility levels at a target maturity-moneyness
rid (𝜏, 𝑥). Based on the interpolated implied volatility levels, we could perform a cross-sectional regression of the implied variance
pread (𝐼2𝑡 − 𝐴2

𝑡 ) on the two convexity-adjusted moneyness measures [2𝑧+, 𝑧+𝑧−] according to Eq. (2) and extract the risk-neutral
ariance and covariance rates.

. Empirical analysis

.1. USO implied volatility smile

Table 4 reports the summary statistics of the interpolated floating at-the-money implied volatility levels at the five maturities.
e find that the average implied volatility decreases from 36.5% at the one-month maturity to 35.5% at the one-year maturity as

he time to maturity increases. The annualized standard deviation of the at-the-money implied volatility series declines from 11.5%
t the one-month maturity to 9.8% at the one-year maturity with increasing maturity, meaning the at-the-money implied volatility
ends to mean-revert.

Table 5 reports the sample average of the implied volatility levels at nine selected moneyness levels and five interpolated
aturities. At each maturity, the implied volatility level for USO is higher at higher absolute moneyness levels than at lower absolute
oneyness levels, showing a ‘‘U’’-shaped implied volatility smile. From Fig. 2, it is obvious that for different maturities the implied

olatility curves are ‘‘U’’-shaped with a positive curvature. The curve shows more curvature at shorter maturities because the implied
olatility at higher strikes is higher.

Panel A of Table 5 in Carr and Wu (2020) gives a downward-sloping implied volatility pattern for the S&P 500, leading to a
egative implied volatility skew, which is different to the USO implied volatility pattern in this paper. That is because, in sharp
ontrast to equities’ crash concerns, oil prices are subject to both spikes as well as crashes.

.2. Risk-neutral estimates

The no-arbitrage formula in Eq. (2) links the implied volatility smile to the conditional risk-neutral variance of the percentage
mplied volatility change and its covariance with the security return. At each date and maturity, we apply commonality assump-
ions,12 perform a cross-sectional regression of the implied variance difference from the at-the-money level on the two moneyness

11 The implied volatility surface from OptionMetrics is constructed by using a similar kernel smoothing technique.
12 We provide evidence on local and global commonality in the co-movements among the floating implied volatility change series. The results are presented

n Figs. B1 and B2 in Appendix B. Fig. B1 shows that the log implied volatility changes for the at-the-money contract are highly correlated with the ones for
ther contracts within one standard deviation of at-the-money. Fig. B2 shows that the first three principal components can explain over 95% of the common
7

ovements of the implied volatility surface by performing principal component analysis on the interpolated implied volatility change series.
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Fig. 2. USO implied volatility smile.
This figure shows USO implied volatility smiles based on interpolated implied volatility levels at nine selected moneyness (𝑥 = 0,±0.5,±1,±1.5,±2) and five
maturities (1, 2, 3, 6 and 12 months).

measures (2𝑧+) and (𝑧+𝑧−) and extract the risk-neutral variance 𝜔2
𝑡 and covariance 𝛾𝑡. We then examine their information content

n predicting the USO excess returns.
According to Eq. (2), a positive curvature will lead to a positive variance rate 𝜔𝑡, while a negative implied volatility skew

s expected to generate a negative covariance rate 𝛾𝑡. Table 6 reports summary statistics for the term structures of the variance
nd covariance rates in the USO options market. From Panel A, we can see that the average covariance rates are negative over
ll maturities. Panel A of Table 5 in Carr and Wu (2020) shows that the maximums of covariance rates for the S&P 500 over
ll maturities are strictly negative, which confirms the downward-sloping implied volatility pattern. However, the maximums of
ovariance rates are varying from 0.064 to 0.111, indicating that the implied volatility smiles on USO are ‘‘U’’-shaped. In Panel
, the average variance rates are positive across all maturities. As the maturity increases, the variance rate decreases, suggesting
hat the implied volatility smile has more curvature at shorter maturities than at longer maturities. The standard deviation for the
ariance rate is significantly larger than the one for the covariance rate, indicating that the variance rate varies a lot more than the
ovariance rate. The autocorrelation estimates of covariance and variance rates show a high time series persistence.

From Table 6, we also observe that the covariance estimates seem not so different from zero according to the mean and standard
eviation. We perform a one-sample t-test on the covariance estimate and find that we can reject the null hypothesis that the mean is
qual to zero with extremely high t values at the 5% significance level for different maturities.13 Therefore, the covariance estimates
re statistically different from zero.

Fig. 3 presents the dynamics of variance and covariance rates at one-month maturity from May 9, 2007 to June 28, 2019. The
ariance rate is positive,14 while the covariance rate is negative most of time. The negative covariance rate indicates that the stock
arket index and the implied volatility usually have the opposite movement directions. For option markets, option investors bid
p put prices for hedging the downward risk during a market crash. The more negative the market index return is, the more the
mplied volatility increases, and the more negative the covariance rate becomes (Hibbert et al., 2008). In Fig. 3, we also find that
he covariance rate spikes downward at financial crises or oil market-specific events. During the 2008 financial crisis, the covariance
ate declined to a relatively low level in mid-2009, later than at the time when the oil price shown in Fig. 1 reached the lowest
oint of the 2008 financial crisis in early 2009. The covariance rate fell to an all-time low around −0.17 during the European debt
risis in 2011.

Besides variance and covariance rates, we also extract risk-neutral drift of implied volatility changes from the implied variance
erm structure slope defined by two nearby at-the-money option contracts (see Eq. (A.9) in Appendix A).15 Table 7 reports the
ummary statistics for the risk-neutral rate of implied volatility changes. The sample mean of the risk-neutral estimates is negative
t each of the five interpolated maturities. The drift estimates vary largely from large negative values to positive values at shorter
aturities than larger ones. The daily autocorrelation estimates in the last row show that the risk-neutral drift estimates are
ersistent, between 0.853 and 0.937.

13 For example, for the one-month maturity, the t value is −42.20. Actually, our sample size is very large (3056), which results in a large t value. We would
ike to thank the anonymous referees for bringing this to our attention.

14 We have imposed zero intercept and constrain the regression coefficient 𝜔2
𝑡 to be positive. Therefore the variance rate is positive.

15 We first estimate the risk-neutral drift at the midpoint of the two adjacent maturities from the at-the-money implied variance term structure slope defined
y the two maturities. We then interpolate these drift estimates to construct the estimates at maturities of 1, 2, 3, 6 and 12 months.
8
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Table 6
Estimates of covariance and variance rates.

Maturity 1 2 3 6 12

Panel A: Covariance rate estimates 𝛾𝑡
Mean −0.030 −0.030 −0.030 −0.027 −0.020
Std.dev. 0.040 0.036 0.033 0.029 0.027
Min −0.166 −0.151 −0.141 −0.123 −0.109
Max 0.111 0.098 0.086 0.064 0.069
Auto 0.922 0.933 0.936 0.935 0.930

Panel B: Variance rate estimates 𝜔2
𝑡

Mean 0.449 0.432 0.416 0.380 0.330
Std.dev. 0.344 0.322 0.305 0.268 0.222
Min 0.000 0.000 0.005 0.004 0.002
Max 1.983 1.892 1.747 1.392 1.144
Auto 0.928 0.936 0.940 0.943 0.942

This table reports summary statistics for the term structures of the covariance and variance rates, which are
extracted from the no-arbitrage formula based on a new option pricing framework in the crude oil market. The
statistics include mean, standard deviation, minimum, maximum and daily autocorrelation.

Table 7
Estimate of the risk-neutral drift.

Maturity 1 2 3 6 12

Mean −0.057 −0.048 −0.035 −0.020 −0.012
Std.dev. 0.193 0.158 0.110 0.057 0.032
Min −2.124 −1.824 −1.343 −0.627 −0.282
Max 0.492 0.394 0.261 0.127 0.068
Auto 0.853 0.868 0.891 0.916 0.937

This table reports summary statistics for the risk-neutral drift of implied volatility changes from the at-the-money
implied variance local term structure slope defined by the two nearest maturities. The statistics include mean,
standard deviation, minimum, maximum and daily autocorrelation.

