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A B S T R A C T

In this paper, we analyze the effect of a policy recommendation on the performance of an artificial interbank
market. Financial institutions stipulate lending agreements following a public recommendation and their
individual information. The former is modeled by a reinforcement learning optimal policy that maximizes the
system’s fitness and gathers information on the economic environment. The policy recommendation directs
economic actors to create credit relationships through the optimal choice between a low interest rate or a
high liquidity supply. The latter, based on the agents’ balance sheet, allows determining the liquidity supply
and interest rate that the banks optimally offer their clients within the market. Thanks to the combination
between the public and the private signal, financial institutions create or cut their credit connections over
time via a preferential attachment evolving procedure able to generate a dynamic network. Our results show
that the emergence of a core–periphery interbank network, combined with a certain level of homogeneity in
the size of lenders and borrowers, is essential to ensure the system’s resilience. Moreover, the optimal policy
recommendation obtained through reinforcement learning is crucial in mitigating systemic risk.
1. Introduction

At the height of the sovereign debt crisis, the former president
of the European Central Bank, Trichet, declared: ‘‘When the crisis
came, the serious limitations of existing economic and financial models
immediately became apparent. . . As a policy-maker during the crisis, I
found the available models of limited help. In fact, I would go further:
in the face of the crisis, we felt abandoned by conventional tools. . . The
key lesson I would draw from our experience is the danger of rely-
ing on a single tool, methodology, or paradigm. Policy-makers need
input from various theoretical perspectives and a range of empirical
approaches. . . In this context, I would very much welcome inspiration
from other disciplines: physics, engineering, psychology, and biology.
Bringing experts from these fields together with economists and cen-
tral bankers is potentially very creative and valuable. . . ’’ (see Trichet
(2010)).

Inspired by the words of Trichet, welcoming new and multidis-
ciplinary policy tools, in this paper, we are explicitly interested in
understanding the effect that an unconventional and environmentally
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dependent policy recommendation has on the stability of the interbank
system. From the point of view of the functioning of the interbank
market, our work follows (Berardi and Tedeschi, 2017), where finan-
cial institutions establish preferential lending arrangements to insure
themselves against the unexpected withdrawal of deposits. Financial
connections might change over time via a preferential attachment
evolving procedure (see Barabási and Albert (1999)) such that each
agent can enter into a lending relationship with others with a proba-
bility proportional to a fitness measure. Specifically, the attractiveness
of agents is based either on their high supply of liquidity or their low
interest rate. The authors show how implementing one or the other
strategy generates different architectures of the credit network, which
dissimilarly impact the spread of systemic risk.

The originality of this work with respect to the one mentioned
above concerns the mechanism that drives banks to choose between
the two strategies. Where in Berardi and Tedeschi (2017) the choice
is exogenous and fixed, here we introduce a time-dependent policy
recommendation based on a reinforcement learning approach that
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directs banks to optimize the entire banking system’s long-term fit-
ness. Specifically, the regulator directs the interbank system towards
an optimal strategy that chooses between favoring a high liquidity
supply rather than a low interest rate, by collecting information from
the environment. Once the policy recommendation is made public,
each bank signals to her counterparty within the interbank market
her optimal liquidity supply or interest rate level, which are used
to establish credit agreements via the above-mentioned preferential
attachment mechanism. In a nutshell, we might think that the central
bank directs the interbank system to choose between interest rate
and liquidity supply by announcing the interest rate corridor that it
publishes periodically. The corridor dynamics, therefore, influence the
position of the Euro short-term rate (€STR) within it. Thus, indirectly,
the position of the €STR in the corridor indicates the strategy the banks
chose.

Compared to Berardi and Tedeschi (2017), therefore, the reinforce-
ment learning mechanism allows us both to endogenize and identify
the optimal strategy and to model a policy recommendation useful
to tame systemic risk. Although this tool is helpful for modeling the
reward-seeking behavior of agents in complex systems,1 (see Osoba
et al. (2020)), to the best of our knowledge, it is barely employed
in the agent-based framework. Interesting exceptions are Liu et al.
(2018), and Lozano et al. (2007), which use reinforcement learning
to model the credit allocation strategy of financial institutions in the
interbank market. Apart from the modeling differences omitted here
that distinguish us from those works, it is important to point out the
methodological distinction. Where these works use a tabular reinforce-
ment learning algorithm, as proposed by Watkins and Dayan (1992),
we use a state-of-the-art reinforcement learning algorithm with neural
network approximators (Schulman et al., 2017), which describes the
complex reward-seeking behavior. While the advantages and disad-
vantages of these algorithms are well documented and concern issues
such as the computational efficiency, the curse of dimensionality, and
the convergence (Bellman, 1956), the better performance of the neu-
ral network-powered algorithms emerges. These models are beneficial
when solving complex problems where the underlying environment
changes rapidly and is also defined by the different forces that re-
late and compete with each other. These capabilities have already
effectively solved complex financial and economic problems (see Jiang
et al. (2017), Zhang et al. (2020), Du et al. (2020) and Lin and Beling
(2020)).

Without delving into technical details, some clarifications on how
the proposed algorithm works should be done. The selected reinforce-
ment learning algorithm optimizes an objective function that, in our
context, corresponds to the aggregate fitness of the interbank system.
The optimization is carried out by training a neural network model. The
neural network receives input variables concerning the economic condi-
tions of the interbank system and returns as output the strategy, i.e., the
policy recommendation directing the system towards competing on
liquidity supply rather than on the interest rate.

This family of algorithms is often criticized regarding the inter-
pretability of inputs’ impact on the results. The output, in fact, often
appears as a black box whose determinants remain hidden from the
user. To avoid this problem, we act in the following way. Firstly,
we limit the choice of inputs to variables readily available to the
regulator. To this end, we use aggregate systemic variables such as
the interbank system’s minimum, maximum, and average interest rate
and liquidity supply. Choosing a limited set of input variables allows
us to understand their effects in determining the output and to model
a system with incomplete and asymmetric information (see Bernanke
et al. (1999)). Secondly, we directly study each input’s impact on

1 We refer the reader to Charpentier et al. (2021) and Mosavi et al. (2020)
or comprehensive reviews of different use cases of reinforcement learning in
inancial and economic contexts.
2

the output’s determination through the SHapley Additive exPlanation
(SHAP) framework (Lundberg and Lee, 2017).

The introduction of the reinforcement learning framework into the
interbank market model proposed by Berardi and Tedeschi (2017)
allows us to draw some important conclusions about the systemic sta-
bility of the system and to determine some policy interventions capable
of curbing contagion. Firstly, the proposed algorithm fully endogenizes
the evolution of the interbank network, whose architecture, therefore,
changes over time. In this way, we can identify that the topology that
emerges when the policy recommendation suggests a high supply of
liquidity is more resilient in the face of exogenous shocks (see Gai
and Kapadia (2010) and Elliott et al. (2014), for similar results). Also,
at the individual level, this policy produces better microeconomic
performance. In this circumstance, the lenders and borrowers are more
balanced in size, which generates a uniform risk exposure among
counterparties able to favor the system’s resiliency. Although not un-
equivocally accepted (see, for instance, Haldane and May (2011)), the
negative impact of ‘‘heterogeneity’’ on systemic stability is in line with
other theoretical and empirical studies (see Caccioli et al. (2012), Iori
et al. (2006) and Tedeschi et al. (2012)). On the other hand, the worse
performance of a system dominated by low interest rates reflects the
empirical evidence. Indeed, it is well documented that a credit mar-
ket dominated by ‘‘low-for-long’’ interest rates adversely affects both
the banks and the economy’s stability. For financial institutions, low
rates might reduce resilience by lowering profitability and, thus, their
ability to replenish capital after a negative shock. This strategy would
encourage risk-taking for the system, undermining systemic stability
(see Bindseil (2018), for a general overview of the topic). Finally,
our results suggest that the policy recommendation implemented via
reinforcement learning can more mitigate systemic risk than alternative
tools.

Related literature

The increasingly recurrent and impactful socio-economic crises have
called for a deep rethinking of economic theory. Firstly, the literature
has tried to understand and include the sources of contagion in the
economic models. Regardless of the modeling approach used, which
ranges from New Keynesian models solved globally or using a reduced
functional form (see, for instance, Boissay et al. (2016), Gertler et al.
(2020) and Svensson (2017)) to agent-based models and the most
recent network-oriented approaches (see Battiston et al. (2012a,b),
Georg (2013), Haldane and May (2011), Upper (2011), Capponi et al.
(2020) and Calice et al. (2020)), there is a general agreement that iden-
tifies interaction and heterogeneity as the drivers of endogenous crises.
Moreover, the post-Lehman studies have placed particular emphasis on
the propagation of contagion, determining the direction of the attack
from financial to real markets and its fuse in the portfolio structure of
financial institutions (see Brunnermeier et al. (2012)). Many interesting
studies, for example, have identified the source of contagion in the asset
or liability side of banks’ balance sheets. Among them, the effect of
the fire-sale price and the (re)payment system between creditors and
debtors have proven to be particularly important in generating financial
instability (see Acharya and Yorulmazer (2008a), Angelini et al. (1996),
Dasgupta (2004) and Rochet and Tirole (1996)). In this vein, maturity
transformation, sharing risk, herding behavior, and interbank linkages
are just some of the various components able to trigger instability or
collapse in financial markets (see Acharya and Yorulmazer (2008b),
Allen and Gale (2000) and Tedeschi et al. (2021), among the many).

Once the origin of the disease and the channels through which it
spreads have been identified, the literature has turned to treatment,
that is, identifying the best tools to mitigate financial contagion. The
scientific community has focused on developing new tools to over-
come systemic instability. Several conventional and non-conventional

monetary policies and other alternative tools have been proposed in



Journal of Financial Stability 67 (2023) 101139A. Brini et al.

a

b
l

s
a
n
m
n
l
r
s
h

a
r
a

a

this regard. However, their effects on financial stability are contro-
versial and depend on the overall economic condition (see Goldberg
et al. (2020), and Altavilla et al. (2021)). A strand of literature, for
example, has emphasized the importance of a strict, rule-based, and
predictable monetary policy to tame systemic risk (see Jiménez et al.
(2014) and Taylor (2011)). On another side, instead, different studies
have bet on alternative rules compatible with the underlying economic
conditions (see Boissay et al. (2021), De Grauwe (2011) and Galí
(2015)). Unfortunately, the weak empirical evidence, due to the fairly
recent development of these alternative techniques, which also include
the so-called macro-prudential policies, makes it difficult to prove the
supremacy of one approach over the other. While the empirical facts
are still uncertain, recent theoretical models have attempted to resolve
this ‘‘certamen’’. The model of Boissay et al. (2021) is an interesting
contribution in this direction. The authors use a globally solved New
Keynesian model with heterogeneous agents to generate endogenous
crises. The paper compares two monetary policy instruments, one that
follows a strict inflation-targeting rule and the other that allows the
central bank to curb financial booms and busts. The authors show how
the policies that mitigate output fluctuations help prevent financial
crises by acting on agents’ expectations. In support of cyclical policies
determined by the economic background, there are also many agent-
based models (see, Cincotti et al. (2012), Giri et al. (2019) and Riccetti
et al. (2018), among the many). Generating complex dynamics in
evolving systems is an ideal environment for testing the effect of
(un)conventional policies/measures on financial stability.

The rest of the work is organized as follows. In Section 2 we present
the functioning of the interbank market, placing particular emphasis
on the evolution of the credit network and the implementation of the
reinforcement learning algorithm. In Section 3, we show the results.
Specifically, we follow three steps: firstly, we verify the performance
and robustness of the reinforcement learning algorithm; secondly, we
investigate its implication on the interbank network morphology and
the performances of the financial institutions; thirdly, we present the
effect on the interbank systemic stability of the policy recommendation.
Finally, Section 4 concludes with some remarks on the achieved results
and the provided contribution.

