
Journal of Financial Stability 64 (2023) 101098

A
1

Contents lists available at ScienceDirect

Journal of Financial Stability

journal homepage: www.elsevier.com/locate/jfstabil

A Bayesian approach for more reliable tail risk forecasts✩

Dan Li a,b,c,∗, Adam Clements a,c, Christopher Drovandi b,c

a School of Economics and Finance, Queensland University of Technology, Australia
b School of Mathematical Sciences, Queensland University of Technology, Australia
c QUT Centre for Data Science, Queensland University of Technology, Australia

A R T I C L E I N F O

Keywords:
CAViaR
Value-at-risk
Expected shortfall
Sequential Monte Carlo
Uncertainty quantification
Systemic risk

A B S T R A C T

This paper demonstrates that existing quantile regression models used for jointly forecasting Value-at-Risk
(VaR) and expected shortfall (ES) are sensitive to initial conditions. Given the importance of these measures in
financial systems, this sensitivity is a critical issue. A new Bayesian quantile regression approach is proposed
for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity
issues can be dealt with. Furthermore, new additive-type models are developed for the ES component that are
more robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed
which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the
improvements in risk forecasts ensuing from the proposed methods.
1. Introduction

Prudential regulation of the financial system is based on measures
of financial risk. Therefore accurate and reliable measures of financial
risk are crucially important. Value-at-Risk (VaR) is the most commonly
used risk measure over the years since its introduction in RiskMetrics
(Morgan, 1995) due to its conceptual simplicity and its importance of
setting regulatory capital requirements for financial institutions. VaR is
a particular quantile of the conditional distribution of portfolio returns,
and it measures the loss of a certain portfolio within a given period
at a given confidence level (e.g. 95% or 99%). However, VaR does
not indicate what the loss would be in the case that returns exceed
the quantile, a quantity captured by Expected Shortfall (ES). ES is the
expected loss conditional on returns beyond the VaR measure. The
attractive properties of ES are discussed in Acerbi and Tasche (2002).
Even though ES has been widely employed by financial institutions,
it is not an elicitable measure, which means that there is no loss
function that can be optimized uniquely by the true ES (Gneiting,
2011). Although ES is not elicitable, Fissler and Ziegel (2016) argued
that VaR and ES are jointly elicitable. Taylor (2019) proposes new joint
models of VaR and ES and a new loss function for estimating VaR and
ES simultaneously.

For the ES component, we demonstrate that the joint models of
Taylor (2019) are sensitive to the assumed starting values of the
conditional VaR and ES series, particularly so for the additive-type
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model. Since unreliable risk measures can influence the judgment of
financial decision-makers, such as less robust policymaking and capital
allocation (see, for example, Danielsson et al., 2016 and Arismendi-
Zambrano et al., 2022), it is crucial to address the sensitivity issue.
Gerlach and Wang (2020) demonstrated, for some indices the additive-
type model provides the best forecasting performance using realized
measures. We show that the choice of the initial values can yield very
different estimation and forecasting results for the additive-type model.
We propose to address the sensitivity problem in two ways. Firstly, we
argue that for both additive-type and multiplicative-type joint models,
the sensitivity issue can be largely addressed by treating these initial
values as unknown parameters and providing suitable prior settings
accordingly. All parameters, including the initial values, are estimated
in a Bayesian framework which we show produces more robust VaR
and ES forecasts. Secondly, several new specifications of the additive-
type model are developed in this work, which are less sensitive to the
initial conditions than the original one of Taylor (2019). One of the
newly proposed additive-type models is based on a link to a parametric
GARCH model employed in Gerlach and Wang (2020), which allows
for a simulation study for the additive-type model. Previously, the
simulation study of the joint VaR and ES model is restricted to the
one with a multiplicative-type ES component according to Gerlach and
Wang (2020).
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The forecasting models of tail risk measures enable joint estima-
tion of conditional quantile and ES based on an asymmetric Laplace
(AL) working likelihood. We propose a Bayesian quantile regression
approach to estimating the joint models. Besides largely addressing
the sensitivity issues of the existing VaR and ES forecasting mod-
els, the Bayesian approach can provide uncertainty estimates of the
unknown parameters based on the posterior samples, and thus the
uncertainty associated with VaR and ES forecasts can be estimated.
We explore the posterior coverage of prediction intervals for VaR and
ES, which provides insights into the ‘risks’ associated with the tail
risk measures. Estimating tail risk forecasting models via a Bayesian
quantile regression approach is not new. Gerlach et al. (2011) adapted
a Bayesian approach based on the skewed-Laplace distribution to es-
timate the Conditional Autoregressive VaR (CAViaR) models of Engle
and Manganelli (2004). Gerlach and Wang (2020) employed an adap-
tive Bayesian Markov chain Monte Carlo method to estimate the joint
VaR and ES models of Taylor (2019) and demonstrated the Bayesian
approach outperformed the maximum likelihood method in terms of
point estimation. To the best of our knowledge, however, the uncer-
tainty estimates of the tail risk forecasting models produced from the
Bayesian quantile regression approach have not been explored in the
literature. Through the ubiquitous application of tail risk measures by
financial institutions and regulators, quantification of model risk for
VaR and ES forecasts is gaining attention (see, for example, Kerkhof
et al., 2010; Alexander and Sarabia, 2012; Danielsson et al., 2016;
Lazar and Zhang, 2019; and Farkas et al., 2020). As one source of
model risk, an understanding of estimation uncertainty highlights the
extent with which decision-makers can rely on tail risk measures is
important. Kerkhof et al. (2010) and Farkas et al. (2020) addressed
estimation risk by deriving confidence intervals for tail risk measures
under the context of financial capital requirements. Patton et al. (2019)
derived asymptotic distributions for the parameters of their proposed
dynamic semiparametric models for VaR and ES. In this work, we
focus on the quantification of parameter uncertainties via a Bayesian
approach. We demonstrate that for VaR and ES forecasts, the corre-
sponding uncertainty intervals under the adopted Bayesian quantile
regression approach can be misleading, due to the misspecified AL
working likelihood. To obtain more accurate uncertainty estimates for
the tail risk measures, an adjustment is made to the original posterior
samples. A simulation study shows that significant improvements result
from the adjustment.

VaR and ES not only quantify the risks taken by financial institutions
individually, but they are also important elements in systemic risk
modeling (see Silva et al., 2017 for a general overview of systemic
risk models). Danielsson et al. (2016) provided empirical evidence of
how the different values of VaR and ES estimates from different models
affect systemic risk measures. They showed that the two popular sys-
temic measures, conditional VaR (CoVaR) of Adrian and Brunnermeier
(2011) and the marginal ES (MES) of Acharya et al. (2017), which
fundamentally depend on VaR, can be influenced by the uncertainties
in VaR estimates. In this work, we develop a procedure for jointly
estimating the CoVaR and CoES (Co-Expected-Shortfall) systemic risk
measures proposed by Adrian and Brunnermeier (2011) by following
a similar approach taken for estimating joint VaR and ES models. We
empirically illustrate that unreliable VaR forecasts resulting from the
sensitivity issue can lead to unreliable CoVaR and CoES estimates.
Such impact can be further investigated in other applications based on
CoVaR and CoES, such as the case of measuring financial institutions’
resiliency proposed in Gehrig and Iannino (2021).

The rest of the article is organized as follows. Section 2 reviews
the existing joint VaR and ES models of Taylor (2019) and introduces
the new additive-type models. The link between one of the proposed
models to a parametric GARCH model is described in this section. In
Section 3, we provide the framework of quantile regression and the
working likelihood for estimating the joint VaR and ES models. An
2

explanation of a Bayesian estimation and prediction approach for the
quantile regression model is discussed in Section 4. The prior settings of
the initial values of the conditional VaR and ES series are provided, and
the method of posterior adjustment is also described in this section. In
Section 5, we conduct a simulation study to investigate the accuracy of
interval estimates of tail risk measures after employing the posterior
adjustment method. Section 6 documents the empirical results and
concluding comments are provided in Section 7.

2. Joint ES and VaR models

2.1. Existing models

Taylor (2019) proposed a semiparametric approach to model con-
ditional VaR and ES jointly based on the equivalence between the
quantile regression estimator and a Maximum Likelihood Estimate
(MLE) of an asymmetric Laplace (AL) density. For the VaR component,
two specifications of the Conditional Autoregressive VaR (CAViaR)
framework (Engle and Manganelli, 2004) were adopted. For the ES
component, two models were proposed that ensure the corresponding
two quantities do not cross (i.e. the absolute value of ES is always larger
than VaR). The specifications of the two components are as follows:

Symmetric Absolute Value (SAV): 𝑄𝑡 = 𝛽0 + 𝛽1|𝑟𝑡−1| + 𝛽2𝑄𝑡−1, (1)
symmetric Slope (AS): 𝑄𝑡 = 𝛽0 + 𝛽1𝐼(𝑟𝑡−1 > 0)|𝑟𝑡−1|

+ 𝛽2𝐼(𝑟𝑡−1 ≤ 0)|𝑟𝑡−1| + 𝛽3𝑄𝑡−1, (2)

here 𝑄𝑡 is the conditional quantile of 𝑟𝑡, 𝐼(⋅) is the indicator function,
nd 𝑟𝑡−1 is a financial return observed at 𝑡 − 1.

ultiplicative: 𝐸𝑆𝑡 = (1 + exp(𝛾0))𝑄𝑡. (3)
Additive: 𝐸𝑆𝑡 = 𝑄𝑡 − 𝑥𝑡,

𝑥𝑡 =

{

𝛾0 + 𝛾1(𝑄𝑡−1 − 𝑟𝑡−1) + 𝛾2𝑥𝑡−1 if 𝑟𝑡−1 ≤ 𝑄𝑡−1

𝑥𝑡−1 otherwise,
(4)

here 𝛾0 ≥ 0, 𝛾1 ≥ 0, and 𝛾2 ≥ 0 in Eq. (4) ensure that ES and
aR do not cross. Specifically, four types of VaR-ES joint models are
onsidered here, which are the combinations of the SAV CAViaR model
nd the Multiplicative ES model (SAV-Mult), the SAV CAViaR model
nd the Additive ES model (SAV-Add), the AS CAViaR model and the
ultiplicative ES model (AS-Mult), and the AS CAViaR model and the
dditive ES model (AS-Add).

We demonstrate that the estimation and prediction results of the
oint VaR and ES model of Taylor (2019) can be sensitive to the choices
f 𝑄1 and 𝐸𝑆1, especially for the additive-type models. We argue
hat this sensitivity can be largely addressed by treating the initial
alues as unknown parameters, whose posterior distributions can be
pproximated via the Bayesian approach introduced in Section 4. The
etails on Bayesian settings of the unknown parameters 𝑄1 and 𝐸𝑆1 are
iscussed later in Section 4.2. Furthermore, several new specifications
f the additive-type model are proposed, which we demonstrate are
ess sensitive to the initial values of 𝑄1 and 𝐸𝑆1 compared to the SAV-
dd and AS-Add models. Moreover, some of the new variations of the
dditive-type models can provide superior forecasting performance.

