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A B S T R A C T

We develop an empirical network model to characterize the density of bilateral sovereign credit risk spillovers
during the European debt crisis. We show that the spillover density is often asymmetric with heavy tails and
that its location and shape vary strongly and systematically in relation to published indicators of systemic
stress. Using auxiliary panel data models, we show that the intensity of bilateral spillovers is related to the
portfolio investment exposures among country pairs. Because our spillover statistics can be updated daily, they
represent a valuable supplement to existing weekly and monthly measures of systemic stress.
1. Introduction

As concerns over the sustainability of sovereign debt swept across
Europe in the wake of the global financial crisis, tackling sovereign
credit contagion emerged as a key priority among European poli-
cymakers (e.g. Constâncio, 2012). Among the challenges that they
faced were an incomplete understanding of the network structure of
sovereign credit risk and the factors that influence it, as well as the
absence of techniques for monitoring systemic stress in the market for
sovereign debt in close-to-real time. In this paper, we make progress on
each front. We develop a dynamic network model to characterize the
comovement of idiosyncratic sovereign credit risk among a group of
23 European sovereigns over the period January 2nd 2006 to July 27th

2015, with excess comovement relative to a benchmark providing evi-
dence of sovereign credit contagion. By scrutinizing the cross-sectional
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and dynamic properties of the network, we identify phenomena that
expose sovereigns to credit contagion and develop new indicators of
systemic stress in the market for sovereign debt that are available at
higher frequency than existing alternatives.

Sovereign credit risk can be measured using sovereign credit default
swap (SCDS) spreads. An SCDS operates like an insurance contract in
which a bondholder pays a premium to transfer the default risk of the
bond onto the protection seller over a given time-frame. Due to its
liquidity and to the engagement of many well-informed institutional
investors, the market for credit default swaps is the leading forum
for credit risk price discovery (Blanco et al., 2005). Sovereign credit
contagion is associated with excess comovement among SCDS spreads
relative to the level of comovement observed in normal states of the
world. Excess comovement can be driven by changes in the sensitivity
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of SCDS spreads to common factors or by rising cross-sectional comove-
ment of the idiosyncratic components of SCDS spreads. We focus on
the latter, which represents pure contagion unrelated to fundamentals
and which corresponds to the notion of residual contagion laid out
by Bekaert et al. (2014) in their study of equity market contagion.

We begin by purging the SCDS spreads of the influence of a range of
global and domestic factors identified in the literature, including global
measures of investor risk appetite and funding liquidity and country-
specific measures of economic performance (e.g. Pan and Singleton,
2008; Remolona et al., 2008; Longstaff et al., 2011; Ang and Longstaff,
2013; Montfort and Renne, 2014; Augustin, 2018). The defactored
SCDS spreads that we obtain in this way isolate the idiosyncratic
component of each sovereign’s credit risk. We then use the vector au-
toregressive (VAR) approach to network analysis developed by Diebold
and Yilmaz (2009, 2014 hereafter collectively Diebold and Yilmaz) to
infer the network structure of the defactored SCDS spreads. Diebold
and Yilmaz show that the forecast error variance decomposition of a
VAR model can be interpreted as a weighted directed network. For an
𝑚-variable VAR, the forecast error variance decomposition estimates
how much of the future uncertainty associated with variable 𝑖 can be
ttributed to shocks affecting variable 𝑗, 𝑖, 𝑗 = 1,… , 𝑚.

By defactoring and estimating over rolling samples, we are able to
rack the evolution of the credit risk network over time. The established
ethod to measure the intensity of bilateral spillovers in Diebold and
ilmaz networks is via the spillover index, which is proportional to the
ean bilateral spillover. Increases in the spillover index are typically

nterpreted in relation to systemic stress and contagion (e.g. Alter
nd Beyer, 2014; Claeys and Vašíček, 2014; Ballester et al., 2016;
ostanci and Yilmaz, 2020). However, this approach does not utilize
he information in the higher moments of the spillover density (i.e. the
ensity of the bilateral spillover effects). Neglecting this information
ay be costly, because we show that the spillover density obtained

rom the Diebold and Yilmaz method is typically asymmetric with
eavy tails. In such a setting, it is easy to conceive of scenarios in
hich meaningful changes in the shape of the spillover density are not

eflected in its mean. Such behavior may sound contrived but we show
hat this exact phenomenon arises during the European debt crisis, as
he decoupling of the peripheral eurozone sovereigns from the eurozone
ore discussed by Antonakakis and Vergos (2013) generates growth in
he right tail of the spillover density while its mean is falling. To address
his issue, we develop a framework to characterize and track the entire
pillover density via kernel density estimation (KDE).

Some degree of interdependence in idiosyncratic sovereign credit
isk across countries is to be expected in normal states of the world. To
dentify episodes of contagion, we must distinguish between network
tructures that are consistent with normal levels of interdependence
nd those that are not. We treat the estimated network obtained over
tranquil period prior to the global financial crisis (GFC) as the

enchmark network. This is an obvious choice because, as Acharya
t al. (2014) point out, there is no evidence that sovereign credit risk
as a concern for developed markets at this time. Having defined
suitable benchmark, evidence of idiosyncratic sovereign credit risk

pillovers in excess of the benchmark is evidence of residual sovereign
redit contagion.

The benchmark spillover density has a peak close to zero and a long
ight tail, driven by a handful of stronger spillovers among country-
airs with close geopolitical linkages, such as Hungary and Poland.
hese features are maintained until the outbreak of the subprime
risis in mid-2007, which instigates a rightward shift in the spillover
ensity coupled with a reduction in its skewness that occurs in several
teps that coincide with adverse news regarding Bear Stearns and with
he failure of Lehman Brothers. The intensification of idiosyncratic
overeign credit risk spillovers over this time relative to the pre-GFC
enchmark constitutes evidence of residual sovereign credit contagion.

The evidence of contagion is sustained from late-2008 until mid-
2

011, with the location of the spillover density remaining largely c
nchanged. Claeys and Vašíček (2014) document a similar plateau
n spillover intensity at this time. Many key events of the European
ebt crisis, including the dissolution of the Greek parliament, the
evelation of inaccuracies in Greek economic data and a number of
overeign bailouts are scarcely reflected in the spillover index. After the
ortuguese request for aid in mid-2011, the spillover density gradually
hifts leftward until the end of our sample. Over this entire period,
hanges in the shape of the spillover density convey strong signals
bout changes in the transmission of idiosyncratic sovereign risk. For
xample, the Greek request for aid in 2010 generates a surge in the
ight tail of the spillover density that reflects an intensification of credit
isk spillovers among peripheral sovereigns. Furthermore, even as the
ean of the spillover density falls late in our sample, its right tail grows

o reflect strengthening spillovers among the GIIPS (Greece, Ireland,
taly, Portugal and Spain). This is a manifestation of the decoupling of
he GIIPS from the eurozone core and offers an excellent illustration
f the value of characterizing the entire spillover density, because
he reduction in the mean of the spillover density masks evidence of
ontagion in its right tail at this time.

Having documented evidence of residual contagion over our sample
eriod, we turn our attention to the factors that explain the strength
f idiosyncratic credit risk transmission. Using an auxiliary panel data
odel, we show that the intensity of bilateral spillovers is positively

elated to bilateral portfolio investment exposures and negatively re-
ated to bilateral portfolio investment flows. Cross-border portfolio
nvestment positions expose sovereigns to foreign shocks and the re-
renchment of international investments offers a channel through which
diosyncratic sovereign risk shocks can propagate internationally. Fur-
hermore, we show that fast-growing countries and those with large
yclically adjusted budget deficits have a higher propensity both to
enerate and to receive credit risk spillovers. These findings are con-
istent with a body of work that emphasizes the role of financial
inkages and portfolio investment in episodes of contagion (e.g. Van
ijckeghem and Weder, 2001; Caramazza et al., 2004; Forbes, 2013;
ry-McKibbin et al., 2014) and the destabilizing influence of mutual
unds documented by Raddatz and Schmukler (2012).

Our final contribution is to show that changes in the shape of the
pillover density are strongly and systematically related to changes in
ystemic stress, measured by the European Central Bank’s (ECB) Com-
osite Indicator of Systemic Stress (CISS) and its sovereign counterpart
SovCISS). Increases in both CISS and SovCISS are associated with
tatistically significant rightward shifts in the spillover density, reduced
kewness and a greater concentration of mass close to the mean. This
inding has an important practical implication. The CISS and SovCISS
re only reported at weekly and monthly frequency, respectively. By
ontrast, our model can be used to construct a new spillover density
aily, providing a close-to-real time indicator of systemic stress in
he market for sovereign debt. By equipping policymakers with timely
ndications of changes in systemic stress, our framework can make

valuable contribution to the formulation and implementation of
tabilization policies during fast-moving crises.

Our work provides several contributes to the literature. First, we
dd to the literature that has used variants of the Diebold and Yil-
az technique to study sovereign credit risk. The paper that is most

losely related to ours is Claeys and Vašíček (2014), which is among
he first applications of the Diebold and Yilmaz technique to account
or common factors. In their analysis of credit risk spillovers among
6 EU sovereign bond markets up to 2012, the authors document a
ronounced increase in bilateral spillovers up to 2008, after which they
lateau, in keeping with our results. Other related papers from this
iterature include Alter and Beyer (2014), Buse and Schienle (2019),
ostanci and Yilmaz (2020) and Ando et al. (2022). Unlike these
apers, we exploit the entire spillover density and draw explicit com-
arisons against a benchmark density to look for evidence of sovereign

redit contagion.
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Second, our paper sits within the broader literature on sovereign
credit risk that has considered additional channels beyond pure resid-
ual contagion. Gómez-Puig and Sosvilla-Rivero (2016) use a dynamic
Granger causality framework and find evidence of both pure and
fundamentals-based contagion during the sovereign debt crisis. Gior-
dano et al. (2013) and Beirne and Fratzscher (2013) both find evidence
of wake-up call contagion, whereby a shock prompts investors to pay
greater attention to the underlying country-specific fundamentals that
ultimately determine sovereign creditworthiness. By contrast, using
quantile regressions, Caporin et al. (2018) argue that changes in the
mechanisms by which shocks propagate (so-called shift contagion) did
not contribute to the European debt crisis. Meanwhile, Aït-Sahalia
et al. (2014) model eurozone SCDS spreads as a mutually-exciting jump
process. Their results indicate that both self-excitation and asymmetric
cross-excitation explain the evolution of SCDS spreads.

This paper proceeds as follows. In Section 2, we introduce our
dataset and summarize our analytical framework. In Section 3, we
present our estimation results and scrutinize the properties of the
sovereign credit risk network. We conclude in Section 4. Further details
of our dataset and the results of several additional tests and robust-
ness exercises are presented as appendices contained in an Online
Supplement.

