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remaining errors are mine.
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York, the University of Luxembourg, and the Federal Reserve Bank at St. Louis. I
would like to thank Paul McNelis, Andreas Irmen, Christopher Waller, and Christian
Zimmermann for their hospitality. Of course, the views expressed in this book are
all mine and do not necessarily reflect the official positions of the Federal Reserve
Bank of St. Louis, the Federal Reserve System, or the Board of Governors.

For their assistance in the preparation of the computer program download
page, the statistics, and the illustrations, I would like to thank Sijmen Duineveld,
Alexander Lerf, Stefan Rohrbacher, and Benjamin Weiß. For her proofreading, I
am also grateful to Anja Erdl. I also thank Martina Bihn at Springer Publishing
Company for editorial suggestions and corrections and for her support and help
through the editorial process.
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1Introduction

1.1 Motivation

Public economics studies the problems of government expenditures and revenues.
Almost all major graduate textbooks on this issue focus on an exclusively microeco-
nomic presentation. Modern problems in public economics, however, are inherently
macroeconomic in nature. Just consider what are arguably the most important
problems facing modern industrialized countries: demographics, debt, and pensions.
As a consequence, many textbooks on public economics are awfully shy about these
pressing issues that were aggravated by the recent financial crisis.

The present book is intended to fill this gap and adopts a macroeconomist’s
perspective. It considers the main issues facing modern governments: (1) taxation,
(2) pensions, (3) debt, (4) stabilization policies, and the (5) demographic transition.
To study these questions and to provide adequate answers to both researchers and
politicians, I base my textbook on three fundamental principles:

1. I use micro-founded macroeconomic models.
2. Given the inherently dynamic nature of most problems in public economics, I

predominantly apply the two standard intertemporal models, the Ramsey model
and the overlapping generations model, in my analysis.

3. In addition to theoretical results, I often provide computational analysis to
present an estimate of the quantitative effects.

1. My approach is deeply founded in microeconomics. Let me illustrate the
reasoning in this book with the help of a standard problem in public economics:
labor income taxation. The standard line of argument is to start by presenting the
first theorem of welfare economics: The competitive equilibrium (in the absence
of externalities and public goods) is Pareto-efficient. If a labor income tax is
introduced, welfare losses arise. This is demonstrated in a partial equilibrium model
of the labor market, where labor supply ls is derived from the individual household’s

© Springer Nature Switzerland AG 2019
B. Heer, Public Economics, Springer Texts in Business and Economics,
https://doi.org/10.1007/978-3-030-00989-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00989-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-00989-2_1


2 1 Introduction

Gross wage

′
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Tax revenue:
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Excess burden:
= +

Fig. 1.1 Equilibrium in the labor market and the effect of a labor income tax

utility maximization, while labor demand ld is derived from the firm’s profit
maximization. As a consequence, market equilibrium is given as the intersection
of labor demand and supply, which is illustrated as point e in Fig. 1.1. Notice that
both labor supply ls and labor demand ld are graphed as functions of the gross wage
w (before taxes) and that labor income taxes are zero at point e.

A tax on wage income induces an upward shift in labor supply, as illustrated by
the shift of the curve from ls to ls ′. Taking everything else as given, the welfare
effects can be evaluated with the help of the triangle deg, and a quantitative
evaluation of this welfare effect can be estimated with the help of the empirical
values of the labor demand and labor supply elasticities.

In most textbooks, the analysis stops here. However, for a macroeconomist, this is
not the end. Because employment falls, households receive less income and reduce
their demand. As goods demand falls, firms reduce labor demand, and the ld curve
also shifts inward (not illustrated). This general equilibrium effect is usually ignored
in textbooks on public economics, even though it is quantitatively important.

2. Most of the problems in public economics are dynamic in nature, e.g., the
accumulation of government debt or the financing of future pensions through
present-day contributions. For this reason, a natural framework for the analysis
of such public finance issues is provided by models of intertemporal household
optimization, e.g., the Ramsey model and the overlapping generations (OLG)
model.

The Ramsey model is useful for the analysis of most growth and business
cycle problems. It considers a representative household with an infinite lifetime (or,
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alternatively, a finite lifetime with altruism toward the next generation). However,
for some of the most pressing modern problems in government finance, the Ramsey
model is not the appropriate framework. Consider two examples: (1) pension
reforms and (2) government debt. (1) Due to the aging of the population, the current
‘pay-as-you-go’ systems in most industrialized countries are no longer affordable
because a decreasing share of young people has to finance the pensions of an
increasing share of old people. Therefore, either contributions to the pension system
have to be raised, or pension benefits have to be cut.1 As a consequence, income
is redistributed from young to old agents or vice versa. (2) In the standard Ramsey
model,2 Ricardian equivalence holds, i.e., the financing of government expenditures
does not affect the equilibrium value of savings or income. The empirical evidence,
however, does not support the hypothesis of Ricardian equivalence. The redistribu-
tion of income between generations and the failure of Ricardian equivalence cannot
be analyzed in the standard Ramsey model, and we will introduce the OLG model as
an alternative framework that is able to model this redistribution among generations.

There are many excellent expositions of the Ramsey model and the OLG model.3

In this book, I attempt to avoid restating what these other textbooks have done and
instead focus on the features of the models that are important for the subsequent
material in the book. Therefore, I leave out some unnecessary technical details;
instead, I extend the usual textbook exposition to incorporate numerical evaluations
of the models. In addition, I have to choose whether to consider the two models in
discrete or continuous time (or both). I choose discrete time. It has the advantage
that the periodic values of, for example, income, production, and government
expenditures are readily available in the data. In addition, stochastic processes,
e.g., for total factor productivity, are often easier to handle in discrete time than
in continuous time.4

3. For some problems, exact theoretical results can be derived. For example, I
will present the famous Chamley-Judd result whereby the optimal capital income
tax rate and/or the optimal wealth tax rate is zero in steady state. However, this
result per se does not help the politician who is interested in the quantitative gains
and losses of a policy measure, e.g., an increase in the wealth tax. Therefore, we will
use computational methods to obtain an estimate of what the quantitative effect of

1In addition, the retirement age can be raised or the social security system can be subsidized by the
government with the help of tax revenues.
2In heterogeneous-agent extensions of the Ramsey model, in which households face credit market
restrictions such as in Aiyagari (1994), Ricardian equivalence fails.
3For the Ramsey model, see, for example, Ljungqvist and Sargent (2012). The OLG model is
studied extensively in Blanchard and Fischer (1989) and de la Croix and Michel (2002).
4Of course, there are also disadvantages of discrete-time models. Often, one has to make artificial
assumptions about the timing of events, e.g., whether consumption takes place at the beginning
or the end of the period, or if many events occur at the same point in time, in what order they
take place, e.g., whether a shock is observed prior to or after the labor supply decision. In many
cases, the results will be sensitive to the specification of the timing, and we will highlight this at
the relevant points.
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Table 1.1 Modeling choices in top journals, 2017

Model type AER (%) RED (%) JME (%) Average (%)

General equilibrium 42 48 51 47

Ramsey model 35 46 51 45

OLG model 8 30 2 15

Discrete time 35 65 49 52

Computational model 38 57 51 50

Notes: The entries in this table report the prevalence of different model types in macroeconomic
studies in the American Economic Review, Review of Economic Dynamics, and Journal of
Monetary Economics in the year 2017. The average is computed relative to the number of all
macroeconomic studies in these journals in 2017

a one-percentage-point increase in a wealth tax would be. In addition, the result
only holds for the steady state. However, at present, we can hardly argue that
economies such as Italy or Greece are in steady state. Accordingly, the result is
of little help to the Italian or Greek Minister of Finance. Let us assume that the
Italian Prime Minister would like to raise the wealth tax by five percentage points
to pay off Italian government debt. What are the consequences? In such cases, we
need to use computational methods to approximate the general equilibrium effects
on aggregates such as consumption, income, wealth, and welfare.

Table 1.1 reports the use of the different model types in three prominent journals
in 2017. I simply identified the articles on macroeconomic questions (totaling 117)
in the American Economic Review (AER), the Review of Economic Dynamics
(RED), and the Journal of Monetary Economics (JME) and counted the number
of studies that accord with the approach in this book summarized by the points (1)–
(3) above. The sample gives ample support to my approach. Among the articles
on macroeconomic problems in these three top journals, 47% used a general
equilibrium rather than just a partial equilibrium analysis.5 The Ramsey model is
the dominant model type with a share of 45% in the macroeconomic articles in these
journals, even though the overlapping generations (OLG) framework is important,
too. The models are usually formalized in discrete time for the convenience
in their analysis, in particular in the presence of uncertainty. And, finally, the
sample seems to support the hypothesis that a large fraction of the macroeconomic
models in modern macroeconomic theory is evaluated quantitatively and employs
computational methods, with an average share amounting to 50% in the sample.

1.2 Organization of the Book

The book is divided into three parts. In the first part, Chaps. 2 and 3, the two most
prominent models of dynamic macroeconomic analysis are presented, the Ramsey
model and the OLG model. While the Ramsey model studies a representative agent,

5Most of the studies which were not based on a general-equilibrium model were empirical ones.
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the OLG model considers individuals who differ in age and wealth. In the latter
model, Ricardian equivalence fails, and the study of debt problems in this model
allows for more realistic and meaningful conclusions.

In the second part, we consider fiscal policy. In Chap. 4, I present the effects
of government consumption on output and employment and compute government
consumption multipliers. The role of the substitutability of private and public
consumption is a key element in this chapter. In addition, we analyze counter-
cyclical government spending policy that helps to stabilize output fluctuations over
business cycles. In Chap. 5, we examine income taxation, including the study of
its output and employment effects, results from the theory of optimal taxation, and
the growth effects of income taxes. Given the tight fiscal budgets and high debt in
many industrialized countries, we also examine empirical Laffer curves, which we
estimate and compute for the US economy.

The third part considers issues of social security, demographics, and debt.
Chapter 6 describes the pay-as-you-go pension system that prevails in OECD
countries. The effect of the demographic transition on modern pension systems
is analyzed, and optimal pensions are demonstrated to be much smaller than the
present ones observed empirically. We also contrast the pay-as-you-go system with
a fully funded system, in which the government invests the contributions to the
pension system in the capital market. We will also take a look at the sustainability
of public finances in modern industrialized countries and point out that, in some
countries, a debt crisis is imminent over the next 10–20 years if no drastic reforms
of public finances and pensions are seized. In Chap. 7, we consider public debt in
detail. First, we will analyze Ricardian equivalence and the causes for its failure. The
financing of government expenditures through either taxes or debt affects output,
investment, and consumption. We derive the quantitative effects of debt financing
on macroeconomic variables and study the role of government debt to alleviate the
consequences of the demographic transition on the welfare of present and future
generations over the next 50–100 years. For the US economy, we derive a threshold
of the public debt level and study the role of debt financing to ease the transition to a
more sustainable pension policy for the present generations. Our welfare analyses in
Chaps. 6 and 7 will emphasize that the majority of the present voters would oppose
policies that help to improve the sustainability of public finances.

The book is self-contained, and the student should be able to follow its analysis
without any additional material or prior knowledge of public economics or dynamic
macroeconomic theory. The only prerequisite for understanding the material is a
solid background in mathematical methods, including analysis and linear algebra.
In addition, if the student would like to use the computer code and adapt it for her/his
purposes, knowledge of one of the two computer languages Gauss or MATLAB is
needed. If the student would like to learn more about computational methods, the
book and Matlab/Gauss code provided by Miranda and Fackler (2002) and Heer
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and Maußner (2009) are useful.6 Gauss and MATLAB computer code as well as
teaching material (slides) are available as downloads from the author’s homepage
‘http://www.wiwi.uni-augsburg.de/vwl/heer/pubec_buch/’.

The book is aimed at graduate students or advanced undergraduate students. It
may be used for both in-class and self study. The material in the book, however,
cannot easily be covered in one semester, but one can conveniently choose parts of
it as a one-semester course. For example, a course on fiscal policy could be based
on Chaps. 2, 4, and 5, while a course on social security and debt could be adapted
from Chaps. 3, 6, and 7.
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Useful Models



2RamseyModel

2.1 Introduction

This chapter presents the Ramsey model. It is the benchmark model for most
dynamic macroeconomic models that study growth and business cycle phenomena.
We first study the deterministic Ramsey model in which the total factor productivity
is certain. We contrast the effects of a once-and-for-all change with those of
a temporary change in productivity on investment, output, and labor supply. In
addition, we distinguish the effects of this change when it is known in advance
or only observed at the beginning of the period, t , when the shock occurs. Finally,
we also introduce uncertainty with respect to the technology level and discuss the
real business cycle (RBC) model.

2.2 Central Planner

In the following, we consider the Ramsey model, which was initially formulated
by Ramsey (1928) and later advanced by Cass (1965) and Koopmans (1965). The
model is also often referred to as the Ramsey-Cass-Koopmanns model. The Ramsey
model is the most fundamental neoclassical model of economic growth and dynamic
macroeconomics. The original question studied by Ramsey (1928) was how much
an economy should save over an infinite time horizon to maximize the lifetime
utility of its agents. We will first analyze the case of inelastic labor that was studied
by Ramsey (1928) before we endogenize the labor supply decision.

2.2.1 Inelastic Labor Supply

Let us assume that a central planner owns the means of production and is benevolent,
meaning that he wants to maximize lifetime household utility. We also assume that
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B. Heer, Public Economics, Springer Texts in Business and Economics,
https://doi.org/10.1007/978-3-030-00989-2_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00989-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-00989-2_2


10 2 Ramsey Model

a household’s lifetime is infinite.1 Let the intertemporal utility function in period
t = 0 be given by a time-separable function:

U =
∞∑

t=0

βtu(ct ), 0 < β < 1. (2.1)

Instantaneous utility is a function of per capita consumption ct only and is
discounted by the discount factor β.2 The discount factor is below one, β < 1,
meaning that lifetime utility is finite. We further assume that u(.) is concave, u′ > 0,
u′′ < 0. For expositional purposes, we will use the following constant elasticity of
substitution (CES) utility function3:

u(c) =
{

c1−σ−1
1−σ

σ �= 1,
ln c σ = 1,

(2.2)

where 1/σ denotes the intertemporal elasticity of substitution (IES) of consump-
tion.4 Furthermore, the household inelastically supplies one unit of labor.

The number of households is equal to Nt and grows at the constant rate n:

Nt = (1 + n)Nt−1. (2.3)

1One way to justify this assumption is that a household with a finite lifetime also cares about the
utility of its descendants and applies the same discount factor β to their (representative) lifetime
utility.
2Take care to distinguish between the discount factor β and the discount rate θ > 0 that is given by

1

1 + θ
= β ⇔ θ = 1

β
− 1.

3Why have we added ‘−1’ in the nominator of the utility function in (2.2) in the case σ �= 1?
First notice that the additive constant −1/(1 − σ) does not change the solution of the utility
maximization problem and, therefore, does not affect optimal consumption. Furthermore, we know
from calculus that

lim
x→0

(
ax − 1

x

)
= ln a.

Therefore, ln c is just the limit of the function (c1−σ − 1)/(1 − σ) for σ → 1.
In order to derive the limit formula above, notice that from the L’Hôspital rule—which states

that if the functions f (x) and g(x) in the nominator and denominator have the limit equal to zero,
limx→∞ f (x) = 0 and limx→∞ g(x) = 0, the value of the limit limx→0 (f (x)/g(x)), if it exists,
is given by limx→0

(
f ′(x)/g′(x)

)
—implies

lim
x→0

(
ax − 1

x

)
= lim

x→0

(
ax ln a

1

)
= ln a.

4Appendix 2.1 derives the IES in a simplified two-period model.
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The central planner uses labor Nt and capital Kt for production:

Yt = ZtF (Kt ,Nt ), (2.4)

whereZt denotes the level of technology. We assume that the production technology
is characterized by constant returns to scale, meaning that per capita production,
y = Y/N , is a function of the capital intensity, k = K/N ,

yt ≡ Yt

Nt

= Ztf (kt ) ≡ ZtF (Kt/Nt , 1). (2.5)

In addition, we assume a constant elasticity of substitution, σp = 1/(1 − ρ), in
production5:

Yt = Zt

[
αK

ρ
t + (1 − α)N

ρ
t

] 1
ρ . (2.6)

In the following, we set σp = 1, meaning that (2.6) reduces to the well-known
Cobb-Douglas production function6:

Yt = ZtK
α
t N

1−α
t . (2.7)

The central planner owns the capital stock Kt and saves St = Yt − Ct for the next
period. In equilibrium, his savings are equal to his investment, It = St , and capital
accumulates according to

Kt+1 = (1 − δ)Kt + It = (1 − δ)Kt + Yt − Ct . (2.8)

Capital depreciates at the rate δ. Using the definitions ct ≡ Ct/Nt and kt ≡ Kt/Nt ,
the resource constraint in per capita terms is represented by (after dividing (2.8) by
Nt and noticing that Kt+1/Nt = (1 + n)kt+1)

(1 + n)kt+1 = (1 − δ)kt + Ztf (kt ) − ct . (2.9)

5The elasticity of substitution σp is defined as follows:

σp =
d

(
K
L

)

K
L

d( w
r )
w
r

,

where w and r denote the marginal products of labor and capital.
6You are asked to compute the dynamics for the case in which σp = 3/4 in Problem 2.1.
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The first-order conditions of the central planner’s optimization problem follow from
the derivation of the Lagrangian

L =
∞∑

t=0

βt

[
c1−σ
t − 1

1 − σ
+ λt (Ztf (kt ) + (1 − δ)kt − ct − (1 + n)kt+1)

]

(2.10)

with respect to ct and kt+1. In particular, the first-order conditions are given by:

λt = c−σ
t , (2.11a)

(1 + n)λt = λt+1β
[
1 + Zt+1f

′(kt+1) − δ
]
. (2.11b)

The planner chooses his savings such that the marginal utility from consumption
today λt is equal to the discounted marginal utility of consumption next period
βλt+1 times the return from investing one unit of the consumption good 1 +
Zt+1f

′(kt+1) − δ.
The two first-order conditions can be combined to yield the so-called Euler

condition7:

(
ct+1

ct

)σ
= β

1 + n

[
1 + Zt+1f

′(kt+1) − δ
]
. (2.12)

Accordingly, per capita consumption ct grows (falls) if the marginal product of cap-
ital less depreciationZt+1f

′(kt+1)−δ is above (below) the rate r̂ = (1 + n)/β − 1.
In dynamic models, it is often convenient to analyze the so-called steady state,

which, in the present model, is the long-run equilibrium of the economy when
the technology level is constant, Zt ≡ 1. The steady state is a rest point of a
dynamic system. Its analysis is crucial for the study of economic dynamics. In public
economics, for example, we are interested in the question of how a fiscal policy,
such as a tax increase, affects the equilibrium values of output and employment in
the long run. Therefore, we compare the steady states under the old and the new
tax rate. In addition, we are also interested in the dynamics during the transition to
the new steady state. Therefore, the new steady state needs to be locally stable.8

Two possible ways to analyze the dynamics of economic models are as follows:
(1) We locally approximate the dynamics around the steady state. This procedure is
often applied in business cycle theory, in which the economy is assumed to fluctuate

7More generally, an Euler equation is the intertemporal first-order condition for a dynamic choice
problem and is usually formulated as a difference of differential equation. Equation (2.12) is also
referred to as the Keynes-Ramsey rule that describes the growth rate of consumption as a result of
intertemporal utility maximization.
8By local stability we mean that if we perturb the initial condition slightly, then the system stays
in the neighborhood of that steady state. If we use the term global stability, the system returns to
the steady state even if the starting point is not very close to the steady state.
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around an equilibrium growth path. (2) We consider the transition dynamics after
a policy change and attempt to solve a boundary value problem of a system of
difference equations, where the boundary values might be presented by the values
of the state variable, such as the capital stock, in the initial and final periods. For the
value in the final period, we use the new steady-state value of the state variable.

Let us define a steady state as an equilibrium in which the per capita economic
variables are constant, i.e., ct = ct+1 = c, kt+1 = kt = k, and Zt = Zt+1 = Z.
Without loss of generality, we can set Z ≡ 1. The Euler equation in steady state
takes the following form:

1 + n

β
− 1 + δ = f ′(k).

In the case of a Cobb-Douglas production function, y = f (k) = kα, the above
equation implies the steady-state capital intensity

k =
(

α

1+n
β

− 1 + δ

) 1
1−α

.

To illustrate the dynamics in the Ramsey model, we will choose specific values for
the parametersα, β, δ, n, and σ . This process is also know as calibration. In essence,
there are three ways to fix the parameter values of a quantitative models. (1) One
can use time-series studies to compute historical averages of the variables. Often,
empirical studies from the literature that use econometric or time series methods
are available. (2) One can estimate single equations of the model. For example,
Attanasio and Low (2004) use (nonlinear) generalized methods of moments (GMM)
to estimate the Euler equation of the Ramsey model and to yield consistent estimates
of the preference parameters. (3) One can search for the (unobservable) parameter
values that optimize the behavior of the model with respect to certain statistics.9

In our calibration, we choose a period length of one year and set α = 0.36
and β = 0.96. As we will see subsequently, this implies a capital (labor) income
share of 36% (64%) and a real annual interest rate equal to 4%. In addition, capital
depreciates at δ = 8% annually, and population is constant, n = 0. Finally, we set
the IES to one half, 1/σ = 1/2, in accordance with empirical evidence.10 Therefore,
in steady state, k = 5.447, y = kα = 1.841, and c = y − (δ + n)k = 1.405.

To study the dynamics following a shock, we assume that the economy is in
steady state in period t = 0 and that the technology level Zt = 1.0 is constant
during period t = 0, 1, . . . , 9. In period t = 10, the technology level increases from

9A recommendable introduction to the methods of calibration is provided by deJong and Dave
(2011).
10Mehra and Prescott (1985), Auerbach and Kotlikoff (1987), and Prescott (1986) review empirical
studies which suggest a range for σ ∈ [1, 2]. Most business cycle studies either use σ = 1.0 or
σ = 2.0.
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1.0 to 1.1 for three periods, Z10 = Z11 = Z12 = 1.1, and declines to Zt = 1.0 for
t > 12 thereafter:

Zt =
{

1.1 t = 10, 11, 12
1.0 else.

(2.13)

We will distinguish two different scenarios. In the first scenario, the central planner
only finds out about this increase in period t = 10 when the shock occurs. In the
second scenario, the central planner learns about the three-period increase in period
t = 0.

To compute the model, we need to assume that the economy is in steady state
prior to period t = 0 and that it converges to the steady state in finite time after the
shocks in periods t = 10, 11, 12. We assume that the economy is again in steady
state in period t = 101.11 Let us consider, in turn, the two scenarios of an expected
and an unexpected change. In the first case, we have to solve a non-linear system
of equations in 100 variables, kt , t = 1, . . . , 100 with k0 = k101 = k12:

(
Ztk

α
t + (1 − δ)kt − (1 + n)kt+1

Zt−1k
α
t−1 + (1 − δ)kt−1 − (1 + n)kt

)σ
= β

1 + n

[
1 + αZtk

α−1
t − δ

]
.

(2.14)

Equation (2.14) is obtained after inserting (2.9) into (2.12). In the first scenario, we
solve (2.14) for kt , t = 11, . . . , 100, assuming that k1 = k2 = . . . = k10 = k101 =
k. In the second scenario, we assume that the initial and final per capita capital stock
k0 and k101 are equal to the steady-state value k.

The dynamics for the capital stock in the expected (unexpected) case are graphed
by the solid (broken) line in Fig. 2.1. Let us first consider the case of an unexpected
shock. Prior to period t = 10, the economy is in steady state. In period t = 10, the
central planner learns about the higher productivity during the next three periods
t = 10, 11, 12. The production factors Kt and Nt in period t = 10 do not change
because the capital stock is accumulated during the last period, k10 = [Z9k

α
9 + (1 −

δ)k9 − c9]/(1 + n) = [kα + (1 − δ)k − c]/(1 + n), where the variables ct and kt in
period t = 9 are still equal to their respective steady-state values. Furthermore, labor
supply is exogenous. As a consequence, output per capita increases by 10% in period
t = 10, as illustrated in Fig. 2.2. The higher output is used for both consumption and

11Of course, we should check whether this number of periods is sufficient to guarantee a smooth
approximation of the new steady state. If not, we should increase the number of periods. For
example, I first used 40 periods and found the number to be insufficient. Use the computer code
and test for different values of the number of periods.
12Appendix 2.2 provides an overview of how this numerical problem can be solved. The MAT-
LAB/Gauss programs Ch2_ramsey1.m/Ch2_ramsey1.g compute the solution presented in
Figs. 2.1, 2.2, 2.3, and 2.4 and can be downloaded from my homepage with all the other programs
used in this book.
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Fig. 2.2 Dynamics in the Ramsey model: production yt

investment, and the capital stock attains its maximum at the beginning of period 12.
As a consequence, output actually increases to a level that exceeds the steady-state
value by more than 10% during periods t = 11 and t = 12. Subsequently, output
falls because the technology level Zt falls back to Zt = 1 but remains above the
steady-state level because of the higher capital stock kt .

The effect on consumption is illustrated in Fig. 2.3. Because the change in the
technology level is unexpected, consumption ct (the broken line) is in steady state
until period t = 9. In period t = 10, the central planner increases consumption.
Since it is optimal to smooth consumption over time, he tries to spread out
consumption over t = 10, 11, . . .. This is a direct consequence of the fact that
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Fig. 2.3 Dynamics in the
Ramsey model:
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marginal utility is declining with higher consumption. Notice, in particular, that
consumption first increases until period t = 12 and then decreases. This behavior
can be explained with the help of the Euler equation (2.12). During periods t =
10, 11, the right-hand side (RHS) of the equation is above 1, as the marginal product
of capital, Zt+1f

′(kt+1) = αZt+1k
α−1
t+1 , rises due to the increase in the technology

level Zt+1. In period t = 12, however, the RHS of (2.12) falls below 1, meaning
that the growth rate of consumption ct+1/ct − 1 falls below zero.

In the case of an expected change, the central planner adjusts his behavior in
period t = 0. Therefore, he tries to spread consumption more evenly over the next
periods t = 0, . . . , 40 and increases ct in period t = 0, as depicted by the solid line
in Fig. 2.3. As a consequence, investment declines, and the capital stock is reduced
until period t = 10. Therefore, output falls until period t = 9 prior to the shock. In
case of the expected shock, lifetime utility (2.1) increases to a larger extent than in
the case of the unexpected shock.13

Notice another interesting observation from these two different cases. In the
case of the unexpected change, consumption, output, and the capital stock are
synchronized, and the correlations are very close to one. This observation also holds
in so-called RBC models, in which business cycles are driven by unexpected shocks
to the technology level Zt . In the case of an expected shock, however, the strong
co-movement of output and consumption is broken. Consumption ct increases
above steady-state levels during t = 0, . . . , 9, while output yt falls. Consequently,
output and consumption are less perfectly correlated over time and are in better
accordance with empirical observations. A recent strand of literature that reproduces

13The argument for this result is straightforward: The central planner could also choose to behave
exactly the same in the case of an expected change as in the case of an unexpected change. Since
he chooses a different policy, this must be superior, and it yields a higher value of the objective
function.



2.2 Central Planner 17

Fig. 2.4 Intertemporal consumption smoothing and the IES, 1/σ

this observation considers so-called news-driven cycles.14 In these models, a shock
occurs in period t that signals a change ñ periods ahead in a variable such as the
technology level Zt+ñ (or other variables, for example, monetary policy).

Figure 2.4 illustrates the effect of the IES 1/σ ∈ {1, 1/2} on the household’s
consumption behavior (for the case of an expected shock). For a higher IES, 1/σ =
1, the household decreases its consumption smoothing over time. This can already
be seen from the Euler condition (2.12):

(
ct+1

ct

)
=
(

β

1 + n

[
1 + Zt+1f

′(kt+1) − δ
]) 1

σ

.

An increase in the IES from 1/σ = 1/2 to 1/σ = 1 increases the response
of the consumption growth rate to an increase in the marginal product of capital
Zt+1f

′(kt+1). Accordingly, consumption declines more rapidly to the steady state
after period t = 12. The household is more willing to intertemporally substitute
consumption. Since the rise in consumption is spread out over a shorter time
horizon, the household can increase consumption in the initial periods, t =
11, 12, 13, to a larger extent than in the case of a lower IES with 1/σ = 1/2.

2.2.2 Stability Analysis and Saddle Path

In the numerical computation of the dynamics above, we assumed that the capital
stock asymptotically converges to its steady-state value, limt→∞ kt = k. In the

14Beaudry and Portier (2004, 2006) are two prominent articles in this literature.
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following, I demonstrate the local stability of the steady state for the economy that
is described by (2.14).

Formally, (2.14) is a second-order difference equation in kt . We conveniently
reformulate it into a difference equation of the first order in the variable (kt , xt ),
where we choose xt+1 = kt :

(
kt+1

xt+1

)
= g(kt , xt ) =

(
g1(kt , xt )

g2(kt , xt )

)

=
⎛

⎝ Zt k
α
t +(1−δ)kt−

(
β

1+n

[
1+αZtk

α−1
t −δ

]) 1
σ [Zt−1x

α
t +(1−δ)xt−(1+n)kt]

1+n

kt

⎞

⎠ .

(2.15)

The local stability of the difference equation g(kt , xt ) at the steady state kt = xt = k

is determined by the absolute values of the eigenvalues of the Jacobian matrix, again
evaluated at the steady state15:

J (kt , xt ) =
(

∂g1(kt ,xt )
∂kt

∂g1(kt ,xt )
∂xt

∂g2(kt ,xt )
∂kt

∂g2(kt ,xt )
∂xt

)
. (2.16)

Evaluated at the steady state, the numerical value of the Jacobian is equal to

J (k, k) =
(

2.051 −1.042
1.000 0

)
(2.17)

with the eigenvalues ρ1 = 0.924 and ρ2 = 1.125.16 Accordingly, the system is
saddle-path stable.17

We will use an alternative presentation of the dynamics that is more easily
amenable to a graphical illustration. Therefore, we rewrite the second-order system
of difference equations (2.15) in the variables (kt , kt−1) in a first-order system of

15You are asked to compute the Jacobian and its value in Problem 2.2.
16If you take the eigenvalues of the Jacobian provided in (2.17), the eigenvalues are slightly
different due to rounding errors. I used the value of the Jacobian with an accuracy of 10−8 to
compute the eigenvalues ρ1 and ρ2.
17In a two-dimensional difference equation system, the steady state is a saddle if one of the
eigenvalues has an absolute value below one and the other above. The steady state is locally
saddle-path stable if one of the two variables is predetermined and the other is a jump variable
(not predetermined). (In addition, divergent paths must be ruled out by boundary conditions.) To
learn more about the stability analysis in systems of difference equations, consult Azariadis (1993).
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difference equations in the variables kt and ct . Straightforward rearranging of the
terms in (2.15) results in the following system of difference equations:

(
kt+1

ct+1

)
= h(kt , ct ) =

(
h1(kt , ct )

h2(kt , ct )

)

=
⎛

⎜⎝

1
1+n

[
Ztk

α
t + (1 − δ)kt − ct

]

ct

(
β

1+n

[
1 + α

(
Ztk

α
t +(1−δ)kt−ct

1+n

)α−1 − δ

]) 1
σ

⎞

⎟⎠ .

(2.18)

Again, it can be shown that the eigenvalues of this system of difference equations
are equal to ρ1 = 0.924 and ρ2 = 1.125 such that the system is saddle-path stable.
An informal argument of this stability criterion will be presented in the following.

To characterize the stability properties of the system of difference equations, we
distinguish between, on the one hand, the endogenous state or sluggish variables that
are predetermined and adjust only slowly and, on the other hand, jump variables that
are not predetermined. In our model, the capital stock kt is a sluggish variable and
consumption ct is a jump variable. For a given initial value of the sluggish variable
in period t = 0, k0, consumption jumps to the value c0 on the stable saddle path that
provides the optimal solution.

To illustrate the dynamics and the concept of a saddle path, consider the phase
diagram depicted in Fig. 2.5. The steady state is represented by point A, with
(kt , ct ) = (k, c). We assume that the technology level is constant, Zt ≡ 1.
Two curves are drawn in the figure. At the points of the vertical line denoted by

IV I

II
III

Fig. 2.5 Phase diagram of the Ramsey model
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“ct = ct−1,” consumption is constant, ct = ct−1.18 From the second difference
equation in (2.18) we notice that this is the case if kt = k:

(
ct

ct−1

)σ
= β

1 + n

[
1 + αkα−1

t − δ
]
.

On the left-hand side (LHS) of this curve (in segments III and IV), the capital
stock is below the steady-state value k, meaning that the marginal product of capital
(minus depreciation) increases above the rate (1 + n)/β − 1. Hence, the RHS of the
above equation increases above one, and consumption must grow over time. This is
indicated by the vertical arrows on the LHS of the curve. On the RHS of this curve
(in segments I and II), consumption must decline over time.

The second curve, denoted by “kt = kt+1,” describes the equilibrium values of
kt and ct for which the capital stock is constant, kt+1 = kt . If we solve the first
difference equation in (2.18) using the condition kt+1 = kt , we obtain

ct = kαt − (δ + n)kt .

The curve intersects with the abscissa at points kt = 0 and kt = (1/(δ + n))1/(1−α).
Its maximum is to the right of the steady-state value k.19 For all points that lie below
the line, consumption is below ct = kαt − (δ + n)kt and the capital stock increases,
kt+1 > kt . This movement is indicated by the arrows that point to the right in the
two segments II and III. If ct is chosen at a point above the line, the capital stock
decreases over time, kt+1 < kt , which is indicated by the arrows in regions I and IV
that point to the left.

Next, consider Fig. 2.6. Let us assume that the initial value of the capital stock
is given by k0 > k. In this case, consumption can be in either region I or II. Let
us first assume that consumption lies in region II, e.g., at point A. Consequently,
consumption declines while the capital stock increases, and therefore, we can never
reach the steady state (nor can we leave region II and move to region I). In finite
time, consumption is zero or negative. Since this cannot be an optimal policy, all
consumption values that lie in region II can be excluded as possible starting values
in period t = 0.

Similarly, we can exclude all starting values ct in region IV, if the initial capital
stock is below the steady state, k0 < k. Only consumption choices lying in regions
I and III are left as possible choices.

In Fig. 2.6, I have also inserted two additional curves. The upper curve denoted
by “kt+1 = 0” depicts all values for which the next-period capital stock is zero:

kt+1 = 1

1 + n

[
kαt − (1 − δ)kt − ct

] = 0.

18We used the condition “ct = ct−1” rather than “ct+1 = ct” so that both functions which are
graphed in Fig. 2.5 have the same argument kt (and not kt+1 as in the case “ct+1 = ct”).
19To verify this statement, differentiate ct with respect to kt and solve for kt =

(
α

δ+n

)1/(1−α)

. For

β < 1, the value of kt is above the steady state k =
(

α
(1+n)/β−1+δ

)1/(1−α)

.
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Fig. 2.6 Saddle path in the phase diagram

The second curve denoted by S is the saddle path. Given the initial value of the
capital stock kt , the points on this path converge to the steady state. In the case of
k0, for example, we have to place consumption c0 at point B so that the economy
moves to the steady state. Notice that the arrows on the saddle path S in Fig. 2.6
accord with the arrows drawn in regions I and III in Fig. 2.5. If we chose a higher
value of consumption, e.g., as at point C, the trajectory would hit the kt+1 = 0 curve
in finite time.20 If the capital stock is depleted, production and, hence, consumption
are zero, which cannot be optimal either. Similarly, the transition path that starts at
point D will cross the curve kt+1 = kt in finite time, and consumption will also be
zero in finite time.

For our numerical example, we are able to compute the saddle path in the (kt , ct )-
plane for a particular starting value of the capital stock. Therefore, we take the values
of kt and ct from Figs. 2.1 and 2.3 above for the subperiod t = 13, . . . , 100 when
Zt ≡ 1 for all remaining periods. At the beginning of period t = 13, when Zt falls
back to its steady state value Z = 1, the capital stock is given by k13 = 5.88. For
this value of the capital stock, (2.18) only converges to the steady state (k, c) =
(5.447, 1.405) for c13 = 1.460. Over time, (kt , ct ) slowly approach the steady state
from above as presented in Fig. 2.7.21

20One can show that all transition paths that start above S remain above and, similarly, that all
paths that start below S remain below it. In addition, paths with the same initial capital stock k0 but
with different consumption values c0 do not cross.
21To compute the saddle path in Figs. 2.7 and 2.8, I increased the number of transition periods to
100 in the program Ch2_ramsey1.g so that the approximation of the new steady state is smooth.
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Fig. 2.7 Saddle path in the numerical example

For a unique saddle path, we need one stable (absolute value less than one)
and one unstable (absolute value above one) eigenvalue of the difference equation
because we have one sluggish variable and one jump variable. More generally, the
number of eigenvalues with absolute values less than one must be equal to the
number of sluggish variables, and the number of eigenvalues larger than one must
be equal to the number of jump variables.

We will demonstrate the solution for our example.22 Therefore, we consider a
linear approximation of the policy function around the steady state (k, c).23 For this
reason, reconsider Eq. (2.18) (with Zt = Zt−1 = 1):

kt+1 = h1(kt , ct ) = 1

1 + n

[
kαt + (1 − δ)kt − ct

]
, (2.19a)

ct+1 = h2(kt , ct ) = ct

(
β

1 + n

[
1 + α

(
kαt + (1 − δ)kt − ct

1 + n

)α−1

− δ

]) 1
σ

.

(2.19b)

A linear approximation of these two equations at point (kt , ct ) = (k, c) is
provided by

kt+1 = k + ∂h1(k, c)

∂kt
(kt − k) + ∂h1(k, c)

∂ct
(ct − c), (2.20a)

22A more general treatment is contained in Gandolfo (2009) or Azariadis (1993).
23The closer we are to the steady state, the better the fit of our linear approximation will be.
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ct+1 = c + ∂h2(k, c)

∂kt
(kt − k) + ∂h2(k, c)

∂ct
(ct − c), (2.20b)

or more formally,

(
kt+1 − k

ct+1 − c

)
= J

(
kt − k

ct − c

)
. (2.21)

The Jacobian matrix J in our particular case is equal to

J =
(

1
1+n

(
αkα−1 + 1 − δ

) − 1
1+n

c
1+n

β
(1+n)σ

α(α − 1)kα−2
(
αkα−1 + 1 − δ

)
1 − c

1+n
β

(1+n)σ
α(α − 1)kα−2

)
,

(2.22)

where we have already used the observation that, in steady state,

β

1 + n

[
1 + α

(
kα + (1 − δ)k − c

1 + n

)α−1

− δ

]
= 1.

For our calibration,

J =
(

1.0417 −1.000
−0.0100 1.0096

)
.

Next, we use the Schur decomposition J = T̃ S̃T̃ −1 to rewrite Jacobian matrix J ,
where T̃ is a unitary matrix,24 and S̃ is an upper triangular matrix:

J = T̃ S̃T̃ −1

with

T̃ =
(

0.9964 0.08512
−0.08516 0.9964

)
, S̃ =

(
1.127 −0.9900

0.0000 0.9242

)
,

where the eigenvalues of matrices J and S̃ are located on the diagonal of matrix S̃.
Notice that one eigenvalue, ρ1 = 0.9242, is below one and the other, ρ2 = 1.1271,
is above one.25 The Schur decomposition is not unique, and we use Givens rotation

24In the case of a real matrix T̃ , the inverse T̃ −1 of a unitary matrix is just the transpose T̃ ′.
25Standard software, such as MATLAB or Gauss, provides commands to compute the Schur
factorization. MATLAB also provides a routine, ordschur(.), that can change the order of the
eigenvalues if needed.



24 2 Ramsey Model

to rearrange S such that the eigenvalues are located on the diagonal in ascending
order26:

T =
(

0.9932 −0.1167
0.1167 0.9932

)
, S =

(
0.9242 −0.9900
0.0000 1.127

)
,

Again, J = T ST −1.
With the help of matrix T , we are able to define new auxiliary variables k̃t and

c̃t :

(
k̃t

c̃t

)
= T −1

(
kt − k

ct − c

)
. (2.23)

such that our system of difference equations (2.21) can be rewritten as:

(
k̃t+1

c̃t+1

)
= S

(
k̃t

c̃t

)
=
(

ρ1 −0.9900
0.0000 ρ2

)(
k̃t

c̃t

)
. (2.24)

Consider the second equation of (2.24):

c̃t+1 = ρ2c̃t .

We can rearrange the equation to obtain

c̃t = 1

ρ2
c̃t+1.

Iterating this equation forward and substituting it into itself, we derive

c̃t = lim
i→∞

1

ρi2

c̃t+i .

Assuming that c̃t+i remains bounded for i → ∞, and with ρ2 > 1, it follows that

c̃t = 0.

26For those readers interested in numerical linear algebra, a Givens rotation is represented by a
matrix transformation. In our problem, we search for a matrix

G =
(
d −e

e d

)

that helps to transform S̃ into S = GS̃.
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Since T −1 is given by

T −1 =
(

0.9932 0.1167
−0.1167 0.9932

)
,

we find that

c̃t = −0.1167(kt − k) + 0.9932(ct − c) = 0,

or

ct − c = 0.1175(kt − k). (2.25)

Notice that the unstable eigenvalue ρ2 = 1.1271 helps us to pin down the jump
variable ct as a function of the sluggish variable kt !