.2. New additive-type models

The development of a new additive model is motivated by exploiting
he link between an additive-type VaR-ES joint model and a parametric
ARCH-type model which allows a simulation study to be conducted.
ccording to Gerlach and Wang (2020), the simulation study is re-
tricted to the SAV-Mult model, as there is no direct link between the
odel with an additive ES component and a GARCH model. Our newly
roposed additive-type ES component takes the form of:

ew Additive (NewAdd): 𝐸𝑆𝑡 = 𝑄𝑡 − 𝑥𝑡,
𝑥𝑡 = 𝛾0 + 𝛾1|𝑟𝑡−1| + 𝛾2𝑥𝑡−1, (5)



Journal of Financial Stability 64 (2023) 101098D. Li et al.

o

𝐸

𝑥

𝑥

where 𝛾0 ≥ 0, 𝛾1 ≥ 0, and 𝛾2 ≥ 0, as in the original additive-type model
f Eq. (4), to ensure that ES and VaR are not crossing. Constraining 𝛾2

to be equal to the autoregressive coefficient of the conditional quantile
𝑄𝑡−1 in Eq. (1), we demonstrate here that the VaR and ES under the
newly proposed additive-type model can be linked to the GARCH(1,1)
model for the standard deviation with the following specifications:

𝑟𝑡 =
√

ℎ𝑡𝜖𝑡, (6)
√

ℎ𝑡 = 𝑎0 + 𝑎1|𝑟𝑡−1| + 𝑎2
√

ℎ𝑡−1,

𝜖𝑡
𝑖𝑖𝑑∼ 𝑁(0, 1),

where ℎ𝑡 is the conditional variance of 𝑟𝑡 and 𝜖𝑡 is the error term.
Gerlach and Wang (2020) showed that the true parameters of the

SAV-Mult model can be obtained through a mapping from the above
GARCH model to the SAV-Mult model. Specifically, 𝑄𝑡 =

√

ℎ𝑡𝛷−1(𝛼),
𝑆𝑡 = −

√

ℎ𝑡
𝜙(𝛷−1(𝛼))

𝛼 , where 𝛼 is a chosen probability level of the quan-
tile, 𝜙(⋅) and 𝛷(⋅) are the standard normal probability density function
(PDF) and cumulative distribution function (CDF), respectively. Thus,
the true parameters of the 𝑄𝑡 component model can be obtained as
follows:

𝛽0 = 𝑎0𝛷
−1(𝛼), 𝛽1 = 𝑎1𝛷

−1(𝛼), 𝛽2 = 𝑎2.

For the ES component of the SAV-Mult model, the true value of the
parameter 𝛾0 can be calculated through the fixed ratio between 𝐸𝑆𝑡
and 𝑄𝑡,

𝐸𝑆𝑡
𝑄𝑡

= −𝜙(𝛷−1(𝛼))
𝛼𝛷−1(𝛼) = 1 + exp (𝛾0).

For the new additive-type model of Eq. (5), the additive difference
𝑡 can be defined as

𝑡 = 𝑄𝑡 − 𝐸𝑆𝑡

=
√

ℎ𝑡𝛷
−1(𝛼) −

(

−
√

ℎ𝑡
𝜙(𝛷−1(𝛼))

𝛼

)

=
√

ℎ𝑡𝐶, (7)

where 𝐶 = 𝛷−1(𝛼)+ 𝜙(𝛷−1(𝛼))
𝛼 . Then

√

ℎ𝑡 can be expressed in terms of 𝑥𝑡
as

√

ℎ𝑡 = 𝑥𝑡∕𝐶. Substituting
√

ℎ𝑡 in the GARCH model of Eq. (6) with
𝑥𝑡∕𝐶, the difference 𝑥𝑡 of the proposed model in Eq. (5) can be written
as:

𝑥𝑡 = 𝑎0𝐶 + 𝑎1𝐶|𝑟𝑡−1| + 𝑎2𝑥𝑡−1, (8)

where 𝑎2 = 𝛽2 which indicates that 𝑥𝑡 in Eq. (5), and 𝑄𝑡 modeled by
the SAV CAViaR model, share the same coefficient for their autore-
gressive terms 𝑥𝑡−1 and 𝑄𝑡−1. Thus, the true parameter values of the
proposed additive model can be obtained. It is worth noting that the
true parameter values of the NewAdd model can only be identified
when constraining 𝛾2 in Eq. (5) to be equal to 𝛽2 in Eq. (1). We consider
both the constrained and unconstrained 𝛾2 for the NewAdd model in
the empirical analysis. We denote the model with constrained 𝛾2 as the
NewAdd-C model, and the one with unconstrained 𝛾2 as the NewAdd-
U model. As with the simple multiplicative-type model structure, one
appealing property of the constrained model is simplicity, which may
incur less estimation error. The constrained model can correctly capture
the relationship between VaR and ES for some DGPs, such as the
GARCH model in Eq. (6). The unconstrained model provides more flex-
ibility by allowing different dynamics between VaR and ES. However,
the forecasting performance of the multiplicative-type model, which
shares the same dynamics for VaR and ES, can outperform other more
flexible models in terms of lower joint loss scores, as shown in Taylor
(2019). Therefore, we choose the constrained model as one candidate
model in the empirical study, and the results in Section 6 show that the
constrained model can outperform the unconstrained model for some
financial time series.

Furthermore, we extend the NewAdd-C and NewAdd-U models to
take the same form as the AS CAViar model in Eq. (2), so that the
leverage effect can be captured. The expression for the variation of the
NewAdd model is given by

NewAdd-AS: 𝐸𝑆 = 𝑄 − 𝑥 ,
3

𝑡 𝑡 𝑡
𝑥𝑡 = 𝛾0 + 𝛾1𝐼(𝑟𝑡−1 > 0)|𝑟𝑡−1| + 𝛾2𝐼(𝑟𝑡−1 ≤ 0)|𝑟𝑡−1|

+ 𝛾3𝑥𝑡−1, (9)

where the parameters of 𝑥𝑡 are non-negative. As with the NewAdd
model, the parameter 𝛾3 can be constrained to be equal to the autore-
gressive coefficients of the CAViar models of (1) and (2). We denote
the model with constrained 𝛾3 as the NewAdd-AS-C model, and the
unconstrained version as the NewAdd-AS-U model.

It is worth mentioning that Gerlach and Wang (2020) proposed an
additive model, called ‘ES-X-CAViaR-X’ model, with the use of realized
measures in place of the absolute lagged returns in Eq. (5). Even
though the proposed model in Eq. (5) has a similar structure to the
ES-X-CAViaR-X model, they stated that there is no direct or exact link
between an additive-type model and a parametric GARCH-type model.
However, such a link can be identified for the new additive model in
Eq. (5) due to the constraints on the autoregressive parameter. The
proposed model of Eq. (5) is developed from the process of constructing
a simulation design, but other merits of the new additive-type models
have been identified. Besides the feasibility of linking the NewAdd
model to the GARCH model as shown above, the proposed NewAdd
model and its extensions are relatively insensitive to the choices of 𝑄1
and 𝐸𝑆1, which is demonstrated in the empirical analysis in Section 6.

The reduced sensitivity of the NewAdd model may be due to the
independence between the difference 𝑥𝑡 and conditional quantile 𝑄𝑡.
The additive difference 𝑥𝑡 in the original additive-type model is driven
by the difference between past conditional quantiles and returns, 𝑄𝑡−1−
𝑟𝑡−1, and the dynamic of 𝑥𝑡 is only updated when the lagged return
exceeds the lagged quantile. However, 𝑥𝑡 in the newly proposed model
is directly driven by lagged returns, which mitigates its sensitivity
to the initial value of conditional quantiles. Furthermore, as demon-
strated in the empirical results in Section 6.1, among the proposed
specifications of the additive model, the versions that share the same
autoregressive coefficient with 𝑄𝑡 generally show lower sensitivity to
initial conditions.

The forecasting performance of the ES-X-CAViaR-X model of Ger-
lach and Wang (2020), which incorporates the realized measures, is
assessed together with other joint VaR and ES models. Under the ES-X-
CAViaR-X model, 𝑄𝑡 and 𝑥𝑡 follow symmetric processes. We extend the
ES-X-CAViaR-X model by developing asymmetries in both the 𝑄𝑡 and
𝑥𝑡 processes. The extended models are defined as follows:

AS-ES-X-CAViaR-X-AS: 𝑄𝑡 = 𝛽0 + 𝛽1𝐼(𝑟𝑡−1 > 0)𝑋𝑡−1 + 𝛽2𝐼(𝑟𝑡−1 ≤ 0)𝑋𝑡−1

+ 𝛽3𝑄𝑡−1,

𝐸𝑆𝑡 = 𝑄𝑡 − 𝑥𝑡,

𝑥𝑡 = 𝛾0 + 𝛾1𝑋𝑡−1 + 𝛾2𝐼(𝑟𝑡−1 ≤ 0)𝑋𝑡−1 + 𝛾3𝑥𝑡−1.
(10)

ES-X-CAViaR-X-AS: 𝑄𝑡 = 𝛽0 + 𝛽1𝑋𝑡−1 + 𝛽2𝑄𝑡−1,

𝐸𝑆𝑡 = 𝑄𝑡 − 𝑥𝑡,

𝑥𝑡 = 𝛾0 + 𝛾1𝑋𝑡−1 + 𝛾2𝐼(𝑟𝑡−1 ≤ 0)𝑋𝑡−1 + 𝛾3𝑥𝑡−1,
(11)

where 𝑋𝑡−1 is a realized measure on day 𝑡 − 1. The improvements in
the forecasting performance by allowing for asymmetries are observed
in the empirical results shown in Section 6.1. The proposed asymmetric
model is less sensitive compared with the additive-type model of Taylor
(2019), and more consistent estimates can be obtained by treating the
initial conditions as unknown parameters.

3. Quantile regression with asymmetric Laplace likelihood

3.1. Quantile regression model

At a given quantile level 𝛼 ∈ (0, 1), the quantile regression model of
𝑟𝑡 is given by

⊺
𝑟𝑡 = 𝑄𝑡 + 𝜖𝑡 = 𝒙𝑡 𝜷𝛼 + 𝜖𝑡, 𝑡 = 1,… , 𝑇 , (12)
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where 𝑄𝑡 is the 𝛼-th quantile of 𝑟𝑡, 𝜖𝑡 is the error term with zero mean
nd constant variance, 𝒙⊺𝑡 is the transpose of a vector of covariates 𝒙𝑡,
nd 𝜷𝛼 is the quantile parameter vector. Specifically, the covariates
ere are 𝑄𝑡−1 and lagged returns 𝑟𝑡−1. The 𝛼-th quantile, 𝑄𝑡, can be
ased on the two CAViaR-type models, the SAV model and the AS
odel, in Eqs. (1) and (2), respectively. According to Koenker and
achado (1999), the quantile regression estimator is equivalent to the
aximum likelihood estimator of the AL density with the expression as

hown below.