2. Analytical framework

2.1. The dataset

Let 𝑐𝑖𝑡 denote the SCDS spread for sovereigns 𝑖 = 1, 2,… , 𝑚 in
periods 𝑡 = 1, 2,… , 𝑇 , measured in basis points. We work with SCDS
spreads obtained from Markit on US dollar denominated SCDS contracts
for unsecured sovereign debt with a tenor of five years under a com-
plete restructuring clause. Our selection of these specific SCDS contract
parameters accords with the market conventions documented by Bai
and Wei (2017).

We assume that 𝑐𝑖𝑡 can be decomposed into components driven by
exposure to global and domestic factors and an idiosyncratic compo-
nent, as follows:

𝛥𝑐𝑖𝑡 = 𝝀𝑓 ′𝑖 𝛥𝒇 𝑡 + 𝝀𝑑′𝑖 𝛥𝒅𝑖𝑡 + 𝑢𝑖𝑡, (1)

where 𝝀𝑓𝑖 and 𝝀𝑑𝑖 are 𝑓 × 1 and 𝑑 × 1 vectors of heterogeneous loadings
on the global and domestic factors, 𝒇 𝑡 and 𝒅𝑖𝑡 are 𝑓 ×1 and 𝑑×1 vectors
of global and domestic factors, respectively, and 𝑢𝑖𝑡 is the idiosyncratic
innovation specific to sovereign 𝑖. In principle, sovereign credit conta-
gion can arise through variations in the factor loadings or via increased
comovement of the 𝑢𝑖𝑡s in the cross-section dimension. We focus on the
latter and so our first step is to defactor the SCDS spreads, thereby
removing the influence of the common factors. The common factors
may be either observed or latent. We limit our attention to the case
of observed factors. There are several reasons to favor observed factor
models over latent factor models in general, including their ease of
implementation and their straightforward interpretation. Furthermore,
in the specific case of SCDS spreads, there is compelling evidence that a
range of market-determined variables act as common factors. Longstaff
et al. (2011) show that a selection factors related to US stock and high-
yield markets explain a considerable proportion of the variation in the
cross-section of SCDS spreads. Augustin (2018) further develops this
finding, demonstrating that the same set of factors also affects the slope
of the term structure of SCDS spreads.

In keeping with the results of Longstaff et al. (2011) and Augustin
(2018), we employ the following US macroeconomic and financial
indicators as common factors, which proxy for global economic and
financial conditions1:

1 It is natural to use US data to proxy for global conditions, as the US
overeign is not in our model and there is ample evidence showing that US
conomic and financial conditions exert a strong global influence (e.g. Chudik
nd Fratzscher, 2011; Helbling et al., 2011; Longstaff et al., 2011).
3

t

(i) US stock market performance, 𝑞0𝑡. We measure US stock market
performance using the value-weighted excess return on CRSP
firms incorporated in the US and listed on the NYSE, AMEX or
NASDAQ.

(ii) US Treasury market conditions, 𝑟𝑡. We use the change in the
five-year constant maturity Treasury (CMT) yield to capture ex-
pectations regarding US and global macroeconomic conditions.

(iii) The variance risk premium (VRP), 𝑣𝑡. Bollerslev et al. (2009)
define the VRP as the difference between the one-month-ahead
implied variance and a forecast of the realized variance over the
same period. We compute the VRP as 𝑉 𝑅𝑃𝑡 = 𝑉 𝐼𝑋2

𝑡 −𝐸
[

𝑅𝑉 (22)
𝑡+1

]

,
where 𝑉 𝐼𝑋2

𝑡 denotes the de-annualized squared VIX and 𝑅𝑉 (22)
𝑡

denotes the realized variance for the S&P 500 measured over the
next 22 trading days as the sum of squared five-minute intraday
returns. In light of the model comparison carried out by Bekaert
and Hoerova (2014), we generate out-of-sample forecasts of
the realized variance over our sample period using a heteroge-
neous autoregressive model supplemented with the squared VIX
(model 8 in Bekaert and Hoerova) estimated using data for the
pre-sample period 03-Jan-2000 to 30-Dec-2005.

(iv) The Treasury term premium, 𝑝𝑡. The term premium measures the
excess yield required by investors to hold a long-term bond
as opposed to a sequence of shorter-term bonds. It conveys
valuable information on investors’ time preferences and their
expectations. We include the 5-year Treasury term premium
derived from the five-factor no-arbitrage term structure model
of Adrian et al. (2013).

(v) US investment grade and high yield spreads, 𝑖𝑡 and ℎ𝑡. To capture
changes in the required rate of return on investment grade (IG)
and high yield (HY) corporate bonds, we include both the IG
(BBB-AAA) and HY (BB-BBB) spreads.

(vi) The TED spread, 𝑙𝑡. The TED spread is the difference between
the 3-month USD LIBOR and the 3-month US Treasury bill yield.
Variations in the TED spread reflect changes in counterparty risk
and liquidity in the US interbank market.

In addition, we include the following Europe-specific global factor:

(vii) The Euribor-DeTBill spread, 𝑙𝑒𝑡 . We measure funding liquidity in
Europe using the spread between the 3-month Euribor and the
3-month German Treasury bill yield.

Lastly, we include the following domestic factors for each
overeign2:

(viii) Local stock market returns, 𝑞𝑖𝑡, 𝑖 = 1, 2,… , 𝑚. Augustin (2018)
shows that domestic stock returns are the most significant do-
mestic determinant of SCDS spreads, so we use local stock
returns to capture country-specific financial risk.

(ix) Bilateral spot exchange rate returns, 𝑠𝑗𝑡, 𝑗 = 1, 2,… , �̃�.3 As the US
dollar is the contract currency for our CDS data, we control for
currency fluctuations against the dollar. To this end, we include
the daily log-return on the bilateral spot exchange rate for each
unique currency in our sample in units of foreign currency per
USD.

Details of the data sources for the observed factors may be found
in Appendix A. Our selection of global and local factors incorporates

2 Local macroeconomic and political conditions have also been shown to
ffect CDS pricing (e.g. Remolona et al., 2008). However, these phenomena
annot be reliably measured at daily frequency, so we are unable to include
hem as factors directly. Nonetheless, their influence should be reflected in the
ocal stock market return and USD bilateral exchange rate, which are included
mong our observed factors.

3 All of the Euro area countries in our sample share a common currency
ver our sample period, so the total number of unique exchange rates against

he US dollar is �̃� < 𝑚.
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the majority of the explanatory variables considered by Longstaff et al.
(2011).4 By regressing the first difference of the 𝑖th SCDS spread on
the contemporaneous first differences of the global factors and the
domestic factors for sovereign 𝑖, we are able to isolate the idiosyncratic
innovations in the credit risk of the 𝑖th sovereign, 𝑢𝑖𝑡. As expected, unit
root testing and autocorrelation analysis indicates that our idiosyncratic
credit risk measures are stationary and display little autocorrelation
(results are available on request).

2.2. The Diebold–Yilmaz framework

We apply the Diebold and Yilmaz framework to characterize the
comovement in the cross-section of idiosyncratic sovereign credit risk
on a rolling sample basis. Suppose that the length of the full sample
is 𝑡 = 1, 2,… , 𝑇 and that a window length of 𝜏 < 𝑇 is selected
(the selection of 𝜏 is discussed below). Given 𝜏, we estimate VAR
models on rolling samples of length 𝜏, each of which is indexed by
𝑟 = 1, 2,… , 𝑅, where 𝑅 = 𝑇 − 𝜏 + 1. The 𝑝(𝑟)-th order VAR model for
𝑡 = (𝑢1𝑡, 𝑢2𝑡,… , 𝑢𝑚𝑡)′ estimated on the 𝑟th rolling sample is given by:

𝑡 = 𝜶(𝑟) +
𝑝(𝑟)
∑

𝑗=1
𝑨(𝑟)

𝑗 𝒖𝑡−1 + 𝜺𝑡, (2)

or 𝑡 = 𝑟,… , 𝑟+ 𝜏 −1, where the regression residuals 𝜺𝑡 ∼ 𝑁(0,𝜴(𝑟)) and
the covariance matrix 𝜴(𝑟) is positive-definite. We select the lag order
for the VAR model in the 𝑟th rolling sample, 𝑝(𝑟), by minimization of
the Schwarz Information Criterion.

Suppressing the vector of intercepts for simplicity, the Wold repre-
sentation of (2) is:

𝒖𝑡 =
∞
∑

𝑗=0
𝑩(𝑟)

𝑗 𝜺(𝑟)𝑡−𝑗 , (3)

where 𝑩(𝑟)
𝑗 = 𝑨(𝑟)

1 𝑩(𝑟)
𝑗−1 + 𝑨(𝑟)

2 𝑩(𝑟)
𝑗−2 + ⋯ , for 𝑗 = 1, 2,… with 𝑩(𝑟)

0 =
𝑰𝑚 and 𝑩(𝑟)

𝑗 = 𝟎𝑚 for 𝑗 < 0. Following Pesaran and Shin (1998), the
generalized forecast error variance decomposition (GVD) at horizon
ℎ = 0, 1, 2,… ,𝐻 is defined as follows:

𝜗(𝑟,ℎ)𝑖←𝑗 =

(

𝜎(𝑟)𝜀,𝑗𝑗

)−1
∑ℎ

𝓁=0

(

𝐞′𝑖𝑩
(𝑟)
𝓁 𝜴(𝑟)𝐞𝑗

)2

∑ℎ
𝓁=0 𝐞

′
𝑖𝑩

(𝑟)
𝓁 𝜴(𝑟)𝑩(𝑟)′

𝓁 𝐞𝑖
, (4)

for 𝑖, 𝑗 = 1,… , 𝑚, where 𝜎(𝑟)𝜀,𝑗𝑗 is the (𝑗, 𝑗)-th element of 𝜴(𝑟) and 𝐞𝑖 is
a 𝑚 × 1 vector, with the 𝑖th element equal to 1 and all others equal
to 0. Consequently, 𝜗(𝑟,ℎ)𝑖←𝑗 expresses the proportion of the ℎ-step-ahead
forecast error variance (FEV) of variable 𝑖 that can be attributed to
shocks in the equation for variable 𝑗 in the 𝑟th rolling sample. Because
the GVD is scaled by the residual variance in each rolling sample, our
results do not suffer from the volatility bias described by Forbes and
Rigobon (2002).