Next, we need to determine kt+1 − k as a function of kt − k. Therefore, we use
the first-difference equation from (2.24):

k̃t+1 = 0.9242k̃t − 0.9900c̃t

= 0.9242 [0.9932(kt − k)+ 0.1167(ct − c)]

0.9932(kt+1 − k)+ 0.1167(ct+1 − c) = 0.9242 [0.9932(kt − k)+ 0.1167(ct − c)]

0.9932(kt+1 − k)+ 0.1167 · 0.1175(kt+1 − k) = 0.9242 [0.9932(kt − k)+ 0.1167 · 0.1175(kt − k)] ,

or27

kt+1 − k = 0.9242(kt − k). (2.26)

Clearly, this equation is stable, and kt converges to k for every value k0 > 0. To
derive this stability, we needed an eigenvalue ρ1 with an absolute value smaller than
one.

Given the initial condition for k0, we can compute c0 with the help of (2.25)
and k1 with the help of (2.26). Iterating forward for t = 1, . . . , we can derive the
complete time path for {kt , ct }∞t=0 (or, as in our numerical example, {kt , ct }100

t=13).
Figure 2.8 illustrates the dynamics that result from (1) the solution with the direct

computation (directly solving the non-linear system of equations) by the solid line
and (2) from using the linearization method by the broken line. In each case, we use
the initial condition k13 = 5.877, when Zt is falling back to its steady-state value,
as the initial value for the capital stock. The results are close, but not identical. In
particular, the speed of adjustment is higher in the case of direct computation.

27Notice that the coefficient of the first-order difference equation is equal to the stable root of the
Jacobian, ρ1 = 0.9242.
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Fig. 2.8 Direct computation versus linear approximation of the saddle path in the numerical
example

2.2.3 Elastic Labor

In business cycle theory or in the study of tax policies, we are interested in the
behavior of employment. For example, we would like to analyze the cyclical
fluctuation of employment or the effect of an income tax on the labor supply. For this
reason, we introduce elastic labor supply into the Ramsey model in the following.

The number of households Nt is still growing at rate n. The household is
endowed with one unit of time that it spends either on work Lt or leisure 1 − Lt .
The instantaneous utility function depends on both leisure 1 − L and consumption
c according to:

u(c, 1 − L) =
(
cι(1 − L)1−ι

)1−σ − 1

1 − σ
, (2.27)

where ι and 1 − ι denote the weights of consumption and leisure in utility.
The intertemporal utility of the individual household in period t = 0 is

represented by

U =
∞∑

t=0

βtu(ct , 1 − Lt ). (2.28)

Aggregate labor NtLt is given by the product of the number of households Nt

and their labor supply Lt . We, again, assume that the production function is Cobb-
Douglas:

Yt = ZtK
α
t (NtLt )

1−α, (2.29)
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meaning that per capita production is presented by

yt ≡ Yt

Nt

= Ztk
α
t L

1−α
t , (2.30)

where we define kt ≡ Kt/Nt .
With this definition, the resource constraint is still given by (2.8), and the first-

order conditions of the central planner’s optimization problem follow from the
derivation of the Lagrangian

L =
∞∑

t=0

βt

[(
cιt (1 − Lt )

1−ι
)1−σ − 1

1 − σ
+ λt

(
Ztk

α
t L

1−α
t + (1 − δ)kt − ct − (1 + n)kt+1

)]

(2.31)

with respect to ct , Lt , and kt+1. In particular, the first-order conditions are given by:

λt = ιc
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ), (2.32a)

λt (1 − α)Ztk
α
t L

−α
t = (1 − ι)c

ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (2.32b)

(1 + n)λt = λt+1β
[
1 + αZt+1k

α−1
t+1 L

1−α
t+1 − δ

]
. (2.32c)

Equations (2.32a) and (2.32b) can be combined to yield:

(1 − α)Ztk
α
t L

−α
t = 1 − ι

ι

ct

1 − Lt

. (2.33)

The Euler equation is derived from inserting (2.32a) into (2.32c):

(
ct

ct+1

)ι(1−σ)−1( 1 − Lt

1 − Lt+1

)(1−ι)(1−σ)

= β

1 + n

[
1 + αZt+1k

α−1
t+1 L

1−α
t+1 − δ

]
.

(2.34)

In steady state, Zt = Z = 1, ct = ct+1 = c, kt = kt+1 = k, and Lt = Lt+1 = L,
and thus, the Euler equation simplifies to

1 + n

β
− 1 + δ = αkα−1L1−α. (2.35)

We will study a numerical example and, for this reason, calibrate the model as in the
previous section. Accordingly, we set β = 0.96, σ = 2.0, α = 0.36, δ = 0.08, and
n = 0. The only new parameter in the model with elastic labor supply is the utility
parameter ι, which determines the weights of consumption ct and leisure 1 − Lt in
utility. We will set the parameter such that the steady-state labor supply is equal to
30% of the available time, which is broadly consistent with empirical observations.
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Therefore, we set L = 0.3. From the steady-state Euler equation (2.35), we can
determine the steady-state capital intensity k:

k =
(

α

1+n
β

− 1 + δ

) 1
1−α

L.

For our calibration, k = 1.634, and therefore, y = Y/N = kαL1−α = 0.552. From
the resource constraint, we can derive c = y − (δ + n)k = 0.422. Finally, we use
(2.33) to calibrate ι = 0.338.

We repeat our analysis of the dynamics as in the previous section and consider a
temporary increase in productivity Zt from 1 to 1.1 during periods t = 10, 11, 12.
In comparison to the present case, the dynamic system (2.14) needs to be adjusted
to allow for elastic labor supply in production. In addition, we have to add a new
equation for the optimal labor supply, and thus, we have to solve a non-linear system
of equations in 200 variables kt and Lt , t = 1, . . . , 100 with k0 = k101 = k and
L0 = L101 = L:

β

1 + n

[
1 + αZtk

α−1
t L1−α

t − δ
]

=
(

Ztk
α
t L

1−α
t + (1 − δ)kt − (1 + n)kt+1

Zt−1k
α
t−1L

1−α
t−1 + (1 − δ)kt−1 − (1 + n)kt

)1−ι(1−σ)

·
(

1 − Lt−1

1 − Lt

)(1−ι)(1−σ)

, (2.36a)

(1 − α)Ztk
α
t L

−α
t = 1 − ι

ι

ct

1 − Lt

. (2.36b)

The dynamics of the model are illustrated in Fig. 2.9.28 First consider the case
of an unexpected increase in Zt , which is illustrated by the broken lines. As the
technology level Zt rises by 10% in period t = 10, output increases, and therefore,
both consumption and investment increase as in the case with exogenous labor.
Higher consumption increases the marginal utility of leisure, meaning that this
income effect also tends to increase leisure. However, the marginal product of labor
Zt(1 − α)kαt L

−α
t also increases, and this substitution effect dominates the income

effect such that labor increases and leisure declines.
In the case of an expected increase in the technology level Zt in period t = 10,

the household already increases both consumption and leisure prior to period t =

28For a better illustration of the dynamics during the early periods 1–20, I only used 40 periods
for the number of transition periods. Although the adjustment is not complete after 40 periods,
the approximation is close during periods when the technology shock increases to Zt = 1.1.
The MATLAB/Gauss program Ch2_ramsey2.m/Ch2_ramsey2.g computes the solution
presented in Fig. 2.9.



2.2 Central Planner 29

0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40

Period t Period t

Production yt Consumption ct

Labor LtCapital Kt

expected shock
unexpected shock

expected shock
unexpected shock

0 4 8 12 16 20 24 28 32 36 40

Period t

expected shock
unexpected shock

0.
28

0.
30

0.
32

0.
34

0.
42

0
0.

42
8

0.
43

6
0.

44
4

0 4 8 12 16 20 24 28 32 36 40

Period t

expected shock
unexpected shock

1.
50

1.
58

1.
66

1.
74

1.
82

1.
90

0.
52

0.
56

0.
60

0.
64

0.
68

Fig. 2.9 Equilibrium dynamics in the Ramsey model with elastic labor

10 to intertemporally smooth utility. The time paths of output yt , consumption ct ,
capital kt , and labor Lt are illustrated by the solid line in Fig. 2.9. Since both labor
and capital decline prior to period t = 10, output also falls in these periods before
the technology level Zt rises above its steady-state value.

The behavior of the variables output, consumption, investment, and labor and
the dynamics of these variables that result from a temporary increase (or decrease)
in the technology level are at the heart of modern business cycle models. In these
models, the technology level Zt is stochastic, and a rise or decline in its level above
or below its steady-state value results in intertemporal substitution of labor and
consumption at the household level. As a consequence, these variables fluctuate
and are subject to characteristic co-movements that have been the subject of the
RBC theory, as initiated by Kydland and Prescott (1982) and Long and Plosser
(1983).29 Surprisingly, an exogenous AR(1) process for technology helps to mimic
the empirical time-series behavior of these variables quite well. We will return to
this point in Sect. 2.4.

29In 2004, Finn E. Kydland and Edward C. Prescott received the Nobel prize for their research on
RBCs.
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2.3 Decentralized Economy

In this section, we turn our attention from a centralized economy with a benevolent
central planner to the case of a decentralized market economy. Households own the
capital stock and supply both capital and labor to the market. The firms demand both
inputs and produce a homogenous output good. The price mechanism establishes
equilibrium in goods and factor markets such that demand equals supply.

2.3.1 Households

Again, the number of households is equal to Nt , and the growth rate of population
is denoted by n. All households are identical, meaning that kt = Kt/Nt is both
the average and the individual capital stock per household. Since households are
identical, we can study the behavior of all households by means of the individual
household and simply multiply individual labor supply Lt and capital kt by the
population size Nt to derive aggregate quantities.

The individual household maximizes lifetime utility (2.28), where instantaneous
utility is specified as in (2.27). The household receives two types of income: income
from labor and income from capital. A household’s labor income wtLt is given by
the product of the real wage rate wt and labor supply Lt , while its capital income
rtkt is equal to the product of the real interest rate rt and capital supply kt . The
household can spend its income on either consumption ct or savings st :

wtLt + rtkt = ct + st .

Savings st increase the wealth of the household. Since the only type of asset in the
economy is capital, household wealth accumulates according to

(1 + n)kt+1 = (1 − δ)kt + st ,

where we assume that capital depreciates at rate δ. Notice that the LHS includes a
multiplicative term (1 + n), which reflects the fact that each individual has (1 + n)

descendants in the next period, and the assets are distributed equally among the
descendants.

Combining the last two equations, we derive the household’s budget constraint

wtLt + rt kt + (1 − δ)kt = ct + (1 + n)kt+1. (2.37)

The first-order conditions of the household’s optimization problem follow from the
derivation of the Lagrangian

L =
∞∑

t=0

βt

[(
cιt (1 − Lt)

1−ι
)1−σ − 1

1 − σ
+ λt (wtLt + rt kt + (1 − δ)kt − ct − (1 + n)kt+1)

]

(2.38)
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with respect to ct , Lt , and kt+1. In particular, the first-order conditions are given by:

λt = ιc
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ), (2.39a)

λtwt = (1 − ι)c
ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (2.39b)

(1 + n)λt = λt+1β [1 + rt+1 − δ] . (2.39c)

Equation (2.39b) governs the household’s decision with respect to the optimal labor
supply. A marginal increase in labor supply by 1 h increases consumption by wt

units. Since the marginal utility from one unit of consumption amounts to λt , the
LHS of the equation, λtwt , describes the utility gained from working one additional
hour. The RHS presents the marginal disutility from reducing leisure 1 − Lt by 1 h.
At the optimum, the marginal increase in utility stemming from higher consumption
must be equal to the marginal decrease in utility stemming from reduced leisure. If
this were not the case, the household could increase its total utility by re-balancing
its allocations to consumption and leisure. Equation (2.39c), again, describes the
optimal intertemporal consumption or savings decision, which is identical to that in
the centralized economy described in the previous section.

Equations (2.39a) and (2.39b) can be combined to yield

wt = 1 − ι

ι

ct

1 − Lt

. (2.40)

The Euler equation is derived from inserting (2.39a) into (2.39c):

(
ct

ct+1

)ι(1−σ)−1 ( 1 − Lt

1 − Lt+1

)(1−ι)(1−σ)

= β

1 + n
[1 + rt+1 − δ] . (2.41)

2.3.2 Production

We assume that the goods and factor markets are subject to perfect competition.
A representative firm produces with the help of labor and capital according to the
production function (2.29) and maximizes profits

Πt = Yt − wtNtLt − rtKt = ZtK
α
t (NtLt )

1−α − wtNtLt − rtKt . (2.42)

Profit maximization with respect to labor NtLt and capital Kt results in the
following first-order conditions:

wt = (1 − α)ZtK
α
t (NtLt )

−α, (2.43a)

rt = αZtK
α−1
t (NtLt )

1−α, (2.43b)
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which establishes the well-known result that in competitive (factor and goods)
markets, the production factors are rewarded by their marginal products. Since
the production function is linear-homogenous, Euler’s theorem applies, and total
production is equal to total costs:

Yt = wtNtLt + rtKt = ZtK
α
t (NtLt )

1−α

and profits are zero, Πt = 0.
Inserting (2.43) into the budget constraint of the household (2.37), we derive the

resource constraint of the economy:

yt = ct + (1 + n)kt+1 − (1 − δ)kt . (2.44)

Accordingly, total production is equal to consumption plus investment.

2.3.3 First Fundamental Theorem ofWelfare Economics

Inserting (2.43) into (2.39), we observe that we derive exactly the same equilibrium
conditions (2.32) as in the case of the central planner. Hence, the allocation in the
market economy with perfect competition is equal to the central planner’s solution.
Since the allocation of the benevolent central planner who maximizes household
utility subject to the resource constraint is Pareto-efficient, the allocation in the
competitive equilibrium (with no externalities) is also Pareto-efficient. This result
is known as the first fundamental theorem of welfare economics.30

In addition, the equilibrium dynamics can be computed with the help of (2.36),
and the dynamics for the equilibrium variables yt , kt , Lt , and ct are identical in the
decentralized and centralized economies. In particular, Fig. 2.9 also describes the
dynamics in the market economy that is subject to the technology process (2.13).

2.4 The Stochastic RamseyModel

In this section, I present the stochastic Ramsey model, which forms the basic
building block of modern business cycle models.31 In these models, shocks hit the
economy in every period t , and the households and firms optimally adjust their
behavior over time. More specifically, the households form rational expectations
meaning that the agents inside the model know the model and take the model’s

30The second theorem of welfare economics states that any efficient allocation can be sustained by
a competitive equilibrium and, thus, constitutes the converse of the first theorem.
31Two basic types of business cycle models are presented by RBC models, in which only real
variables enter the model, and New Keynesian models, in which nominal variables enter the model
and prices and/or wages are sticky. Both types of business cycle models are described in greater
detail in Heer and Maußner (2009), McCandless (2008), and Cooley (1995).
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prediction as valid. In other words, the agents behave model-consistent.32 The
use of the mathematical expectations operator Et {} in the following reflects this
assumption. Agents form expectations with respect to the probability distribution of
random variables in the form of the total factor productivity shocks conditional on
the information available at period t .

The stochastic Ramsey model is used for business cycle analysis concentrating
on the study of short-term fluctuations. Since most empirical time series for
variables such as consumption, output, or investment are available on a quarterly
basis,33 we henceforth also consider a period length of one quarter.

2.4.1 TheModel

In the standard RBC model, the technology level Zt is the exogenous stochastic
variable and usually follows a first-order autoregressive (AR1) process34:

lnZt = ρZ lnZt−1 + εt , εt ∼ N(0, σZ), (2.45)

where the innovation εt is normally distributed with standard deviation σZ.
Empirically, these innovations εt are identified with the help of a time series

on the technology level Zt . Since technology is not directly observable, Zt can be
evaluated as residual with the help of observations of output Yt , capital Kt , and labor
Lt from the following equation:

Zt = Yt

Kα
t L

1−α
t

.

The growth rate of total factor productivity is also called the Solow residual. It is the
part of output growth that is not accounted for by measures of input (labor, capital)

32The notation of rational expectation was originally introduced by Muth (1961).
33Some time series are also available as monthly data, e.g., industrial production and employment.
Some other economic variables such as distributional measures of income and consumption
concentration in the form of their Gini coefficients, however, are only available on an annual basis,
rendering the analysis of the short-term distributional effects of economic policy more difficult.
34In some studies, the technology level follows a unit root process with trend

lnZt = lnZt−1 + a + εt , εt ∼ N(0, σZ),

where a denotes the drift or growth rate of total factor productivity. The modeling of the technology
process (and, more generally, time series of macroeconomic variables) is not an innocuous
assumption and affects business-cycle results. For example, Cogley and Nasan (1995) demonstrate
that if pre-filtered series are first-order integrated, then HP-filtering of the series may result in
business cycles that do not exist in the original pre-filtered data.
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growth.35 We use the autoregressive parameter ρZ = 0.95 and a standard deviation
of the innovation equal to σZ = 0.007, as estimated by Cooley and Prescott (1995)
with the help of quarterly data for the US economy.36

The rest of the model is identical to that of the decentralized economy in the
previous section. Due to the stochastic nature of technology and, hence, wages and
interest rates, the household maximizes expected utility in period 0

U = E0

∞∑

t=0

βtu(ct , 1 − Lt), (2.46)

subject to the budget constraint (2.37). Instantaneous utility u(c, 1−L) is a function
of consumption c and leisure 1−L, as presented by (2.27). The Lagrangian function
is represented by

L = E0

∞∑

t=0

βt

[(
cιt (1 − Lt )

1−ι
)1−σ − 1

1 − σ
+ λt (wtLt + rt kt + (1 − δ)kt − ct − (1 + n)kt+1)

]
.

(2.47)

The static first-order condition with respect to leisure is still described by (2.33),
while the dynamic Euler equation is adjusted to account for the stochastic nature of
the next-period real interest rate rt+1

37:

1 + n

β
= Et

{(
ct+1

ct

)ι(1−σ)−1(1 − Lt+1

1 − Lt

)(1−ι)(1−σ)

[1 + rt+1 − δ]

}
. (2.48)

35Basu, Fernald, and Kimball (2006) construct a measure of technology change in the presence of
variable capacity utilization and imperfect competition.
36The calibration of RBC models with respect to the characteristics of other industrialized
countries employs similar values, e.g., Heer and Maußner (2009) estimate ρZ = 0.90 and
σZ = 0.0072 for the German economy.
37 Notice that we interchanged the derivative and the expectational operator to derive the first-order
conditions using:

d

dx
Ef (x, Z) = E

d

dx
f (x, Z).

This condition holds if f (x, Z) is integrable for all x and f is differentiable with respect to
x. Furthermore, the expected value of Z is finite, E(Z) < ∞. The above equation is a special
application of the Leibniz integral rule according to which

d

dx

(∫ b(x)

a(x)

f (x, Z) dZ

)
= f (x, b(x)) · d

dx
b(x)−f (x, a(x)) · d

dx
a(x)+

∫ b(x)

a(x)

∂

∂x
f (x, Z) dZ.
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The firm maximizes profits (2.42) such that factor prices (2.43) are equal to their
marginal products. In addition, the goods market clears, meaning that the resource
constraint of the economy is represented by (2.44). The equilibrium conditions
of the RBC model are summarized by the following eight equations in the eight
variables kt , Zt , ct , Lt , yt , wt , rt , and it :

1 + n

β
= Et

{(
ct+1

ct

)ι(1−σ)−1(1 − Lt+1

1 − Lt

)(1−ι)(1−σ)

[1 + rt+1 − δ]

}
,

(2.49a)

yt = ct + (1 + n)kt+1 − (1 − δ)kt , (2.49b)

lnZt = ρZ lnZt−1 + εt , (2.49c)

wt = 1 − ι

ι

ct

1 − Lt

, (2.49d)

wt = (1 − α)Ztk
α
t L

−α
t , (2.49e)

rt = αZtk
α−1
t L1−α

t , (2.49f)

yt = Ztk
α
t L

1−α
t , (2.49g)

it = (1 + n)kt+1 − (1 − δ)kt . (2.49h)

In the deterministic steady state, the variables are constant, with εt ≡ 0 and
Zt ≡ 1. The steady-state values are therefore identical to those in the decentralized
model in the previous section.

To compute the equilibrium dynamics of the stochastic model, we use numerical
methods. All parameters are set as in Sect. 2.2.3 except for β = 0.99 and δ =
2.0%, which are adjusted for a period length of one quarter (rather than 1 year).
In particular, we use a linear approximation of the system of equations around the
steady state.38 Optimal consumption and labor are expressed in the form of the
following policy functions that describe the percentage deviation from the steady
state39:

(
ĉt

L̂t

)
=
(

0.4946
−0.1706

)
k̂t +

(
0.4908
0.6457

)
Ẑt . (2.50)

38Therefore, our approximation is fairly close to the steady state but becomes increasingly
inaccurate with increasing distance from the steady state. Linear approximation is a useful
technique for the behavior of economies during tranquil times. During periods of severe crisis such
as the Great Recession of 2007–2008, one should instead apply global approximation methods, as
described in Chapters 5 and 6 in Heer and Maußner (2009).
39The computation of the policy functions is described in greater detail in Appendix 2.3.
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Fig. 2.10 Impulse responses to a technology shock in the RBC benchmark model

Accordingly, consumption increases by 0.49% if the technology level is equal to
Zt = 1.01, ceteris paribus (and, hence, 1.0% above its steady-state level, Ẑt =
0.01). Similarly, consumption increases if capital is above its steady-state value due
to the wealth effect. Labor supply, however, declines with a higher capital stock and
increases with technology. A one percent increase in Zt results in an increase in
labor L of 0.65%.

As our solution for the dynamics of the capital stock kt , we find

k̂t+1 = 0.9695k̂t + 0.0869Ẑt . (2.51)

The dynamics of the model are best explained by means of impulse response
functions, which we describe in the next section.

2.4.2 Impulse Responses

The behavior of the policy functions can be illustrated with the help of the impulse
response functions displayed in Fig. 2.10.40 These functions present the percentage
deviation of policy functions from the steady state if the economy is in steady state
in period t = 1 and is hit by a shock ε2 = 0.01 in period t = 2. In the next
period, t = 3, the shock falls back to zero, meaning that εt = 0 for t = 3, . . ..
Since technology Zt is modeled as an autoregressive process with autoregressive
parameter ρZ = 0.95, technology increases by 0.01 in period t = 2 and slowly
decreases in the periods thereafter, e.g., Z3 = 0.0095 and Z4 = 0.0090. The
dynamics for the technology level Zt are illustrated by the blue line in the upper-left
panel of Fig. 2.10.

40The MATLAB and Gauss programs, Ch2_rbc.m and Ch2_rbc.g, compute the policy
functions, the impulse responses, and the time series statistics.
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With a higher technology level Zt , productivity and, hence, wages wt and the
interest rate rt also increase, and thus, the income of the household increases.
Therefore, the household is able to increase both consumption ct and investment
it , which rise by 0.48% and 4.3%, respectively. In its effort to smooth utility over
time, the household saves a large share of its additional income such that it is also
able to increase consumption over the following periods. Therefore, consumption
remains 0.5% above the steady-state level for the next 4–5 years (corresponding to
16–20 quarters).

Since the wage rate increases, the household also increases its labor supply.
Again, the substitution effect is larger than the income effect, as in the deterministic
model in the previous section. Therefore, output, illustrated by the black line in the
upper-left panel of Fig. 2.10, increases more strongly than technology and rises by
1.4% on impact.41

While the interest rate rt increases on impact and falls immediately afterward,
the wage wt remains at a higher level over a long period. This is a consequence of
the behavior of the technology level Zt and the capital stock kt . While technology
Zt falls gradually, the capital stock kt accumulates slowly over time. The former
effect reduces the wage, while the latter increases labor productivity. Consequently,
the dynamics of the wage wt are much more sluggish than those of the interest rate
rt , where the growth in the capital stock kt and the decline in the technology level
Zt both reduce the marginal product of capital and, hence, rt .

2.4.3 Time Series Behavior

To compare the behavior of the RBC model with empirical evidence, we employ
statistical methods from time series analysis. In particular, we generate a series of
T normally distributed random variables that we use as inputs into our model as
time series for the stochastic shock {εt }Tt=1. Often, the number of observations T is
chosen in accordance with the number of empirical observation periods so that the
two time series have equal length. Since our empirical data will have a length of 238
quarters, we also choose T = 238. In period t = 0, we set all state variables in the
model equal to their steady-state values, Z0 = 1 and k0 = k. With the help of the
time series {εt }Tt=1, we are able to compute a time series for {Zt }Tt=0. We use these

values for the exogenous variable Zt and the starting value k̂0 = 0 to compute time
series for k̂t with the help of (2.51). Given the series for the two state variables k̂t
and Ẑt , we are able to compute the policy functions for the other variables ĉt , L̂t , ît ,

41Empirical studies such as Galí (1999) and Basu, Fernald, and Kimball (2006) find that a positive
technology shock led to a contraction of labor inputs. The standard RBC model is inconsistent
with this observation. In Sect. 4.5.2, we present a New Keynesian model with sticky prices and
adjustment costs of capital that is able to account for this fact.
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ŵt , and r̂t . We repeat this simulation 500 times for different random samples for the
shocks and use these realizations to compute the averages of the second moments.42

Since we are interested in the short-run behavior of the series that is characteristic
of the business cycle, we attempt to eliminate cycles with low frequency. For this
reason, we apply the same filter to both the empirical and the model series. In RBC
models, the most commonly used filter is the HP filter of Hodrick and Prescott
(1997).43 Let {yt }Tt=1 denote the log of a time series that may be considered a
realization of a non-stationary stochastic process. The growth component {gt }Tt=1 of
this series as defined by the HP filter is the solution to the following minimization
problem44:

min
{gt }Tt=1

T∑

t=1

(yt − gt )
2 + λ

T−1∑

t=2

[(gt+1 − gt ) − (gt − gt−1)]2. (2.52)

If λ = 0, the solution yt = gt is simply the original series. For λ → ∞, the
series gt is chosen so that the growth rate is constant. Thus, with a choice of λ, the
filter returns a series {yt }Tt=1 that approximates the series but is either closer to the
original series or a linear trend. For quarterly data, as in the present case, the usual
filter weight chosen is λ = 1600.45

Figure 2.11 presents the log of quarterly US GDP46 during the period 1947:Q1–
2015:Q2 (solid red line) and the fitted HP trend (broken green line). GDP displays
an upward trend, and we can clearly recognize periods of recession during 1982
and the Great Recession during the period 2007–2008. To better distinguish the
trend and the original series from one another, Fig. 2.12 displays the two series for
a shorter time period, 1947–1959.

The cyclical components for both HP-filtered GDP (solid red line) and hours
(broken green line) that are computed as the deviation of the original series from
the HP trend are presented in Fig. 2.13. Obviously, the cyclical components of GDP
and output move very closely with one another. In addition, the variances of the two
series are also similar. Notice that both series are presented as percentage deviations
because we first logged the original series before we applied the HP filter.

42Sometimes, the researcher also cuts the first 50 periods or similarly from the simulation so that
the initialization of the state variables in the first period with their steady state values does not have
any effect on the results.
43The paper had already circulated as a discussion paper two decades earlier and was then
introduced as a working paper by Hodrick and Prescott in 1980 that was published in 1997.
44For a more detailed description of this filter and its computation, see for example, Chapter 12.4
in Heer and Maußner (2009).
45Ravn and Uhlig (2001) and Baxter and King (1999) propose values of λ equal to 6.5 and 10 for
annual data, respectively.
46The data are described in more detail in Appendix 2.4.
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Fig. 2.11 Quarterly US GDP, 1947–2014: original series and trend
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Fig. 2.12 Quarterly US GDP, 1947–1959: original series and trend

The upper half of Table 2.1 presents the second moments for US time series
data.47 We restrict our attention to the period 1953:Q1–2015:Q2. Our main reason
for the shorter time period is the behavior of fiscal policy during the period 1947–
1952 that we will consider in Chap. 4. During this period, government expenditures

47The statistics are computed with the help of the MATLAB or Gauss programs Ch2_data.m
and Ch2_data.g.
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Fig. 2.13 HP-filtered cyclical component of quarterly US GDP and hours, 1947–2014

Table 2.1 US statistics
1953–2014 and RBC model

Variable sx (in %) sx/sY rxY rxL

US statistics 1953–2014
Output Y 1.51 1.00 1.00 0.87

Hours L 1.86 1.24 0.87 1.00

Consumption C 1.21 0.80 0.88 0.76

Investment I 4.54 3.01 0.68 0.86

Wage w 1.02 0.67 −0.27 −0.26

Risk-free rate rf 0.29 0.19 0.43 0.60

Equity return re 6.71 4.44 −0.27 −0.27

RBC model
Output Y 1.32 1.00 1.00 0.99

Hours L 0.68 0.51 0.99 1.00

Consumption C 0.38 0.29 0.95 0.90

Investment I 4.39 3.33 1.00 1.00

Real wage w 0.65 0.49 0.99 0.97

Real interest rate r 1.35 1.02 0.98 1.00

Notes: sx : = Standard deviation of time series x in percent,
where x ∈ {Y,L, I, C,w, rf , re}. Empirical time series
were HP filtered with weight 1600. sx/sY : = standard devi-
ation of the variable x relative to the standard deviation
of output Y . rxY : = Cross-correlation of the variable with
output. rxL: = Cross-correlation of the variable with labor

were determined by the Korean war rather than by cyclical fiscal policy, and we
therefore exclude these periods from our observations.48

48For the risk-free rate and the real equity return rate, we restrict our attention to the period
1959:Q2–2015:Q2. To construct the inflation rate for the computation of the real return, we use
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Empirically, the volatility of output Y (as measured by the standard deviation of
HP-filtered log GDP) is equal to 1.51%. Hours, as measured by working hours L,
are approximately as volatile as output, while private consumptionC is less volatile.
Notice that investment I is three times as volatile as output Y . In addition, output Y ,
consumption C, investment I , and labor L are highly correlated, but not perfectly.
The empirical correlations of these three variables are in the range 0.68–0.88.

The dynamics of the factor prices are less pro-cyclical than those of the aggregate
demand components. In particular, wages are negatively correlated with output and
labor. To determine the behavior of the interest rate r , we examine two different
rates. First, we report the statistics for the US treasury bill rate, a variable that is
often used to measure the risk-free rate in finance. During the period 1947–2014, the
average annualized real T-Bill rate was 1.56%. As our second measure, we compute
the real equity return of the S&P-500 index in the US stock market, which exhibited
an annual average of 7.26%.49 Accordingly, the equity premium during the period
1947–2014 that measures the difference between the two returns was 5.7%. In both
cases, we computed real rates of return by subtracting the inflation rate.50 Notice
that the real equity return is more than five times as volatile as the real risk-free
rate. In addition, the risk-free rate is pro-cyclical, while the equity return has a low,
negative correlation with both GDP and labor.

How does this time series behavior compare with that implied by the standard
RBC model? The lower half of Table 2.1 presents the second moments from the 500
simulations of our RBC model. The RBC model replicates the fact that consumption
is less volatile than output, while labor is not volatile enough. In addition, the
correlation of output, consumption, and hours is too high compared with the data.

With respect to the factor prices, the basic RBC model is unable to replicate
the dynamics of wages and interest rates. Both factor prices are much too pro-
cyclical, which is not surprising. A positive productivity shock increases output
and employment and, hence, the marginal product of both labor and capital.
Consequently, all variables move closely together. The RBC literature has proposed
many model extensions that help to considerably improve the fit of the model with
respect to empirical observations, including sticky wages, labor market frictions
(such as search unemployment), and the introduction of other shocks (such as
demand shocks). For instance, we will consider government demand shocks in
Chap. 4.

Another basic criticism of RBC theory is based upon the experience of the recent
financial crisis. During the period 2008–2009, output and hours fell dramatically,
while labor productivity rose. Hence, the standard RBC model that is based on

the price index for Private Consumption Expenditures (Excluding Food and Energy), which is
only available during the period 1959:Q1–2015:Q2.
49The parameter β = 0.99 in the RBC model is often calibrated to imply an annual real interest
rate of 4%, which is a midpoint between the real returns of T-Bills and US equity.
50In the case of the interest rate or equity return, which are already measured in percentage points,
we do not take the log but rather apply the HP filter to the original series.
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shocks to total factor productivity should have difficulty explaining this episode.
McGrattan and Prescott (2014) show that there is no inconsistency if intangible
capital is included in the analysis.

Appendix 2.1: Intertemporal Elasticity of Substitution
and Savings

Derivation of the Intertemporal Elasticity of Substitution

In this appendix, we derive an expression for the intertemporal elasticity of
substitution (IES), 1/σ , in a simplified two-period model and study how savings
depend on σ . In addition, we analyze the effects of non-capital income in the second
period when a change in the interest rate also entails an endowment effect. For this
reason, assume that a household lives for 2 periods and maximizes utility

U = u(c1) + βu(c2),

where β denotes the discount factor, and ct represents consumption in period
t = 1, 2. The household receives the wage incomes y1 and y2 in periods 1 and
2, respectively, and thus, the intertemporal budget constraint is given by:

y1 + y2

1 + r
= c1 + c2

1 + r
,

where r denotes the real rate of interest.
The first-order condition for household utility maximization follows from the

derivation of the Lagrangian

L = u(c1) + βu(c2) + λ

[
y1 + y2

1 + r
− c1 − c2

1 + r

]

with respect to c1 and c2:

u′(c1) = λ, (2.53a)

βu′(c2) = λ

1 + r
. (2.53b)

The first-order conditions of the household can be summarized by the following
Euler equation:

R ≡ 1 + r = u′(c1)

βu′(c2)
,

where the right-hand side of the equation is equal to the marginal rate of intertem-
poral substitution in consumption.
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Taking logarithms of both sides and using the approximation ln(1+ r) ≈ r ,51 we
derive:

r = − ln

(
u′(c2)

u′(c1)

)
− lnβ. (2.54)

For small values, logarithms are very close to percentage changes, and thus, we can
interpret r as the real interest rate.

The IES is defined as the percentage change in consumption growth for a one-
percentage-point increase in the real interest rate:

∂ ln c2
c1

∂r
.

By substituting (2.54) into the definition of the elasticity above, we can see that
the definition of the IES is equivalent to the elasticity of consumption growth with
respect to marginal utility growth:

∂ ln c2
c1

∂r
= − ∂ ln c2

c1

∂ ln
(
u′(c2)
u′(c1)

) . (2.55)

Let utility of consumption be given by

u(c) =
{

c1−σ−1
1−σ

σ �= 1,
ln c σ = 1.

This utility function belongs to the family of the so-called ‘Constant-Relative-Risk-
Aversion’ (CRRA) utility functions and has marginal utility u′(c) = c−σ . σ is equal
to the elasticity of the marginal utility of consumption with respect to consumption
and is also called the coefficient of relative risk aversion. Thus,

ln

(
u′(c2)

u′(c1)

)
= −σ ln

(
c2

c1

)
,

51This approximation follows from a first-order Taylor series expansion

f (x) ≈ f ′(x0)(x − x0)

with f (x) = ln(1 + x) and x0 = 0 implying:

ln(1 + x) ≈ 1

1 + x0
(x − x0) = x.



44 2 Ramsey Model

or

ln

(
c2

c1

)
= − 1

σ
ln

(
u′(c2)

u′(c1)

)
.

Hence, applying this result to expression (2.55), we obtain

− ∂ ln c2
c1

∂ ln
(
u′(c2)
u′(c1)

) = −
(
− 1

σ

)
= 1

σ
.

Accordingly, the IES is equal to 1/σ and, hence, equal to the reciprocal of the
elasticity of the marginal utility of consumption with respect to consumption.

CES Utility and Savings

Let us consider another example of a utility function with a constant IES:

U = U(c1, c2) = [(c1)
ρ + β(c2)

ρ
] 1
ρ . (2.56)

In contrast to (2.1), this function is not characterized by additive separability of the
period’s instantaneous utility functions. It is easy to show that (2.56) is characterized
by a constant IES equal to

1/σ = 1

1 − ρ
.

As a numerical example, we assume that the household has non-capital incomes y1
and y2 in periods 1 and 2, respectively, and thus, the budget restriction is given by:

y1 + y2

1 + r
= c1 + c2

1 + r
.

In the initial steady state, we consider the values y1 = 100, y2 = 0, and r = 5% with
discount factor β = 1/1.1. The values of first-period consumption c1 and savings
s are summarized in columns three and four and in the first and third entry rows of
Table 2.2 for two different values of σ ∈ {0.5, 1.5}.

Table 2.2 Savings and
interest rates

1/σ r (%) c1 s

0.5 5 51.80 48.20

0.5 10 52.38 47.62

1.5 5 52.96 47.04

1.5 10 52.38 47.62
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Table 2.3 Savings and
interest rates with y2 = 90

1/σ r (%) c1 s

0.5 5 96.20 3.80

0.5 10 95.24 4.76

1.5 5 98.36 1.64

1.5 10 95.24 4.76

How does an increase in r from 5% to 10% affect savings s = y1 − c1?
Clearly, savings s decrease (increase) if the IES is below one, 1/σ < 1 (above
one, 1/σ > 1).

If we also consider non-capital income in the second-period, e.g., y2 = 90, there
is an additional endowment effect. If r increases, the discounted value of the non-
capital income, y1 + y2

1+r
, decreases, and consequently, this reduces consumption

in both periods. If c1 declines, savings s increase due to this effect. Due to this
endowment effect, savings even increase in response to an interest rate rise for σ =
0.5 in the present example. The effect of increasing the interest rate from 5% to 10%
with y1 = 100 and y2 = 90 is summarized in Table 2.3.52

As a consequence of this finding, we often have a “normal” reaction of savings—
i.e. a rise in savings s if the interest rate r increases—in large-scale OLG models in
which households receive income in many periods, such as the Auerbach-Kotlikoff
model that we will consider in Chap. 6. In these models, instability is less of
a problem. The intuition is simple: If agents accumulate more savings and the
capital stock increases, the interest rate will decrease and, eventually, will prevent
households from accumulating additional savings.

Appendix 2.2: Solving Non-linear Equations Numerically

In many applications in this book, we need to find the solution x to a non-linear
equation:

f (x) = 0 (2.57)

In this appendix, we will focus on presenting only the main idea of the solution
method that we predominantly apply hereinafter. For a more comprehensive presen-
tation of this problem for economists, see Chapter 5 in Judd (1998) or Chapter 3 in
Miranda and Fackler (2002).

One of the most widely applied and successful methods to solve non-linear
equation (2.57) is the Newton-Rhapson method also know as Newton’s method.

52In Problem 2.6, you are asked to analytically demonstrate this result.
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Fig. 2.14 Newton-Rhapson method

The idea is illustrated in Fig. 2.14. The function f (x) has a so-called root at a point
x = x∗ that we attempt to locate. However, since the function is non-linear and is
given in implicit form, we may not be able to directly solve for x but instead have
to provide a guess x0 and evaluate the function at this point, f (x0), and attempt to
get as close to the solution, x∗, as possible.

The idea of the Netwon-Rhapson method is to use an iterative scheme, where,
starting with an initial guess x0, we can compute xs+1 with the help of xs using
successive linearization around xs . Starting at our initial guess x0, the linear
approximation of f : [a, b] → R at x0 is given by:

g0(x) := f (x0) + f ′(x0)(x − x0),

where x is supposed to be the root that we are attempting to locate. Since g0(x) = 0,
we obtain:

0 = f (x0) + f ′(x0)(x1 − x0) ⇒ x1 = x0 − f (x0)

f ′(x0)
.

This iteration step takes us to point x1 in Fig. 2.14. Since we have not yet found the
solution, we need to continue to iterate forward:

xs+1 = xs − f (xs)

f ′(xs)
.

When should we stop the algorithm?

1. We may stop if we are close to the solution, x∗. Therefore, we stop if |f (xs)| < ε,
e.g., if |f (x)| < 10−5,
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2. or we may stop the algorithm if successive values of xs no longer change, e.g., if
xs and xs+1 are close to one another:

|xs − xs+1|
1 + |xs| ≤ ε, ε ∈ R++. (2.58)

Therefore, we examine the percentage change in xs . In the denominator, the number
1 is added to |xs| to ensure that we do not encounter the problem of numerical
inaccuracies if xs is small in absolute value. To understand this problem, note that
the computer has a given machine accuracy, e.g., it can only store and compute
numbers with an accuracy of 1e-16. Let us assume that xs =1.0e-15. In this case,
we cannot determine the solution with an accuracy of 1% because the computer is
not able to distinguish between 1.01e-16 and 1.0e-16. Therefore, (2.58) would not
be applicable if we did not add the number one to the denominator.

The Newton-Rhapson algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 (Newton-Raphson)

Purpose: Solve f (x) = 0, where x ∈ R.

Steps:

Step 1: Initialize: choose x0.
Step 2: Compute f (x0) and f ′(x0) and iterate on the sequence:

xs+1 = xs − f (xs)

f ′(xs)
.

Step 3: Check for convergence: If ‖f (xs)‖∞ < ε and/or |xs+1 −xs |/(1 +|xs|) ≤ ε

for a given tolerance ε ∈ R++, stop; otherwise return to step 2.

There are two major problems with the Newton-Rhapson method:

1. xs+1 may not be defined. For example, in Fig. 2.14, x1 lies outside the definition
area of f (.), e.g., utility from negative consumption cannot be evaluated (if the
computer has to evaluate ln(x) for x ≤ 0, the computation breaks down). We
need to choose a different value, x ′

1, as the starting point in the second iteration.
2. It may be impossible to derive f ′(.).