.2. Working likelihood

The parameters of the quantile regression model can be estimated
sing a working likelihood based on the following AL density:

(𝑟𝑡) =
𝛼(1 − 𝛼)

𝜎
exp(−(𝑟𝑡 −𝑄𝑡)(𝛼 − 𝐼(𝑟𝑡 ≤ 𝑄𝑡))∕𝜎), (13)

where 𝜎 is a scale parameter, and 𝑄𝑡 is the quantile with a chosen
probability level 𝛼. Taylor (2019) introduced a conditional AL scale 𝜎𝑡
and linked the time-varying scale 𝜎𝑡 to conditional ES estimation. The
conditional ES can be expressed in terms of 𝜎𝑡 as 𝐸𝑆𝑡 = −𝜎𝑡∕𝛼, with the
assumption of a zero expected return of an asset. After incorporating
the conditional ES into Eq. (13), the resulting AL density is:

𝑓 (𝑟𝑡) =
𝛼 − 1
𝐸𝑆𝑡

exp
(

(𝑟𝑡 −𝑄𝑡)(𝛼 − 𝐼(𝑟𝑡 ≤ 𝑄𝑡))
𝛼𝐸𝑆𝑡

)

. (14)

ased on the AL density of Eq. (14), the associated AL working likeli-
ood for the observed data 𝒓 = {𝑟𝑡, 𝑡 = 1,… , 𝑇 } can be written as:

(𝒓|𝜽) =
𝑇
∏

𝑡=1
𝑓 (𝑟𝑡), (15)

where 𝜽 is a set of parameters of the VaR-ES joint models believed to
have generated the conditional quantiles 𝐐 = {𝑄𝑡, 𝑡 = 1,… , 𝑇 } and the
corresponding expected shortfall 𝐄𝐒 = {𝐸𝑆𝑡, 𝑡 = 1,… , 𝑇 } of 𝒓.

The observations 𝒓 are not assumed to follow an AL distribution,
whereas the AL working likelihood allows us to conduct statistical
inference within the quantile regression. Then the VaR and ES joint
models can be estimated with maximum likelihood based on the AL
density in Eq. (14). Besides the likelihood maximization approach
adopted by Taylor (2019), the parameters of the proposed models can
also be estimated through Bayesian approaches. Yu and Moyeed (2001)
introduced a Bayesian quantile regression approach based on the AL
likelihood. The posterior of the parameters can be generated via the
Bayesian approach, as explained in Section 4, with the use of the AL
working likelihood of Eq. (15), where 𝑄𝑡 can be modeled by Eq. (1) or
(2) and 𝐸𝑆𝑡 can be modeled by Eqs. (3), (4), (5) or (9). Gerlach and
Wang (2020) have employed an adaptive Markov chain Monte Carlo
(MCMC) method for estimation. In this work, we utilize sequential
Monte Carlo (SMC, Chopin, 2002; Del Moral et al., 2006) methods for
estimation and prediction. SMC is chosen here as it is more efficient for
generating a full predictive density for VaR and ES forecasts by reusing
the intermediate samples created by the data-annealing SMC approach.

4. Bayesian inference

Given the working AL likelihood of Eq. (15), the Bayesian quantile
regression approach (e.g., Yu and Moyeed, 2001; Yu and Stander, 2007)
can be employed, with the use of SMC (e.g., Chopin, 2002) to sample
from the joint posterior of the parameters of the proposed models. As
a by-product, the marginal posterior distribution of each parameter
can be obtained. The posterior distributions of parameters can easily
produce interval estimates of interest, and the uncertainty estimates of
VaR and ES forecasts can be obtained based on the parameter posterior
samples.
4

2

.1. Bayesian estimation

.1.1. Bayesian statistics
Based on the working AL likelihood function of Eq. (15) for an

bserved sample 𝒓, the posterior of parameters 𝜽 is given by

𝜋(𝜽|𝒓) = 𝑓 (𝒓|𝜽)𝜋(𝜽)
𝑍

, (16)

∝ 𝑓 (𝒓|𝜽)𝜋(𝜽), (17)

here 𝜋(𝜽) is the prior and 𝑍 = 𝑓 (𝒓) = ∫𝜽 𝑓 (𝒓|𝜽)𝜋(𝜽)d𝜽 is the normal-
zing constant which is not required by most algorithms for sampling
he posterior. Since it is infeasible to directly sample from the posterior
(𝜽|𝒓) of the proposed models, the SMC sampling method is adopted.

.1.2. Sequential Monte Carlo
In SMC, 𝑁 weighted samples (called particles),

{

𝑊 𝑖
𝑡 ,𝜽

𝑖
𝑡
}𝑁
𝑖=1, which

epresent a sequence of distributions 𝜋𝑡(𝜽|𝒓) for 𝑡 = 0,… , 𝑇 , need to
e constructed. The sequence starts from a simple distribution that
s easy to sample from and ultimately reaches the target posterior
istribution. The sequence of distributions can be constructed using
ither the likelihood annealing method or the data-annealing method.
he sequence formed by the likelihood annealing approach, with the
rior as the initial distribution, takes the form

𝑡(𝜽|𝒓) ∝ 𝑓 (𝒓|𝜽)𝛾𝑡𝜋(𝜽),

here 𝛾𝑡 is a power parameter, and 0 = 𝛾1 ≤ ⋯ ≤ 𝛾𝑡 ≤ ⋯ ≤ 𝛾𝑇 = 1.
he final distribution in the sequence is the posterior 𝜋𝑇 (𝜽|𝒓) ≡ 𝜋(𝜽|𝒓).
nder the data-annealing strategy, the sequence of distributions can be
onstructed as

𝑡(𝜽|𝑟1∶𝑡) ∝ 𝑓 (𝑟1∶𝑡|𝜽)𝜋(𝜽), (18)

here 𝑟1∶𝑡 represents the observations available up to current time 𝑡.
i et al. (2021) argued that the intermediate distributions 𝜋𝑡(𝜽|𝑟1∶𝑡)
onstructed by the data-annealing method can be efficiently reused
or making predictions for GARCH-type models. As demonstrated in
ection 4.4, such efficiency brought from the data-annealing approach
an also be useful in predicting VaR and ES.

Three main steps are iteratively applied in SMC to traverse the
articles, which are re-weighting, resampling, and moving (or muta-
ion). The re-weighting step re-weights the sample for target 𝑡 − 1,
𝑊 𝑖

𝑡−1,𝜽
𝑖
𝑡−1

}𝑁
𝑖=1, to generate a new set of particles for target 𝑡. The new

nnormalized weights are given by

𝑖
𝑡 = 𝑊 𝑖

𝑡−1

𝜋𝑡(𝜽𝑖𝑡−1|𝑟1∶𝑡)

𝜋𝑡−1(𝜽𝑖𝑡−1|𝑟1∶𝑡−1)
,

or 𝑖 = 1,… , 𝑁 . The normalized weights can be calculated as 𝑊 𝑖
𝑡 =

𝑤𝑖
𝑡

∑𝑁
𝑘=1 𝑤

𝑘
𝑡
, and the new particles remain unchanged as 𝜽𝑖𝑡 = 𝜽𝑖𝑡−1. The re-

eighting step usually reduces the effective sample size (ESS), which
easures the quality of the particle set, so the particles need to be

esampled to raise the ESS back to a desired level. The resampling pro-
ess resamples the particle values proportional to their weights, where
articles with relatively high weights are duplicated, and those with
elatively small weights are dropped. Since the resampled particle set
ay contain duplicates of those particles with relatively high weights

efore resampling, a moving step is required to diversify the resampled
articles. A moving step usually employs MCMC kernels of invariant
istribution 𝜋𝑡 to perturb the particles. Here, a Metropolis–Hastings
Hastings, 1970) kernel is adopted, whose parameters can be adapted
nline in SMC (see, for example, Salomone et al., 2018; Bon et al.,

021).
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4.2. Settings of unknown parameters 𝑄1 and 𝐸𝑆1

As stated earlier, the joint models of Taylor (2019) are found to be
ensitive to the initial values assumed for 𝑄1 and 𝐸𝑆1. In the literature,
𝑄1 and 𝐸𝑆1 are initialized to the empirical 𝛼-quantile of the early part
of a financial time series and the corresponding mean of returns that
exceed the 𝛼-quantile, respectively. However, we show that different
empirical initializations can lead to different posterior distributions of
the unknown parameters, and hence different predictive distributions
of VaR and ES forecasts may be generated.

We treat these initial values as unknown parameters to address
this issue, and then the posterior distributions of these parameters
are generated through the Bayesian approach described above. To
undertake the Bayesian quantile regression, prior distributions need to
be assigned to these unknown parameters. The priors of 𝑄1 and 𝐸𝑆1
are chosen to be uniformly distributed as:

𝑄1 ∼  (LQ, 0), and 𝐸𝑆1 ∼  (LE, 0),

where the upper bounds are zeros, and the choices of the lower bounds
LQ and LE rely on the probability levels of tail risks. Since the difference
between 𝑄1 and 𝐸𝑆1 is generally not known in advance, we suggest
that to set the lower bounds of 𝑄1 and 𝐸𝑆1 at the same level for the
additive-type models. Moreover, we require 𝑄1 to be larger than 𝐸𝑆1.
This condition can be achieved by abandoning the draws from the prior
of 𝐸𝑆1, whose values are larger than the draws from the prior of 𝑄1.

In order to test if the joint models are sensitive to the choice
of prior distribution, different types of distributions other than the
uniform distribution are adopted for priors. The exponential, gamma
and log-normal distributions are also considered. In a similar way to the
uniform case, we use negative values of realizations that are generated
from the three distributions as prior samples since 𝑄1 and 𝐸𝑆1 are
always negative. To simulate values from the three distributions, we
set their mean parameter equal to absolute values of the empirical
quantile and ES of the sample to be analyzed. We suggest not setting too
small standard deviation parameters for the priors as the information
about the dispersion is limited. For the sake of consistency, other prior
distributions mostly cover the range of the corresponding uniform prior
and allocate lower densities for the values out of the bounds of the
uniform prior. It is worth noting that the multiplicative-type models
only require 𝑄1 due to the models’ specifications of the ES component.
Therefore, the settings of the difference between 𝑄1 and 𝐸𝑆1 can
be ignored for the multiplicative-type models. The empirical analysis
illustrates the issue and show how this issue can be largely addressed.

4.3. Posterior adjustment

Generally, the working AL likelihood is not the true likelihood for
generating data (Yang et al., 2016). The assumption of the independent
and identically distributed (i.i.d.) error term 𝜖𝑡 is unlikely to hold
with financial time series data. The posterior from the misspecified
working likelihood may yield wider or narrower credible intervals than
the ones from the true likelihood. Sriram et al. (2013) showed that
the misspecified AL likelihood can still lead to consistent posterior
results for the model parameters. However, this does not imply that
the uncertainty interval estimates constructed from the posterior are
automatically valid (Yang et al., 2016). Therefore, the Bayesian quan-
tile regression based on an AL likelihood cannot be considered a truly
Bayesian procedure (Benoit and Van den Poel, 2017), and we need
to make corrections while constructing the posterior distributions of
parameters and the corresponding predictions. The issue of uncertainty
quantification has been considered in Liu et al. (2020), who applied a
Bayesian quantile regression framework to analyze mass spectrometry
datasets. As far as we know, the posterior coverage issue, which we
aim to explore here, has not been considered for the quantile regression
5

models of VaR and ES in the literature.
To construct asymptotically valid credible intervals of the unknown
parameters, and hence the prediction intervals of the VaR and ES
forecasts, we adopt an adjustment for the posterior samples proposed
by Shaby (2014), called the open-faced sandwich (OFS) adjustment.
Due to model misspecification, the asymptotic covariance matrix of
the posterior distribution is different from that of the asymptotic dis-
tribution of the Bayesian point estimator (Chernozhukov and Hong,
2003). The ultimate goal of the OFS adjustment is to match the limiting
distribution of posterior samples with the asymptotic distribution of
the Bayesian point estimates, which are typically the posterior mean
or median, so that the uncertainty estimates of parameters can be
calibrated accordingly.