Fig. 3. Daily risk-neutral variance and covariance rates.
This figure shows the daily time series of the risk-neutral variance and covariance rates at one-month maturity. The sample period is from May 9, 2007 to June
28, 2019. The risk-neutral variance and covariance rates are extracted from the no-arbitrage formula based on a new option pricing framework.

Following Dennis et al. (2006), Ang et al. (2006) and Chang et al. (2013), we choose 𝐷𝑅𝑁𝑉 and 𝐷𝑅𝑁𝐶 at a one-month maturity,
which are good proxies of innovations in the variance and covariance rates, as predictors for forecasting the future excess returns.
As Vasquez (2017) suggests, the implied volatility term structure conveys information about the future option returns. We consider
𝑇𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶, the term structures of the variance and covariance rates, as predictors. 𝑇𝑅𝑁𝑉 is defined as the difference
between the risk-neutral variance rate at one-year maturity and the one at one-month maturity and 𝑇𝑅𝑁𝐶 is the difference between
he risk-neutral covariance rate at one-year maturity and the one at one-month maturity. Besides the main predictors of interest
elated to risk-neutral variance and covariance rates, we also include 𝑅𝑁𝐷 at one-month maturity and other predictors that have
een found to show some predictive power for future crude oil returns proposed in the literature. Ones are 𝐷𝑉 𝑂𝐿, 𝐷𝑆𝐾𝐸𝑊 and
𝐾𝑈𝑅𝑇 proposed by Ruan and Zhang (2018). The other is 𝑉 𝑅𝑃 , the difference between the expected realized return variance and
9
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Table 8
Summary statistics for key predictors.

Panel A: Summary statistics

Mean Std.dev. Skewness Kurtosis Min Max Auto

DRNC 0.0001 0.0341 0.3952 3.9665 −0.0805 0.1211 −0.2536
DRNV 0.0025 0.2228 0.3569 6.0481 −0.7515 0.9776 −0.1978
TRNC 0.0206 0.0354 −0.4676 3.9845 −0.0923 0.1142 0.6565
TRNV −0.4154 0.3285 −1.3340 5.0244 −1.8120 −0.0178 0.7864
RND −0.0574 0.1947 −1.7172 7.3919 −1.0126 0.2434 0.4967
DVOL −0.0003 0.0645 0.5931 10.3976 −0.2408 0.3277 0.1828
DSKEW 0.0035 0.2196 −0.1493 4.5606 −0.7686 0.6982 −0.3030
DKURT −0.0066 0.2372 0.6341 9.4250 −0.7953 1.1156 −0.4555
VRP −0.0285 0.0533 −2.5030 12.1834 −0.3035 0.0603 0.2612

Panel B: Correlations

DRNC DRNV TRNC TRNV RND DVOL DSKEW DKURT VRP NSHORT HRET OVX

DRNC 1.000
DRNV 0.193 1.000
TRNC −0.428 −0.001 1.000
TRNV −0.135 −0.319 0.374 1.000
RND −0.101 0.131 0.037 −0.306 1.000
DVOL −0.009 −0.208 −0.131 0.141 −0.256 1.000
DSKEW 0.462 0.115 −0.241 −0.041 −0.069 −0.161 1.000
DKURT −0.173 −0.104 0.084 0.048 0.005 0.104 −0.581 1.000
VRP 0.013 −0.008 −0.241 −0.274 0.426 −0.224 −0.013 0.007 1.000
NSHORT 0.071 0.010 −0.377 −0.363 0.140 −0.053 0.043 −0.009 0.384 1.000
HRET 0.021 −0.015 −0.353 −0.372 0.360 0.091 −0.003 0.025 0.329 0.088 1.000
OVX −0.032 −0.201 −0.070 0.107 −0.419 0.735 −0.102 0.127 −0.174 −0.034 −0.038 1.000

This table gives descriptive statistics for the monthly time series of the predictor variables from May 9, 2007 to June 28, 2019. 𝐷𝑅𝑁𝐶 is the first
differences in the covariance rate. 𝐷𝑅𝑁𝑉 is the first differences in the variance rate. 𝑇𝑅𝑁𝐶 is the difference between the risk-neutral covariance
rate at one-year maturity and the one at one-month maturity. 𝑇𝑅𝑁𝑉 is the difference between the risk-neutral variance rate at one-year maturity
and the one at one-month maturity. 𝑅𝑁𝐷 is the risk-neutral drift of implied volatility changes at one-month maturity. 𝐷𝑉 𝑂𝐿, 𝐷𝑆𝐾𝐸𝑊 and
𝐷𝐾𝑈𝑅𝑇 are the first differences in risk-neutral volatility, skewness and excess kurtosis. 𝑉 𝑅𝑃 is the difference between the expected realized
return variance and the risk-neutral expected variance in the crude oil market. Detailed descriptions of other predictors see Table 3.

he risk-neutral expected variance in the crude oil market, used in Kang and Pan (2015). We calculate the 𝑉 𝑅𝑃 based on the USO
ETF and option data instead of the crude oil futures and option data. We compute the expected realized variance using daily ETF
returns rather than the high-frequency intraday returns. We also use OVX as a proxy for the risk-neutral expected variance.

Panel A of Table 8 reports the summary statistics for the main predictors and the other return predictors that are used for
comparison purposes. We find that both 𝐷𝑅𝑁𝐶 and 𝐷𝑅𝑁𝑉 are weakly serially correlated. For example, 𝐷𝑅𝑁𝐶 has an effective

ean of zero (less than 0.0001), a standard deviation of 0.0341, and weak serial correlation (the first-order autocorrelation is
0.2536). In contrast, the risk-neutral covariance estimate at one-month maturity is highly serially autocorrelated with a first-order
utocorrelation of 0.922 in Table 6. This indicates that first differencing can remove most of the autocorrelation of time series
ovariance rate.

Panel B of Table 8 presents the correlations among all return predictors and control predictors.16 In general, the four main
eturn predictors have relatively low correlations with other variables (below 0.5). This indicates the risk-neutral predictors contain
ifferent information from other predictors, and we expect that they could deliver different information about the future USO
eturns. In addition, it is expected that 𝐷𝑅𝑁𝐶 and 𝐷𝑆𝐾𝐸𝑊 are positively correlated, with an autocorrelation coefficient of 0.462,
ince both are related to the slope of the implied volatility smile. Interesting, we find that 𝐷𝑉 𝑂𝐿 and 𝑂𝑉 𝑋 are highly positively
orrelated, while both predictors are relatively weakly and negatively correlated with 𝑅𝑁𝐷. This is because they are calculated
sing options with different moneyness: the former use out-of-the-money option contracts and the latter uses at-the-money option
ontracts.

.3. USO return predictability

In this subsection, we examine the return predictability on USO ETF by using risk-neutral estimates and verify whether the
nformation content of risk-neutral estimates is correlated with future USO returns. First, we run univariate predictive regressions for
ach of return predictors. We test the in-sample and out-of-sample predictive power of the predictors at daily, weekly, and monthly
orecasting horizons. We choose these horizons following (Han and Li, 2021). Second, we consider a set of control variables and
o multiple predictive regressions to test whether the predictive ability of our risk-neutral variables is not affected by the control
redictors. Finally, to evaluate the economic significance of out-of-sample predictability, we construct trading strategies based on
eturn forecasts.

16 To save space, we only display control predictors that are relatively more closely correlated with our main return predictors. The results for additional
10

redictors are available upon request.
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4.3.1. Univariate predictive regression
We use a univariate predictive regression, which is a standard framework for multi-period return predictability, to forecast excess

eturns at daily, weekly and monthly frequencies,
𝐻
∑

ℎ=1

𝑟𝑡+ℎ
𝐻

≡ 𝑟𝑡,𝑡+𝐻 = 𝛼 + 𝛽𝑋𝑡 + 𝜖𝑡∶𝑡+𝐻 , (5)

where 𝑟𝑡 denotes the USO ETF excess return at time 𝑡. 𝑋𝑡 denotes a set of predictor variables at time 𝑡. 𝐻 is the forecast horizon.
When 𝐻 is equal to one day, one week or one month, we use nonoverlapping returns. Otherwise, we use overlapping observations.
We correct the serial correlation and conditional heteroskedasticity using the Newey–West correction (Newey and West, 1987).

