
Journal of Commodity Markets 30 (2023) 100328

Available online 28 April 2023
2405-8513/© 2023 Elsevier B.V. All rights reserved.

Regular article 

A Bayesian perspective on commodity style integration 

Ana-Maria Fuertes a,*, Nan Zhao b,# 

a Bayes Business School, City, University of London, EC1Y 8TZ, England, UK 
b Barclays Corporate and Investment Bank, London, 1 Churchill Place, London, E14 5RB, England, UK   

A R T I C L E  I N F O   

JEL classification: 
G13 
G14 

Keywords: 
Commodity risk premia 
Style integration 
Long-short portfolio 
Parameter estimation risk 
Bayesian portfolio optimization 

A B S T R A C T   

Commodity style integration is appealing because by forming a unique long-short portfolio with 
exposure to K mildly correlated factors, a larger and more stable risk premium can be extracted 
than with any of the standalone styles. A key decision that a commodity style-integration investor 
faces at each rebalancing time is the relative weighting of the factors. We propose a Bayesian 
optimized style-integration (BOI) strategy with excellent out-of-sample performance. Focusing on 
the problem of a commodity investor that seeks exposure to the carry, hedging pressure, mo
mentum, skewness, and basis-momentum factors, the evidence suggests that the BOI portfolio 
achieves better Sharpe ratios and certainty equivalent returns, among other performance metrics, 
than the 1/K style-weighted integrated portfolio, and a battery of sophisticated optimized in
tegrations. The findings survive the consideration of longer estimation windows, various com
modity score schemes, and alternative Bayesian priors.   

“Probability is an orderly opinion and inference from data is nothing other than the revision of such opinion in the light of relevant new 
information.“– Eliezer S. Yudkowsky 

1. Introduction 

In line with the theory of storage (Kaldor, 1939; Working, 1949; Brennan, 1958) and the hedging pressure hypothesis (Cootner, 
1960; Hirshleifer, 1988), there is predictive content for the cross-section of commodity futures returns in the roll-yield and the hedging 
pressure signals, respectively, both of which contain information about the inexorable backwardation and contango cycle.1 
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1 The theory of storage contends that commodity futures prices are driven by inventory levels and hence, it associates a backwardated or 
downward-sloping futures curve with scarce inventories and a high convenience yield. The hedging pressure hypothesis states that there is a risk 
transfer mechanism from hedgers or commercial traders (consumers or producers of the commodity) to speculators and thus, the futures price is set 
low (high) relative to the expected future spot price when hedgers are net short (long) so as to attract net long (short) speculation. The rise (fall) in 
the futures price as maturity approaches is the premium or compensation received by speculators for absorbing the net hedging demand. 
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Accordingly, a term-structure or carry risk premium can be extracted by taking long positions in commodity futures with the most 
downward sloping forward curves and simultaneous short positions in the commodity futures with the most upward sloping forward 
curves (Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006; Szymanowska et al., 2014; Koijen et al., 2018). Likewise, a hedging 
pressure premium can be captured by longing the commodities with the largest hedgers’ hedging pressure and shorting those with the 
smallest hedgers’ hedging pressure (Dewally et al., 2013; Basu and Miffre, 2013). 

A popular commodity investment style that has been linked not only with the backwardation/contango phases but also with 
mispricing and behavioural biases is the cross-sectional momentum or trend-following strategy which longs (shorts) the commodities 
with the best (worse) past performance (Miffre and Rallis, 2007; Fuertes et al., 2010; Asness et al., 2015). Echoing a large empirical 
literature on equities, evidence has been adduced also in support of a commodity skewness style. Investors that are simultaneously long 
and short in the commodities with the most negative and positive skew, respectively, can capture a premium which has been ratio
nalized in terms of investors’ preferences for lottery-type payoffs (Fernandez-Perez et al., 2018). Yet another celebrated commodity 
style uses the basis-momentum signal to capture a risk premium that relates to imbalances in the supply and demand of futures 
contracts that materialize when the market-clearing ability of speculators and intermediaries is impaired (Boons and Prado, 2019). 
Albeit not exhaustive, this catalogue of commodity investment styles or factors is fairly representative of the recent empirical 
literature. 

The performance of a given standalone style may temporarily weaken and later recover because of investor crowding effects (e.g., 
Kang et al., 2021) or because the way the factor is priced by the market changes over time (e.g., Bhattacharya et al., 2017). The upshot 
is that the performance of an individual style is likely to be time-varying. One way to alleviate this issue is through simultaneous 
exposure to multiple style or factors. The idea is simple: form a unique long-short style-integrated portfolio which, in essence, is the 
application of the old adage don’t put all your eggs in the same basket to factor investing. The style-integrated portfolio benefits from 
factor diversification by capturing a sizeable risk premium in a fairly stable manner.2 

In practice, a key decision that an investor faces at each portfolio rebalancing time t is the relative importance or weight ω1,t ,…,ωK,t 
to give to the sorting signals that underlie the K individual styles. With historical excess returns on each of the styles, the investor can 
obtain the style-weights as solutions of an optimization problem formulated according to her chosen economic criteria (e.g., mean- 
variance utility maximization). However, these optimized style-integrations (OIs) are bedevilled by parameter estimation risk and, 
for this reason, they are no better than the naïve equal-weighted style integration (EWI) as shown by Fernandez-Perez et al. (2019). 
Style-integration is thus a problem that remains open for Bayesian notions. 

The present paper contributes to the style-integration literature in various directions. We put forward a novel Bayesian optimized 
style-integration (BOI) method that controls for parameter estimation risk. Specifically, we embed the mean-variance optimized style- 
integration (OI) problem within a Bayesian framework that treats the style-weights at each portfolio formation time as random var
iables. The essence of the BOI is that the investor establishes a prior distribution for the style-weights according to her beliefs or 
information, and this distribution is mapped onto a prior distribution for the expected commodity excess returns. The priors are 
updated with new evidence to obtain the posterior distributions of interest. We document empirically the superiority of the Bayesian 
style-integration vis-à-vis the challenging EWI and a battery of alternative OIs for a wide cross-section of commodity futures contracts. 

The findings suggest that, by contrast with the traditional “sophisticated” OI portfolios, the BOI portfolio is able to extract a 
significantly larger commodity risk premia (net of trading costs) than the EWI portfolio benchmark in a fairly consistent manner. This 
finding is not challenged in robustness tests that use longer estimation windows to lessen the OI parameter estimation risk or consider 
alternative commodity score schemes and Bayesian priors. 

Our paper complements a literature on combining multiple asset characteristics to inform optimal portfolio choice (e.g., Brandt 
et al., 2009; Barroso and Santa-Clara, 2015; Fernandez-Perez et al., 2019; DeMiguel et al., 2020). In a comparison across 
style-integration methods, Fernandez-Perez et al. (2019) study the performance of the naïve EWI and a battery of OIs which include, 
for instance, the Brandt et al. (2009) approach where the style-weights maximize the expected power utility of the style-integrated 
portfolio. Their evidence suggests that the naïve EWI portfolio is unrivalled in terms of risk-adjusted performance by the OIs. This 
evidence echoes the DeMiguel et al. (2009) finding in the portfolio choice problem that “of the various optimizing models in the 
literature, there is no single model that consistently delivers a Sharpe ratio or a certainty-equivalent-return (CER) higher than that of 
the 1/N portfolio, which also has a very low turnover, which suggests that the out-of-sample gain from optimal diversification is more 
than offset by estimation error.” Our study is the first to show that, once Bayesian principles are embedded into the style-integration 
problem, the BOI portfolio solution outperforms the challenging EWI portfolio. 

Our paper complements also a prolific literature that has applied Bayesian principles to asset allocation and portfolio choice. Early 
theoretical studies examined optimal asset allocation and argued that parameter uncertainty should not be ignored (Zellner and 
Chetty, 1965; Klein and Bawa, 1976; Brown, 1979; Jobson and Korkie, 1980). These and other studies suggest using Bayesian prin
ciples to mitigate the noise that bedevils the optimal portfolio solution due to the estimation error in the assets covariance matrix and, 
especially, in the expected returns vector. From the different lens of commodity style-integration, our article complements recent 
advances in Bayesian portfolio allocation (Polson and Tew, 2000; Pástor and Stambaugh, 2000; Tu and Zhou, 2010; Bauder et al., 

2 The third generation commodity indices, which are also long-short, enable investors to gain exposure to commodities without concerns about 
the rolling of contracts, margin calls, and posting collateral. However, these indices rely, by construction, on one or two signals at most (see e.g., 
Fethke and Prokopczuk, 2018). By contrast, the signal-mixing style-integration framework laid out in Fernandez-Perez et al. (2019) offers full 
flexibility as regards the number of different style premia to capture. Sakkas and Tessaromatis (2020) adopt instead the two-step (or bottom up) 
approach where standalone style long-short portfolios are formed first and then they are combined into a multi-factor portfolio. 
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2021). For instance, Pástor and Stambaugh (2000) add Bayesian elements to the portfolio choices of quadratic utility investors who use 
sample evidence to update prior beliefs centred on risk-based or characteristic-based pricing models. 

The remainder of the paper is organized as follows. Section 2 presents the methodology. Section 3 describes the data and discusses 
the main empirical results. Section 4 presents results from various robustness checks before concluding the study in a final section. 

2. Methodology 

2.1. Commodity style-integration framework 

We adopt the framework laid out in Fernandez-Perez et al. (2019) to conduct a structured study of alternative commodity 
style-integration approaches. Let k = 1, ...,K denote the standalone styles or factors considered by the commodity investor, and i = 1,
...,N the cross-section of commodity futures contracts available. The investor constructs at each time t a style-integrated long-short 
portfolio with allocations dictated by the N × 1 asset allocation vector Φt as 

Φt ≡ Θt × ωt =

⎛

⎜
⎜
⎝

θ1,1,t ⋯ θ1,K,t

⋮ ⋱ ⋮

θN,1,t ⋯ θN,K,t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ω1,t

⋮

ωK,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

φ1,t

⋮

φN,t

⎞

⎟
⎟
⎠ (1)  

where Θt is the N × K commodity-score matrix, and ωt the K × 1 style-weight vector. The sign of the allocations indicates the type of 
position; a positive φi,t ≡ φL

i,t > 0 (negative φS
i,t < 0) represents a long (short) position on the ith commodity futures contract at time t. 

Following Brandt et al. (2009) and Barroso and Santa-Clara (2015) inter alia, we start by using directly the standardized-signals as 
commodity scores; thus, Θt contains by column the predictive signals per style with zero mean and unit standard deviation, i.e. θi,k,t ≡

x̃i,k,t = (xi,k,t − xk,t)/σx
k,t where xi,k,t is the k th characteristic or predictive signal for asset i at time t. 

The commodity allocations vector Φt = (φ1,t , ...,φN,t)
′

is given by Equation (1) as a weighted (by ωk,t) average of the commodity 

scores per style θi,k,t . The allocations are normalized, φ̃i,t = φi,t/
∑N

i=1

⃒
⃒
⃒
⃒φi,t

⃒
⃒
⃒
⃒, to ensure that 100% of the investor’s mandate is invested 

∑N
i=1

⃒
⃒
⃒
⃒φi,t

⃒
⃒
⃒
⃒ = 1. The style-integrated portfolio thus constructed at time t is held until t + 1 and, under full-collateralization of the futures 

positions, its excess return is given by. 

RP,t+1 = Φ̃
′

tRt+1 =
∑N

i=1
φ̃i,tRi,t+1 (2)  

where Rt ≡ (R1,t ,R2,t ,…,RN,t)
′

is the N × 1 vector of time t excess returns for the standalone styles; Ri,t = ln

(
f front
i,t

f front
i,t− 1

)

with f front
i,t denoting 

the price of the front-end futures contract for the ith commodity. At time t + 1 the investor rebalances the style-integrated portfolio by 
using calculating Φ̃t+1, and so forth. The framework encapsulated in Equation (1) is very flexible in that it nests not only a diversity of 
style-integration approaches but also each of the underlying standalone styles k = 1,…,K through a sparse vector ωt with the k th entry 
set at 1 and all other entries at 0. We discuss the standalone styles in Section 2.2 below. 

Broadly speaking, two perspectives can be adopted to choose the style weights or relative importance of the factors in the style- 
integrated portfolio: i) time-constant and style-identical weights to sidestep estimation noise, and ii) time-varying and style- 
heterogeneous weights estimated from past data. We discuss further each of these perspectives in Section 2.3. 

2.2. Traditional style-integration strategies 

Various investment styles or factors have been suggested in the commodity literature. Without loss of generality, in this paper we 
focus on the factors known as carry, momentum, hedging pressure, skewness, and basis-momentum In each standalone style, the 
corresponding long-short portfolio formed at each time t buys (sells) the commodity quintile which is expected to appreciate 
(depreciate) the most according to the underlying sorting (or predictive) signal. 

The sorting signal in the carry (term-structure or basis) style is the futures roll-yield defined as the difference between the loga
rithmic prices of the front- and second-nearest maturity contract (Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). The hedging 
pressure style is based on the net short positions of hedgers or commercial traders calculated as the number of short minus long po
sitions over total positions (Basu and Miffre, 2013). The momentum style is based on past performance as sorting signal given by the 
average of commodity futures returns (Erb and Harvey, 2006; Miffre and Rallis, 2007). The skewness style exploits the degree of 
asymmetry of the commodity futures return distribution estimated through the Pearson coefficient of skewness (Fernandez-Perez et al., 
2018). Finally, the basis-momentum style (Boons and Prado, 2019) exploits the differential momentum between the first- and 
second-nearest commodity futures contracts. Appendix A provides detailed definitions for each signal. 

The simplest approach to construct a long-short portfolio that benefits from factor or style diversification is the equal-weighted 
integration (EWI) that assigns time-constant, identical weights to all the sorting signals, i.e. ωt = (1/K, ...,1/K)

′

in Equation (1). 
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The EWI portfolio is appealing because the resulting allocations Φt do not suffer from estimation error. Another reason is that EWI does 
not require a “ranking” of the standalone styles at each portfolio formation time using past data which entails choosing a length L for 
the estimation window. Last but not least, the N commodity allocations generated by the EWI strategy are likely to be relatively stable 
(low turnover) which lessens the impact of transaction costs. 

An investor seeking simultaneous exposure to multiple factors can resort instead to an OI strategy. The key idea is that the style- 
weights vector is now treated as a fixed, unknown parameter to be estimated. The various OIs differ in the optimal estimator ω̂t used 
where “optimal” is broadly used to indicate that the style-weights are defined according to a criterion. 