Denote the 𝑁 weighted samples
{

𝑊 𝑖
𝑡 ,𝜽

𝑖
𝑡
}𝑁
𝑖=1 as the SMC posterior

samples of the unknown parameters 𝜽 = (𝜷, 𝜸) based on observations
𝑟1∶𝑡, where 𝜷 and 𝜸 represent parameters of the VaR component model
and the ES component model, respectively. The OFS adjustment to
the weighted samples requires an estimator Ω̂ of the matrix Ω =
𝐇−1𝐏1∕2𝐇1∕2, where 𝐇−1 is the covariance matrix of the limiting pos-
terior distribution, and 𝐉−1 = 𝐇−1𝐏𝐇−1 is the covariance matrix of the
symptotic distribution of the Bayes estimator, 𝜽̂. Both 𝐇 and 𝐏 need
o be estimated to obtain the estimator Ω̂. The matrix 𝐇−1 can be es-
imated by the sample covariance matrix of the SMC samples, denoted
s 𝐇̂−1. The matrix 𝐏 is given by 𝐏 = E𝜽

[

∇𝜽𝓁(𝑟1∶𝑡|𝜽)
(

∇𝜽𝓁(𝑟1∶𝑡|𝜽)
)⊺],

here ∇𝜽𝓁(𝑟1∶𝑡|𝜽) is the gradient of the log likelihood evaluated at the
rue parameter 𝜽. An estimate of the matrix 𝐏 is given by

̂ =
𝑡

∑

𝑗=1
∇𝓁(𝑟𝑗 |𝜽̂)

(

∇𝓁(𝑟𝑗 |𝜽̂)
)⊺ , (19)

here 𝜽̂ is the Bayes estimator. The adjusted samples can be obtained
y pre-multiplying the unadjusted samples by Ω̂ as follows

̃ 𝑖
𝑡 = 𝜽̂ + Ω̂

(

𝜽𝑖𝑡 − 𝜽̂
)

, (20)

here 𝜽̃𝑖𝑡 is the adjusted sample, and 𝜽𝑖𝑡 is the unadjusted sample. The
ovariance matrix of the adjusted posterior samples

{

𝑊 𝑖
𝑡 , 𝜽̃

𝑖
𝑡

}𝑁

𝑖=1
is 𝐉−1

s desired.
It is relatively easy to estimate 𝐇−1 for the VaR-ES joint models,

ut some difficulties arise in computing the estimated matrix 𝐏̂ for the
AV-Add and AS-Add models when treating 𝑄1 and 𝐸𝑆1 as unknown
arameters. For the two additive-type models, the partial derivatives of
he log likelihood 𝓁(𝑟1∶𝑡|𝜽̂) with respect to the parameters 𝑄1 and 𝐸𝑆1
eed to be calculated recursively. The details of the recursive approach
o find ∇𝓁(𝑟1∶𝑡|𝜽̂) are provided in Appendix A. The AL log likelihood of
ach data point 𝑟𝑡 for the VaR-ES joint models evaluated at the point
stimates 𝜽̂ is given by

(𝑟𝑡|𝜽̂) =
⎧

⎪

⎨

⎪

⎩

log(𝛼 − 1) − log(𝐸𝑆𝑡) +
(𝛼−1)(𝑟𝑡−𝑄𝑡)

𝛼𝐸𝑆𝑡
, if 𝑟𝑡 ≤ 𝑄𝑡

log(𝛼 − 1) − log(𝐸𝑆𝑡) +
𝛼(𝑟𝑡−𝑄𝑡)
𝛼𝐸𝑆𝑡

, otherwise.
(21)

To choose the correct expression of the above log likelihood, the value
of 𝑄𝑡 needs to be compared with 𝑟𝑡. By substituting the Bayesian point
estimate 𝜽̂ into the CAViaR-type models, the point estimate of 𝑄𝑡 can
e obtained. Given the estimates of 𝐏 and 𝐇, the adjusted posterior
amples

{

𝑊 𝑖
𝑡 , 𝜽̃

𝑖
𝑡

}𝑁

𝑖=1
can be obtained by following Eq. (20), and thus

ayesian inference can be carried out based on the adjusted samples.
he improvements of the interval estimates of the adjusted distributions

s demonstrated in the simulation study.

.4. Bayesian prediction

Under the Bayesian approach, the posterior predictive distribu-
ion for VaR and ES forecasts can be provided, which account for
he uncertainty associated with the unknown parameters. The one-
tep-ahead posterior predictions of the conditional quantile 𝑄̂ and
𝑡+1



Journal of Financial Stability 64 (2023) 101098D. Li et al.

O
q
b
s
u

c
a
l
i
I
v
A

𝐱

Table 1
Coverage rates of interval estimates of the SAV-Mult model.

True 95% coverage rate

Unadjusted Adjusted

𝛽0 −0.047 34.5% 45.8%
𝛽1 −0.233 38.6% 70.3%
𝛽2 0.850 39.5% 59.1%
𝛾0 −1.926 80.9% 96.1%
VaR1001∶2000 – 38.5% 52.5%
ES1001∶2000 – 56.1% 90.5%

1% hit rate – 1.06% 1.02%

expected shortfall 𝐸𝑆𝑡+1 are considered here, given their past values
and observations up to time 𝑡.

As stated, it is relatively easy to produce the posterior predictive dis-
tribution by data-annealing SMC. Under the data-annealing approach,
the intermediate samples from the posterior 𝜋(𝜽|𝑟1∶𝑡) based on different
subsets of observations 𝑟1∶𝑡 are ready to be reused to make predictions,
which means there is no need to re-estimate the model again with
different sample sizes. The posterior predictive distribution of 𝑄̂𝑡+1
based on the adjusted parameters 𝜽̃ takes the following form:

𝑝
(

𝑄̂𝑡+1|𝑟1∶𝑡, 𝑄1∶𝑡
)

= ∫𝜽̃
𝑝
(

𝑄̂𝑡+1|𝑟1∶𝑡, 𝑄1∶𝑡, 𝜽̃
)

𝜋𝑡(𝜽̃|𝑟1∶𝑡, 𝑄1∶𝑡) d𝜽̃.

Based on the adjusted weighted samples
{

𝑊 𝑖
𝑡 , 𝜽̃

𝑖
𝑡

}𝑁

𝑖=1
from the posterior

𝜋𝑡(𝜽̃|𝑟1∶𝑡), the posterior predictive distribution of 𝑄̂𝑡+1 and 𝐸𝑆𝑡+1 can
be approximated by

{

𝑊 𝑖
𝑡 , 𝑄̂

𝑖
𝑡+1

}𝑁

𝑖=1
and

{

𝑊 𝑖
𝑡 , 𝐸𝑆𝑖

𝑡+1

}𝑁

𝑖=1
, respectively.

Given the values of 𝑟1∶𝑡, 𝑄1∶𝑡, and 𝜽̃𝑖𝑡 for 𝑖 = 1,… , 𝑁 , 𝑄̂𝑖
𝑡+1 and 𝐸𝑆𝑖

𝑡+1 are
specified according to the VaR-ES forecasting models described in Sec-
tion 2. From the predictive distribution, one-step-ahead forecasts and
the associated uncertainty interval estimates can be easily obtained.

We use a family of joint loss functions developed by Fissler and
Ziegel (2016) to jointly evaluate VaR and ES forecasts from the VaR-
ES models. As explained in Fissler and Ziegel (2016), the joint loss
functions taking the forms in Appendix B are strictly consistent, which
means that the loss function can be minimized uniquely by true VaR
and ES. Three specifications of the loss scores adopted in Taylor (2019)
are considered here and provided in Appendix B. The weighted samples
from the posterior predictive distributions of VaR and ES forecasts are
substituted into the three loss functions, and we use the corresponding
posterior median of the loss scores to undertake the evaluation.

5. Simulation study

In the simulation study, we evaluate the performance of the 95%
credible intervals of the unknown parameters and the 95% prediction
intervals of the one-step ahead VaR and ES forecasts. To the best of our
knowledge, the uncertainties derived from a Bayesian approach for the
jointly estimated VaR and ES forecasts have not been explored in the
literature, so the unadjusted interval estimates from the Bayesian quan-
tile regression are treated as the benchmark available before making
any adjustments.

As stated in Section 2.2, the true parameters of the SAV-Mult
model and the SAV-NewAdd-C model are known if simulating from
the GARCH model of Eq. (6). We simulated 40 return series from the
GARCH model with the following parameters that are used in Gerlach
and Wang (2020):

𝑎0 = 0.02, 𝑎1 = 0.10, 𝑎2 = 0.85.

Each simulated return series has a sample size of 𝑇 = 2000. We set 𝛼 =
1% in this study and the corresponding true values of the parameters
of the SAV-Mult model and the SAV-NewAdd-C model are given in
Tables 1 and 2, respectively.
6

Table 2
Coverage rates of interval estimates of the SAV-NewAdd-C model.

True 95% coverage rate

Unadjusted Adjusted

𝛽0 −0.047 29.0% 41.3%
𝛽1 −0.233 43.3% 73.8%
𝛽2 = 𝛾2 0.850 34.2% 56.4%
𝛾0 0.007 89.8% 70.2%
𝛾1 0.034 97.0% 73.9%
VaR1001∶2000 – 37.4% 55.9%
ES1001∶2000 – 61.0% 62.8%

1% hit rate – 1.06% 1.04%

Both the multiplicative- and the additive-type models are fitted to
the 40 simulated datasets, and we use 𝑁 = 5000 particles in SMC
to approximate posterior distributions. We calculated one-step ahead
VaR and ES forecasts for the final 1000 returns 𝑟𝑡 of each dataset
from 𝑡 = 1001 to 𝑡 = 2000 based on the returns 𝑟1∶𝑡−1 up to time
𝑡 − 1. The coverage rate, which is the frequency of the true values
that fall within the interval estimates, of the 95% credible interval
of the parameter estimates is calculated based on 1000 in-sample
periods for each dataset. Based on the estimates of posterior predictive
distributions, the coverage rate of the 95% prediction interval of the
one-step ahead forecasts is calculated for the final 1000 data points
of each dataset. The average values of the coverage rates over the 40
datasets are provided in Tables 1 and 2.