2. Model

This section describes the formation and evolution of credit re-
lationships between financial institutions. Due to unexpected future
movements of deposits, banks enter into preferential lending agree-
ments to have a potential credit channel when needed. These lending
agreements are fast lanes created before use, and their set defines
a potential interbank network. Banks report their credit conditions to
their customers through an attractiveness measure to build their pref-
erential lending agreements. We model bank fitness as combining a
policy recommendation and private information. The first ingredient
is a signal obtained via a reinforcement learning mechanism, through
which the regulator directs banks to choose the best strategy given
the underlying environmental conditions. In particular, the regulator
recommends the weight to assign to high liquidity supply rather than to
low interest rates, thus directing the competition. The second ingredi-
ent is a private signal, based on the bank’s capital structure, consisting
of the actual interest rate and credit provision offered. Potential credit
relationships might change over time via a preferential attachment
evolving procedure that depends on bank fitness. As the deposit shock
materializes, financial institutions face liquidity surpluses or shortages,
which induce them to exploit their preferential lending agreements and
enter the interbank market as lenders or borrowers. At this point, the
previously potential network becomes an active credit network. Only the
potential links of the banks facing a liquidity shortage are activated and
correspond to a very sparse network.
3

2.1. The interbank market microstructure

We consider a sequential economy operating in discrete time, which
is denoted by 𝑡 = {0, 1, 2,… , 𝑇 }. At any time t, the system is populated
by a large number 𝑁 of active banks 𝑖, 𝑗 ∈ 𝛺 = {1,… , 𝑁}. Financial
institutions interact with each other through credit relationships rep-
resented by the set 𝑉𝑡, whose elements are ordered pairs of different
banks. Banks (nodes or vertices) and their connections (edges or links)
form the interbank network 𝐺𝑡 = (𝛺, 𝑉𝑡). The daily balance sheet
structure of each bank is defined as

𝐿𝑖𝑡 + 𝐶
𝑖
𝑡 + 𝑅

𝑖
𝑡 = 𝐷𝑖

𝑡 + 𝐸
𝑖
𝑡 , (1)

where assets are on the left-hand side and liabilities are on the right-
hand one. In particular, 𝐿,𝐶, and 𝑅 represent long-term assets, liquid-
ity, and reserves, while 𝐷 and 𝐸 deposits and equity of bank i at time
t. Reserves are a portion of deposits, 𝑅𝑖𝑡 = 𝑟̂𝐷𝑖

𝑡, where 𝑟̂ is the required
reserve rate2

At every time 𝑡, deposits are exogenously shocked, and the balance
sheet in Eq. (1) modifies accordingly. Specifically, deposits evolve as

𝐷𝑖
𝑡 = 𝐷𝑖

𝑡−1(𝜇 + 𝜔𝑈 (0, 1)), (2)

with 𝑈 (0, 1) a uniformly distributed noise between 0 and 1 and 𝜇
and 𝜔 modeling the expected number of negative shocks and thus
different market conditions. On the one hand, financial institutions
with a negative change in deposits and subject to a complete erosion
of their liquidity become potential debtors in the interbank market. On
the other hand, banks that suffer a small negative shock or an increase
in deposits become potential creditors to the system.3 Consequently, the
respective demand 𝑑𝑖𝑡 and supply 𝑠𝑖𝑡 of liquidity of potential borrowers
nd lenders are given by

orrower if ∶ 𝛥𝐷𝑖
𝑡 + 𝐶

𝑖
𝑡 ≤ 0,with demand of liquidity𝑑𝑖𝑡 = |𝛥𝐷𝑖

𝑡 + 𝐶
𝑖
𝑡 |

ender if ∶ 𝛥𝐷𝑖
𝑡 + 𝐶

𝑖
𝑡 > 0,with supply of liquidity𝑠𝑖𝑡 = 𝛥𝐷𝑖

𝑡 + 𝐶
𝑖
𝑡 .

Since we do not assume a Walrasian tâtonnement mechanism, the
ystem may endogenously generate a mismatch between credit supply
nd demand. Moreover, since the interbank network is not fully con-
ected, even at a micro level, the borrower bank’s liquidity demand
ight not match the credit supply offered by the lender banks con-
ected to it. Specifically, we define the granted loan from a generic
ender 𝑖 to a generic borrower 𝑗 as 𝑙𝑖,𝑗𝑡 = min(𝑠𝑖𝑡, 𝑑

𝑗
𝑡 ). Borrowing banks

ationed in the interbank market can sell their long-term assets at a fire-
ale price as a method of last resort. The amount of loan the borrower
as to sell to cover its residual liquidity need equals 𝛥𝐿𝑗𝑡 =

𝑑𝑗𝑡 −𝑠
𝑖
𝑡

𝜌 , where
𝜌 is the ‘fire-sale’ price. For the sake of simplicity and interoperability,
modeling the stock market is out of the scope of our analysis. Therefore,
we assume all other banks with sufficient liquidity to buy the same
percentage of long-term assets from the distressed bank. This leads
to an increase in the buyers’ long-term assets and a decrease in their
liquidity.

At the beginning of the next day, the repayment round takes place.
Financial institutions encounter a new deposit movement that increases
or decreases their liquidity. On the one hand, lending banks facing
a positive (negative) change in deposits remain potential creditors
(became potential debtors). On the other hand, borrowing banks face
different scenarios depending on whether the deposit shock is positive
or negative. Specifically, in the case of a positive shock, it can happen

2 This rate replicates a central bank regulation that sets the minimum
mount that a commercial bank must hold in liquid assets and is commonly
eferred to as the reserve ratio. The central bank determines this minimum
mount based on a specified proportion of bank deposit liabilities.

3 It is worth pointing out that a positive (negative) deposit shock implies
n increase (decrease) in reserves 𝑅. Consequently, banks plunder (replenish)
their liquidity.
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that: (i) the change in deposits is sufficient to repay the principal and
the interest, or (ii) the deposit variation is insufficient to cope with the
loan. In the first case, the debtor can quickly meet her obligations, but
in the second case, she must sell a number of long-term assets sufficient
to repay the creditor at a fire-sale price fully. On the other hand, in
the case of a negative shock, banks must sell their long-term assets
to pay for previous interbank borrowings and meet the new liquidity
needs. All institutions that do not raise enough liquidity to meet their
obligations via the fire sale fail, thus creating a bad debt for the lender.
The creditor’s loss, 𝐵𝑖,𝑗𝑡 , equals the granted loan after liquidating the
ebtor assets. Hence the equity of the bank 𝑖 obeys the following law
f motion:
𝑖
𝑡 = 𝐸𝑖𝑡−1 +

∑

𝑗
𝑙𝑖,𝑗𝑡−1𝑟

𝑖,𝑗
𝑡−1 −

∑

𝑗⊆𝜃𝑖𝑡

𝐵𝑖,𝑗𝑡 − (1 − 𝜌)𝐿̂𝑗𝑡 , (3)

here the second term on the right-hand side is the repayment, at the
gent-specific interest rate 𝑟𝑖,𝑗 , of the granted loan 𝑙𝑖,𝑗 , and the third
erm is the bad debt of the subset of the bank 𝑖 clients, 𝜃𝑖𝑡 , unable to
epay their debts because they go bankrupt and the last term represents
ire sales. If the bank has not fulfilled the loan requirements (i.e., if she
annot repay the principal and interest in full), the lender no longer
rovides credit, forcing her to exit the market. Thus, the borrower exits
he market when assets fall short of liabilities, that is 𝐸𝑖𝑡 < 0. The failed
anks leave the market. The banks exiting in 𝑡 are replaced in 𝑡 + 1
y new entrants, which are, on average smaller than incumbents. So,
ntrants’ size is drawn from a uniform distribution centered around the
ode of the size distribution of incumbent banks (see Bartelsman et al.

2005)).

.2. Banks microfoundations: the dynamics of lending agreements and
rading strategies

At the beginning of each day, agents meet in the interbank mar-
et to meet their liquidity needs and sign bilateral potential lending
greements representing the directed links (𝑖, 𝑗) ∈ 𝑉𝑡. These agreements
an be interpreted as credit lines, which are valid during t and can be
sed at the request of the borrower 𝑗 in case of the lender 𝑖 available
iquidity. The set of all potential lending agreements reproduces the
otential interbank network topology.4

Let us now explain in detail the mechanism that governs the forma-
ion/evolution of credit relationships between financial institutions. We
ssume banks are risk-neutral agents operating in a perfect competition
nvironment to optimize their expected profit. The bank 𝑖 expected
rofit for a loan provided to 𝑗 is given by

[𝛱 𝑖,𝑗
𝑡 ] = 𝑝𝑗𝑡 (𝑟

𝑖,𝑗
𝑡 𝑐

𝑖,𝑗
𝑡 ) + (1 − 𝑝𝑗𝑡 )(𝜉𝐴

𝑗
𝑡 − 𝑐

𝑖,𝑗
𝑡 ) + 𝜙𝐴𝑗𝑡 − 𝜒𝐴

𝑖
𝑡, (4)

here 𝑝𝑗𝑡 is the probability that the borrower does not fail, 𝑟𝑖,𝑗𝑡 the
nterest rate asked by the lender 𝑖 to the borrower 𝑗, 𝑐𝑖,𝑗𝑡 the maximum
mount 𝑖 is willing to lend to 𝑗. Moreover, 𝜉 is the liquidation cost
f assets, 𝐴𝑗𝑡 , pledged as collateral, and 𝜙 and 𝜒 the screening costs
f creating a credit link that decrease with the debtor dimension and
ncrease with the creditor size (see Dell’Ariccia and Marquez (2004),
nd Maudos and De Guevara (2004), for empirical evidence). Specif-
cally, Eq. (4) captures the lender’s expected revenue if the borrower
oes or does not meet her obligations (the first and the second term on
he right side, respectively), and the opportunity cost of the agreement
last two variables in Eq. (4)). Moreover, we apply a heuristic rule to
odel a proxy for the debtor’s 𝑗 survival probability. Recalling that the

orrower fails if her equity becomes negative, 𝐸𝑗𝑡 < 0, the probability of

4 The creation of these links predates the deposit shock, which is why
hey are potential. These credit lanes, common in interbank markets, can be
nterpreted as mutual ‘promises’ of help between financial institutions in case
f liquidity needs.
4

surviving is given by the closeness between 𝑗’s equity and the highest
net worth in the system, i.e.

𝑝𝑗𝑡 =
𝐸𝑗𝑡
𝐸max
𝑡

. (5)

The bank’s probability of surviving is connected to the financial
fragility and the competition in an evolving financial system. On the
one hand, a financial institution leaves the system if her net worth
is so low that an adverse shock makes it negative or if she suffers a
loss so huge as to deplete all the net worth accumulated in the past
(see Greenwald and Stiglitz (1993)). On the other hand, in a dynamic
and competitive financial system, banks that do not keep up with
their competitors have a higher probability of failing (see Altman and
Hotchkiss (1993), Denis and Denis (1995), Dichev (1998) and Lang and
Stulz (1992), among many). In this scenario, therefore, our bankruptcy
probability predicts that if a bank remains too small compared to
the competitors, her probability of failure increases (see Altman et al.
(2008), Dietsch and Petey (2004), Altman and Sabato (2007) and Gupta
et al. (2014), for empirical evidence). The Eq. (5) can also be inter-
preted as a rule of thumb for determining the risk premium that lenders
charge to a borrower.5 Finally, the maximum amount that the lender
𝑖 is willing to lend to 𝑗, that is, the lending capacity, 𝑐𝑖,𝑗𝑡 , in Eq. (4) is
efined as

𝑐𝑖,𝑗𝑡 = (1 − ℎ𝑗𝑡 )𝐴
𝑗
𝑡 > 0, if (𝑖, 𝑗) ∈ 𝑉𝑡,

𝑐𝑖,𝑗𝑡 = 0 otherwise,

ith ℎ𝑗𝑡 ∈ (0, ℎ𝑚𝑎𝑥𝑡 ) to be the borrower haircut, defined as the 𝑗’s

everage, 𝜆𝑗𝑡 , with respect to the maximum one. Hence ℎ𝑗𝑡 =
𝜆𝑗𝑡
𝜆max
𝑡

, with

𝜆𝑗𝑡 =
𝐿𝑗𝑡
𝐸𝑗𝑡

. By setting Eq. (4) equal to zero and rewriting it as a function

of 𝑟𝑖,𝑗𝑡 , we get the interbank rate that guarantees zero expected profit:

𝑟𝑖,𝑗𝑡 =
𝜒𝐴𝑖𝑡 − 𝜙𝐴

𝑗
𝑡 − (1 − 𝑝𝑗𝑡 )(𝜉𝐴

𝑗
𝑡 − 𝑐

𝑖,𝑗
𝑡 )

𝑝𝑗𝑡 𝑐
𝑖,𝑗
𝑡

. (6)

n line with the assumption of asymmetric information and costly
tate verification (see Bernanke et al. (1999)), the lender applies an
nterest rate that increases with her size.6 Following this interpreta-
ion, the explanation for the high interest rate lies in the problem of
symmetric information. Specifically, lenders having less information
han borrowers about the latter’s ability and willingness to repay a
oan have to screen applicants and charge the cost of this operation
o borrowers. However, it is infrequent to find evidence about the
osts associated with screening and, more generally, about the effect
f imperfect information on the behavior of credit market participants.
that is, her assets) and the financial vulnerability of the borrower (that
s j’s leverage). This last implication derives from the budget identity
see Eq. (1)) from which we can derive that 𝐴𝑗𝑡 = 𝐿𝑗𝑡

𝜆𝑗𝑡
+ 𝐷𝑗

𝑡 , where

𝜆𝑗𝑡 =
𝐿𝑗𝑡
𝐸𝑗𝑡

. In addition, the interest rate in Eq. (6) is not linearly related

to the bank’s survival probability and capacity.
We now have all the elements to describe how traders select their

counterparts in the interbank system, i.e., how lending arrangements
are formed and evolve. We develop a measure of agent attractive-
ness to generate an endogenous preferential attachment mechanism.
Specifically, banks signal themselves to their pool of clients based on

5 We acknowledged that the simulation results are robust even when
mplementing a survival probability where 𝐸max

𝑡 does not change over time.
Specifically, using the denominator of Eq. (5) the average maximum equity
over all the timestep.