To circumvent these problems, we modify the Newton-Rhapson algorithm as
follows:

1. We backtrack x ′
s+1 along the direction of f ′(xs) to a point xs+1 at which f can be

evaluated. For example, we could simply take the midpoint between xs and xs+1.
If this point x ′

s+1 = (xs + xs+1)/2 is still not admissible, we take the midpoint
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∗

Fig. 2.15 Secant method

between xs and x ′
s+1. We continue in this fashion until we are able to evaluate

f (.).
2. Instead of f ′(.), we use the slope of the secant rather than the derivative to

compute the derivative. Therefore, the Newton-Rhapson step is changed to:

xs+2 = xs+1 − xs+1 − xs

f (xs+1) − f (xs)
f (xs+1). (2.59)

To compute the secant, we need two former iteration points, xs and xs+1, and,
consequently, two initial points for this method. The secant method is illustrated
in Fig. 2.15.

The altered algorithm is called the Modified or Quasi-Newton Method. In the
following, we will state the algorithm for the case in which we do not have to solve
one single non-linear equation, f (x) = 0, but a system of system of n non-linear
equations in the unknowns x = [x1, x2, . . . , xn]:

0 = f 1(x1, x2, . . . , xn),

0 = f 2(x1, x2, . . . , xn),

... = ...

0 = f n(x1, x2, . . . , xn),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇐⇒ 0 = f (x). (2.60)
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The equivalent to f ′(x) in the multi-variable case is the Jacobian matrix J (x) of
partial derivatives of f = [f 1, f 2, . . . , f n]′ with respect to xi, i = 1, 2, . . . n. We
use the notation

f i
j := ∂f i(x)

∂xj
.

The Jacobian is defined by:

J (x) :=

⎡

⎢⎢⎢⎣

f 1
1 f 1

2 . . . f 1
n

f 2
1 f 2

2 . . . f 2
n

...
...

. . .
...

f n
1 f n

2 . . . f n
n

⎤

⎥⎥⎥⎦ . (2.61)

Algorithm 2.2 (Modified Newton-Raphson)

Purpose: Solve f (x) = 0, where f = [f 1, f 2, . . . , f n]′ and x ∈ R
n.

Steps:

Step 1: Initialize: Choose x0.
Step 2: Compute J (x0) the Jacobian of f at x0, and solve J (x0)dx = −f (x0).

If x1 = x0 + dx is not an admissible point, choose λ ∈ (0, 1) such that
x2 = x0 + λdx is admissible, and set x1 = x2.

Step 3: Check for convergence: If ‖f (x1)‖∞ < ε and/or |x1
i −x0

i |/(1+|x0
i |) ≤ ε ∀i

for a given tolerance ε ∈ R++, stop; otherwise set x0 = x1, and return to
step 2.

This algorithm is implemented in the numerical Gauss routine FixVMN1(.) that
we use in our programs.53 In MATLAB, the command fsolve computes the solution
to non-linear equations.

The most pressing remaining problem for the researcher who wants to apply the
Newton-Rhapson algorithm and the routine FixVMN1(.) is to come up with a good
initial guess that is close to the true solution. If the guess is not close enough, the
sequence xs , s = 1, 2, . . ., might not converge. Possible methods to find a good
initial guess are as follows:

1. Grid search over an interval. Of course, in this case, we have to ensure that
the algorithm may not have to evaluate the function at a point that results in a
breakdown (e.g., 1/0 or (−2.5)1/2).

53The toolbox is available as the Gauss source file toolbox.src from my homepage.
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2. Educated guess.
3. Genetic search.
4. Backstepping.

A diligent discussion of these problems is provided in Chapter 11.5 of Heer and
Maußner (2009). We will also discuss this problem in the upcoming applications in
this book if appropriate.

Appendix 2.3: Solving the Benchmark RBCModel

In this appendix, we compute the solution of the benchmark real business cycle
(RBC) model described in Sect. 2.4. To solve it we use a linear approximation of the
system of difference equations at the steady state. The algorithm is based upon the
pioneering work of Blanchard and Kahn (1980) and follows the approach of King
and Watson (2002).54

Our model is described by the first-order condition of the household, (2.36), and
the resource constraint (2.44). After substitution of the factor prices from (2.43) and
the production function, yt = Ztk

α
t L

1−α
t , the equilibrium can be presented by the

following equations in kt , λt , ct , and Lt :

λt = ιc
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ), (2.62a)

λt (1 − α)Ztk
α
t L

−α
t = (1 − ι)c

ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (2.62b)

(1 + n)λt = Et λt+1β
[
1 + αZt+1k

α−1
t+1 L

1−α
t+1 − δ

]
, (2.62c)

Ztk
α
t L

1−α
t = ct + (1 + n)kt+1 − (1 − δ)kt . (2.62d)

We have to distinguish four types of variables in the stochastic system of
difference equations (2.62). First, we have the predetermined variables xt . In our
case, the only predetermined variable in period t is the capital stock kt because
investment it−1 = kt −(1−δ)kt−1 was already chosen at the end of period t−1. The
second set of variables are the so-called costate variables λt . The number of these
variables must be equal to the number of dynamic equations (those equations that
contain variables from both periods t and t +1) minus the number of predetermined
variables. Therefore, we need one costate variable. In addition, the costate variables
must be dynamic, i.e., these variables must appear in the system of equations with
time index t + 1. In our case, the Lagrange multiplier λt is the costate variable. The
third type of variables are control variables ut , which are the remaining variables

54This appendix is intended to offer a short introduction to the ideas of solution methods using
a simple example. A much more detailed technical description with a generalization to multi-
dimensional problems is provided in Chapter 2.4 of Heer and Maußner (2009) or in Chapter 6.8 of
McCandless (2008).
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in the model that are either chosen by the household and/or the firm, e.g., labor
supply, or that are determined by equilibrium conditions, e.g., the prices that equate
demand and supply. In our case, the control variables are consumption ct and labor
Lt . Finally, the fourth type of variable is the exogenous state variable, which is the
technology shock Zt .

To solve the system of equations (2.62), we linearize it around the deterministic
steady state in a first step and solve the linearized system in a second step. Therefore,
we first successively linearize each of the equations in (2.62) starting with (2.62a).
We take the logarithm of (2.62a):

lnλt = ln ι − [1 − ι(1 − σ)] ln ct + (1 − ι)(1 − σ) ln(1 − Lt ).

and compute the total differential of this equation in steady state with Zt = Z,
kt = k, ct = c, and Lt = L:

dλt

λ
= − [1 − ι(1 − σ)]

dct

c
− (1 − ι)(1 − σ)

L

1 − L

dLt

L
.

Using the notation x̂t ≡ dxt/x for the percentage deviation of the variable x ∈
{Z, k, c, L, λ}, we obtain:

λ̂t = − [1 − ι(1 − σ)] ĉt − (1 − ι)(1 − σ)
L

1 − L
L̂t .

Similarly, we log-linearize (2.62b):

αk̂t + λ̂t + Ẑt = ι(1 − σ)ĉt +
[

1 − (1 − ι)(1 − σ)
L

1 − L
+ α

]

︸ ︷︷ ︸
ζ

L̂t .

Rearranging terms, we find

(
− [1 − ι(1 − σ)] −(1 − ι)(1 − σ) L

1−L

ι(1 − σ) ζ

)(
ĉt

L̂t

)
=
(

0 1
α 1

)(
k̂t

λ̂t

)
+
(

0
1

)
Ẑt ,

(2.63)

or, evaluated in steady state,

(−1.3375 0.2839
−0.3375 1.0725

)

︸ ︷︷ ︸
Cu

(
ĉt

L̂t

)
=
(

0.0000 1.0000
0.3600 1.0000

)

︸ ︷︷ ︸
Cxλ

(
k̂t

λ̂t

)
+
(

0.0000
1.0000

)

︸ ︷︷ ︸
CZ

Ẑt .

(2.64)
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More generally, we can write (2.64) in the following form:

Cuut = Cxλ

[
xt

Λt

]
+ Czzt , (2.65)

where we define the variables ut , xt , Λt , and ztas follows:

ut ≡
(
ĉt

L̂t

)
, xt ≡ k̂t , Λt ≡ λ̂t , zt ≡ Ẑt .

Next we consider (2.62c), substitute rt = αZt (Lt/kt )
1−α and differentiate totally

in steady state:

dλt = Et

[
dλt+1 + λβr

1 + n

(
dZt+1

Z
− (1 − α)

dkt+1

k
+ (1 − α)

dLt+1

L

)]

and, after dividing by λ:

(1 − α)βr

1 + n
Et k̂t+1 −Et λ̂t+1 + λ̂t = (1 − α)βr

1 + n
Et L̂t+1 + βr

1 + n
Et Ẑt+1. (2.66)

Finally, the resource constraint of the economy is presented by (2.62d). Taking the
total differential in steady state yields

Ẑt +
[
α + (1 − δ)

k

y

]
k̂t + (1 − α)L̂t = c

y
ĉt + (1 + n)

k

y
k̂t+1.

Rearranging the last two log-linearized equations, we obtain

(
(1−α)βr

1+n
−1

(1 + n) k
y

0

)
Et

(
k̂t+1

λ̂t+1

)
+
(

0 1

−
[
α + (1 − δ) k

y

]
0

)(
k̂t

λ̂t

)

=
(

0 (1−α)βr
1+n

0 0

)
Et

(
ĉt+1

L̂t+1

)
+
(

0 0
− c

y
(1 − α)

)(
ĉt

L̂t

)

+
(

βr
1+n

0

)
Et Ẑt+1 +

(
0
1

)
Ẑt .

(2.67)
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Computing the matrices of this system of equations by plugging in the parameter
and equilibrium values of the model, we derive

(
0.0191 −1.0000
11.96 0.0000

)

︸ ︷︷ ︸
Dxλ

Et

(
k̂t+1

ĉt+1

)
+
(

0 1.0000
−12.0805 0

)

︸ ︷︷ ︸
Fxλ

(
k̂t

ĉt

)

=
(

0 0.0191
0 0

)

︸ ︷︷ ︸
Du

(
ĉt+1

L̂t+1

)
+
(

0 0
−0.7608 0.6400

)

︸ ︷︷ ︸
Fu

(
ĉt

L̂t

)
+
(

0.0298
0

)

︸ ︷︷ ︸
Dz

Et Ẑt+1

+
(

0
1.000

)

︸ ︷︷ ︸
Fz

Ẑt .

More generally, this equation can be written as:

DxλEt

[
xt+1

Λt+1

]
+ Fxλ

[
xt

Λt

]
= DuEtut+1 + Fuut + DzEt zt+1 + Fzzt . (2.68)

Collecting all dynamic equations characterizing our linearized stochastic system of
difference equations, we derive (2.69):

Cuut = Cxλ

[
xt

Λt

]
+ Czzt , (2.69a)

DxλEt

[
xt+1

Λt+1

]
+ Fxλ

[
xt

Λt

]
= DuEtut+1 + Fuut (2.69b)

+ DzEt zt+1 + Fzzt .

In addition, we assume that Zt is governed by the AR(1)-process (2.45):

Ẑt = ρZẐt−1 + εt .

To reduce the system, we assume that the first equation can be solved for the
vector ut :

ut = C−1
u Cxλ

[
xt

Λt

]
+ C−1

u Czzt . (2.70)

In our case,

(
ĉt

L̂t

)
=
(

0.0764 −0.5891
0.3597 0.7470

)(
k̂t

λ̂t

)
+
(

0.2120
0.9992

)
Ẑt . (2.71)
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Shifting the time index one period into the future and taking expectations
conditional on information as of period t yields:

Et ut+1 = C−1
u CxλEt

[
xt+1

Λt+1

]
+ C−1

u CzEt zt+1. (2.72)

The solutions (2.70) and (2.72) allow us to eliminate ut and Et ut+1 from (2.69b):

(
Dxλ − DuC

−1
u Cxλ

)
Et

[
xt+1

Λt+1

]
= −

(
Fxλ − FuC

−1
u Cxλ

) [
xt

Λt

]

+
(
Dz + DuC

−1
u Cz

)
Et zt+1

+
(
Fz + FuC

−1
u Cz

)
zt .

Assume that the matrix Dxλ −DuC
−1
u Cxλ is invertible. Furthermore, (2.45) implies

Et zt+1 = ρZzt . Consequently, we obtain the reduced dynamic system:

Et

[
xt+1

Λt+1

]
= W

[
xt

Λt

]
+ Rzt ,

W = −
(
Dxλ − DuC

−1
u Cxλ

)−1 (
Fxλ − FuC

−1
u Cxλ

)
,

R =
(
Dxλ − DuC

−1
u Cxλ

)−1

×
[(
Dz + DuC

−1
u Cz

)
ρZ +

(
Fz + FuC

−1
u Cz

)]
.

(2.73)

In our example,

Et

[
k̂t+1

λ̂t+1

]
=
(

1.0245 0.0774
0.0123 0.9869

)

︸ ︷︷ ︸
W

[
k̂t

λ̂t

]
+
(

0.1236
−0.0443

)

︸ ︷︷ ︸
R

Ẑt , (2.74)

Next, we proceed in the same way as in the derivation of our stability result in
Sect. 2.2.2. In particular, we use the Schur factorization of W :

S = T −1WT,

with

S =
(

0.9695 0.0651
0.0000 1.0419

)
, T =

(
0.8154 0.5789

−0.5789 0.8154

)
.
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We can reformulate the equation in the transformed variables

[
k̃t

λ̃t

]
≡ T −1

[
k̂t

λ̂t

]
=
[

0.8154 −0.5789
0.5789 0.8154

] [
k̂t

λ̂t

]
. (2.75)

Multiplying (2.74) by T −1, we obtain

Et

[
k̃t+1

λ̃t+1

]
=
(

0.9695 0.0651
0.0000 1.0419

)[
k̃t

λ̃t

]
+
(

0.1264
0.03545

)
Ẑt .

We solve this difference equation line by line, starting with the last line.
Accordingly,

Et λ̃t+1 = 1.0419λ̃t + 0.03545Ẑt.

Rearranging this equation, we obtain

λ̃t = 1

1.0419
Et λ̃t+1 −0.0340︸ ︷︷ ︸

ρ1

Ẑt

= 1

1.0419
Et

(
1

1.0419
Et+1λ̃t+2 + ρ1Ẑt+1

)
+ ρ1Ẑt

= . . .

= lim
i→∞Et

1

1.0419i
λ̃t+i + ρ1

(
Ẑt + ρZ

1.0419
Ẑt + . . .

)

= ρ1

1 − ρZ

1.0419

Ẑt

= −0.3854Ẑt,

where we have used the assumptions that (1) Et Ẑt+i = (ρZ)i Ẑt and (2)
limi→∞ λ̃t+i < ∞. Noticing that λ̃t = 0.5789k̂t + 0.8154λ̂t , we derive

λ̂t = −0.5789

0.8154
k̂t − 0.3854

0.8154
Ẑt = −0.7099k̂t − 0.4727Ẑt . (2.76)

Therefore, we have derived the policy function for the marginal utility of consump-
tion, λ̂t , given the values of the state variables k̂t and Ẑt .

Next, we have to solve the first line of the difference equation

k̃t+1 = 0.9695k̃t + 0.0651λ̃t + 0.1264Ẑt.
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Substituting for k̃t and λ̃t from (2.75) and for λ̂t from (2.76), we find that55

k̂t+1 = 0.9695k̂t + 0.0870Ẑt . (2.77)

With the help of the policy function for λ̂t , we can also compute the policy function
for ĉt and L̂t from (2.71):

(
ĉt

L̂t

)
=
(

0.4946
−0.1706

)
k̂t +

(
0.4908
0.6457

)
Ẑt .

Similarly, we can compute the policy function for output, wages, and the interest
rate with the help of L̂t from

ŷt = Ẑt + αk̂t + (1 − α)L̂t ,

r̂t = Ẑt − αk̂t + (1 − α)L̂t ,

ŵt = Ẑt + αk̂t − (1 − α)L̂t .

Appendix 2.4: Data Sources

Most data are taken from the FRED database of the Federal Reserve Bank of St.
Louis at https://research.stlouisfed.org/fred2/, where you can
download many US macroeconomic time series (Accessed on 28 October 2015).
The time series that we use in this chapter are also attached as a separate ASCII file
“Fred_Data.txt” to my Matlab/Gauss programs.

• Output Gross Domestic Product. Bureau of Economic Analysis (BEA), retrieved
from FRED, Federal Reserve Bank of St. Louis. Series ID: GDPA.

• Consumption Real Personal Consumption Expenditures, Billions of Chained
2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate. Series ID: PCECC96.

• Investment Private Nonresidential Fixed Investment. BEA, retrieved from
FRED, Federal Reserve Bank of St. Louis. Series ID: PNFIA.

• Labor Supply Nonfarm Business Sector: Hours of All Persons. US. Bureau of
Labor Statistics, retrieved from FRED, Federal Reserve Bank of St. Louis. Series
ID: HOANBS.

55In (2.77), we report the result from the computation with the program Ch2_rbc.g, where we used
an accuracy of eight digits. If you compute the result by hand using the numerical values from
Eqs. (2.75) and (2.76), the result might diverge by an order of 10−3 due to rounding errors.
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• Wages Nonfarm Business Sector—Compensation Per Hour. BLS, retrieved from
FRED, Federal Reserve Bank of St. Louis. Series ID: COMPNFB.

• Nominal Interest Rate for the Risk-free Rate 3-Month Treasury Bill: Sec-
ondary Market Rate, Percent, Quarterly, Not Seasonally Adjusted. Series ID:
TB3MS.

• Nominal Equity Return Standard & Poor’s 500 Total Return, Yield, Percent,
Quarterly, Not Seasonally Adjusted, own calculation.

• Inflation Rate Personal Consumption Expenditures: Chain-type Price Index
Less Food and Energy, Index 2009 = 100, Quarterly, Seasonally Adjusted,
retrieved from FRED, Federal Reserve Bank of St. Louis. Series ID: JCXFE.

Problems

2.1. Compute the dynamics for the centralized deterministic Ramsey model with
labor supply as presented in Fig. 2.9 for the case of a CES production function (2.6).
Use the value σp = 3/4 for the production substitution elasticity as in Heer and
Schubert (2012). For all other parameters, use the values provided in Sect. 2.2.

2.2. Compute the Jacobian (2.16) at the steady state kt = k, xt = k.

2.3. Consider the market economy described in Sect. 2.3. Assume that the gov-
ernment has to finance exogenous expenditures Gt that do not affect utility or
production (in Chap. 4, we will modify this assumption). Consider two cases:

1. Government expenditures are financed by a lump-sum tax Tt such that each
household pays Tt/Nt .

2. Government expenditures are financed by a tax on wage income such that the
individual household pays τtwtLt in taxes.

Is the allocation in the economy in both cases Pareto-optimal?

2.4. Consider the market economy described in Sect. 2.3. Assume that the initial
capital stock per capita amounts to 50% of its steady state value.

1. Compute the transition dynamics to the steady state. Assume that the transition
is completed after 50 periods. How does the savings rate behave during the
transition? Contrast your finding in the Ramsey model with the Solow model
where the savings rate is constant.

2. Introduce capital adjustment costs into the Ramsey model. For this reason,
assume that the household faces the following costs to increase its capital stock:

kt+1 = (1 − δ)kt + Φ

(
it

kt

)
,
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where it denotes investment and Φ(.) is a concave function that takes the
following form:

Φ

(
it

kt

)
= a1

1 − ζ

(
it

kt

)1−ζ

+ a2.

Calibrate the parameter of the adjustment cost function Φ(.) as follows: ζ =
1/0.23 is taken from Jermann (1998). Assume that adjustment costs play no role
in steady state, meaning that i = δk, and that the multiplier of the adjustment
cost constraint in the Lagrangian,

L =
∞∑

t=0

βt {u(ct , Lt ) + λt [wtLt + rt kt − ct − it ]

+qt

[
kt+1 − (1 − δ)kt − Φ

(
it

kt

)]}

is equal to one in steady state, q = 1, implying

a1 = δζ ,

and

a2 = −ζ

1 − ζ
δ.

How do capital adjustment costs affect the savings rate during the transition?
3. Compute the impulse responses and the time series statistics for the RBC model

with capital adjustment costs.

2.5. Two-Sector Model (follows Heer, Maußner, and Süssmuth 2018) Consider
a two-sector economy in which a consumption and an investment good are produced
in separate production sectors. The consumption goods sector (subscriptC) employs
the technology

Ct = ZCtL
1−α
Ct Kα

Ct , α ∈ (0, 1),

where LCt and KCt denote labor and capital employed in this sector. ZCt denotes
the total factor productivity (TFP). We assume that the log of ZCt follows a random
walk with drift parameter aC and (possibly) autocorrelated innovations εCt :

lnZCt = lnZCt−1 + aC + εCt ,

εCt = ρCεCt−1 + ηCt , ηCt iid N (0, σC).
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The investment goods sector (subscript I ) uses the production technology

It = ZItL
1−α
I t Kα

I t ,

so that It is the amount of investment goods in period t which sell at the relative
price pt . The process for total factor productivity in the investment sector is also
difference stationary, yet with a different drift rate aI :

lnZIt = lnZIt−1 + aI + εI t ,

εI t = ρI εI t−1 + ηIt , ηI t iid N (0, σ I ).

The economy’s output in units of the consumption good is equal to

Yt = Ct + ptIt .

Total labor and capital in the economy equal

Lt = LCt + LIt ,

Kt = KCt + KIt .

The firms in the two sector maximize profits

ΠC
t = Ct − wCt+sLCt − pt ICt ,

ΠI
t = ptIt − wItLIt − pt II t .

A representative household supplies labor LCt to the consumption goods sector
and LIt to the investment goods sector. The respective wage rates are wCt and wIt

and are equal to each other in equilibrium. The household maximizes intertemporal
utility

maxEt

∞∑

s=0

βsu (Ct+s, Lt+s ) ,

where its instantaneous utility function u depends on consumption Ct and labor Lt :

u(Ct ,Nt ) = ln(Ct ) − ν0

1 + ν1
L

1+1/ν1
t , ν0, ν1 > 0.

The household also owns the capital stock which is subject to adjustment costs:

KXt+1 = ΦX(IXt/KXt )KXt + (1 − δ)KXt , δ ∈ (0, 1], X ∈ {C, I },
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where δ denotes the rate of capital depreciation and the adjustment cost functions
ΦX, X ∈ {C, I }, have the same functional forms as the one specified in Problem 2.4
above.

1. Derive the equilibrium conditions of the model.
2. Reformulate the equilibrium equations in stationary variables. Show that, in the

long-run, the relative price of the two goods pt is driven by the different rates of
technological progress.

3. Compute the model and its impulse responses to a productivity shock in the two
sectors. Use the calibration of Heer, Maußner, and Süssmuth (2018): β = 0.994,
ν1 = 0.3, α = 0.36, δ = 0.021, ζC = 6.0, ζI = 2.0, aC = 0.00054, aI =
0.0077, ρC = 0, ρI = 0.28, σC = 0.0070, σ I = 0.0084, and the steady
state value of labor L = 0.33 for the calibration of ν0. How do the responses
differ between the productivity shocks to the consumption and investment goods
sectors?

2.6. For the two-period model in Appendix 2.1, show that the optimal consumption
in period 1, c1, is given by:

c1 = y1 + y2
1+r

1 + β1/σ [1 + r]1/σ−1 . (2.78)

For y2 = 0, it follows immediately that ∂c1
∂r

> 0 if and only if 1/σ > 1. Recompute
the values in the Tables 2.2 and 2.3 in Appendix 2.1 with the help of Gauss (use the
proc() command to compute the value of the function (2.78)) or MATLAB.
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3TheOverlapping GenerationsModel

3.1 Introduction

This chapter investigate the standard overlapping generations (OLG) model with
two periods. It serves as one of the main tools to study problems in modern public
finance such as pensions, unemployment insurance, and debt. The standard OLG
model will be shown to be possibly Pareto-inefficient. In addition, we discuss the
problem of stability and note that it is less relevant for the large-scale OLG models
that we consider in later chapters than for simple two-period models. With the help
of an example, we show that the transition in the OLG model might take place
over very long time horizons exceeding several decades. In addition, important
extensions of the standard two-period OLG model such as bequests and growth
are introduced.

3.2 TheModel

In this section, we exmine the two-period model developed by Diamond (1965) and
Samuelson (1958). We begin by describing the demographics in the model, before
we turn to the household utility maximization problem. Household labor supply is
assumed to be inelastic (an assumption that we will dispense with in later chapters),
and consumption and savings depend on the factor prices, the real wage rate wt ,
and the real interest rate rt . Production is characterized by constant returns to scale,
and we assume an infinite number of representative firms of measure one to allow
us to study the problem with the help of a representative firm. We will first study
the decentralized competitive equilibrium before we compare it to the command
optimum.
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3.2.1 Demographics

Each period has two living generations, a young and an old generation. In each
generation, the cohort members are identical, which allows us to study their behavior
by means of a representative member that we refer to as the young or the old,
respectively.

The population of the young generation is denoted by Nt and grows at rate n:

Nt = (1 + n)Nt−1. (3.1)

As a consequence, the total population Ñt = Nt + Nt−1 also grows at rate n:

Ñt+1

Ñt

= Nt+1 + Nt

Nt + Nt−1
= (1 + n)Nt + Nt

(1 + n)Nt−1 + Nt−1
= Nt

Nt−1
= 1 + n. (3.2)

3.2.2 Household UtilityMaximization

The young supplies one unit of labor inelastically in period t , l1t = 1, while the
old is retired and does not work, l2t = 0. Here, and in the following, the superscript
i ∈ {1, 2} denotes the age of the generation, while the subscript t denotes the period.
The generation born in period t consumes c1

t in period t and c2
t+1 in period t + 1,

while the generation born in period t−1 consumes c2
t in period t . Total consumption

Ct , therefore, amounts to

Ct = Ntc
1
t + Nt−1c

2
t .

The utility of the young generation is assumed to be additively separable in the
utilities of the two periods:

Ut = u(c1
t ) + βu(c2

t+1). (3.3)

Instantaneous utility is assumed to be concave:

u′(.) > 0, u′′(.) < 0, lim
c→0

u′(c) = ∞.

In addition, we assume that the marginal utility of consumption approaches infinity
if consumption goes to zero.

The young generation discounts future utility with the discount factor β > 0.
Contrary to the Ramsey model, the assumption that β < 1 is not necessary to solve
the maximization problem here. For finite instantaneous utility u(.), lifetime utility



3.2 The Model 65

Ut is bounded given a discount factor β > 1, meaning that we can compare and
rank different lifetime consumption paths {c1

t , c
2
t+1}.1

Individuals are born without any assets (we will introduce bequests later in this
chapter) and work one unit of time during their first period of life, earning the real
wage wt . Therefore, wages are the only income that they either consume or save,
meaning that savings are given by (since only the young save, the superscript is
dropped):

st = wt − c1
t . (3.4)

In the second period, agents retire and consume their savings

c2
t+1 = (1 + rt+1)st , (3.5)

where rt+1 denotes the real interest rate over the period t + 1. Equation (3.4) can be
substituted into (3.5) to yield the intertemporal budget constraint:

c1
t + c2

t+1

1 + rt+1
= wt . (3.6)

Let us take a more detailed look at the timing. At the beginning of period t , agents
begin to provide labor services to the firms and work for the full length of the period.
They receive their wage wt at the end of the period when the production of the good
is complete, and they also consume c1

t at this time. Savings st are invested in the
capital market at the end of period t (which is also that at the beginning of period
t + 1) and earn interest rt+1 over period t + 1. At the end of period t + 1, savings
plus interest is remunerated to the old agents, and consumption of amount c2

t+1 takes
place.

Accordingly, the young generation household’s optimization problem consists in
maximizing (3.3) subject to (3.6). The Lagrangian function is represented by

L = u(c1
t ) + βu(c2

t+1) + λ

[
wt − c1

t − c2
t+1

1 + rt+1

]
.

Differentiating this expression with respect to c1
t and c2

t+1 implies the first-order
condition:

u′(c1
t ) = β(1 + rt+1)u

′(c2
t+1). (3.7)

1In later chapters, we will study different applications with β > 1. Hurd (1989) shows that
empirical discount factors are above one if one accounts for mortality risk and bequests.
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∗
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Indifference curve 

Intertemporal budget line

Fig. 3.1 Savings decision in the OLG model

Substituting (3.4) and (3.5) for c1
t and c2

t+1 in (3.7)

u′(wt − st ) = β(1 + rt+1)u
′((1 + rt+1)st ), (3.8)

implies savings as an implicit function of the wage rate in period t , wt , and the
interest rate in period t + 1, rt+1:

st = s(wt , rt+1). (3.9)

The intertemporal optimization problem of the young is illustrated in Fig. 3.1. The
optimal intertemporal consumption allocation {c1∗

t , c2∗
t+1} is represented by point A,

where the indifference curve Ut(c
1
t , c

2
t+1) is tangent to the intertemporal budget

constraint (3.6). Savings are equal to wages wt minus consumption c1
t and are

represented by the length of the blue line in Fig. 3.1.

3.2.2.1 Properties of the Savings Function s(wt, rt+1)

In the following, we briefly show that the optimization problem has a unique
solution for savings st = s(wt , rt+1) and that while savings always increase with
the wage rate wt , the response of savings to an increase in the interest rate depends
on the magnitude of the elasticity of intertemporal substitution. For an elasticity
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∗

Fig. 3.2 Equilibrium savings in the OLG model

above (below) one, savings will increase (decrease) with higher interest rates. The
elasticity of intertemporal substitution, therefore, will be crucial for the analysis in
later chapters.2

To derive these properties of the savings functions (3.9), let us restate (3.7) as
follows:

u′(w − s) = βu′ [(1 + r)s] (1 + r) ≡ ψ(s, r).

The left-hand side (LHS) of this equation is a strictly increasing function of savings
s on the interval [0, w] with domain [u′(w),∞], while the right-hand side (RHS) is
a strictly decreasing function of s, denoted by ψ(s, r), on the interval [0, w] with
domain

[
u′ ((1 + r)w) (1 + r),∞]. As a consequence, there is one unique solution

s(w, r). For illustration, the two sides of the equations are graphed in Fig. 3.2. The
upward-sloping blue curve displays the increasing LHS of the equation, while the
downward-sloping green curve ψ(s, r) displays its RHS for given wages wt = w1
and interest rates rt+1 = r1. For s → w1, the LHS u′(w1 − s) approaches infinity.

2The concept of the elasticity of intertemporal substitution is reviewed in Appendix 2.1.
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∗ ∗

Fig. 3.3 Equilibrium savings for w2 > w1

Increasing w from w1 to w2 results in a downward shift of the LHS u′(w − s),
as illustrated in Fig. 3.3, because marginal utility u′(.) is a monotone decreasing
function of consumption. As a consequence, savings always increase.3

To derive the comparative statics of savings s(.) with respect to the interest rate
rt+1, we study the effect of a tax change on the location of the two curves in Fig. 3.4.
Increasing r from r1 to r2 does not affect the location of the LHS of the equation,
while it shifts the curve ψ(s, r) outwards, meaning that savings increase if and only
if ∂ψ/∂r > 0:

∂ψ(s, r)

∂r
= βu′′ [(1 + r)s] (1 + r)s + βu′ [(1 + r)s]

= βu′(c2)

[
u′′(c2)

u′(c2)
c2 + 1

]

= βu′(c2) [1 − σ ] ,

where

σ ≡ −u′′(c)
u′(c)

c

3You are encouraged to analytically derive this result by taking the total differential of (3.9).
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Fig. 3.4 Equilibrium savings for r2 > r1 if σ < 1

is the absolute value of the elasticity of marginal utility with respect to consumption
(coefficient of relative risk aversion in the economy with uncertainty). Therefore,
∂s
∂r

> 0 iff σ < 1. This case is depicted in Fig. 3.4.
In Appendix 2.1, we show that the elasticity of intertemporal substitution is equal

to the reciprocal of the elasticity of marginal utility with respect to consumption
and, therefore, equal to 1/σ . Accordingly, we can restate our result above such
that an increase in the interest rate increases (decreases) savings if the elasticity
of intertemporal substitution is larger (smaller) than one.4

3.2.3 Firms

The economy comprises a large number of identical firms that produce output Yt
using capital Kt and labor Lt as inputs:

Yt = F(Kt , Lt ). (3.10)

4In Appendix 2.1, we also show that the result depends on the assumption that non-capital income
in period 2 is zero.
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For notational simplicity, we assume that F(., .) is net production such that
depreciation is already accounted for. Production is characterized by constant
returns to scale, implying

Yt

Lt

= F

(
Kt

Lt

, 1

)
≡ f (kt ),

where k ≡ K/L denotes the capital-labor ratio or, equivalently, the capital intensity.
The representative firm pays factor prices wt and rt to the workers and capital

owners, and thus, profits are given by

Πt = Yt − wtLt − rtKt . (3.11)

Assuming perfect competition in both goods and factor markets, profit maximiza-
tion (3.11) subject to (3.10) implies the first-order conditions5:

wt = ∂F (Kt , Lt )

∂Lt
= f (kt ) − ktf

′(kt), (3.12a)

rt = ∂F (Kt , Lt )

∂Kt

= f ′(kt). (3.12b)

According to (3.12a) and (3.12b), the wage rate and the interest rate are equal to
the marginal products of labor and capital. Notice that both factor prices wt and
rt are functions of only one variable, capital intensity kt . This is a very convenient
property of the constant-returns-to-scale production function because it will allow
us to derive the equilibrium dynamics of the model as the solution of a dynamic
equation in kt .

3.2.4 Equilibrium

In general equilibrium, the labor supply of the young is equal to the labor demanded
by firms:

Nt l
1
t = Nt = Lt .

The aggregate capital stock Kt increases with investment:

Kt+1 − Kt = It . (3.13)

5To understand the RHS of (3.12a), notice that ∂F (Kt ,Lt )
∂Lt

= ∂Lt f (Kt /Lt )
∂Lt

.
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In addition, investment is equal to aggregate savings:

It = Ntst − Kt. (3.14)

At the end of period t , the old consume (or dissave) all their accumulated savings,
which is equal to the aggregate capital stock Kt (recall that the young are born
without assets). The young invest all their savings Ntst in the capital stock of the
firms Kt+1. Therefore, in capital market equilibrium

Kt+1 = Ntst (3.15)

or, after dividing by Nt ,

(1 + n)kt+1 = st = s(wt , rt+1). (3.16)

Since wt = wt(kt ) and rt+1 = rt+1(kt+1) according to (3.12), Eq. (3.16) constitutes
a dynamic equation in kt that describes the equilibrium dynamics of the economy
for a given k0:

kt+1 = g(kt ). (3.17)

3.2.4.1 Steady State
In steady state, the capital stock is constant, kt = kt+1 = k, implying:

(1 + n)k = s(w(k), r(k)). (3.18)

For given functional forms of the utility function and production function, this
equation can be solved for k.

3.2.5 Existence and Stability

There is no guarantee that there exists a unique stable steady state for the dynamic
equation kt+1 = g(kt ) in (3.17). Figure 3.5 displays three different forms for g(kt ).
For the case depicted by the lower red curve, there exists no steady state with
strictly positive production (only the trivial steady state with k = 0). The green
line illustrates the case in which there are two steady states, A and C, one locally
stable (A) and one unstable (C). If there is a small deviation of kt from the point
C, the capital stock converges to point A or to infinity over time. Only for the
case described by the blue line does there exist a unique and stable steady state,
at point B.
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Fig. 3.5 Uniqueness and existence of the steady state

How can instability, e.g., at point C in Fig. 3.5 arise?6 The economic intuition is
straightforward: For a high capital stock kt , the interest rate is low. For instability
to occur, a perpetually increasing capital stock that leads to perpetually decreasing
interest rates, savings must continue to rise. Of course, this requires that the first
partial derivative of savings with respect to the interest rate must be smaller than
zero, sr < 0.7

Let us formally derive this result with the help of kt+1 = g(kt ):

kt+1 = s [w(kt ), r(kt+1)]

1 + n

= s
[
f (kt) − ktf

′(kt ), f ′(kt+1)
]

1 + n
.

6The argument follows Blanchard and Fischer (1989), Chapter 2.
7In Appendix 2.1, we demonstrate that this is the case for CES utility functions with an elasticity
of intertemporal substitution below one. We also argue that stability is a less important problem in
the large-scale OLG models with many periods that we will consider in later chapters.
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Total Differentiation implies:

dkt+1

dkt
= −sw(kt )ktf

′′(kt )
1 + n − sr (kt+1)f ′′(kt+1)

.

Assuming that there exists a unique equilibrium, k > 0, this derivative evaluated
around the steady state is equal to:

dkt+1

dkt
= −sw(k)kf

′′(k)
1 + n − sr (k)f ′′(k)

.

Local stability requires

∣∣∣∣
−sw(k)kf

′′(k)
1 + n − sr (k)f ′′(k)

∣∣∣∣ < 1.

The numerator is positive since f ′′ < 0 and sw > 0 (assuming that consumption
c2 in period 2 is a normal good). The above expression for the RHS increases with
smaller values of sr . Therefore, the condition is more likely to fail if high interest
rates reduce savings, sr < 0.

3.2.6 A Numerical Example

In the following, we present a very simple, but instructive, numerical example to
illustrate the dynamics in the OLG model and the solution methods. The example
will also be helpful in understanding the more elaborate models in Chaps. 6 and 7.

Since we analyze two periods of life, working and retirement, it makes sense
to choose a period length equal to 30 years. Individuals begin working at real-
life age 25 and retire at age 55. They die at age 84. Of course, this is a very
crude approximation of real life and suffers from the model assumption that the
two periods have equal length. We will extend the standard OLG model with two
periods to one with many periods in later chapters such that the working period is
longer than the retirement period. Population grows at rate n = 0.1.

Next, we have to choose functional forms for the utility and production functions.
We choose a utility function that is characterized by a constant elasticity of
intertemporal substitution, 1/σ = 18:

Ut = ln(c1
t ) + β ln(c2

t+1).

8Compare Appendix 2.1 for the analysis of the utility function which is characterized by a constant
intertemporal elasticity of substitution.
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With this choice, an increase in the interest rate rt has no effect on savings because
the substitution and income effect cancel one another out.9 Production is described
by a Cobb-Douglas function:

Yt = Kα
t L

1−α
t ,

implying (using (3.12))

Yt

Lt

= Yt

Nt

= yt = f (kt ) =
(
Kt

Nt

)α
= kαt , (3.19a)

wt = (1 − α)kαt , (3.19b)

rt = αkα−1
t . (3.19c)

We also need to choose values for the parameters β and α. We choose β = 0.4 ≈
0.9730. To motivate this choice of parameter value, consider that the young attempts
to smooth intertemporal consumption as in the Ramsey model. Accordingly, c1 and
c2 will be approximately equal,10 meaning that we can assume that the marginal
utilities u′(c1) and u′(c2) are also equal to one another. From (3.7), it follows that
1/β = 1 + r . Hence, if we assume an annual interest rate r equal to 3% and a
model period length of 30 years, β = 0.40 serves as an initial approximation. As
in Chap. 2, we set α = 0.36 equal to one minus the labor income share, which,
empirically, amounts to approximately 64% in modern industrialized countries.

For this choice of the functional forms, we can compute optimal savings (3.9)
with the help of (3.7) as follows:

st = st (wt , rt+1) = β

1 + β
wt . (3.20)

In this special case with 1/σ = 1, as noted above, the savings function does not
depend on the interest rate. With wt = (1 − α)kαt , the goods market equilibrium
condition (3.16) becomes

kt+1 = st

1 + n
= β

1 + β

1 − α

1 + n
kαt = g(kt ), (3.21)

which describes equilibrium dynamics with the help of a first-order difference
equation in kt . In steady state, kt = kt+1, and thus, (3.21) can be solved for the
steady-state capital intensity k:

k =
(

β

1 + β

1 − α

1 + n

) 1
1−α = 0.0606,

9For this result, we also assume that the so-called endowment effect is equal to zero. This will be
the case if the household receives zero non-capital income in the second period of life. See also
Appendix 2.1.
10In the steady state of the Ramsey model in Chap. 2, consumption is constant over the lifetime.
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and therefore,

w = (1 − α)kα = 0.233,

r = αkα−1 = 2.166,

s = β

1 + β
w = (1 + n)k = 0.0666,

y = kα = 0.364,

c1 = w − s = 0.167,

c2 = (1 + r)s = 0.211.

Notice that consumption is increasing over the lifetime, meaning that the Euler
condition

c2

c1 = (1 + r)β > 1

implies that the discount rate θ = 1/β − 1 is smaller than the interest rate r .
In addition, the steady-state capital stock k is smaller than in the corresponding
Ramsey model (with equal functional forms for utility and production and the same
parameters α, β, and n). Notice, however, that this need not be true in general.
Wickens (2011) compares the OLG model with the representative agent model11

and shows that it is not clear in which model the capital stock will be larger, which
depends on the parameters θ , α, and the depreciation rate δ. In addition, it is also
not possible to determine whether consumption c1 in the OLG model is smaller or
larger than the steady-state consumption in the representative agent model.