Let the first two moments of the distribution of the N commodity futures excess returns, Et(Rt+1) and Vart(Rt+1), be parameterized 
as μt and Vt denoting, respectively, the N × 1 mean and corresponding N × N covariance. These parameters can be estimated at each 
portfolio formation time t through the corresponding sample estimators μ̂t and V̂ t using the observed excess returns {Rt− (L− 1),…,Rt− 1,

Rt} over a length-L past window. 
Mean-variance utility maximization (MV) 
Assuming an investor with constant relative risk aversion preferences (CRRA) and normally distributed portfolio returns, the 

weight estimator ω̂t is defined as the K × 1 vector that maximizes the quadratic utility of the style-integrated portfolio, i.e. 
maxωt Et [U(RP,t+1)] with 

Et
[
U
(
RP,t+1

)]
=Et

(
RP,t+1

)
−

1
2

γVart
(
RP,t+1

)

= Φ′

tμt −
γ
2
Φ′

tVtΦt

= (Θtωt)
′

μt −
γ
2
(Θtωt)

′

Vt(Θtωt)

(3)  

where RP,t+1 = Φ′

tμt = (Θtωt)
′

Rt+1 is the style-integrated portfolio return from time t to t+1, with Φt denoting the N× 1 allocation 
vector, Equation (1), and γ the coefficient of relative risk aversion. By solving the first-order maximization condition, ∂Et [U(RP,t+1)]

∂ωt
= 0,

the MV optimized style-weights at each portfolio formation time t are given by 

ω̂t =
1
γ
(
Θ

′

t V̂ tΘt
)− 1

Θ
′

t μ̂t (4)  

and the commodity allocations obtained by plugging (4) in Equation (1) are normalized φ∼i,t = φi,t/
∑N

i=1

⃒
⃒
⃒
⃒φi,t |; likewise, we conduct this 

normalization in all the subsequent OIs. 
Mean-variance utility maximization under shrinkage covariance (MVshrinkage) 
Forming a mean-variance efficient portfolio requires estimating the assets’ covariance matrix. The sample covariance matrix V̂ t is 

typically not well-conditioned meaning that its inverse amplifies the estimation error, and may not even be invertible, when the 
number of assets N is large. To deal with this estimation issue Ledoit and Wolf (2003) propose imposing some structure in the 
covariance estimator. Specifically, they derive a shrinkage covariance matrix estimator St that is both well-conditioned and more 
accurate than the sample covariance matrix estimator. Seeking to reduce estimation uncertainty in the style-integration weights we 
implement a mean-variance OI method with shrinkage covariance matrix St defined as 

St =(1 − λ) V̂ t + λ It (5)  

where λ It is a scalar multiple of the N × N identity matrix, and λ ∈ (0, 1) is the shrinkage intensity parameter St ≈ V̂ t if λ→  0, and St ≈

It if λ→ 1. Ledoit and Wolf (2003) show that the optimal shrinkage parameter defined as the λ∗ that minimizes the distance between the 
shrinkage covariance matrix estimator, St , and the true covariance matrix, Vt , is given by 

λ∗ =max
{

0,min
{κ

L
, 1
}}

(6)  

where L is the length of estimation window for V̂ t , and κ is replaced by a consistent estimator as detailed in Appendix B.1. We replace 
the sample covariance estimator V̂ t in the MV style-weights solution, Equation (4), by S∗

t to derive the MVshrinkage style-weight 
estimator as 

ω̂t =
1
γ
(
Θ′

tS
∗
t Θt
)− 1

Θ′

t μ̂t (7) 

Appendix B.1 provides details on the implementation of the MVshrinkage style-integration. 
Variance minimization (MinVar) 
The MinVar weights ωt are defined as those that minimize the second moment or risk of the style-integrated portfolio. Accordingly, 

the style-integration investor solves at each portfolio formation time t the variance minimization problem minωt Et [(RP,t+1 − RP)
2
]

where 
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Et
[(

RP,t+1 − RP
)2]

=Vart
(
RP,t+1

)

=
Φ′

tVtΦt =(Θtωt)
′

Vt(Θtωt) (8)  

with Φt = Θtωt denoting the style-integrated commodity allocations given by Equation (1). The solution of the first-order condition 
∂Vart(RP,t+1)

∂ωt
= 0, defines the MinVar style-weights as 

ω̂t =

(
Θ′

t V̂ tΘt
)− 1

Θ′

t1

1′ Θt
(
Θ′

t V̂ tΘt
)− 1

Θ′

t1
(9)  

where 1 is an N × 1 vector of 1s . In essence, the MinVar approach reduces the dimensionality of the mean-variance parameter space by 
focusing on the risk of the style-integrated portfolio. 

Style-volatility timing (StyleVol) 
Kirby and Ostdiek (2012) develop a portfolio allocation method which also focuses on risk but with an additional dimensionality 

reduction assumption: zero covariances among asset returns. The solution, known as volatility timing in the literature, prescribes the 
allocation of wealth to each asset proportionally to the inverse of its risk as given by its past return variance. This approach can be 
adapted to the style-integration problem by shifting the focus to the risk of the standalone styles. Thus, the StyleVol style-weights 
estimator is defined as 

ω̂t =
(

1
/

σ̂2
1,t,…, 1

/
σ̂2

K,t

)
(10)  

with σ2
k,t denoting the kth entry of the K × K styles-covariance matrix Σt obtained from a window of past L-month data. Thus, according 

to the StyleVol approach, which assumes style independence, the more volatile a style has been in the recent past the less weight it 
receives. 

Diversification-ratio maximization (MaxDiv) 
Choueifaty and Coignard (2008) define the diversification ratio of a portfolio as the ratio of the aggregate individual assets’ 

volatilities divided by the portfolio’s volatility. Adapted to the present context, the diversification ratio of the style-integrated portfolio 
can be defined as 

D(Φt)=
Φ′

tΩt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Φ′

tVtΦt

√ (11)  

where Φt ≡ Θtωt is the style-integrated commodity allocation, Equation (1), and Ωt = (σ2
1,…, σ2

N) is the diagonal of the commodity 
covariance matrix Vt. Accordingly, the MaxDiv style-weights estimator ω̂t is defined as the solution of the maximization problem 

maxωt D(ωt)=
(Θtωt)

′

Ωt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Θtωt)
′

Vt(Θtωt)

√ (12) 

However, as no closed-form solution exists, we obtain the MaxDiv weights through the BFGS algorithm that belongs to the Quasi- 
Newton group of numerical optimization methods. To our best knowledge, the MaxDiv style-integration has not been studied as yet in 
the literature. 

Power utility maximization (PowerU) 
Deriving the style-weights under quadratic (mean-variance) utility has the advantage of tractability but it neglects the higher 

moments of the style-integrated portfolio return distribution, unlike the power utility. The PowerU style-weights estimator ω̂t is the K×
1 vector that maximizes the expected power utility of the style-integrated portfolio. Formally, 

maxωt

[(
1 + RP,t+1

)1− γ
− 1

1 − γ

]

=maxωt

[
(1 + (Θtωt)

′

Rt+1)
1− γ

− 1
1 − γ

]

(13)  

where RP,t+1 =
∑N

i φ̃i,tRi,t+1 with φ̃i,t = φi,t/
∑N

i=1
⃒
⃒φi,t

⃒
⃒ =

∑K
k=1

θi,k,t ωk
∑N

i=1

⃒
⃒∑K

k=1
θi,k,tωk

⃒
⃒ and γ is the coefficient of relative risk aversion. As no closed- 

form solution exists, we solve Equation (13) numerically, again via the Quasi-Newton BFGS algorithm, to find the PowerU style- 
weights. 

We should note that in the original PowerU style-integration approach, as put forward by Brandt et al. (2009), the N asset allo
cations are defined as optimal deviations from the benchmark, e.g., value-weighted, equity market portfolio. The style-integration 
allocations derived from our Equation (1) can be rewritten as Φt = Φt + Θtωt with Φt = (φ1,t , ...,φN,t) denoting the benchmark al
locations. Equation (13) is thus the Brandt et al. (2009) approach adapted to zero-net-supply assets (φi,t = 0) such as futures and 
currencies, as implemented in Fernandez-Perez et al. (2019) and Barroso and Santa-Clara (2015), respectively. 

Maximization of power utility under disappointment aversion (PowerDA) 
Traditional portfolio choice models that build on the CRRA preferences assumption cannot generate non-participation in financial 

markets regardless of the value assumed for the coefficient of relative risk aversion, except in the presence of implausibly large trading 
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costs (Liu and Loewenstein, 2002). Hence, these models tend to overpredict investors’ equity positions and cannot generate the 
observed cross-sectional variation in portfolio choice. A way to mitigate this problem is to extend the expected utility framework to 
incorporate loss aversion. 

Gul (1991) develops an axiomatic model of investors’ preferences which can generate disappointment aversion (DA) and includes 
expected utility as a special case. Ang et al. (2005) utilize this model to reformulate the dynamic portfolio choice problem and show 
that it can explain better the actual cross-sectional variation in equity portfolio holdings, including optimal non-participation. These 
ideas can be utilized to design a PowerDA style-integration strategy. Let the expected utility framework be extended to incorporate DA 
as 

(1 + δ)1− γ
− 1

1 − γ
=

1
K

(∫ δ

− ∞
U
(
RP,t+1

)
dF
(
RP,t+1

)
+A

∫ ∞

δ
U
(
RP,t+1

)
dF
(
RP,t+1

)
)

(14)  

where F(RP,t+1) is the cumulative density of the style-integrated portfolio return RP,t+1 = (Θtωt)
′

Rt+1, with the parameter A capturing 
the DA, and δ the certainty equivalent outcome. Thus, for the loss-averse investor 0 ≤ A < 1, and good outcomes (above δ) are 
downweighted relative to bad outcomes (below δ).3 The scaling parameter K is defined as 

K = Pr
(
RP,t+1 ≤ δ

)
+ A Pr

(
RP,t+1 > δ

)
, (15)  

where Pr(•) denotes probability. The PowerDA style-weights estimator ω̂t (alongside the δ̂ estimator) is obtained by solving simul
taneously Equation (14) and the first-order condition 

Et

[
dU
(
RP,t+1

)

dωt
1{RP,t+1≤δ}

]

+ AEt

[
dU
(
RP,t+1

)

dωt
1{RP,t+1>δ}

]

= 0 (16)  

where 1 is an indicator function. Appendix B.2 details the PowerDA style-weights calculation. 

2.3. Bayesian optimized style-integration (BOI) strategy 

As shown by DeMiguel et al. (2009), parameter estimation uncertainty explains the inferior out-of-sample (OOS) performance of 
the Markowitz’s mean-variance portfolio allocation versus the naïve constant 1/N allocation. Likewise, estimation risk can plausibly 
rationalize why a battery of OIs are unable to outperform the naïve EWI in the style-integration analysis of Fernandez-Perez et al. 
(2019). The purpose of this section is to design an optimized style-integration approach that incorporates Bayesian principles in order 
to account for parameter estimation risk – we refer to this approach as Bayesian optimized style-integration (BOI). One of the key 
contributions of Bayesian statistics is that by conceptualizing the parameters as unknown random variables (instead of as fixed, un
known quantities) the parameters have probability distributions attached to them, and therefore the parameter uncertainty is 
explicitly tackled. Bayes’ theorem encapsulates this idea as Pr(θ|y)∝Pr (θ) × Pr (y|θ) where ∝ indicates proportionality, y denotes the 
evidence, and θ the unknown parameter. Bayes’ theorem can be read as “posterior = prior × evidence” which says that the prior 
distribution for the parameter, denoted Pr(θ), often simply called the prior, can be updated with the loglikelihood or probability of 
observing the data given the model, denoted Pr (y|θ), to obtain the posterior distribution Pr(θ|y) of interest. Thus, while non-Bayesian 
statistics is built on asymptotics (T→∞) to “deal” with parameter estimation risk, Bayesian statistics embeds such risk into the problem 
by updating a chosen prior probability (for the parameter) with new data. 

According to the MV style-integration approach, the investor adopts at each time t the style weights that maximize the expected 

quadratic utility of the style-integrated portfolio, ω̂t =
1
γ(Θ

′

t V̂ tΘt)
− 1

Θ′

t μ̂t . These weights hinge on the mean vector and covariance 

matrix estimates, ̂μt and V̂ t , obtained from a history of L past excess returns on the N commodities. The larger the parameter estimation 
risk the more the sample utility U(ω̂t) deviates from the true utility U(ωt) and, in turn, the more sub-optimal the OI portfolios become 
in practice. 

In order to account for parameter estimation risk in optimal portfolio allocation, Zellner and Chetty (1965) embed the expected 
utility maximization problem into a Bayesian framework. We adapt this approach to the problem of commodity style-integration. Let 
T t denote the information available at time t, and U(ωt) the quadratic utility of the style-integrated portfolio. The BOI style-weight 
estimator is defined as the solution of the maximization problem 

maxωt

∫ ∞

− ∞
U(ωt)Pr(Rt+1| T t)dRt+1 (17)  

which combines the quadratic utility of the style-integrated portfolio and the predictive density Pr(Rt+1|T t). The latter can be obtained 
by integrating out the unknown μt and Vt as 

3 The, parameter value A = 1 generates the power utility with CRRA preferences. 
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pr(Rt+1|T t)=

∫

μt

∫

Vt

Pr(Rt+1, μt,Vt|T t)dμtdVt

=

∫

μt

∫

Vt

Pr(Rt+1|μt,Vt,T t)Pr(μt,Vt|T t)dμtdVt

(18)  

where Pr(Rt+1|μt ,Vt ,T t) is the conditional probability, and Pr(μt ,Vt |T t) the posterior probability.4By applying the Bayes rule, the 
posterior probability can be obtained from priors for the commodity expected excess returns μt and corresponding covariance matrix 
Vt using the Markov Chain Monte Carlo (MCMC) simulation method as detailed in Appendix B.3. 

A key idea behind the specific BOI approach proposed is that investors do not need explicitly to formulate a prior for μt. Their beliefs 
(or information) on the past relative performance of the styles can be harnessed to form a prior for ωt which can next be mapped onto a 
prior for μt. To accomplish this, we adhere to the MV style-integration solution, Equation (4), which establishes a one-to-one relation 
between ωt and μt as 

μt = γVΘωt (19)  

where VΘ = (Θ′

t)
− 1
(Θ′

tVtΘt). The BOI method that we propose is based on a prior distribution for the style-weights ωt which is 
subsequently mapped into a prior distribution for the commodity excess returns μt. Specifically, we begin by formulating the prior for 
ωt as 

ωt ∼ N
(

ω0,
1
γ
V − 1

Θ Vμ

)

(20)  

where Vμ is the covariance of the prior distribution for μt . Equation (20) says that the prior distribution for ωt is Normal with mean ω0 

and covariance 1γV
− 1
Θ Vμ which, in essence, represents the uncertainty about the prior. The prior for μt , as implied from Equation (19), is 

μt ∼ N
(
γVΘω0,Vμ

)
(21)  

where Vμ captures how disperse μt is around γVΘω0, namely, the confidence on the prior. 

We begin by adopting ω0 =

(
1
K, ...,

1
K

)′

as our uninformative prior for the style-weights. The confidence on the prior for μt is 

modelled as Vμ = Vt
s2 where s2 is the average of the commodity return variances (diagonal elements of Vt) based on a past window of L 

months. The prior for Vt is the inverse Wishart distribution as it is typical in Bayesian estimation of a covariance matrix (e.g., Gelman 
et al., 2015; Tu and Zhou, 2010; Pástor and Stambaugh, 2000). Specifically, we adopt Vt ∼ IW(Λ0, ν) with scale matrix Λ0 = IN and 
degrees of freedom parameter ν = N+ 1 = 29. The choice of priors for the style-weights and covariance matrix is revisited in the 
robustness tests section after the main empirical results are discussed. 

The Markov Chain Monte Carlo (MCMC) simulation method is widely used in Bayesian statistics to derived the posterior distri
bution when a closed-form expression is hard to derive. Accordingly, sampling from the commodity return history we obtain M 
simulated commodity excess return sequences {Rm,t− (L− 1),…,Rm,t− 1,Rm,t}

M
m=1. These simulated returns are the key inputs to obtain the 

posterior density pr(μt ,Vt |T t) using the Gibbs sampling algorithm which is one of the most popular MCMC methods (e.g., Chen et al., 
2012). In our empirical analysis, we generate M = 10,000 sequences. Finally, with the posterior density at hand, pr(μt ,Vt |T t), the MV 
portfolio optimization problem, Equation (3), is solved at each portfolio rebalancing time t to obtain the BOI style-weight estimator ωt . 
Appendix B.3 provides further details on the BOI implementation. Appendix C provides a list of all the style-integrations. 

2.4. Performance evaluation metrics and tests 

All the style-integration strategies are deployed sequentially with rolling windows of past data for the N commodities. Specifically, 
at the end of the each month t, the commodity excess return histories {Rt− (L− 1),…,Rt} are used to estimate the style-weights ωt . The 
style-integrated portfolio formed according to Equation (1) is held for one month, the portfolio formation process is repeated at month- 
end t+1, and so on. This enables a monthly sequence of OOS excess returns for each of the strategies. Seeking to reduce the parameter 
uncertainty that afflicts the traditional OIs, in robustness tests we consider longer windows. 

The OOS performance of the style-integration strategies is appraised through various metrics. We calculate the mean excess return 
or risk premium, alongside the total risk (variance of excess returns), downside risk (semi-deviation and maximum drawdown), and 
left-tail risk (1% Value-at-Risk). Risk-adjusted performance is gauged with the Sharpe ratio (SR) and non-normality robust Sortino and 
Omega ratios. To provide statistical significance to our findings as regards the comparison of Sharpe ratios between the jth optimized- 
integration strategy and the EWI benchmark, we deploy the Ledoit and Wolf (2008) and Opdyke (2007) tests for the one-sided hy
potheses H0 : ΔSRj ≤ 0 versus HA : ΔSRj > 0, where ΔSRj = SRj − SREWI. We also deploy the Jobson and Korkie (1980) test with the 
Memmel (2003) correction for the two-sided hypotheses H0 : ΔSRj = 0 versus HA : ΔSRj ∕= 0, as in DeMiguel et al. (2009, 2020). 