Table 9 reports the results of univariate predictive regressions for the risk-neutral predictors at horizons ranging from daily,
weekly to monthly frequency. We demonstrate the estimate of the coefficient as well as adjusted 𝑅2 statistics and the Newey and
West (1987) t-statistics for in-sample tests. Obviously, 𝐷𝑅𝑁𝐶 can significantly predict the USO excess returns at daily, weekly and
monthly horizons. It outperforms the other predictors at all forecast horizons except for the three-week horizon. In detail, for one-day
forecast horizon, the slope coefficient of 𝐷𝑅𝑁𝐶 is 11.97, indicating a 1% increase in 𝐷𝑅𝑁𝐶 is associated with an 11.97% increase
in USO excess returns over the following day. The 𝑅2 statistic of 𝐷𝑅𝑁𝐶 is 0.7%. We also find that the t-statistics of 𝐷𝑅𝑁𝐶 decline
from 4.13 (one-day forecast horizon) to 0.34 (three-week forecast horizon), and then increase at four-week and one-month forecast
horizons. In other words, the predictive ability of 𝐷𝑅𝑁𝐶 becomes weaker as the forecast horizon becomes longer (from one-day to
three-week). Then, the predictive power of 𝐷𝑅𝑁𝐶 becomes significant at four-week and one-month forecast horizons. The similar
pattern for the change of the forecasting power is shown in Han and Li (2021) who investigate the predictability of the aggregate
implied volatility spread in forecasting stock market returns at daily, weekly, and monthly to semi-annual horizons. In their paper,
the t-statistic values from the four-day to one-month forecast horizons are 3.07, 2.57, 2.63, 2.22, 1.83 and 2.92, respectively.17

The predictive power of the implied volatility spread becomes weaker from the four-day to four-week forecast horizons, and then
becomes highly significant at the one-month horizon. The one-month adjusted 𝑅2 statistic of 𝐷𝑅𝑁𝐶 is 1.16%, which is much larger
than the statistic at other forecast horizons.

The three risk-neutral predictors (𝐷𝑅𝑁𝑉 , 𝑇𝑅𝑁𝐶 and 𝑇𝑅𝑁𝑉 ) show some predictive power in predicting the USO returns.
𝐷𝑅𝑁𝑉 only can predict two-day-, three-day- and four-day-ahead USO excess returns, which means the innovation in risk-neutral
variance from the no-arbitrage formula contains less information about the future USO returns than the innovation in risk-neutral
covariance. 𝑇𝑅𝑁𝐶 not only has predictive ability at the daily horizon, but also can significantly predict one-week-ahead USO excess
returns. Both predictors fail to predict monthly USO excess returns. In contrast, 𝑇𝑅𝑁𝑉 shows poor predictive performance at all
the forecasting horizons.

In terms of the other comparative predictors in Table 9, both 𝐷𝑉 𝑂𝐿 and 𝐷𝑆𝐾𝐸𝑊 have strong predictive power for USO
excess returns at monthly frequency, while 𝐷𝐾𝑈𝑅𝑇 fails to predict monthly USO returns. The result is consistent with the findings
in Ruan and Zhang (2018). Besides, 𝐷𝑉 𝑂𝐿 is still significant at daily horizons. We find that 𝑅𝑁𝐷, the risk-neutral implied volatility
change, is statistically significant at the 10% level only at the four-day, two-week, three-week and four-week horizons. Compared
with 𝐷𝑉 𝑂𝐿, the different forecasting performance between the two predictors might be due to the fact we mentioned in Section 4.2
that they are constructed based on option contracts with different moneyness. 𝑉 𝑅𝑃 exhibits insignificant predictive power across all
forecast horizons, which is different from the findings in Kang and Pan (2015) that 𝑉 𝑅𝑃 can significantly predict the one-month oil
futures returns at the 10% significance level. This might be due to the different forecasting sample periods and the slightly different
constructed method for 𝑉 𝑅𝑃 .18

Jia et al. (2021) also use the innovations in parameters that determine the implied volatility smile shape, the first differences
of the slope and curvature, to predict the monthly USO excess returns. They find that both predictors do not exhibit significant
in-sample predictive performance. However, our 𝐷𝑅𝑁𝐶, the innovation in risk-neutral covariance rate, can significantly predict
future USO excess returns in in-sample tests.

Next, following Campbell and Thompson (2008) and Rapach et al. (2010), we compare the predictive performance of each
predictor under the given regression model with the benchmark model that uses recent historical average returns as the forecasts.

We use an expanding window to calculate the 𝑅2
𝑂𝑆 statistic. The out-of-sample 𝑅2 is given by

𝑅2
𝑂𝑆 = 1 −

∑𝑁−1
𝑡=𝑛 (𝑟𝑡,𝑡+𝐻 − �̂�𝑡,𝑡+𝐻|𝑡)2

∑𝑁−1
𝑡=𝑛 (𝑟𝑡,𝑡+𝐻 − 𝑟𝑡,𝑡+𝐻|𝑡)2

, (6)

where 𝐻 is the forecast horizon, 𝑛 is the number of observations for the initial forecast, �̂�𝑡,𝑡+𝐻|𝑡 is the return forecast estimated using
all observations except those overlapping with 𝑟𝑡,𝑡+𝐻 and 𝑟𝑡,𝑡+𝐻|𝑡 is the historical average of excess returns calculated by using all
observations except those overlapping with 𝑟𝑡,𝑡+𝐻 . If the 𝑅2

𝑂𝑆 is positive, then the predictive regression has a lower average mean-
quared forecast error (MSFE) than the historical mean benchmark, indicating that the predictive regression forecast outperforms
he benchmark.

17 The forecast horizons are the four days, one week, two weeks, three weeks, four weeks and one month, respectively.
18 As mentioned in Section 4.2, we calculate the VRP based on the USO ETF and option data instead of the crude oil futures and option data. We compute

he expected realized variance using daily ETF returns rather than the high-frequency intraday returns. We also use the USO ETF volatility index (OVX) as a
11

roxy for the risk-neutral expected variance.
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Table 9
Univariate return predictability.

Daily Weekly Monthly

1-day 2-day 3-day 4-day 1-week 2-week 3-week 4-week 1-month

DRNC 𝛽 11.97*** 6.79*** 4.24*** 2.65** 21.36** 10.49* 1.35 10.49*** 39.16***
𝑡 (4.13) (3.55) (3.25) (2.46) (2.11) (1.93) (0.34) (3.08) (2.68)
𝑅2(%) 0.70 0.46 0.26 0.12 0.92 0.34 −0.15 0.73 1.16
𝑅2

𝑜𝑠(%) 0.54*** −0.12 0.15*** 0.04** 0.19* −0.41 −0.13 0.75** 1.87**

DRNV 𝛽 −0.23 −0.31** −0.31*** −0.15* −1.67 −0.58 −0.20 −0.29 1.42
𝑡 (−1.00) (−2.16) (−2.64) (−1.75) (−1.58) (−0.95) (−0.41) (−0.73) (0.57)
𝑅2(%) −0.01 0.04 0.07 0.00 0.23 −0.07 −0.14 −0.12 −0.60
𝑅2

𝑜𝑠(%) −0.13 −0.01 0.14*** 0.01 −1.22 −0.56 −0.41 −0.37 −1.44

TRNC 𝛽 −5.08*** −3.41** −2.81* −2.48 −16.27* −7.60 −6.01 −6.94 −30.56
𝑡 (−2.85) (−2.04) (−1.79) (−1.63) (−1.81) (−0.96) (−0.82) (−0.99) (−1.05)
𝑅2(%) 0.28 0.26 0.27 0.28 0.47 0.11 0.08 0.23 −0.13
𝑅2