For given initial per capita capital stock in period 0, e.g., k0 = k
3 , we can compute

the dynamics from (3.21). For the solution of the numerical problem, we use the
Gauss program Ch3_olg_dyn1.g. The convergence of the capital intensity is
displayed in Fig. 3.6. The capital intensity kt approaches its long-run steady state
within 3–4 periods, which corresponds to 90–120 years. Compared to the Ramsey
model from Chap. 2, the OLG model is characterized by a much longer length of
the transition period. We will find this result to hold in many other applications in
this book. In addition, we find that the dynamic system displays stability, i.e., it
converges to the long-run equilibrium.12 For the solution to be (locally) stable, the
following condition must hold:

∣∣∣∣
dkt+1

dkt

∣∣∣∣ < 1.0. (3.22)

11See Section 6.3.4 in Wickens (2011).
12To be more precise, (3.16) has two solutions for the steady state, kt+1 = kt = k: (1) k = 0,

which is unstable, and (2) k =
(

β
1+β

1−α
1+n

) 1
1−α

, which is stable.
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Fig. 3.6 Dynamics of the capital stock kt in the numerical example of an OLG model

In the above example,

dkt+1

dkt
= α

β

1 + β

1 − α

1 + n
kα−1
t .

Evaluated for k = 0, the derivative goes to infinity. Evaluated for k =
(

β
1+β

1−α
1+n

) 1
1−α

, the absolute value of the derivative is smaller than 1 for α < 1:

dkt+1

dkt
= α

β

1 + β

1 − α

1 + n
kα−1
t

= α
β

1 + β

1 − α

1 + n

(
β

1 + β

1 − α

1 + n

) α−1
1−α

= α.

The dynamics for a given initial capital stock k0 are illustrated in Fig. 3.7. Starting at
k0 in period t = 0, we find k1 on the blue curve as k1 = β

1+β
1−α
1+n

kα0 using (3.21). The
capital stock k1 is graphed on the ordinate kt+1. With the help of the diagonal kt+1 =
kt (the black line in Fig. 3.7), the capital stock kt+1 is mirrored to the abscissa kt .
Iterating t one period ahead, k1 becomes the present-period capital stock kt , and k2
can be allocated with the help of the function g(kt ). Continuing in this fashion over
periods t = 2, . . ., the complete transition path can be traced. In Fig. 3.7, this is
illustrated by the arrows.
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Fig. 3.7 Stability in the numerical example of an OLG model

The main lines of the GAUSS program Ch3_olg_dyn1.g are as follows:

alpha=0.36; // production elasticity of capital
beta=0.40; // discount factor
n=0.1; // population growth rate
k=( beta/(1+beta) * (1-alpha)/(1+n) )^(1/(1-alpha));
k0=k/3; // initial capital stock

tt=seqa(1,1,20); // periods
kt=zeros(20,1); // time series for capital stock

kt[1]=k0;
i=1;
do until i==20;
i=i+1;
kt[i]=kdyn(kt[i-1]);
endo;

proc kdyn(x);
retp( beta/(1+beta) * (1-alpha)/(1+n) * x^(alpha) );
endp;
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In the first 3 lines, the parameter values are set. In line 4, the stable steady-state
value is computed. The initial capital stock is set to one-third of the steady-state
value in line 5. Assuming a transition length of 20 periods, the time path for kt is
initialized at zero in lines 5–6. The iteration over kt+1 given kt is performed in lines
7–12 using the procedure kdyn(x) in lines 13–15 for the computation of g(kt ).13

3.3 The Command Optimum

3.3.1 Modified Golden Rule

In this section, we study the question of how a benevolent dictator would allocate
consumption over time and between generations. Therefore, we need to choose how
the central planner weights the utility of the different generations. We will postulate
that he discounts the utility of future generations at the common rate R. Accordingly,
the social welfare function is

U = βu(c2
0) +

T−1∑

t=0

1

(1 + R)t

[
u(c1

t ) + βu(c2
t+1)

]
. (3.23)

In particular, we assume that the central planner cares only about the utility of the
T + 1 current and future generations. For R = 0, the central planner cares equally
about all generations.

We assume that the production side is identical to that in the previous section.
The young generation supplies labor inelastically, lst = 1, meaning that total labor
Lt is equal to the size of the young population Nt . Therefore, the central planner
faces the following resource constraint:

Kt + F(Kt ,Nt ) = Kt+1 + Ntc
1
t + Nt−1c

2
t , (3.24)

or, in per capita variables,

kt + f (kt ) = (1 + n)kt+1 + c1
t + 1

1 + n
c2
t . (3.25)

This maximization problem can be solved by differentiating the Lagrange function

L = βu(c2
0) +

T−1∑

t=0

1

(1 + R)t

{ [
u(c1

t ) + βu(c2
t+1)

]

+ λt

[
kt + f (kt ) − (1 + n)kt+1 − c1

t − 1

1 + n
c2
t

]}

13If you are using a different computer language, e.g., MATLAB, you are encouraged to translate
this little simple program into the language that you are using.
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with respect to the variables c1
t , c2

t+1, and kt+1, implying the first-order conditions

λt = u′(c1
t ), (3.26a)

βu′(c2
t+1) = 1

1 + R

λt+1

1 + n
, (3.26b)

λt = 1

1 + R

λt+1

1 + n

[
1 + f ′(kt+1)

]
. (3.26c)

Combining (3.26a), (3.26b), and (3.26c), we can derive the counterpart to the first-
order condition of the household (3.7) in the centralized economy:

u′(c1
t ) = β

[
1 + f ′(kt+1)

]
u′(c2

t+1).

In steady state, c1
t = c1

t+1 = c1, c2
t = c2

t+1 = c2, and kt = k:

βu′(c2) = 1

1 + R

u′(c1)

1 + n
, (3.27a)

1 + f ′(k) = (1 + R)(1 + n). (3.27b)

As a result, the steady state satisfies the modified golden rule (using the approxima-
tion that Rn ≈ 0 for small R and n):

f ′(k) = R + n.

Accordingly, if the central planner attaches equal weight to each generation (R =
0), the marginal product of capital (equal to the real interest rate in decentralized
economy) in the steady state is equal to the population growth rate n.

3.3.2 Pareto-Efficiency

3.3.2.1 Efficiency in the Command Optimum
In the following, we study the question of whether the steady state in the command
optimum is efficient. To do so, let us reconsider the steady-state condition (3.27b):

1 + f ′(k) = (1 + n)(1 + R).

Let c = c1+ c2

1+n
denote total consumption in each period of the steady state divided

by the number of young households, ct = Ct/Nt . Then, (3.25) implies

f (k) − nk = c.
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A decrease in k increases steady-state consumption if and only if

dc

dk
= f ′(k) − n < 0.

If f ′(k) < n (i.e., for R < 0), everyone can be made better off if the capital stock
is decreased. Obviously, this condition holds in steady state. Moreover, this result
holds not only for the new steady state with lower capital k̃ and higher consumption
c̃ but also during the transition. During the transition, consumption ct may even
be higher than in the new long-run equilibrium, c̃. At a minimum, however, it is
guaranteed that ct during the transition is higher than the old steady-state c.

To understand this result, assume that, prior to period t , we are in steady state
with capital stock k and consumption c as given by (3.27b). In period t , a small
change dk < 0 is initiated such that total consumption in periods t and t+1 changes
as follows (assuming that the change in savings, dk < 0, is completely effectuated
in period t)14:

dct = −(1 + n)dk > 0, (3.28a)

dct+1 = (f ′ − n)dk > 0. (3.28b)

Therefore, the total consumption and, hence, utility of all generations could be
increased if f ′(k) < n. Consequently, the OLG model—in contrast to the Ramsey
model—may exhibit dynamic inefficiency.15

In the case in which

dc

dk
= f ′(k) − n > 0,

steady-state consumption could be increased if the capital stock were to grow.
However, in this case, the generations during the transition have to sacrifice
consumption to accumulate additional savings. In particular, if the change, dk > 0,
is completely enacted in period t , total consumption in period t and in period t + 1
adjust according to:

dct = −(1 + n)dk < 0,

dct+1 = (f ′ − n)dk > 0.

14Notice that (3.25) implies that ct = kt − (1 + n)kt+1 + f (kt ). For dkt+1 = dk < 0, dct =
−(1 + n)dkt+1 > 0.
15Compare this with the Pareto efficiency of the Ramsey model in Sect. 2.3.3.
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3.3.2.2 Efficiency in the Decentralized Economy
We can extend the same argument for the command economy from above to the
case of a competitive economy. The steady state in the market economy is described
by (3.16), which we restate for the readers’ convenience:

(1 + n)kt+1 = st = s(wt , rt+1).

For the special case of Cobb-Douglas production and logarithmic utility, we have
shown (3.21):

kt+1 = st

1 + n
= β

1 + β

1 − α

1 + n
kαt

implying that

k =
(

β

1 + β

1 − α

1 + n

) 1
1−α

.

For the steady state, k = kt = kt+1, it is not a priori evident whether

r = f ′(k) ≷ n

From f ′(k) = αkα−1, we derive that the condition is equivalent to

α

1 − α

1 + β

β
≷ n

1 + n
.

For this equation to hold with the ‘<’ sign, population growth needs to be positive,
n > 0. Let us consider empirical values, e.g., α = 0.36 and β = 0.97 with
annual periods. To have dynamic inefficiency, we would need an annual population
growth rate in excess of 114%. Thus, for empirically relevant numbers, dynamic
inefficiency seems less relevant. In fact, in all the applications in this book, dynamic
inefficiency does not arise and is a merely theoretical phenomenon.

Why is the consideration of Pareto efficiency in the market economy important?
Imagine you would like to conduct a welfare analysis of an economically relevant
public policy in an OLG model. For example, you might consider a policy in the
form of higher taxes on capital income that will lead to a reduction in savings.
Such a policy—despite distorting the intertemporal allocation of consumption—
may increase welfare in a dynamically inefficient economy but not in a dynamically
efficient economy.
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3.3.3 Altruism

In this section, we show that the decentralized economy is equivalent to the
command economy if both generations are altruistic and the bequest motive is
operative. First, we review some empirical evidence from the US economy on
bequests, before we implement bequests in the standard OLG model.

In this section, all bequests are planned and non-accidental. In Sect. 6.4, we will
add accidental bequests. In this case, survival from age j to age j + 1 will be
stochastic, and in the event of death, the household may leave unintended bequests.
In general equilibrium, therefore, we have to model what happens to accidental
bequests.16

3.3.3.1 Bequests
Bequests are important in real life. They contribute a large share of the total
wealth that households accumulate over their life-cycle. Using US data, Kotlikoff
and Summers (1981) estimate the contribution of intergenerational transfers to
aggregate capital accumulation. They find that intergenerational transfers account
for the largest share of aggregate US capital formation; only a small share of capital
formation results from the life-cycle saving motive. Gale and Scholz (1994) find
that 3.7% of households in the US Survey of Consumer Finances (SCF) report
receiving an inheritance between 1983 and 1985. Conditional on receipt, the mean
inheritance amounts to $42,729, while aggregate inheritance amount to 2.65% of
GNP. Using PSID data, Hendricks (2007) estimates a lower value of aggregate
inheritance amounting to 1.85% of aggregate output. He finds that households
inherit 2.4 times their gross mean annual income or $55,000 in 1994. However,
because it is difficult to distinguish between intended and unintended bequests,
Gale and Schulz also analyze the transfers between generations (between parent and
child) during a parent’s lifetime and estimate that intended transfers account for at
least 20% of net worth. In this regard, Skinner and Zeldes (2002) provide evidence
that most bequests are accidental, rather than intended. Only 8% of all households
state inheritance as an operative motive for accumulating savings.

Therefore, both an operative bequest motive and accidental bequests may help to
solve a number of savings puzzles that are obtained in heterogeneous-agent OLG
models.17 In these models:

1. the wealth concentration is smaller than observed empirically. This puzzle has
been studied by Huggett (1996), among others.

16There will be three options: (i) We may introduce a parent-child link. (ii) The government may
confiscate accidental bequests. Alternatively, (iii), we may assume a perfect annuities market such
that financial intermediaries invest the funds on behalf of the household, which receives a higher
return in the event of survival. Otherwise, the financial intermediary will receive the assets.
17Typically, these models consider households with different income and/or individual productivity
levels. We will analyze these types of models in later chapters.
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2. Rich households have high saving rates (see, for example, Dynan, Skinner, and
Zeldes 2004).

A parent that leaves intended bequests to his child may have various motives for
doing so. One is gift exchange, e.g., the parent promises the child higher bequests
if the child spends more time with him or takes care of him. Another motive is pure
altruism, on which we focus hereinafter. Let the parent’s utility be given by

Vt = u(c1
t ) + βu(c2

t+1) + 1

1 + R
Vt+1. (3.29)

Parents discount the lifetime utility of their children at rate R > 0. Equation (3.29)
can be solved recursively forward to yield:

Vt =
∞∑

i=0

1

(1 + R)i

[
u(c1

t+i ) + βu(c2
t+i+1)

]
.

Evidently, this expression is equivalent to that of the central planner (with possibly
different discount rates R, however, and an infinite planning horizon T ) provided
in (3.23). The budget constraints of the cohort born in period t (while young) and
period t (while old) are represented by:

c1
t + st = wt + beqt, (3.30a)

c2
t+1 + (1 + n)beqt+1 = (1 + rt+1)st . (3.30b)

where beqt ≥ 0 denotes the bequest received by each member of generation
t . Notice that bequests cannot be negative: You cannot leave your debt to your
children. These two budgets can be combined into the following intertemporal
budget constraint:

c1
t + c2

t+1 + (1 + n)beqt+1

1 + rt+1
= wt + beqt. (3.31)

Maximizing (3.29) subject to (3.31) results in the following first-order conditions18:

∂

∂c1
t

: λt = u′(c1
t ), (3.32a)

∂

∂c2
t+1

: λt

1 + rt+1
= βu′(c2

t+1), (3.32b)

18For details, see Appendix 3.1.
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∂

∂beqt+1
: λt

1 + n

1 + rt+1
≥ λt+1

1 + R
. (3.32c)

where λt denotes the Lagrange multiplier of the generation-t budget constraint.
Therefore,

u′(c1
t ) = βu′(c2

t+1) [1 + rt+1] , (3.33a)

u′(c1
t )

1 + n

1 + rt+1

⎧
⎨

⎩
= u′(c1

t+1)

1+R
if beqt+1 > 0,

≥ u′(c1
t+1)

1+R
if beqt+1 = 0.

(3.33b)

Let us consider the steady state so that we can drop the time index from the variables.
Evidently, if beq > 0 and for r = f ′(k), these conditions coincide with those of
the command optimum, and consequently, the economy with altruism is Pareto-
efficient if f ′(k) > n. Moreover, in steady state, c1

t = c1
t+1, and for the case in

which beq > 0, the modified golden rule follows:

(1 + r) = (1 + n)(1 + R).

For the case in which beq = 0, however, the modified golden rule does not hold:

(1 + r) ≤ (1 + n)(1 + R).

Is the assumption of parents’ altruism realistic? This question will become important
again in Chap. 7, where we study Ricardian equivalence, i.e., whether it matters if
additional government expenditures are financed by means of debt or lump-sum
taxes. In the case of altruistic households, parents consider the effect of higher debt
on future taxes and, therefore, the utility of their children. As a consequence, parents
act as if they themselves would have to pay the taxes in the future. Without altruism,
they do not increase their savings to compensate their children for the loss in net
income. Therefore, altruism is a pre-condition for Ricardian equivalence. However,
Altonij, Hayashi, and Kotlikoff (1997) show that the implications of altruism for
intergenerational risk-sharing behavior are rejected empirically.

3.3.4 Dynamics in the CommandOptimum

In the following, we examine the dynamics in the economy with a central planner.
The example is instructive in the sense that it shows (1) that the adjustment
dynamics in the OLG model often take longer than in the Ramsey model, which
will be an important result for the applications in later chapters on pensions and
the demographic transition, and (2) how this problem can be solved with simple
computational methods, i.e., the solution of a non-linear function in one variable.



3.3 The Command Optimum 85

First, we need to specify functional forms for the production and utility functions,
before we select the parameter values. We choose the same specification as in the
example in Sect. 3.2.6: Production is characterized by a Cobb-Douglas function,
y = f (k) = kα with α = 0.36, and instantaneous utility is assumed to be
logarithmic, u(c) = ln c. Utility in old age is discounted with the factor β = 0.40,
while the population grows at rate n = 0.1. The central planner equally weights the
utilities of the different generations, R = 0. Furthermore, the period length is equal
to 30 years.

We study the dynamics over a time horizon of 20 periods. Denote the steady-state
value of the capital stock by kt = k. The initial and the terminal capital stock, k0
and k21, are given by k0 = k21 = 0.7k. We know from the Ramsey model (and the
Turnpike theorem) that capital should rise rapidly from its initial value to k and rest
there almost until the end of the time horizon.

To compute the dynamics, we first have to solve for the steady state:

k =
(α
n

) 1
1−α = 7.400,

implying k0 = k21 = 0.7k = 5.180.
To derive the dynamics, we have to insert the functional specifications of

production f (.) and instantaneous utility u(.) into (3.26a), (3.26b), and (3.26c),
yielding:

β

c2
t

= 1

1 + n

1

c1
t

, (3.34a)

1

c1
t

= 1

1 + n

[
1 + αkα−1

t+1

] 1

c1
t+1

, (3.34b)

kt + kαt = (1 + n)kt+1 + c1
t + c2

t

1 + n
. (3.34c)

After some algebra, (3.34) can be solved for a second-order difference equation
in kt :

kt+2 = kt+1 + kαt+1

1 + n
− 1 + αkα−1

t+1

(1 + n)2

[
kt + kαt − (1 + n)kt+1

]
. (3.35)

The solution to this first-order condition (an initial and a final value problem) is
provided in Fig. 3.8.

3.3.4.1 Numerical Computation
The solution of the problem consists in finding the sequence of T = 20 capital
stocks {k1, . . . , kT }, Formally, this is a non-linear equations problem in T variables
kt , t = 1, . . . , T , i.e., we have to solve the 20 equations (3.35) for t = 0, . . . , 19
given the initial and final values of the capital stock, k0 and k21.
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Fig. 3.8 Dynamics of the capital stock kt in the command optimum

Solving large-scale non-linear equation problems, however, can be quite cum-
bersome, as we argued in Appendix 2.2. However, we can conveniently transform
the problem of 20 non-linear equations with 20 unknowns into finding the solution
to a non-linear equation in one variable, namely k1, by making use of the recursive
nature of the problem. In fact, given a guess k̃1 for k1, we can compute a guess for
k̃2 for k2 with the help of (3.35) for period t = 0. Given the values k̃1 and k̃2, we
can compute k̃3 from (3.35) with t = 1. We can recursively continue in this fashion
for t = 2, . . . , 18. Having finally computed k̃19 and k̃20 by this recursive procedure,
we can also compute k̃21 from (3.35) for period t = 19. If this value is equal to the
given final capital stock, k21, we are done. Otherwise, we need to search again and
find a new guess for k1. This method is called forward shooting.

Therefore, we only solve the one non-linear equation g(k̃1) = k̃21 − k21.
Numerically, this recursive function is implemented in the Gauss program
Ch3_turnpike.g and MATLAB program Ch3_turnpike.m. The non-linear
function is implemented in the procedure kdyn():

proc kdyn(x);
local i,kt;

kt=zeros(bigt+2,1); // time series for capital stock
kt[1]=k0;
kt[2]=x;
i=2;
do until i==bigt+2;
i=i+1;
kt[i]=(kt[i-1]+kt[i-1]^(alpha) ) / (1+n)
- (1+alpha*kt[i-1]^(alpha-1)) / (1+n)^2 *
( kt[i-2]+kt[i-2]^(alpha) -(1+n)*kt[i-1] );
endo;
retp(kt[bigt+2]-kfinal);
endp;
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In the procedure, k0 and kfinal denote k0 and kT+1 = k21, while bigt denotes
the number of transition periods T . In lines 9–11, (3.35) is implemented, and the
iteration is carried out in lines 6–12. The procedure returns the value k̃21 − k21.

With regard to the present computation, some comments are in order:

• Finding the solution to a non-linear equation is almost as much an art as a
science.

• In the present problem, Alfred Maußner’s routine FixVMN1 that we use will be
able to find the solution for a given initial value, while the GAUSS-provided non-
linear equation solver eqSolve will not (in Gauss 11.0). You may want to test this
by substituting the command eqsolve(.) in the present program.

• Finding the solution depends on good initial guesses.
• In our problem, if we set T = 100, we cannot find a solution for the given initial

guess for k1.
• Given these difficulties in solving non-linear problems, you often have to

experiment with:
1. different solution algorithms and
2. initial guesses, or
3. you may look for a reformulation of the non-linear equation. Let us consider

the example of a typical first-order condition for the household in the Ramsey
model:

u′(c(kt )) = βu′(c(kt+1))
[
1 + f ′(kt+1)

]
,

kt+1 + ct (kt ) = f (kt ) + kt .

It is possible that the non-linear equation solver will not find a solution
{k∗

t , k
∗
t+1} for this system. In this case, one possible remedy to this problem is

to reformulate the above equations:

1 = β
u′(c(kt+1))

u′(c(kt))
[
1 + f ′(kt+1)

]
,

kt+1 + ct (kt ) = f (kt ) + kt .

Due to the reformulation, the Jacobian of the system and therefore the Newton
step described in the Algorithm 2.1 change.

4. In the present problem, we began with a guess for k1 and iterated forward (and
computed k2 from (3.35)). Alternatively, one could attempt to iterate back-
ward in time and provide a guess k̃T for kT and compute k̃T−1 from (3.35).
This method is called backward shooting.

5. In the present case of a non-linear system of equations in one variable, it
is always a good idea to graph the non-linear equation as a function over a
grid and choose one value that is close to the solution g(k̃1) ≈ 0. In Fig. 3.9,
kdyn(k1) is presented for different values of k1, and an initial guess k̃1 = 5.35
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Fig. 3.9 Values of the residual function kdyn() over a grid of k1

appears to be close to the solution. If you graph the function with the help of
numerical software, you need to be careful with values of k1 that produce a
missing value, e.g., if the GAUSS program has to execute a command such as
kαt with kt < 0.19

3.4 The Two-PeriodOLGModel with Technological Progress

In OLG models, we often need to consider economic growth for the following
reasons, among others:

1. Growth helps to alleviate the pressure on the pension system during the demo-
graphic transition.

2. Indebted governments hope to grow out of their debt.
3. Growth may create jobs.

In the following, we will extend the two-period OLG model for growth. The young
population supplies one unit of labor inelastically and grows at rate n:

Nt = (1 + n)Nt−1.

19Study how we implemented these conditions in the Gauss program Ch3_turnpike.g.
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Again, total labor supply is equal to Nt . Instantaneous utility is assumed to be
logarithmic so that lifetime utility is presented by20:

Ut = ln(c1
t ) + β ln(c2

t+1) (3.36)

Production is described by a Cobb-Douglas function:

Yt = Kα
t (AtNt )

1−α , (3.37)

where we have introduced labor-augmenting technological progress that grows at
the exogenous rate γ :

At = (1 + γ )At−1. (3.38)

Accordingly, the household now receives wage rate wt per efficiency unit At :

st = wtAt − c1
t , (3.39a)

c2
t+1 = (1 + rt+1)st . (3.39b)

The first-order condition of the household optimization problem is given by:

st = β

1 + β
Atwt .

Therefore, savings st are proportional to the wage per efficiency unit wt .
Firms rent savings st in the form of capital from the young agents at the end of

period t , use it in production during period t + 1 and repay the complete amount
of savings at the end of period t + 1. Therefore, they also have to bear the cost of
depreciated capital when they repay the savings. Firms maximize profits:

Πt = Kα
t (AtNt )

1−α − wtAtNt − rtKt − δKt ,

implying the first-order conditions

wt = (1 − α)

(
Kt

AtNt

)α
= (1 − α)kαt , (3.40a)

rt = αkα−1
t − δ, (3.40b)

20You need to be careful to specify the utility functions in OLG models with economic growth. For
an intertemporal elasticity of consumption that is not equal to one, it makes a difference whether
utility is specified as a function of individual consumption or individual consumption per efficiency
unit. For details see Appendix 3.2.
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where k = K/AN is defined as capital per efficiency unit of labor. For convenience,
we will use the terms capital and capital stock per efficiency unit of labor
interchangeably to refer to k.

In capital market equilibrium, total capital demand is equal to total savings:

Ntst = Kt+1.

Therefore,

Ntst = Nt
β

1 + β
Atwt = Kt+1,

or, after dividing by efficient labor AtNt on both sides

kt+1(1 + γ )(1 + n) = β

1 + β
(1 − α)kαt . (3.41)

3.4.1 Steady State

In steady state, the capital stock per efficiency unit of labor is constant, implying:

k =
(

β

1 + β

(1 − α)

(1 + γ )(1 + n)

) 1
1−α

.

In steady state, the per capita capital stock grows at rate γ . The real interest rate r is
given by:

r = αkα−1 − δ = 1 + β

β

α

1 − α
(1 + γ )(1 + n) − δ.

3.4.2 Pareto Efficiency and the Golden Rule

To study Pareto efficiency in the model with growth, we consider the benevolent
central planner’s problem. The central planner’s resource constraint is given by:

(1 − δ)Kt + F(Kt ,AtNt ) = Kt+1 + Ntc
1
t + Nt−1c

2
t .

Defining ct as above and dividing by AtNt , we obtain:

(1 − δ)kt + f (kt ) = (1 + n)(1 + γ )kt+1 + ct ,
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with

ct ≡ Ntc
1
t + Nt−1c

2
t

AtNt

,

In steady state, kt = k, and thus,

f (k) = (n+ γ + nγ + δ)k + c.

If n and γ are small, we can drop the term nγ . Notice, however, that if a period
corresponds to 30 years, nγ might not be quantitatively negligible; therefore, we
retain the term in the following. Differentiating the above equation with respect to
k, we obtain

dc

dk
= f ′(k) − δ − (n+ γ + nγ ).

The economy, therefore, is dynamically inefficient (dc/dk < 0) if

r = f ′(k) − δ < n + γ + nγ.

Accordingly, the economy is not Pareto-efficient if the interest rate is smaller than
the sum of the population growth rate n and the economic growth rate γ (and the
joint product nγ ). In comparison with the case without growth, γ = 0, this condition
is more likely to occur. The real interest rate and the growth rate in the US postwar
period have been close to one another, depending on how one measures the real
interest rate, i.e., what asset one considers (government bonds, stocks). Mehra and
Prescott (2003) find that the average (annual) real return of US government bonds
(US T-Bills) amounted to 1.19% during the period 1889–2000, while US stocks
had an average (annual) return of 8.06% during this period.21 In comparison, the
average (annual) growth rate of real income in the US during the period 1950–2010
was equal to 2.2% (using Penn Word Tables, Version 6-1, by Summers, Heston and
Aten).

Appendix 3.1: Kuhn-Tucker First-Order Conditions in the Model
with Altruistic Bequests

The model with altruistic bequests involves the constraint

beqt+1 ≥ 0.

21Jagannathan, McGrattan, and Scherbina (2000) note that the so-called equity premium, the
difference between the two returns, averaged approximately 7% points during the period 1926–
1970 and only approximately 0.7 of percentage points thereafter.
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Households cannot leave negative bequests.
To be more precise, the optimization problem needs to be solved using the Kuhn-

Tucker method. The Lagrange function is given by

L =
∞∑

t=0

1

(1 + R)t

{ [
u(c1

t ) + βu(c2
t+1)

]
+

λt

[
wt + beqt − c1

t − c2
t+1 + (1 + n)beqt+1

1 + rt+1

]
+ μtbeqt+1

}

with the first-order conditions (with respect to beqt+1):

1

1 + R
λt+1 = λt

1 + n

1 + rt+1
− μt , (3.42a)

μt · beqt+1 = 0, (3.42b)

μt ≥ 0. (3.42c)

Two cases can be distinguished:

1. beqt+1 > 0: In this case, μt = 0, and

1

1 + R
λt+1 = λt

1 + n

1 + rt+1
.

2. beqt+1 = 0: μt ≥ 0, and

1

1 + R
λt+1 ≤ λt

1 + n

1 + rt+1
.

The conditions are restated in (3.33).

Appendix 3.2: Utility Function and Economic Growth

In the OLG model with economic growth, we assumed the functional form of life-
time utility to be represented by (3.36). In this appendix, we study the sensitivity
of savings with respect to the choice of the arguments c1

t and c2
t+1 in the utility

function.
There are basically two definitions of the variables c1

t and c2
t , we might choose

from. (1) We can define c1
t and c2

t+1 as the per capita consumption of the generation
born in period t , c1

t = C1
t /Nt and c2

t+1 = C2
t+1/Nt , where Cs

t denotes total
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consumption of the s-year old household in period t . This seems to be a natural
formulation of preferences. (2) We can employ the arguments c̃1

t ≡ C1
t /(AtNt )

and c̃2
t+1 ≡ C2

t+1/(At+1Nt). We can interpret this alternative behavior in the sense
that consumption habits adjust to technological change. The newest computer in
2000 provides the current household with the same utility as the newest computer
in 2020 does. As an implication, households do not grow happier over time, which
is in accordance with the so-called Easterlin paradox. According to this paradox, a
higher level of a country’s per capita gross domestic product does not correlate with
greater self-reported levels of happiness among its citizens.22

Next, we turn to the question how these two formulations of preferences affect
the savings behavior of the household. For this reason, let us generalize life-time
utility (3.36) to the case with a constant intertemporal elasticity of substitution 1/σ
and (1) let us use individual consumption (or, equally, consumption per household
member) as its arguments:

Ut =
(
C1
t /Nt

)1−σ − 1

1 − σ
+ β

(
C2
t+1/Nt

)1−σ − 1

1 − σ
. (3.43)

Total savings of the young household with Nt members is represented by

St = AtNtwt − C1
t ,

and total consumption of the household in period 2 is equal to savings plus interest
earnings

C2
t+1 = (1 + rt+1)St ,

such that the intertemporal budget constraint can be formulated in terms of
individual consumption c1

t ≡ C1
t /Nt and c2

t+1 ≡ C2
t+1/Nt :

c1
t + c2

t+1

1 + rt+1
= Atwt . (3.44)

Accordingly, we can formulate the Lagrange function of the household as follows:

L =
(
c1
t

)1−σ − 1

1 − σ
+ β

(
c2
t+1

)1−σ − 1

1 − σ
+ λt

[
Atwt − c1

t − c2
t+1

1 + rt+1

]
.

22However, the validity of the Easterlin paradox is not undisputed; see, for example, Clark, Frijters,
and Shields (2008).
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The first-order conditions of the household’s maximization problem follow from the
derivation of the above Lagrangean with respect to c1

t and c2
t+1:

λt =
(
c1
t

)−σ

, (3.45a)

λt

1 + rt+1
= β

(
c2
t+1

)−σ

, (3.45b)

and, therefore,

(
c2
t+1

c1
t

)σ

= β(1 + rt+1). (3.46)

Inserting this first-order condition in the intertemporal budget constraint (3.44), we
derive optimal individual consumption

c1
t = Atwt

1 + β
1
σ (1 + rt+1)

1
σ −1

(3.47)

and, hence, savings

st ≡ St

AtNt

= wt − c1
t

At

= wt − wt

1 + β
1
σ (1 + rt+1)

1
σ

−1

=
[

1 − 1

1 + β
1
σ (1 + rt+1)

1
σ

−1

]
wt .

Notice that we would have derived the same amount of optimal savings if we had
used the arguments c1

t ≡ C1
t /(AtNt ) and c2

t+1 ≡ C2
t+1/(AtNt ). In Chaps. 6 and 7,

we will use this notation in the life-time utility of the household in a growing
economy.

(2) Let us consider the second specification with lifetime utility

Ũt =
(
C1
t /(AtNt)

)1−σ − 1

1 − σ
+ β

(
C2
t+1/(At+1Nt)

)1−σ − 1

1 − σ
. (3.48)
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In this case, consumption habits adjust to the level of the current technology At . Let
us now define c̃1

t ≡ C1
t /(AtNt ) and c̃2

t+1 ≡ C2
t+1/(At+1Nt). With this definition,

we can formulate the budgets at age 1 and 2 as follows (using At+1/At = 1 + γ ):

st = wt − c̃1
t

c̃2
t+1 = 1 + rt+1

1 + γ
st ,

and the intertemporal budget constraint

wt = c̃1
t + 1 + γ

1 + rt+1
c̃2
t+1. (3.49)

The household maximizes its Lagrangean function

L =
(
c̃1
t

)1−σ − 1

1 − σ
+ β

(
c̃2
t+1

)1−σ − 1

1 − σ
+ λt

[
wt − c̃1

t − 1 + γ

1 + rt+1
c̃2
t+1

]
,

with respect to c̃1
t and c̃2

t+1 resulting in the first-order conditions:

λt =
(
c̃1
t

)−σ

, (3.50a)

λt
1 + γ

1 + rt+1
= β

(
c̃2
t+1

)−σ

, (3.50b)

and, therefore,
(
c̃2
t+1

c̃1
t

)σ

= β
1 + rt+1

1 + γ
. (3.51)

Inserting this first-order condition in the intertemporal budget constraint (3.49),
we derive optimal individual consumption

c̃1
t = wt

1 + β
1
σ

(
1+rt+1

1+γ

) 1
σ −1

, (3.52)

and, hence, savings

st ≡ St

AtNt

= wt − c̃1
t

=

⎡

⎢⎢⎣1 − 1

1 + β
1
σ

(
1+rt+1

1+γ

) 1
σ −1

⎤

⎥⎥⎦wt .
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Evidently, the two specifications of the lifetime utility (3.43) and (3.48) imply
different amounts of savings that are only equal to each other in the case of either
no growth with γ = 0 or for σ = 1. Notice that the effect of the utility choice
on savings depends on the intertemporal elasticity of substitution 1/σ . Empirical
evidence supports the hypothesis that this elasticity is below one, 1/σ ≤ 1.0. In
this case, specification (3.43) results in lower savings than the alternative (3.48) for
positive growth γ > 0.

Problems

3.1. Show that (3.12a) and (3.12b) hold in the case of a production function with
constant returns to scale.

3.2. Show that the optimal savings function in the Numerical Example in Sect. 3.2.6
with log-linear utility and Cobb-Douglas production is given by (3.20).

3.3. Consider the Numerical Example in Sect. 3.2.6 with log-linear utility and
Cobb-Douglas production.23 Analyze whether the allocation in the market economy
is efficient.

Next, analyze the effects of a transfer from the young to the old that is
administered by a government authority that maintains a balanced budget. Compute
the optimal (possibly negative) transfer. How does the transfer depend on the
population growth rate? Consider different values n ∈ {0, 0.1, 0.2, . . . , 2.0}.

3.4. Derive (3.35).

3.5. Compute the solution for the transition in the 20-period OLG example model
by backward shooting, i.e., starting by providing a guess for kT and finding the
solution for kT−1 and so forth.

3.6. Compute the transition in the following 60-period finite-horizon Ramsey
model:

Let U be given by a constant elasticity of substitution function

U(C0, . . . , CT ) :=
{

T∑

t=0

C
�
t

}1/�

, � ∈ (−∞, 1],

and define f (Kt) := Kα
t , α ∈ (0, 1). Let the household maximize U(C0, . . . , Ct )

subject to the budget constraint

Kt+1 = Kα
t − Ct , t = 0, 1, . . . , T , (3.53)

23The problem is inspired by the example in Section 3.1 of de la Croix and Michel (2002).
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implying the first-order conditions

[
Ct

Ct+1

]1−�

αKα−1
t+1 = 1, t = 0, 1, . . . , T − 1. (3.54)

If we eliminate consumption from the second set of equations using the first
T + 1 equations, we arrive at a set of T non-linear equations in the T unknowns
(K1,K2, . . . ,KT ):

0 =
(
Kα

1 − K2

Kα
0 − K1

)1−�

− αKα−1
1 ,

0 =
(
Kα

2 − K3

Kα
1 − K2

)1−�

− αKα−1
2 ,

...

0 =
(

Kα
T

Kα
T−1 − KT

)1−�

− αKα−1
T .

(3.55)

Solve the problem for T = 59, α = 0.35, � = 0.5, k0 = 0.1 and K60 = 0.
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4Government Consumption

4.1 Introduction

Empirically, government expenditures represent a large share of total demand and
significantly affect output, employment, and welfare. In the subsequent Sect. 4.2 of
this chapter, we document some selected empirical facts of government consump-
tion. In particular, we find that government consumption is procyclical, and after an
unexpected increase in consumption, output, employment, and (to a smaller extent)
private consumption all increase.

In Sect. 4.3, we show that in the neoclassical model with a government sector,
permanent changes in government consumption have a larger impact on output than
temporary changes in government consumption. In Sect. 4.4, we extend our analysis
by introducing uncertainty and presenting a real business cycle (RBC) model that
helps to replicate the empirical government consumption multiplier. A crucial model
element is the assumption of the substitutability of private and public consumption
in individual utility.

Finally, in Sect. 4.5, we present a complex New Keynesian business cycle model
with sticky prices and wages that can account for empirical evidence of the effects
of higher government consumption on output, private consumption, investment, and
real wages. In this model, we study a government consumption rule with a reaction
coefficient on output. We find that a government policy intended to minimize output
fluctuations is characterized by a reaction coefficient of −1.3, i.e., the government
should decrease its expenditures by 1.3% in response to GDP increasing 1% above
its trend level.

4.2 Empirical Regularities

Government spending has increased in both absolute value and relative to GDP
in the postwar period in most modern industrialized countries. Figure 4.1 presents
government expenditures relative to GDP during the period 1980–2018 for selected
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Fig. 4.1 Government expenditures relative to GDP, 1980–2018

major industrialized countries.1 Clearly, the government share has increased during
and in the aftermath of the Great Recession 2007–2009 in some countries, e.g., in
France from 46% in 1980 to 56% in 2016, while there has not been any upward
trend in countries such as Canada or Germany. Only during the recent financial
crisis of 2009–2012 did governments unanimously increase their spending.2 While
government expenditures remain below 50% of GDP in most countries, the
government share amounts to 55% in France today. From a historical perspective,
all spending levels are extremely high. According to Hindriks and Myles (2006),
government spending in these countries was approximately 10% of GDP in 1870
and only increased significantly during the years prior to and during World War I.

Figure 4.2 presents data on all OECD countries (as of this writing).3 Chile and
Mexico had the lowest government expenditures during the period 2013–2015,
amounting to 24.0% and 24.5% of GDP. There are nine countries with a government
share in excess of 50% of GDP, with the Finnish and French public sectors
being the biggest spenders. Notice that the GIIPS countries (Greece, Italy, Ireland,
Portugal and Spain) with the exception of Ireland and Spain are characterized
by government shares of 50% of GDP or above. In addition, almost all OECD
countries increased their spending during the recent financial crisis of 2007–2009,

1The data are taken from IMF, OECD, and Bundesbank statistics. Please see Appendix 4.6 for the
documentation of the data. The numbers for the years 2016–2018 represent estimates. The statistics
are loaded and graphed with the help of the Gauss program Ch4_data.g.
2The spike in government spending in Germany during the period 1990–1996 was caused by
German reunification and the higher public spending in East Germany.
3In April 2015, the OECD invited Costa Rica and Lithuania to open formal OECD accession talks.
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Fig. 4.2 Government expenditures relative to GDP, OECD countries, Average 2013–2015

with notable exceptions being Israel, Switzerland, Turkey, and Norway, among
others.

In the following, we first present some evidence of the components of gov-
ernment spending. In the second part of this section, we examine the time series
behavior of government consumption.

4.2.1 Composition of Government Spending

Government expenditures arise at various levels of the government, i.e., the local,
state, or federal level. Hereinafter, we consolidate these numbers and present total
government expenditures. Comparing the composition of government expenditures
across countries, we notice important differences. For example, the US and, in
particular, Israel spend much more on defense than Germany or France, while the
latter countries have a much higher share of spending on social security and welfare.
We will examine the most important components in turn.

The largest component of social spending in every major industrialized country
is on public pensions and social security. Figure 4.3 displays the spending of OECD
countries on public and private pensions in 2011 as a percentage of GDP. The OECD
average of public spending on pensions amounted to 7.9% of GDP in 2011.4 Pension
spending varies significantly across countries. For example, Italy spent almost twice
as much as the OECD average on pensions, amounting to 15.8% of GDP spent on
public social security in 2011. Italy formerly had one of the most generous social
security systems until it was revised in 1996 under the Dini reform. However, it
will take many years until the reforms will manifest themselves in lower pension
payments. Because of its important role in total government spending, we will
separately examine this individual component in Chap. 6, which covers pensions.

4OECD average public and private pension spending amounted to 9.5%.
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Fig. 4.3 Public and private pension expenditures, % of GDP, OECD, 2011

Fig. 4.4 Health expenditures, % of GDP, OECD, Average 2013–2015

The second largest component of public spending in most OECD countries
is health expenditures. Figure 4.4 displays the average private and public health
expenditures of OECD countries during 2013–2015. The OECD average of public
health expenditures amounts to 6.5% of GDP. Notice that in many countries, private
health expenditures are a large fraction of total health expenditures. For example, in
the US economy, private health expenditures (8.4% of GDP) exceeded public health
expenditures (8.2% of GDP) during 2013–2015.5

The third large component of government expenditures is education expendi-
tures, as displayed in Fig. 4.5. The OECD average public spending on education

5Please take care not to equate (private and public) health expenditures with health. For example,
Italy spends only half as much on health as the United States; however, in 2014, the average life
expectancy in Italy was approximately 4 years longer than in the US.
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Fig. 4.5 Public and private education expenditures, % of GDP, OECD, 2014

amounted to 4.4% of GDP in 2014. Public expenditures on education varied
between 3.2% in Japan and 6.3% in Denmark, while total education expenditures
(private plus public) were highest in the UK.6

In later chapters, we will highlight the effect of taxes on growth. Therefore, a
closer examination of how government expenditures affect growth rates may be
fruitful. When addressing education, regressions often include years of schooling,
rather than expenditure levels, as a proxy.7 Barro and Sala-i-Martin (2003) review
cross-country empirical evidence in Chapter 12 of their textbook and find a
significant effect of years of schooling on growth, while health expenditure variables
beyond life expectancy do not add explanatory power to the regression.