4 Our use of daily data necessitates the omission of some variables used
y Longstaff et al. (2011) that are sampled at lower frequency, such as the
rice-earnings ratio for the S&P 100 index and equity and bond mutual fund
lows. In addition, Longstaff et al. (2011) include cross-section averages of
he SCDS spreads to proxy for regional and global factors, which can be
iewed as a type of latent factor similar to those employed in the common
orrelated effects estimator developed by Pesaran (2006). Because we focus
n observed factors, we do not include these cross-section average terms. Note
hat our selection of observed factors impounds the information contained in
he factors used by other recent studies of sovereign credit risk transmission.
or example, Caporin et al. (2018) control for the VRP of the Euro Stoxx 50
which is correlated with the S&P 500 VRP), the Euribor-EONIA spread (which
s correlated with the TED spread and the Euribor-DeTBill spread) and the first
ifference of the Euribor (which is related to the Euribor-DeTBill spread and
s correlated with the change in the US five-year CMT yield).
4

r

Diebold and Yilmaz were the first to show that GVDs can be used
to form a weighted directed network. One may construct the so-called
ℎ-step-ahead ‘connectedness matrix’ for 𝒖𝑡 as follows:

𝝑(𝑟,ℎ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜗(𝑟,ℎ)1←1 𝜗(𝑟,ℎ)1←2 ⋯ 𝜗(𝑟,ℎ)1←𝑚

𝜗(𝑟,ℎ)2←1 𝜗(𝑟,ℎ)2←2 ⋯ 𝜗(𝑟,ℎ)2←𝑚

⋮ ⋮ ⋱ ⋮

𝜗(𝑟,ℎ)𝑚←1 𝜗(𝑟,ℎ)𝑚←2 ⋯ 𝜗(𝑟,ℎ)𝑚←𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5)

For a given horizon, ℎ, and rolling sample, 𝑟, 𝝑(𝑟,ℎ)
(𝑚×𝑚)

characterizes the
spillover of idiosyncratic sovereign credit risk among the 𝑚 sovereigns
in our sample.

In a reduced form VAR such as ours, 𝜴(𝑟) is non-diagonal and
the Diebold and Yilmaz spillover measures do not have a structural
interpretation but can be interpreted as a generalized directed type of
correlation (Greenwood-Nimmo et al., 2021). The GVD is designed to
accommodate this non-diagonality, although the variance shares will
sum to more than one in this case. Diebold and Yilmaz (2014) tackle
this scaling issue by normalizing the elements of 𝝑(𝑟,ℎ) as follows:

𝜃(𝑟,ℎ)𝑖←𝑗 = 𝜗(𝑟,ℎ)𝑖←𝑗 ∕
𝑚
∑

𝑗=1
𝜗(𝑟,ℎ)𝑖←𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑚, (6)

such that we may write the 𝑚 ×𝑚 normalized ℎ-step-ahead connected-
ness matrix as:

𝜽(𝑟,ℎ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜃(𝑟,ℎ)1←1 𝜃(𝑟,ℎ)1←2 ⋯ 𝜃(𝑟,ℎ)1←𝑚

𝜃(𝑟,ℎ)2←1 𝜃(𝑟,ℎ)2←2 ⋯ 𝜃(𝑟,ℎ)2←𝑚

⋮ ⋮ ⋱ ⋮

𝜃(𝑟,ℎ)𝑚←1 𝜃(𝑟,ℎ)𝑚←2 ⋯ 𝜃(𝑟,ℎ)𝑚←𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

2.3. Accounting for compositional changes

Unlike the simple case assumed above, the number of sovereigns
in our sample changes through time (Bostanci and Yilmaz, 2020, face
the same issue). On the one hand, data for more sovereigns becomes
available over our sample period as the SCDS market broadens. Given
that important sovereigns including the UK and Switzerland are among
the group without SCDS data at the start of our sample period, it
would be desirable to allow our cross-section of sovereigns to grow as
more data becomes available. On the other hand, and a more pressing
concern for any analysis of the European sovereign debt crisis, there is a
large gap in the Greek SCDS data, reporting of which ceases on 08-Mar-
2012, when the spread is listed as 37,030.49 basis points.5 Reporting of
Greek SCDS data resumes on 10-Jun-2013. The gap in the Greek SCDS
data is a result of the Greek debt crisis, where fears of an imminent
credit event prompted a switch away from trading on a running spread
in favor of points upfront trading.6

Faced with a sample of changing composition, we have two options:
(i) to eliminate all those sovereigns for which we do not have data
spanning the entire sample period; or (ii) to adapt our framework
to accommodate compositional changes between rolling samples. We
pursue the latter option to avoid excluding important countries from
our analysis. Table 1 records how the number of sovereigns in our

5 Such a high SCDS spread is a reflection of illiquidity, so we trim the Greek
ata back to 14-Feb-2012, the last observation for which the SCDS spread is
ess than 10,000 basis points.

6 Points upfront trading is an alternative to operating with a running spread,
n which the protection buyer pays the protection seller in an ongoing manner
hrough the life of the contract. Points upfront trading involves the payment
f the present value of the protection contract (or a fraction thereof) at the
tart of the trade. This eliminates the risk that the protection seller may be

equired to pay out before having received an income from the contract.
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Table 1
Cross-sectional composition and descriptive statistics for the estimation sample.

Sovereign ISO Sample 5-year CDS spreads Stock return Observed factors

code begins Mean Min Max Mean Min Max Mean Min Max

Greece GR 02-Jan-06 4.65 −2455.84 1674.74 −6.11 −1366.89 1343.11 GBP 0.39 −447.45 391.82
Austria AT 02-Jan-06 0.01 −27.49 44.28 −1.61 −1025.26 1202.10 BGN 0.24 −461.26 384.84
Belgium BE 02-Jan-06 0.01 −57.38 35.11 0.17 −831.93 922.13 CZK −0.05 −521.92 553.98
Czech Rep. CZ 02-Jan-06 0.02 −42.31 46.03 −0.28 −1548.05 1463.79 DKK 0.24 −462.34 385.56
Denmark DK 02-Jan-06 0.01 −15.77 17.60 3.84 −1147.58 951.98 EUR 0.26 −373.33 278.48
Finland FI 02-Jan-06 0.01 −8.48 11.82 1.60 −760.64 946.20 HUF 1.06 −519.98 630.47
France FR 02-Jan-06 0.01 −29.83 23.02 0.18 −947.15 1059.46 ISK 2.98 −1322.93 1341.53
Germany DE 02-Jan-06 0.00 −13.36 11.75 2.86 −743.35 1079.75 LTL 0.24 −461.76 383.76
Hungary HU 02-Jan-06 0.05 −83.68 125.23 −0.06 −1355.28 1475.57 NOK 0.74 −645.81 501.51
Iceland IS 02-Jan-06 0.05 −126.49 279.82 −5.47 −10960.25 507.83 PLN 0.53 −669.73 569.62
Ireland IE 02-Jan-06 0.02 −152.45 113.79 −0.61 −1396.36 973.31 RUR 2.91 −1552.30 1426.83
Italy IT 02-Jan-06 0.04 −74.04 71.80 −1.80 −859.81 1087.69 SEK 0.26 −554.74 354.11
Lithuania LT 02-Jan-06 0.03 −76.87 108.38 0.41 −1193.78 1100.15 CHF −1.28 −1141.89 847.48
Norway NO 02-Jan-06 0.00 −11.88 12.80 1.28 −1127.56 1101.57 Term Prem. 0.01 −33.04 20.31
Poland PL 02-Jan-06 0.02 −63.29 55.34 1.50 −828.88 608.37 RmRf −0.01 −1221.00 1314.00
Portugal PT 02-Jan-06 0.06 −167.25 170.66 −1.67 −1037.92 1019.59 CMT −0.11 −46.00 34.00
Russia RU 02-Jan-06 0.11 −168.80 206.86 1.80 −2065.71 2522.61 IG 0.01 −152.00 153.00
Spain ES 02-Jan-06 0.03 −69.60 59.21 0.15 −958.59 1348.36 HY 0.01 −57.00 50.00
Sweden SE 02-Jan-06 −0.03 −79.33 65.77 2.00 −751.27 986.50 VRP 0.00 −188.98 174.52
Netherlands NL 02-Jan-06 0.01 −13.43 25.69 0.39 −959.03 1002.83 TED −0.01 −80.00 99.63
UK UK 21-Mar-06 0.01 −16.74 17.48 0.34 −926.56 938.43 De-TBill 0.01 −65.80 73.60
Bulgaria BG 17-Apr-06 0.06 −86.22 91.81 −2.58 −1136.00 729.24
Switzerland CH 19-Jan-09 −0.04 −43.92 50.20 3.09 −907.03 490.27

Note: Currencies are identified as follows: British Pound (GBP); Bulgarian Lev (BGN); Czech Koruna (CZK); Danish Krone (DKK); Euro (EUR); Hungarian Forint (HUF); Lithuanian
Lita (LTL); Norwegian Krone (NOK); Polish Złoty (PLN); Russian Rouble (RUR); Swedish Krona (SEK); and Swiss Franc (CHF). The other observed common factors are abbreviated
as follows: term premium (Term Pm.); US stock market excess return (Rm-Rf); US 5-year CMT Treasury yield (CMT); investment grade spread (IG); high yield spread (HY); variance
risk premium (VRP); TED spread (TED); and the Euribor-DeTBill spread (EU TED). Descriptive statistics for the log-return on the domestic stock market and the log-return on the
bilateral spot exchange rate against the US dollar are reported in basis points. All exchange rates are expressed in units of foreign currency per US dollar. Descriptive statistics for
the VRP are reported in variance units. Descriptive statistics for the first difference of all other variables are reported in basis points.
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sample changes over our time, from 02-Jan-2006 to 27-Jul-2015. At the
start of our sample, we have data for 20 sovereigns. The UK, Bulgaria
and Switzerland enter our sample in March 2006, April 2006 and
January 2009, respectively. Consequently, our largest sample includes
23 sovereigns.

In light of the compositional changes documented in Table 1, the
dimension of the VAR model in the 𝑟th rolling sample is not simply
𝑚 but 𝑚(𝑟). This changing dimension does not pose any problems for
estimation of the rolling VAR models nor for computation of the con-
nectedness matrix following the Diebold and Yilmaz approach within
each rolling sample. However, it does complicate comparisons across
rolling samples, as easily demonstrated by a simple thought experi-
ment. Suppose that we have data for 20 sovereigns in the 𝑟th rolling
sample and for 21 sovereigns in the (𝑟 + 1)-th rolling sample. For
simplicity, suppose also that spillover activity is perfectly uniform in
both rolling samples — hence, every element of the connectedness
matrix for the 𝑟th rolling sample is equal to (1∕20) × 100% = 5% while
the equivalent figure for the (𝑟+1)-th rolling sample is (1∕21) × 100% ≈
4.75%. In the absence of an appropriate adjustment, it would therefore
appear that the average spillover is weaker in samples containing more
sovereigns.