𝑜𝑠(%) 0.01** −0.21 −0.23 −0.39 −0.11 −0.74 −0.98 −1.25 −2.33

TRNV 𝛽 −0.04 −0.04 −0.12 −0.17 −1.05 −1.27 −1.25 −1.15 −2.74
𝑡 (−0.17) (−0.22) (−0.61) (−0.92) (−0.95) (−1.24) (−1.32) (−1.24) (−0.55)
𝑅2(%) −0.03 −0.03 −0.01 0.04 −0.03 0.22 0.36 0.39 −0.49
𝑅2

𝑜𝑠(%) −0.05 −0.09 −0.09 −0.05 0.03 0.14 0.06 −0.12 −0.89

RND 𝛽 0.31 0.36 0.34 0.36* 1.95 2.22* 2.14* 2.10* 7.36
𝑡 (1.30) (1.58) (1.55) (1.68) (1.56) (1.79) (1.78) (1.84) (1.12)
𝑅2(%) 0.04 0.19 0.26 0.40 0.50 1.47 2.00 2.42 1.44
𝑅2

𝑜𝑠(%) −0.24 −0.51 −1.00 −1.60 −1.58 −2.73 −3.38 −3.50 −12.67

DVOL 𝛽 11.67*** 6.15*** 4.50*** 3.66*** 1.65 −0.52 −5.26 −3.57 −58.62***
𝑡 (3.77) (3.50) (3.44) (2.89) (0.30) (−0.10) (−1.52) (−1.06) (−4.82)
𝑅2(%) 1.68 0.98 0.79 0.69 −0.19 −0.21 0.50 0.18 12.99
𝑅2

𝑜𝑠(%) −5.43 −2.29 0.13** 0.34** 8.60 7.04 4.21 −1.98 5.47**

DSKEW 𝛽 −0.27 −0.06 −0.03 −0.02 0.54 0.25 −0.14 0.18 14.12**
𝑡 (−1.09) (−0.37) (−0.25) (−0.16) (0.52) (0.35) (−0.31) (0.46) (2.48)
𝑅2(%) −0.01 −0.04 −0.04 −0.04 −0.16 −0.19 −0.21 −0.20 2.25
𝑅2

𝑜𝑠(%) −6.94 −2.28 −0.19 0.33 8.61 7.41 5.03 −0.96 1.59**

DKURT 𝛽 0.48* 0.15 0.15 0.10 −0.94 −0.74 0.51 −0.29 −2.70
𝑡 (1.80) (1.01) (1.31) (1.13) (−0.93) (−1.26) (1.18) (−0.75) (−0.27)
𝑅2(%) 0.07 −0.02 −0.01 −0.02 −0.07 −0.05 −0.10 −0.17 −0.81
𝑅2

𝑜𝑠(%) −6.63 −2.18 −0.10 0.41 9.11 7.79 4.80 −0.90 −5.06

VRP 𝛽 −0.30 −0.07 0.05 0.29 3.24 5.67 5.96 5.79 15.05
𝑡 (−0.23) (−0.05) (0.04) (0.25) (0.61) (1.24) (1.54) (1.45) (0.75)
𝑅2(%) −0.03 −0.03 −0.03 −0.01 −0.02 0.65 1.13 1.36 −0.04
𝑅2

𝑜𝑠(%) −0.07 −0.22 −0.42 −0.87 −3.73 −5.54 −5.06 −6.10 −4.32

This table reports the results of univariate predictive regressions for the risk-neutral predictors at horizons ranging from daily, weekly to
monthly frequency from May 9, 2007 to June 28, 2019 in the crude oil market. When the forecast horizon is one day, one week or one
month, we use nonoverlapping returns. Otherwise, we use overlapping observations. We correct the serial correlation and conditional
heteroskedasticity using the Newey–West correction (Newey and West, 1987). The table presents the estimate of the coefficient 𝛽, the
Newey and West (1987) 𝑡-statistics, in-sample adjusted 𝑅2 statistics and out-of-sample 𝑅2 statistics (𝑅2

𝑂𝑆 ). 𝐷𝑅𝑁𝐶 is the first differences
in the covariance rate. 𝐷𝑅𝑁𝑉 is the first differences in the variance rate. 𝑇𝑅𝑁𝐶 is the difference between the risk-neutral covariance
rate at one-year maturity and the one at one-month maturity. 𝑇𝑅𝑁𝑉 is the difference between the risk-neutral variance rate at one-year
maturity and the one at one-month maturity. Detailed descriptions of other predictors see Table 8.
*Significance at the 10% level.
**Significance at the 5% level.
***Significance at the 1% level.

We use the Clark and West (2007) adjusted mean squared prediction error statistic to test whether the out-of-sample 𝑅2 statistic
is significantly greater than zero.

𝑓𝑡,𝑡+𝐻 = (𝑟𝑡,𝑡+𝐻 − 𝑟𝑡,𝑡+𝐻|𝑡)2 − [(𝑟𝑡,𝑡+𝐻 − �̂�𝑡,𝑡+𝐻|𝑡)2 − (𝑟𝑡,𝑡+𝐻 − �̂�𝑡,𝑡+𝐻|𝑡)2]. (7)

To test whether 𝑅2
𝑂𝑆 >0, we regress this statistic on a constant and provide one-sided p-values for the 𝑅2

𝑂𝑆 statistic. We have
hown that 𝐷𝑅𝑁𝐶 is a strong predictor that can predict daily, weekly and monthly ahead USO excess returns based on in-sample
ests. If 𝐷𝑅𝑁𝐶 is a robust predictor, its out-of-sample 𝑅2 should be significantly greater than zero.

Table 9 also reports the out-of-sample 𝑅2 statistic for various predictors and horizons. Generally, 𝐷𝑅𝑁𝐶 performs better than
he other predictors based on the out-of-sample tests, which is consistent with the in-sample results. For daily frequencies (except
or the two-day forecast horizon), 𝐷𝑅𝑁𝐶 has a positive 𝑅2 statistic, which is significant, according to the Clark and West (2007)
12
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statistic. The 𝑅2
𝑂𝑆 for 𝐷𝑅𝑁𝐶 is 0.54% for one-day ahead, 0.15% for three-day ahead and 0.04% for four-day ahead. For weekly

orizons, 𝐷𝑅𝑁𝐶 has a positive and significant 𝑅2
𝑂𝑆 at one-week and four-week forecast horizons. 𝐷𝑅𝑁𝐶 also shows a significant

one-month out-of-sample 𝑅2 of 1.87. The monthly predictive result is superior to the finding in Jia et al. (2021) that the innovation
n the slope parameter has no out-of-sample predictive performance. The other three main predictors (𝐷𝑅𝑁𝑉 , 𝑇𝑅𝑁𝐶 and 𝑇𝑅𝑁𝑉 )

exhibit poor out-of-sample predictive performance at most of the forecast horizons. For example, although 𝐷𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶
have a positive and significant 𝑅2

𝑂𝑆 at daily frequency, the values are extremely small. In addition, 𝐷𝑉 𝑂𝐿 and 𝐷𝑆𝐾𝐸𝑊 show
significant out-of-sample performance at monthly frequency with large and significant 𝑅2

𝑂𝑆 , which further confirms their in-sample
performance.

In summary, we show evidence that 𝐷𝑅𝑁𝐶 is informative about the future USO returns at daily, weekly and monthly frequencies.
We provide robust evidence, from both in-sample and out-of-sample tests, that 𝐷𝑅𝑁𝐶 is a strong predictor of future USO excess
returns. The predictive ability for 𝐷𝑅𝑁𝐶 is superior to 𝐷𝑅𝑁𝑉 , the term structure predictors (𝑇𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶) and the other
comparative predictors.

4.3.2. Multiple predictive regression
We run the following multiple predictive regressions to verify the predictive power of 𝐷𝑅𝑁𝐶 is still significant after controlling

for other predictors described in Section 2.3.

𝑟𝑡,𝑡+𝐻 = 𝛼 +
𝑀
∑

𝑖=1
𝛽𝑖𝑋𝑖,𝑡 + 𝜖𝑡∶𝑡+𝐻 , (8)

where if 𝑀 is equal to 2, it means a bivariate predictive regression using 𝐷𝑅𝑁𝐶 and one of the alternative predictors.
Tables 10 and 11 report the results for multiple predictive regressions on the basis of daily, weekly and monthly time series.