Another useful metric is the certainty equivalent return (CER) defined as the guaranteed or risk-free return that an investor is 

4 The BOI approach proposed can be easily generalized to any non-quadratic utility. 
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willing to accept instead of deploying a portfolio strategy that promises a higher but uncertain return. As in prior studies, we calculate 
the CER as 

CERP =RP,t −
γ
2

Var
(
RP,t
)

(22)  

where RP,t and Var(RP,t) are, respectively, the mean and variance of the style-integrated portfolio OOS excess returns, and γ is the 
relative risk aversion coefficient.5 The significance of the CER differential between a (B)OI portfolio and the EWI benchmark, H0 :

ΔCERj = 0 vs HA : ΔCERj ∕= 0 with ΔCERj = CERj − CEREWI is assessed through a GMM test using the Newey-West spectral density (e. 
g., DeMiguel et al., 2009; Anderson and Cheng, 2016).6 

To assess the trading intensity of different style-integration methods, which can impact the risk premium captured net of trans
action costs, we calculate the portfolio turnover (TO) 

TOj =
1

T − L

∑T − 1

t=L

∑N

i=1

( ⃒
⃒φ̃j,i,t+1 − φ̃j,i,t+

⃒
⃒
)

(23)  

where t = 1,…,T denotes each of the portfolio rebalancing times (month-end), φ̃j,i,t+1 is the ith commodity allocation weight at t+1 by 
the j th style-integrated portfolio, while φ̃j,i,t+ = φ̃j,i,teRi,t+1 is the actual portfolio weight right before the rebalancing at t+ 1 with Ri,t+1 

denoting the monthly return of the i th commodity constituent from t to t+ 1. Thus, the TO metric, Equation (23), provides the average 
of all the trades incurred and embeds the mechanical evolution of the allocation weights due to within-month price dynamics. 

Moreover, we measure how the transaction costs implied by the different TOs of the style-integrated portfolios impact on their 
performance. Marshall et al. (2012) provide a round-trip estimate of 8.6 basis points (bp) representing the spread of an investor who is 
prepared to wait up to 60 min for execution. For more impatient investors that require immediate execution the transaction cost is 25.8 
bp. The net excess return of the style-integrated portfolios 

R̃j,t+1 =
∑N

i=1
φ̃j,i,t+1Ri,t+1 − TC

∑N

i=1

⃒
⃒φ̃j,i,t+1 − φ̃j,i,t+

⃒
⃒ (24)  

is calculated, first, using TC = 8.6 bp for consistency with extant commodity risk premia studies (Fernandez-Perez et al., 2019; Pro
kopczuk et al., 2023).7 Second, to reflect the costs faced by more impatient traders we adopt the conservative TC = {17.2,25.8} bp 
which represent the mid-point and upper limit of the range of costs provided by Marshall et al. (2012). 

For the estimation of the style-weights according to the MV, MVshrinkage, PowerU, and PowerDA style-integration strategies, 
Equations ((3), (7), (13) and (14), respectively. And the CER calculation, Equation (22), we assume a moderate risk aversion level γ =

5; see e.g., Brandt et al., 2009; Gao and Nardari, 2018; Fernandez-Perez et al., 2019). As in Fernandez-Perez et al. (2019), we adopt the 
disappointment aversion level A = 0.6 in Equation (15). 

3. Data and empirical results 

3.1. Data 

The empirical analysis uses settlement prices and open interest data for a cross-section of futures contracts on 28 commodities 
pertaining to various sectors: agriculture (cocoa, coffee, corn, cotton, frozen concentrated orange juice, oats, rough rice, soybeans, 
soybean meal, soybean oil, sugar 11, wheat, and lumber), energy (PJM electricity, gasoline RBOB, heating oil, light sweet crude oil, 
natural gas of Henry hub, and unleaded gasoline), livestock (feeder cattle, frozen pork bellies, lean hogs, and live cattle), and metal 
(high-grade copper, gold, palladium, platinum, and silver 5000). In additional tests to assess the robustness of the main findings, we 
expand the cross-section which several contracts some of which are rather less liquid. 

Daily prices are obtained from Refinitiv Datastream. Open interest data is available weekly from the Commitment of Traders report 
of the U.S. Commodity Futures Trading Commission (CFTC). The sample period is January 1992 to December 2021. Futures returns are 
computed with the price of the front-end futures contract up to the month preceding the maturity month when positions are rolled to 
the next contract to avoid any erratic price behaviour near maturity. 

5 The CER of the portfolio strategy (or “gamble”) that will pay the random return RP is the return that gives the investor the same utility as the 
expected utility of the portfolio U(CER) = E(U(RP)). The CER metric, Equation (22), as deployed in DeMiguel et al. (2009), Anderson and Cheng 
(2016), and Fernandez-Perez et al. (2019) inter alia assumes that investors exhibit quadratic utility for the evaluation.  

6 This test defines the CER differential as a parameter in a GMM system with four unknowns and four equations: E[Rj,t+1 − μ] = 0 and 

E
[
μ −

γ
2(Rj,t+1 − μ)2

− q
]
= 0, with Rj,t+1 denoting the excess return of the jth portfolio strategy, alongside E[REWI

t+1 − μEWI ] = 0 and 

E
[
q − μEWI +γ

2(R
EWI
t+1 − μEWI)

2
− Δ
]
= 0. The t-statistic for H0 : Δ = 0 vs HA : Δ ∕= 0 is based on autocorrelation robust Newey-West standard errors and 

so only return stationarity is required.  
7 Prokopczuk et al. (2023) obtain a very close TC estimate at 10 bp on average across 27 commodities over the 1959 to 2018 period and document 

a downward time-trend in the TCs. 
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3.2. Preliminary data analysis 

Table 1 summarizes the distribution of excess returns for the 28 commodity futures contracts and cross-correlations. The mean 
excess returns vary widely across commodities and time. The individual excess returns are generally insignificant on average over the 
sample period. Moreover, there is no evidence of monthly return predictability from the prior returns as borne out by very small first- 
order autocorrelations (e.g., the largest AR (1) is obtained for gasoline RBOB at 0.217). The distributions of returns are broadly 
symmetrical – exceptions are sugar, RBOB gasoline, and platinum with a large negative skew. Some futures contracts exhibit the heavy- 
tailed property such as sugar, electricity, RBOB gasoline and platinum with kurtosis coefficients of 8.707, 6.829, 10.622 and 5.235, 
respectively. The average pairwise correlations of each commodity futures excess returns with the excess returns of the commodities in 
the same (and different) sector(s) indicate that the within-sector price dynamics is highly similar, but far more unrelated across sectors. 

Table 2 summarizes the out-of-sample performance of the basis, hedging pressure, momentum, skewness and basis-momentum 
styles statically over the full sample period (Panel A), and dynamically over non-overlapping 6-year subperiods (Panel B). 

The reward-to-risk profiles suggested by the Sortino, Omega, and Sharpe ratios, together with the crash risk profiles suggested by 
the maximum drawdown, 1% VaR, and semi-deviation, Panel A, endorse primarily the skewness and basis-momentum styles. How
ever, the picture changes over subperiods as the skewness style ranks last in the second subperiod and the basis-momentum ranks 
almost last in the third subperiod. The fact that their relative performance is unstable – no individual style emerges as consistently 
superior – poses a challenge for investors in terms of choosing an individual style to adhere to. This motivates the idea of signal 
diversification that can be harnessed through a style-integration strategy; namely, style-integration can be used as “hedge” against 
temporary style under-performance. 

Fig. 1 plots the cumulative out-of-sample Sharpe ratio of the standalone styles. The first point in the graph is based on monthly 
excess returns within the initial 60-month window, and the last point is based on the monthly excess returns over the entire sample 
period. The graph confirms the instability in individual style rankings over time which calls for style-integration. 

Next we examine the extent of dependence among the standalone styles. In order to provide a complete picture, Table 3 reports 
three different measures of (non)linear dependence. The widely-used Pearson correlation (Panel A) suggests that the five styles are 
mildly overlapping. This is confirmed by the Spearman rank-order correlation (Panel B), and the Kendall correlation (Panel C) that 
additionally capture nonlinear dependence.8 All three statistics concur in suggesting that the excess returns of the five styles under 
consideration can be ascribed to different sources. Thus, seeking to benefit from factor exposure diversification we construct style- 
integrated portfolios using various strategies that we compare next. 

3.3. Out-of-sample performance of style-integrated portfolios 

Table 4 reports summary statistics for the distribution of OOS excess returns obtained with the traditional optimized style- 
integrations (OIs) and the new Bayesian approach (BOI), alongside the EWI benchmark. Panel A reports the results over the entire 
sample period (static evaluation), and Panel B over non-overlapping 6-year subsample periods (dynamic evaluation). 

The easy-to-deploy EWI strategy stands out as very effective at capturing risk premia. With an excess return of 8.0% p. a., the EWI 
portfolio surpasses each one of the standalone-style portfolios’ excess returns ranging from 3.6% p. a. (hedging pressure) to 5.1% p. a. 
(basis-momentum). The Sharpe ratio of the EWI portfolio at 0.815 represents a pervasive gain in reward-to-risk of 40% across all styles 
on average, and between 18% (basis-momentum) and 65% (hedging pressure) individually. The reward-risk gain of EWI versus the 
standalone styles suggested by the Sharpe ratio is emphasised by the Sortino and Omega ratios. Last but not least, the EWI portfolio has 
a favourable crash risk profile vis-à-vis the standalone styles as suggested by the semi-deviation, maximum drawdown and 1% VaR 
measures. These findings overall confirm that exposure to multiple factors via an EWI long-short portfolio approach is beneficial. 

Our next task is to investigate whether an OI strategy that conceptualizes the style-weights as a fixed but unknown parameter vector 
can outperform the naïve EWI strategy. Table 4 provides summary statistics for the excess returns of the battery of OI portfolios 
outlined in Section 2.2. 

It is noticeable that, with a mean excess return of 5.2% p. a., Sharpe ratio of 0.588, maximum drawdown of − 0.296 and 1% VaR of 
− 0.058, the PowerU style-integration strategy (Brandt et al., 2009) fails to outperform the EWI with corresponding values of 8.0% p. a., 
0.815, − 0.243 and − 0.061, respectively. The naïve EWI portfolio is thus not only able to extract a larger commodity risk premium, but 
also exhibits less crash risk. Introducing the disappointment aversion parameter A = 0.6 in the commodity style-integration with 
power utility (PowerDA) does not improve upon the baseline PowerU approach and hence, the EWI portfolio remains unchallenged.9 

Likewise, the OI strategies that focus on quadratic utility (MV), and those that reduce the dimensionality of the mean-variance 
parameter space (MVshrinkage, MinVar, and StyleVol), or bring diversification into the objective function (MaxDiv) are unable to 
challenge the simple EWI strategy. The style-integrated portfolios formed by the MinVar, StyleVol and MaxDiv methods are quite 
competitive but not superior to the EWI portfolio. The calculated p-values to assess the statistical significance of Sharpe ratio 

8 The Spearman correlation between two variables is the standard correlation between their rankings. While Pearson’s correlation assesses linear 
relationships, Spearman’s correlation captures monotonic (linear or not) relationships. Kendall’s correlation is analogous to Spearman’s correlation 
but outperforms it because it is more robust to outliers and has better small-sample properties.  

9 With a Sharpe ratio of 0.371, maximum drawdown of − 0.225, and 1% VaR of − 0.055 the PowerDA style-integrated portfolio deployed with 
larger disappointment aversion (A= 0.2) is still unable to outperform the EWI. Additional performance measures for the latter are available from the 
authors. 
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Table 1 
Summary statistics for commodity futures returns.  

Sector Commodity Mean StDev AR(1) Skew Kurt Average Correlations Obs First obs Last obs 

Agriculture Energy Livestock Metal YYYYMM YYYYMM 

Agriculture Cocoa − 0.054 (-0.267) 0.293 − 0.203 0.152 0.727 0.372 0.074 − 0.057 0.212 360 199201 202112 
Coffee − 0.116 (-0.845) 0.357 − 0.046 0.657 1.744 0.450 0.026 − 0.039 0.252 360 199201 202112 
Corn − 0.107 (-1.513) 0.261 0.021 − 0.125 0.846 0.743 0.156 − 0.021 0.241 360 199201 202112 
Cotton − 0.077 (-0.725) 0.276 − 0.023 − 0.079 0.541 0.529 0.113 0.029 0.272 360 199201 202112 
Oat − 0.063 (-0.263) 0.311 0.014 0.128 0.853 0.611 0.150 0.062 0.195 360 199201 202112 
Orange juice − 0.115 (-1.300) 0.308 − 0.130 0.004 0.288 0.361 0.050 0.052 0.125 360 199201 202112 
Rough rice − 0.138 (-2.085) 0.265 − 0.042 0.345 2.448 0.404 0.009 − 0.025 0.067 360 199201 202112 
Soyabean meal 0.064 (2.024) 0.274 − 0.048 − 0.013 1.379 0.680 0.116 − 0.062 0.153 360 199201 202112 
Soyabean oil − 0.062 (-0.758) 0.240 − 0.079 − 0.321 2.187 0.674 0.129 0.078 0.281 360 199201 202112 
Soyabeans 0.008 (0.848) 0.239 − 0.060 − 0.509 1.442 0.795 0.138 0.000 0.251 360 199201 202112 
Sugar no. 11 − 0.093 (-0.399) 0.339 0.143 − 1.139 8.707 0.361 0.059 − 0.005 0.180 360 199201 202112 
Wheat CBT − 0.142 (-2.268) 0.288 − 0.068 0.174 1.125 0.641 0.114 0.045 0.221 360 199201 202112 
Lumber − 0.133 (-1.409) 0.325 0.029 0.155 0.602 0.331 0.027 0.093 0.165 360 199201 202112 

Energy WTI crude oil − 0.033 (-0.228) 0.311 0.173 − 0.445 1.105 0.199 0.797 0.097 0.314 360 199201 202112 
PJM electricity − 0.213 (-2.006) 0.373 0.180 0.105 6.829 0.069 0.552 0.049 0.090 360 199201 202112 
Heating oil 0.006 (0.809) 0.320 0.098 − 0.013 1.751 0.160 0.846 0.096 0.271 360 199201 202112 
Natural gas − 0.257 (-1.748) 0.480 0.052 − 0.021 0.798 0.075 0.743 0.046 0.087 360 199201 202112 
RBOB gasoline − 0.006 (-0.545) 0.251 0.217 − 1.297 10.622 0.286 0.492 0.054 0.374 141 200510 202112 
Unleaded gasoline 0.048 (1.701) 0.274 0.001 0.445 5.060 − 0.006 0.661 0.066 0.085 180 199201 200701 

Livestock Feeder cattle 0.011 (0.734) 0.140 0.040 − 0.354 0.927 − 0.075 0.051 0.604 0.018 360 199201 202112 
Frozen pork bellies − 0.035 (0.246) 0.312 − 0.173 0.172 2.873 0.116 0.057 0.724 0.072 234 199201 201107 
Lean hogs − 0.087 (-0.981) 0.288 − 0.045 − 0.191 1.520 − 0.028 0.125 0.803 − 0.033 360 199201 201507 
Live cattle 0.057 (2.296) 0.154 − 0.020 − 0.484 3.280 0.045 0.015 0.602 0.041 360 199201 202112 

Metal Copper 0.009 (0.723) 0.256 0.107 − 0.543 4.841 0.335 0.259 0.056 0.661 360 199201 202112 
Gold 100 oz (CBT) 0.013 (0.941) 0.155 − 0.110 − 0.027 1.440 0.242 0.130 − 0.024 0.698 360 199201 202112 
Palladium 0.040 (1.343) 0.328 − 0.010 − 0.302 2.444 0.241 0.186 0.047 0.742 360 199201 202112 
Platinum 0.010 (0.747) 0.211 0.076 − 1.072 5.235 0.351 0.231 0.021 0.834 360 199201 202112 
Silver 1000 oz − 0.014 (0.550) 0.281 − 0.075 − 0.251 1.272 0.271 0.127 − 0.023 0.796 360 199201 202112 

The table summarizes the monthly excess returns of 28 commodity futures contracts through the mean, standard deviation, first-order autocorrelation, skewness, kurtosis, and average correlations 
between the commodity at hand and the commodities within each sector. Newey-West robust t-statistics for the significance of the mean excess returns are reported in parentheses. The returns are 
annualized. The sample period is shown in the last two columns. 
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differentials – Ledoit and Wolf (2008) and Opdyke (2007) one-sided tests, and Jobson and Korkie (1980) two-sided test – suggest that 
the Sharpe ratio of each of the OI portfolios is similar (or worse) than that of the EWI benchmark. This finding is confirmed by the 
p-values of the two-sided GMM test for the significance of differences in CERs between each OI portfolio and the EWI. Altogether these 
findings suggest that none of the OI portfolios succeeds at capturing multiple risk premia more effectively than the EWI portfolio 
which, despite sample differences (cross-section N and time period T), are well aligned with those in Fernandez-Perez et al. (2019). 