To ensure that our spillover measures remain comparable across
rolling samples, we multiply every element of 𝜽(𝑟,ℎ) by a scale factor
such that:

𝑠(𝑟,ℎ)𝑖←𝑗 = 𝑚(𝑟)

max
𝑟∈{1,…,𝑅}

(𝑚(𝑟))
× 𝜃(𝑟,ℎ)𝑖←𝑗 , (8)

This ensures that spillovers in every rolling sample are expressed on the
same scale as in the sample with the largest cross-section of sovereigns.
Returning to our thought experiment, after applying our adjustment to
the 𝑟th rolling sample, we obtain a value of (20∕21) × (1∕20) × 100% ≈
4.75% and the connectedness matrices from the two rolling samples are
now measured on the same scale. The final re-scaled connectedness
5

i

matrix is:

S(𝑟,ℎ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑠(𝑟,ℎ)1←1 𝑠(𝑟,ℎ)1←2 ⋯ 𝑠(𝑟,ℎ)
1←𝑚(𝑟)

𝑠(𝑟,ℎ)2←1 𝑠(𝑟,ℎ)2←2 ⋯ 𝑠(𝑟,ℎ)
2←𝑚(𝑟)

⋮ ⋮ ⋱ ⋮

𝑠(𝑟,ℎ)
𝑚(𝑟)←1

𝑠(𝑟,ℎ)
𝑚(𝑟)←2

⋯ 𝑠(𝑟,ℎ)
𝑚(𝑟)←𝑚(𝑟)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

he (𝑖, 𝑖)-th diagonal element of S(𝑟,ℎ) measures the proportion of the
-step-ahead FEV of idiosyncratic risk in sovereign 𝑖 in the 𝑟th rolling
ample that can be attributed to shocks to affecting sovereign 𝑖 itself.
eanwhile, the (𝑖, 𝑗)-th off-diagonal element of S(𝑟,ℎ) measures the

roportion of the ℎ-step-ahead FEV of idiosyncratic risk in sovereign
in the 𝑟th rolling sample that can be attributed to shocks affecting

overeign 𝑗 — that is, the spillover of idiosyncratic credit risk from
overeign 𝑗 to 𝑖. It is the density of these 𝑚(𝑟) (𝑚(𝑟) − 1

)

bilateral spillover
ffects that we now set out to characterize.

.4. Summarizing the bilateral spillover density

Given that the number of elements in S(𝑟,ℎ) is quadratically increas-
ng in 𝑚(𝑟), reductive methods are needed to summarize variations in
pillover activity across rolling samples. Diebold and Yilmaz propose
he aggregate spillover index, 𝑆(𝑟,ℎ):

(𝑟,ℎ) =
𝒆′
𝑚(𝑟)S

(𝑟,ℎ)𝒆𝑚(𝑟) − trace
(

S(𝑟,ℎ))

𝒆′
𝑚(𝑟)S

(𝑟,ℎ)𝒆𝑚(𝑟)
× 100%, (10)

here, due to the scale factor that we introduce in (8):

′
𝑚(𝑟)S

(𝑟,ℎ)𝒆𝑚(𝑟) = 𝑚(𝑟)

max
𝑟∈{1,…,𝑅}

(𝑚(𝑟))
× 𝑚(𝑟).

onsequently, it follows that the Diebold and Yilmaz spillover index
s proportional to the mean bilateral spillover (i.e. the mean of the
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Fig. 1. Asymmetry of the weighted degree distribution in the Diebold and Yilmaz framework.
Note: The figure plots the empirical counter-cumulative distribution function (CCDF) for spillovers from a simulated Diebold and Yilmaz network on a log scale under three different
assumptions about the correlation of the shocks in the underlying VAR model. Simulations are based on the VAR(1) process 𝑨𝒚𝑡 = 𝑩𝒚𝑡−1 + 𝒆𝒕 where 𝒆𝒕 ∼ 𝐼𝐼𝑁

(

𝟎,𝜮
)

assuming a

cross-sectional dimension of 𝑁 = 50. To obtain uncorrelated shocks, we set 𝑨 = 𝑰𝑁 and 𝜮 = 𝑰𝑁 and draw 𝑩 ∼ 𝑀𝑁(𝟎,𝜴𝐵 ) where 𝜴𝐵 = �̃��̃�′ and the (𝑖, 𝑗)th element of �̃� is drawn
as 𝜔�̃�,𝑖𝑗 ∼ 𝑈 (−1∕2𝑁, 1∕2𝑁) for 𝑖, 𝑗 ∈ {1, 2,… , 𝑁}. To obtain correlated shocks, we retain the same assumptions except that we now set the 𝑖-th diagonal element of 𝑨 to 𝑎𝑖𝑖 = 1
∀𝑖 while we draw the 𝑎𝑖𝑗 ’s from the multivariate normal distribution with mean 𝟎 and covariance matrix 𝜴𝐴 = �̃��̃�′ where the (𝑖, 𝑗)th element of �̃� is drawn as 𝜔�̃�,𝑖𝑗 ∼ 𝑈 (−𝑐, 𝑐).
For weakly correlated shocks we set 𝑐 = 1∕2𝑁 and for strongly correlated shocks we use 𝑐 = 1∕𝑁 . In each case, we verify that the resulting VAR model is stationary and ergodic.
Results are shown for a single representative draw. To account for the random variation across draws, Appendix Table B.1 provides additional results based on 10,000 draws of
𝑨 and 𝑩.
off-diagonal elements of S(𝑟,ℎ)). To see this, note that:

E
[

𝑠(𝑟,ℎ)𝑖←𝑗,𝑗≠𝑖

]

=
𝒆′
𝑚(𝑟)S

(𝑟,ℎ)𝒆𝑚(𝑟) − trace
(

S(𝑟,ℎ))

𝑚(𝑟)(𝑚(𝑟) − 1)
≡ 𝑆(𝑟,ℎ)

𝑚(𝑟) − 1
× 𝑚(𝑟)

max
𝑟∈{1,…,𝑅}

(𝑚(𝑟))
.

(11)

For a symmetric distribution, the mean may represent an adequate
summary statistic. However, reliance on the mean may be insufficient
when the spillover density is asymmetric. Given that the GVD in (4)
is defined as a ratio of quadratic forms, the off-diagonal elements
of S(𝑟,ℎ) are likely to follow an asymmetric distribution. In Fig. 1,
based on simulations from a simple stationary and ergodic VAR(1)
data generating process, we verify that this is the case. The spillover
density is not only right-skewed but also markedly leptokurtic under a
range of parameterizations (see Appendix B for a detailed summary of
the simulation results). In light of this asymmetry, the mean bilateral
spillover is likely to provide a poor summary of spillover activity.
Measures designed to summarize spillover activity should take account
of both the location and shape of the spillover density.

We proceed by estimating the probability density function of the

set of bilateral spillovers in rolling sample 𝑟,
{

𝑠(𝑟,ℎ)𝑖←𝑗

}𝑚(𝑟)

𝑖,𝑗=1,𝑖≠𝑗
, by KDE.

To this end, we define an 𝜂 × 1 vector of grids, 𝝂 = (𝜈1, 𝜈2,… , 𝜈𝜂)′. We
follow the established practice and set 𝜂 = 1, 024. We then estimate the
spillover density as:

𝑔(𝑟,ℎ)(𝜈𝑙) =
1

𝑏(𝑟,ℎ)

(

1
𝑚(𝑟)(𝑚(𝑟) − 1)

) 𝑚(𝑟)
∑

𝑖,𝑗=1;𝑖≠𝑗
𝐾

⎛

⎜

⎜

⎝

𝜈𝑙 − 𝑠(𝑟,ℎ)𝑖←𝑗

𝑏(𝑟,ℎ)

⎞

⎟

⎟

⎠

, 𝑙 = 1, 2,… , 𝜂,

(12)

where 𝐾 is a chosen kernel and 𝑏(𝑟,ℎ) denotes the bandwidth. To ensure
that 𝑔(𝑟,ℎ)(𝜈𝑙) integrates to unity over the selected range of grid points,
we normalize as follows:

𝑓 (𝑟,ℎ)(𝜈𝑙) =
𝑔(𝑟,ℎ)(𝜈𝑙)

RSUM
(

�̂�(𝑟,ℎ)
) , (13)

where RSUM
(

�̂�(𝑟,ℎ)
)

is a numerical Riemann sum of �̂�(𝑟,ℎ) =
(

𝑔(𝑟,ℎ)(𝜈1),

… , 𝑔(𝑟,ℎ)(𝜈𝜂)
)′. Proceeding in this way, for a given window length (𝜏)

and forecast horizon (ℎ), we construct a sequence of 𝑟 = 1, 2,… , 𝑅
spillover densities, one for each rolling sample.
6

2.5. Summarizing the evolution of spillover activity

In our framework, there is evidence of residual contagion in rolling
sample 𝑟 if the bilateral spillover of idiosyncratic sovereign risk ex-
ceeds normal levels. Consequently, determining if there is evidence of
residual contagion requires: (i) a method to formally compare densities
over time that is sufficiently simple to be implemented in a rolling-
sample setting; and (ii) the selection of a benchmark density that is
representative of normal times.

Our solution is to compare each of the 𝑅 estimated spillover den-
sities against a pre-GFC benchmark density, 𝑓0, using the following
divergence criteria:

𝐷𝐻𝑁

(

𝑓 (𝑟,ℎ), 𝑓0
)

= sup𝜈
|

|

|

𝑓 (𝑟,ℎ) (𝜈) − 𝑓0 (𝜈)
|

|

|

/

sup𝜈𝑓0 (𝜈) (14)

𝐷𝐾𝐿

(

𝑓 (𝑟,ℎ), 𝑓0
)

= ∫ 𝑓 (𝑟,ℎ) (𝜈) ln
{

𝑓 (𝑟,ℎ) (𝜈)
/

𝑓0 (𝜈)
}

𝑑𝜈, (15)

where 𝑓 (𝑟,ℎ) is the estimated density under evaluation. 𝐷𝐻𝑁 is the
Hilbert norm and 𝐷𝐾𝐿 is the Kullback Leibler Information Criterion
(KLIC). Both measures are strictly non-negative and take the value zero
only if 𝑓 (𝑟,ℎ) = 𝑓0. Consequently, large values of the divergence criteria
are evidence of residual contagion.

The choice of benchmark density is an important one. In principle,
one may define a theoretical benchmark spillover density. This is an
intriguing possibility but it is beyond the scope of this paper — we
pursue a simpler approach. Given that we are particularly interested
in tracing the evolution of the spillover density through time, our
suggestion is to treat the estimated density from the first rolling sample
as the benchmark — that is, to set 𝑓0 = 𝑓 (1,ℎ). Our first rolling
sample spans a period of relative tranquility in the financial markets
during 2006 and so the resulting spillover density can be considered
typical for ‘normal’ times. This proposition is validated in our empirical
analysis, where the spillover densities in all rolling samples ending
prior to the outbreak of the subprime crisis in mid-2007 are found to
be qualitatively and quantitatively similar.