We include 𝐵𝐴𝑆𝐼𝑆 and 𝑁𝑆𝐻𝑂𝑅𝑇 in weekly and monthly regressions and other six control variables (𝐶𝐹𝑁𝐴𝐼 , 𝐼𝑃 , 𝑂𝐼𝐺, 𝐻𝑅𝐸𝑇 ,
𝑆𝑇𝑂𝑅𝐴𝐺𝐸 and 𝐾𝐼) in monthly regressions, since they are available in different time series. First, after controlling for the risk-
neutral predictors, macroeconomic variables or crude oil market-specific variables, 𝐷𝑅𝑁𝐶 is expected to significantly predict USO
excess returns across different horizons. To save space, we only display the one-day, one-week and one-month multivariate predictive
results.19

Second, in general, t-statistics of 𝐷𝑅𝑁𝐶 in the multiple predictive regressions are similar to the corresponding ones in the
univariate regressions of Table 9. This indicates that 𝐷𝑅𝑁𝐶 indeed contains some independent information content about the
future USO returns that is not affected by other variables, which is also confirmed by the findings that 𝐷𝑅𝑁𝐶 has a relatively low
correlation of below 0.5 with other predictors in Table 8.

Finally, 𝑂𝐼𝐺 positively predicts monthly future crude oil returns, consistent with Hong and Yogo (2012). 𝐶𝐹𝑁𝐴𝐼 and
𝑆𝑇𝑂𝑅𝐴𝐺𝐸 also predict future crude oil returns with a positive sign, consistent with Kang and Pan (2015). In contrast, the signs of
𝐵𝐴𝑆𝐼𝑆 and 𝑁𝑆𝐻𝑂𝑅𝑇 are opposite of the ones in Hong and Yogo (2012). This might be because we predict crude oil ETF returns
rather than crude oil futures returns. And the forecasting period is different as well. However, it does not affect the multivariate
regression results that DRNC retains its significant return predictive power after controlling for other predictors.

4.3.3. Trading strategies
Following Rapach et al. (2010) and Ferreira and Santa-Clara (2011), to evaluate the economic significance of out-of-sample

predictability, we construct trading strategies based on return forecasts, and calculate the CE return for a mean–variance investor
who tries to allocate between USO ETF and risk-free assets.

For a mean–variance investor, the optimal weight allocated to USO ETF at the end of the forecast horizon 𝐻 is

𝜔𝑡 = �̂�𝑡,𝑡+𝐻∕𝛾�̂�2𝑡,𝑡+𝐻 , (9)

here 𝛾 is the investor’s coefficient of relative risk aversion, �̂�𝑡,𝑡+𝐻 is the excess return forecast and �̂�2 is the forecast of USO excess
return variance. Following the measure of Pyun (2019), we use the square of OVX as a proxy for �̂�2.20 In line with Rapach et al.
(2016), we set 𝛾 to 3 and limit 𝜔𝑡 to −0.5 to 1.5. The portfolio return at the end of each time horizon is

𝑟𝑝𝑡,𝑡+𝐻 = 𝜔𝑡𝑟𝑡,𝑡+𝐻 + 𝑟𝑓𝑡,𝑡+𝐻 , (10)

where 𝑟𝑡,𝑡+𝐻 is the USO excess return and 𝑟𝑓𝑡,𝑡+𝐻 is the risk-free rate. The average CE return is

𝐶𝐸 = 𝑟𝑝 − 0.5𝛾𝜎2(𝑟𝑝), (11)

where 𝑟𝑝 is the sample mean of portfolio returns and 𝜎2(𝑟𝑝) is the sample variance of portfolio returns.
The CE gain is the difference between the CE of the strategy based on predictors and the CE of the strategy based on the historical

mean of market return. We also calculate the gain in SR for each strategy.
Table 12 reports summary statistics on the performance of the trading strategies, including the annualized portfolio return and

the annualized portfolio volatility. Overall, 𝐷𝑅𝑁𝐶 is the only predictor that has a positive portfolio return and portfolio volatility

19 The results at other forecast frequencies are available upon request.
20 Rapach et al. (2010) and Ferreira and Santa-Clara (2011) use a moving window of past returns to estimate �̂�2. In contrast, OVX, which measures the 30-day

volatility of crude oil prices, could provide a more accurate forecast.
13
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Table 10
Multivariate return predictability: Daily and weekly time series.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 1-day

DRNC 11.90*** 10.87*** 11.98*** 11.70*** 11.67*** 11.71*** 11.68*** 11.02***
(4.09) (3.66) (4.13) (3.94) (3.93) (3.94) (4.06) (3.68)

DRNV −0.07 0.07
(−0.31) (0.30)

TRNC −3.73** −0.89
(−2.03) (−0.60)

TRNV −0.06 0.12
(−0.30) (0.80)

DEF (%) −0.16 −0.16
(−1.25) (−1.12)

TERM (%) −0.08** −0.05
(−1.97) (−1.11)

RREL (%) 0.04 −0.03
(0.42) (−0.31)

OVX 1.45 1.59*
(1.63) (1.75)

Constant −0.05 −0.01 −0.06 0.14 0.13 −0.04 −0.05 0.32**
(−1.25) (−0.24) (−1.07) (1.06) (1.46) (−0.95) (−1.25) (1.97)

Observations 3,055 3,055 3,055 3,031 3,032 3,032 3,054 3,030
Adj.𝑅2(%) 0.67 0.84 0.67 0.79 0.77 0.65 0.78 0.84

Panel B: 1-week

DRNC 22.57** 18.39* 21.11** 21.37** 21.38** 21.41** 20.79** 21.70** 22.15** 23.81**
(2.22) (1.78) (2.09) (2.06) (2.06) (2.06) (2.04) (2.14) (2.13) (1.99)

DRNV −1.91* −2.44**
(−1.86) (−2.09)

TRNC −11.43 3.37
(−1.26) (0.39)

TRNV −0.96 −0.96
(−0.88) (−1.11)

DEF (%) −0.80 −1.73**
(−1.31) (−2.37)

TERM (%) −0.35 −0.46*
(−1.54) (−1.91)

RREL (%) 0.08 −0.22
(0.17) (−0.41)

BASIS 29.30*** 41.45***
(3.95) (4.66)

NSHORT −1.24 −8.10***
(−0.48) (−2.83)

OVX −3.65 −4.65
(−0.91) (−1.14)

Constant −0.24 −0.12 −0.35 0.71 0.52 −0.18 −0.29 −0.05 −0.25 3.33***
(−1.16) (−0.58) (−1.23) (1.13) (1.12) (−0.98) (−1.41) (−0.11) (−1.22) (2.91)

Observations 629 629 629 620 621 621 629 626 629 617
Adj.𝑅2(%) 1.27 1.05 0.87 1.59 1.25 0.78 1.41 0.85 0.92 4.10

This table reports the results for multiple predictive regressions on the basis of daily and weekly time series from May 9, 2007 to
June 28, 2019 in the crude oil market. The table presents the estimate of the coefficient, the Newey and West (1987) 𝑡-statistics
and in-sample adjusted 𝑅2 statistics. The definitions of all predictors are the same as those in Table 3.
*Significance at the 10% level.
**Significance at the 5% level.
***Significance at the 1% level.

cross different horizons. For example, the average return is 3.77% at the one-day forecast horizon, 5.28% at the one-week forecast
orizon and 2.39% at the one-month forecast horizon for the strategies based on 𝐷𝑅𝑁𝐶.21 If a mean–variance investor rebalances

the strategy monthly on the basis of 𝐷𝑅𝑁𝐶, the volatility of portfolio returns is 10.96%, larger than the volatility from daily and
weekly rebalancing.