By contrast, the Bayesian approach to parameter estimation risk overlaid to the traditional mean-variance utility setting delivers a 
style-integrated portfolio with excellent OOS performance. The BOI portfolio affords larger Sharpe ratios and certainty equivalent 
returns, among other performance metrics, than the challenging EWI portfolio and the alternative OI portfolios. The p-values of the 

Table 2 
Performance of individual commodity styles.   

Carry HP Momentum Skewness Basis-Mom 

Panel A. Static portfolio evaluation 
Mean 0.043 0.036 0.044 0.047 0.051 
Newey West t-stat (3.030) (2.784) (3.001) (3.343) (3.757) 
StDev 0.081 0.078 0.088 0.072 0.077 
Semi-deviation 0.221 0.224 0.247 0.192 0.216 
Max Drawdown − 0.248 − 0.140 − 0.189 − 0.209 − 0.259 
1% VaR − 0.051 − 0.049 − 0.055 − 0.044 − 0.047 
Sharpe ratio 0.563 0.495 0.533 0.680 0.689 
Sortino ratio 0.943 0.788 0.869 1.160 1.124 
Omega ratio 1.533 1.440 1.488 1.663 1.696 
Cert. Equiv. Return (CER) 0.0025 0.0021 0.0037 0.0038 0.0064 
Panel B. Dynamic porfolio evaluation: Sharpe ratio (style ranking) 
Jan 1992–Dec 1997 0.468 (5) 0.476 (4) 0.876 (3) 1.178 (1) 0.892 (2) 
Jan 1998–Dec 2003 1.256 (1) 0.544 (4) 0.996 (2) 0.291 (5) 0.937 (3) 
Jan 2004–Dec 2009 0.907 (1) 0.837 (3) 0.393 (5) 0.902 (2) 0.482 (4) 
Jan 2010–Dec 2015 0.324 (4) 0.279 (5) 0.552 (3) 0.664 (2) 1.012 (1) 
Jan 2016–Dec 2021 − 0.129 (5) 0.274 (3) − 0.096 (4) 0.440 (1) 0.278 (2) 

This table summarizes the annualized excess returns of standalone styles (long-short portfolios) based on different commodity futures return pre
dictors as sorting signals. The carry style is based on the basis or the log futures price difference between the front- and second-nearest contract, the 
hedging pressure (HP) style is based on net hedgers’ short positions over total positions, the momentum style is based on the past-year average return, 
the skewness style is based on the Pearson coefficient of skewness of the commodity futures return distribution estimated with past-year daily returns, 
and the basis-momentum style is based on the differential momentum between front- and second-nearest contracts. Panel A reports statistics over the 
full sample period January 1992 to December 2021. Newey-West robust t-statistics for the significance of the mean excess returns are reported in 
parentheses. Panel B reports Sharpe ratios over 6-year non-overlapping subperiods and the corresponding style ranks in parenthesis based on the 
Sharpe ratio with rank 1 (5) denoting top (bottom) performance. 

Table 3 
Standalone styles dependence structure.  

Panel A. Pearson correlation Carry HP Momentum Skewness Basis-Mom 

Basis 1.000 0.162 0.416 0.150 0.263 
HP  1.000 0.240 0.071 0.124 
Momentum   1.000 − 0.046 0.322 
Skewness    1.000 − 0.146 
Basis-Mom     1.000 
Panel B. Spearman rank-order corr. Carry HP Momentum Skewness Basis-Mom 

Basis 1.000 0.179 0.343 0.101 0.317 
HP  1.000 0.173 0.090 0.029 
Momentum   1.000 − 0.088 0.303 
Skewness    1.000 − 0.124 
Basis-Mom     1.000 
Panel C. Kendall correlation Carry HP Momentum Skewness Basis-Mom 

Basis 1.000 0.126 0.240 0.069 0.223 
HP  1.000 0.120 0.062 0.021 
Momentum   1.000 − 0.061 0.217 
Skewness    1.000 − 0.086 
Basis-Mom     1.000 

The table reports measures of dependence between the monthly excess returns of the individual long-short portfolios. Panel A reports the Pearson 
correlation (linear dependence). Panels B and C reports the non-parametric Spearman rank-order correlation and Kendall correlation, respectively, 
that capture linear and nonlinear dependence. The sample period is January 1992 to December 2021. 
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Sharpe ratio tests and CER test shown in Table 4, Panel A, suggest at the 5% significance level or better that the BOI portfolio out
performs the challenging EWI portfolio.10 This evidence based on a static (full sample) analysis of portfolio performance is confirmed 
by the dynamic analysis over non-overlapping 6-year subperiods in Panel B of Table 4. The sequential Sharpe ratios and associated 
ranking of style-integrated portfolios reiterates the superiority of the BOI approach. Thus, embedding the mean-variance style inte
gration approach into a Bayesian framework to account for parameter estimation risk allows investors to harness multiple commodity 
factor exposures rather efficiently. 

Further to illustrate the dynamic performance of the BOI portfolio vis-à-vis the EWI and OI portfolios, we plot in Fig. 2 their cu
mulative Sharpe ratio, mean and volatility. 

The cumulative Sharpe ratio of the BOI portfolio, Panel A, surpasses rather steadily over time the Sharpe ratio of the EWI 
benchmark and alternative OI portfolios. This stems from its ability to capture a superior combined risk premia, as shown in Panel B, 
with relatively low risk, as shown in Panel C. The ability of the BOI strategy to improve the style-weights ωt decision (versus the EWI 
and alternative OIs) leads to a more efficient joint exposure to multiple factors. 

What explains the outperformance of the BOI strategy versus the EWI and traditional OIs? The EWI approach can be cast as 
“atheoretical” in that it is fully non-parametric, i.e. the weights assigned to the K styles are time constant and identical. Instead, the 
mean-variance optimized style-integration (and the other OIs we consider) are parametric and follow the classical or frequentist 
approach of treating the style-weights as fixed, unknown values. They produce point estimates for the style-weights at each portfolio 
formation time. Thus, although the traditional approaches to style-integration (OIs) are built on finance principles (e.g., mean-variance 
framework) to determine the style-weights, they build on asymptotics (T→∞) to “deal” with parameter estimation uncertainty. As 
shown in extant portfolio choice studies, too large samples are required in practice to overcome the noise that contaminates the es
timates (see e.g., DeMiguel et al., 2009). This explains why the OIs are unable to outperform the naïve EWI in our analysis, as shown 
also in Fernandez-Perez et al. (2019). While also building on the quadratic utility framework, the BOI approach introduces the 
Bayesian notion of treating the style-weights as random variables with specific prior distributions that are updated with data. The 
upshot is that the BOI portfolio benefits both from the “sophistication” of an optimized style-weighing approach (by contrast with the 
naïve EWI) and from the powerful Bayesian approach to estimation risk that treats parameters as random variables (by contrast with 
the OIs). 

Table 4 
Performance of commodity style-integrated portfolios.   

EWI Optimized Style-Integrations (OIs) 

MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI 

Panel A. Static portfolio evaluation 
Mean 0.080 0.054 0.051 0.075 0.082 0.083 0.052 0.052 0.092 
StDev 0.101 0.094 0.094 0.084 0.102 0.096 0.093 0.094 0.087 
Semi-deviation 0.272 0.258 0.258 0.209 0.275 0.248 0.258 0.262 0.212 
Max Drawdown − 0.243 − 0.297 − 0.287 − 0.158 − 0.255 − 0.219 − 0.296 − 0.296 − 0.174 
1% VaR − 0.061 − 0.058 − 0.058 − 0.050 − 0.062 − 0.057 − 0.058 − 0.059 − 0.051 
Sharpe Ratio (SR) 0.815 0.606 0.577 0.904 0.823 0.886 0.588 0.587 1.060 
Sortino ratio 1.393 1.012 0.960 1.677 1.400 1.566 0.976 0.970 1.987 
Omega ratio 1.900 1.599 1.563 2.041 1.918 2.023 1.576 1.574 2.309 
ΔSR (gain vs EWI)  − 0.209 − 0.239 0.089 0.008 0.071 − 0.227 − 0.229 0.245 
Ledoit-Wolf test p-value  0.883 0.931 0.222 0.383 0.128 0.902 0.901 0.005 
Opdyke test p-value  0.888 0.945 0.151 0.226 0.246 0.902 0.897 0.023 
Jobson-Korkie test p-value  0.168 0.074 0.156 0.093 0.064 0.150 0.156 0.004 
Cert. Equiv. Return (CER) 0.005 0.004 0.003 0.005 0.005 0.005 0.003 0.003 0.006 
ΔCER (gain vs EWI)  − 0.001 − 0.002 0.000 0.000 0.000 − 0.002 − 0.002 0.001 
GMM test p-value  0.115 0.066 0.470 0.354 0.250 0.105 0.103 0.034 
Panel B. Dynamic portfolio evaluation: Sharpe ratio (style ranking) 
Jan 1992–Dec 1997 1.108 (7) 1.296 (3) 1.107 (8) 1.293 (4) 1.103 (9) 1.265 (6) 1.278 (5) 1.300 (2) 1.373 (1) 
Jan 1998–Dec 2003 0.999 (4) 1.000 (3) 0.860 (8) 0.671 (9) 1.002 (2) 0.902 (7) 0.923 (6) 0.931 (5) 1.005 (1) 
Jan 2004–Dec 2009 1.115 (2) 0.378 (9) 0.464 (6) 1.058 (5) 1.113 (3) 1.076 (4) 0.411 (7) 0.398 (8) 1.314 (1) 
Jan 2010–Dec 2015 0.979 (4) 0.513 (9) 0.604 (6) 1.042 (3) 0.977 (5) 1.055 (2) 0.547 (8) 0.558 (7) 1.180 (1) 
Jan 2016–Dec 2021 0.193 (5) 0.116 (6) 0.089 (7) 0.496 (2) 0.194 (4) 0.381 (3) 0.081 (8) 0.072 (9) 0.583 (1) 

The table summarizes the annualized excess returns of the equal-weight style integrated (EWI) portfolio and eight optimized style-integrated (OI) 
portfolios, as outlined in Section 2 and Appendix C, including the Bayesian optimized integration (BOI). The style-weights estimation is based on L =
60 month rolling windows. The commodity scores matrix Θt , Equation (1), contains standardized signals. The reported Ledoit and Wolf (2008) and 
Opdyke (2007) tests p-values are for the hypothesis H0 : ΔSRj ≤ 0 vs HA : ΔSRj > 0 (one-sided tests) where ΔSRj = SRj − SREWI with j denoting a (B) 
OI portfolio. The p-value of the Jobson and Korkie (1980) test (with the Memmel (2003) correction) is for the hypothesis H0 : ΔSRj = 0 vs HA : ΔSRj ∕=

0 (two-sided). The GMM test p-value is for the hypothesis H0 : ΔCERj = 0 vs HA : ΔCERj ∕= 0. Panel A reports statistics over the full-sample from 
January 1992 to December 2021. Panel B reports Sharpe ratios and ranking over 6-year non-overlapping periods.  

10 The findings from the CER comparison are qualitatively similar when we adopt power utility. 
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It is well known that estimation error in expected returns is far more costly than estimation error in the covariance matrix. Our 
findings suggest that by transforming a meaningful prior of style weights ωt into a prior of expected returns μt, it is possible to improve 
the performance of the traditional mean-variance OI significantly and outperform the EWI. 

So far we have assumed zero transaction costs in the analysis of style-integrated portfolio performance. However, since different 
style-integration strategies imply a different turnover, as shown in Panel An of Fig. 3, it is important to consider transaction costs. 

Fig. 3 reveals that, even though the style-integrated portfolios can potentially include all N commodities while the standalone styles 
focus on the extreme quintiles and thus, by construction, include only in 40% of the N commodities, the style-integrated portfolios are 
not more trading intensive than the standalone styles. Among the standalone styles, the highest TO is exhibited by the carry portfolio 
and the lowest by the hedging pressure portfolio. Among the style-integrated portfolios, MinVar has the lowest TO followed by MaxDiv 
and StyleVol. Most importantly for the present purposes, the BOI portfolio exhibits a relatively low TO which suggests prima facie its 
outperformance is unlikely to be wiped out by transaction costs. To assess this, we report in Table 5 summary statistics for the style- 
integrated portfolios’ net excess returns. First, we adopt TC = 8.9 bp, as in prior studies (e.g., Fernandez-Perez et al., 2019). 

It is noticeable that the erosion of performance due to transaction costs does not undermine the effectiveness of the style-integration 
solution versus standalone-style investing. Furthermore, the BOI portfolio still offers the best performance among all the style- 
integrated portfolios. These findings withstand the introduction of notably higher trading costs TC = {17.2,25.8} bp as borne out 
by the net Sharpe ratios in Fig. 3, Panel B, and the full array of performance metrics gathered in Appendix Table D1. Thus we can assert 
that, unlike the traditional OI portfolios, the BOI portfolio outperforms the EWI benchmark by delivering superior risk-adjusted returns 
net of transaction costs. Thus, adopting a Bayesian approach to estimation risk in the commodity style-integrated portfolio problem is 
quite fruitful. 

4. Robustness tests 

In this section we investigate whether our main findings are robust to various aspects of the style-integrated portfolio construction 
such as, for instance, the commodity score scheme, length of estimation windows, and Bayesian priors. We discuss each of them in turn. 

4.1. Commodity score schemes 

Thus far we have implemented the style-integrated (long-short) portfolios using as elements of the score matrix Θt in Equation (1) 

Table 5 
Net Performance of Commodity Style-Integrated Portfolios (TC = 8.6 bp).   