6 The relationship between screening costs and the interest rate has been
widely explored in the economic literature and often associated with the
imperfect information paradigm (see Aleem (1990), Bester (1985) and Hoff

and Stiglitz (1990)).
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their low interest rates or abundant supply of liquidity. The dichotomy
between these two strategies is microfounded and stems from the
expected profit of banks (see Eq. (4)), where the screening costs of
creating a credit link increase with the creditor size. This implies, as
shown in Eq. (6), that lenders attractive in terms of higher liquidity
supply offer higher interest rates. Symmetrically, banks offering low
interest rates are necessarily less liquid.7 The positive relationship
between the liquidity of financial institutions and their interest rates
also has empirical evidence. Indeed, in the presence of distortions in
the functioning of the financial market due to increasing heterogeneity
in the agents’ size (see Freixas et al. (2011) and Bonner and Eijffinger
(2012)) and the segmentation of the market itself (see Veyrune et al.
(2018)), the modeled positive correlation between the two variables
emerges.

Although all agents start from the same initial conditions, financial
institutions are characterized by heterogeneous levels of their agent-
specific variables as time goes by. In line with this, the fitness of
each agent 𝜇𝑖𝑡 is a combination of her liquidity relative to the highest
liquidity provided in the market, 𝐶max

𝑡 , and her interest rate compared
to the cheapest one, 𝑟𝑚𝑖𝑛𝑡 , i.e.

𝜇𝑖𝑡 = 𝜂𝑡

( 𝐶 𝑖𝑡
𝐶max
𝑡

)

+ (1 − 𝜂𝑡)
( 𝑟𝑚𝑖𝑛𝑡

𝑟𝑖𝑡

)

. (7)

The parameter 𝜂𝑡 reflects a policy recommendation at time t, addressing
the choice of the banking sector towards one of two possible strategies.
On the one hand, 𝜂 approaching zero identifies an interbank system
moving towards the cheapest interest rates. On the other hand, 𝜂 close
o one highlights a liquidity-based system. The signal disseminated by
he regulator that directs the system toward the optimal strategy can
e interpreted as the central bank’s announcement of the interest rate
orridor. This corridor conditions the interbank interest rate and, conse-
uently, the choice of each financial institution on her credit condition
see Giannone et al. (2011)). We refer the reader to Section 3.1 for
detailed explanation of the policy recommendation evolution. One

f the main contributions of our work is to assume 𝜂𝑡 endogenously
volving through a reinforcement learning mechanism, modeling the
egulator’s will to address the banking system toward the best credit
trategy for system stability. It is worth emphasizing that, although in
q. (7) the public signal is homogeneous in the baseline model, banks’
ttractiveness remains highly heterogeneous as the private signals on
he liquidity, 𝐶 𝑖𝑡 , and interest rate, 𝑟𝑖𝑡, are agent-specific. Let us assume,
or example, that the system is directed towards a low-interest rate, 𝜂 =
0. Since interest rates in the fitness measure are bank-specific, interest
rates applied by lenders to their clients are different. Furthermore,
the liquidity supply of those lenders chosen to grant credit is also
agent-specific, which ensures heterogeneity in granting credit. A similar
dynamic applies to the case where the signal directs toward a high
liquidity supply, i.e., 𝜂 = 1. In other words, the only element of
homogeneity is the public signal that directs the system toward the
optimally selected strategy,8

Regarding our interbank network model, credit links are directional
ecause they are created and deleted by the agent 𝑗, who looks for a
oan and points to the agent 𝑖 that provides credit. The information
n credit conditions (and then loan) flows the opposite. It is worth

7 Assuming screening costs that increase with borrower’s dimension and
ecrease with the lender’s dimension implies an inverse relationship between
he lender’s size and the interest rate the financial institution offers on the
nterbank market: the most liquid lender provides the best conditions in terms
f interest rate. In this circumstance, the two banks’ strategies collapse into
he same. Since the banks’ strategies go in the same direction, their impact on
he simulated dynamics is similar. Given the perfect overlap of the two tactics,
he reinforcement learning mechanism achieves precisely the same effects as
random choice.
8 This assumption is modified in Section 3.3 where heterogeneity is also
5

ntroduced in the public signal. d
noting that credit terms are bilateral (between creditor and debtor) and,
therefore, not available from other market members.

In general local interaction models, the agent interacts directly with
a finite number of counter-parties in the population. The set of nodes
with which a single node is linked is called its neighborhoods. In
our model, the number of outgoing links is constrained to be a small
number 𝑑. Thus borrowers can only get loans from 𝑑 lenders. With this
assumption of network sparsity, the topology is always locally tree-like,
avoiding loops that would preclude us from fully understanding the
network architecture’s impact on economic dynamics, such as systemic
risk, failures, and liquidity diffusion.

At the time 𝑡 = 0, each bank 𝑗 starts having 𝑑 random outgoing
links (i.e., potential borrowing positions) and possibly with some in-
coming links from other agents (i.e., potential lending position). At the
beginning of each period, links are rewired in the following way. For
any outgoing link 𝑖, each borrower 𝑗 randomly selects a new bank 𝑘.
Comparing the fitness of the new financial institution with the one of
its previous lender 𝑖, the borrower 𝑗 cuts her old link with 𝑖 and creates
a new one with 𝑘 according to the probability

𝑃 𝑗𝑡 = 1

1 + 𝑒−𝛽(𝜇
𝑘
𝑡 −𝜇

𝑖
𝑡 )
, (8)

or keep its previous link with probability 1 − 𝑃 𝑗𝑡 . The proposed mech-
anism for reviewing credit agreements ensures that the most attractive
lenders get the highest number of borrowers (i.e., incoming links) and
earn the highest profits. Nevertheless, the degree of randomness in
the algorithm guarantees that some links with very high-performing
agents may be cut in favor of less attractive creditors. The amount of
randomness is regulated by 𝛽 and has a double purpose: from a practical
point of view, it prevents the system from being centralized around
a single financial hub; from a theoretical perspective, it allows us to
model incomplete information and bounded rationality.

The evolution of the banking system: determining the policy recommendation

As anticipated in the previous section, we use the reinforcement
learning paradigm to move the parameter 𝜂𝑡 and obtain an optimal pol-
icy recommendation in the described banking system. Reinforcement
learning aims to solve a decision-making problem in which the timing
of costs and benefits is relevant. In an interbank market that follows
the specified dynamics for the creation of lending agreements, rein-
forcement learning can help determine the policy recommendation that
better identifies the optimal attachment strategy to follow in Eq. (7),
even when partial information about the system is provided. Hereafter,
we refer to the reinforcement learning algorithm as the learning algo-
rithm. A Markov Decision Process (MDP) is the mathematical formalism
under which the reinforcement learning problem is usually defined. A
MDP comprises of a set of possible states 𝑆𝑡 ∈ , a set of possible
actions 𝐴𝑡 ∈  and a transition probability 𝑃 [𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].

t each time 𝑡, a learning agent that is in state 𝑆𝑡, takes an action 𝐴𝑡
nd receives a reward 𝑅𝑡+1

(

𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1
)

∈ R from the environment
before moving to the next state 𝑆𝑡+1. We define the agent strategy
𝜋 ∶  ×  ↦ [0, 1] as the conditional probability 𝜋(𝑎 ∣ 𝑠) of taking
he action 𝐴𝑡 = 𝑎 being in the state 𝑆𝑡 = 𝑠. The reinforcement learning
roblem is the stochastic control problem of maximizing the expected
iscounted cumulative reward

𝜋

[ ∞
∑

𝑡=0
𝛾 𝑡𝑅𝑡+1

(

𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1
)

]

, (9)

here 𝛾 ∈ [0, 1) is a discount factor, and the expectation is w.r.t. the
equence of states and actions reached following the strategy 𝜋.

In our MDP, the sequential economy in which the banking system
perates plays the role of the environment. Banks interact with the
nvironment by changing their credit lines: each day, they can adapt
heir attachment strategy between liquidity supply and interest rate

iscount, which is regulated through Eq. (7), with the choice of 𝜂𝑡,
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playing the role of the action 𝐴𝑡. We assume the agent is the system
s a whole rather than the single bank and that the optimal strategy
s realized at the system level, i.e., that the regulator directs financial
nstitutions towards the correct combination of the two strategies. This
ssumption has a twofold purpose. On the one hand, it helps us to
odel a system with incomplete/asymmetric information, where the

entral bank has richer information set than the single economic actor
see, for instance, Hoff and Stiglitz (1990), and Thakor (2020)). On
he other hand, it allows us to incorporate economic policy, seen
s the optimal indication that the regulator gives to the system to
educe the interbank market vulnerability (see Trichet (2010), for a
lobal overview).9 As shown above, the central bank’s recommendation
s made through the optimal interest rate corridor announcement,
hich conditions interest rates and the liquidity supplied by financial

nstitutions.
The state 𝑆𝑡 includes information on the banking system’s liquidity

𝑡 and the interest rate 𝑟𝑡 distributions. Specifically, the state space is
efined as

𝑡 = (𝐶max
𝑡 , 𝐶min

𝑡 , 𝑟max
𝑡 , 𝐶avg

𝑡 , 𝑟min
𝑡 , 𝑟avg

𝑡 ),

where 𝑥max
𝑡 = max𝑖∈𝛺 𝑥𝑖𝑡, 𝑥min

𝑡 = min𝑖∈𝛺 𝑥𝑖𝑡, 𝑥
avg
𝑡 =

∑𝑁
𝑖=1 𝑥

𝑖
𝑡∕𝑁 , being 𝑥 the

ariable of interest. We believe that this state-space setting is realistic
nough to model the partial information of the regulator about the
anking system: it would be difficult and costly to retrieve detailed and
pecific data on all the banks included in the system at each time step.
t is easier to gather information about the best and the worst liquidity
rovider in the interbank network as much as average estimates of the
ntire market.

Finally, the reward function we consider is the system’s total fitness

𝑡
(

𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1
)

=
𝑁
∑

𝑖=1
𝜇𝑖𝑡 (10)

oreover, the problem in Eq. (9) becomes a maximization of the
iscounted cumulative banks’ total fitness. From the definition of bank
itness, this means guaranteeing a better flow of liquidity through the
anking system and an efficient allocation at a more convenient interest
ate. We recall here that maximizing the fitness of financial institutions
orresponds to optimizing their expected profit. The motivation behind
his modeling assumption is twofold. Firstly, for the recommendation
o be followed by the banks, it must have a goal of interest to the banks
hemselves, namely their profit. Second, the regulator, by maximizing
he fitness of the system, succeeds ex-post in safeguarding the resilience
f the financial system, given the inverse relationship between expected
rofits and failures of financial institutions.

The learning algorithm operates in a model-free setting because
t only receives partial information on the relevant variables of the
ystem. At the same time, it does not know the internal dynamics
i.e., transition probability) with which the banks’ balance sheets move
nd lending agreements are generated. This information has to be
nferred through the sequence of states, actions, and rewards during
he learning process.