Table 12 also reports the performance of portfolios constructed on return and volatility forecasts assessed by the SR gain and
CE gain. 𝐷𝑅𝑁𝐶 outperforms the other predictors in terms of the two measures. It can generate economically significant profits up
to one month ahead for a mean–variance investor. For instance, at a monthly rebalancing frequency, it produces a positive SR gain

21 For investors, the trading strategy based on a daily rebalancing is not realistic because of expensive transaction costs.
14
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Table 11
Multivariate return predictability: Monthly time series.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

DRNC 48.99** 36.44*** 34.92*** 38.55*** 33.78** 39.91*** 38.89*** 37.95*** 43.76*** 38.94*** 42.16*** 63.40***
(2.27) (2.76) (2.64) (2.68) (2.40) (2.86) (2.81) (2.64) (2.86) (2.67) (2.74) (3.26)

DRNV −1.19 −3.41
(−0.36) (−1.16)

TRNC 26.00 56.69
(0.87) (1.26)

TRNV −2.49 −4.71
(−0.58) (−1.10)

DEF (%) −3.16 −3.02
(−0.97) (−0.81)

TERM (%) −1.43* −3.92**
(−1.94) (−2.41)

RREL (%) −1.79 −2.16
(−0.85) (−0.80)

CFNAI 3.80 1.66
(1.28) (0.73)

IP 18.11 −22.69
(0.58) (−0.91)

BASIS 274.92 270.29
(1.57) (1.60)

NSHORT −3.81 −4.05
(−0.25) (−0.22)

OIG 207.91 222.65**
(1.63) (2.01)

HRET 14.88 −57.72
(0.48) (−1.26)

STORAGE 36.90 64.22**
(1.05) (2.48)

KI 0.01 0.04**
(0.99) (2.07)

OVX −10.42 −8.45
(−0.80) (−0.65)

Constant −2.67 5.16 −0.28 −1.14 −1.35 −0.49 −2.03 −1.34 −1.30 −1.03 −1.00 7.15
(−0.86) (1.32) (−0.34) (−1.06) (−1.28) (−0.16) (−1.60) (−1.29) (−1.23) (−0.97) (−0.94) (1.15)

Observations 144 144 144 144 144 144 137 137 144 144 144 137
Adj.𝑅2(%) −0.17 3.36 5.24 1.31 3.31 0.59 6.78 0.73 1.73 1.41 0.72 14.08

This table reports the results for multiple predictive regressions on the basis of monthly time series from May 9, 2007 to June 28, 2019 in the crude oil market.
The table presents the estimate of the coefficient, the Newey and West (1987) 𝑡-statistics and in-sample adjusted 𝑅2 statistics. The definitions of all predictors
re the same as those in Table 3.
Significance at the 10% level.
*Significance at the 5% level.
**Significance at the 1% level.

0.44) and CE gain (1.98%) relative to investing based on the historical average.22 None of the other predictors can generate positive
R gains and CE gains, which indicates that these predictors cannot show any economic significance of out-of-sample predictability
t monthly frequency. In addition, the term structure predictor 𝑇𝑅𝑁𝐶 performs well at shorter horizons, which can produce positive

SR and CE gains.
We conclude that 𝐷𝑅𝑁𝐶 predicts daily, weekly and monthly USO excess returns out of sample with economic significance. The

trading strategy based on 𝐷𝑅𝑁𝐶 can produce positive and relatively large SR and CE gains over the historical average forecast.
However, 𝐷𝑅𝑁𝑉 and two term structure predictors (𝑇𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶) cannot achieve economic forecasting gains across different
frequencies (daily, weekly and monthly).

If markets are efficient, then all information is already incorporated into prices, and so there is no way to ‘‘beat’’ the market,
because there are no undervalued or overvalued securities available. In other words, investors cannot outperform the market, and
that market anomalies should not exist because they will immediately be arbitraged away. Our findings indeed imply a violation
of market efficiency in the Oil ETF market. Rösch et al. (2017) document that market efficiency is influenced by financial frictions
(e.g., limits to arbitrage) and use some option-based variables to measure the dynamics of market efficiency. Han and Li (2021)
explain the predictive power of the implied volatility spread is due to common informed trading in the option market. The return
predictability of the DRNC might be caused by the market frictions or informed trading.

22 The monthly SP based on the historical average forecast benchmark is −0.27. All SP of the historical benchmark are negative, from −0.72 to −0.22.
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Table 12
Trading strategies.

Daily Weekly Monthly

1-day 2-day 3-day 4-day 1-week 2-week 3-week 4-week 1-month

DRNC Portfolio return (%) 3.77 2.01 0.85 0.60 5.28 1.14 0.12 1.97 2.39
Portfolio volatility (%) 2.79 1.58 0.72 0.43 6.92 3.15 0.95 2.18 10.96
SR gain 1.55 1.51 1.14 0.97 0.92 0.55 −0.03 1.17 0.44
CE gain (%) 3.26 1.59 0.46 0.21 4.45 0.92 −0.02 1.83 1.98

DRNV Portfolio return (%) −0.62 0.29 0.50 0.38 0.55 0.22 −0.19 −0.14 −3.50
Portfolio volatility (%) 1.29 1.13 0.64 0.39 7.02 3.30 1.53 1.30 8.63
SR gain −0.49 0.37 0.67 0.44 0.23 0.26 −0.10 0.01 −0.19
CE gain (%) −1.04 −0.11 0.11 −0.01 −0.30 −0.02 −0.36 −0.23 −3.22

TRNC Portfolio return (%) 2.70 1.58 1.06 0.83 3.33 0.48 0.11 −0.15 −3.73
Portfolio volatility (%) 2.90 1.50 0.95 0.76 8.38 3.15 2.01 2.02 10.64
SR gain 1.13 1.27 1.25 1.16 0.56 0.34 0.16 0.18 −0.13
CE gain (%) 2.18 1.16 0.66 0.43 2.17 0.25 −0.08 −0.27 −4.03

TRNV Portfolio return (%) 0.36 0.38 0.53 0.56 0.85 0.91 0.80 0.67 −2.98
Portfolio volatility (%) 0.28 0.20 0.24 0.23 2.05 2.13 2.21 1.67 7.37
SR gain −0.10 −0.02 0.80 1.01 0.40 0.55 0.49 0.60 −0.20
CE gain (%) −0.03 −0.01 0.14 0.17 0.67 0.77 0.60 0.56 −2.39

This table reports the performance of trading strategies based on return forecasts at daily, weekly and monthly horizons. The sample
period is from May 9, 2007 to June 28, 2019. The performance measures are the annualized portfolio return, the annualized portfolio
volatility, the annualized SR gain and the annualized CE gain. SR gain is the difference between the SP of forecasts generated by our
regression model and the historical average forecast benchmark. CE gain is the difference between the CE of forecasts generated by our
regression model and the historical average forecast benchmark. 𝐷𝑅𝑁𝐶 is the first differences in the covariance rate. 𝐷𝑅𝑁𝑉 is the
first differences in the variance rate. 𝑇𝑅𝑁𝐶 is the difference between the risk-neutral covariance rate at one-year maturity and the one
at one-month maturity. 𝑇𝑅𝑁𝑉 is the difference between the risk-neutral variance rate at one-year maturity and the one at one-month
maturity.

The fact that the market is not fully efficient would seem to conflict with ‘‘no dynamic arbitrage’’ assumption in Carr and
u’s (2020) framework. However, Carr and Wu’s (2020) framework provides a scientific way to extract information (e.g., 𝐷𝑅𝑁𝐶)

rom the option price or implied volatility. Bollerslev et al. (2015) construct tail risk premia based on ‘‘no dynamic arbitrage’’
ssumption and use it to predict future stock returns. Bardgett et al. (2019) use a standard option pricing model based on ‘‘no
ynamic arbitrage’’ assumption to infer the variance risk premium from the S&P 500 and VIX markets and find that the based-based
ariance risk premium can significantly improve S&P 500 return forecasts. Please note that because financial markets can give rise to
isk premiums – either the well-known equity risk premium or its equally valid volatility risk premium – the existence of a variance
isk premium does not imply market inefficiency.23

.4. Alternative market returns

Our paper uses the USO ETF returns to present the crude oil market returns, and examines the return predictability by using the
xtracted risk-neutral estimates from the no-arbitrage formula. The 𝐷𝑅𝑁𝐶 has significant predictive ability for forecasting daily,
eekly and monthly excess USO returns based on in-sample and out-of-sample tests. To provide a comparison, we conduct the same

ests using the returns on WTI oil futures, which are the most liquid energy futures contracts, with an average daily volume of 822
housand and open interest of 2.1 million contracts as of October 5, 2020.