The 1% hit rate in Tables 1 and 2 refers to the percentage of obser-
vations falling below the 1% quantile estimates, where the posterior
median values of 𝑄𝑡 are used as the point quantile estimates. Both
the multiplicative-type and additive-type models provide reasonable hit
rates. As the adjustments mainly change the curvature of the posterior,
the median point estimates do not change much. Although the SAV-
Mult and SAV-NewAdd-C models have the same VaR structure, their
results for VaR may differ due to the restriction on 𝛽2 in the SAV-
NewAdd-C model. We can see that from Tables 1 and 2, both the
adjusted and unadjusted uncertainties of VaR related parameters and
one-step ahead forecasts for the two models are slightly different. The
original uncertainties of the quantile and ES forecasts and most of the
parameter estimates of the two models are underestimated, which leads
to low coverage rates before the adjustment. It is obvious that most of
the coverage rates after adjustment are more accurate (i.e. closer to
95%) than the unadjusted ones, especially for the ES forecasts from the
SAV-Mult model. However, the adjusted coverage rates are not perfect
due to the imperfect estimates of the matrix Ω required by the OFS
adjustment. The approach of estimating matrix 𝐏, which is a component
of Ω, is designed for the case that multiple independent replicates can
be produced from a stochastic process. However, in our situation, only
a single return series with 𝑇 observations can be generated per draw.

ur adjusted results produce significantly more accurate uncertainty
uantification than the unadjusted ones, not only for the parameters
ut importantly for the VaR and ES forecasts. However, our results also
how that more research is required to improve the accuracy of the
ncertainty quantification further.

Furthermore, we suggest that the true parameters of these models
an also be approximated via the method of ordinary least squares for
n overdetermined system (Anton and Rorres, 2013). Suppose that a
inear system 𝐀𝐱 = 𝐛 has 𝑚 equations and 𝑛 unknown variables, which
mplies that 𝐀 is an 𝑚×𝑛 matrix, 𝐱 is a 𝑛×1 vector and 𝐛 is a 𝑚×1 vector.
f the number of equations 𝑚 is greater than the number of unknown
ariables 𝑛, such a system is referred to as an overdetermined system.
n approximate solution to the overdetermined system is given by

= (𝐀⊺𝐀)−1𝐀⊺𝐛. (22)

For the above simulation settings, since we know the true values of
𝑄 and 𝐸𝑆 , a system of equations can be constructed for 𝑄 and
𝑡 𝑡 𝑡
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Fig. 1. Marginal posterior distributions of the parameters of the AS-Add model by using SMC.
𝐸𝑆𝑡 with the corresponding unknown parameters 𝜷 and 𝜸. Then the
unknown parameters can be approximated by following Eq. (22). We
have used the overdetermined system method to calibrate the true
values of the unknown parameters obtained by mapping from the
GARCH model to the joint VaR-ES model of this simulation settings,
and there is approximately no difference in the results from the two
different methods.

6. Empirical results

Daily S&P 500 returns are used for the following empirical analysis.
The sample to be examined spans 7 April 1986 - 2 September 2021,
containing 8927 observations in total. The dataset covers the crash of
1987, the Global Financial Crisis, and the 2020 stock market crash,
which allows estimation and prediction results under different market
conditions. To investigate if the sensitivity issue is affected by the
length of the estimation period, an expanding window approach is
employed for estimating each model. The starting in-sample size is
2000, and 250 out-of-sample forecasts are generated based on the in-
sample estimation. Then the second estimation results are based on
7

2250 in-sample observations, and another 250 forecasts are generated.
By expanding the in-sample period in such a way, each model was
estimated 28 times for the dataset, where the final estimation in-sample
includes 8750 observations. In total, 6927 out-of-sample forecasts are
evaluated.

In addition to the S&P 500 data, another five financial time series of
different asset classes and markets are analyzed. Data for IBM, NIKKEI
225, NASDAQ and FTSE 100 indices consisting of 5000 daily returns
ending on 31 December 2021 are used. We also include the returns
of USO ETF (US Oil Fund) from 10 April 2006 to 17 December 2021.
These five datasets allow us to analyze the ES-X-CAViaR-X model and
its proposed extensions, given that the up-to-date high-frequency data
used for generating realized measures are available. The five-minute
prices were downloaded from Thomson Reuters Datascope. We use
realized volatility (RV) that is computed by aggregating five-minute
high-frequency returns for a trading day. As with the S&P 500, the
expanding window approach is adopted to estimate each candidate
model, and the starting in-sample size is 1000.
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Fig. 2. Marginal posterior distributions of the parameters of the AS-Add model with 𝑄1 and 𝐸𝑆1 treated as unknown parameters by using different prior distributions.
t
d
i
l
s
a
o
q
f
E
q

w
t
a
t
p
f
a
c
l
i
c

.1. Sensitivity of the joint VaR and ES models

.1.1. S&P 500 sample
The sensitivity to initial conditions can be visually illustrated by the

osterior distributions of the parameters of the joint models. In this
ection, we present the estimation results based on the initial 2250
bservations. The sensitivity problem is severe enough to be easily
isible as shown in Fig. 1(a). The estimation results based on the in-
ample size of 2250 also imply that the sensitivity issue may not be
itigated with a long estimation period. Fig. 1(a) presents the posterior
istributions of the parameters of the AS-Add model at 𝛼 = 1% proba-
ility level with different choices for the initial values of 𝑄1 and 𝐸𝑆1.
he values of 𝑄1 and 𝐸𝑆1 are initialized at the empirical 𝛼-quantile

and the corresponding empirical ES of the first 300, 400, 500, 800,
and 1000 observations, leading to the initial values as shown in the
following figures. Strongly overlapping marginal posterior distributions
in the figures indicate more consistent results. We can see that with
different fixed initial values, the posterior distributions can behave very
differently. This issue can be largely addressed by treating the initial Q
and ES as unknown parameters, as shown in Fig. 1(b). The priors of 𝑄1
and 𝐸𝑆1 are set to be uniformly distributed over a range of (𝐿, 0) for
ifferent levels of tail risks, where 𝐿 is the lower bound of the uniform
istribution. Where applicable, the choices of different lower bounds
re given in the figures of marginal posterior distributions. In addition
o the uniform prior, the posteriors based on exponential, gamma,
nd log-normal priors are presented in Fig. 2. With different prior
istributions for the initial parameters, consistent marginal posteriors
f parameters other than 𝑄1 and 𝐸𝑆1 can still be produced.

The marginal posterior distributions for the AS-Mult model and
ther additive-type models are reported in Appendix C. From Fig. 18(a),
e can see that the AS-Mult model also demonstrates some degree
f sensitivity to 𝑄1, but less so than the AS-Add model. By treating
1 as an unknown parameter, as shown in Fig. 18(b), the resulting
arginal posteriors based on different priors of 𝑄1 are more consistent

han the ones in Fig. 18(a). The NewAdd model of Eq. (5) is much
ess sensitive to 𝑄1 and 𝐸𝑆1 compared to the AS-Add model. The
osterior distributions of the parameters of the AS-NewAdd-C model,
constrained version of Eq. (5), are shown in Fig. 19(a). With the

ame choices of initial values of the AS-Add model, these posteriors
re less sensitive to different values of 𝑄 and 𝐸𝑆 . Nevertheless, the
8

1 1
AS-NewAdd-C model still shows sensitivity to some degree, which also
can be addressed by treating the initial values as unknown parameters
as demonstrated in Fig. 19(b). Furthermore, the sensitivity of other
variations of the proposed additive-type models of Eqs. (5) and (9)
are also less sensitive to the initial conditions compared to the original
additive-type model, leading to more consistent posteriors where initial
conditions are treated as unknown parameters. The marginal posterior
distributions for these variations of the additive-type model are pre-
sented in Figs. 18–22 given in Appendix C. In addition, the benefit
of the reduced sensitivity will be demonstrated later by checking the
standard deviations of each model’s forecast evaluation results based on
different initial conditions. Regarding the range of the uniform priors
for 𝑄1 and 𝐸𝑆1, we suggest setting their lower bounds at the same level
as it is difficult to know the difference between the initial quantile and
ES in advance.

Moreover, for the original additive-type model, different posterior
distributions caused by the various choices of 𝑄1 and 𝐸𝑆1 can influence
he prediction of tail risks. Figs. 3(a) and 3(b) present the first 50 pre-
iction results of quantile and ES based on the posterior distributions
n Fig. 1(a). It can be seen that different posteriors of parameters can
ead to different forecasting results, especially for the predicted ES. The
ensitivity can be largely reduced in the case that the initial values of Q
nd ES are treated as unknown parameters. Even with different choices
f priors, the posterior distributions and the corresponding forecasts of
uantile and ES are similar, as shown in Figs. 3(c) and 3(d). In addition,
or the proposed additive-type model of the constrained version of
q. (5), the forecasts resulting from using different initial values of the
uantile and ES are relatively consistent as shown in Figs. 3(e) and 3(f).

To illustrate the economic size of the sensitivity effect more clearly,
e investigate the forecasting results based on the parameter estima-

ion with the initial 5250 observations. Fig. 4(a) shows 100 one-step-
head forecasts of ES from 21 Jun 2007 to 09 Nov 2017. We can see
hat different initial values lead to different forecasting results for this
eriod during the GFC. With an arbitrary choice of initial conditions, a
inancial institution’s economic capital may not be efficiently allocated
s the amount required to hold for risk coverage is not accurately fore-
ast. For instance, on 1 Oct 2007, the highest estimated ES is 10.43%
arger than the lowest value. In this case, different values of the initial
nputs can result in wasted regulatory capital or insufficient capital for
overing risk. Especially for the highly volatile period, optimization



Journal of Financial Stability 64 (2023) 101098D. Li et al.
Fig. 3. Posterior median of the first 50 out-of-sample quantile and ES forecasts.
Fig. 4. Posterior median of 100 out-of-sample ES forecasts.
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of capital allocation plays a vital role. The proposed approach largely
addresses the sensitivity in forecasting results, as shown in Fig. 4(b),
minimizing the chance of inefficiently allocating capital against risky
asset portions.

Figs. 5 and 6 illustrate the standard deviations of the loss scores
from the three loss functions described in Section 4.4.2 for the origi-
nal additive-type models, the proposed additive-type models, and the
9

m

multiplicative-type models. By treating 𝑄1 and 𝐸𝑆1 as unknown pa-
ameters, the loss scores for all the candidate models are relatively
onsistent, and have lower standard deviations for different selections
f priors most of the time, stabilizing the performance of the forecasting
cheme. In contrast, by not treating the initial conditions as parameters,
he loss scores are more variable and have larger standard deviations
ith different initial values, especially for the AS-Add and SAV-Add
odels. It is worth emphasizing that the loss scores are computed based
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Fig. 5. Sample standard deviations of joint loss scores for 1% VaR and 1% ES produced from models with an asymmetric VaR component based on different in-sample sizes.
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Fig. 6. Sample standard deviations of joint loss scores for 1% VaR and 1% ES produced from models with a symmetric VaR component based on different in-sample sizes.
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Fig. 7. Marginal posterior distributions of the parameters of the AS-Add model based on 2000 USO daily returns.
n the posterior predictive distributions of VaR and ES. Therefore, loss
cores with larger standard deviations indicate higher sensitivity in
he forecasts of VaR and ES. Moreover, the sensitivity issue is prone
o occur even with a large estimation sample. For instance, as shown
n Fig. 5, the AS-Add model can be highly sensitive to the choices of
1 and 𝐸𝑆1 even when the in-sample size is 8000 and 8500. Overall,

he proposed variations of the additive-type models, whose standard
eviations of the loss scores are relatively low, are less sensitive to the
nitial conditions compared with the original additive-type model.