Optimized Style-Integrations (OIs) 

EWI MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI 

Panel A. Static portfolio evaluation 
Mean 0.075 0.049 0.046 0.071 0.077 0.078 0.047 0.047 0.090 
StDev 0.101 0.091 0.099 0.087 0.093 0.095 0.090 0.089 0.087 
Semi-deviation 0.275 0.252 0.280 0.223 0.243 0.252 0.253 0.248 0.215 
Max Drawdown − 0.245 − 0.221 − 0.296 − 0.176 − 0.202 − 0.218 − 0.223 − 0.220 − 0.173 
1% VaR − 0.062 − 0.056 − 0.062 − 0.052 − 0.056 − 0.057 − 0.056 − 0.055 − 0.051 
Sharpe Ratio (SR) 0.768 0.576 0.506 0.834 0.845 0.838 0.554 0.560 1.031 
Sortino ratio 1.298 0.950 0.819 1.486 1.478 1.447 0.906 0.918 1.918 
Omega ratio 1.830 1.578 1.480 1.924 1.944 1.938 1.549 1.556 2.252 
ΔSR (gain vs EWI)  − 0.192 − 0.262 0.066 0.077 0.070 − 0.214 − 0.208 0.263 
Ledoit-Wolf test p-value  0.883 0.931 0.222 0.383 0.128 0.902 0.901 0.005 
Opdyke test p-value  0.900 0.949 0.140 0.214 0.230 0.914 0.910 0.019 
Jobson-Korkie test p-value  0.152 0.070 0.148 0.291 0.258 0.134 0.139 0.003 
Cert. Equiv. Return (CER) 0.004 0.004 0.003 0.005 0.005 0.005 0.003 0.003 0.006 
ΔCER (gain vs EWI)  − 0.001 − 0.002 0.001 0.001 0.001 − 0.001 − 0.002 0.002 
GMM test p-value  0.114 0.065 0.113 0.310 0.205 0.101 0.101 0.027 
Panel B. Dynamic portfolio evaluation: Sharpe ratio (style ranking) 
Jan 1992–Dec 1997 1.049 (5) 0.982 (7) 1.015 (6) 1.112 (3) 1.105 (4) 1.131 (2) 0.921 (8) 0.897 (9) 1.318 (1) 
Jan 1998–Dec 2003 0.957 (2) 0.814 (7) 0.897 (4) 0.833 (6) 0.889 (5) 0.936 (3) 0.762 (8) 0.742 (9) 0.988 (1) 
Jan 2004–Dec 2009 1.115 (2) 0.378 (9) 0.464 (6) 1.058 (5) 1.113 (3) 1.076 (4) 0.411 (7) 0.398 (8) 1.314 (1) 
Jan 2010–Dec 2015 0.979 (4) 0.513 (9) 0.604 (6) 1.042 (3) 0.977 (5) 1.055 (2) 0.547 (8) 0.558 (7) 1.180 (1) 
Jan 2016–Dec 2021 0.155 (4) 0.076 (6) − 0.007 (9) 0.276 (2) 0.114 (5) 0.163 (3) 0.021 (8) 0.064 (7) 0.579 (1) 

The table reports summary statistics for the out-of-sample annualized net excess returns of the style-integrated portfolios, as outlined in Section 2 and 
Appendix C, using the transaction cost estimate of 8.6 bp (Marshall et al., 2012). The style-weights estimation is based on L = 60 month rolling 
windows. The commodity scores matrix Θt , Equation (1), contains standardized signals. The reported Ledoit and Wolf (2008) and Opdyke (2007) 
tests p-values are for the hypothesis H0 : ΔSRj ≤ 0 vs HA : ΔSRj > 0 (one-sided tests) where ΔSRj = SRj − SREWI with j denoting a (B)OI portfolio. The 
p-value of the Jobson and Korkie (1980) test with the Memmel (2003) correction is for the hypothesis H0 : ΔSRj = 0 vs HA : ΔSRj ∕= 0 (two-sided). The 
GMM test p-value is for the hypothesis H0 : ΔCERj = 0 vs HA : ΔCERj ∕= 0. Panel A reports statistics over the full sample from January 1992 to 
December 2021. Panel B reports Sharpe ratios and ranking over 6-year non-overlapping periods.  
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the individual-style signals k = 1,….K appropriately standardized; namely, θi,k,t ≡ x̃i,k,t = (xi,k,t − xk,t)/σx
k,t with xi,k,t denoting, say, the 

roll-yield signal for commodity i at time t (see Appendix A). Now we consider three alternative score matrices that could mitigate the 
biases induced by outliers in the signal measurement. 

As in Fernandez-Perez et al. (2019) we consider a binary score scheme with short-versus-long entries θi,k,t ∈ {− 1, 1}, a standardized 
rank scheme θi,k,t ≡ z̃i,k,t = (zi,k,t − zk,t)/σz

k,t where zi,k,t ∈ {N,…,1} is the rank given to commodity i as candidate for a long position (N 
denotes top, and 1 denotes bottom) according to the kth predictive signal. Inspired by DeMiguel et al. (2020), we consider a commodity 
scoring approach where each commodity characteristic is winsorized cross-sectionally {xi,k,t}

N
i=1; that is, we set as bottom (top) 

Table 6 
Style-integrated portfolios with alternative scoring schemes.    

Optimized Style-Integrations (OIs) 

EWI MV MVshrinkage MinVar InvVar MaxDiv PowerU PowerDA BOI 

Panel A. Binary scores 
Mean 0.079 0.055 0.052 0.076 0.078 0.078 0.055 0.054 0.094 
StDev 0.076 0.072 0.071 0.075 0.076 0.076 0.072 0.072 0.074 
semi StDev 0.186 0.195 0.195 0.187 0.187 0.189 0.194 0.196 0.175 
Max Drawdown − 0.097 − 0.159 − 0.136 − 0.115 − 0.101 − 0.105 − 0.150 − 0.151 − 0.089 
1% VaR − 0.044 − 0.044 − 0.044 − 0.044 − 0.044 − 0.045 − 0.044 − 0.044 − 0.042 
Sharpe Ratio (SR) 1.040 0.786 0.744 1.012 1.034 1.028 0.787 0.770 1.243 
Sortino ratio 1.938 1.327 1.245 1.862 1.914 1.904 1.340 1.299 2.420 
Omega ratio 2.196 1.798 1.741 2.145 2.184 2.173 1.808 1.793 2.555 
ΔSR (gain vs EWI)  − 0.254 − 0.296 − 0.028 − 0.005 − 0.012 − 0.253 − 0.270 0.203 
Ledoit-Wolf test p-value  0.961 0.982 0.630 0.570 0.577 0.963 0.972 0.000 
Opdyke test p-value  0.998 0.969 0.642 0.450 0.426 0.998 0.998 0.045 
Jobson-Korkie test p-value  0.045 0.003 0.507 0.534 0.546 0.025 0.027 0.017 
Cert. Equiv. Return (CER) 0.006 0.004 0.003 0.006 0.007 0.006 0.004 0.004 0.007 
ΔCER (gain vs EWI)  − 0.002 − 0.003 0.000 0.000 0.000 − 0.002 − 0.002 0.001 
GMM test p-value  0.040 0.001 0.439 0.521 0.261 0.024 0.024 0.037 
Panel B. Standardized rankings 
Mean 0.084 0.067 0.059 0.083 0.084 0.082 0.068 0.067 0.099 
StDev 0.083 0.083 0.083 0.081 0.083 0.082 0.083 0.083 0.081 
semi StDev 0.209 0.219 0.224 0.201 0.207 0.207 0.216 0.216 0.195 
Max Drawdown − 0.129 − 0.197 − 0.258 − 0.151 − 0.130 − 0.169 − 0.171 − 0.185 − 0.140 
1% VaR − 0.049 − 0.050 − 0.051 − 0.047 − 0.049 − 0.048 − 0.050 − 0.050 − 0.046 
Sharpe Ratio (SR) 1.009 0.824 0.733 1.033 1.017 1.006 0.836 0.824 1.204 
Sortino ratio 1.846 1.434 1.245 1.909 1.863 1.829 1.471 1.446 2.305 
Omega ratio 2.168 1.889 1.748 2.263 2.189 2.205 1.907 1.891 2.565 
ΔSR (gain vs EWI)  − 0.185 − 0.276 0.024 0.008 − 0.003 − 0.173 − 0.185 0.196 
Ledoit-Wolf test p-value  0.919 0.984 0.375 0.385 0.516 0.910 0.922 0.000 
Opdyke test p-value  0.995 0.967 0.338 0.395 0.409 0.995 0.992 0.037 
Jobson-Korkie test p-value  0.095 0.004 0.362 0.216 0.493 0.060 0.061 0.045 
Cert. Equiv. Return (CER) 0.007 0.005 0.004 0.007 0.007 0.007 0.005 0.005 0.008 
ΔCER (gain vs EWI)  − 0.002 − 0.003 0.000 0.000 0.000 − 0.002 − 0.002 0.001 
GMM test p-value  0.070 0.003 0.409 0.245 0.511 0.045 0.041 0.038 
Panel C. Winsorized signals 
Mean 0.072 0.061 0.052 0.074 0.072 0.072 0.062 0.061 0.086 
StDev 0.075 0.077 0.076 0.074 0.075 0.074 0.076 0.077 0.074 
semi StDev 0.186 0.201 0.205 0.182 0.185 0.183 0.199 0.200 0.174 
Max Drawdown − 0.167 − 0.170 − 0.171 − 0.162 − 0.162 − 0.171 − 0.173 − 0.171 − 0.151 
1% VaR − 0.044 − 0.046 − 0.047 − 0.044 − 0.044 − 0.044 − 0.046 − 0.046 − 0.042 
Sharpe Ratio (SR) 0.961 0.812 0.701 1.003 0.974 0.976 0.823 0.811 1.166 
Sortino ratio 1.776 1.420 1.192 1.855 1.803 1.809 1.445 1.423 2.258 
Omega ratio 2.078 1.854 1.694 2.178 2.109 2.130 1.862 1.846 2.439 
ΔSR (gain vs EWI)  − 0.149 − 0.260 0.042 0.013 0.015 − 0.138 − 0.150 0.205 
Ledoit-Wolf test p-value  0.925 0.978 0.252 0.261 0.383 0.875 0.889 0.000 
Opdyke test p-value  0.999 0.982 0.375 0.424 0.481 0.999 0.998 0.019 
Jobson-Korkie test p-value  0.216 0.026 0.362 0.216 0.493 0.146 0.144 0.012 
Cert. Equiv. Return (CER) 0.006 0.005 0.004 0.006 0.006 0.006 0.005 0.004 0.007 
ΔCER (gain vs EWI)  − 0.001 − 0.001 0.002 0.000 0.000 − 0.001 0.000 0.002 
GMM test p-value  0.191 0.014 0.607 0.562 0.824 0.138 0.126 0.012 

The table summarizes the annualized excess returns of the EWI and OI portfolio strategies, as described in Section 2, based on three different 
commodity score schemes. The score matrix Θt , Equation (1), contains − 1 or +1 (Panel A), standardized ranks (Panel B), and cross-sectionally 
winsorized signals (Panel C). The estimation is based on L = 60 month rolling windows. The reported Ledoit and Wolf (2008) and Opdyke (2007) 
tests p-values are for the hypothesis H0 : ΔSRj ≤ 0 vs HA : ΔSRj > 0 (one-sided tests) where ΔSRj = SRj − SREWI with j denoting a (B)OI portfolio. The 
p-value of the Jobson and Korkie (1980) test with the Memmel (2003) correction is for the hypotheses H0 : ΔSRj = 0 vs HA : ΔSRj ∕= 0 (two-sided). 
The GMM test p-value is for H0 : ΔCERj = 0 vs HA : ΔCERj ∕= 0.The sample period is January 1992 to December 2021.  
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threshold the first (third) quartile minus (plus) three times the interquartile range, any observation outside those thresholds is shrank 
towards the corresponding threshold. Table 6 summarizes the performance of style-integrated portfolios implemented with the 
aforementioned score schemes. 

The earlier finding that the BOI method is unsurpassed by the challenging EWI benchmark and alternative OI methods remains 
unchanged. As a by-product we observe that for most style-integrated portfolios the binary {-1,1} scores and the standardized rank 
scores mitigate the noise (outliers) in the signals xi,k,t as borne out by their larger reward-to-risk ratios. 

4.2. Longer estimation windows 

The (B)OI style-integration portfolios constructed at each month-end t rely on L-month rolling windows of excess returns 
{Rt− (L− 1),…,Rt} for the N commodities to estimate the style-weights ωt; thus far, we have used L = 60 months. Asymptotically, as the 
estimation sample grows (L →∞) the parameter estimation risk ought to decrease and hence, the merit of the BOI method versus extant 
OIs may be diluted and likewise, the superiority of the non-parametric EWI versus OIs may fade away. We deploy now the (B)OI 
strategies using: i) recursive estimation windows starting from L = 60 months at the first portfolio formation time and then L+ 1, L+
2, and so on, and ii) rolling estimation windows of fixed length L = 120 months. 

Figs. 4 and 5 present the cumulative risk-adjusted performance of the (B)OI portfolios and the EWI benchmark based on expanding 
and 120-month rolling windows, respectively. 

Since longer estimation windows ought to alleviate the parameter uncertainty problem, it is not surprising to see that the per
formance of some sophisticated OI portfolios such as MaxDiv and StyleVol has been enhanced relative to EWI. However, the BOI 
approach remains the most attractive by delivering long-short portfolios with the best Sharpe ratio which stems from the larger excess 
returns captured and the lower risk. In other words, neither the expanding windows nor the 120-month rolling windows can fully 
“hedge” the parameter estimation risk. This is rather plausible since, as demonstrated by DeMiguel et al. (2009), unfeasibly large 
estimation windows of 3000 months are needed to overcome estimation risk in the optimal portfolio allocation problem towards 
outperforming the equal-allocations benchmark. 

4.3. Alternative bayesian priors 

Since Bayesian estimation methods require the choice of a prior distribution for the parameters, in this section we deploy the BOI 

approach using alternative priors. In Section 3 we adopted the uninformative prior ω0 =

(
1
K,…, 1

K

)′

as the mean of the Normal dis

tribution for the style-weights ωt . Likewise, we adopted the uninformative prior IN (identity matrix) as the scale matrix of the inverse 
Wishart distribution for the commodity returns covariance Vt . 

Table 7 
BOI portfolios with alternative priors.    

Bayesian style-integration with different priors 

EWI BOI1 BOI2 BOI3 

Mean 0.080 0.092 0.094 0.090 
StDev 0.101 0.087 0.086 0.090 
Semi-deviation 0.272 0.212 0.210 0.225 
Max Drawdown − 0.243 − 0.174 − 0.169 − 0.186 
1% VaR − 0.061 − 0.051 − 0.050 − 0.053 
Sharpe Ratio (SR) 0.815 1.060 1.085 1.004 
Sortino ratio 1.393 1.987 2.055 1.836 
Omega ratio 1.900 2.309 2.355 2.207 
ΔSR (gain vs EWI)  0.245 0.270 0.189 
Ledoit-Wolf test p-value  0.005 0.002 0.007 
Opdyke test p-value  0.023 0.020 0.036 
Jobson-Korkie test p-value  0.004 0.004 0.006 
Cert. Equiv. Return (CER) 0.005 0.006 0.006 0.006 
ΔCER (gain vs EWI)  0.001 0.001 0.001 
GMM test p-value  0.034 0.031 0.080 

The table summarizes the annualized excess returns of the EWI method alongside three Bayesian optimized style-integrated portfolio implementa
tions based on different priors for the K × 1 style-weights vector and N × N commodity excess return covariance matrix. BOI1 is based on the style- 

weights prior ωt ∼ N
(

ω0,
1
γ
V− 1

Θ Vμ

)

with ω0 =

(
1
K
, ...,

1
K

)′

and inverse-Wishart covariance prior Vt ∼ IW(Λ0, ν) with Λ0 = IN (identity matrix) and 

ν = N + 1 as described in Section 2.3. BOI2 is based on ω0 =

(
1
K
, ...,

1
K

)′

together with Λ0 = λtIN with λt is a scalar that represents the average variance 

across the N commodities, and BOI3 is based on ω0 = (0.23, 0.23,0.18,0.18, 0.18)
′

reflecting stronger beliefs on the carry and hedging pressure styles 
rooted in fundamental commodity market theory as described in Section 4.3.  
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We consider now informative priors for the style-weights and the covariance. Let us suppose that the style-integrated investor 
places more “value” on the carry and hedging pressure styles because their underlying signals (roll-yield and hedger’s hedging pressure, 
respectively) are strongly motivated by fundamental commodity market theory – the theory of storage and the hedging pressure 
hypothesis, respectively. To reflect this investor’s principle, we adopt ω0 = (0.23,0.23,0.18,0.18,0.18) as prior mean weights for the 
carry, HP, momentum, skewness, and basis-momentum styles, respectively. 

Following Anderson and Cheng (2016), the prior distribution for the N × N covariance matrix Vt at each month-end t is tied to the 
historical excess returns for the N commodities {R1,…,Rt} with Rt = (R1,t ,…,RN,t)

′

. Specifically, the prior for Vt is the inverted 
Wishart distribution, as in Section 2.3, but with the scale matrix λtIN (instead of the uninformative prior IN) with λt a scalar that 
represents the common variance across the N commodities; namely, λt =

1
N
∑N

i=1λi,t with λi,t =
1

t− 1
∑t

τ=1(Ri,τ − μi,t)
2 and μi,t =

1
t− 1
∑t

τ=1Ri,τ. 
The BOI portfolios obtained with these alternative priors are summarized in Table 7. 