We study the predictive power of 𝐷𝑅𝑁𝐶 for predicting WTI oil futures returns on different maturities. We use 1, 2, 3 and
month futures contracts available from the EIA. Contract 1 means the nearby or front month contracts. Contracts 2–4 mean the

uccessive delivery months following Contract 1. The results for predictability of the excess returns on the WTI oil price are presented
n Table 13. M1R, M2R, M3R and M4R represent the crude oil futures returns for 1, 2, 3 and 4 months to maturity contracts.

For in-sample tests, we find that 𝐷𝑅𝑁𝐶 can significantly predicts crude oil futures returns for 1, 2, 3 and 4 months to maturity
ontracts at daily, weekly and monthly horizons. In general, the regression coefficients, t-statistics and 𝑅2 statistics of 𝐷𝑅𝑁𝐶 is
lightly smaller than the ones on the basis of USO return predictability in Table 9. This should be expected since 𝐷𝑅𝑁𝐶 measured
rom the USO ETF option market should predict the USO ETF returns better than the crude oil futures returns. In addition, the
tatistical values in Table 13 decrease from M1R to M4R for each forecasting horizon except for the one-day and two-week horizons.
or example, for the one-month forecast horizon, the coefficients drop from 37.30 (M1R) to 32.09 (M4R) and the t-statistics values
rop from 2.68 (M1R) to 2.34 (M4R). This indicates that our predictor performs better in predicting crude oil futures returns on
hort maturities than long maturities. It appears that the term structure of crude oil futures prices has some extent influence on the
il futures return predictability.

23 We thank the associate editor for suggesting this clarification.
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Table 13
Oil futures return predictability.

Daily Weekly Monthly

1-day 2-day 3-day 4-day 1-week 2-week 3-week 4-week 1-month

M1R 𝛽 9.97*** 6.60*** 4.35*** 2.47** 25.07** 10.73* 0.83 10.36*** 37.30***
𝑡 (3.16) (3.34) (3.16) (2.13) (2.54) (1.88) (0.21) (2.93) (2.68)
𝑅2(%) 0.39 0.36 0.23 0.08 1.11 0.31 −0.16 0.66 1.03
𝑅2

𝑜𝑠(%) 0.40*** −0.20 0.06** 0.00 0.13* −0.62 −0.09 0.53** 1.65**

M2R 𝛽 9.99*** 5.96*** 4.03*** 2.42** 22.19** 11.19** 0.41 9.53*** 35.91**
𝑡 (3.28) (3.12) (3.13) (2.25) (2.38) (2.09) (0.11) (2.90) (2.58)
𝑅2(%) 0.45 0.33 0.22 0.09 1.00 0.43 −0.16 0.62 1.03
𝑅2

𝑜𝑠(%) 0.55*** 0.01*** 0.18*** 0.04** 0.31* −0.71 −0.12 0.50** 1.57**

M3R 𝛽 9.88*** 5.68*** 3.76*** 2.30** 21.17** 11.23** 0.23 8.94*** 33.40**
𝑡 (3.36) (3.06) (3.08) (2.24) (2.29) (2.20) (0.06) (2.80) (2.41)
𝑅2(%) 0.47 0.32 0.20 0.08 0.97 0.49 −0.16 0.59 0.89
𝑅2

𝑜𝑠(%) 0.63*** 0.11*** 0.21*** 0.08** 0.30* −0.72 −0.13 0.47** 1.39*

M4R 𝛽 9.74*** 5.44*** 3.57*** 2.19** 20.78** 11.11** 0.09 8.58*** 32.09**
𝑡 (3.40) (3.01) (3.04) (2.22) (2.28) (2.24) (0.02) (2.75) (2.34)
𝑅2(%) 0.49 0.31 0.19 0.08 0.99 0.51 −0.16 0.57 0.85
𝑅2

𝑜𝑠(%) 0.67*** 0.15*** 0.22*** 0.10 0.32* −0.69 −0.14 0.44** 1.34*

This table reports the results for predictability of the WTI oil futures returns on different maturities by using the predictor, 𝐷𝑅𝑁𝐶, at
horizons ranging from daily, weekly to monthly frequency. 𝐷𝑅𝑁𝐶 is the first differences in the covariance rate. The sample periods
are from May 9, 2007 to June 28, 2019. M1R, M2R, M3R and M4R represent the crude oil futures returns for 1, 2, 3 and 4 months to
maturity contracts. The oil futures contracts data are from EIA. When the forecast horizon is one day, one week or one month, we use
nonoverlapping returns. Otherwise, we use overlapping observations.
*Significance at the 10% level.
**Significance at the 5% level.
***Significance at the 1% level.

For out-of-sample tests, 𝐷𝑅𝑁𝐶 shows the generally similar performance to what it did on the USO return predictability. It
has a positive and significant out-of-sample 𝑅2 for the daily frequencies (except for the two-day and four-day forecast horizons),
weekly frequencies (except for the two-week and three-week forecast horizons) and monthly frequency. We also observe that 𝐷𝑅𝑁𝐶
exhibits better out-of-sample predictive power (large and significant 𝑅2

𝑂𝑆 ) for longer maturities at shorter forecasting horizons or for
shorter maturities at longer forecasting horizons. For example, for the one-day forecast horizon, the 𝑅2

𝑂𝑆 value of 𝐷𝑅𝑁𝐶 increases
rom 0.40 (M1R) to 0.67 (M4R). For the one-month forecast horizon, the 𝑅2

𝑂𝑆 value of 𝐷𝑅𝑁𝐶 decreases from 1.65 (M1R) to 1.34
(M4R) and its significance level drops to 10%.

In summary, 𝐷𝑅𝑁𝐶 can significantly predict crude oil futures returns on different maturities at daily, weekly and monthly
horizons. Therefore, our results on USO return predictability are robust to the alternative measure of market returns. Furthermore,
the term structure of crude oil futures prices has some extent influence on the oil futures return predictability.

5. Conclusion

In this paper, we study the information extracted from the no-arbitrage (Carr and Wu, 2020) formula based on a new option
pricing framework in the USO option market and investigate the predictability of the information in forecasting the future USO
returns. The risk-neutral variance and covariance estimates can be obtained from the no-arbitrage formula under the new framework.
We document the term structure and dynamics of the risk-neutral estimates which lead to a ‘‘U’’-shaped implied volatility smile with
a positive curvature.

We also investigate the return predictability of the innovations in the risk-neutral estimates and their term structures at daily,
weekly and monthly frequencies. First, we run univariate predictive regressions for each of the predictors based on in-sample and
out-of-sample tests. 𝐷𝑅𝑁𝐶 is a strong predictor of future crude oil market returns at various horizons, and outperforms other existing
return predictors. Second, we consider a set of control variables, including crude oil market-specific variables and macroeconomic
variables, and do multiple predictive regressions to test whether the predictive ability of our risk-neutral variables is not affected
by the control predictors. The significant predictive power of 𝐷𝑅𝑁𝐶 still holds after controlling for other variables. Third, we
run out-of-sample trading strategies to assess the economic importance of the different predictors for forecasting excess returns.
𝐷𝑅𝑁𝐶 can generate significantly large SR gains and CE gains that exceed those provided by other predictors, which confirms the
economic significance of 𝐷𝑅𝑁𝐶 ’s predictive ability. Finally, we conduct the same tests using the excess returns on the WTI crude
il futures on different maturities. Our result is robust to the alternative market returns. Therefore, 𝐷𝑅𝑁𝐶 is a significant and

robust predictor for predicting daily, weekly and monthly excess returns in both statistical and economic terms. 𝐷𝑅𝑁𝐶 contains
substantial information about future USO returns. In contrast, 𝐷𝑅𝑁𝑉 and the two term structure predictors (𝑇𝑅𝑁𝑉 and 𝑇𝑅𝑁𝐶)
show relatively weak predictive ability for USO excess returns.
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Fig. B1. Implied volatility change correlation with the three-month at-the-money option.
The figure presents the cross-correlation estimates of the percentages of the implied volatility change series between the three-month at-the-money option (the
reference point) and all other contracts at different maturities and moneyness. The solid line plots the correlation estimates with contracts at the same three-month
maturity. The other lines plot the correlation estimates with contracts at other maturities (1 month, 2 months, 6 months and 12 months). The log percentage
implied volatility change is defined as 𝑅𝑖