Table 3 provides the loss scores for jointly evaluating the out-of-
ample forecasting performance of the candidate models estimated by
reating initial conditions as unknown parameters. The presented loss
cores are the averages over the ones based on different selections of
riors of 𝑄1 and 𝐸𝑆1. As indicated by the joint loss scores L2 and
3, the proposed AS-NewAdd-AS-C model provides the lowest losses,
erforming best for the S&P 500 dataset. Regarding the joint loss score
1, the AS-NewAdd-AS-U model outperforms other candidates. More-
ver, the joint VaR-ES models whose VaR component is modeled by
he AS CAViaR model, which can capture the leverage effect, is always
dvantageous over the one modeled by the SAV CAViaR model as
hown in Table 3. It is worth mentioning that regardless of whether the
12
VaR component is asymmetric or symmetric, the models that perform
best are from our newly proposed additive-type models.

In addition to the joint loss functions, the performance of VaR
forecasts is also examined via backtesting procedures. Three standard
tests are considered here: the unconditional coverage (UC) test of
Kupiec (1995), the conditional coverage test of Christoffersen (1998)
and the dynamic conditional quantile (DQ) test of Engle and Manganelli
(2004). From the 𝑝-values of the backtests reported in Table 4, the
results of the UC and CC tests are reasonable for most of the models,
where the AS-Add model and the unconstrained AS-NewAdd model
are rejected all the time. For the DQ test, which is more powerful in
rejecting a misspecified model than the other two tests, most of the
models are rejected except the constrained AS-NewAdd model and its
asymmetric version. The performance of ES forecasts is also assessed
through backtests. The ES residual test of McNeil and Frey (2000)
is adopted, which tests if the average difference between the returns
exceeding VaR and ES forecasts is approximately zero. The regression-
based ES backtest of Bayer and Dimitriadis (2022) is also conducted.
The regression backtest regresses returns on the ES forecasts and an
intercept, and then it tests if the intercept is equal to 0 and the slope
coefficient is equal to 1. From Table 5, we can see that only the
original additive-type models are rejected by the ES residual test. It
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Fig. 8. Marginal posterior distributions of the parameters of the AS-ES-X-CAViaR-X-AS model based on 2000 USO daily returns.

Fig. 9. Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P 500 daily returns (𝛼 = 1%).
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Fig. 10. Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P 500 daily returns (𝛼 = 2.5%).
Fig. 11. Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P 500 daily returns (𝛼 = 5%).
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s worth mentioning that the adjusted results are not used here since
he sensitivity issue is irrelevant to the uncertainty adjustment. The
ain purpose of this section is to demonstrate the sensitivity issue, and

llustrate how the issue is largely addressed by the proposed approach.
oreover, as discussed in Section 5, since the point estimates would

ot change much with the uncertainty adjustment, the loss scores and
acktesting results are reported based on unadjusted posterior samples.

.1.2. Out-of-sample VaR and ES forecasts for other market indices and
inancial assets

The comprehensiveness of the empirical analysis is extended by
nalyzing different financial datasets. The ES-X-CAViaR-X model of
erlach and Wang (2020) and its extended specifications in Eqs. (10)
nd (11) are included, where RV is used as the realized measure.
able 6 provides the AL loss score ratios of candidate models to that
f the AS-Add model to assess VaR and ES jointly. The AL loss score
f Eq. (35) is just the negative of the AL log-likelihood which is a
onsistent scoring function. We can see that the AS-ES-X-CAViaR-X-AS
odel, an extension of the ES-X-CAViaR-X model of Gerlach and Wang

2020) results in the lowest joint loss scores for most of the financial
14

ime series. In addition, Table 7 presents the counts of rejections of each s
odel for the VaR and ES forecasts backtests over five datasets. The AS-
S-X-CAViaR-X-AS model is less likely to be rejected under all the tests
elative to the other models. Overall, the backtest results are consistent
ith that of the AL joint loss scores, where the AS-ES-X-CAViaR-X-AS
odel outperforms other candidate models.

The sensitivity issue is not unique to the S&P 500 but also appears
nder the other financial time series. Fig. 7(a) shows inconsistent
osterior distributions of the parameters of the AS-Add model based on
series of commodity returns. The issue can be addressed by treating

nitial conditions as unknown parameters, as demonstrated in Fig. 7(b).
rom Fig. 8(a), we can see that the AS-ES-X-CAViaR-X-AS model shows
uch less sensitivity to initial conditions than the AS-Add model.
s shown in Fig. 8(b), with different priors, the marginal posterior
istributions produced by treating the initial conditions as unknown
arameters can become more consistent than the ones in Fig. 8(a).

.2. Adjustment results

.2.1. Adjusted posteriors
As demonstrated in the simulation study, the accuracy of the uncer-

ainty interval estimates can be improved after adjusting the posterior

amples. Before considering the interval estimates of VaR and ES
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Fig. 12. Differences of 250 out-of-sample 95% prediction interval width, before and after the adjustment, of VaR and ES forecasts, for the SAV-Mult model with the probability
levels of 𝛼 = 1%, 2.5%, 5% by using the Bayesian approach.
Table 3
1% VaR and 1% ES joint loss scores.

Model Out-of-sample loss score (Median)

L1 L2 L3

AS-Add 4740 1670 15 421
AS-NewAdd-C 4715 1652 15 317
AS-NewAdd-U 4722 1657 15 346
AS-NewAdd-AS-C 4718 1643 15312
AS-NewAdd-AS-U 4703 1664 15 320
AS-Mult 4720 1652 15 326

L1 L2 L3

SAV-Add 4751 1712 15 567
SAV-NewAdd-C 4741 1696 15 504
SAV-NewAdd-U 4745 1782 15 571
SAV-NewAdd-AS-C 4730 1689a 15 463a

SAV-NewAdd-AS-U 4726a 1783 15 511
SAV-Mult 4741 1700 15 508

Notes:
L1: Loss score from the joint loss function of Eq. (33); L2: Loss score from the joint
loss function of Eq. (34); L3: Loss score from the joint loss function of Eq. (35).
Bold indicates lowest values of loss score for a model with an Asymmetric Slope-type
VaR component.
aIndicates lowest values of loss score for a model with a Symmetric Absolute Value-type
VaR component.

forecasts, the posterior distributions after adjustments are shown in
this section. The adjusted posterior distributions of the parameters of
the models investigated in the simulation study are presented. In the
case of the 1% quantile level in the simulation study, the 95% interval
estimates for the quantile and ES forecasts and the parameters of the
SAV-Mult model have low coverage rates of the true values, which
indicates that the intervals are underestimated due to the misspecified
working likelihood. In Section 5, we have demonstrated that the ad-
justment method improved the accuracy of interval estimates for the
15
Table 4
1% VaR coverage test 𝑝-values.

Model UC CC DQ

AS-Add 0.005 0.015 0.045
AS-NewAdd-C 0.085 0.155 0.125
AS-NewAdd-U 0.039 0.037 0.009
AS-NewAdd-AS-C 0.250 0.309 0.281
AS-NewAdd-AS-U 0.167 0.244 0.000
AS-Mult 0.085 0.061 0.010

SAV-Add 0.167 0.090 0.000
SAV-NewAdd-C 0.358 0.122 0.000
SAV-NewAdd-U 0.250 0.108 0.000
SAV-NewAdd-AS-C 0.571 0.133 0.000
SAV-NewAdd-AS-U 0.167 0.023 0.000
SAV-Mult 0.423 0.128 0.000

Notes:
All tests are conducted at the 5% significance level.
Bold indicates the model is not rejected by the test at a 5% level.

simulated data. The effectiveness of the adjustment for the real data is
discussed below.

Given the S&P 500 data, Figs. 9, 10, and 11 illustrate the marginal
posterior distributions of the parameters of the SAV-Mult model before
and after the adjustments. In the case of the 1% quantile level, most
of the adjusted distributions become more dispersed compared to the
unadjusted ones as desired, especially for the ES component related pa-
rameter. Since the simulation study shows that unadjusted uncertainty
intervals are underestimated, the inflated variances after adjustments
imply more accurate estimates of the uncertainty. The adjusted results
for the SAV-NewAdd-C are given in Appendix C, where the adjusted
uncertainty intervals of most parameters become wider. One parameter
related to the ES component has a narrower uncertainty estimate after
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f

Fig. 13. Sample data and posterior median of the last 100 out-of-sample CoVaR and CoES forecasts.
Fig. 14. Adjusted 95% prediction interval width of 250 out-of-sample CoVaR and CoES
orecasts, with the probability level of 𝛼 = 1% by using the Bayesian approach.

the adjustment, which leads to relatively small uncertainty improve-
ments in ES forecasts compared with the one from the SAV-Mult model,
as discussed below.

6.2.2. Adjusted uncertainty
Based on the adjusted posterior distributions, we implement the

Bayesian prediction approach to make forecasts for the real data,
where the uncertainty around predicted tail risks can be obtained.
The differences between adjusted and unadjusted widths of prediction
interval (PI) estimates of the tail risk forecasts with 1%, 2.5% and 5%
quantile levels for the SAV-Mult model are presented in Figs. 12(a)–
12(c). Positive differences indicate an increase in the uncertainty width
16
Fig. 15. Differences of 250 out-of-sample 95% prediction interval width, before and
after the adjustment, of CoVaR and CoES forecasts, with the probability level of 𝛼 = 1%
by using the Bayesian approach.

after adjustment. In the case of the 1% quantile level of the sim-
ulation study, the unadjusted interval estimates from the SAV-Mult
model are relatively narrow and overconfident on the parameters and
tail risks estimates. Therefore, interval estimates with higher widths
after the adjustment quantify the corresponding uncertainties more
accurately. In the case of the 1% quantile level of the real data, wider
prediction intervals for the tail risks are expected to be produced after
the adjustment, as shown in Fig. 12(a). Meanwhile, as expected, the
width increment of 1% ES is higher than the one of 1% VaR, which
implies that the adjustment effect is larger on ES. This phenomenon

is consistent with the simulation results, which demonstrate that, after
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Fig. 16. Adjusted marginal posterior distributions of the parameters of the SAV-NewAdd-C model based on 2250 S&P 500 daily returns (𝛼 = 1%).
Fig. 17. Differences of 250 out-of-sample 95% prediction interval width, before and after the adjustment, of VaR and ES forecasts, for the SAV-NewAdd-C model with the probability
evel of 𝛼 = 1% by using the Bayesian approach.
Fig. 18. Marginal posterior distributions of the parameters of the AS-Mult model by using SMC.
the adjustment, more accurate uncertainty intervals can be gained for
1% ES forecasts than 1% VaR.

For the predicted tail risks with probability levels of 2.5% and 5%,
their adjusted interval widths also become larger, which is consistent
with their adjusted posterior distributions where most of the distribu-
tions’ variances increase. It is worth noting that for the case of the
SAV-NewAdd-C model in Fig. 17 given in Appendix C, the adjustment
effect of the interval width of ES is relatively low from the SAV-Mult
model since the adjusted marginal posterior of one ES parameter in
Fig. 16 has smaller variances.
17
6.3. Forecasts of systemic risk measures with joint VaR and ES models

This section provides an empirical application of VaR and ES fore-
casts to estimate systemic risks. VaR and ES are not only critical risk
measures for an individual institution, but they are also practically
useful for systemic risk modeling. The systemic risk measures of CoVaR
and CoES proposed by Adrian and Brunnermeier (2011) are considered.
Following a similar approach taken earlier for jointly estimating VaR
and ES, we forecast CoVaR and CoES jointly via quantile regression.
To the best of our knowledge this approach has not been used in the
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Fig. 19. Marginal posterior distributions of the parameters of the AS-NewAdd-C model by using SMC.