3. Results

To implement our technique, it is necessary to select an appropriate
window length (𝜏), forecast horizon (ℎ) and KDE implementation.
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Based on extensive sensitivity analysis, the results of which are sum-
marized in Appendix C, we find that the properties of the estimated
spillover density are highly robust to choices of 𝜏 ∈ {200, 250, 300}
trading days, ℎ ∈ {5, 10, 15} trading days and to the use of several
alternative KDEs. We therefore proceed by using the Gaussian kernel
with the asymptotically optimal bandwidth and by setting 𝜏 = 250
trading days and ℎ = 10 trading days, without loss of generality.7

3.1. Time-varying spillover density

We begin by providing a high-level overview of the contours of the
spillover density on a rolling sample basis in Fig. 2. To verify that our
KDE approach provides an accurate summary of spillover activity in
each rolling sample, the figure provides a pair of contour plots tracking
the evolution of the spillover histogram (panel (a)) and the estimated
spillover density (panel (b)) over our sample period. The black line in
each panel of the figure reports the mean bilateral spillover, which
is proportional to the Diebold and Yilmaz spillover index. The red
line shows the median bilateral spillover. The difference between the
mean and the median offers an intuitive spillover asymmetry measure
(SAM), the value of which is shown by the cross-hatched area in each
contour plot.8 A positive (negative) value of the SAM indicates that
the spillover density exhibits a right (left) skew. The dark gray shaded
region shows the interquartile range of the spillover density, while
the pale gray shading shows the region bounded by the 5th and 95th
percentiles. Recall that the off-diagonal elements of the connectedness
matrix are idiosyncratic risk spillovers, measured in percent. Therefore,
the vertical axes in each panel of Fig. 2 measure the strength of bilateral
spillover effects in percent.9 The similarity of the two contour plots
indicates that our KDE implementation offers a good approximation of
the spillover density.

Fig. 2 reveals that both the location and shape of the spillover
density change markedly over time. Our benchmark spillover density
is strongly asymmetric, with a peak close to zero and a long right
tail. These characteristics of the spillover density are maintained until
mid-2007, indicating that our benchmark density is representative of
spillover activity in the period prior to the subprime crisis. Further di-
rect evidence of the validity of our benchmark density can be obtained
from the divergence criteria, which take values very close to zero over
this period, indicating the stability of the spillover density prior to the
subprime crisis (the maximum values recorded by the Hilbert Norm and
the KLIC prior to July 2007 are 0.064 and 0.068, respectively).

As the subprime crisis and the GFC unfold, the peak of the spillover
density moves rightward and it becomes less skewed. This increase in
aggregate spillover activity reflects an intensification of the average
bilateral spillover of idiosyncratic credit risk among sovereigns rather
than the influence of common sources of variation, for which our
model explicitly controls. This is evidence of residual sovereign credit
contagion during the GFC, a finding that adds to the evidence of
contagion at this time put forth by Arghyrou and Kontonikas (2012)
and Kalbaska and Gatkowski (2012), among others.

From late-2008 until mid-2011, the location of the spillover density
remains above its benchmark level and is remarkably stable, providing

7 In response to comments from an anonymous referee, we also conducted a
ange of tests to evaluate the robustness of our analysis to the use of alternative
actor specifications and to the use of a shrinkage and selection estimator to
ounter concerns of over-fitting. We found that our results are very robust to
hese changes. To conserve space, we do not report details of these exercises
ere, but they are available from the authors on request.

8 Of course, there are many possible alternative formulations of the SAM.
ote that, despite the similar terminology, our spillover asymmetry measure
iffers from that of Baruník et al. (2016), which is based on a signed
ecomposition of the variables entering the VAR model.

9 The spillover density is bounded to the left by zero because GVDs are
on-negative by definition.
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evidence of continued strong spillovers of idiosyncratic credit risk —
that is, evidence of continued contagion. A similar plateau in spillover
activity starting in 2008 is documented by Claeys and Vašíček (2014)
using data on bond yield spreads up to 2012. The stability of the
mean bilateral spillover over this time is striking, particularly given that
this was a period of profound instability associated with the European
sovereign debt crisis. However, while the mean of the spillover density
remains largely constant, its shape continues to change, with notable
variation in tail mass. It is only after the Portuguese request for aid
in April 2011 that the peak of the spillover density starts to gradually
move leftward.

To develop richer intuition for the time-variation in the spillover
density, Fig. 3 presents several slices through the KDE-based contour
plot in Fig. 2(b), showing both the spillover CDF and PDF in a fa-
miliar format. The figure shows the benchmark spillover density in
comparison to the spillover density obtained for eight other rolling
samples ending on the day of the following events: Bernanke’s warning
of subprime risks in March 2007; the acquisition of Bear Stearns by
JP Morgan in March 2008; the bankruptcy of Lehman Brothers in
September 2008; the first Greek bailout as well as the Irish, Portuguese
and Spanish bailouts, which occurred between April 2010 and June
2012; and Greece’s failure to uphold its payment schedule to the IMF
on 30-Jun-2015. Note that, even though our focus is on European
sovereigns, we consider a range of global events to place our findings
in their temporal context.

When presented in this form, the extent of the asymmetry in the
benchmark spillover density is readily apparent. Fig. 3(a) reveals that
the bulk of the probability mass is close to zero, with approximately
two-thirds of all bilateral spillovers being no larger than 1% and
approximately nine out of ten being no larger than 3%. The median
bilateral spillover is just 0.51% but the right skew is sufficiently marked
that the mean bilateral spillover takes a much higher value of 1.16%.
Inspection of the connectedness matrix reveals that the subset of strong
spillovers in the right tail of the spillover density in the benchmark
sample occur among isolated country-pairs with close geopolitical re-
lations, such as Hungary and Poland. The shape of the spillover density
is similar shortly before the eruption of the subprime crisis. As of
March 2007, when Bernanke (2007) warned of systemic risks related
to government-sponsored mortgage enterprises, the median and mean
bilateral spillovers are 0.63% and 1.26%, respectively.

An intensification of spillovers is evident at the time of JP Morgan’s
acquisition of Bear Stearns in March 2008. Six months later, when
Lehman Brothers fails, the spillover density has shifted markedly to
the right and the right skew has diminished. At this time, the median
and mean bilateral spillovers are 2.74% and 3.22%, respectively, and
roughly 1 in 10 bilateral spillovers are no larger than 1%, while a
similar proportion are 6.5% or larger. The change in the shape of
the spillover density is so profound that the mean bilateral spillover
during the GFC is comparable to the upper decile of spillovers observed
prior to the GFC. This is strong evidence of residual sovereign credit
contagion. The magnitude of the response of the sovereign credit
risk network to the GFC can be understood in light of the existing
literature, which has demonstrated the nexus between financial crises
and sovereign credit risk and which has shown that Europe was partic-
ularly vulnerable to financial shocks due to its institutional design (e.g.
Reinhart and Rogoff, 2011; Lane, 2012; Acharya et al., 2014).

Spillovers of idiosyncratic sovereign credit risk remain at high levels
at the time of the Greek request for financial assistance in April 2010,
when the median and mean bilateral spillovers are 2.74% and 3.35%,
respectively. This fragile environment is sustained throughout several
subsequent sovereign bailouts and indicates a prolonged period of
sovereign credit contagion that was of considerable concern to policy-
makers at the time (e.g. Constâncio, 2012). The mean bilateral spillover
remains largely unchanged over the entire period spanning the Greek,
Irish and Portuguese bailouts, but the higher-order moments of the
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Fig. 2. Comparison of the spillover density and the spillover histogram.
Note: Panels (a) and (b) present contour plots which trace the mean, the median, the spillover asymmetry measure (SAM) and selected percentiles of the spillover histogram and
spillover density (respectively) over rolling samples. In each rolling sample, the spillover density is computed using the Gaussian kernel with the asymptotically optimal bandwidth.
The window length is set at 𝜏 = 250 trading days and the forecast horizon at ℎ = 10 trading days. The unit of measurement on the vertical axis is percent. The dates shown on
the horizontal axis correspond to the end of each rolling sample.
spillover density continue to evolve, with a notable jump in right tail
mass at the time of the Portuguese request for assistance.

The spillover density shifts back to the left toward the end of
our sample. Nonetheless, as of the end of June 2015, when Greece
missed its scheduled IMF payment, both the median and mean bilateral
spillovers exceed their benchmark levels, taking values of 1.46% and
2.55%, respectively. Although the falling average spillover intensity
may be taken as evidence of the end of the contagion episode, it is
important to realize that the strongest spillovers at this time occur
among a well-defined cluster of sovereigns (the GIIPS), a setting that
8

differs significantly from the isolated strong pairwise spillover effects
observed in the benchmark sample. This is evidence of ongoing residual
contagion among the GIIPS and is consistent with the widely discussed
decoupling of the GIIPS sovereigns from the core European sovereigns
at this time (e.g. Antonakakis and Vergos, 2013).10

10 A large literature has distinguished between the core and peripheral
regions of the EU. A good example is Hale and Obstfeld (2016), who describe
a pattern of heavy borrowing, domestic lending booms and rapid asset price
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Fig. 3. Changes in the spillover density, selected events.
Note: The figure presents PDFs (left side of each panel) and CDFs (right side) of the spillover density for the following events: the benchmark sample ending on 15-Dec-2006;
Bernanke’s warning of systemic risk in the subprime mortgage market on 06-Mar-2007; the acquisition of Bear Stearns by JP Morgan on 17-Mar-2008; the collapse of Lehman
Brothers on 15-Sep-2008; the Greek request for aid on 23-Apr-2010; the Irish request for aid on 22-Nov-2010; the Portuguese request for aid on 06-Apr-2011; the Spanish request
for aid on 25-Jun-2012; and the Greek default on its IMF debt repayments on 30-Jun-2015. If an event occurs on a non-trading day, the event date that we report refers to the
next available trading day in our sample. The forecast horizon is ℎ = 10 trading days in all cases and the unit of measurement on the horizontal axis is percent.
The fact that the decoupling of the GIIPS primarily manifests in
the right tail of the spillover density suggests that the shape of the
spillover density may be of at least as much concern to policymakers as
its location. Fig. 4 offers several insights into the value of characterizing
the entire spillover density in addition to its location. The figure records
the location of bilateral credit risk spillovers among the GIIPS within
the spillover density at the time of each of the events addressed in
Fig. 3, as well as two additional events for Greece — the agreement
over the second Greek bailout on 21-Feb-2012 and the Greek debt-
swap agreement on 09-Mar-2012. The figure shows that the bilateral
spillovers among the GIIPS have typically remained well inside the up-
per quartile of the spillover density since the onset of the European debt
crisis in late-2009, indicating a worrisome concentration of contagion
risk in the European periphery (e.g. Alter and Schüler, 2012; Kalbaska
and Gatkowski, 2012; Alter and Beyer, 2014; Aït-Sahalia et al., 2014).