The results do not change qualitatively. The BOI2 portfolio based on the former prior ω0 =

(
1
K,…, 1

K

)′

for the style-weights together 

with the scale matrix λtIN for the inverse Wishart prior of the return covariance, and the BOI3 portfolio that combines the “value” 
weighted prior ω0 and the identity matrix prior IN for the inverse scale of the Wishart covariance, also outperform significantly the 
EWI. The results of the BOI strategy with these alternative priors, as shown in the new Table 7, do not change qualitatively. Of course, 
there is no guarantee that the BOI will work satisfactorily for any other prior – since a Bayesian method generates a posterior as a kind 
of weighted average between the prior and the new evidence (data), the posterior will only be accurate if the prior is well chosen. A 
comprehensive study of the impact of many different priors on the BOI performance goes beyond the scope of the paper. However, we 
provide readers with useful evidence to suggest that the BOI strategy based on the various priors entertained in the paper obtains 
significantly better performance than the EWI strategy. 

Table 8 
Style-integrated portfolio strategies with quarterly holding period.   

EWI Optimized Style-Integrations (OIs) 

MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI 

Panel A. Excess returns (TC = 0) 
Mean 0.059 0.015 0.033 0.075 0.063 0.057 0.011 0.012 0.081 
StDev 0.101 0.093 0.100 0.087 0.093 0.096 0.093 0.092 0.087 
Semi-deviation 0.295 0.299 0.301 0.221 0.263 0.275 0.301 0.298 0.219 
Max Drawdown − 0.304 − 0.330 − 0.324 − 0.174 − 0.236 − 0.268 − 0.379 − 0.366 − 0.175 
1% VaR − 0.063 − 0.061 − 0.064 − 0.052 − 0.057 − 0.059 − 0.061 − 0.061 − 0.052 
Sharpe Ratio (SR) 0.613 0.210 0.379 0.879 0.704 0.632 0.166 0.174 0.939 
Sortino ratio 0.965 0.300 0.578 1.585 1.143 1.008 0.237 0.246 1.710 
Omega ratio 1.625 1.180 1.357 1.995 1.730 1.641 1.140 1.147 2.091 
ΔSR (gain vs EWI)  − 0.402 − 0.233 0.266 0.091 0.020 − 0.446 − 0.439 0.326 
Ledoit-Wolf test p-value  1.000 0.952 0.299 0.121 0.276 1.000 1.000 0.010 
Opdyke test p-value  0.999 0.948 0.337 0.131 0.394 1.000 1.000 0.036 
Jobson-Korkie test p-value  0.001 0.080 0.055 0.033 0.564 0.000 0.000 0.022 
Cert. Equiv. Return (CER) 0.003 0.000 0.001 0.005 0.004 0.003 − 0.001 0.000 0.005 
ΔCER (gain vs EWI)  − 0.003 − 0.002 0.002 0.001 0.000 − 0.004 − 0.003 0.002 
GMM test p-value  0.001 0.080 0.103 0.091 0.740 0.000 0.001 0.043 
Panel B. Net excess returns (TC = 17.2bps) 
Mean 0.049 0.005 0.024 0.047 0.054 0.048 0.001 0.002 0.073 
StDev 0.102 0.093 0.100 0.088 0.093 0.096 0.094 0.092 0.087 
Semi-deviation 0.302 0.306 0.309 0.254 0.269 0.281 0.308 0.306 0.225 
Max Drawdown − 0.309 − 0.386 − 0.346 − 0.193 − 0.241 − 0.273 − 0.442 − 0.429 − 0.178 
1% VaR − 0.064 − 0.062 − 0.065 − 0.055 − 0.058 − 0.060 − 0.062 − 0.061 − 0.052 
Sharpe Ratio (SR) 0.518 0.106 0.282 0.565 0.610 0.542 0.060 0.066 0.848 
Sortino ratio 0.801 0.148 0.420 0.893 0.971 0.846 0.083 0.092 1.510 
Omega ratio 1.508 1.087 1.254 1.541 1.607 1.527 1.048 1.054 1.945 
ΔSR (gain vs EWI)  − 0.413 − 0.237 0.047 0.092 0.023 − 0.459 − 0.452 0.330 
Ledoit-Wolf test p-value  1.000 0.957 0.278 0.120 0.239 1.000 1.000 0.009 
Opdyke test p-value  1.000 0.956 0.310 0.104 0.361 1.000 1.000 0.014 
Jobson-Korkie test p-value  0.000 0.072 0.544 0.030 0.495 0.000 0.000 0.019 
Cert. Equiv. Return (CER) 0.002 − 0.001 0.000 0.003 0.003 0.002 − 0.001 − 0.001 0.005 
ΔCER (gain vs EWI)  − 0.003 − 0.002 0.000 0.001 0.000 − 0.004 − 0.004 0.002 
GMM test p-value  0.001 0.078 0.658 0.060 0.562 0.000 0.000 0.032 

The table summarizes the out-of-sample annualized excess returns of the EWI portfolio, and optimized style-integrated portfolios, as outlined in 
Section 2 and Appendix C, rebalanced at the quarterly frequency. Each (B)OI style-integrated portfolio is formed at month-end t using a past window 
of 60-months to determine the style-weights, and the process is repeated at month-end t+3. Panel A is based on raw excess returns and Panel B is based 
on net excess returns using the conservative estimate TC = 17.2 bp. See note to Table 4. 
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4.4. Lower rebalancing frequency and broader cross-section 

Now we address the portfolio holding period or equivalently, the rebalancing frequency. The analysis thus far focused on the 
monthly frequency. We deployed the style-integration strategy encapsulated in Equation (1) at each month-end t to form a unique 
(long-short) style-integrated portfolio that is held for one month. We assume now that the investor lets three months elapse before 
rebalancing the style-integrated portfolio; that is, the style-integrated portfolio return is measured from t to t+3, and so on. This 
approach ensures that even though the holding period is larger than one month, we do not incur the overlapping portfolio returns issue. 

As shown previously in the case of the monthly holding period (c.f., Fig. 3) the BOI portfolio incurs a relatively low turnover which 
favours it as regards net performance. By reducing the style-integrated portfolio rebalancing frequency from monthly to quarterly, the 
superior performance of BOI versus alternative OIs and the EWI could be diluted. Table 8 reports summary statistics for the net excess 
returns of the quarterly rebalanced portfolios neglecting transaction costs in Panel A and using the conservative TC = 17.2 bp in Panel 
B. 

The results suggest that the earlier evidence in support of the Bayesian commodity style-integration is not challenged by this lower 
(quarterly) portfolio holding period. 

Our analysis has hitherto relied on over two dozen commodity markets (N = 28) which is a typical cross-section in empirical 
studies; see e.g., Prokopczuk et al., 2023, Bakshi et al. (2019), Szymanowska et al. (2014), Fernandez-Perez et al. (2018), and Basu and 
Miffre (2013). However, to cater for investors that may wish to consider a wider cross-section of commodity futures contracts (even 
though some of them are less liquid) we added BFP Milk, Brent Crude Oil, Butter Cash, Cheese Cash, Coal, Silver 5000 oz, and White 
Wheat. The style-integrations based on this cross-section (N = 35) are summarized in Appendix Table D2. The findings are qualita
tively similar, namely, while the OI portfolios perform either significantly worse or not significantly better than the EWI portfolio, the 
BOI portfolio emerges as clearly superior. 

4.5. Enlarging the set of alternative OI strategies 

Finally, we deploy the following four style-integrations, as in Fernandez-Perez et al. (2019), to enlarge the “universe” of OIs that we 
confront the EWI benchmark and the proposed BOI with. 

Rotation-of-Styles Integration (RSI). The style-weights vector is sparse with one entry at 1 and 0s elsewhere. At each month-end t, we 

Table 9 
Additional optimized style-integration strategies.   

EWI Optimized Style-Integrations (OIs) 

RSI CSI PCI SMI BOI 

Panel A. Static portfolio evaluation 
Mean 0.080 0.062 0.078 0.001 0.034 0.092 
StDev 0.101 0.117 0.099 0.114 0.101 0.087 
Semi-deviation 0.272 0.333 0.264 0.356 0.302 0.212 
Max Drawdown − 0.243 − 0.378 − 0.217 − 0.076 − 0.281 − 0.174 
1% VaR − 0.061 − 0.073 − 0.060 − 0.566 − 0.065 − 0.051 
Sharpe Ratio (SR) 0.815 0.569 0.809 0.063 0.382 1.060 
Sortino ratio 1.393 0.920 1.393 0.092 0.585 1.987 
Omega ratio 1.900 1.563 1.901 1.051 1.332 2.309 
ΔSR (gain vs EWI)  − 0.246 − 0.006 − 0.753 − 0.433 0.245 
Ledoit-Wolf test p-value  0.926 0.572 1.000 0.991 0.005 
Opdyke test p-value  0.923 0.526 1.000 0.990 0.023 
Jobson-Korkie test p-value  0.119 0.845 0.001 0.014 0.004 
Cert. Equiv. Return (CER) 0.005 0.003 0.005 − 0.002 0.001 0.006 
ΔCER (gain vs EWI)  − 0.002 0.000 − 0.007 − 0.004 0.001 
GMM test p-value  0.156 0.681 0.000 0.013 0.034 
Panel B. Dynamic portfolio evaluation: Sharpe ratio (style ranking) 
Jan 1992–Dec 1997 1.108 (2) 0.512 (5) 1.095 (3) 0.309 (6) 0.681 (4) 1.373 (1) 
Jan 1998–Dec 2003 0.999 (2) 0.973 (3) 0.936 (4) − 0.669 (6) 0.658 (5) 1.005 (1) 
Jan 2004–Dec 2009 1.115 (2) 0.401 (6) 0.960 (3) 0.699 (4) 0.565 (5) 1.314 (1) 
Jan 2010–Dec 2015 0.979 (2) 0.643 (4) 0.923 (3) 0.626 (5) − 0.076 (6) 1.180 (1) 
Jan 2016–Dec 2021 0.193 (4) 0.374 (2) 0.257 (3) − 0.226 (6) 0.086 (5) 0.583 (1) 

The table reports summary statistics for the annualized excess returns of the optimized style-integrations (OI) outlined in Section 4.5, alongside the 
EWI benchmark and the proposed BOI. RSI is Rotation-of-Styles Integration. CSI is Cross-Sectional Pricing Integration. PCI is Principal Components 
Integration. SMI is Style-Momentum Integration. The style-weights estimation is based on L = 60 month rolling windows. The commodity scores 
matrix Θt , Equation (1), contains standardized signals. The reported Ledoit and Wolf (2008) and Opdyke (2007) tests p-values are for the hypothesis 
H0 : ΔSRj ≤ 0 vs HA : ΔSRj > 0 (one-sided tests) where ΔSRj = SRj − SREWI with j denoting a (B)OI portfolio. The p-value of the Jobson and Korkie 
(1980) test with the Memmel (2003) correction is for the hypothesis H0 : ΔSRj = 0 vs HA : ΔSRj ∕= 0 (two-sided). The GMM test p-value is for the 
hypothesis H0 : ΔCERj = 0 vs HA : ΔCERj ∕= 0. Panel A reports statistics over the full sample from January 1992 to December 2021. Panel B reports 
Sharpe ratios (and corresponding style-integrated portfolio rankings) over 6-year non-overlapping periods.  
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form a long-short portfolio according to the style with the largest Sharpe ratio (ωj,t = 1) in the preceding L-month window and ignore 
the remaining styles, ωk,t = 0, k = 1, . . .,K (k ∕= j). The RSI strategy is motivated by the theoretical style-switching model of Barberis 
and Shleifer (2003). 

Cross-Sectional Pricing Integration (CSI). At each month-end t, we estimate a univariate time-series OLS regression per futures 
contract i = 1, . . .,N and style k = 1, . . .,K (a total of N × K regressions) using the past L-month window of data s = t − (L − 1),…t. 

ri,s = ai,k + bi,krk,s + εi,s (25)  

where ri,s is the month s excess return of the i th futures contract, rk,s is the month s excess return of the long-short portfolio formed 
according to the k th style, and εi,s is an error term. At step two, we estimate in each of those prior L months a cross-section OLS 
regression 

ri,s = λ0
k,s + λ1

k,s b̂i,k + ei,s, i = 1, 2,…,N (26)  

with b̂i,k the estimate from Equation (25); a total of L × K regressions. The CSI weights estimator is ω̂t =

(

1
L
∑L− 1

j=0 R2
1,t− j, …, 

1
L
∑L− 1

j=0 R2
K,t− j

)

with R2
k,t− j capturing the explanatory power or pricing ability of the kth factor in the month t − j cross-section OLS 

regression. 
Principal Components Integration (PCI). The PCI style-weights estimator is a function of the eigenvectors pertaining to the first m 

principal components of the K style premia (m < K); namely, ω̂t ≡
e1,t L1,t+e2,t L2,t+...+em,t Lm,t

e1,t+e2,t+...+em,t 
where ej,t is the jth eigenvalue that represents 

the explanatory power of the jth principal component, Lj,t is the corresponding K-vector of loadings (or jth eigenvector of Σt, the K× K 
correlation matrix of standalone style returns) and m is the number of principal components that explain at least τ of the total variation 
in the standalone-style premia. We adopt the conservative threshold value τ = 90%. 

Style Momentum Integration (SMI). The SMI style-weights are given by the average excess returns of the standalone-style portfolios 

over an L-month lookback period, ω̂t =

(

1
L
∑L− 1

j=0 r1,t− j, …, 1L
∑L− 1

j=0 rK,t− j

)′

to exploit any continuation in their relative performance. 

The performance of the above OIs (with L = 60 months) is summarized in Table 9. 
The main findings remain unchallenged. By contrast with the BOI proposed, none of these additional OI portfolios is able to 

outperform the EWI benchmark, consistent with Fernandez-Perez et al. (2019), as suggested by the significance tests for Sharpe ratio 
and CER differentials. 

5. Conclusions 

Commodity style-integration is an intuitive and clearcut proposition to capture a superior and fairly stable risk premium by forming 
a unique long-short portfolio with simultaneous exposure to several factors. This factor diversification idea requires, in practice, 
choosing an appropriate blend of factor exposures at each portfolio rebalancing time. Extant strategies for this purpose are the equal- 
weights integration (EWI) that sets equal exposures constantly over time, and “sophisticated” style-integrations where the style- 
weights are the solution of an optimization problem. Echoing the portfolio allocation literature, the EWI strategy has proven very 
resilient vis-à-vis optimized integrations because it does not suffer from parameter estimation risk. This paper designs an optimized 
style-integration that overlays to the quadratic utility-based style integration the Bayesian notion of conceptualizing the style-weights 
parameter vector as a random variable with a prior distribution that is subsequently updated with evidence. 

Using data on a cross-section of 28 commodities from January 1992 to December 2021, and focusing on the carry, hedging 
pressure, momentum, skewness and basis-momentum styles, we confront the Bayesian optimized style-integration (BOI), with the EWI 
and various optimized integrations (OIs) inspired from the portfolio optimization literature. 

The findings indicate that it is beneficial to adopt Bayesian principles to deal with parameter estimation risk in commodity style- 
integration. By contrast with the battery of OI strategies, the BOI strategy outperforms the EWI benchmark by extracting a significantly 
larger premia consistently over time with less crash risk. This finding survives trading costs, various commodity scoring schemes, 
longer estimation windows, and alternative Bayesian priors. 
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Appendix A. Standalone styles 

The table outlines five standalone styles that have been advocated in the literature to extract commodity risk premia. For each style, 
we indicate the underlying sorting or predictive signal, the long-short portfolio strategy, and a few key references. The notation f1,t 
(f2,t) denotes the month-end t logarithmic settlement price of the front- (second-nearest) futures contracts. The HP signal is based on 
the short (long) open interest of large hedgers or commercial traders, denoted Shortt (Longt), as reported weekly by the CFTC in the 
Commitment of Traders’ Report. The parameters μt and σt in the skewness signal denote the mean and standard deviation of com
modity futures excess returns calculated at time t using daily data over the preceding year (D days). The subscripts j, w, and d denote 
months, weeks, and days, respectively.   

Style Signal Portfolio formation Key references 

Carry or term-structure 
(TS) 

f1,t − f2,t (roll-yield) long high, short 
low 

Erb and Harvey (2006), Gorton and Rouwenhorst (2006), Bakshi et al. 
(2019) 

Hedging pressure (HP) 1
52
∑51

w=0
Shortt− w − Longt− w

Shortt− w + Longt− w 

long high, short 
low 

Basu and Miffre (2013) 

Momentum 1
12
∑11

j=0
Δf1,t− j 

long high, short 
low 

Erb and Harvey (2006), Miffre and Rallis (2007), Bakshi et al. (2019) 

Skewness 1
D

∑D− 1
d=0 (Δf1,t− d − μt)

3

σ3
t 

long low, short 
high 

Fernandez-Perez et al. (2018) 

Basis-momentum 1
12
∑11

j=0
Δf1,t− j −

1
12
∑11

j=0
Δf2,t− j  

long high, short 
low 

Boons and Prado (2019)  

Appendix B. Implementation details for MVshrinkage, PowerDA and BOI strategies 

B.1. Mean-variance with shrinkage style-integration (MVshrinkage) 

Following Ledoit and Wolf (2003), the shrinkage estimator of the commodities covariance matrix Vt is a linear combination of the 
standard estimator V̂ t and the identity matrix IN. 