Fig. 20. Marginal posterior distributions of the parameters of the AS-NewAdd-U model by using SMC.

Fig. 21. Marginal posterior distributions of the parameters of the AS-NewAdd-AS-C model by using SMC.
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Fig. 22. Marginal posterior distributions of the parameters of the AS-NewAdd-AS-U model by using SMC.
T

Table 5
1% ES backtest rejection count.

Model ES residual ES regression

AS-Add 1 0
AS-NewAdd-C 0 0
AS-NewAdd-U 0 0
AS-NewAdd-AS-C 0 0
AS-NewAdd-AS-U 0 0
AS-Mult 0 0

SAV-Add 1 0
SAV-NewAdd-C 0 0
SAV-NewAdd-U 0 0
SAV-NewAdd-AS-C 0 0
SAV-NewAdd-AS-U 0 0
SAV-Mult 0 0

Notes:
All tests are conducted at the 5% significance level.
1 indicates the model is rejected by the test at a 5% level.

Table 6
1% VaR and 1% ES AL loss score ratio.

Model Oil IBM NIKKEI FTSE NASDAQ

AS-Add 1.000 1.000 1.000 1.000 1.000
AS-Mult 0.998 0.999 0.996 1.000 1.003
AS-NewAdd-C 0.998 0.999 0.996 0.999 0.995
AS-NewAdd-U 0.999 1.000 0.993 0.999 1.003
AS-NewAdd-AS-C 0.998 0.999 0.996 0.999 0.992
AS-NewAdd-AS-U 0.999 1.000 0.996 0.999 1.000
AS-ES-X-CAViaR-X-AS 1.020 0.972 0.999 0.993 0.945

SAV-Add 1.010 1.000 1.007 1.013 1.008
SAV-Mult 1.008 1.001 1.006 1.013 1.021
SAV-NewAdd-C 1.008 1.001 1.006 1.013 1.002
SAV-NewAdd-U 1.009 1.002 1.007 1.013 1.017
SAV-NewAdd-AS-C 1.007a 1.001 1.001 1.010 1.001
SAV-NewAdd-AS-U 1.007a 1.001 1.004 1.011 1.015
ES-X-CAViaR-X 1.016 0.973a 1.002 0.996 0.951a

ES-X-CAViaR-X-AS 1.016 0.973a 0.998a 0.994a 0.952

Notes:
Ratios of different methods’ AL loss scores to that of the AS-Add model.
Bold indicates lowest values of loss score for a model with an Asymmetric Slope-type
VaR component.
aIndicates lowest values of loss score for a model with a Symmetric Absolute Value-type
VaR component.

literature. CoVaR is based on the concept of VaR and is defined as the

VaR of a market index conditional on a particular institution being

in distress. With a probability level of 𝛼, the CoVaR of a system 𝑚
19

c

Table 7
1% VaR and 1% ES backtest rejection count.

Model DQ ES residual ES regression

AS-Add 1 3 1
AS-Mult 2 3 2
AS-NewAdd-C 1 3 2
AS-NewAdd-U 1 3 2
AS-NewAdd-AS-C 1 2 1
AS-NewAdd-AS-U 1 2 2
AS-ES-X-CAViaR-X-AS 0 1 1

SAV-Add 2 3 1a

SAV-Mult 2 3 1a

SAV-NewAdd-C 2 3 1a

SAV-NewAdd-U 2 2 1a

SAV-NewAdd-AS-C 2 1a 1a

SAV-NewAdd-AS-U 2 1a 1a

ES-X-CAViaR-X 1a 2 1a

ES-X-CAViaR-X-AS 1a 2 1a

Notes:
Counts of 1% VaR rejections with the DQ test and 1% ES rejections with ES residual
and regression tests on five time series at a 5% significance level.
Bold indicates the fewest rejections for a model with an Asymmetric Slope-type VaR
component.
aIndicates the fewest rejections for a model with a Symmetric Absolute Value-type VaR
component.

conditional on an institution 𝑖 is given by

Pr
(

𝑟𝑚 ≤ CoVaR𝑚|𝑖
𝛼 |𝑟𝑖 = VaR𝑖

𝛼
)

= 𝛼, (23)

where 𝑟𝑚 is return of a market index and 𝑟𝑖 is financial return of an
individual institution 𝑖. CoES is the ES of system 𝑚 conditional on
𝑟𝑖 ≤ VaR𝑖

𝛼 of institution 𝑖:

CoES𝑚|𝑖𝛼 = 𝐸
[

𝑟𝑚|𝑟𝑚 ≤ CoVaR𝑚|𝑖
𝛼

]

. (24)

Given the dependence between CoVaR and VaR, we demonstrate that
the sensitivity and uncertainty estimates issue discussed are translated
to CoVaR and CoES forecasts.

To estimate CoVaR, we first consider a quantile regression of the
system 𝑚 on institution 𝑖 for the quantile level 𝛼:

𝑟𝑚𝑡 = 𝛽𝑚|𝑖0 + 𝛽𝑚|𝑖1 𝑟𝑖𝑡 + 𝜖𝑚|𝑖𝑡 . (25)

After obtaining the estimated parameters from the quantile regression
model of Eq. (25), according to Adrian and Brunnermeier (2011), the
CoVaR𝑚|𝑖

𝑡 is given by:

CoVaR𝑚|𝑖
𝑡 = 𝛽𝑚|𝑖0 + 𝛽𝑚|𝑖1 VaR𝑖

𝑡. (26)

he CoVaR models in (25) and (26) of Adrian and Brunnermeier (2011)
ontain a set of lagged state variables as covariates in order to generate
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time-varying risk estimates. Given the time-varying nature of the VaR
forecasts from the joint VaR and ES models, such lagged variables are
not included here. As we aim to explore how the robust approaches
outlined earlier can be utilized to improve point and uncertainty es-
timates for CoVaR and CoES, the existence of lagged state variables
in the models of Adrian and Brunnermeier (2011) do not affect the
general results here. In this study, we extend the model of Eq. (25)
by incorporating an asymmetric property as follows:

𝑟𝑚𝑡 = 𝛽𝑚|𝑖0 + 𝛽𝑚|𝑖1 𝐼(𝑟𝑡 > 0)|𝑟𝑖𝑡| + 𝛽𝑚|𝑖2 𝐼(𝑟𝑡 ≤ 0)|𝑟𝑖𝑡| + 𝜖𝑚|𝑖𝑡 . (27)

The CoES is in a similar manner to the multiplicative formulation for
ES:

ES𝑚𝑡 = 1 + exp(𝛾0)𝑟𝑚𝑡 , (28)

where 𝑟𝑚𝑡 is the quantile estimation in Eq. (27). Then the CoES𝑚|𝑖𝑡 is
iven by:

oES𝑚|𝑖𝑡 = 1 + exp(𝛾̂0)CoVaR
𝑚|𝑖
𝑡 . (29)

he models of Eqs. (27) and (28) can be jointly estimated by the
roposed Bayesian quantile regression approach described in Section 4.
ased on the definition of CoVaR in Eq. (26), we can see that VaR is
n important input. Therefore, the reliability of VaR forecasts become
ritical.

In the application, we use the Dow Jones index (DJI) as a market
roxy, and Bank of America (BAC) as an individual institution. The
ample period is from 3 January 2000 to 8 June 2022. Figs. 13(a)
nd 13(b) present the daily log returns of the two time series. The
irst 1800 observations are used for estimation, and 250 out-of-sample
orecasts of VaR and ES are generated based on the in-sample esti-
ation. Figs. 13(c) and 13(d) provide the point estimate of CoVaR

nd CoES based on VaR and ES forecasts by treating initial conditions
s parameters for the period of 13 Feb 2008 to 10 Jul 2008. With
ifferent choices of priors, consistent forecasting results are generated.
n contrast, VaR and ES forecasts based on different predetermined
alues of initial conditions can lead to more volatile CoVaR and CoES
orecasts, as shown in Figs. 13(e) and 13(f). The inconsistent outcomes
ndicate the lower reliability of the original additive-type models. Since
he forecasts are used to determine a financial institution’s regulatory
apital, and thus can have real economic impacts, it is important for
ecision-makers and regulators to base their decisions on reliable risk
stimates.

Uncertainties around the forecasts can be provided by the Bayesian
uantile regression approach. However, the uncertainty interval esti-
ates are inaccurate due to the adoption of a misspecified likelihood.
he accuracy of uncertainty estimates for CoVaR and CoES can be

mproved by the proposed adjustment method discussed in detail in
ection 4.3. Fig. 14 shows the adjusted 95% prediction interval widths
f the 250 out-of-sample forecasts of CoVaR and CoES. With the in-
reasing volatility from Jul 2007 to Jul 2008, the uncertainties around
he systemic risk measures become higher. Fig. 15 presents the differ-
nces between adjusted and unadjusted widths of the 250 out-of-sample
rediction interval estimates of CoVaR and CoES. We can see that
heir 95% prediction intervals are underestimated before making any
djustments. As the crisis develops, the differences between the ad-
usted and unadjusted interval widths increase, indicating a growing
nderestimation of the systemic risk measures’ uncertainties.

. Conclusion

This paper investigates problems with existing joint VaR and ES
odels. It demonstrates the sensitivity of the joint models of Taylor

2019), especially prominent for the additive-type VaR and ES models,
nd suggests approaches to address it. With different choices of starting
alues of the conditional quantile and ES, the resulting forecasts of tail
20

isks can be very different. Employing a Bayesian quantile regression
pproach, the sensitivity issue can be largely addressed by treating
he initial values of 𝑄1 and 𝐸𝑆1 as unknown parameters, where the
orresponding prior distributions’ ranges need to be wide enough. We
rgue that it is not appropriate to compare the performance of the
ensitive joint models with others given the sensitivity issues outlined,
hereas the proposed Bayesian approach allows such comparisons. In
ddition, new additive-type models are proposed, which mitigate the
ensitivity issue to some degree, which can be further improved upon
sing our Bayesian approach. One of the proposed additive-type models
an be linked to a parametric GARCH model to enable a simulation
tudy which previously is restricted to the multiplicative-type models.
oreover, the paper extends the ES-X-CAViaR-X model of Gerlach

nd Wang (2020) by developing asymmetric properties. The models
roposed by Gerlach and Wang (2020) incorporate different types of
ealized measures and demonstrate improved forecasting performance
ver only using returns. In this paper, RV is adopted for the proposed
S-ES-X-CAViaR-X-AS model. The performance of this proposed model
an be further investigated by utilizing different realized measures.

We explore the risks associated with the forecasts of tail risk mea-
ures from the joint VaR and ES model by examining the corresponding
osterior predictive distributions produced from a Bayesian inference
pproach, issues that have not been investigated in the literature. We
emonstrate that the interval estimates from the Bayesian quantile
egression approach can be misleading due to the misspecified AL
orking likelihood for the joint VaR and ES models. We employ the
FS adjustment method to improve the estimation accuracy of risks
f the tail risk measures. However, the adjustment established here
as limited efficacy for improving the accuracy of interval estimates.
xploring more accurate adjustment methods is an interesting avenue
or future work.