Let us first focus on an adverse event, Greece’s departure from
its IMF repayment schedule (labeled ‘GRD’). Fig. 4 reveals a surge in
spillover activity among many of the GIIPS at this time that is not
apparent using typical mean-based summary statistics like the Diebold
and Yilmaz spillover index. 2015 was a period of political unrest in
Greece, with the election of the populist Syriza government raising the
possibility of a disorderly Greek default or even the departure of Greece
from the eurozone (Hodson, 2015). Either scenario would have had
severe consequences for European sovereign bond markets. However,
the instability in Greece posed particularly acute risks to peripheral
sovereigns, especially those with populist anti-austerity movements,
where the risk of political contagion (i.e. the risk of other peripheral
states using the Greek precedent in an effort to renegotiate bailout
terms subject to the threat that they may otherwise leave the eurozone)
added to the threat of sovereign credit risk contagion. In its May 2015
Financial Stability Report, the European Central Bank (2015, pp. 11)

inflation that became typical of the peripheral economies in the pre-crisis
period, fueled by the low borrowing costs associated with EMU membership.
Much of this borrowing was intermediated by financial institutions from the
core economies, creating a financial boom in the core at the cost of elevated
systemic exposure to peripheral risk.
9

notes that ‘‘[f]inancial market reactions to the developments in Greece
have been muted to date, but in the absence of a quick agreement on
structural implementation needs, the risk of an upward adjustment of
the risk premia demanded on vulnerable euro area sovereigns could
materialise’’.

Moving on to beneficial events, sovereign bailouts are motivated
in large part by the desire to ameliorate spillovers from troubled
sovereigns. As such, they may implicitly target the right tail of the
spillover density. Comparing adjacent pairs of events in Fig. 4 reveals
that some bailouts achieved a sustained reduction in outward credit
risk spillovers from the affected sovereign. Alter and Beyer (2014) also
document reduced sovereign risk spillovers following EU/IMF bailouts,
which they interpret as evidence of sovereign risk transmission onto
the European Financial Stability Facility. For example, the Portuguese
bailout (labeled ‘PT’) occurs when outward spillovers from Portugal are
very strong, lying well inside the upper decile of the spillover density.
By the time of the second Greek bailout (labeled ‘GR2’), outward
spillovers from Portugal to both Italy and Spain are weaker and lie
more centrally within the spillover density, indicating a reduction
in contagion risk. Similarly, the first Greek bailout appears to have
reduced outward spillovers from Greece and the Irish bailout appears to
have slightly reduced spillovers from Ireland to both Greece and Italy,
if not significantly to the other GIIPS states.11 Again, these effects are
not easily discerned at the mean of the spillover density.

3.2. Summarizing changes in the shape of the spillover density

In any setting where a subset of strong bilateral spillovers may
be of greater consequence to policymakers than the average bilateral
spillover, techniques to monitor not just the location but the shape of
the spillover density over time will enhance the utility of empirical
network models for policy analysis. We use divergence criteria for this
purpose. Fig. 5 plots the rolling sample Diebold and Yilmaz spillover

11 No such inferences can be drawn for the Spanish bailout based on Fig. 4,
as the gap between the Spanish bailout (event ‘ES’) and the next event
(Greece’s missed IMF payment, ‘GRD’) is too large.
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Fig. 4. Bilateral credit risk spillovers among the GIIPS.
Note: The figure reports bilateral spillovers among the GIIPS for the following events: Bernanke’s warning of systemic risk in the subprime mortgage market on 06-Mar-2007 (SM);
the acquisition of Bear Stearns by JP Morgan on 17-Mar-2008 (BS); the collapse of Lehman Brothers on 15-Sep-2008 (LB); the Greek request for aid on 23-Apr-2010 (GR1); the
Irish request for aid on 22-Nov-2010 (IE); the Portuguese request for aid on 06-Apr-2011 (PT); the agreement over the second Greek bailout on 21-Feb-2012 (GR2); the Greek
debt-swap agreement on 09-Mar-2012 (GRS); the Spanish request for aid on 25-Jun-2012 (ES); and Greece’s failure to meet its IMF payments deadline on 30-Jun-2015 (GRD).
If an event occurs on a non-trading day, the event date that we report refers to the next available trading day in our sample. Missing points in the panels relating to Greece
arise due to the lack of Greek CDS data between 15-Feb-2012 and 10-Jun-2013. For each event, the interquartile range of the spillover density is shown as a box and the 5-95%
percentile range as whiskers. The vertical axis is in percent.
index against the Hilbert Norm and the KLIC. To assist the reader, the
timing of several major events is marked in the figure, including bank
failures, sovereign crises, sovereign bailouts and ECB policy interven-
tions. Furthermore, in Table 2, we provide a simple comparison of the
magnitude of changes to the Diebold and Yilmaz spillover index and the
divergence criteria to accompany the figure. For each event marked in
Fig. 5, the table records the proportional change in the Diebold and
Yilmaz spillover index, the Hilbert Norm and the KLIC. In addition,
in light of the time-varying asymmetry in the spillover density docu-
mented above, the table also reports the proportional change in the
SAM. The analysis is based on the comparison of three time periods:
(i) the average over the five days prior to the event, (ii) the day of
the event; and (iii) the average over the five days after the event. To
facilitate comparisons, we normalize such that the average value in the
five days prior to the event is set to unity.

Because the Diebold and Yilmaz spillover index is proportional to
the mean bilateral spillover reported in Fig. 2, it exhibits the same
prolonged period of relative stability during the European sovereign
debt crisis. The proportional change in the spillover index is close
to zero for many of the major events of the European debt crisis,
yielding little signal of changes in the credit risk environment at this
time. Therefore, in the absence of any information on the shape of
the spillover density, one may naïvely conclude that there was no
substantial change in spillover activity at this time. This would be an
erroneous conclusion.

Because the divergence criteria fully exploit the informational con-
tent of the entire spillover density and not just its location, they both
provide clear signals of changes in the credit risk environment when
10
mean-based measures do not. For example, the abrupt jump in both
divergence criteria after the dissolution of the Greek parliament in
late-2009 reflects the increasing concentration of the spillover density
around its mean relative to the benchmark density, with a marked
contraction in the left tail indicating a notable strengthening of the
weakest spillovers in the system. The Diebold and Yilmaz spillover
index does not reflect this development and remains unchanged. In
contrast, the SAM, Hilbert Norm and KLIC rise by 11%, 4% and 10%
respectively over the following week. Similarly, at the time of the Greek
request for aid in April 2010, the proportional change in the spillover
index is -2%. By contrast, on the day of the request, the SAM jumps by
27%, indicating a large increase in right tail mass. Because this right-
skewed shape is more similar to the benchmark spillover density, the
Hilbert Norm falls by 4% and the KLIC falls by 10%.

However, the usefulness of the divergence criteria is best demon-
strated toward the end of our sample, once the GIIPS have decoupled
from the eurozone core. In May 2015, Janet Yellen’s discussion of a
possible interest rate rise in the US was met with a 5% proportional
reduction in average spillovers coupled with large drops in both di-
vergence criteria, as prospects for a normalization of monetary policy
reassured investors. However, less than six weeks later, Greece missed
its scheduled repayment to the IMF, instigating a surge in spillovers
among the European periphery indicative of contagion among the
GIIPS, as discussed above. The 4% proportional increase in the spillover
index at this time masks the size of the effect on credit risk spillovers
among the GIIPS. By contrast, the 8% reduction in the SAM on impact
coupled with jumps of 36% in the Hilbert Norm and 28% in the KLIC,
draws immediate attention to the tails of the spillover density.
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Table 2
Responsiveness of selected indicators to major events.

Event DY SAM HN KLIC Event DY SAM HN KLIC

5 days prior 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A 1.01 0.95 0.89 0.95 K 1.01 0.82 1.07 1.09
5 days after 1.00 0.97 0.90 0.95 1.01 0.84 1.07 1.08

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B 1.01 0.91 1.09 1.14 L 1.00 0.93 1.02 1.01

1.28 0.77 1.50 1.90 1.00 1.01 1.02 1.02

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C 1.00 0.94 1.03 1.01 M 1.00 1.32 1.00 1.00

1.01 0.86 1.10 1.21 1.01 1.11 1.02 1.04

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D 1.05 0.87 1.12 1.40 N 1.00 1.43 0.94 0.92

1.04 0.94 1.08 1.31 1.00 1.39 0.90 0.88

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E 1.00 1.39 0.97 0.95 O 0.92 1.02 0.63 0.57

1.02 0.59 1.07 1.08 0.92 0.85 0.74 0.68

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F 1.00 0.97 1.00 0.99 P 1.00 1.05 0.96 0.95

1.00 1.11 1.04 1.10 1.00 1.02 0.99 0.98

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G 1.01 0.95 1.05 1.13 Q 0.98 1.21 0.98 0.95

1.00 1.57 1.04 1.09 0.94 1.13 0.99 0.95

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H 0.98 1.27 0.96 0.90 R 1.01 1.04 1.05 1.04

0.99 1.11 0.92 0.86 1.10 0.97 1.29 1.42

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
I 1.00 1.04 0.99 0.98 S 0.95 1.12 0.62 0.73

0.99 0.97 0.98 0.91 0.95 1.11 0.67 0.75

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
J 1.00 0.98 0.98 0.97 T 1.04 0.92 1.36 1.28

1.01 1.09 1.00 0.99 1.04 0.93 1.37 1.29

Note: The table reports the change in the DY spillover index, the SAM, the Hilbert Norm and the KLIC for 20 events, details of which are
provided below. For each event, we focus on three values: the average value of the selected indicator over the 5 trading days prior to the
event, the value on the event day itself and the average over the 5 trading days after the event. To facilitate comparisons, we normalize such
that the average value in the five days prior to the event is set to unity. The following events are considered: (A) two Bear Stearns hedge funds
collapse; (B) Bear Stearns is downgraded by S&P; (C) Bear Stearns is acquired by JP Morgan; (D) Lehman Brothers files for bankruptcy; (E)
RBS reports record losses; (F) Greek parliament is dissolved; (G) European Commission releases a report on the falsification of Greek economic
data; (H) Greece requests aid; (I) Ireland requests aid; (J) Portugal requests aid; (K) second Greek bailout; (L) Spain requests aid; (M) Cypriot
bailout announced; (N) ECB cuts interest rates to a record low of 0.5%; (O) US federal government shutdown; (P) Greece returns to the bond
market; (Q) ECB announces negative interest rate policy; (R) the October 2014 flash-crash; (S) Yellen discusses the case for a rate rise; (T)
Greece misses its IMF payment deadline. For statistics based on the spillover density, computation is based on the Gaussian kernel with the
asymptotically optimal bandwidth and the density in the first rolling sample is used as the benchmark density. The window length is set at
𝜏 = 250 trading days and the forecast horizon at ℎ = 10 trading days.
This exercise has two important implications. First, the stability
f the mean bilateral spillover from one period to the next should
ot be interpreted as evidence that spillover activity has not changed.
econd, changes in the mean bilateral spillover are often accompanied
y oppositely signed changes in the skewness of the spillover density,
ndicating that the behavior of the strongest spillovers in the system
ay be dissimilar to the behavior of the average spillover. This implies

hat density-based summary statistics such as the SAM, Hilbert Norm
nd KLIC can identify episodes of contagion even when it is isolated to
subset of sovereigns and is not strongly reflected in measures of the

verage intensity of bilateral spillovers.