St =(1 − λ) V̂ t + λIN (B.1)  

where the parameter λ ∈ (0, 1) dictates the shrinkage intensity. Let ||Z||F denote the Frobenius norm of the N × N symmetric matrix Z 
with entries (zij)i,j=1,..,N defined as 

||Z||F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

∑N

j=1
z2

ij

√
√
√
√ (B.2) 

The optimal λ minimizes the expected Frobenius norm of the difference between the shrinkage covariance estimator and the true 
covariance E(‖Ŝt − Vt‖F). For a fixed N and T going to infinity, Ledoit and Wolf (2003) prove that the optimal λ∗ shrinkage intensity is 
given by 

λ∗ =max
{

0,min
{κ

L
, 1
}}

(B.4)  

where L is the length of the estimation window used to obtain V̂ t, and κ is a constant given by 

κ=
π − ρ

γ
(B.3) 

A consistent estimator of π is 

π̂ =
∑N

i=1

∑N

j=1
π̂ ij with π̂ ij =

1
L
∑L

t=1

{
(Rit − Ri)

(
Rjt − Rj

)
− σ2

ij

}2
(B.5)  

where Rit is the excess return of commodity i, and σ2
ij is an off-diagonal element of the standard covariance estimator V̂ t. A consistent 

estimator of ρ is given by 

ρ̂ =
∑N

i=1
π̂ ii +

∑N

i=1

∑N

j=1,j∕=i

η
2

⎛

⎝

̅̅̅̅̅
σ2

jj

σ2
ii

√

ν̂ii,ij +

̅̅̅̅̅
σ2

ii

σ2
jj

√

ν̂jj,ij

⎞

⎠ (B.6) 
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where 

ν̂ii,ij =
1
T

∑T

t=1

{
(Rit − Ri)

2
− σ2

ii

}{(
Ri,t − Ri

)(
Rj,t − Rj

)
− σ2

ij

}
, (B.7)  

and 

η= 2
(N − 1)N

∑N− 1

i=1

∑N

j=i+1
ηij (B.8)  

with ηij =
σ2

ij̅̅̅̅̅̅̅
σ2

iiσ
2
jj

√ . Finally, a consistent estimator of γ is given by 

γ̂ =
∑N

i=1

∑N

j=1

(
fij − σ2

ij

)2
(B.9)  

where fij = η
̅̅̅̅̅̅̅̅̅̅
σ2

iiσ2
jj

√
with σ2

ii (commodity variance) represents the ith diagonal entry of V̂ t .. 

B.2. Power utility with disappointment aversion style-integration (PowerDA) 

Let RP,t,s = ΘtωtRt,s denote the excess return of the style-integrated portfolio associated with the potential state s, and let ps ≡

pr(RP,t,s) denote the likelihood of this excess return. To solve equations (14) and (16) simultaneously, the concept of quadrature is used 
to approximate the certainty equivalent outcome of the style-integrated portfolio, δ, as follows 

(1 + δ)1− γ
=

1
K

(
∑

s:RP,t,s≤δ
psR1− γ

P,t,s +
∑

s:RP,t,s>δ
ApsR1− γ

P,t,s

)

(B.10)  

and the first-order-condition in (16) as 
∑

s:RP,t,s≤δ
psR− γ

P,t,sexp
(
Rt,s
)
+
∑

s:RP,t,s>δ
ApsR− γ

P,t,s exp
(
Rt,s
)
= 0 (B.11) 

Let the commodity futures excess return vector in any state s out of S possible states be denoted {Rt,s}
S
s=1 with probability weights 

{ps}
S
s = 1. Assuming that the commodity futures excess return vector Rt ≡ (R1,t ,…,RN,t) follows a multivariate Normal distribution: 

Rt ∼ MVN(μt ,Vt), the vector of returns from the MVN distribution can be sorted from low to high across the S states. The certainty 
equivalent outcome δ∗ corresponding to the optimal style-weights vector ω∗

t (and style-integrated portfolio return Θtω∗
t Rt) could lie 

within any interval 
[
Θtω∗

t Rt,1,Θtω∗
t Rt,2

)
,
[
Θtω∗

t Rt,2,Θtω∗
t Rt,3

)
, ⋮⋮
[
Θtω∗

t Rt,N− 1,Θtω∗
t Rt,N

)

where Θtω∗
t is the N × 1 optimal commodity allocation, Equation (1), and thus R∗

P,t,s = Θtω∗
t Rt,s is the excess return of the style- 

integrated portfolio associated with state s. Suppose δ∗ lies within [Θtω∗
t Rt,i, Θtω∗

t Rt,i+1), then ω∗
t is the solution of the first-order 

condition 
∑

s:RP,t,s≤Θt ω∗
t Rt,i

psR1− γ
P,t,sexp

(
Rt,s
)
+

∑

s:RP,t,s>Θtω∗
t Rt,i

ApsR1− γ
P,t,s exp

(
Rt,s
)
= 0 (B.12) 

Equation (B.12) can be interpreted as the first-order condition of a maximization problem with probabilities πi that are linked to the 
original portfolio return probabilities as follows 

πi =

(
p1,…, pi,Api+1,…,ApN

)

(p1 + … + pi) + A(pi+1 + … + pN)
(B.13)  

The certainty equivalent outcome δ∗ can thus be written as 

δ∗ =

(
∑N

s=1
(R∗

P,t,s

)1− γ
πi,s

)

(B.14) 

The algorithm of bisection search can be used to find the optimal style-weight vector as follows.  

1. Start with an arbitrary choice of state i, for example, a value of 0.001 for the style-integrated portfolio return. Solve ω∗
t by equation 

(B.12).  
2. Compute δ∗ for the style-integrated portfolio through Equation (B.14). 

A.-M. Fuertes and N. Zhao                                                                                                                                                                                          



Journal of Commodity Markets 30 (2023) 100328

21

3. If δ∗ ∈ [Θtω∗
t Rt,i,Θtω∗

t Rt,i+1) then ω∗
t is the optimal style-weight vector at time t and the algorithm ends. If δ∗ is instead larger 

(smaller) than the above upper (lower) bound, go back to step 1 and search within the upper (lower) half of the state space, and so 
on. 

B.3. Bayesian Optimized Integration (BOI) 

Let Rt denote the N × 1 vector of commodity future excess returns with mean vector μt and covariance matrix Vt . The prior dis

tribution for the style-weights is ωt ∼ N
(

ωt,0,
1
γV

− 1
Θ Vμ

)

and for the mean vector μt ∼ N
(

γVΘωt,0,
Vt
s2

)

where ωt,0 is the mean of the 

style-weights prior, VΘ is a direct function of Vt given by VΘ = (Θ′

t)
− 1
(Θ′

tVtΘt) with Θt the commodity score matrix in Equation (1), 
and s2 is the average of the commodity excess return variances (diagonal entries of Vt). The prior distribution for μt is thus determined 

by the choice ωt,0 and Vt . We adopt ωt,0 =

(
1
K,…, 1

K

)′

and Vt ∼ IW(Λ0, ν) where IW denotes inverse Wishart distribution with scale 

matrix Λ0 and degrees of freedom parameter ν > N − 1. In the main analysis we set up Λ0 = IN and Λ0 = 29.
As it is often the case in empirical Bayesian statistics, we circumvent the challenging problem of deriving a closed-form expression 

for the posterior density of the parameters by adopting the Markov Chain Monte Carlo (MCMC) simulation method. Accordingly, we 
construct empirically the posterior distribution pr(μt ,Vt |T t) at each portfolio rebalancing time (month-end t) using a length-L window 
of commodity future returns {Rt− (L− 1),…,Rt}. We adopt L = 60 months in the main analysis. 

The MCMC method is built upon the property that, under mild assumptions, a Markov chain initiated at an arbitrary point will 
converge to the stationary posterior distribution pr(μt ,Vt |T t). The method unfolds in three steps: (1) The prior distribution is used to 
generate M0 + M sequences of commodity excess returns {Rt− (L− 1),…,Rt− 1,Rt}

M0+M
m=1 , (2) The first M0 “burn-in” sequences are dis

carded to ensure that the chain has converged; (3) The remaining M sequences are used to obtain the mean and covariance parameters 
that approximate the posterior distribution, namely, {μt ,Vt}

M
m=1. We adopt M = 10,000 and M0 = 2,000. 

These steps can be directly performed using the PyMC3 package of Python. After setting the priors of μt and Vt, and the historical 
monthly excess returns for the N commodities from t − L + 1 to t as inputs, {Rt− (L− 1),…Rt− 1,Rt}, the package generates the posterior 
densities {μt}

M
m=1 {Vt}

M
m=1 using the Gibbs sampling (MCMC) algorithm. The posterior means, μt and Vt , are then plugged into the 

mean-variance optimization Equation (4) as V̂ t and μ̂t to derive the style-weights for the Bayesian optimized-integration ωBOI
t . 

Appendix C. Commodity style-integration strategies 

The table summarizes the style-integration approaches with key references. RP,t+1 = (Θtωt)
′

Rt+1 is the style-integrated portfolio 
excess return from t to t+1 based on the underlying N commodity excess returns Rt+1, the N × N commodity scores or characteristics 
matrix Θt , and the N × 1 style-weights ωt. The approaches differ in the style-weight determination method. μ̂t and V̂ t denote the N× 1 
sample mean excess return vector and N × N sample covariance matrix. S∗

t is the shrinkage covariance estimator. σ̂2
1,t ,…, σ̂2

K,t are the 

diagonal elements of the sample covariance matrix for the standalone style portfolios. Ω̂t = diag (V̂ t). γ is the coefficient of relative risk 
aversion.   

A. Strategy’s name and abbreviation Style-weights definition and estimator 

Equal-weighted 
integration 

EWI Time-constant, identical weights 
ωt =

(
1
K
,…,

1
K

)′

Mean-variance utility 
maximization 

MV Maximizes expected quadratic utility of style- 
integrated portfolio 

ω̂t =
1
γ
(Θ′

t V̂ tΘt)
− 1

Θ′

t μ̂t 

Mean-variance utility 
maximization with 
shrinkage 

MVshrinkage Maximizes style-integrated portfolio’s 
expected utility with shrinkage covariance 

ω̂t =
1
γ
(Θ′

t Ŝ
∗

t Θt)
− 1

Θ′

t μ̂t 

Variance-minimization MinVar Minimizes risk of style-integrated portfolio 
ω̂t =

(Θ′

t V̂ tΘt)
− 1

Θ′

t1

1′ Θt(Θ
′

t V̂ tΘt)
− 1

Θ′

t1 
Style-volatility timing StyleVol Inverse of past style’s volatilities ω̂t = (1 /σ̂2

1,t ,…,1 /σ̂2
K,t)

Power utility 
maximization 

PowerU Maximize expected power utility of style- 
integrated portfolio via BFGS numerical 
optimization 

maxωt

[
(1 + RP,t+1)

1− γ
− 1

1 − γ

]

B. Strategy’s name and abbreviation Style-weights definition and estimator 

Power utility 
maximization under 
disappointment 
aversion 

PowerDA Maximize expected power utility under 
disappointment aversion degree 
parameterized by A ∈ [0,1)

maxωt

[
1
K
(

∫ δ

− ∞
U(RP,t+1)dF(RP,t+1) + A

∫∞
δ U(RP,t+1)dF(RP,t+1))

]

(continued on next page) 
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(continued ) 

A. Strategy’s name and abbreviation Style-weights definition and estimator 

Bayesian optimized style- 
integration 

BOI Maximize expected utility under predictive 
density via Gibbs sampling 

maxωt

∫∞
− ∞ U(ωt)Pr(Rt+1 | T t)dRt+1 

Rotation-of-styles 
integration 

RSI Adopt the style with the past largest Sharpe 
ratio 

ω̂j,t = 1, ω̂k,t = 0, k = 1, . . .,K (k ∕= j) 

Cross-sectional pricing 
integration 

CSI Style-weights reflect the relative ability of the 
underlying factors to explain the cross- 
sectional variation in the N commodity 
futures returns 

ω̂t =

(
1
L
∑L− 1

j=0
R2

1,t− j, …, 
1
L
∑L− 1

j=0
R2

K,t− j

)

with R2
k,t− j the 

coefficient of determination of past month t − j cross-sectional 
regression 

Principal components 
integration 

PCI Style-weights reflect the role of each style as 
determinants of the total variation in style 
premia 

ω̂t ≡
e1,tL1,t + e2,tL2,t + ...+ em,tLm,t

e1,t + e2,t + ...+ em,t 
with Lj,t the jth K × 1 

eigenvector of Σt (K×K correlation matrix of the standalone style 
returns) and ej,t the jth eigenvalue (explanatory power of jth 
eigenvector) 

Style-momentum 
integration 

SMI Style-weights capture continuation in relative 
performance of standalone styles ω̂t =

(
1
L
∑L− 1

j=0
r1,t− j, …, 

1
L
∑L− 1

j=0
rK,t− j

)

with rk,t− j the month t −

j excess return of the kth standalone-style portfolio  

Appendix D. Additional Evidence  

Table D.1 
Net Performance of Commodity Style-Integrated Portfolios.    

Optimized Style-Integrations (OIs) 

EWI MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI 

Panel A. Conservative transaction costs TC = 17.2 bps 
Mean 0.070 0.044 0.041 0.067 0.072 0.073 0.042 0.042 0.085 
StDev 0.101 0.091 0.099 0.087 0.093 0.095 0.090 0.089 0.087 
Semi-deviation 0.278 0.255 0.284 0.226 0.246 0.255 0.256 0.252 0.218 
Max Drawdown − 0.248 − 0.225 − 0.303 − 0.177 − 0.203 − 0.221 − 0.238 − 0.224 − 0.175 
1% VaR − 0.062 − 0.057 − 0.063 − 0.053 − 0.056 − 0.058 − 0.057 − 0.056 − 0.051 
Sharpe Ratio (SR) 0.721 0.522 0.456 0.789 0.798 0.792 0.498 0.504 0.985 
Sortino ratio 1.206 0.850 0.730 1.390 1.381 1.353 0.805 0.816 1.813 
Omega ratio 1.763 1.512 1.424 1.856 1.872 1.869 1.482 1.488 2.171 
ΔSR (gain vs EWI)  − 0.199 − 0.265 0.068 0.078 0.071 − 0.223 − 0.216 0.265 
Ledoit-Wolf test p-value  0.925 0.964 0.229 0.147 0.125 0.935 0.935 0.001 
Opdyke test p-value  0.911 0.953 0.129 0.202 0.213 0.924 0.924 0.016 
Jobson-Korkie test p-value  0.137 0.067 0.458 0.090 0.053 0.119 0.123 0.003 
Cert. Equiv. Return (CER) 0.004 0.002 0.002 0.004 0.004 0.004 0.002 0.002 0.006 
ΔCER (gain vs EWI)  − 0.002 − 0.002 0.000 0.000 0.000 − 0.002 − 0.002 0.002 
GMM test p-value  0.112 0.064 0.804 0.269 0.166 0.098 0.098 0.021 
Panel B. Very conservative transaction costs TC = 25.8 bps 

Mean 0.065 0.039 0.036 0.063 0.068 0.068 0.037 0.037 0.081 
StDev 0.102 0.091 0.099 0.087 0.093 0.095 0.090 0.089 0.087 
Semi-deviation 0.281 0.258 0.288 0.229 0.249 0.258 0.260 0.255 0.220 
Max Drawdown − 0.251 − 0.235 − 0.311 − 0.179 − 0.205 − 0.223 − 0.253 − 0.227 − 0.176 
1% VaR − 0.062 − 0.057 − 0.063 − 0.053 − 0.057 − 0.058 − 0.057 − 0.056 − 0.052 
Sharpe Ratio (SR) 0.674 0.468 0.407 0.744 0.751 0.746 0.443 0.449 0.940 
Sortino ratio 1.115 0.752 0.643 1.296 1.285 1.262 0.706 0.716 1.710 
Omega ratio 1.699 1.448 1.370 1.791 1.802 1.802 1.418 1.423 2.093 
ΔSR (gain vs EWI)  − 0.205 − 0.267 0.070 0.078 0.073 − 0.231 − 0.225 0.266 
Ledoit-Wolf test p-value  0.932 0.966 0.221 0.146 0.123 0.943 0.942 0.001 
Opdyke test p-value  0.921 0.956 0.119 0.189 0.195 0.934 0.932 0.013 
Jobson-Korkie test p-value  0.124 0.064 0.443 0.088 0.048 0.105 0.108 0.003 
Cert. Equiv. Return (CER) 0.004 0.002 0.001 0.004 0.004 0.004 0.002 0.002 0.005 
ΔCER (gain vs EWI)  − 0.002 − 0.002 0.000 0.000 0.000 − 0.002 − 0.002 0.002 
GMM test p-value  0.110 0.064 0.730 0.232 0.133 0.095 0.096 0.016  

The table reports summary statistics for the out-of-sample net excess returns of the style-integrated portfolios using two conser
vative transaction cost estimates: Panel A is based on TC = 17.2 bp which is the mid-point of the range provided by Marshall et al. 
(2012), Panel B uses TC = 25.8 bp which is the upper bound of the Marshall et al. (2012) range that may apply to investors requiring 
immediate execution. 
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Table D.2 
Broad cross-section of commodity markets.  