Figure 4.6 presents government spending on defense and public order and safety
in 2012. Strikingly, the US and Israel use a larger share of their tax revenues for
national and international defense than other countries. In these two countries,
spending on defense amounted to 4.2% and 6.0% of GDP, respectively, while
in countries such as Germany or Belgium, defense spending only accounts for
approximately 1% of GDP.8 Military spending by governments is often a very
useful variable for economists in their empirical research because shocks to this
spending component, such as the war on terror after 9/11, are usually completely

6Again, take care to not equate higher education spending with better education. In their article
on “The Economics of International Differences in Educational Achievement” in the Handbook
of Economics of Education, Hanushek and Woessmann (2011) review the literature on the
determinants of educational attainment. In particular, they find that input measures such as
class size or educational expenditures show little impact, while several measures of institutional
structures such as school autonomy, later tracking, and the quality of the teaching force explain a
significant portion of the international differences in student achievements.
7See also Footnote 6 in this section for an explanation of why years of schooling might represent
a better measure of educational attainment.
8NATO members such as Germany and Belgium agreed to spend 2% of GDP on defense. Evidently,
many NATO countries interpret this official target as a guideline.
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Fig. 4.6 Defense and public order and safety, % of GDP, OECD, 2012

exogenous. Therefore, this component often helps to identify parameters in vector
autoregressions (VARs) or is used as an instrumental variable in econometric
studies.

4.2.2 Time Series Evidence

Figure 4.7 presents US government consumption (in logarithms) during the period
1948–2014.9 The original series is presented by the solid red line, while the broken
green line presents the trend of the series after the Hodrick-Prescott (HP) filter has
removed the cyclical component.10 To compute the cyclical component of the time
series, we apply the HP filter.11 The HP filter removes all cycles longer than 32
quarters from the data while leaving shorter cycles unchanged.12 The difference
between the original series and the trend line is the cyclical component that is
illustrated in Fig. 4.8.

Two periods in the cyclical government spending pattern are striking. First,
cyclical government consumption increased during the Korean War in 1950–1953
and during the Vietnam War, both when US involvement increased significantly
in 1961–1962 under president John F. Kennedy and also later in 1968–1969. For
example, government consumption increased by 12% above its trend level in 1952.
Second, government consumption increased again during and in the aftermath of the
recent financial crisis of 2009–2010.

9Please see Appendix 4.6 for a description of the data on government consumption. The source of
the data on real GDP, private consumption, and labor supply which is used in the computation of
the results displayed in Table 4.1 is presented in Appendix 2.4.
10The GAUSS computer program Ch4_data.g together with the data file Fred_data1a.txt that
computes Figs. 4.7 and 4.8 is available as a download from my web page.
11The HP Filter is described in Chap. 2 above. We use the parameter λ = 1600 for quarterly data.
12See Brandner and Neusser (1992).
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In Fig. 4.8, we can also discern another important phenomenon. The years
between the mid-1980s and the recent financial crisis were characterized by a
time of low volatility in output (and, hence, consumption), the so-called Great
Moderation. The explanations for the decline in output volatility are manifold.
Clarida, Gali, and Gertler (2000) attribute the reduction in aggregate volatility
to more effective monetary policy, whereas the good luck hypothesis proposed
by Stock and Watson (2003) emphasizes the contribution of a reduction in the
variance of business cycle shocks. Other studies, for example Davis and Kahn
(2008) or Dynan, Elmendorf, and Sichel (2006), identify changes in inventory
behavior or financial innovations as possible causes. Furthermore, Jaimovich and
Siu (2009) provide empirical evidence in a cohort-based panel of the G7 countries
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Table 4.1 Cyclical behavior
of US government
consumption

Variable sx rxY rxG

1948–2014
Output Y 1.67 1.000 0.146

Public consumption G 3.25 0.146 1.000

Private consumption Cp 1.95 0.874 0.018

Hours L 1.29 0.773 −0.243

1956–2014
Output Y 1.54 1.000 −0.108

Public consumption G 1.41 −0.108 1.000

Private consumption Cp 1.90 0.871 −0.297

Hours L 1.23 0.881 −0.169

Notes: sx : = Standard deviation of time series x

in percentages, where x ∈ {Y,G,Cp,L}. Empir-
ical time series were HP filtered with weight
1600. sx : = standard deviation of the variable x.
rxY : = Cross-correlation of the variable hours with
output, rxG: = Cross-correlation of the variable
with government consumption

that a demographic transition is closely linked to the volatility of cyclical output.
Their analysis is supported by Lugauer (2012) and Lugauer and Redmond (2012),
while Heer, Rohrbacher, and Scharrer (2017) emphasize the decline in labor supply
elasticities across cohorts. In light of the empirical evidence presented in Fig. 4.8,
it seems reasonable to add the decline in government consumption volatility as a
likely candidate explanation for the Great Moderation.

Table 4.1 presents summary statistics for the HP-filtered (log) time series of US
GDP, government consumption, private consumption, and labor. During the whole
period 1948–2014, all variables were more volatile as measured by the standard
deviation than during the subperiod 1956–2014. When we consider the data from
the period after the Korean War (1956–2014), we find that output Y , with a standard
deviation of 1.54%, is more volatile than government expenditures G (1.41%) and
hours L (1.23%) but less volatile than private consumption Cp (1.90%).13 During
the period 1956–2014, government consumption is negatively correlated with output
Y , labor L, and private consumption Cp. Apparently, government consumption is
(weakly) countercyclical with a contemporaneous correlation coefficient of −0.108.

In addition, we find that the correlation of government consumption and output
increases monotonically if we introduce more lags on output. As presented in

13The observation that private consumption is more volatile than output does not hold for all
subperiods. For example, Cooley and Prescott (1995) find that the relative volatility of personal
consumption with respect to output is only 74% in the US during the period 1954–1991. In
addition, these authors document that durable consumption expenditures are much more volatile
than the consumption of non-durables and services. Similarly, Heer and Maußner (2009) present
empirical evidence for West Germany prior to German reunification over the period 1975–1989,
when consumption is only approximately half as volatile as output.
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Table 4.2 Correlation of government consumption and output

Lag i 0 1 2 3 4 5 6 7 8

Corr(Gt ,Yt−i) −0.108 −0.099 −0.076 −0.015 0.075 0.143 0.223 0.305 0.350

Table 4.2, the highest correlation of government consumption with output occurs
with a lag on output of 8 quarters and amounts to 0.350 for the period 1956–2014.
This observation may be interpreted as evidence that the government adjusts its
budget to tax revenues with a decision and implementation lag of approximately
two years. Alternatively, one could explain the observed lagged government con-
sumption changes with the help of the additional time required to collect (income)
taxes.

Our data on the cyclical behavior of government expenditures are related to
the study of Ambler and Paquet (1996), who find that aggregate government
spending in the US during the period 1959:1–1992:3 was weakly procyclical, with
a contemporaneous correlation of 0.231.14 In their study, the largest correlation
between output and government consumption occurs with a lag of 5 quarters for
government consumption. This observation lends further support to the hypothesis
that the government decision occurs with a lag due to the lengthy decision-
making process. Amber and Paquet also distinguish among various components
of government spending, including military government spending (0.0951), non-
military government expenditures (0.1737), and public investment (0.2733), where
the contemporaneous correlations with output are given in parentheses. Total
government consumption is as volatile as output, while the component of non-
military government expenditures is less volatile, and the components of both
military expenditures and public investment are more volatile than output.

In more elaborate empirical studies, researchers have applied VARs and analyzed
the effects of a shock to government spending on economic variables.15 The results
can be summarized as follows:

• GDP (+) A government consumption shock increases GDP, e.g., in Blanchard
and Perotti (2002). Using structural panel VAR analysis of four industrialized
countries, Ravn, Schmitt-Grohé, and Uribe (2012) also provide cross-country
evidence for this hypothesis.

• Private Consumption (+) There is mixed evidence and no clear consensus
regarding the effect of government consumption on private consumption, but
most studies find a positive effect, e.g., Blanchard and Perotti (2002), Galí and
Lopez-Salido (2007), and Ravn, Schmitt-Grohé, and Uribe (2012).

14Compare this with Table 3 in Ambler and Paquet (1996). The time series are measured in logs
and passed through the HP filter.
15In most vector autoregression studies, the assumption that no innovation other than government
spending shocks can affect government spending within a given quarter is used for identification.
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• Labor (+) Employment (total hours) increases after a shock to government
consumption, e.g., in Blanchard and Perotti (2002).

• Wages (+) Rotemberg and Woodford (1992) find evidence that real wages also
increase after a government spending shock, while Monacelli, Perotti, and Trigari
(2010) only find a statistically insignificant increase of the real wage for men.

• Investment (-) Investment declines strongly after a government spending shock,
e.g., in Blanchard and Perotti (2002).

• Mark-up (-) The mark-up declines, e.g., as in Monacelli and Perotti (2008).
At the 5% confidence level, however, the decline in the mark-up is no longer
statistically significant.

• Interest Rates (- or 0) With respect to the effect of government spending on
real interest rates, the empirical evidence is more mixed. Murphy and Walsh
(2016) survey the literature on this topic and come to the conclusion that real
interest rates increase in response to higher government consumption in the US.16

For example, Ramey and Shapiro (1998) and Fatás and Mihov (2001) provide
empirical evidence that real T-bill rates increase after a positive government
spending shock, while more recent studies such as Fisher and Peters (2010) and
even Ramey (2011) find a negative (transient) effect of government spending on
real interest rates.

Some qualifying remarks are warranted regarding the results from VAR studies.
First, the cited VAR results are not completely robust with respect to different empir-
ical methodologies. Standard regression analyses that simply include a dummy
variable for a surge in government spending find that periods of higher fiscal
spending result in employment increases, but real wages fall.

Second, Ramey (2011) criticizes standard VAR analyses because they assume
that the effects of a shock to government consumption are manifest when the change
can be observed in the data. Instead, she considers several variables, such as news
in the journal Business Week, that can be used to estimate changes in the expected
present value of government expenditures. For example, most military government
spending is predetermined many quarters or even years ahead and available as
public information, and economic agents react ahead of any actual change. After
she corrects for these news shocks, she finds that most measures of consumption
and wages fall.

Third, if one excludes the data from World War II and the Korean War (as
suggested by a visual inspection of our Fig. 4.8), Ramey (2011) finds that shocks
to temporary government spending actually lead to declines in output, hours,
consumption, and investment. However, this view is challenged by Monacelli
and Perotti (2008). These authors also use both narrative evidence and structural
VARs and find that variations in government purchases generate an increase in
consumption, while the real wage declines. Moreover, Monacelli, Perotti, and

16On p. 2 and in Table 1 on p. 8, Murphy and Walsh (2016) summarizes the studies on the
relationship between interest rates and government spending shocks.
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Trigari (2010) explain, in Section 2.2 of their article (pages 534–36), why they are
skeptical that one can learn much from the results of Ramey (2011). In particular,
the episodes that are crucial for the identification of news about military spending
(World War II and the Korean War) are not typical of US economic history.

In summary, although empirical analysis has yielded some mixed evidence,
most of the evidence suggests a positive effect of government consumption on
output, private consumption, labor and real wages, while investment and, to a less
significant extent, mark-ups and real interest rates fall. Why is this result important?
As is often argued in the literature, this empirical evidence may help to discriminate
between two different model types that we will study, the neoclassical model and the
New Keynesian model. In the former, increases in government consumption imply
a negative wealth shock, meaning that households increase labor and reduce private
consumption in general (we will show that this need not be true if public and private
consumption both enter utility). Moreover, real wages will fall. In New Keynesian
models, however, private consumption (and wages) increase. Both models in their
basic form also imply a rise in the interest rate.17 We will successively discuss the
two model types and their implications for the effects of government consumption
in greater detail in the following.

4.3 Permanent and Temporary Changes in Government
Consumption

In the following, we introduce government consumption into the deterministic
Ramsey model with endogenous labor supply from Chap. 2. To study the role of
government consumption, we assume that the individual derives utility from public
consumption. For example, if you use your private car to ride on a public highway,
utility from private consumption is enhanced.

To derive some analytical results, we will introduce public consumption fol-
lowing Barro (1981), Aschauer (1985), and Christiano and Eichenbaum (1992).
Therefore, we define effective consumption as the sum of private and public
consumption:

Ct = C
p
t + μGt, (4.1)

where the magnitude and sign of μ govern the effect of an increase in government
consumption on marginal utility.

We will show in the following that if μ = 1, an increase in public consump-
tion perfectly crowds out private consumption; in other words, nothing happens
following the increase. The increase in public consumption Gt is exactly balanced

17This need not hold in all specifications of New Keynesian models. For example, Heer and
Scharrer (2018) introduce a variable price of capital into these types of models, and consequently,
real interest rates decline in response to higher unanticipated government consumption.
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by an equal reduction in private consumption C
p
t .18 For μ < 1, however, there

is a change in total consumption Ct if government consumption Gt increases, and
optimal government spending would be zero.19

We assume that the population in the model is constant and normalized to one.
The representative household maximizes his intertemporal utility in period t = 0:

U =
∞∑

t=0

βtu(Ct , 1 − Lt ), (4.2)

where β, again, denotes the discount factor. The household supplies Lt units of
labor, and its total endowment is normalized to one, and thus, 1−Lt denotes leisure.

Instantaneous utility is specified as follows:

u(C, 1 − L) =
(
Cι(1 − L)1−ι

)1−σ − 1

1 − σ
, (4.3)

where 1/σ denotes the intertemporal elasticity of substitution, and ι and 1 − ι are
the relative weights of consumption and leisure in utility.

The household owns the capital stock Kt in period t , which evolves according to

Kt+1 = (1 − δ)Kt + It . (4.4)

Capital Kt depreciates at rate δ. The household lends the capital stock to the firms,
which pay real interest rate rt . The household faces wage rate wt , and thus, its
labor income is equal to wtLt . In addition, it has to pay lump-sum taxes Tt .20 Net
household income is spent on private consumption Cp

t and savings, which are equal
to the increase in capital holdings,Kt+1−Kt . Consequently, the household’s budget
constraint is represented by

wtLt + rtKt − Tt = C
p
t + Kt+1 − (1 − δ)Kt . (4.5)

The first-order condition follows from the derivation of the Lagrangian

L =
∞∑

t=0

βt

[(
Cι
t (1 − Lt )

1−ι
)1−σ − 1

1 − σ
+ λt

(
wtLt + (1 + rt − δ)Kt − Tt − C

p
t − Kt+1

)
]

(4.6)

18For this observation to hold, we need to assume that the change in government consumption is
fully anticipated.
19The special case of μ = 0 is considered by Baxter and King (1993) and Aiyagari, Christiano,
and Eichenbaum (1994) and is often adapted in business cycle research.
20Proportional income taxes will be introduced into the model in Chap. 5.



4.3 Permanent and Temporary Changes in Government Consumption 113

with respect to C
p
t , Lt , and Kt+1, taking government consumption Gt and taxes Tt

to be exogenous. In particular, the first-order conditions of the household’s utility
maximization problem are given by:

λt = ιC
ι(1−σ)−1
t (1 − Lt)

(1−ι)(1−σ), (4.7a)

λtwt = (1 − ι)C
ι(1−σ)
t (1 − Lt )

(1−ι)(1−σ)−1, (4.7b)

λt = λt+1β(1 + rt+1 − δ). (4.7c)

According to (4.7a), the Lagrangian multiplier λt is equal to the marginal utility
of (aggregate) consumption Ct . In (4.7b), the marginal utility from working an
extra hour λtwt is equated to the marginal utility from an extra hour of leisure
(1 − ι)C

ι(1−σ)
t (1 −Lt )

(1−ι)(1−σ)−1. The Euler equation (4.7c) describes the optimal
intertemporal consumption allocation.

Goods and factor markets are characterized by perfect competition. We, again,
assume that production is described by a Cobb-Douglas technology:

Yt = Kα
t L

1−α
t . (4.8)

Firms rent capital from households. Therefore, wages and the real interest rate are
given by:

wt = (1 − α)Kα
t L

−α
t , (4.9a)

rt = αKα−1
t L1−α

t . (4.9b)

Finally, the government budget is assumed to balance, meaning that

Gt = Tt . (4.10)

In equilibrium, the resource constraint of the economy is presented by21

Yt = C
p
t + Gt + It . (4.11)

In the following, we study the long-run effects of a permanent change in
government consumption Gt . Therefore, we analyze comparative steady states.
In the steady state, the variables of the model are constant, Ct = C, Gt = G,
C
p
t = Cp, Lt = L, Kt = K , rt = r , and wt = w. Consequently, λt = λ and (4.7c)

implies

1 + r − δ = 1

β
.

21To derive the aggregate resource constraint (4.11), substitute (4.4), (4.8), (4.9), and (4.10)
into (4.5).
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As a consequence, the capital-labor coefficient K/L is given by

K

L
=
(

α

1
β

− 1 + δ

) 1
1−α

. (4.12)

Next, we derive the effect of higher government consumption on labor, capital,
and output in steady state by performing a comparative steady-state analysis. Since r
is given by (4.9b), the capital-output coefficient K/L is constant in all steady states,
meaning that

dK = K

L
dL. (4.13)

Accordingly, the resource constraint

Cp + G + I = Cp + G + δK = KαL1−α (4.14)

implies

dCp + dG + δdK = α

(
L

K

)1−α

dK + (1 − α)

(
K

L

)α
dL. (4.15)

Substitution of (4.13) into (4.15) results in

dCp + dG =
[
α

(
K

L

)α
− δ

K

L

]
dL+w dL = (r − δ)

K

L
dL+w dL. (4.16)

From the household’s first-order condition with respect to labor, we derive the
steady-state condition

w = 1 − ι

ι

Cp + μG

1 − L
(4.17)

implying (remember that dw = 0 in steady state because K/L is constant):

− wdL = 1 − ι

ι
dCP + 1 − ι

ι
μdG. (4.18)

Inserting (4.18) in (4.16), we get

dCp = −1 + μζ

1 + ζ
dG (4.19)
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with

ζ = 1 − ι

ι

Cp + G

wL
> 0.

Clearly, dCp/dG = −1 if and only if μ = 1. In this case, an increase in public
consumption is exactly matched by an equal decrease in private consumption. For
μ < 1, private consumption is reduced by less than the change in government
consumption (or is increased if μ is sufficiently small and below −1/ζ ; most
authors, e.g. Barro (1981), however, restrict the parameter space of μ to the
unit interval and exclude the consideration of negative values for μ meaning that
government consumption is not a good, but a bad which reduces utility).

Substituting dCp from (4.19) into (4.16), we find that

dL

dG
=

ζ(1−μ)
1+ζ

Cp+G
L

, (4.20)

and, therefore, dL
dG

> 0 if μ < 1.
Consequently, higher government purchases that are financed lump-sum increase

the labor supply and, hence, the capital stock (because of (4.13)) and, therefore,
output. In this case, government consumption actually crowds in investment in the
long run.

How does this mechanism operate? To see this, assume that output and invest-
ment are constant. As a consequence, higher public consumption reduces private
consumption one-to-one according to the aggregate resource constraint (4.11).
Since, however, the utility weight of public consumption is smaller than that of
private consumption for μ < 1, Ct decreases, and the marginal utility of income
increases according to (4.7a). Equivalently, the Lagrangian multiplier λ rises.
Therefore, the incentives to work longer increase, and labor supply L is augmented
(if leisure is a superior good).

Another way of thinking about this is that a decline in total consumption,
C = CP + μG, and the subsequent decline in utility results in a change in the
household optimization problem. Since consumption and leisure are assumed to be
substitutes, some of the decrease in total consumption is absorbed by a decrease in
leisure or, equivalently, an increase in labor supply. From this reasoning, it is clear
that the response of labor, capital, and output crucially depends on the elasticity of
substitution between consumption and leisure, which we will study next by means
of a computational example.
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4.3.1 Numerical Example: Government Spending
and the Substitutability of Private and Public Consumption

To derive a better understanding of the effects of government spending on equi-
librium values of our variables, we assume now that effective consumption is
represented by a constant elasticity of substitution (CES) aggregator:

C =
[
φ
(
Cp
)1−1/ρc + (1 − φ)G1−1/ρc

] 1
1−1/ρc

, (4.21)

where the CES between private and public consumption is equal to ρc, and the
relative weights of private and public consumption are represented by φ and 1 − φ,
respectively.22 Notice that our specification (4.21) includes (4.1) as a special case
for ρc → ∞ and μ = (1 − φ)/φ.

Instantaneous utility is also a CES aggregator of effective consumption C and
leisure 1 − L:

u(C, 1 − L) = 1

1 − σ

[
C1−1/ρ + κ (1 − L)1−1/ρ

] 1−σ
1−1/ρ

, (4.22)

where ρ denotes the intratemporal elasticity of substitution between effective
consumption C and leisure 1 − L, and the intertemporal elasticity of substitution
is given by 1/σ .

Inserting (4.21) and (4.22) into the Lagrangian,

L =
∞∑

t=0

βt
[
u(Ct , 1 − Lt) + λt

(
wtLt + (1 + rt − δ)Kt − Tt − C

p
t − Kt+1

)]
,

(4.23)

we can derive the following first-order condition for the labor supply Lt :

wt = κ

φ

(
Ct

1 − Lt

) 1
ρ

(Ξt )
1− 1

1−1/ρc
(
C
p
t

) 1
ρc , (4.24)

where the auxiliary variable Ξt is defined as a function of the variables Cp
t and Gt

as follows:

Ξt ≡ φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t . (4.25)

22Our notational convention in this book is that we use the variable x (X) as a subscript
(superscript) of the parameter ρ, i.e. ρx (ρX ), in case of a utility parameter (autoregressive
parameter or parameter of a policy rule). Accordingly, ρc denotes the substitution elasticity of
private and public consumption, while ρC denoted the autoregressive parameter of the technology
shock in the consumption sector in Chap. 2.
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The intertemporal first-order condition, again, is represented by (4.7c), meaning
that in steady state, the capital intensity K/L is equal to (4.12). The steady state,
therefore, is characterized by the following three equations in the endogenous
variables K , L, and Cp for a given value of exogenous government expendituresG:

K =
(

α

1
β

− 1 + δ

) 1
1−α

L, (4.26a)

KαL1−α = Cp + G + δK, (4.26b)

(1 − α)KαL−α = κ

φ

(
C

1 − L

) 1
ρ

(Ξ)
1− 1

1−1/ρc
(
Cp
) 1
ρc . (4.26c)

We can solve this system of non-linear equations in three endogenous variables
with the help of a non-linear equation solver. The solution is implemented in
the GAUSS program Ch4_subs_private_pub.g. To compute the steady state, we
need to choose specific values for the parameters {α, β, δ,G, σ, ρ, ρc, φ, κ}. The
production elasticity of capital is set as α = 0.36. If we consider a period length
equal to one year, a discount factor of β = 0.96 (implying a real interest rate
r equal to 4%) is appropriate. The annual depreciation rate is set equal to 10%.
The government share G/Y is set equal to 20%, which is close to the values
observed in the US economy. The intertemporal elasticity of substitution 1/σ is set
to 1/2. The weight of private consumption and public consumption are set equal to
3/4 and 1/4, approximately representing the relative shares of private consumption
(approximately 60% of GDP) and public consumption in GDP. The elasticity of
substitution between leisure and consumption is set equal to ρ = 0.6 following
Fehr, Kallweit, and Kindermann (2013).

The empirical evidence for the elasticity of substitution between private and
public consumption ρc is less clear. For example, Ni (1995) provides a summary
of studies (in addition to his own GMM study) on the empirical values of ρc for the
US economy in the range of −1.8 to 0.8 with a median of approximately 0.3.23 For
a cross-country sample of Asian economies, Kwan (2006) finds that the elasticity of
most countries is contained in the interval [0, 1], but some countries display values
below or above this range. We will therefore test the sensitivity of our results for
ρc ∈ [0, 1].

The final parameter κ is separately calibrated for each value of ρc, such that the
equilibrium labor supply is always equal to L = 0.30 in the case with G/Y = 0.2.
As a consequence of our calibration, K , L, Y , and therefore G are constant for
all values of the parameter ρc; in particular, government consumption amounts to

23Among others, the empirical estimates of the elasticities depend on the classification of the
government expenditures, e.g., whether military spending is included.
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Fig. 4.9 Calibration of κ

Ḡ = 0.1014. We simply use the non-linear system of equations (4.26) and solve it
endogenously for the values of {κ,K,Cp} given L = 0.3.24 Our values for κ(ρc)
are illustrated in Fig. 4.9.

With the help of Gauss computer program Ch4_subs_private_pub.g, we compute
the new steady-state values of {K,L,Cp} for a 1% increase in government con-
sumption to G̃ = 0.1024 for each ρc (and the corresponding κ(ρc)). The effect on
labor supply and output (presented in percentage changes) is illustrated in Fig. 4.10.
In general, labor supply increases via the mechanism explained above. Marginal
utility falls, ceteris paribus, for higher public consumption (and an equivalent
decrease in private consumption), and the household increases labor supply because
effective consumption C and leisure 1 − L are substitutes, ρ > 0. If private and
public consumption are poorer substitutes (lower ρc), the effect becomes more
pronounced. For example, for ρc = 0.1, the labor supply increases by 1%, from
L = 0.300 to L = 0.303. The percentage change in production Y is exactly the
same (because K/L remains fixed, such that K also increases by 1%, and since
production is subject to constant returns to scale, output also increases by 1%).
Accordingly, the long-run output government multiplier dY/dG amounts to nearly
5.0 (recall that G/Y = 20%) for ρc = 0.1 and decreases to approximately 0.5 for
ρc → 1.0.

24In the Gauss computer program Ch4_subs_private_pub.g, the procedure steadystate1(.) is used
in the non-linear equation problem solver to compute the solution to this problem.
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Fig. 4.10 Steady-state effect of higher permanent government expenditures. Labor L and produc-
tion Y are presented as percentage changes relative to their steady-state values

4.3.2 Transition Dynamics After a Permanent and a Temporary
Government Consumption Shock

Above, we have shown that a permanent increase in government consumption
increases labor supply and output if leisure and consumption are substitutes.
Aiyagari, Christiano, and Eichenbaum (1994) argue that a permanent increase in
government consumption has a larger impact on employment and output than does
a transitory shock. In the case of a transitory increase in government consumption,
the household also reduces investment in an effort to smooth consumption over time.

We will show that the quantitative magnitude of this effect depends critically
on the elasticity of substitution between private and public consumption ρc. While
Aiyagari, Christiano, and Eichenbaum (1994) analyze the stochastic neoclassical
growth model, we will study the dynamics in the simpler deterministic model.25 In
particular, we will illustrate the behavior of employment, consumption, and output

25The business cycle properties of the stochastic neoclassical model with government consumption
will be studied subsequently. At this point, however, it may be instructive for the reader to see that
one can show this result in the deterministic neoclassical growth model with the help of a simple
solution technique. We will just use the non-linear equation solver that is applied abundantly in
this book.
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following an unexpected increase in government consumption with (1) a permanent
duration and (2) a duration of four quarters (equal to one year) only.

We conduct our analysis of the transition dynamics in the Numerical Example.
In contrast to Aiyagari, Christiano, and Eichenbaum (1994), we assume that
government consumption increases the marginal utility of consumption, i.e., φ < 1
in (4.21).26 As our value of the elasticity of substitution between private and public
consumption, we choose a conservative value of ρc = 0.3, which emerges as the
median value of the empirical studies reviewed by Ni (1995). Furthermore, leisure
is a superior good, and we assume an empirically plausible elasticity of substitution
equal to ρ = 0.6. The rest of the parameters are chosen as above, with α = 0.36,
β = 0.96, δ = 0.10, φ = 3/4, and σ = 2.0. For this parameterization, we choose
κ = 0.08892, such that the steady-state labor supply is equal to L = 0.30.

We assume that the economy is in steady state in period t = 0 with a government
share equal to 20% of GDP. In this case, absolute government expenditures amount
to G = 0.1013. In period t = 0, we will denote the endogenous variables with a
bar, e.g., L̄ = 0.3, K̄ = 1.288, C̄p = 0.2767, and Ȳ = 0.5069. At the beginning
of period t = 1, the government unexpectedly increases its expenditures to G̃ =
0.1024, a 1% increase. In the first case, we consider this change to be permanent. In
this case, the economy reaches its new steady state with L̃ = 0.3029, K̃ = 1.3008,
C̃p = 0.2794, and Ỹ = 0.5119. Notice that we have denoted the new steady state
variables by inserting a tilde “~” over the variable name.

In the case of a transitory increase in Gt , we assume a temporary increase in
government consumption over four periods, such that

Gt =
{
G̃ for t = 1, 2, 3, 4,
Ḡ else.

Therefore, in the long run, the endogenous variables approach the initial steady-state
values {L̄, C̄p, K̄} in case 2.

To compute the dynamics, we assume that the transition takes 40 periods
(equal to 40 years). We can reduce the problem to a one-dimensional non-linear-
equation problem by exploiting the recursive structure of the model. To find the
solution, we apply the method of reverse shooting. The computational details are
described in Appendix 4.1. The computation is implemented in the GAUSS program
Ch4_subs_private_pub_dyn.g.

The results are illustrated in Fig. 4.11 for the case of an elasticity of substitution
between private and public consumption equal to ρc = 0.3 and an intertemporal
elasticity of substitution of 1/σ = 1/2. The temporary and permanent government
spending shocks are represented by the solid and broken lines, respectively. Clearly,
output, capital, and labor supply all increase to a larger extent in the case of a

26In addition to φ = 1, Aiyagari, Christiano, and Eichenbaum (1994) also assume that utility is
additively logarithmic in total consumption and leisure.
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Fig. 4.11 Effect of temporary (solid line) and permanent shock (broken line), ρc = 0.3, 1/σ =
1/2. Values are presented in percentage deviations from the initial steady state

permanent shock than in the case of a temporary shock to government consumption.
Our result emphasizes that the conclusions of Aiyagari, Christiano, and Eichenbaum
(1994) are valid and extend to the case φ < 1.27 Notice also that private consump-
tion Cp initially increases after a temporary increase in government consumption.
This is in accordance with the empirical evidence summarized in Sect. 4.2. Finally,
notice that, in the case of a temporary increase in government consumption,
households also smooth intertemporal consumption by spending down their capital
stock during the transition. Accordingly, we conclude that government consumption
crowds out (in) private investment if higher government spending is expected to be
temporary (permanent).

27You can also verify in the program Ch4_subs_private_pub_dyn.g that this results holds for other
values of ρc ∈ [0, 1].
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4.4 The RBCModel with Stochastic Government Consumption

In Sect. 4.3, government consumption was assumed to be deterministic, and all
changes in government spending were preannounced in period 0. We found that
private consumption increased in response to higher government spending and that
the effect on private investment depended on the nature of the change, i.e., whether
it was permanent or transitory. The government multiplier was found to be in the
range of 1.0–5.0, depending on the elasticity of substitution between private and
public goods. In this section, we study whether our previous results also hold under
the more realistic assumption that, at least, some part of the changes in government
consumption is not anticipated in period 0 or stochastic in nature.

4.4.1 TheModel

The model is based on the stochastic neoclassical growth model presented in
Chap. 2. In the following, we will augment it with a government sector in which
stochastic government spending is subject to an exogenous shock.

4.4.1.1 Households
We study the behavior of a representative household. For this reason, we assume
that households are identical and of measure one. Households are infinitely lived
and maximize the expected value of intertemporal utility

E0

∞∑

t=0

βtu(Ct , 1 − Lt ), 0 < β < 1, (4.27)

where instantaneous utility u(., .) is discounted by the factor β and described by a
function of effective consumption Ct and leisure 1 − Lt according to:

u(Ct , 1 − Lt) =
(
Cι
t (1 − Lt )

1−ι
)1−σ

1 − σ
. (4.28)

The consumption bundle Ct is presented by the CES aggregator (4.21) of private
consumptionCp

t and government consumptionGt . We will also consider the special
case with φ = 1 in which government consumption does not affect utility, meaning
that Ct = C

p
t .
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The household owns the capital stock, which evolves according to

Kt+1 = (1 − δ)Kt + It . (4.29)

Capital depreciates at rate δ. The household receives income from labor wtLt and
capital rtKt . It spends its income on private consumption C

p
t , investment It , and

lump-sum taxes Tt . The individual budget constraint is represented by

C
p
t + It = wtLt + rtKt − Tt . (4.30)

The household maximizes intertemporal utility (4.27) subject to (4.30) resulting in
the first-order conditions:

λt = ιφC
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ) (Ξt )
1

1−1/ρc
−1 (

C
p
t

)− 1
ρc , (4.31a)

λtwt = (1 − ι)C
ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (4.31b)

λt = Et λt+1β(1 + rt+1 − δ), (4.31c)

with Ξ as defined in (4.25).

4.4.1.2 Production
Firms are owned by the households and maximize profits with respect to their labor
and capital demand. Production Yt is characterized by constant returns to scale in
labor Lt and capital Kt :

Yt = ZtK
α
t L

1−α
t . (4.32)

Production is also subject to a technology shock Zt that is governed by the following
AR(1) process:

lnZt = ρZ lnZt−1 + εZt , εZt ∼ N
(

0, σZ
)
, (4.33)

The individual firm takes Zt as exogenous.
In factor market equilibrium, factors are compensated by their marginal products:

wt = (1 − α)ZtK
α
t L

−α
t , (4.34a)

rt = αZtK
α−1
t L1−α

t . (4.34b)

4.4.1.3 Government
The government purchases an amount of Gt of the final good in each period. Gt

follows a first-order autoregressive process:

lnGt = (1 − ρG) lnG + ρGGt−1 + εGt , εGt ∼ N(0, σG), (4.35)
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where G denotes steady-state government consumption. Government consumption
will be financed with a lump-sum tax Tt and the government budget is assumed to
balance in each period t:

Gt = Tt . (4.36)

4.4.1.4 Competitive Equilibrium
In a competitive equilibrium, (1) households maximize their intertemporal utility,
(2) firms maximize profits, (3) the government balances its budget, and (4) the goods
market clears:

Yt = C
p
t + Gt + It . (4.37)

The last equation can be derived by inserting (4.34) and (4.36) into the individual
budget constraint (4.30) and noticing that production is characterized by constant
returns to scale such that Yt = wtLt + rtKt .

To summarize, the equilibrium of the economy can be characterized by the
following 8 equations in the 8 variables Yt , C

p
t , Ct , It , Lt , wt , rt , λt :

λt = ιφC
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ) (Ξt )
1

1−1/ρc
−1 (

C
p
t

)− 1
ρc , (4.38a)

λtwt = (1 − ι)C
ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (4.38b)

λt = Et λt+1β(1 + rt+1 − δ), (4.38c)

Ct =
[
φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t

] 1
1−1/ρc

, (4.38d)

Yt = C
p
t + It + Gt, (4.38e)

Kt+1 = (1 − δ)Kt + It , (4.38f)

wt = (1 − α)ZtK
α
t L

−α
t , (4.38g)

rt = αZtK
α−1
t L1−α

t , (4.38h)

where

Ξt ≡ φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t .

The two exogenous variables {Zt,Gt } follow (4.33) and (4.35).

4.4.1.5 Calibration
To compute the model, we need to calibrate the parameters α, δ, β, ι, φ, σ , ρC ,
ρZ , σZ, ρG, and σG. The period length in the business cycle model is equal to one
quarter. A description of these parameters is contained in Table 4.3.
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Table 4.3 Calibration of the model with stochastic government consumption

Parameter Value Description

β 0.99 Subjective discount factor

1/σ 1/2 Intertemporal elasticity of substitution

φ 3/4 Relative weight of private consumption in effective consumption

ρc 0.50 Elasticity of substitution between private and public
(1.10) consumption

ι 0.4096 Relative weight of consumption in utility
(0.3219)

L 0.3 Steady-state labor supply

α 0.36 Share of capital in value added

δ 0.025 Rate of capital depreciation

ρZ 0.95 Autocorrelation of TFP shock

σZ 0.0072 Standard deviation of innovations in a TFP shock

G/Y 0.20 Share of government spending in steady-state production

ρG 0.90 Autocorrelation parameter in a government spending shock

σG 0.01 Standard deviation of innovations in a government spending shock

Notes: Values in parentheses are reported for the sensitivity analysis with respect to ρc = 1.10

We assume that government consumption is equal to 20.0% of output, which
is approximately the value for the US economy during the period 1980–2010.
The production parameters are set equal to standard parameter values in the RBC
literature for the US economy. We choose a production elasticity of capital equal
to α = 0.36 and an annual depreciation rate of 10%, implying δ = 2.5%. To
have a quarterly real interest rate (net of depreciation) equal to 1%, we choose
a discount factor of β = 0.99. With respect to our preferences, we choose the
relative weight of private consumption in effective consumption φ = 3/4 as in
the previous section. We will also report results for the case in which φ = 1.0
hereinafter. Similarly, we set the intertemporal elasticity of substitution equal to
1/σ = 1/2 and the intratemporal elasticity of substitution between private and
public consumption equal to ρc = 0.50. We will also present a sensitivity analysis
with respect to ρc = 1.1.

The utility parameter for the weight of leisure in utility, ι = 0.4096, is set such
that steady-state labor supply is equal to L = 0.3. For this reason, notice that in
steady state, Zt = Zt+1 = Z = 1.0 and

r = 1/β − 1 + δ = 3.51%.

From (4.34b), we can compute the steady-state capital intensity K/L:

K

L
=
(α
r

) 1
1−α = 37.99,
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which implies K = K
L
L = 11.40 for L = 0.30. Therefore, production amounts to

Y = ZKαL1−α = 1.11. Government consumption is equal to 20% of production,
or G = 0.222. Steady-state investment follows from (4.29) for Kt+1 = Kt = K

such that I = δK = 0.285. From the goods market equilibrium (4.37), we obtain
Cp = Y−G−I = 0.604. Given the values of ρc and φ, we can compute C = 0.423
with the help of (4.21). The equilibrium wage follows with the help of (4.34a),
w = 2.37. Dividing (4.31b) by (4.31a), we find that

w = 1 − ι

ι

1

φ

C

1 − L

1

Ξ
1

1−1/ρc
−1

(Cp)
− 1

ρc

,

which we can use to solve for ι = 0.4096. The solution is implemented in the
GAUSS program Ch4_RBC1.g.

In accordance with prominent articles on RBC models, we choose the parameters
ρZ = 0.95 and σZ = 0.0072 for the autoregressive process of (log) technology
as estimated by Cooley and Prescott (1995) and ρG = 0.90 and σG = 0.01 for
the process of (log) government consumption.28 The parameters are summarized in
Table 4.3.

The GAUSS program Ch4_RBC1.g computes the solution in the form of
policy functions for the next-period capital stock, K ′(K,Z,G), consumption
Cp(K,Z,G), labor supply L(K,Z,G), and investment I (K,Z,G) as functions
of the state variables K , Z, and G. The numerical solution procedure is sketched
in Appendix 2.2 and explained in greater detail in Chapters 1 and 2 of Heer and
Maußner (2009). We will also use the numerical routines that accompany that book.

4.4.2 Effects of an Unanticipated Increase in Government
Consumption

To explain the empirical time series behavior, we will simulate the model for random
variables {εZt , εGt }t1t0 . Therefore, we have to make a decision about the value of the
endogenous and exogenous state variables {Kt } and {Zt,Gt } in the first period t0.
As is common, we choose to have the variables in steady state, Kt0 = K = 11.40,
Zt0 = Z = 1, and Gt0 = G = 0.222. We then repeatedly generate the normally
distributed random variables εZt and εGt for a time horizon of 80 quarters (20 years).
In particular, we use 800 simulations to ensure that the law of large number applies
and the averages of the second moments for the variables stabilize. The time series
of the model are filtered with the HP-filter of Hodrick and Prescott with weight 1600
for quarterly data.

To understand the behavior of the simulated time series moments, we first study
the impulse response functions. These functions show how the variables react to an

28For example, Schmitt-Grohé and Uribe (2007) use ρG = 0.87 and σG = 0.016, while Christiano
and Eichenbaum (1992) apply the estimates ρG = 0.96 and σG = 0.020.
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Fig. 4.12 Impulse responses: technology shock

exogenous shock of one standard deviation in the period t = 2, i.e., εZ2 = 0.0072
or εG2 = 0.010, while the shock is zero in the remaining periods t = 3, . . ..29 We
will first study the effects of a technology shock before we consider the effects of a
positive government consumption shock.