.3. The optimization algorithm: Proximal policy optimization

The optimization problem in Eq. (9) can be solved using a policy
radient algorithm like the Proximal Policy Optimization (PPO) (Schul-
an et al., 2017). A policy gradient algorithm directly parametrizes the

9 Considering 𝜂 as a system variable allows us to reduce the problem’s
athematical and computational complexity and study the banking system’s

ehavior as a whole. Making 𝜂 bank specific leads towards multi-agent
einforcement learning applications (Buşoniu et al., 2010), which consider
gents that compete with each other and are an out-of-the scope of the present
6

aper.
ptimal strategy 𝜋𝜃 = 𝜋(𝑎 ∣ 𝑠; 𝜃), for example, using a multilayer neural
etwork with parameters 𝜃. The optimization problem is approximately
olved by computing the gradient of the cumulative fitness of the sys-
em 𝐽 (𝜃) =

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡+1(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1;𝜋𝜃) and then carrying out gradient
scent updates according to

𝑡+1 = 𝜃𝑡 + 𝛼∇𝜃𝐽 (𝜃𝑡), (11)

here 𝛼 is a scalar learning rate. The policy gradient theorem (Sutton
t al., 2000; Marbach and Tsitsiklis, 2001) provides an analytical
xpression for the gradient of 𝐽 (𝜃) as

𝜃𝐽 (𝜃) = E𝜋𝜃

[

∇𝜃𝜋
(

𝐴𝑡 ∣ 𝑆𝑡; 𝜃
)

𝜋
(

𝐴𝑡 ∣ 𝑆𝑡; 𝜃
) 𝑄𝜋𝜃 (𝑆𝑡, 𝐴𝑡)

]

(12)

= E𝜋𝜃
[

∇𝜃 log𝜋
(

𝐴𝑡 ∣ 𝑆𝑡; 𝜃
)

𝑄𝜋𝜃 (𝑆𝑡, 𝐴𝑡)
]

,

here the expectation, with respect to (𝑆𝑡, 𝐴𝑡), is taken along a trajec-
ory (episode) that occurs adopting the strategy 𝜋𝜃 and the action-value
unction

𝜋 (𝑠, 𝑎) ≡ E

[ ∞
∑

𝑘=0
𝜌𝑘𝑅𝑡+1+𝑘 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝜋

]

, (13)

epresents the long-term reward associated with the action 𝑎 taken in
he state 𝑠 if the strategy 𝜋 is followed hereafter. It can be proven that
t is possible to modify the action value function 𝑄𝜋 (𝑠, 𝑎) in (12) by
ubtracting a baseline that reduces the variance of the empirical aver-
ge along the episode while keeping the mean unchanged. A popular
aseline choice is the state-value function

𝜋 (𝑠) ≡ E

[ ∞
∑

𝑘=0
𝜌𝑘𝑅𝑡+1+𝑘 ∣ 𝑆𝑡 = 𝑠, 𝜋

]

, (14)

hich reflects the long-term reward starting from the state 𝑠 if the
trategy 𝜋 is adopted onwards. The gradient thus can be rewritten as

𝜃𝐽 (𝜃) = E𝜋𝜃
[

∇𝜃 log𝜋
(

𝐴𝑡 ∣ 𝑆𝑡; 𝜃𝑡
)

A𝜋𝜃(𝑆𝑡, 𝐴𝑡)
]

(15)

here

𝜋 (𝑠, 𝑎) ≡ 𝑄𝜋 (𝑠, 𝑎) − 𝑉𝜋 (𝑠), (16)

s called advantage function and can be interpreted as the gain obtained
y choosing a specific value of 𝑎 in a given state with respect to its
verage value for the strategy 𝜋.

Different policy gradient algorithms derive from the way the advan-
age function is estimated. In PPO, the advantage estimator A (𝑠, 𝑎;𝜓)
s parameterized by another neural network with parameters 𝜓 . This
pproach is known as actor–critic: the actor is represented by the
olicy estimator 𝜋(𝑎|𝑠; 𝜃) that outputs a probability for each possible
alue of 𝑎 ∈ , which the learning algorithm uses to sample actions,
hile the critic is the advantage function estimator A (𝑠, 𝑎;𝜓) whose

output is a single scalar value. The two neural networks interact during
the learning process: the critic drives the updates of the actor, which
successively collects new sample sequences that will be used to update
the critic and again evaluated by it for new updates. The extended
objective function can therefore describe the PPO algorithm

𝐽PPO(𝜃, 𝜓) = 𝐽 (𝜃) − 𝑐1𝐿AF(𝜓) + 𝑐2𝐻 (𝜋 (𝑎 ∣ 𝑠; 𝜃)) (17)

where the second term is a loss between the advantage function esti-
mator A (𝑠, 𝑎;𝜓) and a target A𝑡𝑎𝑟𝑔 , represented by the cumulative sum
of discounted reward, needed to train the critic neural network. The
last term represents an entropy bonus to guarantee an adequate level
of exploration. Details about the specific choice of the target, together
with additional information about the general algorithm implementa-
tion, are given in Appendix B. In what follows, PPO can be generally

referred to as the learning algorithm.
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3. Simulation results

In this section, we perform numerical experiments to test the ca-
pability of the learning algorithm to identify an optimal strategy for
selecting 𝜂 and trading off the two competing ways of establishing
redit relationships. In this respect, we analyze the effects of the 𝜂

dynamics on agents’ economic performances, the interbank network
topology, and its resilience in the face of exogenous shocks. Finally,
we study the effect of the policy recommendation obtained through
reinforcement learning in controlling credit crunch phenomena and
mitigating systemic risk.

The results provided in the following subsections are obtained from
simulated tests, which share some choices for the parameter involved
in the dynamic simulation of the system. The number of Monte Carlo
simulations performed is 𝑀 = 200, and each simulation is 𝑇 = 1000
eriods long. We simulate a system with 𝑁 = 50 banks whose out-
egree is 𝑑 = 1, so each bank can obtain at most one outgoing link at
ach time step while can have many possible incoming links. Each bank
s subjected to an initial probability of being isolated, set at 0.25. The
arameters of the screening cost 𝜒 , and 𝜙 that enter in Eq. (6) are set
espectively at 0.015 and 0.025, while the liquidation cost of collateral
is 0.3. The parameters 𝜇 and 𝜔 shifting the uniformly distributed noise

hat shocks the bank deposits are set at 0.7 and 0.55. All the banks start
ith the same initial interest rate equal to 2% and are endowed with

he same initial balance sheet 𝐶0 = 30, 𝐿0 = 120, 𝐷0 = 135, and 𝐸0 = 15.
The reserve ratio 𝑟̂ = 0.2, the price of fire sale 𝜌 = 0.3 and the intensity
or breaking the connection between banks 𝛽 = 5 in Eq. (8) are other
arameters common to all the agents in the network. In the Appendix A
e check the robustness of our qualitative results by changing some key
arameters. Specifically, we vary the intensity of choice, 𝛽, from 0 to

40 with steps of 2; the fire-sale price, 𝜌, from 0.1 to 0.5 with steps of
0.1, the reserve rate, 𝑟̂ from 1% to 10% with steps of 0.1 and, finally,
the parameter 𝜔 regarding the volatility shock on bank deposit. We
have then studied the moments of the distributions of the statistics of
interest. Results confirm that our findings are robust to some variations
of the banking system simulation.

The PPO algorithm parametrizes a discrete strategy function so that
the learning algorithm can choose the value of 𝜂 among a finite set of
ctions  = {0, 0.5, 1}10

.1. Training the PPO algorithm

As the first step in our numerical analysis, we evaluate the perfor-
ance of the strategy learned by the PPO algorithm. We train four PPO

nstances on 𝐸𝑖𝑛 = 1000 consecutive episodes, which are independent
imulations of the banking system. The PPO instances differ for the
andom seed used to initialize the neural networks and to train them
sing a stochastic gradient descent approach. Multiple concurrent train-
ng of different instances is needed to provide an average performance
ogether with a confidence interval that highlights the robustness of
he learning process. Each training episode consists of a simulation of
he banking system for 𝑇 periods that allow the learning algorithm
o collect samples of data with which it can perform updates of the
odel parameters. During the learning phase, we evaluate the learning
rogress of each instance at several intermediate steps. We fix the
eights of the neural networks that parametrize the 𝜂 public signal

10 Under the same setting, training PPO instances that are allowed to
ick fine-grained discrete values between 0 and 1 as a possible action is
omputationally expensive because the algorithm needs to explore a broader
et of possible state–action pairs. Such an implementation would let the
lgorithm runtime grow and would not necessarily improve the results because
he algorithm would not be able to alias between consecutive actions. A fine-
rained action space  would make the 𝜂-strategy less interpretable. Hence in

our analysis, we decided to distinguish three specific scenarios, which are the
two extreme cases (𝜂 = 0.0 and 𝜂 = 1.0) and the middle case (𝜂 = 0.5).
7

and perform 𝐸𝑜𝑢𝑡 = 5 out-of-sample test episodes before carrying on
the training process to assess the learned behavior up to that point.
We refer to the Appendix B for the technical difference between an
in-sample and an out-of-sample test episode.

After training the PPO algorithm, the reinforcement learning agents
tend to select only the extremes of the set  = {0, 0.5, 1}, which
orresponds to an interest rate strategy (𝜂 = 0.0) or a liquidity strategy
𝜂 = 1.0). For this reason, we highlight such a dichotomy in the baseline
odel since it is the pattern that emerges when all the banks in the

ystem follow the policy recommendation. Considering the emerging
ichotomy in the selected action, we compare the PPO performance
ith respect to a dynamic random baseline that picks the value of 𝜂

according to a Bernoulli distribution with a parameter equal to 0.5. This
random policy that chooses between 0 and 1 with equal probability rep-
resents a meaningful benchmark, as we observe in the left-hand side of
Fig. 1, where the values of 𝜂 in both scenarios are identically distributed
over the 200 performed Monte Carlo simulations. The Kolmogorov-
Smirnoff test statistically confirms up to the 1% confidence level that
the distribution of the 𝜂 values generated by the selected11 PPO instance
is not significantly different from the one of the random baseline. The
right-hand side of Fig. 1 summarizes the learning process results where
the system’s average cumulative fitness in Eq. (10) is represented on
the 𝑦-axis. Every PPO instance is tested 𝐸𝑜𝑢𝑡 = 5 times using Monte
Carlo simulations of length 𝑇 . We notice that the performance metric
is always greater for PPO than the random recommendation, signaling
that the banks in the system generated by the PPO signal tend to be
more attractive for the borrowers by exhibiting a higher aggregated
fitness over time. Moving 𝜂 randomly causes banks to be less attractive
to the borrowers in their interbank market. This result implies that the
PPO instances learn to choose the value of 𝜂 by leveraging the informa-
tion available about the system without changing the distribution of the
values with respect to the random case. The learning procedure allows
us to discover when picking a side in this trade-off is convenient. A
further comparison with a decentralized mechanism for the 𝜂 dynamics
is provided in Section 3.4.

In order to shed light on the decisions taken by the best per-
forming trained PPO instance, we use the SHapley Additive exPlana-
tion (SHAP)12 framework (see Lundberg and Lee (2017) and Shapley
(2016)). This approach explains a complex nonlinear model like a
neural network by shedding light on the contribution of each input
feature to the output formation. For each input vector 𝑥 ∈ R𝐾 and
a model 𝑓 , the SHAP value 𝜙𝑖(𝑓, 𝑥), 𝑖 = 1,… , 𝐾 quantifies the effect
(in a sense, the importance) on the output 𝑓 (𝑥) of the 𝑖th feature. To
compute this effect one measures, for any subset 𝑆 ⊆ {1,… , 𝐾}, the
effect of adding/removing the 𝑖th feature to the set, i.e. 𝑓𝑆∪{𝑖}(𝑥)−𝑓𝑆 (𝑥).

he SHAP value is defined as the weighted average

𝑖(𝑓, 𝑥) =
∑

𝑆⊆{1,…,𝐾}⧵{𝑖}

|𝑆|! (𝐾 − |𝑆| − 1)!
𝐾!

[

𝑓𝑆∪{𝑖}(𝑥) − 𝑓𝑆 (𝑥)
]

, (18)

where the weights ensure that ∑𝑖 𝜙𝑖 = 𝑓 (𝑥).
Fig. 2 shows the magnitude of the Shapley values for the policy

recommendation learned by the best performing PPO instance referred
to the two possible outcomes 𝜂 = 0 and 𝜂 = 1. The left-hand side shows
that high values for the maximum liquidity available in the system
tend to favor the choice of an 𝜂 based on the interest rate. Also, a low
average interest rate and a high maximum interest rate point to the
choice of 𝜂 = 0. The right-hand side shows an opposite input relevance
with a dominant role for high values of the average interest rate and
low values of the maximum interest rate. The two figures show that the

11 It is common in reinforcement learning applications to train different
instances of the same algorithm and then select the best performing one over
some out-of-sample tests (Andrychowicz et al., 2020)

12 For the implementation, we use the Python package linked to Lundberg
and Lee (2017)
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Fig. 1. The left panel shows the discrete distributions of the 𝜂 values selected respectively by PPO (in black) and by a Bernoulli distribution (in red) with a parameter equal to
0.5 over 200 Monte Carlo simulations of the system. The right panel shows the average cumulative fitness of the system as a function of the number of training episodes for the
trained PPO instances (in solid black) and the Bernoulli distribution of 𝜂 (in dashed red) with the corresponding confidence intervals. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. SHAP values relative to the strategy outputs 𝜂 = 0 (left panel) and 𝜂 = 1 (right panel). The cloud of colored dots for each input variable expresses the importance and
correlation concerning the model output. Features are ordered on the 𝑦-axis by relevance, so the first on the top influences the model output the most. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
trained learning algorithm chooses one of the two signals by looking at
the main characteristics of the opposite one. When it chooses 𝜂 = 0, it is
more interesting to know if there are participants in the network who
are large. In contrast, when it chooses 𝜂 = 1, it looks for homogeneity
of interest rate, a common feature obtained by always playing towards
the interest rate. The learning algorithm suggests a switch towards the
other competing recommendation to avoid extreme cases in which a
disadvantage of one or the other choice exacerbates. For instance, a
huge financial institution that gathers all the borrowers’ demand when
𝜂 = 1 could not be sustainable in the long term, so the algorithms
suggest switching to the other option. On the other hand, most medium-
sized banks offer medium rates when 𝜂 = 0 cannot gather enough
liquidity to deal with deposit shocks, and it would be better to resort
to the opposite signal.