.3. What explains the shape of the spillover density?

So far, we have documented variations in the location and shape
f the spillover density that are indicative of residual contagion during
nd after the GFC. However, the question of how changes in spillover
ctivity are distributed among the edges in the network remains open.
his is an important question, because changes in the shape of the
pillover density reflect underlying changes in the intensity of bilateral
pillovers among sovereign pairs. Understanding what drives these
hanges in pairwise spillovers is therefore crucial to understanding the
volution of the spillover density over time.
11
To develop intuition on this issue, we begin by analyzing and
comparing the structure of the sovereign credit risk network in two
rolling samples. Fig. 6(a) shows the spillover density overlaid on the
spillover histogram for the benchmark sample, from 02-Jan-2006 to
15-Dec-2006. Fig. 6(b) shows the spillover density and histogram for
the rolling sample covering the period 22-Apr-2010 to 06-Apr-2011,
the end of which corresponds to the Portuguese request for activation
of the aid mechanism in the midst of the sovereign debt crisis.12 To
investigate how the distribution of spillovers among the edges in the
network changes between these two samples, Fig. 7 plots the corre-
sponding ten-days-ahead connectedness matrices, 𝑆(𝑟,10), as heatmaps.
To facilitate their interpretation, each heatmap has been clustered using
an agglomerative single linkage algorithm.13 Consequently, the order of
the sovereigns differs between panels (a) and (b) of Fig. 7. Furthermore,

12 Our choice of the Portuguese bailout sample as a comparison case is
essentially arbitrary — we could use any rolling sample during the sovereign
debt crisis period and the principal implications that we highlight below would
still hold. Detailed results for other samples are available on request.

13 This is an iterative ‘bottom-up’ algorithm. To start, every vertex is
considered as a cluster in its own right. In each iteration, the pair of clusters
that are closest to one-another are merged into a new cluster. The closeness of

two clusters is measured by the single strongest connection that exists between
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Fig. 5. Measuring changes in the shape of the spillover density via divergence criteria.
Note: The solid black lines represent the Hilbert norm (top panel) and the KLIC (bottom panel) which are plotted on the left axis. The dashed black line in each case is the Diebold
and Yilmaz spillover index plotted on the right axis. The spillover density is computed using the Gaussian kernel with the asymptotically optimal bandwidth and the density in the
first rolling sample is used as the benchmark density, 𝑓0. The window length is set at 𝜏 = 250 trading days and the forecast horizon at ℎ = 10 trading days. The dates shown on
the horizontal axis correspond to the end of each rolling sample. Vertical lines/shading indicate the following events: (A) two Bear Stearns hedge funds collapse; (B) Bear Stearns
is downgraded by S&P; (C) Bear Stearns is acquired by JP Morgan; (D) Lehman Brothers files for bankruptcy; (E) RBS reports record losses; (F) Greek parliament is dissolved; (G)
European Commission releases a report on the falsification of Greek economic data; (H) Greece requests aid; (I) Ireland requests aid; (J) Portugal requests aid; (K) second Greek
bailout; (L) Spain requests aid; (M) Cypriot bailout announced; (N) ECB cuts interest rates to a record low of 0.5%; (O) US federal government shutdown; (P) Greece returns to
the bond market; (Q) ECB announces negative interest rate policy; (R) the October 2014 flash-crash; (S) Yellen discusses the case for a rate rise; (T) Greece misses its IMF payment
deadline.
Fig. 6. Spillover densities for the benchmark sample and after the Portuguese request for aid.
Note: The density plots are computed using the bilateral spillovers (i.e. the off-diagonal elements) of the ten-days-ahead spillover matrix. Panel (a) shows the spillover density in
the first rolling sample, 02-Jan-2006 to 15-Dec-2006, which we treat as a benchmark. Panel (b) shows the spillover density for the sample spanning 22-Apr-2010 to 06-Apr-2011,
the end of which corresponds to Portugal’s request for financial assistance. In both cases, the spillover density is estimated using the Gaussian kernel with the asymptotically
optimal bandwidth. The unit of measurement on the horizontal axis is percent. For an analysis of the effect of kernel choice on these plots, see Figures C.1 and C.2 in Appendix C.
due to changes in the cross-sectional composition of our sample over
time, 20 sovereigns are included in Fig. 7(a) and 23 in Fig. 7(b),
although the reported spillover effects are directly comparable due to
the scale factor defined in (8).

members of those clusters. The algorithm terminates when all vertices are
included in a single cluster.
12
Fig. 7(a) reveals that, with the exception of the bidirectional
spillovers between Poland and Hungary, the bidirectional spillovers
between the Netherlands and Austria and the spillover from Norway to
Sweden, the remaining spillovers are mostly negligible in the bench-
mark sample. Fig. 7(b) presents a stark contrast. We have already
seen that spillover activity has intensified markedly by the time of the
Portuguese request for assistance but Fig. 7(b) reveals that increases
in spillover intensity are not uniformly distributed over the edges
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Fig. 7. Connectedness heat maps for the benchmark sample and after the portuguese request for aid.
Note: The heat maps summarize the ten-days-ahead spillover matrix, 𝑆(𝑟,10) defined in Eq. (9) for two rolling samples: (a) the first rolling sample, 02-Jan-2006 to 15-Dec-2006,
which we treat as a benchmark; and (b) the rolling sample spanning 22-Apr-2010 to 06-Apr-2011, the end point of which coincides with the Portuguese request for financial
assistance. Own-variable effects on the prime diagonal have been suppressed in each case and the heatmaps have been clustered according to a single linkage algorithm for clarity
of presentation. The benchmark sample contains 20 sovereigns, so each element of the spillover matrix reported in panel (a) is adjusted by a scale factor of 20/23 according to the
procedure described in Section 2. The Portuguese bailout sample contains all 23 sovereigns, so the scale factor in panel (b) is equal to unity. The unit of measurement is percent.
in the network. At one extreme, Switzerland and Iceland are very
weakly connected to most other sovereigns. At the other extreme, the
European core and peripheral sovereigns are now strongly connected
to one-another. The extent of the regional variation in spillover activity
revealed by Fig. 7 is striking. The clustering algorithm draws attention
to distinct groups of sovereigns, which can be seen as blocks along
the prime diagonal of the connectedness matrices. Clusters of EU core
and peripheral sovereigns can be discerned and a cluster of Eastern
sovereigns is particularly well-defined. A natural explanation for this
clustering is that the intensity of bilateral credit risk spillovers — and,
by extension, the shape of the spillover density — is related to the
underlying economic and financial linkages between countries, such as
trade flows and financial exposures, which themselves display regional
variation. A large literature has documented the relevance of trade
linkages, spatial proximity, the level of economic development, fiscal
sustainability and European-specific factors in explaining episodes of
contagion (e.g. Glick and Rose, 1999; Van Rijckeghem and Weder,
2001; Caramazza et al., 2004; Kali and Reyes, 2010; Forbes, 2013;
Bekaert et al., 2014; Fry-McKibbin et al., 2014; Ters and Urban, 2018;
Niemann and Pichler, 2020; Hsiao and Morley, 2022).

To investigate this possibility, we estimate an unbalanced panel
regression model in which the bilateral credit risk spillover between
country-pairs is regressed on a set of indicators of real and financial
bilateral linkages, while controlling for several observable characteris-
tics of both countries, as well as country-pair and time fixed effects.
Specifically, we model the bilateral credit risk spillover from country 𝑖
to country 𝑗 as a function of the following explanatory variables:

(i) Bilateral portfolio investment exposure. The exposure of country
𝑗 to bilateral portfolio investments with respect to country 𝑖 is
captured by the sum of country 𝑖’s declared holdings of assets
from country 𝑗 and country 𝑗’s declared holdings of assets from
country 𝑖, expressed as a percentage of the GDP of country 𝑗.

(ii) Bilateral portfolio investment flow. The magnitude of the gross
bilateral portfolio investment flow between countries 𝑖 and 𝑗
13
from the perspective of country 𝑗 is captured by the quarterly
change in the sum of country 𝑖’s declared holdings of assets
from country 𝑗 and country 𝑗’s declared holdings of assets from
country 𝑖, expressed as a percentage of the GDP of country 𝑗.

(iii) Bilateral trade exposure. The exposure of country 𝑗 to bilateral
trade with country 𝑖 is captured by the sum of exports and
imports between countries 𝑖 and 𝑗 expressed as a percentage of
the GDP of country 𝑗.

(iv) Structural budget balance. The cyclically-adjusted fiscal position
of sovereign 𝑖 (𝑗) is captured by its structural budget balance
quoted as a percentage of potential GDP.

(v) Real GDP growth. The annual growth rate of real GDP in country
𝑖 (𝑗) relative to the same quarter of the previous year, expressed
in percent.

(vi) CPI inflation. The annual rate of CPI inflation in country 𝑖 (𝑗)
relative to the same quarter of the previous year, expressed in
percent.

These variables capture a great deal of information about real
and financial linkages among sovereigns, as well as their macroeco-
nomic performance. The sampling frequency of these series varies,
from monthly (in the case of trade data, for example) to annual (e.g.
the structural budget balance). To avoid excessive interpolation of the
lower frequency series, we work at quarterly frequency. To this end,
we convert our daily spillover measures to quarterly frequency using
the period average value. Full details of the construction of the panel
dataset may be found in Appendix A.

Our regression results are reported in Table 3. Because our goal is to
understand what drives bilateral credit risk spillovers, we are primar-
ily concerned with the coefficients on the three country-pair-specific
variables listed at the top of the table.14 Two key results emerge. First,

14 Even though our primary focus is on the country-pair-specific variables,
the estimated parameters on the country-specific controls in Table 3 reveal
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Table 3
The determinants of bilateral credit risk spillovers.