Panel I. Summary statistics for excess returns of additional commodity futures contracts   

Mean StDev AR(1) Skew Kurt Obs First obs Last obs     

YYYYMM YYYYMM 

BFP milk 0.059 (0.198) 0.146 0.231 1.074 4.805 136 199604 201506 
Brent crude oil 0.020 (0.202) 0.369 0.240 − 2.186 13.519 219 200310 202112 
Butter cash − 0.087 (-2.133) 0.152 0.101 − 0.223 3.520 195 200510 202112 
Cheese cash 0.010 (1.268) 0.178 0.083 − 0.942 3.761 231 201007 202112 
Coal 0.065 (0.732) 0.287 0.166 0.360 3.972 185 200608 202112 
Silver 5000 oz − 0.073 (-2.571) 0.249 − 0.046 − 4.215 34.321 135 199201 200210 
White wheat − 0.063 (-0.414) 0.212 0.201 0.025 1.261 130 199201 200303 

Optimized Style-Integrations (OIs)  
EWI MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI 

Panel II(a). Style-integrated portfolios with N = 35 commodity futures contracts (TC = 0) 
Mean 0.077 0.041 0.045 0.071 0.077 0.081 0.043 0.042 0.089 
StDev 0.091 0.083 0.083 0.077 0.081 0.087 0.083 0.082 0.079 
Semi-deviation 0.239 0.236 0.227 0.187 0.197 0.220 0.231 0.228 0.187 
Max Drawdown − 0.203 − 0.343 − 0.315 − 0.147 − 0.152 − 0.187 − 0.349 − 0.360 − 0.155 
1% VaR − 0.055 − 0.052 − 0.052 − 0.046 − 0.048 − 0.052 − 0.052 − 0.052 − 0.046 
Sharpe Ratio (SR) 0.864 0.529 0.569 0.928 0.968 0.945 0.551 0.545 1.127 
Sortino ratio 1.512 0.856 0.949 1.749 1.810 1.717 0.907 0.901 2.179 
Omega ratio 1.950 1.509 1.548 2.070 2.088 2.090 1.545 1.541 2.410 
ΔSR (gain vs EWI)  − 0.335 − 0.295 0.064 0.103 0.081 − 0.314 − 0.319 0.262 
Ledoit-Wolf test p-value  0.979 0.975 0.295 0.059 0.091 0.978 0.977 0.003 
Opdyke test p-value  0.971 0.961 0.331 0.189 0.240 0.967 0.968 0.031 
Jobson-Korkie test p-value  0.043 0.051 0.582 0.118 0.179 0.045 0.042 0.004 
Cert. Equiv. Return (CER) 0.005 0.002 0.003 0.005 0.005 0.005 0.002 0.002 0.006 
ΔCER (gain vs EWI)  − 0.003 − 0.002 0.000 0.000 0.000 − 0.002 − 0.003 0.001 
GMM test p-value  0.024 0.029 0.879 0.532 0.330 0.025 0.023 0.052 
Panel II(b). Style-integrated portfolios with N = 35 commodity futures contracts (TC = 17.2 bps) 

Mean 0.067 0.032 0.035 0.061 0.068 0.071 0.033 0.032 0.080 
StDev 0.091 0.084 0.083 0.077 0.081 0.087 0.083 0.082 0.079 
Semi-deviation 0.246 0.244 0.234 0.193 0.203 0.226 0.238 0.235 0.192 
Max Drawdown − 0.209 − 0.392 − 0.368 − 0.150 − 0.155 − 0.192 − 0.398 − 0.412 − 0.158 
1% VaR − 0.056 − 0.053 − 0.052 − 0.046 − 0.048 − 0.052 − 0.053 − 0.052 − 0.046 
Sharpe Ratio (SR) 0.755 0.413 0.456 0.814 0.859 0.833 0.435 0.425 1.018 
Sortino ratio 1.288 0.650 0.739 1.488 1.561 1.473 0.696 0.682 1.914 
Omega ratio 1.791 1.379 1.419 1.888 1.919 1.914 1.409 1.399 2.208 
ΔSR (gain vs EWI)  − 0.342 − 0.299 0.058 0.104 0.078 − 0.320 − 0.330 0.263 
Ledoit-Wolf test p-value  0.982 0.978 0.309 0.058 0.097 0.981 0.981 0.003 
Opdyke test p-value  0.977 0.968 0.336 0.165 0.226 0.974 0.976 0.023 
Jobson-Korkie test p-value  0.037 0.046 0.611 0.114 0.192 0.039 0.034 0.006 
Cert. Equiv. Return (CER) 0.004 0.001 0.002 0.004 0.004 0.004 0.002 0.002 0.005 
ΔCER (gain vs EWI)  − 0.003 − 0.002 0.000 0.000 0.000 − 0.002 − 0.003 0.001 
GMM test p-value  0.026 0.033 0.968 0.410 0.310 0.028 0.024 0.042  

The table provides summary statistics for the annualized excess returns of 7 additional commodity futures contracts in Panel I and 
summarizes the performance of the style-integrated portfolios deployed on the wider cross-section (N = 35) in Panel I. Newey-West 
robust t-statistics for the significance of the mean excess returns are reported in parentheses. Panel II(a) is based on the raw excess 
returns of the strategies and Panel II(b) on the net excess returns using the conservative transaction cost estimate of 17.2 bp (Marshall 
et al., 2012).    
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Fig. 1. Cumulative Sharpe ratio of standalone styles. 
The figure plots the cumulative Sharpe ratio of long-short commodity futures portfolios or standalone styles based on the basis, hedgers’ hedging pressure, momentum, skewness and basis-momentum 
signals as return predictors. The first feasible 60-month excess returns window is expanded by 1 month at a time. The analysis is based on commodity futures data from January 1992 to December 2021.  
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Fig. 2. Cumulative reward and risk of commodity style-integrated portfolios. 
The figure plots the Sharpe ratio, mean excess return and volatility of style-integrated portfolios based on their annualized monthly excess returns within expanding windows. The strategies are naïve 
equal-weights integration (EWI), and optimized integrations (OIs) formed according to mean-variance utility maximization (MV), mean-variance with shrinkage maximization (MVshrinkage), variance 
minimization (MinVar), style-volatility timing (StyleVol), diversification ratio maximization (MaxDiv), power utility maximization (PowerU), maximized power utility with disappointment aversion 
(PowerDA), and Bayesian optimized integration (BOI). The analysis is based on commodity futures data from January 1992 to December 2021.  
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Fig. 3. Turnover and net Sharpe ratio. 
Panel A reports the monthly turnover averaged over the entire sample period. Panel B reports the net Sharpe ratio of each long-short portfolio 
strategy using as transaction cost proxies the lower bound of the Marshall et al. (2012) range of estimates at 8.6 bp, the middle point at 17.2 bp and 
the upper bound at 25.8 bp which is applicable to impatient investors that require immediate execution. The analysis is based on commodity futures 
data from January 1992 to December 2021.  
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Fig. 4. Cumulative risk and reward of style-integrated portfolios with style weights estimated over expanding windows. 
This figure plots the cumulative Sharpe ratio, mean excess return and volatility of the style-integrated portfolios with style-weights estimated at each 
month-end using recursive windows. The strategies are equal-weights integration (EWI), and optimized integrations (OIs) formed according to 
mean-variance utility maximization (MV), mean-variance with shrinkage maximization (MVshrinkage), variance minimization (MinVar), style- 
volatility timing (StyleVol), diversification ratio maximization (MaxDiv), power utility maximization (PowerU), maximized power utility with 
disappointment aversion (PowerDA), and Bayesian optimized integration (BOI). The analysis is based on commodity futures data from January 1992 
to December 2021.   
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Fig. 5. Cumulative risk and reward of style-integrated portfolios with weights estimated over 120-month rolling windows. 
This figure plots the cumulative Sharpe ratio, mean excess return and volatility of the style-integrated portfolios with style-weights estimated at each 
month-end using 120-month rolling windows. The strategies are equal-weights integration (EWI), and optimized integrations (OIs) formed ac
cording to mean-variance utility maximization (MV), mean-variance with shrinkage maximization (MVshrinkage), variance minimization (MinVar), 
style-volatility timing (StyleVol), diversification ratio maximization (MaxDiv), power utility maximization (PowerU), maximized power utility with 
disappointment aversion (PowerDA), and Bayesian optimized integration (BOI). The analysis is based on commodity futures data from January 1992 
to December 2021. 

References 

Anderson, E.W., Cheng, A.R., 2016. Robust Bayesian portfolio choices. Rev. Financ. Stud. 29, 1330–1375. 
Ang, A., Bekaert, G., Liu, J., 2005. Why stocks may disappoint? J. Financ. Econ. 76, 471–508. 
Asness, C., Ilmanen, A., Moskowitz, T., 2015. Investing with style. J. Invest. Manag. 13, 27–63. 
Bakshi, G., Gao, X., Rossi, A.G., 2019. Understanding the sources of risk underlying the cross section of commodity returns. Manag. Sci. 65, 619–641. 
Barberis, N., Shleifer, A., 2003. Style investing. J. Financ. Econ. 68, 161–199. 
Barroso, P., Santa-Clara, P., 2015. Beyond the carry trade: optimal currency portfolios. J. Financ. Quant. Anal. 50, 1037–1056. 
Basu, D., Miffre, J., 2013. Capturing the risk premium of commodity futures: the role of hedging pressure. J. Bank. Finance 37, 2652–2664. 
Bauder, D., Bodnar, T., Parolya, N., Schmid, W., 2021. Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty. Quant. Finance 21, 

221–242. 
Bhattacharya, D., Li, W.-H., Sonaer, G., 2017. Has momentum lost its momentum? Rev. Quant. Finance Account. 48, 191–218. 
Boons, M., Prado, M., 2019. Basis-momentum. J. Finance 74, 239–279. 
Brandt, M., Santa-Clara, P., Valkanov, R., 2009. Parametric portfolio policies: exploiting characteristics in the cross-section of equity returns. Rev. Financ. Stud. 22, 

3411–3447. 
Brennan, M., 1958. The supply of storage. Am. Econ. Rev. 48, 50–72. 
Brown, S.J., 1979. The effect of estimation risk on capital market equilibrium. J. Financ. Quant. Anal. 14, 215–220. 
Chen, M.H., Shao, Q.M., Ibrahim, J.G., 2012. Monte Carlo Methods in Bayesian Computation. Springer Science & Business Media. 
Choueifaty, Y., Coignard, Y., 2008. Toward maximum diversification. J. Portfolio Manag. 35, 40–51. 
Cootner, P., 1960. Returns to speculators: telser versus keynes. J. Polit. Econ. 68, 396–404. 
DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 22, 1915–1953. 
DeMiguel, V., Martin-Utrera, A., Nogales, F., Uppal, R., 2020. A portfolio perspective on the multitude of firm characteristics. Rev. Financ. Stud. 33, 2180–2222. 
Dewally, M., Ederington, L., Fernando, C., 2013. Determinants of trader profits in commodity futures markets. Rev. Financ. Stud. 26, 2648–2683. 

A.-M. Fuertes and N. Zhao                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8513(23)00018-1/sref1
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref2
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref3
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref4
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref5
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref6
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref7
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref8
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref8
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref9
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref10
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref11
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref11
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref12
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref13
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref14
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref15
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref16
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref17
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref18
http://refhub.elsevier.com/S2405-8513(23)00018-1/sref19


Journal of Commodity Markets 30 (2023) 100328

29

Erb, C., Harvey, C., 2006. The strategic and tactical value of commodity futures. Financ. Anal. J. 62, 69–97. 
Fethke, T., Prokopczuk, M., 2018. Is commodity index investing profitable? J. Beta Invest. Strat. 9, 37–71. 
Fernandez-Perez, A., Fuertes, A.M., Miffre, J., 2019. A comprehensive appraisal of style-integration methods. J. Bank. Finance 105, 134–150. 
Fernandez-Perez, A., Frijns, B., Fuertes, A.M., Miffre, J., 2018. The skewness of commodity futures returns. J. Bank. Finance 86, 143–158. 
Fuertes, A.M., Miffre, J., Rallis, G., 2010. Tactical allocation in commodity futures markets: combining momentum and term structure signals. J. Bank. Finance 34, 

2530–2548. 
Gao, X., Nardari, F., 2018. Do commodities add economic value in asset allocation? New evidence from time-varying moments. J. Financ. Quant. Anal. 53, 365–393. 
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2015. Bayesian Data Analysis. Chapman & Hall/CRC, New York, 3e.  
Gorton, G., Rouwenhorst, K.G., 2006. Facts and fantasies about commodity futures. Financ. Anal. J. 62, 47–68. 
Gul, F., 1991. A theory of disappointment aversion. Econometrica 59, 667–686. 
Hirshleifer, D., 1988. Residual risk, trading costs, and commodity futures risk premia. Rev. Financ. Stud. 1, 173–193. 
Jobson, J.D., Korkie, B., 1980. Estimation for Markowitz efficient portfolios. J. Am. Stat. Assoc. 75, 544–554. 
Kaldor, N., 1939. Speculation and economic stability. Rev. Econ. Stud. 7, 1–27. 
Kang, W., Rouwenhorst, K.G., Tang, K., 2021. Crowding and Factor Returns. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3803954. 
Kirby, C., Ostdiek, B., 2012. It’s all in the timing: simple active portfolio strategies that outperform naive diversification. J. Financ. Quant. Anal. 47, 437–467. 
Klein, R.W., Bawa, V.S., 1976. The effect of estimation risk on optimal portfolio choice. J. Financ. Econ. 3, 215–231. 
Koijen, R.S., Moskowitz, T.J., Pedersen, L.H., Vrugt, E.B., 2018. Carry. J. Financ. Econ. 127, 197–225. 
Ledoit, O., Wolf, M., 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Finance 10, 603–621. 
Ledoit, O., Wolf, M., 2008. Robust performance hypothesis testing with the Sharpe ratio. J. Empir. Finance 15, 850–859. 
Liu, H., Loewenstein, M., 2002. Optimal portfolio selection with transaction costs and finite horizons. Rev. Financ. Stud. 15, 805–835. 
Marshall, B.R., Nguyen, N.H., Visaltanachoti, N., 2012. Commodity liquidity measurement and transaction costs. Rev. Financ. Stud. 25, 599–638. 
Memmel, C., 2003. Performance hypothesis testing with the Sharpe ratio. Finance Letters 1, 21–23. 
Miffre, J., Rallis, G., 2007. Momentum strategies in commodity futures markets. J. Bank. Finance 31, 1863–1886. 
Opdyke, J.D.J., 2007. Comparing Sharpe ratios: so where are the p-values? J. Asset Manag. 8, 308–336. 
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