3.2. Micro and macro consequences of the policy recommendation

In this subsection, we deal with the implications that the dynamics
of the 𝜂 parameter have on the interbank network morphology and the
resulting performances of the financial institutions. Finally, we study
the effects of the emerging network topology on the market’s stability.
All network-related results presented in the following Sessions refer to
the active credit network.

Topology and evolution of the interbank network

Before starting the analysis, it is worth remembering the dynamics
of 𝜂, that appear in the banks’ fitness (see Eq. (7)), which determines
the probability of creating credit links in the system as shown in Eq. (8).
Therefore, it is appropriate to begin the analysis by describing the
topology of the interbank network.

In Fig. 3, we plot the configuration of the endogenous interbank
network at two different time steps of a single simulation of the system.
As the reader can appreciate, the market configuration goes through
different phases ranging from a random topology with isolated agents
to a highly centralized architecture where a few hubs compete in credit
8

supply. A more detailed analysis of the evolution of the interbank
network architecture over time can be found on the left-hand side of
Fig. 4, where we show the time series of network degree centrality

𝐶Net
𝑡 =

∑

𝑖
(

𝑘max
𝑡 − 𝑘𝑖𝑡

)

𝑁(𝑁 − 1) − |𝑉𝑡|
, (19)

where 𝑁 is the number of banks, |𝑉𝑡| is the total number of incoming
links in the system, 𝑘𝑖𝑡 is the number of incoming links for the 𝑖th
bank, and 𝑘max

𝑡 is the number of incoming links holds by the hub of
the network.

The dynamics of network centrality show how the morphology of
the credit market evolves, going from periods in which the network is
decentralized and made of many small components to periods in which
more than 45% of banks are connected to a single hub. In addition,
the topology of the emerging network is different from that of the
random graph, where the in-degree distribution decays exponentially.
Similar to real credit networks, in our system, some banks are found to
have a disproportionately large number of incoming links. In contrast,
others have very few (see Iori and Mantegna (2018), for a survey of the
relevant literature). This result is shown in the right-hand side of Fig. 4
where we plot the decumulative distribution function of the in-degree.
As the reader can observe, this distribution is in keeping with scale-free
networks and displays a ‘fat tail.’

To conclude the analysis of the interbank market architecture, we
deal with the effect of the 𝜂 parameter on the credit network topology.
In the top panel of Fig. 5, we plot a single realization of the cumu-
lative value of 𝜂 over time. The figure shows how the reinforcement
learning algorithm generates a time evolution in the choice of policy
recommendations. Precisely, increasing (decreasing) values in the curve
correspond to a signal that directs the system toward a high liquidity
supply (low interest rate), i.e., 𝜂 = 1 (i.e., 𝜂 = 0).

The effect of the signal in shaping the topology of the interbank
network is, instead, shown in the lower panel of Fig. 5, where we
estimate a categorical regression model

𝑦 = 𝑏 + 𝑏 (1 − 𝜂 ), (20)
𝑡 0 1 𝑡
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Fig. 3. Network configuration at time 𝑡 = 0 (left side), and 𝑡 = 800 (right side).
Fig. 4. Time series of interbank network centrality (left side). The decumulative distribution function (DDF) of the in-degree (right side).
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Fig. 5. Top Panel: Time series of 𝜂 cumulative values over the simulation. Bottom
Panel: Estimated results with the respective T-test in brackets for Eq. (20). 𝑏0 is the
estimated mean value of 𝑦 when 𝜂 = 1 and 𝑏1 the deviation from this mean value when
𝜂 = 0. Data are obtained through 200 Monte Carlo simulations of the system.

where 𝑏0 is the estimated mean value assumed by the dependent
variable 𝑦 when 𝜂 = 1 and 𝑏0 + 𝑏1 is the mean when 𝜂 = 0. As
shown in the bottom panel of Fig. 5, when the system selects low
interest rates, the interbank network is less centralized, more sparse,
9

h

and with a larger diameter. Moreover, the graph is fragmented into
many scarcely-populated islands.

Having described the architecture of the interbank network, let us
now examine its evolution over time. It is worth remembering that
banks signal in the market their attractiveness 𝜇 according to the
recommendation from the regulator, i.e., whether to compete on low
interest rates, 𝜂 = 0, or on high liquidity supply, 𝜂 = 1. While the
egulator’s signal is market-specific, liquidity supplies and interest rates
based on Eq. (6)) are bank-specific variables. This mechanism creates
ompetition among financial institutions for credit allocation. The war
n granting credit, modeled through the possibility of redefining lending
greements via Eq. (8) is shown in Fig. 6.

The black solid, red dashed, and green dotted lines represent the
ormalized id of the lender with the highest number of clients (i.e., the
ub), her incoming links (i.e., number of clients), and her fitness, re-
pectively. As the reader can appreciate, the simulation presents periods
f hub stability and alternation and competition between hubs. When
he hub stands out from her competitors and signals a significantly
igher fitness (i.e., the green dotted line approaches the unit), she can
ttract numerous clients, as shown by her high number of incoming
inks. However, the attractiveness of the hub may work against her. A
arge portfolio of customers increases the likelihood that some of them
ay fail. This either decreases the attractiveness of the hub herself or

ven causes her failure. The reduction of the hub’s fitness due to one
f her clients’ failure works in the following way. On the one hand,
hen the fitness uses a strategy based on a low interest rate, the client’s
pproach to the bankruptcy threshold increases the borrower’s financial
ragility and probability of bankruptcy. Both these effects increase the
ending interest rate, making the hub less attractive (see Eq. (6)). On
he other hand, when 𝜇 moves towards a high liquidity supply, the
orrower’s bad debt is absorbed by the lender’s net worth. The fall in
he latter causes a parallel reduction in the hub liquidity, as shown by
he balance sheet identity (see Eq. (1)). Interestingly, reducing the hub
et worth could reduce liquidity higher than proportionally, given the
asel rules on maximum capital and leverage ratio. In any case, the
ecrease in the agent’s fitness gradually reduces her clients and makes
ther lenders more attractive. These agents can replace the unsuccessful

ub and so become, in turn, the most appealing lenders.
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Fig. 6. Time series of the most connected lender (hub) evolution along the time T. The solid black line identifies the normalized hub id, the red dashed line her number of clients
(incoming links), and the green dotted line the hub’ fitness. Colors are available on the website version.
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Fig. 7. Density distributions over 200 Monte Carlo simulations of the maximum period
of hub stability in which the strategy does not change. The black solid and red dashed
lines show 𝜂 = 0 and 𝜂 = 1, respectively.

Micro consequences of the reinforcement learning policy

In this subsection, we investigate how the dynamics of 𝜂 affect the
hub’s performance and other financial institutions.

In Fig. 7, we show how choosing between a low interest rate and
a high liquidity supply strategy affects the hub’s longevity. The figure
shows the distribution, over 200 simulations, of the maximum period
of hub stability in which the strategy does not change, respectively, for
𝜂 = 0 (black) or 𝜂 = 1 (red). The figure shows that the hub is generally
more stable if the regulator recommends a high liquidity supply (red
dashed line in Fig. 7). Moreover, also at a micro level, we show that
𝜂 = 1 seems to produce better individual performances. This result is
shown in the top panel of Fig. 8, where we report the effect of the two
possible values of 𝜂 on some key individual variables.

Specifically, our results, estimated via the categorical regression
model in Eq. (20), show that a signal that directs the system toward
an abundant supply of liquidity (i.e., 𝜂 = 1) produces better results in
controlling leverage, rationing, bad debt, and bankruptcies. Moreover,
according to the hypothesis that banks fail as net-worth falls below a
minimum threshold, the equity is higher in the case of 𝜂 = 1.

The result on the liquidity is, however, less intuitive. The system
that competes on the interest rate level is significantly more liquid than
the one adopting high liquidity, with an average liquidity value of 3291
in the case of 𝜂 = 0 and 2960 in the opposite case. The reason for
the apparent better performance on liquidity in the case of 𝜂 = 0 lies
n the competition among banks using interest rates. As clarified by
q. (6), the financial institutions applying the lowest interest rates are
he smallest ones. This implies that the biggest banks are less attractive
o borrowers because they charge higher rates. Therefore, the system
xcludes these economic agents from trading while encouraging small
nstitutions to provide liquidity. This mechanism of selection has a
wofold effect. On the one hand, it generates a substantial unbalance
etween lenders and borrowers size. Creditors, much smaller than
10

ebtors, are overwhelmed in the event of their clients’ bankruptcy. a
Fig. 8. Top Panel: Estimated results with the respective T-test in brackets for Eq. (20).
𝑏0 is the estimated mean value of 𝑦 when 𝜂 = 1 and 𝑏1 the deviation from this mean
value when 𝜂 = 0. Data are obtained through 200 Monte Carlo simulations of the
ystem. Bottom Panel: Density distributions of aggregated liquidity over times over 200
onte Carlo simulations. The black solid and red dashed lines show 𝜂 = 0 and 𝜂 = 1,

espectively.

n the other hand, the exclusion from the exchanges of the largest
nstitutions leaves a consistent level of unallocated liquidity in the
ystem. The first effect, i.e., agents’ unbalance, determines the worst
erformances under 𝜂 = 0, while the second effect, i.e., exclusion,
etermines the highest level of unallocated liquidity in the system. In
ontrast, a signal that directs the system towards an abundant liquidity
upply produces a more ‘‘homogeneous’’ distribution among banks’
iquidity, as shown in the bottom panel of Fig. 8. This balance between
conomic agents generates a uniform risk exposure among counter-
arties, favoring the system’s resiliency in front of shocks. This result,
lthough not unanimously shared (see Haldane and May (2011)), is in
ine with other studies showing that the imbalance between lenders
nd borrowers size is a leading force in generating propagation of
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Table 1
Regression results between indicators of the interbank stability and network measures.
T-stats for each coefficient are provided in parentheses. Data are obtained through 200
Monte Carlo simulations of the system.

Indep. variable Dep. variable

Rationing Failed banks Leverage

Net centrality −0.25∗∗∗ −2.09∗∗∗ −0.016∗∗∗

(−6.04) (−41.82) (−55.69)

Density −1.32∗∗∗ −9.14∗∗∗ −0.051∗∗∗

(−52.64) (−254.08) (−235.33)

Diameter 0.011∗∗∗ 0.032∗∗∗ 0.0002∗∗∗

(8.95) (21.69) (27.02)

Components 0.029∗∗∗ 0.020∗∗∗ 0.0004∗∗∗

(5.28) (3.09) (10.57)

Avg nodes per comp −0.0011∗∗∗ −0.0022∗∗∗ −0.00002∗∗∗

(−4.18) (−6.97) (−13.19)

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.

systematic failure (see, for instance, Caccioli et al. (2012), Berardi
and Tedeschi (2017), Iori et al. (2006), Lenzu and Tedeschi (2012)
and Tedeschi et al. (2012)). In the language of network theory, the
scenario corresponding to 𝜂 = 1 can be interpreted as an assortative
mixing, that is a preference for the network’s nodes (banks) to attach
to others that are similar in some way (i.e in size in our contest).
Symmetrically, 𝜂 = 0 generates a disassortative mixing, where big-in-
size borrowers tend to attach to low-in-size lenders. The presence of a
strong disassortative mixing in interbank markets, and specifically of
an imbalance between borrowers and lenders is also empirically found
in the e-MID interbank market (see, for instance, De Masi et al. (2006)
and De Masi et al. (2007)).

Systemic impact of the network

To conclude the section, we combine the results on network topol-
ogy and individual performance as a function of 𝜂 to capture the
interbank architecture’s overall effect on systemic stability. To this
end, in Table 1, we report the results of a linear regression estimated
through ordinary least squares where the independent variables are
some measures of the interbank network topology and dependent vari-
ables are some indicators of systemic market stability. In line with what
has been observed so far, when the network tends to be centralized,
i.e., denser towards the hub and with a smaller diameter, the risk
of contagion decreases, i.e., bankruptcies, rationing, and leverage are
reduced. This architecture corresponds to a graph composed of a few
highly populated components. It is worth noting that this topology
emerges when the interbank system is oriented towards an abundant
supply of liquidity, which generates a certain homogeneity among
agents able to compensate for the imbalance between lenders and
borrowers present in the case of 𝜂 = 0. In this respect, clarification
is essential: 𝜂 = 1 is not the absolute best signal. This is the best
strategy given the individual and aggregate conditions of the system
at the time of the choice. The algorithm is designed to identify one
recommendation as optimal based on the underlying environmental
conditions. The robustness of this observation is shown in Sections 3.3
and 3.4. In the former, we show that the system governed by a regulator
that directs the choice via the implemented reinforcement learning
algorithm outperforms a system based on a random selection between
the two signals. In the latter, we demonstrate the better performances
of the reinforcement learning rather than modeling an 𝜂 evolving with
decentralized dynamics.