Coeff. SE 95% CI

Bilateral Portfolio Exposure 0.011*** 0.004 [0.003, 0.019]
Bilateral Portfolio Flow −0.007** 0.003 [−0.014, 0.000]
Bilateral Trade Exposure −0.026 0.034 [−0.092, 0.040]
Source Structural Balance −0.076*** 0.016 [−0.108, −0.044]
Recipient Structural Balance −0.030* 0.015 [−0.060, 0.000]
Source Inflation 0.010 0.014 [−0.017, 0.036]
Recipient Inflation 0.000 0.014 [−0.029, 0.028]
Source Real GDP Growth 0.100*** 0.008 [0.083, 0.117]
Recipient Real GDP Growth 0.038*** 0.009 [0.019 , 0.056]

Cross Sections 506
Total observations 16,534
Within R-squared 0.203
Between R-squared 0.029
Overall R-squared 0.092

Note: The table reports estimation results obtained from an unbalanced panel data
model where the quarterly average value of the spillover from the source sovereign
to the recipient sovereign is regressed on the named explanatory variables, controlling
for both country-pair and period fixed effects. Estimated values of the constant and
the parameters on the country-pair and period dummies are suppressed to save space.
Inference is based on heteroskedasticity and autocorrelation robust standard errors. See
Appendix A for details of the data sources.
***Significance at the 1% level.
**Significance at the 5% level.
*Significance at the 10% level.

after controlling for conditions in the source and recipient countries,
an increase in the bilateral portfolio exposure between countries 𝑖 and

is associated with an increase in the intensity of the idiosyncratic
overeign credit risk spillover from country 𝑖 to country 𝑗. Meanwhile,
he gross bilateral portfolio investment flow between countries 𝑖 and 𝑗
s negatively related to the spillover intensity. These findings indicate
hat closer financial linkages provide a channel for contagion. Several
tudies including Forbes (2013) and Fry-McKibbin et al. (2014) obtain
imilar results for a variety of crises. Our results also suggest that
etrenchments in bilateral portfolio investment can provide a channel
or contagion. In extreme cases, such retrenchments may reflect fire
ales, where distressed investors seeking to sell assets are obliged to
ccept prices below fair value. In this vein, Raddatz and Schmukler
2012) have shown that capital flows from mutual funds are procyclical
nd serve to expose countries to foreign shocks.

Second, we find no significant effect of the bilateral trade exposure
n sovereign credit risk spillovers. This leads us to conclude that it is fi-
ancial exposures among countries rather than bilateral trade relations
hat contribute to the transmission of idiosyncratic sovereign credit
isk across borders, echoing similar findings from Van Rijckeghem and
eder (2001), Caramazza et al. (2004) and Fry-McKibbin et al. (2014)

cross a range of recent crises.

.4. Monitoring systemic stress

As a final exercise, we note that the speed with which the loca-
ion and shape of the spillover density adjust in response to systemic
vents raises the possibility that the spillover density can be used

some interesting findings. For example, sovereigns with larger structural
budget deficits (indicating an impaired fiscal position) tend to generate
stronger outward credit risk spillovers and are also more vulnerable to in-
ward spillovers. The importance of debt in the study of contagion has been
emphasized by Niemann and Pichler (2020) and Hsiao and Morley (2022),
for example. Faster growth rates in both the source and recipient countries
are also associated with stronger spillovers, at least after controlling for other
14

observable characteristics and for country-pair and period fixed effects.
Table 4
Changes in the shape of the spillover density vs. CISS and SovCISS.

Network statistic (a) Weekly CISS (b) Monthly SovCISS

Corr. Slope S.E. Corr. Slope S.E.

Mean 0.501 1.498 0.247 0.705 2.838 0.747
Median 0.596 2.052 0.265 0.724 3.317 0.676
Variance −0.117 −1.278 1.217 0.132 1.847 2.833
Skewness −0.473 −1.653 0.311 −0.675 −3.211 0.895
Kurtosis −0.392 −10.024 2.474 −0.619 −21.901 7.840
SAM −0.455 −0.550 0.127 −0.304 −0.478 0.246
Hilbert Norm 0.549 0.519 0.079 0.647 0.811 0.229
KLIC 0.506 1.384 0.224 0.561 2.001 0.629

Note: CISS denotes the ECB’s Composite Indicator of Systemic Stress, which is available
at weekly frequency. SovCISS is the ECB’s Composite Indicator of Sovereign Stress,
which is available at monthly frequency. To obtain the results under the heading
‘CISS’, we convert our network statistics from daily frequency to weekly frequency by
taking the weekly average. Likewise, results under the heading ‘SovCISS’ are obtained
by converting our network statistics to monthly frequency by taking the monthly
average. ‘Corr.’ denotes the correlation between the named network statistic and either
CISS or SovCISS. ‘Slope’ is the slope coefficient from a regression of the named
network statistic on a constant and either CISS or SovCISS, with ‘S.E.’ denoting the
Newey West heteroskedasticity and autocorrelation consistent standard error. CISS and
SovCISS are available from the ECB’s Statistical Data Warehouse, with series identifiers
CISS.D.U2.Z0Z.4F.EC.SS_CI.IDX and CISS.M.U2.Z0Z.4F.EC.SOV_EW.IDX, respectively.

to monitor systemic stress in the market for sovereign debt.15 To
investigate this possibility, we estimate a set of auxiliary models in
which we regress a selection of our network statistics on two popular
measures of systemic stress published by the ECB. The first is the
Composite Indicator of Systemic Stress (CISS) described by Holló et al.
(2012), which is constructed by aggregating 15 different measures of
financial stress in a manner that accounts for time-variation in their
cross-correlations. The second is its sovereign counterpart, SovCISS,
developed by Garcia-de-Andoain and Kremer (2018), which applies a
similar methodology to data from European sovereign bond markets.
Both CISS and SovCISS are bounded between zero and one, with higher
values indicating greater stress. CISS is reported weekly, while SovCISS
is reported monthly. Therefore, in regressions involving CISS (SovCISS),
we convert our network statistics to weekly (monthly) frequency by
taking the period average. The results are presented in Table 4.

First, consider the top two rows of the table, which relate to the
rolling sample mean and median of the spillover density. As expected,
both the mean and median are positively correlated with CISS (0.50
and 0.60, respectively) and strongly positively correlated with SovCISS
(0.71 and 0.72, respectively).16 However, the median is considerably
more responsive to changes in both CISS and SovCISS than the mean.
A one unit increase in CISS is associated with a 1.50% increase in the
mean and a 2.01% increase in the median. Likewise, a one unit increase
in SovCISS is associated with a 2.84% increase in the mean and a 3.32%
increase in the median.

The greater sensitivity of the median than the mean to changes
in systemic stress can be explained by the asymmetry of the spillover
density. The SAM is negatively correlated with both CISS and SovCISS

15 The use of density information for monitoring purposes is related to
the literature on the use of quantile regressions in the analysis of systemic
stress (e.g. Caporin et al., 2018; Chavleishvili and Manganelli, 2019; Ando
et al., 2022). The main conceptual distinction between our approach and
quantile regression methods is that we seek to characterize the distribution
of bilateral spillover effects estimated from a conditional mean model and
observe how it changes over rolling samples, while quantile regression allows
the coefficients of a model to differ across the quantiles of the conditional dis-
tribution. Exploring the complementarity between our approach and quantile
regression methods represents an interesting avenue for continuing research.

16 The fact that our network statistics are more strongly correlated with
SovCISS than CISS is a natural finding given that our model focuses on
spillovers of idiosyncratic sovereign credit risk as opposed to idiosyncratic risk
spillovers among a broader set of asset markets.
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(−0.46 and −0.30, respectively) and exhibits a strong negative contem-
poraneous association with both — the relevant slope coefficients in
Table 4 are −0.55 (CISS) and −0.48 (SovCISS). On average, an increase
n systemic stress is associated with a reduction in the right skew of
he spillover density, as strong spillover effects that would be confined
o the right tail of the spillover density in normal times become more
idespread in times of stress. Furthermore, the skewness and kurtosis
f the spillover density exhibit a strong negative contemporaneous
ssociation with CISS and SovCISS, indicating that the spillover density
oes not only move right and become more symmetric but that it also
ecomes more concentrated around its mean in periods of systemic
tress.

The systematic responses of both the location and shape of the
pillover density to variations in systemic stress indicate that the net-
ork statistics that we develop can be used to monitor systemic stress.
rucially, our model can be used to update these measures at daily

requency, providing a more timely indication of systemic stress than
ither the CISS or the SovCISS. Access to such timely indications of
ystemic stress would be extremely useful for policymakers in the midst
f a fast-moving crisis and may contribute to the formulation of better
argeted stabilization policies.

. Concluding remarks

In this paper, we develop and implement an innovative extension
n the Diebold and Yilmaz framework for network analysis to look
or evidence of residual sovereign credit contagion in Europe between
006 and 2015. By studying the comovement of the cross-section of
diosyncratic sovereign credit risk relative to a pre-crisis benchmark,
e find evidence of residual contagion, starting with the outbreak of

he GFC and continuing over the period of the European debt crisis.
urthermore, we find evidence that contagion becomes increasingly
ocalized among the GIIPS sovereigns as the European debt crisis
rogresses, which is consistent with evidence of a decoupling of the
IIPS from the core of the eurozone.

A distinctive feature of our framework is that, unlike prior studies
hat have used Diebold and Yilmaz networks to study sovereign credit
ontagion (e.g. Claeys and Vašíček, 2014), it fully exploits information
n both the location and the shape of the density of bilateral credit risk
pillovers. In our efforts to understand what determines the shape of
he spillover density, we show that international portfolio investment
ositions expose sovereigns to foreign shocks and that the retrenchment
f international investments represents a channel by which shocks to
redit risk can propagate internationally. This finding is consistent with
body of evidence that emphasizes the role of financial linkages and

ortfolio investment in episodes of contagion (e.g. Van Rijckeghem
nd Weder, 2001; Caramazza et al., 2004; Forbes, 2013; Fry-McKibbin
t al., 2014) and is consistent with the destabilizing influence of mutual
unds documented by Raddatz and Schmukler (2012).

Finally, we demonstrate that the location and shape of the spillover
ensity vary systematically with changes in systemic stress, as mea-
ured by the CISS and SovCISS indices published by the ECB. The
trength of the contemporaneous association between the moments
f the spillover density and the CISS and SovCISS indicates that the
pillover density can be used as a tool to monitor systemic stress in the
arket for sovereign debt at daily frequency, providing a valuable and

imely supplement to the ECB’s weekly CISS release and its monthly
ovCISS release.

In conclusion, we note three avenues for continuing research. First,
he factor dependence of the SCDS spreads could be handled within
he model rather than by defactoring prior to estimation. This would
rovide an avenue to study additional channels of sovereign credit
15
contagion in future work.17 Second, the development of a theoretically-
rounded benchmark spillover density against which the empirical
pillover density could be compared would open intriguing possibilities
or counterfactual analysis. Finally, our technique has obvious applica-
ions to other markets. The foreign exchange market provides a natural
xample, where the forced unwinding of carry trades during periods of
lliquidity described by Brunnermeier et al. (2009) is likely to create
concentration of strong spillovers among a small group of high-yield

urrencies.
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