Finally, to highlight the practical impact of using inconsistent fore-
asts of tail risk measures for decision making, we conduct an empirical
pplication to estimate systemic risk measures based on VaR. The
esults show that the sensitivity issue and inaccurate uncertainty es-
imates of VaR translate into systemic risk forecasts, highlighting the
eed for addressing these issues also in this context. A process for
ointly estimating systemic risk measures, CoVaR and CoES, is also
roposed. Comparing the forecasting performance of this approach
ith other systemic risk models could be a possible extension for future
ork. Moreover, given the risk measures considered in this work are

mportant components for calculating regulatory capital requirements,
he work can be extended by investigating the direct impact of the
ensitivity and uncertainty underestimation issues within the regulatory
nvironment.

ppendix A. Gradients of log-likelihood functions of the SAV-Add
nd AS-Add models

As discussed in Section 4.3, the log-likelihood gradients of the
dditive-type models with treating 𝑄1 and 𝐸𝑆1 as unknown parameters
re derived by a recursive approach. For the SAV-Add model, the
onditional quantile at different time points 𝑖 = 1, 2,… , 𝑡 can be written
s:

𝑖=2 = 𝛽0 + 𝛽1|𝑟1| + 𝛽2𝑄1,

𝑖=3 = 𝛽0 + 𝛽1|𝑟2| + 𝛽2(𝛽0 + 𝛽1|𝑟1| + 𝛽2𝑄1),

𝑖=4 = 𝛽0 + 𝛽1|𝑟3| + 𝛽2
[

𝛽0 + 𝛽1|𝑟2| + 𝛽2(𝛽0 + 𝛽1|𝑟1| + 𝛽2𝑄1)
]

= 𝛽0 + 𝛽1|𝑟3| + 𝛽2(𝛽0 + 𝛽1|𝑟2|) + 𝛽22 (𝛽0 + 𝛽1|𝑟1|) + 𝛽32𝑄1,

⋮

𝑄𝑖=𝑡 = 𝛽0 + 𝛽1|𝑟𝑡−1| + 𝛽2(𝛽0 + 𝛽1|𝑟𝑛−2|) + 𝛽22 (𝛽0 + 𝛽1|𝑟𝑛−3|) +⋯

+ 𝛽𝑛−22 (𝛽0 + 𝛽1|𝑟1|) + 𝛽𝑛−12 𝑄1

= 𝛽0(1 + 𝛽2 + 𝛽22 +⋯ + 𝛽𝑛−22 ) + 𝛽1(|𝑟𝑛−1| + 𝛽2|𝑟𝑛−2| + 𝛽22 |𝑟𝑛−3| +⋯

+ 𝛽𝑛−2|𝑟 |) + 𝛽𝑛−1𝑄
2 1 2 1
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𝑊

𝑆

= 𝛽0
1 − 𝛽𝑛−12
1 − 𝛽2

+ 𝛽1(|𝑟𝑛−1| + 𝛽2|𝑟𝑛−2| + 𝛽22 |𝑟𝑛−3| +⋯ + 𝛽𝑛−22 |𝑟1|)

+ 𝛽𝑛−12 𝑄1, (30)

where 𝑄𝑡 is expressed in terms of 𝑄1 which allows the computation
of the derivative of a function of 𝑄𝑡 with respect to 𝑄1. For the ES
component model in Eq. (4), the additive difference 𝑥𝑡 can be rewritten
in terms of 𝑄1 by substituting 𝑄𝑡−1 that has an expression type of
Eq. (30). To express 𝑥𝑡 in terms of 𝐸𝑆1, 𝑥1 needs to be expressed as
𝑄1−𝐸𝑆1 first, and then similar to the recursive approach of 𝑄𝑡 in (30),
𝑥𝑡 at other time points based upon 𝑥1 can be obtained.

Similarly, for the AS-Add model the conditional quantiles can be
written as:

𝑄𝑖=2 = 𝛽0 + 𝛽1𝐼(𝑟1 > 0)|𝑟1| + 𝛽2𝐼(𝑟1 ≤ 0)|𝑟1| + 𝛽3𝑄1,

𝑄𝑖=3 = 𝛽0 + 𝛽1𝐼(𝑟2 > 0)|𝑟2| + 𝛽2𝐼(𝑟2 ≤ 0)|𝑟2| + 𝛽3(𝛽0 + 𝛽1𝐼(𝑟1 > 0)|𝑟1|

+ 𝛽2𝐼(𝑟1 ≤ 0)|𝑟1| + 𝛽3𝑄1),

𝑄𝑖=4 = 𝛽0 + 𝛽1𝐼(𝑟3 > 0)|𝑟3| + 𝛽2𝐼(𝑟3 ≤ 0)|𝑟3|+

𝛽3
[

𝛽0 + 𝛽1𝐼(𝑟2 > 0)|𝑟2| + 𝛽2𝐼(𝑟2 ≤ 0)|𝑟2| + 𝛽3(𝛽0 + 𝛽1𝐼(𝑟1 > 0)|𝑟1|

+ 𝛽2𝐼(𝑟1 ≤ 0)|𝑟1| + 𝛽3𝑄1)
]

= 𝛽0(1 + 𝛽3 + 𝛽23 ) +
(

𝛽1𝐼(𝑟3 > 0) + 𝛽2𝐼(𝑟3 ≤ 0)
)

|𝑟3|

+ 𝛽3(𝛽1𝐼(𝑟2 > 0) + 𝛽2𝐼(𝑟2 ≤ 0))|𝑟2|+

𝛽23 (𝛽1𝐼(𝑟1 > 0) + 𝛽2𝐼(𝑟1 ≤ 0))|𝑟1| + 𝛽33𝑄1,

⋮

𝑄𝑖=𝑡 = 𝛽0(1 + 𝛽3 + 𝛽23 +⋯ + 𝛽𝑛−23 ) + (𝛽1𝐼(𝑟𝑡−1 > 0) + 𝛽2𝐼(𝑟𝑡−1 ≤ 0))|𝑟𝑡−1|+

𝛽3(𝛽1𝐼(𝑟𝑡−2 > 0) + 𝛽2𝐼(𝑟𝑡−2 ≤ 0))|𝑟𝑡−2| +⋯

+ 𝛽𝑡−23 (𝛽1𝐼(𝑟1 > 0) + 𝛽2𝐼(𝑟1 ≤ 0))|𝑟1| + 𝛽𝑛−13 𝑄1

= 𝛽0
1 − 𝛽𝑛−13
1 − 𝛽3

+ (𝛽1𝐼(𝑟𝑡−1 > 0) + 𝛽2𝐼(𝑟𝑡−1 ≤ 0))|𝑟𝑡−1|

+ 𝛽3(𝛽1𝐼(𝑟𝑡−2 > 0) + 𝛽2𝐼(𝑟𝑡−2 ≤ 0))|𝑟𝑡−2|

+ ⋯ + 𝛽𝑡−23 (𝛽1𝐼(𝑟1 > 0) + 𝛽2𝐼(𝑟1 ≤ 0))|𝑟1| + 𝛽𝑛−13 𝑄1. (31)

Once obtaining the expressions of 𝑄𝑡 and 𝐸𝑆𝑡 in terms of all the
unknown parameters, the partial derivatives of the log-likelihood func-
tion, which is a function of 𝑄𝑡 and 𝐸𝑆𝑡, with respect to each of the
parameters can be derived.

Appendix B. Loss functions for jointly evaluating VaR and ES
forecasts

The general expression of the loss function of Fissler and Ziegel
(2016) is given by:

𝑆𝑡(𝑟𝑡, 𝑄𝑡, 𝐸𝑆𝑡) =(𝐼(𝑟𝑡 ≤ 𝑄𝑡) − 𝛼)𝐺1(𝑄𝑡) − 𝐼(𝑟𝑡 ≤ 𝑄𝑡)𝐺1(𝑟𝑡)

+ 𝐺2(𝐸𝑆𝑡)
(

𝐸𝑆𝑡 −𝑄𝑡 +
𝐼(𝑟𝑡 ≤ 𝑄𝑡)(𝑄𝑡 − 𝑟𝑡)

𝛼

)

− 𝜁2(𝐸𝑆𝑡) + 𝑎(𝑟𝑡), (32)

where 𝐺1 is an increasing function, 𝜁2 is increasing and convex, 𝐺2 = 𝜁 ′2,
and 𝑎 is a real-valued integrable function for 𝑡 = 1,… , 𝑇 . A variety of
functions 𝐺1, 𝐺2 and 𝑎 can be selected to meet these conditions. The
loss score for a sample of size 𝑇 is 𝑆 =

∑𝑇
𝑡=1 𝑆𝑡. Three specifications

of (32) are employed in this work. The first loss function is the one
used in Fissler et al. (2015), where the functions 𝐺1 and 𝐺2 are set as
𝐺1(𝑥) = 𝑥 and 𝐺2(𝑥) = exp (𝑥)∕(1+exp(𝑥)), and 𝑎 = 𝑙𝑛(2). The expression
of the first score function is given by

𝑆𝑡(𝑟𝑡, 𝑄𝑡, 𝐸𝑆𝑡) =(𝐼(𝑟𝑡 ≤ 𝑄𝑡) − 𝛼)𝑄𝑡 − 𝐼(𝑟𝑡 ≤ 𝑄𝑡)𝑟𝑡 +
exp(𝐸𝑆𝑡)

1 + exp(𝐸𝑆𝑡)
×

(

𝐸𝑆𝑡 −𝑄𝑡 +
𝐼(𝑟𝑡 ≤ 𝑄𝑡) × (𝑄𝑡 − 𝑟𝑡)

𝛼

)

+ ln
(

2
1 + exp(𝐸𝑆𝑡)

)

. (33)
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The second loss function is initially proposed by Acerbi and Szekely
(2014), and we set 𝑊 = 4 in the following expression to ensure

𝑄𝑡 < 𝐸𝑆𝑡:

𝑡(𝑟𝑡, 𝑄𝑡, 𝐸𝑆𝑡) =𝛼
(

𝐸𝑆2
𝑡 ∕2 +𝑊𝑄2

𝑡 ∕2 −𝑄𝑡𝐸𝑆𝑡
)

+ 𝐼(𝑟𝑡 ≤ 𝑄𝑡)×
(

−𝐸𝑆𝑡(𝑟𝑡 −𝑄𝑡) +𝑊 (𝑟2𝑡 −𝑄2
𝑡 )∕2

)

. (34)

The third loss function is the negative of the AL log-likelihood function
proposed by Taylor (2019), and the expression is given by

𝑆𝑡(𝑟𝑡, 𝑄𝑡, 𝐸𝑆𝑡) = − ln
(

𝛼 − 1
𝐸𝑆𝑡

)

−
(𝑟𝑡 −𝑄𝑡)(𝛼 − 𝐼(𝑟𝑡 ≤ 𝑄𝑡))

𝛼𝐸𝑆𝑡
. (35)

Appendix C

Adjusted posteriors

See Fig. 16.

Adjusted uncertainty

See Fig. 17.

Marginal posterior distributions for the AS-Mult model and other variations
of additive models

See Figs. 18–22.
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