3.3. The reinforcement learning based recommendation for taming systemic
risk

In this subsection, we study the effect on the interbank systemic
stability of the policy recommendation obtained through the reinforce-
ment learning mechanism solved by the PPO algorithm.
11
Specifically, we answer the following question: how would the
interbank system perform in terms of aggregate resiliency when the
regulator directs financial institutions to choose the optimal strategy
between competing on the low interest rate, 𝜂 = 0, or on high liquidity,
𝜂 = 1? Again we compare the effects of the learned strategy on the
market stability with those of a random strategy. Finally, the last part of
this Section is devoted to understanding the market performance as the
percentage of banks that follow the policy recommendation changes.

Before delving into the analysis of interbank market stability as a
result of the policy recommendation, it is appropriate to clarify how
contagion develops and propagates in the model.

When a bank is hit by a negative shock and is unable to cope
with it through her own resources or those obtained in the interbank
market, she fails and leaves the economic system. However, her death
has important systemic repercussions. In fact, she may generate a bad
debt to her lender in the financial market. As can be seen from Eq. (3),
the bad debt of the borrower propagates to her lender through a
lowering of the creditor’s equity. On the one hand, a sufficiently large
bad debt could directly bankrupt the lender and thus generate a new
failure. On the other hand, our lender would be, in any case, weakened,
with some important financial consequences, namely an increase in
her probability of bankruptcy and in her leverage and a decrease in
her capacity, i.e. the maximum amount of credit she would obtain in
case of need in the interbank market. These three ingredients worsen
our creditor’s credit conditions. Therefore, in the unfortunate event
of a negative shock hitting this agent with her concomitant need for
liquidity in the interbank market, her current credit conditions would
provide the bank with a considerably higher interest rate and a lower
granted loan. In fact, as it can be seen from the numerical study of the
interest rate equation (Eq. (6)), this function is positive in capacity and
negative in the bank surviving probability (see Fig. 9). Of course, this
could lead to the failure of our agent and the concomitant infection of
her lender.

In order to prove the real ability of the model to generate conta-
gions, we study if there are bankruptcy cascades in the artificial system.
Since the purpose of this exercise is to study the evolution of a self-
contained system with a given initial number of banks, we exclude the
possibility that failing banks would be replaced by new entrants.

Fig. 10 displays the average number, over 10 Monte-Carlo simula-
tions, of surviving banks as a function of time. The slope of the number
of surviving banks curve provides evidence of contagious failures, that
is periods in which many banks collapse together (see Iori et al. (2006)
and Tedeschi et al. (2012), for similar results). We can conclude that
the default of an agent may increase systemic risk in our framework.
In fact, our dynamics not only generate bankruptcies but also a rapid
decline in the time path of surviving banks over time.

Let us now return to the main assumption of this Section, namely the
effect on the system resiliency of the policy recommendation obtained
via the reinforcement-learning algorithm and its comparison with the
random strategy.

A common finding in several theoretical and empirical works is
that the interbank market works better when credit flows efficiently
through the system, thus ensuring it against liquidity shocks (see, for
instance, Allen and Gale (2000), Freixas et al. (2000) and Carlin et al.
(2007)).

Starting from this consideration and recalling the severity of liq-
uidity crises, we show in Fig. 11 (left side) the effectiveness of the
implemented reinforcement learning strategy in spreading liquidity
through the system. In the figure, once the best performing learned
strategy is selected, as shown on the right-hand side of Fig. 1, the
aggregated average liquidity of 200 simulations over a rolling window
of 100 timesteps is shown through time. Although the learned strategy
strongly competes with the random one in some periods, its supremacy
becomes evident from step 700 onwards. In addition, the average

liquidity, over all periods and simulations, of the learned strategy is
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Fig. 9. Interest rate as a function of the lending capacity 𝑐𝑖,𝑗𝑡 and the probability of surviving 𝑝𝑗𝑡 .
Fig. 10. Average number of surviving banks as a function of time. Results are obtained
without reintroducing the failed agents and running 10 Monte-Carlo simulations.

statistically higher than the one obtained with the random strategy
(i.e., 3129.98 (std. 1.5128) vs. 3091.51 (std. 4.4258), respectively).

A possible explanation for this phenomenon can be seen in the
right-hand side of Fig. 11, where we plot the active credit links in
the two frameworks.13 As the reader can appreciate, the number of
activated credit channels is higher when the system follows the learned
strategy with respect to the case of random strategy, and this guar-
antees a higher circulation of liquidity in the system. In detail, the
average number of credit channels in the first scenario, over time
and simulations, is 9.9823 (std. 0.4321), while in the second case is
8.5464 (std. 0.3596). On the whole, this result reveals the ability of the
reinforcement learning optimal policy to design an interbank network
architecture promoting an efficient credit allocation and, therefore,
reducing liquidity shortage phenomena. Consequently, the emerging
topology of the credit network effectively controls rationing and avoids
failures due to credit crunch phenomena, as shown in Fig. 12, left and
right panels, respectively.

The average values of these variables over all timesteps and simula-
tions confirm the robustness of the two latter results. Specifically, the
mean and standard deviation of the rationing in the case of the learned
strategy (resp. random strategy) are 0.4024 and 0.0375 (resp. 0.5671
and 0.08465), while the mean and standard deviation of the number
of failed banks in the case of the learned policy (resp. random policy)
are 3.2101 and 0.0410 (resp. 3.2931 and 0.0423).

It is essential to note the ability of the reinforcement learning
mechanism to generate an interbank network whose architecture is
resilient in the face of financial attacks. This characteristic provides,
on the one hand, an additional monetary policy tool that can be
implemented in times of economic adversity and, on the other hand,

13 By the terms credit channels and credit links we refer to the linkages
hrough which the liquidity needed by borrowers due to the deposit shock
lows. These are, therefore, the credit lines used in the active credit network.
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enriches the vast literature that emphasizes the importance of credit
network architecture in dealing with systemic shocks (see Grilli et al.
(2017), for a survey of the relevant literature).

We conclude this section by analyzing the effect of the reinforce-
ment learning optimal policy on the market’s financial (in)stability. The
approach followed here in explaining the materialization of financial
frictions is very close in spirit to the Minskyan financial instability
hypothesis and therefore uses banks’ leverage as the leading indicator
(see Minsky (1964)). In our stylized market, leverage and systemic
instability are connected through a specific structure. Given our naive
banks’ balance sheet (see Eq. (1)), leverage is defined as assets on
equity. Moreover, credit costs (i.e., interest rates) are strongly positively
affected by the leverage (see Eq. (6)). When a lender grants a loan to
a bank with a low probability of surviving (i.e., an over-leveraged bor-
rower), she charges a higher interest rate via the financial accelerator.
This, in turn, exacerbates the borrower’s financial condition, pushing
her toward a bankruptcy state. If one or more borrowers cannot pay
back their loans, even the lenders’ equity is affected by bad debts.
Therefore, lenders decrease their credit supply and increase the bor-
rowers’ rationing. In this way, the profit margin of borrowers decreases,
and a new round of failures may occur. The leverage dynamics when
the system follows the reinforcement learning recommended policy
and in the random case are shown on the left-hand side of Fig. 13.
The figure highlights two important features. First, the recommended
learned policy keeps the leverage below the values obtained with the
random policy. Specifically, the average leverage in the first scenario,
over time and simulations, is 1.59 (std. 0.042), while in the second
case is 1.69 (std. 0.031). Second, the leverage fluctuates over time,
thus recalling the different phases of lending suggested by Minsky.
There are periods when financial institutions grant more loans without
considering the overall financial fragility. However, banks can under-
estimate their credit risk, making the system more vulnerable when
default materializes. This ambiguous effect of the leverage, first positive
and then negative, on interbank stability is clearly shown in the right-
hand side of Fig. 13, where the correlation wave between bankruptcies
and agents’ leverage first decreases from lag 𝜏 = −21 up to 𝜏 = −11,
then increases from 𝜏 = −8 up to 𝜏 = 9, and finally, returns to decrease
from 𝜏 = 15.

Should they follow or should they not? An exercise on the signal diffusion

Let us introduce an additional element of heterogeneity concerning
the signal itself. Whereas in the previous experiment, all the banks
followed the signal on the optimal strategy, here we modify this as-
sumption. We simulate a system where different percentages of banks
follow the signal while the others randomly go to different possible
strategies. This experiment allows us, on the one hand, to introduce an
additional element of differentiation and, on the other, to understand
the minimum threshold of followers required by the system with the
RL-generated signal to be more resilient than the one with a random
strategy. To this end, we fix a percentage 𝜅 of banks that follow
the reinforcement learning strategy, while the remaining 𝑁(1 − 𝜅)
banks randomly sample the strategy in the set {0, 0.5, 1}. We train the
reinforcement learning algorithm following the same procedure as the
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Fig. 11. Liquidity of the system (left panel) and the number of credit channels (right panel). Black solid and red dashed lines refer to the best-performing reinforcement learning
ptimal and random strategies, respectively. The curves reproduce the mean and the standard deviation over 200 simulations of the system and a rolling window of 100 timesteps.
Fig. 12. Rationing of the system (left panel) and the number of failed banks (right panel). Black solid and red dashed lines refer to the best-performing reinforcement learning
optimal and random strategies, respectively. The curves reproduce the mean and the standard deviation over 200 simulations of the system and a rolling window of 100 timesteps.
Fig. 13. Left side: Leverage of the system. Black solid and red dashed lines refer to the best-performing reinforcement learning optimal strategy and to the random strategy,
respectively. The curves reproduce the mean and the standard deviation over 200 simulations of the system and a rolling window of 100 time steps. Right side: Average correlation
between the number of bankruptcies and lagged leverage, at a 1% confidence level.
previous subsections, letting the mixture parameter vary on a discrete
range of values. Every time we change the value of 𝜅, a new algorithm
s trained. Several system simulations are performed to evaluate the
ffect of such heterogeneity in the strategy followed by the banks.

Before studying the impact on the interbank systemic stability of the
ifferent percentages of financial institutions applying the policy rec-
mmendation obtained through the reinforcement learning mechanism
nd comparing it with the random strategy, an important consideration
s necessary. Fig. 14 shows that as the rate of followers varies, the PPO
lgorithm selects different categories of strategies. For example, when
nly 10% of the banks follow the optimal signal, the most common
trategy steers the banks towards a low interest rate (see solid black
ine). However, in this scenario, even if with low probability, a mixed
trategy (i.e., 𝜂 = 0.5) or a high liquidity supply strategy (i.e., 𝜂 =
1.0) can emerge (see the brown and yellow lines, respectively). This
competition among different optimally selected strategies varies as the
percentage of followers varies. However, in the case of total synchro-
nization, i.e., when all banks follow the policy recommendation, the
system stabilizes, with equal probability, on the two extremes, i.e., 𝜂 =
0 and 𝜂 = 1. When 𝜅 = 0.1 (i.e., followers are 10%), the probability
of a low interest rate signal is 93%, while the probability of a mixed
13
Table 2
Average percentage of the chosen optimal strategy (𝜂 = 0; 𝜂 = 0.5 and 𝜂 = 1) by varying
the followers percentage 𝜅 from 1% to 100%. Results are obtained over 200 Monte
Carlo simulations of the system.

Followers percentage

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Strategy
𝜂 = 0.0 0.93 0.68 0.22 0.18 0.57 0.31 0.66 0.38 0.24 0.5
𝜂 = 0.5 0.03 0.21 0.66 0.66 0.40 0.69 0.32 0.62 0.76 0.0
𝜂 = 1.0 0.04 0.11 0.12 0.16 0.03 0.00 0.01 0.00 0.00 0.5

strategy is 2.51%. Instead, the probability of a signal pointing to a high
supply of liquidity is 4.38%. The selected strategies vary when moving
towards a percentage of followers of 50% . Specifically with 𝜅 = 0.5 the
probability of 𝜂 = 0.0 is 57%, that of 𝜂 = 0.5 is 40% and finally 𝜂 = 1 is
3%. Table 2 shows the portion of the chosen optimal strategy for each
percentage of followers.

Interestingly, as it can be seen from Table 2, as 𝜅 varies, three
scenarios emerge. Looking at Table 2, three scenarios emerge as 𝜅
varies. For 𝜅 between 10% and 40%, the dynamics of 𝜂 are linear,
with 𝜂 = 0.0 gradually losing the predominance in favor of 𝜂 = 0.5 and
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Fig. 14. Discrete distributions of the 𝜂 values selected by PPO over 200 Monte Carlo
imulations of the system. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

= 1.0. For 𝜅 between 50% and 90%, an oscillatory dynamic emerges,
ith 𝜂 = 0.0 and 𝜂 = 0.5 alternating continuously. Finally, when

the maximum number of followers is reached, we observe an equal
distribution between the two pure strategies. Let us try to understand
why these three scenarios emerge. To this end, in Fig. 15, we show the
decumulative distribution function of the liquidity in each of the three
scenarios, i.e., 𝜅 ≤ 40%, 50% ≤ 𝜅 ≤ 90% and 𝜅 = 100% for each emerging
strategy. Specifically, the first line of Fig. 15 shows the distributions for
each value of 𝜅 ≤ 40% of the three emerging strategies, 𝜂 = 0.0, 𝜂 = 0.5
and 𝜂 = 1.0 first, second and third column, respectively. The second
line displays the same distributions for each value of 50% ≤ 𝜅 ≤ 90% of
the two emerging strategies, 𝜂 = 0.0, 𝜂 = 0.5, first and second column,
respectively. Finally, the third column of the second line shows the
same distribution for 𝜅 = 100% of 𝜂 = 0.0 and 𝜂 = 1.0.