𝑡+1 = ln(𝐼 𝑖
𝑡+1∕𝐼

𝑖
𝑡 ), where 𝐼 𝑖

𝑡 is the implied volatility on date 𝑡 for each option contract 𝑖.
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Appendix A. Proof

The pricing formula for a European call option contract with strike price 𝐾 and expiry date 𝑇 is given by

𝐵(𝑡, 𝑆𝑡, 𝐼𝑡;𝐾, 𝑇 ) = 𝑆𝑡

⎛
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⎜
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2
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⎠

, (A.1)

where 𝑆𝑡 is the underlying security price, 𝐼𝑡 is the implied volatility, 𝜏 = 𝑇 − 𝑡 is the time to maturity, 𝑘 = ln(𝐾∕𝑆𝑡) is the relative
trike and the terms 𝑧± = (𝑘 ± 1

2 𝐼
2
𝑡 𝜏) represent the convexity-adjusted moneyness of the call under the risk-neutral measure.

The instantaneous P&L of the option investment can be attributed to the variation in the calendar time, the underlying security
price and the implied volatility.

𝑑𝐵 =
[

𝐵𝑡𝑑𝑡 + 𝐵𝑆𝑑𝑆𝑡 + 𝐵𝐼𝑑𝐼𝑡
]

+
[ 1
2
𝐵𝑆𝑆 (𝑑𝑆𝑡)2 +

1
2
𝐵𝐼𝐼 (𝑑𝐼𝑡)2 + 𝐵𝐼𝑆 (𝑑𝑆𝑡𝑑𝐼𝑡)

]

+ 𝐽𝑡, (A.2)

here the partial derivatives are commonly labeled as the option’s theta (𝐵𝑡), delta (𝐵𝑆 ), vega (𝐵𝐼 ), gamma (𝐵𝑆𝑆 ), volga (𝐵𝐼𝐼 ) and
anna (𝐵𝐼𝑆 ), respectively. The last term 𝐽𝑡 is associated with random jumps in the stock price and option implied volatility. When
hey are purely continuous movements, the last term 𝐽𝑡 could be dropped.

The expectation of the option P&L attribution in Eq. (A.2) under the risk-neutral measure Q is divided by the instantaneous
nvestment horizon 𝑑𝑡,

𝐸𝑡 [𝑑𝐵] = 𝐵 + 𝐵 𝐼 𝜇 + 1𝐵 𝑆2𝜎2 + 1𝐵 𝐼2𝜔2 + 𝐵 𝐼 𝑆 𝛾 , (A.3)
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Fig. B2. Principal component analysis on implied volatility movements.
This figure presents the principal component analysis on the interpolated implied volatility change series. Panel a uses bar charts to show the explained variation
of the top 10 principal components on the 45 interpolated implied volatility change series and Panels b–d plot the loadings of the first, second, and third
principal component, respectively, across all moneyness levels and maturities.

where 𝜇 = 𝐸𝑡

[

𝑑𝐼𝑡
𝐼𝑡

]

∕𝑑𝑡, 𝜎2𝑡 = 𝐸𝑡

[

(

𝑑𝑆𝑡
𝑆𝑡

)2
]

∕𝑑𝑡, 𝜔2
𝑡 = 𝐸𝑡

[

(
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𝐼𝑡

)2
]

∕𝑑𝑡, 𝛾𝑡 = 𝐸𝑡
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𝑑𝑆𝑡
𝑆𝑡

, 𝑑𝐼𝑡𝐼𝑡

)]

∕𝑑𝑡.

𝜇𝑡 denotes the annualized risk-neutral expected rate of percentage change in the BMS implied volatility of the option contract.
𝜎2𝑡 , 𝜔2

𝑡 and 𝛾𝑡 denote the time-𝑡 conditional variance and covariance rate of the stock return and the implied volatility change.
The zero financing cost assumption and no dynamic arbitrage indicate that the risk-neutral expected return on the option

investment is zero, then the pricing relation is

−𝐵𝑡 = 𝐵𝐼𝐼𝑡𝜇𝑡 +
1
2
𝐵𝑆𝑆𝑆

2
𝑡 𝜎

2
𝑡 +

1
2
𝐵𝐼𝐼𝐼

2
𝑡 𝜔

2
𝑡 + 𝐵𝐼𝑆𝐼𝑡𝑆𝑡𝛾𝑡. (A.4)

nder continuous price and implied volatility movements and zero financing costs, no dynamic arbitrage requires that an option
ust be priced to balance out the option’s theta loss with expected gains and losses from the option’s vega, gamma, volga and vanna

xposures at any point in time.
The BMS theta (𝐵𝑡), cash vega (𝐵𝐼𝐼𝑡), cash vanna (𝐵𝐼𝑆𝐼𝑡𝑆𝑡) and cash volga (𝐵𝐼𝐼𝐼2𝑡 ) can all be represented in terms of the BMS

ash gamma (𝐵𝑆𝑆𝑆2
𝑡 ).

𝐵𝑡 = −1
2
𝐼2𝑡 𝐵𝑆𝑆𝑆

2
𝑡 , 𝐵𝐼𝐼𝑡 = 𝐼2𝑡 𝜏𝐵𝑆𝑆𝑆

2
𝑡 ,

2 2 2
(A.5)
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Theorem 1 (Carr and Wu, 2020). Assuming continuous price and implied volatility movements, and performing instantaneous P&L
ttribution on a European option investment based on the BMS pricing equation, a no-arbitrage pricing relation can be arrived at on the
asis of Eqs. (A.4) and (A.5)

𝐼2𝑡 =
[

2𝜏𝜇𝑡𝐼2𝑡 + 𝜎2𝑡
]

+
[

2𝛾𝑡𝑧+ + 𝜔2
𝑡 𝑧+𝑧−

]

, (A.6)

where 𝜇𝑡 and 𝜔2
𝑡 denote the risk-neutral conditional mean and variance of the implied volatility percentage change, 𝜎2𝑡 is the conditional

variance of the underlying security return and 𝛾𝑡 is the conditional covariance between the implied volatility percentage change and underlying
security return.

When 𝑧+ = 𝑘 + 1
2𝐴

2
𝑡 𝜏 = 0, the pricing equation for the at-the-money implied volatility is

𝐴2
𝑡 = 2𝜏𝜇𝑡𝐴2

𝑡 + 𝜎2𝑡 . (A.7)

Assumption 1. The expected rates of change for at-the-money implied volatilities of nearby maturities are the same,

𝜇𝑡(𝜏1) ≐ 𝜇𝑡(𝜏2), (A.8)

when |𝜏1 − 𝜏2| is small.

Under the local commonality assumption, the risk-neutral expected rate of implied volatility changes can be extracted from the
at-the-money implied variance slope within this maturity range [𝜏1, 𝜏2],

𝜇𝑡 =
𝐴2
𝑡 (𝜏2) − 𝐴2

𝑡 (𝜏1)

2
(

𝐴2
𝑡 (𝜏2)𝜏2 − 𝐴2

𝑡 (𝜏1)𝜏1
) . (A.9)

Assumption 2. The expected rate of implied volatility change scales proportionally with the at-the-money contract

𝜇𝑡𝐼
2
𝑡 = 𝜇𝐴

𝑡 𝐴
2
𝑡 . (A.10)

Under the assumption, the no-arbitrage (Carr and Wu, 2020) formula can be obtained by subtracting Eq. (A.7) from (A.6)

𝐼2𝑡 − 𝐴2
𝑡 = 2𝛾𝑡𝑧+ + 𝜔2

𝑡 𝑧+𝑧−. (A.11)

Appendix B. Implied volatility co-movements

See Figs. B1 and B2.
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