4.4.2.1 Impulse Responses to a Technology Shock
Figure 4.12 plots the percentage changes in output Y , technology Z, government
consumption G, effective consumption C, investment I , the real wage w, the real
interest rate r , hours L, private consumption Cp, and the capital stock K (from the
upper left to the bottom right). In period t = 1, the economy is in steady state.
In period t = 2, the technology level Zt increases by one standard deviation,
εZ2 = 0.0072, and gradually declines to zero thereafter with an autoregressive
parameter ρZ = 0.95. As a consequence of the increase in productivity, the marginal
products of both labor and capital increase, and hence, so do the factor prices w

and r . Because of the higher wage, the household increases its labor supply (the
substitution effect dominates the income effect of higher wages), and hours increase
by 0.24% on impact in period 2. The higher wage income of the household generates
additional income that it spends on both higher private consumption Cp and higher
investment I . Notice that investment I reacts much more strongly (+2.7%) than
private consumptionCp (+0.36%), as observed empirically. Because of the increase
in the real interest rate r , the households intertemporally substitutes consumption
and increases consumption in later periods. For this reason, savings (and hence
investment) react even more strongly.

The response of capital is sluggish, and capital increases gradually over the time
horizon of 15 periods, as displayed in the bottom-right panel of Fig. 4.12. If we
increase the time horizon for the impulse responses (not illustrated), we find that

29Some studies prefer to display impulses responses for a shock of 1% rather than one standard
deviation.
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Fig. 4.13 Impulse responses: Government consumption shock, ρc = 0.5 and φ = 3/4

the maximum response of capital takes place after 23 periods (or 5.75 years). Since
both productivity Z and inputs K and L increase, production Y also increases by
1.05%. Notice that the increase in output is higher than the increase in technology
(0.72%) due to the higher amount of inputs used in production. In addition, output
reacts more strongly than labor and consumption, as observed empirically.

4.4.2.2 Impulse Responses to a Government Consumption Shock
Figure 4.13 plots the impulse responses of the variables to a 1% shock to gov-
ernment consumption. The government consumption shock, εG2 = 0.01, results in a
buildup of government consumptionGt on impact that gradually declines according
to the autoregressive process (4.35) as displayed in the top-left panel of Fig. 4.13.

Since additional government consumption is financed by lump-sum taxes, the
household is subject to a negative wealth effect. In addition, for φ �= 1.0, there is also
an effect of higher government consumption on the marginal utility of consumption,
which decreases due to a higher Gt and, therefore, a higher Ct . For ρc = 0.50 and
φ = 3/4, the incentive effect of lower marginal utility from consumption on the
labor supply is smaller than the wealth effect, and thus, labor increases by 0.33% on
impact (bottom-right panel). Due to higher income, the household can also afford
higher private consumption, which increases by 0.13% on impact (bottom-right
panel). Since the household increases labor supply, the marginal product of labor
declines and real wages fall, while the real interest rate increases. In addition, higher
government consumption crowds out investment It , which falls by 0.24%. Although
the capital stock decreases, the effect of higher labor supply dominates, meaning that
output increases by 0.22%.

All these responses are in accordance with the empirical observations presented
in Sect. 4.2.2 of this chapter, with the possible exception of wages for which there
is mixed empirical evidence. Consequently, the neoclassical growth model with
stochastic government is in good accordance with the qualitative behavior observed
in empirical VARs when private and public consumption are substitutes (with an
elasticity of substitution equal to 0.5).
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Fig. 4.14 Impulse responses: Government consumption shock, φ = 1.0

How sensitive is this result with respect to the substitutability of private and
public consumption? First, we consider the case of φ = 1.0 in which public
consumption does not affect utility. For this case, the impulse responses to a gov-
ernment consumption shock are presented in Fig. 4.14.30 In this case, the marginal
utility of private consumption is not increased by a higher Gt . Therefore, the
household immediately decreases its private consumption (by 0.06%) in response
to the higher Gt because its net income is reduced by the additional taxes. The
household also increases its labor supply by 0.08% in period t = 2 due to the wealth
effect. As a consequence, output increases by 0.04% on impact. Notice that in this
case, the response of private consumption is not in accordance with the empirical
observations.

Next, consider the case in which the elasticity of substitution between private and
public consumption increases above one such that the two goods are gross substi-
tutes. For φ = 3/4 and ρc = 1.1, the impulse responses to a government spending
shock are graphed in Fig. 4.15. Notice that in this case (1) private consumption falls
even more significantly than in the case with φ = 1.0 (−0.11% compared with
−0.06%) because private and public consumption are gross substitutes, (2) output
and hours increase, and (3) real wages fall.

To summarize, we have shown that, in the present model, we can restore the basic
empirical facts in the form of the qualitative impulse responses if (1) government
consumption affects utility from effective consumption and (2) public and private
consumption are not close substitutes. Otherwise, we find that private consumption
declines on impact if public consumption increases.31

30In each case where we changed the value of φ or/and ρc , we re-calibrated the parameter ι so that
steady-state labor supply is equal to L = 0.30.
31For our model and the calibration presented in Table 4.1, private consumption declines on impact
for all ρc ≥ 0.67.
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Fig. 4.15 Impulse responses: Government consumption shock, ρc = 1.1 and φ = 3/4

If government consumption does not affect utility, there are also other ways
to change the simple RBC model to make the model’s implications in better
accordance with the data. In this vein, Devereux, Head, and Lapham (1996) show
that both the presence of monopolistic competition and increasing returns to scale
in production help to reconcile the theoretical effects of a government spending
shock in an RBC model with the empirical observations. As we have argued above,
a government spending shock results in a negative wealth effect, meaning that
the individual increases labor supply and decreases consumption in the standard
model (with φ = 1.0). As a consequence, wages also fall because the marginal
product of labor declines. With monopolistic competition and an endogenous
number of intermediate goods in the model of Devereux, Head, and Lapham (1996),
higher government demand increases the number of goods and the productivity of
final goods producers. As a consequence, a positive government spending shock
increases private consumption and, in contrast to the above, real wages. However,
since the empirical evidence regarding the qualitative response of wages following
a government consumption shock is mixed, it is difficult to evaluate the relative
performance of the simple RBC model with public consumption in utility and the
model of Devereux, Head, and Lapham (1996).32

4.4.3 Government Spending Multiplier

With the help of the impulse responses, we can also compute the government
spending multiplier. To do so, let us consider the case with φ = 3/4 and ρc = 0.5, in
which higher government consumption results in an increase of output and private

32In Sect. 4.5, we also consider a standard New Keynesian model with frictions in the form of sticky
prices and wages. Galí and Lopez-Salido (2007) show that this model is also able to replicate the
empirical fact that private consumption rises in response to an unexpected increase in government
consumption if one allows for the presence of rule-of-thumb consumers who do not save.
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consumption. The government multiplier is defined by ΔYt/ΔGt , which, for our
calibration, is approximately equal to

ΔY

ΔG
≈ dY

dG
= dY

Y
/
dG

G
× Y/G.

In our simulated economy, G/Y = 0.20 in steady state. In addition, we can
read off the percentage changes in government consumption and output from the
impulse responses, with dG

G
= 0.01 and dY

Y
= 0.0022. Accordingly, the multiplier

amounts to ΔYt
ΔGt

≈ 0.0022
0.01 × 5 = 1.1 on impact. If we sum up the effects over

the first year (the first four quarters), additional government consumption amounts
to 3.44%, while output increases by 0.76%. Therefore, the one-year multiplier
also amounts to approximately 1.1. By inspecting Figs. 4.13, 4.14, and 4.15, it
becomes evident that the multiplier is very sensitive to the substitutability of private
and public consumption and increases if public and private consumption are more
complementary. For both cases, {φ, ρc} = {1.0, 0.5} and {φ, ρc} = {0.75, 1.1}, the
government multiplier drops below 0.2.

How does the multiplier from our simple RBC model compare with empirical
values? Using standard regression methods, Barro (1981) finds a multiplier of
approximately 0.8 in his empirical analysis. In more recent empirical work,
researchers predominantly apply more elaborate VARs. Assuming that government
consumption does not respond to contemporaneous shocks, Blanchard and Perotti
(2002) find a small positive multiplier that varies across specifications (e.g., if a
deterministic or stochastic time trend is used) and periods. Applying news variables
to estimate the effects of government spending shocks when they are publicly
known, Ramey (2011) estimates a multiplier of 0.6 to 0.8 in her VAR analysis.
However, if she excludes the data from World War II and the Korean War, the
multiplier becomes negative and the standard errors become very large. Monacelli,
Perotti, and Trigari (2010) distinguish between employment at the intensive margin
(hours) and extensive margin (number of employed) and find that increasing
government consumption by 1% of GDP generates output multipliers of 1.2 (at one
year) and 1.6 (at the peak after approximately two and a half years).

In a more recent contribution, Féve, Matherod, and Sahuc (2012) also consider
the case in which the government uses a feedback rule for its spending policy
such that (lagged) output enters the equation (4.35) as an additional variable on
the right-hand side. The coefficient of output is negative, and thus, the endogenous
government policy is countercyclical. In this case, they show that an econometrician
would underestimate the complementarity of public and private consumption, and
thus, the government spending multiplier would also be underestimated. They find
a multiplier that exceeds unity.

Auerbach and Gorodnichenko (2011) show that for most OECD countries, the
multiplier is large during recessions and low in normal times. The multiplier also
seems to be larger in countries with high wealth inequality and a large fraction of
the population facing binding credit constraints. For countries with higher wealth
inequality or lower average wealth, Brinca, Holter, Krusell, and Malafry (2016)
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show in their VAR analysis that the fiscal multiplier is larger. In a sample of
15 OECD countries, they find that fiscal multipliers increase with the country’s
wealth Gini coefficient and decrease with the capital-output ratio. The regression
coefficients in their structural VARs are quantitatively significant and a one-
standard-deviation increase in the wealth Gini raises the multiplier by approximately
17% of the average multiplier value.

In light of these empirical studies, we find that our benchmark calibration with
{φ, ρc} = {0.75, 0.5} generates a reasonable government multiplier of 1.1. Our
model, however, is unable to replicate the asynchronous behavior of the multiplier
over the cycle or its dependence on wealth inequality and the number of credit-
constrained households.

4.4.4 Time Series Analysis

Table 4.4 reports our results on the second moments of the simulated series for the
benchmark case with φ = 3/4 and ρc = 0.5. We closely replicate the empirical
facts on the relative volatility of output, consumption, and investment. Output is
approximately as volatile as government consumption, while it is more volatile
(less volatile) than private consumption, labor, and wages (investment). Government
consumption, however, is excessively positively correlated with labor. While the
empirical value presented in Table 4.1 is equal to −0.243 during the period 1956–
2014, our model implies a value of 0.79.

Table 4.4 Second moments
for the benchmark case with
φ = 0.75 and ρc = 0.5

Variable sx sx/sY rxY rxL rxG

Output Y 1.12 1.00 1.00 0.73 0.23

Effective consumption C 0.72 0.64 0.53 0.92 0.94

Private consumption Cp 0.50 0.44 0.97 0.74 0.35

Investment I 3.30 2.95 0.94 0.50 −0.09

Hours L 0.52 0.46 0.73 1.00 0.79

Real wage w 0.82 0.73 0.90 0.37 −0.18

Real interest rate r 1.15 1.03 0.97 0.76 0.23

Government consumption G 1.23 1.10 0.23 0.79 1.00

Notes: sx : = Standard deviation of the time series x, where
x ∈ {Y,C,Cp, I, L,w, r,G}. The model-generated time series
were HP filtered with weight 1600. sx/sY : = standard deviation
of the variable x relative to the standard deviation of output
Y . rxY : = Cross-correlation of the variable hours with output,
rxL: = Cross-correlation of the variable with labor, rxG: = Cross-
correlation of the variable with government consumption
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4.4.5 Sensitivity Analysis

Using our choice of preferences as presented by the Cobb-Douglas utility func-
tion (4.28), we have been able to analyze cases in which private consumption
either falls (for φ = 1.0) or increases (for φ = 3/4) after an expansionary shock
to public consumption. In the following, we perform a sensitivity analysis of the
functional form of utility, in particular with respect to the so-called Frisch labor
supply elasticity. This elasticity measures the percentage change in the labor supply
in response to a 1% increase in the wage, given a constant marginal utility of wealth.

For the Cobb-Douglas case (4.28), the Frisch labor supply elasticity amounts
to33:

ηL,w = 1 − ι(1 − σ)

σ

1 − L

L
. (4.39)

For our benchmark calibration with ι = 0.4096, this implies a Frisch labor supply
elasticity for the Cobb-Douglas case equal to ηL,w = 1.64 in steady state (with
L = 0.30). Notice further that if we choose ι to fix the steady-state labor supply
L = 0.30, we simultaneously set ηL,w. We only have one free parameter, ι, that
determines both the average labor supply and the labor supply elasticity.

Estimates of ηL,w implied by microeconometric studies vary considerably.
MaCurdy (1981) and Altonij (1986) both use PSID data to estimate values of 0.23
and 0.28, respectively, while Killingsworth (1983) finds a US labor supply elasticity
equal to ηL,w = 0.4.34 In macroeconomic studies such as Trabandt and Uhlig
(2011), a value of unity is often chosen. Therefore, the Frisch labor supply elasticity
ηL,w = 1.64 that we applied above in the case of Cobb-Douglas utility seems to
be in the upper range of possible values; thus, we will use the more conservative
estimate ηL,w = 0.3 in our sensitivity analysis.

To analyze the sensitivity of our results with respect to ηL,w, we consider a
different utility function that is additively separable in consumption and leisure.
In particular, let us consider

u(Ct , Lt ) = C1−σ
t

1 − σ
− ν0

L
1+ 1

ν1
t

1 + 1
ν1

, (4.40)

where ν1 denotes the Frisch elasticity of labor supply.35 In comparison with the
Cobb-Douglas case (4.28), this utility function has the advantage that we can
separately choose ν0 (to fix L = 0.30 in steady state) and ν1 (the labor supply

33The Frisch labor supply elasticity is derived in Appendix 4.2.
34Domeij and Floden (2006) argue that these estimates are biased downward due to the omission
of borrowing constraints.
35The only equilibrium conditions that change in (4.38) are (4.38a) and (4.38b), which are replaced
by
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Fig. 4.16 Impulse responses: Government consumption shock, ρc = 0.5 and φ = 3/4, additive
utility

elasticity). For ν1 = 0.30, we need to set ν0 = 269.58, meaning that steady-state
labor supply is again equal to L = 0.3.36

We find that the qualitative results are sensitive to the labor supply elasticity ηL,w.
For the case with φ = 0.75 and ρc = 0.50, we illustrate the impulse responses to
a government shock in Fig. 4.16. Notice that private consumption decreases, while
labor supply increases on impact. As a consequence, output increases as well, even
though to a negligible quantitative extent (by approximately 0.02%). Therefore, the
government multiplier is also reduced from 1.1 (benchmark case with ηL,w = 1.64)
to 0.1 (with ηL,w = 0.3). The smaller Frisch labor supply elasticity only results in an
increase in labor and, hence, labor income that is much smaller than the additional
lump-sum taxes that are needed for the financing of the increase in government
consumption. Consequently, net income falls and the household can only afford
to spend less on both investment and private consumption. Evidently, additional
government expenditures crowd out private investments, while the real interest rate
increases. The impulse responses are therefore not in complete accordance to those
in Fig. 4.13.37

λt = φC−σ
t (Ξt )

1
1−1/ρc

−1 (
C
p
t

)− 1
ρc ,

λtwt = ν0L

1
ν1
t .

36You are asked to perform the numerical computation in Problem 4.3. The GAUSS program
Ch4_RBC2.g that computes this problem can be downloaded from my homepage.
37The magnitude and the sign of the impulse responses also depend on the functional form
of utility. If we employ utility function (4.40) with ηL,w = 1.64 rather than Cobb-Douglas
utility (4.28), private consumption also decreases in response to higher government consumption
(not illustrated). As expected, the response of labor supply is much stronger than for the case with
ηL,w = 0.30 and amounts to +0.11%.
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4.5 Keynes’ Argument for Countercyclical Government
Spending

In this section, we pursue Keynes’ original argument in favor of government
spending. In times of high unemployment and in the presence of sticky prices,
expansive government expenditures help to increase output. First, we briefly review
the standard AS-AD model to demonstrate this effect. We assume that the reader is
familiar with the AS-AD model. Next, we present a New Keynesian model that is
able to replicate the main findings of this model.

Why do we need a New Keynesian model if the AS-AD model is able to replicate
the same main mechanism? There are multiple reasons that the simple AS-AD
model is not sufficient. Most important, if we want to conduct policy analysis,
we want to be able to provide quantitative policy advice. For this reason, the AS-
AD model was estimated using standard (multiple-equation) regression models.
For example, private consumption was estimated as a linear function of income Y ,
Cp = C

p
0 + cY . In addition, the total demand was given by Y = Cp + I +G. These

equations, among others, were used as an input into the policy analysis, e.g., what
happens if G increases by 1%. However, Lucas (1976) noted in his famous Lucas
critique that coefficients such as c are themselves functions of the economic policy,
and therefore, policy recommendations based upon such models were flawed. We,
instead, will specify a general equilibrium model in which consumption, savings,
and labor supply are all micro-founded and derived from individual optimization.
Therefore, the policy functions only depend upon deep structural parameters,
e.g., preference parameters such as the intertemporal elasticity of substitution or
the policy parameters themselves. As a consequence, these models with deep
parameters are not subject to the Lucas critique.38

4.5.1 AS-AD Revisited

Figure 4.17 presents the AS-AD model. The AS curve displays the aggregate supply
curve, which is upward-sloping in the (Y, P ) diagram. The reason for the positive
relationship between the two variables, output Y and prices P , is as follows: A rise
in production Y is associated with higher labor input. As a consequence, workers
(or unions) demand higher wages, which increases marginal costs for given price
expectations Pe. Since the firm uses mark-up pricing on marginal costs, prices
increase.

38Even this statement is subject to restrictions. Preferences are not completely exogenous. For
example, firms’ advertising is used to influence consumer preferences or political institutions may
have an effect on cultural development and, therefore, our deep utility parameters. One of the first
modern economist to point out the endogeneity of preferences was Carl Christian von Weizsäcker
(see, e.g., von Weizsäcker (1971)).
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Fig. 4.17 Dynamic effects of higher government consumption in the AS-AD model

The AD (aggregate demand) curve characterizes the simultaneous equilibrium
in the goods and money market (IS and LM curves). The curve is downward-
sloping. The negative relationship between output Y and prices P can be explained
as follows: A rise in the prices implies lower real money balances, M/P . As a
consequence, interest rates increase and goods demand declines. In equilibrium,
demand is equal to production, and thus, output Y also declines. The general
equilibrium (Y0, P0) is the intersection of the AS and AD curves, where price
expectations are equal to actual prices, P0 = Pe.

An increase in government spending G results in an outward shift of the AD
curve from AD to AD′. As a consequence, both prices P and output Y rise. For
example, output increases from Y0 to Y1 in Fig. 4.17. Depending on the stickiness
of prices, output may increase even more markedly. Figure 4.18 illustrates the case
in which prices remain constant at P = P0 for one period and output increases
to a higher level. In this case, there is no general equilibrium (a simultaneous
equilibrium in goods, money, and the labor market), but only the goods and the
money market are in equilibrium, and thus, the new equilibrium is a point on the
new AD curve, AD’. Only gradually do prices increase. Since the workers notice
that their price expectations are too low, they increase wage demands, and the AS
curve shifts upward until it has reached the new long-run equilibrium AS′, in which
price expectations are equal to actual prices, Pe = P2. Therefore, an increase in
government spending is associated with higher employment, output, prices, and
wages during the transition. In addition, private consumption increases during the
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Fig. 4.18 Dynamic effects of higher government consumption in the AS-AD model, constant
prices on impact

transition because private consumption is assumed to be a positive function of
income.

Accordingly, the AS-AD model seems to be in accordance with empirical
VAR evidence according to which output, private consumption, and real wages all
increase after an increase in government spending. Two qualifying remarks with
respect to the reaction of private consumption are necessary: (1) Private consump-
tion is a function of disposable income. If additional government expenditures are
financed by means of taxes rather than government debt (in the presence of non-
Ricardian equivalence), the effect of additional government spending on private
consumption is reduced. (2) We neglect any interest effect on consumption (or,
respectively, savings). If prices increase and real money contracts, the interest rate
will rise so that savings are augmented (if the substitution effect dominates the
income effect). As a consequence, private consumption is reduced further.

A second qualifying remark is in order. Above, we discussed the effects of higher
government consumption starting in a general equilibrium of the labor, goods, and
money markets with output Y0 and price expectations Pe = P0. As a consequence,
output increased above its general equilibrium level. If, however, goods markets
are competitive, firms operate in their profit maximizing equilibrium at Y = Y0.
Therefore, they do not have any incentive to increase their production beyond Y0.
For firms to be interested in increasing their production beyond Y0 in the case of
sticky prices, we need to assume some form of monopolistic behavior such that
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profits increase with higher production. Therefore, a monopolistically competitive
goods producer will be part of the micro-founded New Keynesian model, to which
we turn next.

4.5.2 A New Keynesian Model

In the following, we describe a standard New Keynesian model with rigid prices and
wages. The economy consists of households, a labor agency, a production sector
with a monopolistically competitive wholesale sector and both intermediate goods
firms and final goods firms, the government sector, and the central bank.

To introduce nominal frictions into our ‘Keynesian’ model, we assume sticky
wages and prices. Sticky prices result from Calvo price staggering, as described in
Calvo (1983), meaning that only a part of the producers (in the wholesale sector) can
optimally adjust their prices. The rest of them can adjust their prices by the previous
period’s inflation rate. Similarly, only a part of the workers’ wages can be adjusted
optimally as in Erceg, Henderson, and Levin (2000). The wages of the other workers
are only adjusted for the inflation rate prevailing in the previous period. To keep the
model tractable, we will introduce an employment agency that bundles the labor
services of the households.

As we consider a nominal model with goods prices and nominal wages, we
need to introduce money into the model. There are various ways to do so,
e.g., by assuming a cash-in-advance constraint for consumption, a shopping-time
technology or so-called ‘limited participation’ where firms have to pre-finance
wages.39 We will take a short-cut since our focus is not on monetary, but rather
fiscal, policy and assume that households obtain utility from holding money, the so-
called ‘money-in-the-utility’ model. In addition, we need to introduce a central bank
that controls the money supply. We follow the standard approach and assume that
the central bank uses a Taylor rule and sets nominal interest rates with respect to
the inflation rate and output. For this reason, we also have to introduce an additional
asset in the form of nominal government bonds that are held by the households (we
will set the equilibrium supply equal to zero and only study government debt in the
final part of the book).

We also introduce various features into the model that help to improve the
cyclical behavior of various variables. In particular, we will include capital adjust-
ment costs and habits in consumption. These two assumptions help to improve the

39The expression ‘limited participation,’ as introduced by Christiano, Eichenbaum, and Evans
(1997), results from the constraints that agents face in the financial market. Households can only
lend funds to the firms with the help of a financial intermediary at the beginning of the period.
The central bank injects money into the banking sector after the households have deposited their
money at the bank. Hence, households can no longer participate in the financial market, i.e., they
have limited participation. At the end of the period, the financial intermediary retrieves the loans
from the firms that need to pre-finance labor costs. The different ways to introduce a motive for
money demand in general equilibrium models are reviewed in Walsh (2010), among others.
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dynamic behavior of the economic variables, e.g., output and consumption. As a
consequence, output is more persistent, and the impulse response is more hump-
shaped, as observed empirically.40

The present standard New Keynesian model such as presented in Christiano,
Eichenbaum, and Evans (2005), therefore, includes the following features:

• Sticky prices
• Sticky wages
• Monopolistic competition
• Capital adjustment costs
• Habits in consumption
• Motive for money demand
• Various shocks (on government consumption, technology, and nominal interest

rates).

4.5.2.1 Firms
In the production sector, we distinguish a final goods sector, a wholesale sector, and
an intermediate goods production sector. Intermediate goods Yt (j) are produced
by competitive firms that use capital and labor. They are sold to the wholesale
sector at price Pyt . Firm j in the wholesale sector brands and sells these goods
at price Pt (j) to the final goods sector. The final goods sector produces the final
good Yt and sells it at price Pt . Notice that the only reason that we introduce a
wholesale sector in the model is to simplify the solution of the model. In particular,
we assume that the firms, denoted j , with j ∈ [0, 1], in the wholesale factor cannot
all adjust their prices in each period. A random fraction 1 − ϕy of them are able
to do so, while the other fraction ϕy can only raise their prices by the inflation
rate observed in the previous period. We thereby introduce sticky prices following
Calvo (1983). To keep the solution tractable, we cannot assume that the intermediate
goods producers set their price in a Calvo staggering way because this would greatly
complicate integration over the individual demand functions of the intermediate
goods producers to derive aggregate factor demands. Instead, we will assume that
all intermediate goods producers are identical.

Let us start at the end of the production chain and work backward to the
production of the intermediate good. Final output Yt is produced from differentiated
inputs Yt (j), j ∈ [0, 1] according to the production function of Dixit and Stiglitz
(1977):

Yt =
(∫ 1

0
Yt (j)

εy−1
εy dj

) εy
εy−1

, εy > 1, (4.41)

40Both features help to increase the cost of intertemporal substitution of consumption for the
household. As a consequence, the premium on risky assets increases, and the model is also in better
accordance with asset price implications. See, for example, Jermann (1998) and Uhlig (2007).
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where εy denotes the price elasticity for the demand of the intermediate good
Yt (j).41 We assume that each producer j faces the same demand elasticity to
facilitate computation of the equilibrium.

The intermediate good Yt (j) is bought at price Pt (j), and the final good Yt is
sold at price Pt to the household as consumption good C

p
t , to the government as

public good Gt , and to the production sector as investment good It .
Profits Πt(j) are defined as follows:

Πt(j) = PtYt −
∫ 1

0
Pt (j)Yt (j) dj. (4.42)

Inserting the production function of the final good (4.41) into the profit equa-
tion (4.42), we obtain

Πt(j) = Pt

(∫ 1

0
Yt (j)

εy−1
εy dj

) εy
εy−1

−
∫ 1

0
Pt(j)Yt (j) dj.

The first-order condition of the firm is derived from setting the derivative of this
equation with respect to Yt (j) equal to zero42:

Pt

(∫ 1

0
Yt (j)

εy−1
εy dj

) 1
εy−1

Yt (j)
− 1

εy − Pt (j) = 0

Noticing that the production function (4.41) implies

(∫ 1

0
Yt (j)

εy−1
εy dj

) 1
εy−1

= Y

1
εy

t ,

we can derive the demand function for the intermediate product Yt (j):

Yt (j) =
(
Pt (j)

Pt

)−εy

Yt . (4.43)

Furthermore, we assume that the firms in the final goods sector make zero profits:

PtYt =
∫ 1

0
Pt (j)Yt (j) dj. (4.44)

41To derive that εy is equal to the price elasticity, differentiate the demand equation (4.43) with
respect to Pt(j).
42We used the chain rule of differentiation and the Leibniz integral rule as presented in Footnote
42 of Chap. 2.
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Inserting the demand function (4.43) into (4.44), we can also derive the price index
of the final good Pt :

Pt =
(∫ 1

0
Pt (j)

1−εy dj

) 1
1−εy

. (4.45)

4.5.2.2 Price Setting
A firm j in the wholesale sector buys goods at the nominal price Pyt from the
production sector, brands them, and sells them at price Pt (j) to the final goods
sector. Its profits are equal to (Pt (j)−Pyt )Yt (j) and, in the units of the final product,
are given by

Dt(j) =
(
Pt (j)

Pt
− gt

)
Yt (j), gt = Pyt

Pt
. (4.46)

Dividends Dt(j) are distributed to the household sector. gt denotes the inverse of
the mark-up. Later in this chapter, we will also analyze the behavior of the mark-up,
which according to empirical evidence presented in Sect. 4.2 falls after an increase
in government spending.

As described above, monopolistic firms in the wholesale sector set prices in a
Calvo staggering way. In each period, a randomly selected fraction 1−ϕy of firms in
this sector receive the signal to optimally choose their relative price pAt = PAt/Pt .
The remaining fraction ϕy are allowed to raise their nominal price PNt according to
the inflation rate observed in the previous period πt−1

43:

PNt = πt−1PNt−1, πt = Pt

Pt−1
. (4.47)

To describe the solution for the price setting of the wholesale firm j , we define
the variable syt as follows:

s
y
t ≡

∫ 1

0

(
Pt (j)

Pt

)−εy

dj. (4.48)

s
y
t is a measure of the price dispersion of individual prices Pt (j). In steady state,

where all firms in the wholesale sector demand the same price Pt (j) = Pt , the index
is equal to one, sy = 1.

43In Problem 4.6, you are asked to study the case in which the price PNt increases by the average
inflation π rather than by the inflation in the last period. Also note that the inflation rate amounts
to π − 1, while π denotes the inflation factor.
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The equilibrium conditions are derived in Appendix 4.3 and are represented by:

s
y
t = (1 − ϕy)p

−εy
At + ϕy(πt−1/πt )

−εy s
y

t−1, (4.49a)

pAt = εy

εy − 1

Γ1t

Γ2t
, (4.49b)

Γ1t = gtΛtYt + (βϕy)Et

(
πt

πt+1

)−εy

Γ1t+1, (4.49c)

Γ2t = ΛtYt + (βϕy)Et

(
πt

πt+1

)1−εy

Γ2t+1, (4.49d)

1 = (1 − ϕy)p
1−εy
At + ϕy(πt−1/πt )

1−εy . (4.49e)

In this system of equilibrium equations, Γ1t and Γ2t are simply auxiliary variables,
while pAt = PAt/Pt , as noted above, is the optimal price relative to the price of the
final good.

4.5.2.3 Production and Capital Accumulation
In this model, we assume for analytical convenience that capital is accumulated
by the firms in the intermediate goods sector. Households own equity in the firms.
Since all firms behave identically and their number is normalized to one, we can
study their behavior by means of a representative firm.

The production function of a representative firm in the intermediate goods sector
is given by

Ỹt = ZtL
1−α
t Kα

t , α ∈ (0, 1), (4.50)

where Kt and Lt denote the capital stock and labor.
The intermediate good is sold at the relative price gt to the wholesale sector. The

level of total factor productivity Zt is governed by the AR(1) process

lnZt = ρZ lnZt−1 + εZt , εZt ∼ N
(

0, σZ
)
. (4.51)

The firm accumulates its stock of capital and takes the funds for investment It from
retained earnings REt and newly issued equity St at price vt :

It = REt + vt (St+1 − St ) . (4.52)

The producer distributes the remaining surplus profits over retained earnings as
dividends to the households:

dtSt = gt Ỹt − wtLt − REt, (4.53)

where dt denotes the dividends per share St .
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Capital accumulation is subject to adjustment costs such that

Kt+1 = (1 − δ)Kt + Φ

(
It

Kt

)
Kt, Φ ′(.) > 0, Φ ′′(.) ≤ 0. (4.54)

In addition, we assume the adjustment cost function to have the following proper-
ties:

Φ(δ) = δ, Φ ′(δ) = 1.

Accordingly, in steady state with I = δK , adjustment costs are equal to Φ(I/K) =
Φ(δ) = δ and do not play any role in the steady state. As we will see shortly, the
second assumption, Φ ′(δ) = 1, implies that Tobin’s q is equal to one in steady state.

For Φ(I/K) = I/K , we are back to the standard capital accumulation
equation. For our specification, capital accumulation is subject to frictions, and thus,
investment It does not produce capital one-to-one. In particular, we parameterize the
function Φ following Jermann (1998):

Φ(It /Kt) := a1

1 − ζ

(
It

Kt

)1−ζ

+ a2, ζ > 0, (4.55)

where 1/ζ denotes the elasticity of investment with respect to Tobin’s q.
For the parameters a1 and a2, we select the values

a1 = δζ , a2 =
(

ζ

1 − ζ

)δ
,

such that Φ(δ) = δ and Φ ′(δ) = 1 hold.
The firm chooses investment and labor demand to maximize its cum-dividend

value, i.e., the value of the discounted dividends including the present period t :

V cd
t = Et

∞∑

s=0

βs Λt+s

Λt

[
gt+sZt+sL

1−α
t+s K

α
t+s − wt+sLt+s − It+s

]

subject to (4.54) and a given initial stock of capital Kt . The term βsΛt+s/Λt is the
stochastic discount factor of the stockholders (the households) that we will introduce
shortly. The first-order conditions are given by:

wt = (1 − α)gt
Ỹt

Lt

, (4.56a)

qt = 1

Φ ′(It/Kt )
, (4.56b)

qt = βEt
Λt+1

Λt

[
αgt+1

Ỹt+1

Kt+1
− It+1

Kt+1
+ qt+1 (1 − δ + Φ(It+1/Kt+1))

]
,

(4.56c)
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where q denotes Tobin’s q, i.e., the price of capital.44 Notice that q = 1 in steady
state given our calibration of Φ(.).

Our main reason to introduce capital adjustment costs is to allow for more
realistic behavior of the wealth effect from higher government consumption. When
a shock (either a government or a technology shock) hits the economy, firms
gradually adjust their capital due to adjustment costs. As a consequence, the price of
capital and, as we will show in the following, the value of the shares respond more
markedly.

4.5.2.4 Labor Demand
The household has a unit mass of members h ∈ [0, 1] who sell their labor services
Lt(h) at wage rate Wt(h). The household’s labor services are only imperfect
substitutes in the production process of the intermediate goods. To keep the model
tractable, it is convenient to introduce an ‘employment agency’ that combines the
households’ labor hours in the same proportion as the firms. The agency bundles
the individual labor services into a single service according to the form proposed by
Dixit and Stiglitz (1977):

Lt =
[∫ 1

0
Lt (h)

εw−1
εw dh

] εw
εw−1

, εw > 1. (4.57)

and sellsLt at the nominal wageWt to the intermediate goods producer. Maximizing
profits, WtLt −

∫ 1
0 Wt(h)Lt (h) dh, subject to (4.57) yields the demand function for

labor

Lt(h) =
(
Wt(h)

Wt

)−εw

Lt , (4.58)

and the aggregate wage index

Wt =
[∫ 1

0
Wt(h)

1−εw

] 1
1−εw

. (4.59)

Notice that εw denotes the wage elasticity of labor demand.
Profits of the labor agency are equal to zero, implying

WtLt =
∫ 1

0
Wt(h)Lt(h) dh.

44Heer and Maußner (2009) show that the (stock market) value of the firm at the beginning of
period t + 1 is equal to the value of the capital at the end of period t (=beginning of period t + 1),
V cd
t = qtKt+1. Accordingly, qt describes the (market) value of the firm relative to the replacement

cost of capital and, therefore, amounts to the definition of Tobin’s q.
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The analytical derivation of the demand function is methodologically the same as
that for the goods demand of the final goods’ producers above as we consider simply
two variants of the same Dixit-Stiglitz model. The derivation is left as an exercise
for the reader.45

4.5.2.5 Household Preferences
The number of households is normalized to one. The household h ∈ [0, 1]
derives (dis)utility from effective consumption Ct (h), labor Lt(h), and real money
Mt+1(h)/Pt :

u(Ct (h),C̄t , Lt (h),Mt+1(h)/Pt ) = (Ct (h) − χCC̄t )
1−σ − 1

1 − σ
− ν0

1 + 1
ν1

Lt(h)
1+ 1

ν1

+ γM
0

(
Mt+1(h)

Pt

)1−γM
1 − 1

1 − γM
1

,

σ, ν0, ν1, γ
M
0 , γM

1 > 0, χC ∈ [0, 1),
(4.60)

where effective consumption Ct is, again, given by the composite good of private
and public consumption, as in (4.21). C̄t denotes the consumption habits of the
households.46 The household takes its habits as exogenous.47 In equilibrium, the
habit C̄t equals the aggregate consumption of the previous period, C̄t = Ct−1 =∫ 1

0 Ct−1(h) dh.
Household members hold three different types of assets: shares in the interme-

diate goods producer St (h), nominal bonds Bt (h), and nominal money as of the
beginning of the next period (alternatively, the end of period t) Mt+1(h). In terms
of the final good, stocks have price vt and pay dividend dt . The real value of bonds
is given by Bt (h)/Pt . Bonds pay the predetermined nominal interest rate Qt . In
addition to dividends and interest income, the households receive wage income
Wt(h)Lt (h), a share (equal to unity) of the profits distributed from the wholesale
sector, and a share (equal to unity) of the government transfers in period t , trt (h).

45The structure of the model seems to be very complicated. We distinguish three production sectors
(final goods, wholesale, intermediate goods) and one employment agency. If you consider the
alternative case where we only postulate one production sector without an employment agency, the
benefits of this fragmentation of services in the production sector are evident. If we had only one
production sector that is characterized by monopolistic competition and heterogeneous firms, each
firm’s labor demand and price-setting behavior would depend on its marginal costs and, hence, its
capital stock. As a consequence, we would not be able to derive simple index functions in the form
of (4.45) and (4.59) for the aggregate price and aggregate wage. Instead, these aggregate prices
would depend on the distribution of capital in the production sector.
46This specification was introduced by Constandinides (1990). As an alternative, Abel (1990) uses
the ratio of consumption and habits, Ct/C̄t , in the utility function.
47The results are not sensitive to this assumption.
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The budget constraint, therefore, reads as:

Wt (h)

Pt
Lt (h) +

∫ 1

0
Dt(j) dj + dt St (h) + (Qt − 1)

Bt (h)

Pt
− C

p
t (h) + trt (h) − Tt (h)

= vt
(
St+1(h) − St (h)

)+ Bt+1(h) − Bt (h)

Pt
+ Mt+1(h)− Mt(h)

Pt
,

(4.61)

where Tt (h) denotes lump-sum taxes.
In each period, a random fraction 1 − ϕw of the household members receive a

signal to optimally choose their nominal wage WAt . The remaining fraction ϕw are
allowed to increase their wage WNt according to the price inflation observed in the
previous period:

WNt = πt−1WNt−1, πt = Pt

Pt−1
. (4.62)

Those who optimize set their real wage w̃t = WAt/Pt to maximize

Et

∞∑

s=0

(βϕw)
su(Ct+s(h), Lt+s (h), C̄t+s,Mt+s+1(h)/Pt+s )

subject to labor demand (4.58) and the budget constraint (4.61).
To derive the equilibrium conditions for the wage staggering, let us define the

variable swt , which is a measure of wage dispersion among households:

swt ≡
(∫ 1

0

(
Wt(h)

Wt

)−εw(1+ 1
ν1
)

dh

) 1
1+ 1

ν1
. (4.63)

This measure will be helpful to describe the equilibrium dynamics of the economy
and helps to relate average working hours L̃t and aggregate labor Lt . In particular,
the average (or expected) working hours of a household member L̃t are derived
in Appendix 4.4 as

L̃t =
∫ 1

0
Lt (h) dh = swt Lt .

In steady state, all households receive the same wage, and, hence, sw = 1.
Furthermore, average working hours are equal to aggregate labor in steady state
because all workers supply the same amount of labor.
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The equilibrium conditions are derived in Appendix 4.4 and are represented by:

w̃t = εw

εw − 1

Δ1t

Δ2t
, (4.64a)

Δ1t = ν0

(
w̃t

wt

)−εw(1+ 1
ν1
)

L
1+ 1

ν1
t + (βϕw)Et

(
πtw̃t

πt+1w̃t+1

)−εw(1+ 1
ν1
)

Δ1t+1,

(4.64b)

Δ2t = Λt

(
w̃t

wt

)−εw

Lt + (βϕw)Et

(
w̃t

w̃t+1

)−εw
(

πt

πt+1

)1−εw

Δ2t+1,

(4.64c)

w
1−εw
t = (1 − ϕw)w̃

1−εw
t + ϕw

(
πt−1

πt
wt−1

)1−εw

, (4.64d)

(swt )
1+ 1

ν1 = (1 − ϕw)

(
w̃t

wt

)−εw(1+ 1
ν1
)

+ ϕw

(
πt−1wt−1

πtwt

)−εw(1+ 1
ν1
)

(swt−1)
1+ 1

ν1 .

(4.64e)

4.5.2.6 Consumption and Portfolio Choice
The pooling assumption allows us to derive the demand for consumption, bonds,
stocks, and money from maximizing

Et

∞∑

s=0

βsu(Ct+s , C̄t+s, Lt+s ,Mt+s+1/Pt+s)

subject to the sequence of budget constraints

wt+sLt+s +
∫ 1

0
Dt(j) dj + Stdt+s + (Qt+s − 1)

Bt+s

Pt+s

+ trt+s − C
p
t+s − Tt

= Bt+s+1 − Bt+s

Pt+s

+ vt+s (St+s+1 − St+s) + Mt+s+1 − Mt+s

Pt+s

.

(4.65)

The first-order conditions for the optimal choice of private consumption C
p
t , the

number of stocks St+1, bond holdings Bt+1 and money Mt+1 are:

Λt = φ(Ct − χC̄t−1)
−σ (Ξt)

1
1−1/ρc

−1 (
C
p
t

)− 1
ρc , (4.66a)

vtΛt = βEtΛt+1(vt+1 + dt+1), (4.66b)
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Λt = βEtΛt+1
Qt+1

πt+1
, (4.66c)

Λt = Et

[
β
Λt+1

πt+1
+ γM

0

(
Mt+1

Pt

)−γM
1
]
, (4.66d)

where Ξ is defined as above, Ξt = φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t . The

marginal utility from consumption is represented by (4.66a). The three optimality
conditions (4.66b), (4.66c), and (4.66d) describe the optimal savings behavior
with respect to the three assets equity, government bonds, and real money. The
expected return of these three assets must be equal to each other and amount to
Et {Λt/(βΛt+1)}. The return from equity is equal to the dividend yield plus the
increase in stock prices, (vt+1 +dt+1 −vt )/vt . Government bonds yield the nominal
return Qt+1 − 1, while money has a nominal return of zero, but also provides

marginal utility γM
0

(
Mt+1
Pt

)−γM
1

in period t .