In the first situation, when 10% ≤ 𝜅 ≤ 40%, as the percentage of
followers increases, what emerges within the three 𝜂 can be summa-
rized as follows. The decrease in the low-interest-rate strategy depends
on the increasing average and heterogeneity of liquidity as 𝜅 increases.
This is evident in the top left panel of Fig. 15, whereas 𝜅 increases,
there is a leftward shift in the liquidity distribution. The increase in
the mixed strategy depends on a more homogeneous distribution of
liquidity (and interest rates) and low average values of these two
variables (see the top center panel of Fig. 15). Symmetrically with
respect to the case of 𝜂 = 0, the increase in the strategy based on high
liquidity is motivated by the increasing heterogeneity in the liquidity
distribution and a higher average value of the liquidity as 𝜅 increases
see top right panel of Fig. 15). In the second scenario, the strong
ompetition and alternation between 𝜂 = 0 and 𝜂 = 0.5 depend on
n alternation between higher or lower liquidity depending on the
revalence of the mixed or the low interest rate strategy (see the first
nd second panels at the bottom of Fig. 15). Finally, in the last scenario,
here the percentage of followers reaches its maximum (i.e., 𝜅 = 1),

he system stabilizes, and an equal distribution between the two pure
trategies emerges. In this case, the liquidity distributions of both 𝜂 are
eterogeneous, as shown in the last panel to the right of Fig. 15.

In summary, the emergence of a strategy or the switching among
an be explained as follows. For one of the pure strategies to dom-
nate, the distribution corresponding to the variable representing it
ust be heterogeneous. Conversely, the emergence of a mixed strat-

gy corresponds to homogeneity in the distribution of both variables,
.e., interest rates and liquidity.

Let us now analyze how the interbank system performs in terms
f aggregate resiliency when the regulator convinces different per-
entages of banks to follow the optimal signal. As in the first part of
his subsection, the results obtained with the optimized strategy are
14

ompared with those obtained from a random choice of strategy. As in o
he baseline case, the dynamic random scenario picks the value of 𝜂
according to the probabilities shown in Table 2.

We report the aggregated results at the macroeconomic level for
some of the critical systemic variables. In each panel of Figs. 16 and 17,
we show the variation of the aggregated measure obtained averaging
through 200 simulations and through the timesteps of the simulations
(1000). The aggregated measure is displayed on the 𝑦-axis, while the
followers’ percentage 𝜅 varies on the 𝑥-axis.

When the regulator cannot convince a sufficient percentage of banks
o follow the policy recommendation, the system generated with the
ptimal signal obtained via the reinforcement learning algorithm (black
olid) does not significantly differ from that generated with the random
ignal (red dashed lines). This holds for all the considered variables,
uch as the liquidity and rationing of the system (see Fig. 16) and the
umber of failures and leverage of financial institutions (see Fig. 17).
nstead, when the regulator can convince a share of banks equal
o/greater than 60%, higher systemic stability is observed in the model
sing the optimized signal than in the random one. In fact, above this
ercentage, the optimized system, on the one hand, generate higher
iquidity and lower rationing, on the other hand, fewer bankruptcies
nd less leverage for financial institutions.

.4. A competition with a decentralized strategy

In the previous Sections, we compared the aggregate performances
f the reinforcement learning strategy with a random strategy that picks
he value of 𝜂 according to a Bernoulli distribution with a parameter
qual to 0.5. In this Section, we make a comparison with a strategy that
elects the 𝜂 parameter in a dynamic and decentralized way so that each
ank has her individual plan of action.

Denoting 𝜂𝑖𝑡 as the weight that bank 𝑖 gives to the liquidity or the
interest rate in the fitness function, such quantity becomes a function of
the recent performance of the agent in terms of attractiveness. Namely,
if 𝜇𝑖𝑡 − 𝜇𝑖𝑡−1 ≥ 0, the agent 𝑖 intensifies the strategy she is already
ursuing, then

𝑖
𝑡+1 =

{

𝜂𝑖𝑡 + 𝑎 if 𝜂𝑖𝑡 ≥ 0.5
𝜂𝑖𝑡 − 𝑎 if 𝜂𝑖𝑡 < 0.5

(21)

n the other hand, if 𝜇𝑖𝑡 −𝜇
𝑖
𝑡−1 < 0, the bank 𝑖 weakens the strategy she

s pursuing, intensifying the opposite one

𝑖
𝑡+1 =

{

𝜂𝑖𝑡 − 𝑎 if 𝜂𝑖𝑡 ≥ 0.5
𝜂𝑖𝑡 + 𝑎 if 𝜂𝑖𝑡 < 0.5,

(22)

here 𝑎 is a scalar parameter set equal to 0.025, defining the step
owards liquidity or interest rate. We run 200 independent model
imulations of length 𝑇 = 1000 periods to obtain the following results.
ll the other agents’ initialization parameters, except for the varia-

ion studied here, overlap with those presented in Section 3 with a
ercentage of followers 𝜅 = 1. At 𝑡 = 0, all agents start with 𝜂𝑖𝑡=0 ∼ [0,1].

As the reader can easily grasp from Figs. 18 and 19, where the
ystemic dynamics presented in Section 3.3 are reproduced, once again,
he RL-based strategy (black solid line) generates more desirable sys-
emic patterns than the new decentralized strategy (orange dashed
ine). Specifically, when the regulator adopts an 𝜂 evolving through
einforcement learning, the system absorbs shocks better than in the
ecentralized case, as shown by the higher number of credit channels,
he lower leverage and lower rationing, and the number of failures
ssociated with the centralized 𝜂. Only the system’s liquidity trend has
pparently unclear dynamics, as shown in the left panel of Fig. 18.

To understand the reasons underlying the better systemic results
btained with a centralized versus decentralized 𝜂, we need to focus
n the evolution of this variable in the two scenarios. In this regard,
he top panel of Figs. 5 and 20 show the evolution of centralized
nd decentralized 𝜂, respectively. The centralized strategy, i.e., the

ne obtained with the reinforcement learning algorithm selects values
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Fig. 15. Decumulative distribution functions for the aggregated liquidity over 200 simulations of the system. The first line displays the distribution corresponding to the emerging
strategies (i.e., 𝜂 = 0.0, 𝜂 = 0.5 and 𝜂 = 1.0, first, second and third columns, respectively) with respect to a different percentage of followers (𝜅 from 0.1 to 0.4). The second line
displays the same distribution for emerging strategy, i.e., 𝜂 = 0.0 and 𝜂 = 0.5 first and second column, respectively, with 𝜅 from 0.1 to 0.9. The third column of the second line
reproduces the same distribution for emerging strategy, i.e., 𝜂 = 0.0 and 𝜂 = 1.0 when 𝜅 = 1.0.

Fig. 16. Average liquidity (left panel) and rationing of the system (right panel) as a function of the followers’ percentage, 𝜅. Black solid and red dashed lines refer to the
best-performing reinforcement learning optimal and random strategies, respectively. The curves reproduce the mean and the standard deviation over 200 simulations of the system.

Fig. 17. Average number of failed banks (left panel) and their leverage (right panel) as a function of the followers’ percentage, 𝜅. Black solid and red dashed lines refer to the
best-performing reinforcement learning optimal and random strategies, respectively. The curves reproduce the mean and the standard deviation over 200 simulations.

Fig. 18. Liquidity of the system (left panel) and the number of credit channels (right panel). Black solid and orange dashed lines refer to the best-performing reinforcement
learning optimal strategy and the decentralized strategy, respectively. The curves reproduce the mean and the standard deviation over 200 simulations of the system and a rolling
window of 100 timesteps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Rationing of the system (left panel), number of failed banks (middle panel), and leverage of the system (right panel). Black solid and orange dashed lines refer to
the best-performing reinforcement learning optimal strategy and the decentralized strategy, respectively. The curves reproduce the mean and the standard deviation over 200
simulations of the system and a rolling window of 100 timesteps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 20. Time series of the decentralized 𝜂 over the simulation. Data are obtained
through 200 Monte Carlo simulations of the system.

of 𝜂 that direct the system towards the best between the two pure
strategies. Given the underlying systemic conditions, such a strategy is
the most advantageous by the reinforcement learning algorithm. On the
contrary, the decentralized strategy shows an erratic trend in Fig. 20. It
emerges that when financial institutions choose the parameter consid-
ering their individual fitness, the system never achieves coordination
in the choices. The decentralized 𝜂 dynamics also show an oscillating
behavior on average between the mixed strategy (𝜂 = 0.5) and the low
interest rate one, with an average value of about 0.35, with a standard
deviation of 0.09. The minimum and the maximum are 0 and 0.6,
respectively. The lack of coordination and the approaching of the low
interest rate strategy have important systemic consequences. On the
one hand, the erratic nature of the decentralized strategy is not benefi-
cial for the stability of the credit network, as confirmed in Fig. 21 where
the distributions, over 200 simulations, of the maximum period of hub
stability for the reinforcement 𝜂 (black solid line) and the decentralized
one (orange dashed line) are displayed. As explained in the baseline
model (see Section 3.2), lower hub longevity indicates lower network
centrality.14 that is associated with worse systemic performance. On
the other hand, the fact that the decentralized rule comes close to
the low interest rate strategy even further moves the system away
from stability. In this circumstance, in fact, lenders, much smaller than
borrowers, are overwhelmed in the event of their clients’ bankruptcy.
Moreover, the exclusion from the exchanges of the largest institutions
leaves a consistent level of unallocated liquidity in the system, which
explains the apparently high liquidity in the decentralized framework
shown in the red dashed line of the left panel of Fig. 18.

14 The network centrality measure calculated over 200 Monte-Carlo sim-
lations reaches peaks of 0.81 in the centralized case and of 0.26 in the
ecentralized one.
16
Fig. 21. Density distributions over 200 Monte Carlo simulations of the maximum period
of hub stability in which the strategy does not change. The black solid and orange
dashed lines show the reinforcement learning and decentralized strategies, respectively.
The black solid density is obtained by summing the two densities presented in Fig. 7.

4. Concluding remarks

This work shows the effects of a policy recommendation obtained
through a reinforcement learning mechanism in an artificial interbank
market. Specifically, we assume that the financial institutions receive
a signal from the regulator regarding the best strategy to adopt for
the creation of their lending agreements. Depending on the underlying
economic conditions, the signal directs the system towards providing
a high liquidity supply or a low interest rate. Using a reinforcement
learning approach to provide this public signal has proven effective
since the method exploits the available information and redirects the
system towards an efficient flow of liquidity compared to other differ-
ent static and dynamic behavioral tactics. Moreover, through the SHAP
framework, which dissects the contribution of each piece of information
to the recommended policy, we have been able to interpret the primary
input that drives the policy choice. We have acknowledged that the
occurrence of one circumstance (liquidity vs. interest rate) generates
significant consequences affecting the agents’ performances and the
topology and resiliency of the interbank network. Specifically, when
the signal directs the system toward an abundant liquidity provision,
the interbank network, composed of a few populated communities,
is more centralized and dense towards hub banks than in the low
interest rate scenario. This network architecture accompanies better
individual performances and higher system resilience in the face of
exogenous shocks. Our results have shown that the better general
conditions underlying this signal are due to the homogeneity between
lenders and borrowers, which generates a uniform risk exposure among
counterparties that favor the system’s resiliency.

Leaving aside the results of the comparison between the two signals,
we have analyzed the general effect of the policy recommendation
implemented via the reinforcement learning procedure in the second
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part of the paper. Our results have shown how systemic risk is mitigated
by such a tool and how this outperforms other alternative behavioral
strategies.