4.5.2.7 Monetary Policy
The central bank sets the nominal interest rate Qt+1 according to the Taylor rule

Qt+1 = QθR

t

(
π

β

)1−θR (πt
π

)θπ (Yt
Y

)θY
eε

Q
t , θR ∈ [0, 1), ε

Q
t ∼ N(0, σQ).

(4.67)

The elasticity of Qt+1 with respect to the deviation of the inflation factor πt from
its steady-state value π will be chosen such that the equilibrium is determinate.
Usually, this requires θπ > 1.48

Seignorage is transferred lump-sum to the households:

PtT rt = Mt+1 − Mt. (4.68)

Since we normalized the number of households to one, individual transfers are equal
to aggregate transfers, trt (h) = T rt .

48An inflation reaction coefficient in excess of unity prevents self-fulfilling expectations with
respect to the path of inflation. See, for example, Bullard and Mitra (2002). The intuition for this
behavior is quite simple. Assume that aggregate demand and prices increase and that the other
reaction coefficients are equal to zero, θR = θY = 0. If the reaction coefficient θπ were less than
one, nominal interest rates would rise less than prices so that the real interest rate would decline.
As a consequence, aggregate demand would increase further and inflation went up even more. The
monetary policy clearly would become unstable. While we exclude this kind of behavior in our
model, we, however, refrain from imposing a lower zero bound on the net nominal interest rate
Qt − 1, as it rarely becomes binding in our simulations.
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4.5.2.8 Government
The government consumes final goods in the amount Gt , which are financed by
taxes (recall that we set the equilibrium supply of government bonds equal to zero).
We assume that the government spending rule Gt follows an AR(1) process

lnGt = (1 − ρG) lnG + ρGGt−1 + ρY (lnYt−1 − ln Y ) + εGt , εGt ∼ N(0, σG),

(4.69)

where G denotes steady-state government consumption. Notice that we have intro-
duced an additional additive term, ρY (lnYt−1 − ln Y ). Accordingly, the government
reacts to the state of the economy as described by the percentage deviation of output
Yt−1 from its steady-state value Y . Since the implementation of fiscal policy takes
time, we assume that the government can only react with a lag of one period. In
addition, government consumption is subject to a shock that cannot be controlled
by the government. For example, government expenditures in Germany increased
after 1989 due to reunification of West and East Germany. In the following, we
will first analyze the case with ρY = 0 before we compute the value of ρY that
maximizes welfare.

In addition, the government cannot control the parameter ρG that governs the
adjustment of government expenditures after a shock. As one possible reason,
consider the decision-making process about budgets in a government. To cut govern-
ment expenditures, various bureaucratic agencies (ministries) that seek to increase
their individual budgets have to agree to cut them instead. These government
agencies also do not have any incentive to reduce the budget to their actual needs
but usually maximize their well-being using the amount of their budgets. In addition,
both politicians and citizens grow accustomed to spending levels. These so-called
ratchet effects help to explain the significant inertia in budget cuts.

In equilibrium, the government budget is balanced:

PtGt = PtTt . (4.70)

4.5.2.9 General Equilibrium
In equilibrium, factor and product markets clear, and bonds are in zero supply,
Bt = 0.

In addition, consolidating the household and the government budgets results in

gt Ỹt +
∫ 1

0

(
Pt (j)

Pt
− gt

)
Yjt dj = C

p
t + It + Gt, (4.71)

which reduces to the usual goods market equilibrium condition

Yt = C
p
t + It + Gt. (4.72)
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4.5.2.10 EquilibriumDynamics
The equilibrium conditions of the model consist of the firm’s optimality conditions,
the production function, the capital accumulation equation, the economy’s resource
constraint implied by the household’s budget constraint, the wage-setting equations,
the household’s optimality conditions, and the Taylor rule (4.67). We disregard the
solution for the stock of real balances (the first-order condition of the household
with respect to real money Mt+1/Pt ), as this condition is only used to determine
the real money supply that is necessary to support the interest rate policy Qt of the
central bank. Therefore, we can remove it from the equilibrium conditions such that
the full model is described by the following 24 equations in the 24 variables Yt , Ỹt ,
C
p
t , Ct , Ξt , It , Lt , Kt , wt , w̃t , gt , Qt , πt , qt ,pAt , s

y
t , swt , Λt , Γ1t , Γ2t , Δ1t , Δ2t , dt

and vt :

Λt = φ(Ct − χCt−1)
−σ (Ξt)

1
1−1/ρc

−1 (
C
p
t

)− 1
ρc (4.73a)

Ct =
[
φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t

] 1
1−1/ρc

, (4.73b)

Ξt = φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t , (4.73c)

wt = (1 − α)gt
Ỹt

Lt

, (4.73d)

Ỹt = ZtL
1−α
t Kα

t , (4.73e)

Yt = C
p
t + It + Gt, (4.73f)

s
y
t Yt = Ỹt . (4.73g)

qt = 1

Φ ′(It /Kt)
, (4.73h)

dt = gt Ỹt − wtLt − It , (4.73i)

pAt = εy

εy − 1

Γ1t

Γ2t
, (4.73j)

w̃t = εw

εw − 1

Δ1t

Δ2t
, (4.73k)

w
1−εw
t = (1 − ϕw)w̃

1−εw
t + ϕw

(
πt−1

πt
wt−1

)1−εw

, (4.73l)

Kt+1 = (1 − δ)Kt + Φ(It /Kt)Kt , (4.73m)

Λtvt = βEtΛt+1(vt+1 + dt+1), (4.73n)

Λt = βEt
Λt+1Qt+1

πt+1
, (4.73o)
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qt = βEt
Λt+1

Λt

{
αgt+1Zt+1L

1−α
t+1 K

α−1
t+1 − It+1

Kt+1

+qt+1

[
Φ

(
It+1

Kt+1

)
+ 1 − δ

]}
, (4.73p)

1 = (1 − ϕy)p
1−εy
At + ϕy(πt−1/πt )

1−εy . (4.73q)

s
y
t = (1 − ϕy)p

−εy
At + ϕy(πt−1/πt )

−εy s
y

t−1, (4.73r)

Γ1t = gtΛtYt + (βϕy)Et

(
πt

πt+1

)−εy

Γ1t+1, (4.73s)

Γ2t = ΛtYt + (βϕy)Et

(
πt

πt+1

)1−εy

Γ2t+1, (4.73t)

(swt )
1+ 1

ν1 = (1 − ϕw)

(
w̃t

wt

)−εw(1+ 1
ν1
)

+ ϕw

(
πt−1wt−1

πtwt

)−εw(1+ 1
ν1
)

(swt−1)
1+ 1

ν1 ,

(4.73u)

Δ1t = ν0

(
w̃t

wt

)−εw(1+ 1
ν1
)

L
1+ 1

ν1
t + (βϕw)Et

(
πtw̃t

πt+1w̃t+1

)−εw(1+ 1
ν1
)

Δ1t+1,

(4.73v)

Δ2t = Λt

(
w̃t

wt

)−εw

Lt + (βϕw)Et

(
w̃t

w̃t+1

)−εw
(

πt

πt+1

)1−εw

Δ2t+1,

(4.73w)

Qt+1 = (Qt )
θR
(
π

β

)1−θR (πt
π

)θπ
eε

R
t . (4.73x)

4.5.2.11 Stationary Equilibrium
As usual, the stationary equilibrium is defined by setting the shocks equal to their
unconditional means and by assuming that xt+1 = xt = x for all variables x in
the model. In this case, PAt = Pt , and therefore, pA = 1. Similarly, the dispersion
variables of prices and wages are equal to one, sy = sw = 1, because all wholesale
producers charge the same price and all household members receive the same wage.
Therefore, Ỹ = Y in steady state. Moreover, Qt+1 = Qt , implying

Q = π

β
.

Accordingly, the steady-state nominal interest rate set exogenously by the central
bank determines the steady-state inflation rate.
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Equations (4.73j), (4.73s), and (4.73t) (using πt = πt+1 = π and pA = 1)
simplify to

g = εy − 1

εy
, (4.74a)

meaning that the mark-up

1

g
= 1

1 − 1
εy

increases with more inelastic goods demand or, equally, a lower price elasticity of
demand εy .

To derive the steady-state capital stock with the help of the assumption that labor
supply is equal to L = 0.3 (which will later help to determine the utility parameter
ν0), we transform equation (4.73p):

K

L
=
(

αg

1/β − (1 − δ)

) 1
1−α

(4.74b)

such that for a given L, the stationary stock of capital equals

K =
(

αg

1/β − (1 − δ)

) 1
1−α

L. (4.74c)

Consequently, output Y is determined by (4.73e). With the help of the steady-state
value for Y , we will calibrate G such that the government consumption share in
GDP is equal to 20%, G/Y = 0.20.

Given the properties of the adjustment cost function Φ, equation (4.54) implies

I = δK, (4.74d)

and we obtain the stationary value of private consumption from the resource
constraint, Cp

t = Yt − It − Gt . Given the solution for Cp, we can compute the
solution for C with the help of (4.73c) and for Λ from (4.73a) (using C̄t−1 = C).

The stationary real wage w follows from equation (4.73d). Equation (4.73l)
implies that w̃ = w. Γ1 and Γ2 are implied by (4.73s) and (4.73t). Ψ1 and Ψ2 are
implied by (4.73u) and (4.73v), and thus, we are able to determine the parameter ν0
with the help of (4.73k):

ν0 = εw − 1

εw
ΛwL

− 1
ν1 . (4.74e)
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Dividends d follow from equation (4.73h). The stationary share price derives
from (4.73n):

v = β

1 − β
d. (4.74f)

4.5.2.12 Calibration
To calibrate the parameters of our model, we choose standard values from the
literature. Our parameters are summarized in Table 4.5. The values for α, β, δ, σ ,
ρZ , σZ , ρG, and σG are taken from Table 4.3.

The new preference parameters are chosen as follows: The habit parameter χ
is set equal to 0.65, as in Christiano, Eichenbaum, and Evans (2005). The Frisch

Table 4.5 Calibration of the New Keynesian model

Parameter Value Description

β 0.99 Subjective discount factor

1/σ 1/2 Intertemporal elasticity of substitution

χ 0.65 Habit parameter

φ 1.0 Relative weight of private and public consumption
in effective consumption

ρc 0.5 Elasticity of Substitution between private and public
consumption

γM
1 0.1776 Elasticity of marginal utility of real money

γM
0 0.331 Weight of utility from real money in total utility

L 0.3 Steady-state labor supply

ν1 0.20 Frisch labor supply elasticity

α 0.36 Share of capital in value added

δ 0.025 Rate of capital depreciation

1/ζ 1/3.0 Elasticity of investment with respect to q

ϕy 0.5 Share of wholesale producers who cannot adjust prices

ϕw 0.5 Share of workers who cannot adjust wages

εy 6.0 Price elasticity of demand for intermediate goods

εw 6.0 Wage elasticity of labor demand

ρZ 0.95 Autocorrelation of TFP shock

σZ 0.0072 Standard deviation of innovations of TFP shock

G/Y 0.20 Share of government spending in steady-state production

ρG 0.90 Autocorrelation parameter in a government spending shock

σG 0.01 Standard deviation of innovations in a government spending shock

ρY 0 Reaction coefficient on output in gov. consumption rule

θπ 1.50 Coefficient of inflation in Taylor rule

θR 0.90 Autocorrelation parameter in Taylor rule

θY 0.25 Coefficient of output in Taylor rule

σQ 0.0252 Standard deviation of innovations to Taylor rule

π − 1 0.5% Quarterly inflation rate
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labor supply elasticity is set equal to ν1 = 0.2. As we argued in the previous
section, this value for ν1 is in the middle range of the values estimated by micro-
econometric studies. In our benchmark, we set φ = 1.0, meaning that government
consumption does not affect utility. As a consequence, the elasticity of public and
private consumption does not affect the results, and we set it equal to ρc = 0.5. In
our sensitivity analysis, we also consider the value φ = 1.3.

The utility parameters from real money balances, γM
0 and γM

1 , are only needed
if we intend to compute household utility. For the computation of the results in
this section, money demand is residual (for a given nominal interest rate Qt ), and
thus, we can neglect it. Since, however, the reader might be interested in using
the model in this section for further studies, for example in a welfare analysis, we
describe the calibration of these parameters. To determine θMi , i = 1, 2, we use two
identifying restrictions. First, the annual velocity of money is set to 6.0 in steady
state in accordance with the empirical evidence presented in Heer, Maußner, and
McNelis (2011). Second, we impose the condition that the semi-interest elasticity
of money is equal to 5.95%, as computed in Dotsey and Ireland (1996). To calibrate
these two parameters, we have to solve a non-linear equation routine f (γM

1 ) = 0
in the variable γM

1 . In particular, we start with an initial value for γM
1 and compute

the value of γM
0 from the first-order condition of the household with respect to

next-period money holdings, (4.66d), using PY/M = 1.5 (the quarterly velocity of
money in steady state). Next, we increase steady-state inflation by 10 percentage
points, use the Taylor rule for monetary policy in steady state to compute the
corresponding nominal interest rate Q, and solve the model to obtain the new
velocity of money P ′Y ′/M ′. Following Dotsey and Ireland (1996), we compute the
percentage change in the income velocity after an absolute increase in the interest
rate by 0.10 as a proxy for the semi-interest rate elasticity of money demand and
consider its deviation from the empirical value as our non-linear equation:

f (γ 1
M) =

ln
(
P ′Y ′
M ′
)

− ln
(
PY
M

)

0.10
− 5.95.

If the value of f (γM
1 ) is equal to 0, we are done. Otherwise, we have to provide a

new guess for γM
1 until f (γM

1 ) converges to zero. We start with two initial values
(
γM

1

)1 = 0.10 and
(
γM

1

)2 = 0.20 and use the secant method49 with a smoothing
parameter κ = 0.1 to find the solution γM

1 = 0.177650:

(
γM

1

)i+2 =
(
γM

1

)i+1 − κ

(
γM

1

)i+1 − (γM
1

)i

f (
(
γM

1

)i+1
) − f (

(
γM

1

)i
)
f (
(
γM

1

)i
).

49See Fig. 2.15 and Eq. (2.59) in Appendix 2.1.
50The sequence does not converge for the standard secant method with κ = 1.
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We assume that both the average goods prices and wage contracts last 2 quarters
on average, implying ϕy = ϕw = 0.5. The price elasticity of demand for
intermediate goods, εy = 6, is set in accordance with Christiano, Eichenbaum, and
Evans (2005). Our value of εy implies a mark-up of 20% on marginal costs. We also
set the wage elasticity of labor demand εw equal to 6.0. The elasticity of investment
with respect to Tobin’s q is assumed to amount to 1/3, implying ζ = 3.0. The value
of this elasticity is in accordance with Jermann (1998), who chooses a somewhat
smaller elasticity of 0.23.

The remaining parameters that we need to calibrate are the parameters of the
Taylor rule (4.67): θπ = 1.50, θR = 0.90, θY = 0.25, and σQ = 0.0252. θπ

and θY are set as in Taylor (1993). The interest rate rule implies high inertia with
θR = 0.90, as in Walsh (2005). Finally, we use the steady-state inflation factor
π = 1.005 to imply an annual inflation rate of approximately 2.0%.

The parameters a1, a2, and ν0 are computed with the help of the steady-
state conditions as described above. The calibration and solution of the model is
computed with the help of the GAUSS program Ch4_newkeynesian.g that can be
downloaded from my homepage.

4.5.3 Impulse Responses

Figures 4.19 and 4.20 describe the impulse responses of output Yt and the technol-
ogy level Zt/government spending shock (top-left panel), the demand components
effective consumption Ct , private consumption C

p
t , investment It , and government

consumption Gt (top-right panel), the real wages wt , labor supply Lt , and the
nominal interest rate Qt (bottom-left panel), Tobin’s q qt , the inflation factor πt ,
the capital stock Kt , and the mark-up, 1/gt (bottom-right panel) that result from a
one-standard-deviation shock to the technology level and government consumption,
respectively. The case of a shock to the nominal interest rate is illustrated and
discussed in Appendix 4.5 because the focus of this book is on fiscal rather than
monetary policy. In the illustrated case, we set φ = 1, meaning that government
consumption does not enter utility. In addition, we first analyze the case in which
output does not affect government consumption, ρY = 0, in the policy rule (4.69).

4.5.3.1 Technology Shock
To obtain a better understanding of the different mechanisms at work, let us start by
considering the effects of a technology shock as illustrated in Fig. 4.19. Following
an unexpected increase in the technology level, the productivity of labor and capital
increase, and thus, demand for both factors also increases. Households demand
higher wages, and thus, the real wage and income increase. Since households
intertemporally smooth utility, private consumption is increased over many periods,
and the households also have to increase savings. In addition, capital adjustment
costs also drive up Tobin’s q.

On impact in period t = 2, hours L decrease by 0.4%. This behavior is in
accordance with results from empirical studies such as Galí (1999) and Basu,
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Fig. 4.19 Impulse responses to a technology shock in the New Keynesian model

Fernald, and Kimball (2006) and is typical in New Keynesian models with sticky
prices and adjustment costs of capital. The increase in the real wage is not sufficient
to offset the labor tax implied by the rise in the adjustment costs of capital. In
addition, the real wage is sluggish, and thus, the (incentive) effect of higher wages
only manifests itself after 2–3 quarters, when most of the adjustment has taken place.
Recall that during the first period after the shock, only half of the households will
be able to secure an increase in wages in the presence of wage staggering. The
remaining households only benefit from the technology increase over the course of
the subsequent periods, such that labor L gradually increases in period t = 3, . . ..

To provide a more intuitive argument why a technology shock initially lowers
labor supply in the New Keynesian model, consider the case of completely rigid
prices. Assume, in particular, that prices remain constant in period t = 2 when the
shock occurs. If firms cannot lower their prices, demand for final goods remains also
constant ceteris paribus such that production does not increase. Since productivity
Zt , however, has increased, the firms have to decrease the use of the input factors
labor and/or capital. Since the adjustment of capital is costly, firms prefer to reduce
the use of labor. In the medium run, prices and wages are flexible so that the
New Keynesian model behaves like the RBC model. Labor, capital, production, and
consumption all increase. Since the households optimally smooth their consumption
intertemporally, they already increase their consumption in period t = 2 when
the shock occurs. As a consequence, aggregate demand increases and this effect
increases the demand for labor. Similarly, investment demand also increases as the
firms build up their capital stock over time. In addition, we assume that prices are not
completely rigid so that (some) firms can lower their prices to increase their sales.
Accordingly, aggregate demand and, hence, production increase. As is evident from
the inspection of the upper left panel of Fig. 4.19, the effect on aggregate demand is
lower than the increase in productivity in period 2. Therefore, the firm optimally
reduces its labor demand. The increase in aggregate goods demand is higher if
prices are more flexible. For the case of fully flexible prices (as in the standard RBC
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model), the increase in goods demand and, therefore, production is higher than the
increase in productivity so that labor input has to increase as well.51

In addition, marginal costs and, hence, inflation decline. Since the technology
level Zt increases, firms in the intermediate goods sector can produce at lower
marginal costs. As the prices in the wholesale sector only adjust gradually, the
mark-up of wholesale prices Pt over the prices Pyt of intermediate goods increases
or, equally, gt falls. The response of the mark-up also helps to explain the hump-
shaped response of the real wage because the real wage increases as Pyt approaches
Pt over time (recall that real wages depend on the inverse of the mark-up according
to wt = gt (1 − α)Zt(Kt/Lt )

α). In the long run, producers in the wholesale sector
adjust their prices downward, and we observe negative inflation (the blue line in the
bottom-right panel of Fig. 4.19).

The central bank adjusts the nominal interest rate Qt downward. The central
bank follows its Taylor rule (4.73x). While the higher output increases the nominal
interest rate, the lower inflation rate reduces it. The net effect is negative, and
thus, the nominal interest rate declines (see the red line in the bottom-left panel of
Fig. 4.19). The decline in the nominal interest rate is even larger than the decline in
the inflation rate, and thus, real interest rates also decrease. Therefore, the monetary
policy reinforces the effect of the technology shock on private consumption and
leisure, as the households intertemporally reallocate their consumption and leisure
and increase both variables in periods with low interest rates according to their Euler
condition (4.66c).

4.5.3.2 Government Consumption Shock
Figure 4.20 illustrates the effects of a government consumption shock, εG2 = 0.01.
Given the autoregressive process of government consumption Gt , Gt (the green
line in the top-right panel) gradually declines over time after the impact in period
t = 2, from 1% to 0. Notice that the positive impulse responses of output and
the negative impulse responses of investment are in accordance with empirical
observations. The government multiplier amounts to 0.6 on impact, meaning that,
again, we can closely replicate empirical evidence on the multiplier in the present
case of sticky prices.52 However, private consumption and wages decline after an
increase in government consumption.

51The reader is invited to experiment with the values of the parameters {ϕy, ϕw, εy, εw, ζ, χ} in
the GAUSS program Ch4_newkeynesian.g in order to study the sensitivity of the labor impulse
responses.
52Farhi and Werning (2016) demonstrate in a standard New Keynesian model that the multiplier
increases and exceeds unity in case of a liquidity trap (in which interest rates hit zero). Extending
their model to the open economy, these authors find that the fiscal multiplier is smaller and below
one for a country in a currency union. Erceg and Linde (2012) find that the fiscal multiplier is below
one in an economy with fixed-exchange rates and, in accordance with the Mundell-Flemming
model, above the one with flexible exchange rates. They show that their latter result is sensitive
with respect to the slope of the Phillips curve and the presence of a persistent liquidity trap.
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Fig. 4.20 Impulse responses to a government consumption shock in the New Keynesian model

The economic intuition for the impulse responses of the economic variables is
as follows: Higher government consumption increases taxes and reduces wealth. As
a consequence, labor L rises.53 Consequently, the marginal product of labor and,
hence, wages decline. Because of their reduced disposable income, households both
consume and save less, meaning that investment declines, and hence, the capital
stock and the marginal product of labor decrease. This effect reinforces the decline
in wages.

As the marginal product of labor falls, marginal costs of production increase,
resulting in higher prices. Accordingly, the increase in total demand drives up
inflation. Monetary policy reinforces the effect of higher government consumption
on private consumption and labor supply in our model. Following its Taylor rule,
the central bank increases its interest rate Qt on nominal government debt. For the
illustrated case, θY = 0.25 and θπ = 1.5, the increase in the nominal interest rate
Qt is larger than the increase in the inflation rate, meaning that real interest rates
also increase, resulting in lower private consumption and higher labor supply by the
households, ceteris paribus.54

To generate a positive response to higher government consumption in private
consumption (in accordance with empirical evidence), we set φ = 1.3. Evidently,
our utility function implies that for φ > 1, higher public consumption decreases

53Of course, the response of hours depend on our assumption that taxes are lump-sum rather than
proportional to wage income.
54Linnemann and Schabert (2003) show analytically how the central bank’s rule affects the
consequences of higher government consumption for labor, output, and prices. In response to
higher (government) demand, labor demand increases, while the wealth effect drives up labor
supply. The strength of the demand effect depends on the response of the real interest rate, which
is governed by the monetary policy rule. When the rise in the real interest rate is dampened by
an interest rate rule (as in our case), output and inflation can increase. They also show that, if the
central bank follows a simple money-growth rule, fiscal expansions could be both deflationary and
contractionary.
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Fig. 4.21 Impulse responses to a government consumption shock in the New Keynesian model
with very sticky wages and φ = 1.3

household utility.55 The results are displayed in Fig. 4.21. For this choice of φ,
private consumption increases by 0.45% following a 1% shock to government
consumption. Furthermore, most of the qualitative impulse response functions are
in accordance with empirical observations, i.e., output, private consumption,56

inflation, and the nominal interest rate all increase on impact, while investment
declines. Only the response of wages is at odds with the evidence presented at the
beginning of the chapter.57

4.5.4 SecondMoments

Table 4.6 displays the second moments that result from the simulation of the
model for φ = 1.3 (with the corresponding impulse response functions displayed
in Fig. 4.21). The relative volatility of investment and output is accordance with
empirical observations, while private consumption and employment (hours) are
excessively volatile.

55Ni (1995) provides empirical evidence that the estimates of the coefficient of public consumption
in utility, (1 − φ)/φ, are of small magnitude, with their signs depending on the measure of interest
rates. If he uses net-of tax real taxes in his GMM estimation, he finds a negative coefficient, which
corresponds to φ > 1 above.
56The positive response of private consumption is even more pronounced if adjustment costs are
smaller, e.g., with a capital adjustment cost parameter ζ = 0. In this case, firms reduce their capital
stock more rapidly and investment declines more strongly, meaning that more resources are freed
up for private consumption.
57Heer and Scharrer (2018) present a model that is in accordance with all the empirical impulse
responses of output, labor, demand components, and factor prices. For this reason, they introduce
both rule-of-thumb consumers and a variable price of capital in terms of the consumption goods
into an otherwise standard New Keynesian model.
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Table 4.6 Second moments
for the New Keynesian model
with φ = 1.3

Variable sx sx/sY rxY rxG rxx−1

Production Y 1.18 1.00 1.00 0.27 0.71

Effective consumption C 4.38 3.72 0.72 −0.33 0.88

Private consumption Cp 1.36 1.15 0.92 0.26 0.80

Investment I 2.57 2.18 0.69 −0.22 0.56

Real wage w 0.77 0.66 0.62 −0.13 0.83

Hours L 1.35 1.14 0.66 0.38 0.53

Inflation π 0.68 0.51 0.38 0.14 0.77

Public consumption G 1.22 1.04 0.27 1.00 0.64

Mark-Up 1/g 0.59 0.50 −0.37 −0.16 0.35

Notes: sx : = Standard deviation of HP filtered simulated time
series x, sx/sY : = Standard deviation of the variable x relative
to the standard deviation of output Y , rxY : = Cross-correlation
of the variable x with output Y , rxG: = Cross-correlation
of the variable x with government consumption G, rxx−1 :
autocorrelation of the variable x

With regard to the correlations of the economic variables, all demand compo-
nents, investment, private consumption, and government consumption are procycli-
cal, as observed empirically. The pro-cyclicity of government demand in our model
can be explained with the help of the impulse response functions in Fig. 4.21.
After a positive shock to government consumption, both Gt and Yt increase
above their steady-state levels for many periods and are characterized by positive
comovement. Notice that the other model correlations are also in accordance with
the model impulse responses, e.g., hours and inflation are positively correlated with
government consumption, while investment and real wages are negatively correlated
with Gt . The only variable whose correlation is not in accordance with empirical
observations is the mark-up. Empirically, the mark-up is procyclical, while it is
countercyclical in the model.58

4.5.5 Stabilization Policies

In this section, we conduct a simple policy experiment: How should the government
respond to a cyclical increase in GDP? Should it consume in a procyclical or
countercyclical way? To do so, we reconsider the government spending rule (4.69)
for different policy parameters ρY and study how they affect output volatility. For
your convenience, let us restate (4.69):

lnGt = (1 − ρG) lnG + ρGGt−1 + ρY (lnYt−1 − lnY ) + εGt .

58Nekarda and Ramey (2013) present evidence that the price-cost markup is procyclical or at best
acyclical, which causes problems for standard New Keynesian models.
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Fig. 4.22 Effect of policy rule parameter ρY on output volatility

We computed the solution for the parameters ρY = 0.1,−0.1, . . . ,−2.0 with the
help of the GAUSS program Ch4_new_keynes_stabil.g. The program is available
on my web page.

In Fig. 4.22, we display how the volatility of output changes for different values
of ρY .59 The policy parameter that minimizes output fluctuations is equal to ρY =
−1.2. As a consequence, output volatility decreases by 10%, from 1.08% to 0.97%,
as measured by the standard deviation of log output.60

The effects of a government spending rule ρY = −1.2 (such that the government
reduces public consumption for higher output Yt ) are illustrated in Figures 4.23
and 4.24, which present the impulse responses for shocks εG and εZ to government
consumption and technology, respectively. We consider the case with φ = 1.3 in
which private consumption increases with higher government spending. Comparing
Fig. 4.23 with Fig. 4.21, we find that, with ρY = −1.2, the government reduces its
consumption more rapidly after a positive shock εG. A government consumption
shock increases all demand components (public and private consumption) except
investment, meaning that output increases. With a negative reaction coefficient ρY ,

59Since we simulate time series of output with the help of a random number generator for the
three shocks εZ , εG, and εQ, the results do not lie exactly on the curves displayed in Fig. 4.22.
To smooth the curve, we fitted a polynomial of order two to the data points using a simply OLS
regression. The estimation is contained in the GAUSS program Ch4_new_keynes_stabil.g.
60At this point, we refrain from deriving the optimal fiscal policy because it would take us too far
into the field of numerical methods. Using perturbation methods of higher order, Schmitt-Grohé
and Uribe (2007) derive optimal monetary and fiscal policy rules. For the fiscal policy rule, they
consider a tax rule that sets total taxes as a function of government liabilities and the fiscal deficit.
They find that whether the fiscal policy rule is active or passive does not significantly affect welfare.
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Fig. 4.23 Impulse responses to a government consumption shock with ρY = −1.2
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Fig. 4.24 Impulse responses to a technology shock with ρY = −1.2

therefore, the rule results in lower government consumption in period t = 3, . . .
after the shock in period t = 2.

In the case of a technology shock, output increases, and hence, the government
reduces consumption. Comparing Fig. 4.24 with Fig. 4.19, we find that the response
of output is reduced after period t = 3, . . . in the case with ρY = −1.2. Although
the coefficient is negative and government consumption falls in response to a
technology shock, the correlation of output and government remains positive and
equals 0.42.

How does the volatility-minimizing spending rule depend on monetary policy?
To determine this, we conduct two experiments: (1) We set the shock to the interest
rate rule equal to 0, εQt ≡ 0 for all t . In this case, the parameter that minimizes
output fluctuations is equal to −1.4. (2) We set the reaction coefficient of the Taylor
rule equal to zero, θY = 0, such that monetary policy does not respond to the
output gap. In this case, the volatility-minimizing coefficient also amounts to −1.4.
Apparently, the output-variance-minimizing coefficient ρY of the fiscal policy rule



Appendix 4.1: Reverse Shooting 163

is rather insensitive to monetary policy and we find that fiscal policy should be
countercyclical.61

In conclusion, however, we advise the reader to be careful about drawing firm
policy conclusions from this policy experiment for at least five reasons. (1) We have
not considered the welfare implications of such a rule.62 (2) We have unrealistically
assumed that additional government expenditures are financed by non-distortionary
lump-sum taxes.63 (3) We have taken monetary policy as exogenous, while it seems
natural to search for the optimal stabilization policy using both monetary and fiscal
policy as in Schmitt-Grohé and Uribe (2007). (4) Unlike the interest rates set by the
central bank, fiscal policy parameters cannot be changed overnight. (5) We neglect
political economy considerations. Politicians may wish to increase spending during
a recession but not wish to cut public expenditures during a boom.

Appendix 4.1: Reverse Shooting

To compute the transition dynamics in the Numerical Example of Sect. 4.3, we first
have to set the length of the transition period. When is the transition complete? We
will assume that the dynamics are complete when the state variables are reasonably
close to the new steady-state values. For practical reasons, we will stop searching
for a better length of the transition if the divergence between the value of the state
variable Kt in the last period of the transition from the steady-state value is less
than 0.01% or if the value of the divergence is small, e.g., less than 10−5 in absolute
value. The latter number is used when the state variable is very small and 0.01% of
the state variable would be close to the accuracy of the solution algorithm (of the
non-linear equation solver).

As we will discover in the remainder of the book, the transition in the neoclassical
growth model occurs relatively fast compared to that in the other benchmark model
that we consider in this book, the overlapping generations (OLG) model. Often, a
transition length of fewer than 50 periods is sufficient, while we need to consider
more than 100 periods in the OLG model in later chapters. We will choose 40
periods for the present case.

In essence, we have to solve for the dynamics of the three endogenous variables
Kt , C

p
t , and Lt for t = 1, . . . , 40 given K0 = K̄, L0 = L̄ and C

p

0 = C̄p for the

61As another sensitivity analysis, we considered the case with φ = 1.0, such that public
consumption does not affect household utility. In this case, the output-volatility-minimizing fiscal
policy is specified with ρY = −1.3.
62Our microfounded model has the benefit that we can quantitatively compare the welfare of
different stabilization policies. In the present model, the equilibrium is not Pareto-efficient because
various welfare distortions are present. First, firms in the wholesale sector operate as monopolistic
competitors. Second, there is both price and wage dispersion.
63We will introduce income taxes and debt in the upcoming Chaps. 5 and 7, respectively.
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initial values and L41 = L̃, K41 = K̃, and C
p

41 = C̃p for the final values in case 1
and L41 = L̄, K41 = K̄, and C

p

41 = C̄p in case 2. More formally, we have to solve
a two-point boundary value problem.

Let us first consider case 1 with a permanent change in government consumption
Gt = G̃ for t = 1, . . .. For the solution, we will make use of the first-order
conditions, which we restate for your convenience:

wt = κ

φ

(
Ct

1 − Lt

) 1
ρ

(Ξt )
1− 1

1−1/ρc
(
C
p
t

) 1
ρc , (4.75a)

β(1 + rt+1 − δ) =
(
Xt+1

Xt

)1− 1−σ
1−1/ρc

(
Ct+1

Ct

) 1
ρ
(
Ξt+1

Ξt

)1− 1
1−1/ρc

(
C
p
t+1

C
p
t

) 1
ρc

,

(4.75b)

Kt+1 = (1 − δ)Kt + Kα
t L

1−α
t − Gt − C

p
t , (4.75c)

where effective consumption Ct and the real interest rate rt are given by (4.21)
and (4.9b), and Xt is defined as follows:

Xt ≡ C
1− 1

ρ

t + κ(1 − Lt )
1− 1

ρ . (4.76)

In the first period of the transition at t = 1, the government unexpectedly
increases public consumption Gt . As a consequence, the household can only adjust
its behavior in period t = 1, not before. The beginning-of-period capital stock K1,
therefore, is predetermined by the decision of the household in period t = 0. The
household can only choose consumption C

p

1 , labor L1, and the next-period capital
stock K2. As a consequence, we have to solve for the 119 unknowns {Kt }40

t=2,
{Lt }40

t=1, and {Cp
t }40

t=1. We require that K40 diverges by less than 0.01% from
K̃ = 1.2946.

The algorithm that we will apply is called reverse shooting. We will provide a
guess of K40 that is close to the new steady-state value K41 = K̃ . We can compute
the values L40 and Cp

40 with the help of the first-order conditions (4.75a) and (4.75c)
for period t = 40 and using the steady-state values K41 = K̃, L41 = L̃, and
C
p
41 = C̃p for the values of the endogenous variables in period t + 1 = 41. The

problem is to solve a system of two non-linear equations in two unknowns, L40 and
C
p
40. As the initial guess that we have to provide to the non-linear equation solver

routine used in the Gauss program Ch4_subs_private_pub_dyn.g, we simply take
the new steady-state values L̃ and C̃p, respectively.

With the help of the values {K40, L40, C
p
40}, we can compute the values

{K39, L39, C
p
39} using the three non-linear equations (4.75a), (4.75b), and (4.75c).

More generally, we can compute {Kt,Lt , C
p
t } with the help of {Kt+1, Lt+1, C

p
t+1}

in the same way for t = 39, 38, . . . , 1 providing {Kt+1, Lt+1, C
p

t+1} as an initial
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value to the non-linear equation solver. In the final iteration, we have {K1, L1, C
p
1 }.

If K1 is close to its value in the initial steady state K̄ we are done. Otherwise, we
have to adjust our guess of K40 and retry.

How do we choose an initial guess K40? This is not a trivial task. First, we
know that K1 is smaller than K41 from our steady-state computation in the Gauss
program Ch4_subs_private_pub.g. Since we know from the standard continuous-
time Ramsey model that the transition path is saddle-point stable and that the
speed of convergence declines during the transition, we would expect K40 to lie
very close to K41.64 For this reason, we perform a grid search of the optimal start
value K40 in the interval [K̄ + 0.9(K̃ − K̄), K̃]. We choose an equispaced grid of
nk = 1, 000 points. For the lower values in this grid, the capital stock falls below
zero in fewer than 40 periods during the recursive iteration over {Kt ,Lt , C

p
t }, and

we subsequently have to exclude these values. As it turns out, the optimal point
(that produces a value of K1 closest to K̄) is very close to K̃, and again, we use
a much tighter grid, [K̄ + 0.999(K̃ − K̄), K̃], and find K40 = 1.2945418 as our
initial guess. Given this value, we simply find the solution to the non-linear equation
f (K1) = K1 − K̄ = 0.

How does our algorithm perform? We compute a value of K1 that diverges by
less than 10−8 from the old steady-state value K̄ = 1.2882145. Therefore, we have
very accurately computed the transition dynamics. Let us conclude this section with
some qualifying remarks:

1. If we had chosen a higher number for the transition periods than 40, we might
have failed to compute the transition dynamics. Why? Let us consider the final
values of K39 and K40. We have computed the values of K39 = 1.2945418
and K40 = 1.2945502 for an accuracy of 10−8. The values are very close to
one another, and the transition is basically complete after 30–35 periods. If we
had chosen an even higher number, say 100, we would not have been able to
provide an initial guess for K100 that is different from K101 = K̃ given machine
accuracy. If we, however, use K100 = K101, our algorithm will just compute the
steady-state values for L100 and C

p
100 in the first step and for all other values

{Kt ,Lt , C
p
t } for t = 99, . . . , 1. If we, however, consider a smaller value, e.g.,

K100 = 1.2946334 instead of K̃ = 1.2946335, we will obtain a negative value
for Kt in our recursive iteration for t > 1 and be unable to find a solution.

2. Is it possible to solve for the dynamics if we select K2 as a starting value and
iterate forward (so-called forward shooting)? Yes. The reason is as follows:
Given K1 and K2, we can solve for Cp

1 and L1 using (4.75a) and (4.75c). In
the next step, we seek to solve for {K3, C

p
2 , L2}. Therefore, we use (4.75a)

and (4.75c) for period t = 2 and (4.75b) for period t = 1. The solution
{K3, C

p
2 , L2} is used in the next step. We iterate forward until we have found

64See, for example, Chapter 2 in Barro and Sala-i-Martin (2003) for a derivation of the transition
dynamics in the continuous-time neoclassical growth model and, in particular, Section 2.6.6 for
the speed of convergence.
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the solution for {K41, C
p
40, L40} and compare K41 to the new steady-state value

K̃ . If we are close, we are done. Otherwise, we have to specify a new guess for
K̃ .65

In Chap. 6, you will encounter a problem (an OLG model with pay-as-you-go
pensions) where reverse shooting is possible, while forward shooting is not. In
practice, reverse shooting is often used even if forward shooting is possible. The
reason is because it is often easier to provide an initial guess for the capital stock
in the last period rather than the first period of the transition because the speed of
convergence declines and you have to search in a smaller neighborhood around
the final steady state than in the case for a guess of the capital stock in the initial
period. If you use forward shooting, you have to search in a larger neighborhood
of the initial steady state. This is particularly cumbersome if your state variable
is not a single variable but is multi-dimensional.

3. In the case of a temporary government shock, we know that the new steady-state
values are equal to the old steady-state values. In this case, however, the capital
stock Kt approaches K41 from above. Therefore, we have to provide a guess
for K40 that is larger than K41 = K̄ . The rest of the computational procedure
is completely equivalent to the case of a permanent increase in government
consumption.

Appendix 4.2: Frisch Labor Supply Elasticity for Cobb-Douglas
Utility

The Frisch labor supply elasticity or intertemporal labor supply elasticity ηL,w is
defined as the percentage change in the labor supply in response to a 1% increase in
the wage given a constant marginal utility of consumption uC :

ηL,w ≡ dL

dw
|uC=const

w

L
. (4.77)

Let utility u(C,L) be a function of consumption C and labor supply L. Ignoring
taxes, contributions, and pensions, the first-order condition of the household with
respect to its labor supply is given by:

− uL(C,L) = wuC(C,L). (4.78)

According to (4.78), the disutility from working another time unit is equal to the
utility from the additional consumption that can be afforded by the additional wage
income from working an additional time unit. The total differential of (4.78) for a

65You will be asked to compute the solution in Problem 4.1.
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constant uC(C,L) is given by

− uLLdL − uCLdC = uCdw. (4.79)

Furthermore, duC = 0 implies

uCCdC + uCLdL = 0,

or

dC = −uCL

uCC
dL.

Inserting the last equation into (4.79), we obtain

ηL,w ≡ dL

dw
|uC=const

w

L
= uC

u2
CL

uCC
− uLL

w

L
, (4.80)

and for the Cobb-Douglas utility function with u(C,L) =
(
Cι(1−L)1−ι

)1−σ−1
1−σ

, the
Frisch labor supply elasticity is

ηL,w = 1 − ι(1 − σ)

σ

1 − L

L
.