It is worth noting that the novelty of this work is introducing a
reinforcement learning framework on top of an agent-based model
by directing banks’ actions towards strategies that promote systemic
stability. While improving the model’s realism would have captured
important aspects related to stability and propagation of systemic risk,
it would have compromised the explainability of the algorithm’s results.
Hence, given the additional layer of complexity brought by reinforce-
ment learning, we focus on the results obtained from a simplified model
whose outcomes are verifiable and controlled. Further research can
expand the model to include additional agents, such as households and
more sophisticated central bank.
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Appendix A. A sensitivity analysis on model parameters

In this appendix, we investigate the performances of the learning
algorithm by varying some key parameters. The first investigated pa-
rameter, 𝛽, governs the network topology (see Grilli et al. (2014),
for a mathematical explanation). As the intensity of choice increases,
the interbank architecture ranges from a random configuration to a
star one. The effect of the network topology on the interbank system
is studied by changing 𝛽 from 0 to 40 with steps of 2. The second
parameter we consider is fire sale price 𝜌. An increase in 𝜌 impacts
both lenders and borrowers. On the one hand, it compensates the losses
that lenders incur due to the failure of their clients (see Eq. (4)). On the
other hand, a higher fire-sale increases the likelihood that the borrower,
rationed in the interbank market, can face deposit repayments. Here we
vary the fire-sale price, 𝜌, from 0.1 to 0.5 with steps of 0.1. Thirdly, we
modify the skewness of the distribution of the random shock affecting
the bank deposit at the beginning of each period. Recalling the equation
for the deposit movements as 𝐷𝑖

𝑡 = 𝐷𝑖
𝑡−1(𝜇 + 𝜔𝑈 (0, 1)), we remark

that it allows us to reproduce bearish and bullish market periods. The
uniformly distributed noise component can be shifted towards more
negative or positive shocks at convenience to represent different market
situations. Having fixed 𝜇 = 0.7 in our simulations, we let 𝜔 vary from
0.52 to 0.6 with steps of 0.02, corresponding to a highly negatively
skewed and perfectly symmetrical shock distribution.

The role of 𝜇 and 𝜔 is critical to regulating the magnitude of the
ggregated shock that affects the interbank system. Precisely, 𝜇 and
determine the probability of the sign of the deposit’s shock. When
= 0.7 and 𝜔 = 0.6, the likelihood of a negative shock is equal to

hat of a positive one. This parameter configuration corresponds to an
nterbank market meeting the conditions of accounting consistencies,
here on average, the other half of the market participants recover
hat is eroded by the adverse market condition. In this circumstance,

he total number of assets for each bank matches the total number
f liabilities, hence the aggregated balance sheet of the system sum
o 0 at the beginning of each trading day. We refer to accounting
onsistency rather than stock-flow consistency, because the latter is
ore appropriate to multi-sector macroeconomic models such as those
17

roposed by Caiani et al. (2014, 2016). In our baseline model, we used
= 0.7 and 𝜔 = 0.55 to favor more adverse shocks and, therefore, to
have more interbank market activity to cover such needs.

The last part of this appendix is dedicated to investigating the effects
of a change in the reserve ratio, 𝑟̂, previously set at 2%. This analysis
has a twofold value. On the one hand, it is a further experiment on
the robustness of the model by changing the parameters space. On the
other, it corresponds to a conventional monetary policy.

In all these experiments, we run our model 100 times for different
values of the initial seed generating the pseudo-random numbers over
a time span of 𝑇 = 1000 periods. Moreover, all the agents’ initialization
parameters, except for the variations studied here, coincide with those
presented in Section 3.

Let us begin the analysis by focusing on the three-parameter vari-
ations’ implications on the model’s results. Each parameter variation
represents a different configuration of the banking system, which is
used to test the different strategies over 100 simulations. The cu-
mulative reward of these simulations is then averaged to obtain the
mean values and the respective confidence interval for the reinforce-
ment learning strategy and the random strategy. Fig. 22 shows the
average cumulative reward over the 100 simulations as a function of
a single parameter variation. We notice that the performance of the
reinforcement learning algorithm solved with the PPO procedure is still
superior with respect to the random strategy for all three sensitivity
cases presented. Therefore, we can conclude that the effect analysis in
the main paper still holds if one modifies some characteristics of the
underlying financial system.

In Fig. 23 we show the sensitivity of the average values, over
all the 100 simulations and a rolling window of 100 timesteps, of
relevant quantities at the systemic level with respect to the three
parameters described above.15 Before going into the details concerning
the systemic impact of the single parameters, we can observe that the
reinforcement learning strategy (solid black in Fig. 23) consistently
outperforms the random strategy (dashed red line in Fig. 23) over all
parameters and variables considered.16 The system generated with the
reinforcement learning algorithm produces, on the one hand, higher
liquidity and more credit channels and, on the other hand, lower
rationing, bankruptcies, and leverage than the one with the random
algorithm.

Let us now analyze how variations in each parameter affect the
system’s stability. In the first column of Fig. 23, we show the effects
that the intensity of choice, 𝛽, has on the systemic variables. When 𝛽
ncreases from 0 to 40, the liquidity and the credit channels increase
o 𝛽 = 10 and stabilize. This pattern occurs in both scenarios (i.e., with
ptimal and random strategies). The underlying reason for this dynamic
s as follows: a 𝛽 value greater than or equal to 10 generates a stable
opology in the interbank network, which makes the investigated values
nsensitive to further changes in the parameter. Similar to the trend of
he previous variables are the leverage dynamics, which increase with

but at a decreasing rate, which is confirmed for both the adopted
trategies. Indeed, the more liquidity is available in the system, the
ore exchange of loans between banks happens. Finally, an increasing
causes the amount of rationing of the system to decrease in both

he considered scenarios, while the failures of the agent happen to be
table over the period under the optimal strategy or increase under the
andom scenario.

15 We refer the reader to Section 3.3 for a detailed explanation on the
implementation of Fig. 23.

16 To appreciate the statistical significance of the reinforcement learning
strategy with respect to the random strategy, we performed a series of T-
tests for each variable in the figures presented. The results show a statistically
significant difference between each pair of curves at least the 5% level. We
omitted here the table, including the p-values that are available under requests,
as well as the results of the sensitivity analysis that we performed on the

̂
parameters 𝑑, 𝜒 , 𝜙 and 𝜉.
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Fig. 22. Average cumulative fitness of the system as a function of changes in 𝛽, 𝜌, and 𝜔 in the first, second, and third panels, respectively. The reinforcement learning algorithm
s in solid black, while the random strategy is in dashed red.
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In the second column of Fig. 23, we focus on the effects produced
y a variation in the fire-sale price. An increase of 𝜌 protects both
enders and borrowers from losses, and it is beneficial when looking
t the liquidity up to 𝜌 = 0.3. From that level, borrowers do not enter
he interbank market frequently because they can cover their needs
y selling their long-term assets at a satisfactory price. This is also
eflected in the amount of rationing and failures that decrease when

is above 0.3. The leverage immediately decreases with 𝜌 because
he increase in the system’s liquidity is more than compensated by
he increase in equity since lenders are usually repaid by borrowers
nd do not lose parts of their equity. The dynamics produced by the
ire-sale price variation are valid when observing the system with the
ptimal signal and the one with the random signal. Finally, in the last
olumn of the figure, the impact of the deposit’s motion is investigated.
he increase of the 𝜔 parameter causes an increase in liquidity since
he shocks become gradually less and less harmful. This also explains
he decrease in the leverage and the rationing because banks are less
egatively impacted by the deposit shock and, consequently, need to
ather less money from the market. For the same reason, the amount
f credit channels decreases with a more symmetric shock distribution.
n contrast, the failures are substantially stable, except for a higher
ariability when 𝜔 describes a highly asymmetric shock. Also, for this
ast parameter, the system dynamics produced with the optimal signal
ollow the same trend as those obtained with the random signal.

In the last part of our analysis, we study how the system’s resilience
aries as the reserve requirement ratio varies from 1% to 10%. Fig. 24
hows the sensitivity of the average values over all the 100 simulations
nd a rolling window of 100 timesteps of relevant quantities at the
ystemic level with respect to the variation of 𝑟̂. Before describing
he effects of the contractionary monetary policy on market stability,
t is worth noting that the system obtained through the optimized 𝜂
solid black line) consistently outperforms that with the random signal
dashed red line). The former always generate higher liquidity, lower
everage, and several failures. If we now observe the systemic effects
f the increase in reserve ratio in the framework with the optimized
ignal, we can see an inverted U-shaped trend in liquidity. For 𝑟̂-values
etween 1% and 5%, liquidity increases, showing that a non-excessively
igh reserve ratio promotes interbank stability by decreasing the num-
er of failures. However, when the central bank imposes a reserve ratio
bove 5%, the contractionary effect of the policy takes over. The system
ecomes less liquid, and this causes a spike in failures as banks can
o longer cope with their adverse deposit shocks. Finally, the behavior
f the leverage, always in the context of the optimal signal, is timidly
onotonically increasing with 𝑟̂ (see black line in the right-hand panel

f Fig. 24). For values of 𝑟̂ up to 5%, the leverage increases due to
he rise in the granting of a loan. Above this threshold, the increase in
everage is mainly caused by the higher number of bankruptcies, which
egatively impacts the net worth of financial institutions.

ppendix B. Algorithms and hyperparameters

The PPO algorithm is easier to implement than a trust-region
18

ethod (Schulman et al., 2015) and easier to tune with respect to of
eep-Q network (DQN) (Mnih et al., 2015) or its continuous coun-
erpart (Lillicrap et al., 2015). Our implementation of PPO follows
Andrychowicz et al., 2020), which performs an extensive empirical
tudy of the effect of implementation and parameter choices on PPO
erformances. Even if we use the algorithm in a different context than
heir testbed, we follow the direction of their results in order to tune
ur hyperparameters.

As described in the main, we implement PPO in an actor–critic
etting without shared architectures. When used to parametrize discrete
trategies, policy gradient methods like PPO output a normalized set
f logits to get the corresponding probabilities. Then, a greedy strategy
elects the action which obtains the maximum probability. The entropy
onus guarantees exploration during training in the objective function.

The on-policy feature of PPO makes the training process episodic
o that experience is collected by interacting with the environment
nd then discarded immediately once the strategy has been updated.
n principle, on-policy learning appears a more obvious learning setup,
ven if it comes with some caveats. It makes the training less sample
fficient and computationally expensive since a new sequence of expe-
iences must be collected after each update step. In this process, the
dvantage function is computed before the optimization steps, when
he discounted sum of returns over the episode can be computed.
n order to increase the training efficiency, after one sweep through
he collected samples, we compute the advantage estimator again and
erform another sweep through the same experience. This trick reduces
he computational expense of recollecting experiences and increases the
ample efficiency of the training process. Usually, we do at most three
weeps (epochs) over a set of collected experiences before moving on
nd collecting a new set.

The gradient descent optimizer is Adam (Kingma and Ba, 2014),
hich performs a batch update of size 100 with a learning rate of 0.005.
ince the data are not all available in a reinforcement learning setting at
he beginning of the training, we cannot normalize our input variables
s usual in the preprocessing step of a supervised learning context.
ence, we add a Batch Normalization layer (Ioffe and Szegedy, 2015)
efore the first hidden layer to normalize the inputs batch by batch and
btain the same effect.

Maximizing the objective function that returns the gradient in
q. (15) is unstable since updates are not bounded and can move the
trategy too far from the local optimum. Similarly to TRPO (Schulman
t al., 2015), PPO optimizes an alternative objective to mitigate the
nstability

CLIP(𝜃, 𝜓) = E𝜋𝜃
[

min
(

𝑟(𝜃)Â (𝑠, 𝑎;𝜓) , clip (𝑟(𝜃), 1 − 𝜖, 1 + 𝜖) Â (𝑠, 𝑎;𝜓)
)]

(23)

here 𝑟(𝜃) = 𝜋(𝐴𝑡 ∣𝑆𝑡;𝜃)
𝜋(𝐴𝑡 ∣𝑆𝑡 ;𝜃old)

is a ratio indicating the relative probability of

an action under the current strategy with respect to the old one. Instead
of introducing a hard constraint as in TRPO, the ratio is bounded ac-
cording to a tolerance level 𝜖 to limit the magnitude of the updates. The
combined objective function in Eq. (17) can be easily optimized by the
PyTorch’s automatic differentiation engine, which quickly computes
the gradients with respect to the two sets of parameters 𝜃 and 𝜓 . The
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Fig. 23. Sensitivity analysis on system variables in the face of changes in 𝛽, 𝜌, and 𝜔, in the first, second and third columns, respectively. The reinforcement learning algorithm
is in solid black, while the random strategy is in dashed red.

Fig. 24. Sensitivity analysis on the liquidity, number of bankruptcies, and leverage in the face of changes in reserve ratio 𝑟̂ in the first, second, and third columns, respectively.
The reinforcement learning algorithm is in solid black, while the random strategy is in dashed red.
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implemented advantage estimator depends on the parameterized value
function 𝑉𝜓 and is a truncated version of the one introduced by Mnih
t al. (2016) for a rollout trajectory (episode) of length 𝑇 :

̂
𝑡 = 𝛿𝑡 + (𝛾𝜏)𝛿𝑡+1 +⋯ +⋯ + (𝛾𝜏)𝑇−𝑡+1𝛿𝑇−1 (24)

here 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜓
(

𝑠𝑡+1
)

− 𝑉𝜓
(

𝑠𝑡
)

, 𝛾 is a discount rate with the
ame role of 𝜌 in DQN and 𝜏 is the exponential weight discount
hich controls the bias–variance trade-off in the advantage estimation.
he generalized advantage estimator (GAE) uses a discounted sum of
emporal difference residuals.
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