Appendix 4.3: Microfoundations of Calvo Price Setting

Let us consider a wholesale firm j with the relative price Pt+s(j)/Pt+s .66 In period
t , the firm received the signal to choose its optimal relative price pAt = PAt/Pt
and, since then, has not received a signal to do so again up to period t + s. Between
period t and t + s, the price of good j , Pt (j), increases with the lagged inflation
rate πt , πt+1, . . ., πt+s−1 in each period t + 1, t + 2, . . ., t + s, while the aggregate

66Appendices 4.3 and 4.4 were afforded in large parts by Alfred Maußner and are based upon
the exposition in Heer, Maußner, and Ruf (2017). A more detailed description of the derivation
of the microfoundations of Calvo price staggering can be found in Maußner (2000). I would like
to thank Alfred for his thoughtful comments and support that have greatly helped to improve the
presentation of the material in this chapter. All remaining errors are mine.
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price level Pt increases with the inflation rates πt+1, πt+2, . . ., πt+s :

Pt+s(j)

Pt+s

= πt+s−1 · · ·πt
πt+s · · ·πt+1

pAt = πt

πt+s

pAt .

Accordingly, the firm will choose pAt in period t to maximize discounted dividends
(after inserting the demand function (4.43) into dividends (4.46)):

Et

∞∑

s=0

(βϕy)
s Λt+s

Λt

[(
πt

πt+s

pAt

)1−εy

Yt+s − gt+s

(
πt

πt+s

pAt

)−εy

Yt+s

]
,

where (ϕy)
s denotes the probability that the firm cannot adjust its price for s

consecutive periods.
Differentiating this equation with respect to pAt results in the first-order condi-

tion:

0 = Et

∞∑

s=0

(βϕy)
s Λt+s

Λt

[
(1 − εy)

(
πt

πt+s

)1−εy

Yt+sp
−εy
At + εygt+s

(
πt

πt+s

)−εy

Yt+sp
−εy−1
At

]
,

where we used the theorem that the derivative operator can be interchanged with
the expectational operator and the sum operator.

The first-order equation can be re-written as

pAt = εy

εy − 1

Γ1t

Γ2t
, (4.81a)

Γ1t = Et

∞∑

s=0

(βϕy)
s

(
πt

πt+s

)−εy

gt+sΛt+sYt+s = gtΛtYt + (βϕy)Et

(
πt

πt+1

)−εy

Γ1t+1,

(4.81b)

Γ2t = Et

∞∑

s=0

(βϕy)
s

(
πt

πt+s

)1−εy

Λt+sYt+s = ΛtYt + (βϕy)Et

(
πt

πt+1

)1−εy

Γ2t+1.

(4.81c)

Γ1t and Γ2t are simply auxiliary variables whose behaviors are described by
(stochastic) first-order difference equations. Therefore, they are easily amenable to
the solution with the linearization methods described in Appendix 2.3.

The price index (4.45) implies

P
1−εy
t = (1 − ϕy)P

1−εy
At + ϕyP

1−εy
Nt = (1 − ϕy)P

1−εy
At + ϕy(πt−1Pt−1)

1−εy .

The second equality follows from the updating rule (4.47) and the fact that the non-
optimizers are a random sample of optimizers and non-optimizers. Dividing by Pt
on both sides yields:

1 = (1 − ϕy)p
1−εy
At + ϕy(πt−1/πt )

1−εy . (4.81d)
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Finally, consider the definition of Ỹt given in (4.50):

Ỹt =
∫ 1

0
Yt (j) dj =

∫ 1

0

(
Pt(j)

Pt

)−εy

Yt dj =
(
P̃t

Pt

)−εy

Yt ,

with the definitions

P̃
−εt
t ≡

∫ 1

0
Pt (j)

−εy dj,

and

s
y
t ≡

(
P̃t

Pt

)−εy

.

Therefore,

Ỹt = s
y
t Yt . (4.81e)

Using the same reasoning for P̃t as for the price index Pt above results in the
following first-order difference equation for the dispersion of individual pricesPt (j)
in the wholesale sector:

s
y
t = (1 − ϕy)p

−εy
At + ϕy(πt−1/πt )

−εy s
y

t−1. (4.81f)

Appendix 4.4: Microfoundations of Wage Setting

Consider the real wage Wt(h)/Pt of a household member h who has set his wage
optimally in period t to w̃t = WAt/Pt and who has not been able to do so again until
period s. Between period t and t + s, the nominal wage of the household member
h increases with the lagged inflation rate πt , πt+1, . . ., πt+s−1 in each period t + 1,
t + 2, . . ., t + s, while the aggregate price level Pt increases with the inflation rates
πt+1, πt+2, . . ., πt+s :

WNt+s

Pt+s

=
∏s

i=1 πt+i−1WAt∏s
i=1 πt+iPt

= πt

πt+s

w̃t .
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The demand for his type of labor service follows from (4.58)

Lt+s(h) =
(
(πt /πt+s)w̃t

wt+s

)−εw

Lt+s,

where wt+s = Wt+s/Pt+s denotes the real wage prevailing in period t + s.
Accordingly, the Lagrangian for the optimal real wage is represented by:

L =Et

∞∑

s=0

(βϕw)
s

{
(Ct+s(h) − χC̄t+s)

1−σ − 1

1 − σ

− ν0

1 + 1
ν1

[(
(πt/πt+s)w̃t

wt+s

)−εw

Lt+s

]1+ 1
ν1

+ γM
0

(
Mt+1(h)

Pt

)1−γM
1 − 1

1 − γM
1

+ Λht+s

[
πt

πt+s

w̃t

(
(πt/πt+s)w̃t

wt+s

)−εw

Lt+s + RMT

]}
,

where (ϕw)
s denotes the probability that the household cannot adjust its wage

optimally for s periods and RMTt is a placeholder for the remaining terms of the
household budget constraint (4.61).

The first-order condition with respect to w̃t is represented by

0 = Et

∞∑

s=0

(βϕw)
s

{
εwν0w̃

−εw(1+ 1
ν1
)−1

t

(
(πt/πt+s)

wt+s

)−εw(1+ 1
ν1
)

L
1+ 1

ν1
t+s

+ (1 − εw)Λht+sw̃
−εw
t w

εw
t+s

(
πt

πt+s

)1−εw

Lt+s

}
.

Using Λht+s = Λt+s , this equation can be arranged to read as

w̃t = εw

εw − 1

Δ1t

Δ2t
, (4.82a)

where

Δ1t = ν0Et

∞∑

s=0

(βϕw)
s

(
πtw̃t

πt+swt+s

)−εw(1+ 1
ν1
)

L
1+ 1

ν1
t+s ,

= ν0

(
w̃t

wt

)−εw(1+ 1
ν1
)

L
1+ 1

ν1
t + (βϕw)Et

(
πtw̃t

πt+1w̃t+1

)−εw(1+ 1
ν1
)

Δ1t+1,

(4.82b)
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Δ2t = Et

∞∑

s=0

(βϕw)
sΛt+s

(
w̃t

wt+s

)−εw
(

πt

πt+s

)1−εw

Lt+s ,

= Λt

(
w̃t

wt

)−εw

Lt + (βϕw)Et

(
w̃t

w̃t+1

)−εw
(

πt

πt+1

)1−εw

Δ2t+1. (4.82c)

Again, Δ1t and Δ2t are simply auxiliary variables whose behaviors are described
by (stochastic) first-order difference equations. Therefore, they are easily amenable
to the solution with the linearization methods described in Appendix 2.3.

The wage index (4.59) implies

W
1−εw
t = (1 − ϕw)W

1−εw
At + ϕw(πt−1Wt−1)

1−εw

and thus, the real wage equals

w
1−εw
t = (1 − ϕw)w̃

1−εw
t + ϕw

(
πt−1

πt
wt−1

)1−εw

. (4.82d)

Finally, consider the index

L̃
1+ 1

ν1
t =

∫ 1

0
Lt (h)

1+ 1
ν1 dh,

in the families of current-period utility functions. Using labor demand func-
tion (4.58), this index can be re-written as

L̃
1+ 1

ν1
t = L

1+ 1
ν1

t

∫ 1

0

(
Wt(h)

Wt

)−εw(1+ 1
ν1
)

dh.

Therefore,

L̃t = swt Lt . (4.82e)

implies the definition of the wage dispersion measure (4.63).
Next, we need to derive the dynamics of the wage dispersion measure swt . For

this reason, consider

W̄
−εw(1+ 1

ν1
)

t =
∫ 1

0
Wt(h)

−εw(1+ 1
ν1
)
dh

= (1 − ϕw)(WAt)
−εw(1+ 1

ν1
) + ϕw(πt−1WNt−1)

−εw(1+ 1
ν1
)
.
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Accordingly, wage dispersion swt is described by the following equation:

(swt )
1+ 1

ν1 =
(
W̄t

Wt

)−εw(1+ 1
ν1
)

=
(
W̄t /Pt

Wt/Pt

)−εw(1+ 1
ν1
)

=
(
w̄t

wt

)−εw(1+ 1
ν1
)

.

Using the same line of argument employed to derive (4.81f) yields the dynamic
equation for the measure of wage dispersion swt :

(swt )
1+ 1

ν1 = (1 − ϕw)

(
w̃t

wt

)−εw(1+ 1
ν1
)

+ ϕw

(
πt−1wt−1

πtwt

)−εw(1+ 1
ν1
)

(swt−1)
1+ 1

ν1 .

(4.82f)

Appendix 4.5: Monetary Policy Analysis in the New Keynesian
Model

Figure 4.25 illustrates the impulse response functions to an interest rate shock of
one percentage point in the benchmark New Keynesian model with φ = 1.0. In
accordance with empirical observations, restrictive monetary policy decreases all
private demand, investment and private consumption; moreover, output and labor
decline. As expected, inflation also decreases under a restrictive monetary policy.

The reasons are as follows: Following an increase in the nominal interest rate
Qt , prices only adjust slowly so that also the real interest rate in the economy
increases. As a consequence, firms reduce their investment, and Tobin’s q decreases.
In addition, households postpone consumption to later periods in accordance with
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Fig. 4.25 Impulse responses to an interest rate shock
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their Euler condition (4.66c). Therefore, demand decreases, and prices fall. Since
wholesale producers are slow to adjust their prices, the mark-up increases.

Appendix 4.6: Data Sources

The time series on government expenditures that we use in this chapter are attached
as separate Excel files to my Matlab/Gauss programs.

• Government Expenditures General government total expenditure as percent
of GDP (National currency). The data for Fig. 4.1 are retrieved from the IMF’s
World Economic Outlook database (Accessed on 15 February 2018).
http://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx.
The German data for the years 1980–1990 are retrieved from the Deutsche
Bundesbank (Accessed on 15 February 2018).
http://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_
Datenbanken/zeitreihen_datenbank.html.
The US data for the years 1980–2000 and the data for Fig. 4.2 are retrieved
from ‘National Accounts at a Glance’: 6. General Government (Accessed on 15
February 2018).
https://stats.oecd.org/Index.aspx?DataSetCode=NAAG#.

• Pensions Government, Public expenditure, Pension expenditure from OECD
Factbook 2015–2016, which can be obtained via the Internet at the web site
(Accessed on 15 February 2018)
http://www.oecd-ilibrary.org/economics/oecd-factbook-2015-2016/public-and-
private-expenditure-on-pensions-as-a-percentage-of-gdp-2011_factbook-2015-
graph171-en.

• Health Expenditures are retrieved from the OECD database ‘OECD iLibrary’
(Accessed on 15 February 2018).
http://stats.oecd.org/BrandedView.aspx?oecd_bv_id=health-data-en&doi=data-
00349-en.

• Education Expenditures are retrieved from the OECD publication ‘Education
at a Glance: 2014’, Table B2.3 – Expenditure on educational institutions as a
percentage of GDP, by source of fund and level of education (2011) (Accessed
on 15 February 2018).
http://www.oecd-ilibrary.org/education/education-at-a-glance-2014/
expenditure-on-educational-institutions-as-a-percentage-of-gdp-by-source-of-
fund-and-level-of-education-2011_eag-2014-table124-en.

• Defense Expenditures are retrieved from the OECD publication ‘National
Accounts at a Glance: 2015’, General government, Table 24.1. General gov-
ernment expenditure by function, ‘Defence’ and ‘Public order and safety’,
Percentage of GDP, 2012 (Accessed on 15 February 2018).

http://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx
http://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/zeitreihen_datenbank.html
https://stats.oecd.org/Index.aspx?DataSetCode=NAAG#
http://www.oecd-ilibrary.org/economics/oecd-factbook-2015-2016/public-and-private-expenditure-on-pensions-as-a-percentage-of-gdp-2011_factbook-2015-graph171-en
http://www.oecd-ilibrary.org/economics/oecd-factbook-2015-2016/public-and-private-expenditure-on-pensions-as-a-percentage-of-gdp-2011_factbook-2015-graph171-en
http://www.oecd-ilibrary.org/economics/oecd-factbook-2015-2016/public-and-private-expenditure-on-pensions-as-a-percentage-of-gdp-2011_factbook-2015-graph171-en
http://stats.oecd.org/BrandedView.aspx?oecd_bv_id=health-data-en&doi=data-00349-en
http://stats.oecd.org/BrandedView.aspx?oecd_bv_id=health-data-en&doi=data-00349-en
http://www.oecd-ilibrary.org/education/education-at-a-glance-2014/expenditure-on-educational-institutions-as-a-percentage-of-gdp-by-source-of-fund-and-level-of-education-2011_eag-2014-table124-en
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http://www.oecd-ilibrary.org/economics/national-accounts-at-a-glance-2015/
total-general-government-expenditure-by-function_na_glance-2015-table35-
en.

• Government Consumption The series on government consumption is con-
structed with the help of the data from FRED provided by the Federal Reserve
Bank of St. Louis (Accessed on 28 October 2015). In particular, I used the series
GCEC1 Real Government Consumption Expenditures & Gross Investment, Bil-
lions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate, and
subtracted real government investments. I computed real government investment
from the series A782RC1Q027SBEA Gross Government Investment, divided by
the implicit price deflator (2009=100) of GDP (GDPDEF).

Problems

4.1. Solve the transition dynamics for the Numerical Problem in Sect. 4.3 by
forward shooting as described in Appendix 4.1.

4.2. Derive the Frisch labor supply elasticity (4.39) of the Cobb-Douglas utility
function (4.28).

4.3. In applied work, researchers often select model parameters that are not
empirically observable or only estimated with a high degree of uncertainty by
optimizing the behavior of the RBC model. Using the model in Sect. 4.4, use a grid
search over φ ∈ [0, 1.5] and ρC ∈ [0.3, 1.3] to find the minimum distance (i.e., the
minimum of the squared deviations) of the theoretical second moments (as implied
by the model) from the empirical second moments (as presented in Table 4.1).

4.4. Use the preferences

u(Cp,L) = (Cp)1−σ (1 − L)1+ϑ

1 − σ
, σ > 1, ϑ > 0,

and recompute the RBC model with stochastic government. Set σ = 2.0, and
calibrate ϑ such that steady-state labor supply is equal to L = 0.3. Does private
consumption increase after an increase in government consumption?

4.5. Derive (4.72) using the individual budget constraint, the government budget,
and the firms’ first-order equations. Apply Euler’s theorem according to which the
aggregate output is equal to the sum of all factor payments for a constant-returns-
to-scale technology under perfect competition.

4.6. Derive the equilibrium dynamics (4.73) for the New Keynesian model in
Sect. 4.5. Assume, however, that firms in the wholesale sector who cannot optimally

http://www.oecd-ilibrary.org/economics/national-accounts-at-a-glance-2015/total-general-government-expenditure-by-function_na_glance-2015-table35-en
http://www.oecd-ilibrary.org/economics/national-accounts-at-a-glance-2015/total-general-government-expenditure-by-function_na_glance-2015-table35-en
http://www.oecd-ilibrary.org/economics/national-accounts-at-a-glance-2015/total-general-government-expenditure-by-function_na_glance-2015-table35-en
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choose their price adjust their nominal price PNT according to the average inflation
rate:

PNt = πPNt−1.
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5Income Taxation

5.1 Introduction

After a brief survey of the empirical findings on income taxation in the US and
German economies in Sect. 5.2,1 you learn about the substantial welfare costs
that are associated with the taxation of labor income. In Sect. 5.3, these costs are
computed in both partial and general equilibrium. As one result, the deadweight
loss of labor income taxation in Germany is found to be twice as high as the one
in the US. In Sect. 5.4, the seminal result from optimal taxation that capital income
should not be taxed in the long run is derived and discussed critically. Section 5.5
estimates the US Laffer curve and shows that the US government, in contrast to
many European governments, can still raise its revenues from labor and capital
income taxation by approximately 10% of GDP. In Sect. 5.6, the quantitative effects
of higher taxes on economic growth are derived in a Dynamic General Equilibrium
(DGE) model and are shown to be substantially higher than those typically found in
growth regressions. Finally, we demonstrate that stochastic taxes improve the time
series properties of the real business cycle (RBC) model with respect to the volatility
of aggregate demand components and the dynamics of labor and wages in Sect. 5.7.

5.2 Empirical Regularities

Tax revenues vary considerably across OECD countries. As presented in Fig. 5.1,
within the OECD, the United States has among the lowest shares of revenue in

1The two countries were chosen because they are (1) relatively large in size and (2) characterized
by substantial differences in their income tax schedules. In addition, these two countries feature
prominently in the quantitative analysis of Prescott (2004) that we reference in the following.
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Fig. 5.1 Tax revenue relative to GDP in OECD countries in 2015

GDP, amounting to 26.2% in 2015.2 The Scandinavian countries of Denmark and
Finland together with France have among the highest taxes in the OECD, amounting
to 45.9%, 43.9%, and 45.2% of GDP, respectively.

Notice that although the GIIPS countries (Greece, Italy, Ireland, Portugal, and
Spain) are characterized by government shares of 50% or above (see Chap. 4),3 they
have considerably lower revenue shares in the range of 27–36%. Only Italy has a
revenue share of 44%. As we will point out in more detail in Chap. 7, which looks at
public debt, many of these countries including Spain and Greece were characterized
by budget deficits of 10% or even above in the aftermath of the financial crisis
2007–2008.

Figure 5.2 plots tax revenue of selected OECD countries over time. Total tax
revenue are upward sloping for the Eurozone countries France, Italy, and Spain (and,
to a smaller extent, Germany) as well as Japan, while there is no discernable trend
in tax revenue (as % of GDP) in the UK and US. In most countries, tax revenue fell
during and after the financial crisis with the exception of Italy.4 Most of the OECD
countries are characterized by a progressive income tax schedule. Consequently, if
average income falls during a recession, tax revenue decrease stronger than GDP.

The composition of the US tax revenue (as % of GDP) in 2015 is presented in
Table 5.1. The largest component is the tax on personal income which constitutes

2The data are retrieved from the OECD as described in Appendix 5.2. Tax revenue is defined as the
revenues collected from taxes on income and profits, social security contributions, taxes levied on
goods and services, payroll taxes, taxes on the ownership and transfer of property, and other taxes.
3Spain’s share of government expenditure share in GDP is generally just short of 50% and only
amounted to 44% during 2013–2015.
4Italy raised its VAT rate by 1 percentage point in both 2011 and 2013.
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Table 5.1 US tax
composition in 2015 (% of
GDP)

Tax Revenue

Total taxes 26.22

Tax on personal income 10.63

Tax on corporate profits 2.23

Social security contributions 6.20

Tax on payroll 0.00

Tax on property 2.70

Tax on goods and services 4.46

Notes: Data are retrieved from the
OECD. See Appendix 5.2 for a
description of the data source

40.5% of total tax revenue. The second largest component is represented by social
security contributions, which we will consider separately in the next chapter.

Taxes on goods and services are levied on product sales and include value-added
taxes. In the US, sales taxes are not imposed uniformly. In 2014, for example, five
US states (Alaska, Delaware, Montana, New Hampshire and Oregon) did not impose
any sales taxes, while California had the highest sales tax at 7.5%. In many European
countries, value-added taxes contribute a much larger share in total revenues than
in the US economy. Italy, for example, imposes a value-added tax rate of 22% at
present and total taxes on goods and services amount to 11.7% of GDP or 26.9% of
total tax revenue during 2013–2015.

The US property tax includes the inheritance tax and is complemented by the
gift tax, and these accrue if an estate is transferred. Due to substantial exemptions,
only the top 0.2% of estates in the US are taxed. In 2015, for example, only estates
exceeding $5.43 million were subject to the estate tax. The amount excluded from
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Fig. 5.3 Marginal and average US income tax rates, 2016

taxation was raised gradually, from $675,000 in 2001 to its present value, which
explains the declining share of the estate tax in total tax revenues in recent years.

The US income tax schedule (for married households) is presented in Fig. 5.3.
While the marginal tax rate τ ′ describes the additional tax resulting from a $1
increase in taxable income, the effective tax rate τ reports the average tax rate
(total income tax divided by total taxable income). Taxable income is defined as
the total income less allowable deductions, where income is broadly defined and
includes wage income, rental income, and interest and dividend income, among
other categories. Most business expenses are deductible, while individuals may
also deduct a personal allowance and certain personal expenses. The definition of
taxable income differs considerably across countries. For example, in the US, home
mortgage interest can be deducted from total income (if the dwelling is not rented
out and does not generate rental income reported in tax filings), while this is not
possible in Germany.

The US income tax system is progressive. As a consequence, individuals with
higher incomes pay both a higher effective and a higher marginal income tax rate.
In 2016, the lowest tax bracket was $0–18,550, with an income tax rate equal to
10.0%, while the highest income bracket with a tax rate equal to 39.6% starts at an
income equal to $466,950 (for a married couple filing jointly). Even a couple with
a high income lying in the range $151,900–231,450 only pays a marginal income
tax rate equal to 28.0%. Notice that in the US, only 4.2% of households earned an
income in excess of $200,000 in 2010 according to US census data, meaning that
most taxpayers face a marginal tax rate below 28.0%.5

5Take care to distinguish between individual and household income (or wealth). For example, the
OECD uses the following conversion system when comparing households with different sizes: a
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Fig. 5.4 Average income tax rate, Germany (married household)

Fig. 5.5 Marginal income tax rate, Germany (married household)

For comparison, we also present the average and marginal tax rates for married
households6 in Germany in Figs. 5.4 and 5.5. The German income tax system is
clearly much more progressive than the US income tax system. While the average
and marginal income tax rates amount to 17% and 25% for an income of $100,000

household consisting of one individual is weighted by measure 1.0, while a household with two
individuals and no children is weighted by the measure 1.6. Therefore, if the former has an income
equal to $100,000 and the latter has a total income of $160,000, both households are reported to
have a household income of $100,000.
6In 2015, 59% of both US and German households were married couples.
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in the US, the corresponding income tax rates for an income of e90,000 (assuming
an exchange rate of 1.11$/e) amount to approximately 24% and 37%. For a joint
income below the taxable income threshold of e17,306, a couple does not pay any
taxes in 2016. The marginal income tax rate increases much faster in Germany than
in the US, and for a joint income equal to e107,332, a German couple has to pay a
marginal tax rate equal to 44.3% in 2016.7 The highest income tax rate in Germany
(as of 2016) is imposed on incomes exceeding e521,066 and amounts to 47.5%.

In this chapter, we will analyze the welfare and distortionary effects of income
taxation. For this reason, we also need to account for other costs that increase the tax
wedge, including social security contributions.8 In Germany, pension contributions
amount to 35.65%, which are levied on wage income up to a threshold income that
depends on the residence of the taxpayer (East versus West Germany). For pension
contributions, the threshold amounts to approximately e60,000 (in the East) and
e71,000 (in the West), while the threshold for health insurance contributions is
uniform and amounted to e48,600 in 2014.9 According to the OECD Economic
Outlook 2014, the tax wedge on the average wage income in the German and US
economies amounted to 49.3% and 31.6% (for a household composed of a single
individual with no children), respectively.10

To characterize the progressivity of a tax system, we often use the yield elasticity,
which is defined as follows:

ηT ,Y = dT (Y )

dY

Y

T (Y )
= τ ′

τ̄
, (5.1)

where we speak of a regressive, proportional, or regressive tax system if:

ηT ,Y =
⎧
⎨

⎩

< 1 : regressive tax code
= 1 : proportional
> 1 : progressive.

7The tax rate is composed of the ordinary income tax rate equal to 42.0% and a surcharge of 5.5%
on the taxes, which is called the “Solidaritätszuschlag”. This surcharge was first imposed in 1992
to finance the additional government expenditures resulting from German reunification in 1989.
As of this writing, this surcharge remains in effect.
8The tax wedge is defined as the deviation from the equilibrium price or quantity as a result of the
taxation of a good (or production factor). In the present case, we look at the factor ‘labor’ and its
price in the form of the wage.
9The contribution rates for pensions and health amounted to 18.7% and 16.85% in 2014, including
both the employee’s and employer’s shares. Chapter 6 will focus on the effects of a pension system
and optimal social security reform.
10Prescott (2004) applies income tax rates of 59% and 40% for the German and US economies
during the period 1993–1996. In particular, he also includes consumption taxes τ c in his
computations. For this reason, consider the budget constraint (1 + τ c)c = (1 − τ)wl, where the
household consumes its total net income from working l hours and receiving net wage (1 − τ)w.
Accordingly, the tax wedge amounts to 1− (1−τ)/(1+τ c). Since the value added tax in Germany
is equal to 19%, while it is 7.5% or less in the US depending on the state, the difference in the tax
wedge between these two countries is even larger after accounting for consumption taxes.
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The yield elasticity provides useful information for tax authorities on how an
increase in GDP translates into additional tax revenues.11

Thus far, we have assumed that all sources of income, e.g., labor income,
interest income, or rents, are treated equally by the national tax codes. In most
OECD countries, capital gains, for example, are included in the definition of taxable
income. In the case of the US, capital gains are also taxable, but capital losses can
only be deducted from taxable income up to a certain threshold.

Labor and capital income, however, are subject to different amounts of
allowances and exemptions and have to be paid by households and the corporate
sector (which differ in their tax treatment). In Germany, for example, in 2015,
the first e801 of annual interest and dividend income was tax-exempt for each
individual (meaning that a married couple can have up to e1,602 in tax-exempt
interest and dividend income). Consequently, capital and labor income are not
burdened equally by the US or German tax system.

Figure 5.6 presents the effective capital and labor income tax rates for the US
during the period 1948–2008 as computed by Gomme, Ravikumar, and Rupert
(2011).12 Clearly, capital income was taxed more heavily than labor income in the
last century; however, in recent years, the tax rates on capital and labor income have
converged in the US. The average capital and labor income tax rates amount to 41%
and 23%, and we will use these values in the models in this chapter.

Using the data on US labor and capital income tax rates from Fig. 5.6, we have
computed business cycle statistics for the US economy as presented in Table 5.2.13

Both the cyclical components of the capital and the labor income tax rates τL and
τK are positively correlated with output. However, in the more stable subperiod
after the Korean War, 1956–2008, the tax rates are less procyclical, and correlations
with output decline. In addition, both tax rates are positively correlated with labor,
while labor income taxes are positively correlated with and capital income taxes are
uncorrelated with government consumption.

11An alternative measure to characterize the progressivity of the tax system is presented by the
residual elasticity, where the residual is defined as the net income after taxes Yn = Y − T (Y ):

ηYn,Y = dYn

dY

Y

Yn
= 1 − τ ′

1 − τ̄
.

This measure provides important information to the participants in the wage bargaining process,
i.e., employees, unions, and employers.
12The figures and the business cycle statistics in Table 5.2 are computed with the help of the
GAUSS program Ch5_data.g.
13For this reason, we have also taken the logarithm of the two income tax rates and applied the HP
filter with weight λ = 1600.
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Fig. 5.6 US income tax rates, 1948–2008 (in percentage points)

Table 5.2 US business cycle statistics

Variable sx rx,Y rx,G rx,τK rx,τL

1947–2008
Output Y 1.66 1.000 0.186 0.346 0.390

Public consumption G 3.30 0.186 1.000 0.083 0.541

Private consumption Cp 1.28 0.760 −0.215 0.256 0.055

Hours L 1.83 0.878 0.079 0.368 0.417

Capital tax τK 4.75 0.346 0.083 1.000 0.497

Labor tax τL 3.98 0.390 0.055 0.497 1.000

1956–2008
Output Y 1.53 1.000 −0.005 0.222 0.237

Public consumption G 1.36 −0.005 1.000 −0.009 0.152

Private consumption Cp 1.23 0.873 −0.169 0.209 0.127

Hours L 1.76 0.874 −0.169 0.326 0.366

Capital tax τK 3.90 0.221 −0.009 1.000 0.443

Labor tax τL 2.97 0.237 0.152 0.443 1.000

Notes: sx : = Standard deviation of the time series x in percentages, where x ∈
{Y,G,Cp,L, τK, τL}. Empirical time series were HP filtered with weight 1600. rxY : = Cross-
correlation of the variable with output, rxG:=Cross-correlation of the variable with government
consumption, rxτK : = Cross-correlation of the variable with the capital income tax, rxτL : = Cross-
correlation of the variable with the labor income tax
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5.3 Labor Income Tax

The labor income tax distorts household labor supply decisions. Depending on
the strength of the substitution relative to the income effect, the labor supply
may increase or decrease. Although we also observe regions of the wage with a
backward-bending labor supply curve, the substitution effect associated with a tax
increase usually dominates. As a consequence, output and welfare also decline with
higher labor income taxes, ceteris paribus.14 In later sections, we will see that the
change in the labor supply is also associated with a change in the economic growth
rate in some types of growth models.

We will first derive the partial equilibrium effects of a change in the labor supply,
which is the subject of standard textbooks on public economics. In this analysis,
the wage rate is held constant. Since individuals change their labor supply, total
labor supply will adjust, and the equilibrium wage (before taxes) does not remain
constant. In addition, consumption demand declines and, hence, labor demand is
also reduced. This general equilibrium effect is integrated in the analysis in the
second part of this section.

5.3.1 Partial Equilibrium

Figure 5.7 presents the effects of a labor income tax on labor supply and demand.
The individual labor supply ls is a function of the net wage after taxes (1 − τL)w,
while labor demand ld is a function of the gross wage w. Taxes are imposed at
a proportional tax rate τL, and the labor supply and demand curves are graphed
as functions of the gross wage w. In the initial equilibrium at point e, taxes are
equal to zero, τL = 0, and the equilibrium point is (l0, w0). If the state imposes a
proportional labor income tax τL, the labor supply curve shifts upward by a factor
of 1/(1 − τL) to ls ′ (the argument on the ordinate is the gross wage w), and the new
equilibrium point is g at (l1, w1). At this point, the tax revenues are equal to τLw1l1,
which is equal to the area of the yellow rectangle agdc. While the consumer rent
declines by the area ageb, the producer surplus falls by the area bedc. The difference
between the gain in taxes and the losses in surpluses for the consumer and producer
is denoted as the excess burden and equals the triangle gde.

Notice further that it does not matter who pays the tax. The economic incidence,
i.e., the agent who bears the cost, does not depend on the legal incidence, i.e., the
agent who is legally obliged to pay the tax. If we identify the economic incidences
of the producer and the worker by the increase in the producer wage, w1 − w0, and
the decline in the worker’s wage, w0 − (1 − τL)w1, respectively, we recognize that

14Welfare does not need to fall if another distortion is reduced simultaneously, e.g., if an increase
in the labor income tax results in a decline in another distorting tax or if the tax revenues are used
for welfare-improving government spending.
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Fig. 5.7 Equilibrium in the labor market and the effect of a labor income tax

it is independent of the legal incidence in Walrasian labor markets.15 The economic
incidence instead depends on the elasticities of labor demand and labor supply
with respect to the wage. If labor supply (labor demand) becomes more elastic, the
economic loss borne by the worker decreases (increases). In the case of a perfectly
elastic labor supply (labor demand), the gross wage increases by the same amount
as the tax increase (does not change).16

The welfare loss or, equivalently, excess burden can be computed with the help
of the equivalent compensation. To see this, consider Fig. 5.8, where we derive the
optimal labor supply. Assume that the household has an exogenous income of I
such that total income is equal to Y = (1 − τL)w0l + I for the wage rate w0.17

We assume that the household lives for just one period and, therefore, consumes all

15The legal incidence may affect the economic incidence, for example, in a labor market with a
minimum wage. If the minimum wage is defined as the wage that is paid by the employer to the
worker, the new equilibrium point depends on who actually pays the taxes.
16In the case of a perfectly elastic labor supply, the labor supply curve ls is horizontal and a labor
income tax rate τL implies a horizontal shift of this curve to ls ′. Evidently, the complete economic
incidence falls on the producer.
17To be consistent with our previous notation, we keep denoting individual labor supply by l

and aggregate labor supply by L. In the Ramsey model with a representative agent, individual
and aggregate labor supply coincided. In the following, we will also introduce compensated labor
supply which we will denote by h.



5.3 Labor Income Tax 189

0

1

0

1 = (1 − L) 0

( 0, 0) =

Income

Fig. 5.8 Welfare effects of a labor income tax

its income. The budget constraint that is presented by the straight line originating at
point (0, I ) rotates clockwise if a proportional tax τL is imposed.

The optimal labor supply is found at the point where the indifference curve is
tangent to the budget constraint at point A. Notice that the indifference curve is an
increasing function in the (l, Y )-space because labor l is a bad and not a good. If
the household increases labor l, it needs to be compensated with higher income
(alternatively, consumption) to hold utility constant. An imposition of a tax τL

results in the new equilibrium at pointC. We distinguish the substitution and income
effects. Because of the reduction in income, the household increases its labor supply
to point B due to the income effect. Because of the substitution effect (due to lower
net wages), the household reduces its labor supply from pointB to pointC. Whether
the net effect is positive or negative depends on the preferences of the household,
and both cases are possible depending on the relative strength of the income and
substitution effects.
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The welfare loss of the household can be measured by equivalent compensation
EV , which is the difference in the expenditure functions e(w, u) for the initial wage
w0 and the utility levels u0 and u1 associated with points A and B, respectively18:

EV = e(w0, u0) − e(w0, u1) (5.2)

To compute the equivalent variation, note the following19:

EV = e(w0, u0) − e(w0, u1)

= I − e(w0, u1)

= e(w1, u1) − e(w0, u1)

=
∫ w1

w0

∂e(w, u1)

∂w
dw

=
∫ w1

w0
−h(w, u1)dw

=
∫ w0

w1
h(w, u1)dw.

Accordingly, the equivalent variation is equal to the area under the compensated
(Hicksian) labor supply curve h with utility level u1.

To compute the excess burden (also called the deadweight loss) DWL, we need
to subtract tax revenues, R = τLw0l, from EV . The deadweight loss is depicted by
the distance between points C and D in Fig. 5.8.20

The compensated labor supply h (for constant utility level u1) and the Marshal-
lian labor supply l are presented in Fig. 5.9.21 Assume that the old wage prior
to the imposition of the tax is equal to w0, while the new wage is given by
w1 = (1 − τL)w0. For the derivation of the labor supply curves in Fig. 5.9, we
consider the case that the Marshallian and compensated labor supply coincide at the

18Remember from microeconomics that the expenditure function specifies the minimum amount
of money that is needed to achieve a given level of utility ū.
19In the derivation, we use the following property of the expenditure function: ∂e(w,u)

∂w
= −h(w, u).

This result is derived from applying the envelope theorem to the Lagrangian associated with the
minimization of expenditures for given level of utility ū:

L = Y − wh + μ [u(Y, h) − ū] .

Here, h denotes the compensated (Hicksian) labor supply.
20For the derivation of the DWL, we follow the exposition in Keuschnigg (2005), pp. 62–64.
21Recall that the Marshallian labor supply curve is derived from maximizing utility subject to the
budget constraint. Notice that l0 < h0 due to the income effect that is considered in the case of l
but not in the case of the compensated labor supply h.
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Fig. 5.9 Compensated (Hicksian) and Marshallian labor supply, l and L

wage w1, h1 = l1 with implied utility u1. At the new equilibrium point (l1, w1), the
compensated labor supply elasticity is given by

ηh,w = Δh/h1

Δw/w1 ,

where Δw = w1 − w0 = −τLw0 denotes the change in the net wage rate. The
deadweight loss DWL is equal to the surface of the triangle BDC and follows
from:

DWL = EV − R = 1

2
Δw · Δh = 1

2

τL

1 − τL
· ηh,w · R (5.3)

where we used

Δh = ηh,w
Δw

w1 h1 = ηh,w
−τLw0

w1 h1 = −ηh,w
τL

1 − τL
h1,

and R = τLw0l1 = −Δw · l1 = −Δw ·h1. Notice that, importantly, the deadweight
loss increases non-linearly with the tax rate τL. Therefore, a tax increase from 30%
to 40% results in higher welfare losses than a tax increase from 10% to 20%.
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Table 5.3 Deadweight
losses relative to revenues:
Partial equilibrium

τL (%) DWL/R (%)

10 1.7

25 5.0

40 10.0

50 15.0

59 21.6

To obtain a quantitative estimate of the welfare losses from labor income taxes,
we use the empirical value of the compensated labor supply elasticity equal to
ηh,w ≈ 0.30.22 The deadweight loss that results from tax revenues R is presented in
Table 5.3 for various tax rates τL.

Therefore, if we use the estimates of Prescott (2004) for the tax wedges in the US
and Germany, 40% and 59%, the deadweight losses amount to 10.0% and 21.6%,
respectively, and distortions in the German economy due to labor income taxes
(and social security contributions) are more than twice as large as those in the US
economy.

5.3.2 General Equilibrium

In the previous section, we considered the welfare losses in a partial equilibrium
model. In particular, we held the position of the labor demand curve constant. In
the following, we embed the welfare analysis in a general equilibrium model in
which wages (and savings) are endogenous and compute the change in the welfare
results. In particular, we choose the Ramsey model that we introduced in Chap. 2. In
addition, we specify a (parameterized) utility function to allow us to express welfare
effects in consumption equivalent changes.

Assume that the households maximize intertemporal utility23

U =
∞∑

t=0

βtu(Ct , Lt ), (5.4)

where β, again, denotes the discount factor, with β < 1. The household inelastically
supplies Lt units of labor, and its total endowment is normalized to one, and thus,
1 − Lt denotes leisure.

22Chetty, Guren, Manoli, and Weber (2011) provide a summary review of empirical studies on
the labor supply elasticity, including studies on both the compensated and Frisch labor supply
elasticities.
23Since we study the behavior of a representative household, we identify the individual labor
supply with the aggregate labor supply and denote both variables by Lt in the following.
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Instantaneous utility is specified as follows:

u(C, 1 − L) =
(
Cι(1 − L)1−ι

)1−σ

1 − σ
, (5.5)

where 1/σ denotes the intertemporal elasticity of substitution, and ι and 1 − ι are
the relative weights of consumption and leisure in utility.

The household owns the capital stock Kt in period t , which evolves according to

Kt+1 = (1 − δ)Kt + It . (5.6)

Capital Kt depreciates at rate δ. The household lends the capital stock to the firms,
which pay real interest rate rt . The household faces wage rate wt and labor income
taxes τLt , meaning that its net labor income is equal to (1 − τLt )wtLt . Its net income
is spent on private consumption Ct and savings St , which are equal to the increase
in capital holdings, St = Kt+1 − (1 − δ)Kt . Consequently, the household budget
constraint is

(1 − τLt )wtLt + rtKt = Ct + Kt+1 − (1 − δ)Kt . (5.7)

The first-order conditions follow from the derivation of the Lagrangian

L =
∞∑

t=0

βt

[(
Cι
t (1 − Lt)

1−ι
)1−σ − 1

1 − σ
+ λt

(
(1 − τLt )wtLt + (1 + rt − δ)Kt − Ct −Kt+1

)]

(5.8)
with respect to Ct , Lt , and Kt+1, taking government consumption Gt and taxes τLt
as exogenous. In particular, the first-order conditions are given by:

λt = ιC
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ), (5.9a)

λt (1 − τLt )wt = (1 − ι)C
ι(1−σ)
t (1 − Lt)

(1−ι)(1−σ)−1, (5.9b)

λt = βλt+1(1 + rt+1 − δ). (5.9c)

Goods and factor markets are characterized by perfect competition. We, again,
assume that production is described by a Cobb-Douglas technology:

Yt = Kα
t L

1−α
t . (5.10)

Firms rent capital from the households. Therefore, wages and the real interest rate
are given by:

wt = (1 − α)Kα
t L

−α
t , (5.11a)

rt = αKα−1
t L1−α

t . (5.11b)
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Finally, the government budget is assumed to balance, meaning that

Gt = τLt wtLt . (5.12)

In equilibrium, the resource constraint of the economy is presented by24

Yt = Ct + Gt + Kt+1 − (1 − δ)Kt . (5.13)

In steady state, all economic variables are constant, and thus, the following six
conditions in the six variables K , L, C, w, r , and τL hold for given exogenous
government expenditures G:

1

β
= 1 + r − δ, (5.14a)

(1 − τL)w = 1 − ι

ι

C

1 − L
, (5.14b)

w = (1 − α)KαL−α, (5.14c)

r = αKα−1L1−α, (5.14d)

KαL1−α = C + G + δK, (5.14e)

G = τLwL. (5.14f)

To compute quantitative welfare effects, we need to calibrate the model. Let
us assume that periods are equal to 1 year, meaning that the discount rate is
approximately equal to β = 0.96, implying a real interest rate (net of depreciation)
r − δ of approximately 4% annually. Assuming an annual depreciation rate of 10%,
δ = 0.10, we can compute r with the help of (5.14a) and the capital-labor ratio K/L

with the help of (5.14d). Assuming a steady-state labor supply equal to L = 0.30,
we can compute the capital stock from K/L × 0.3. Production is computed as
Y = KαL1−α . We set the steady-state labor tax rate equal to the US average
rate during the period 1956–2008, implying τL = 0.23. Consequently, government
expenditures, G = τLwL, are equal to 14.72% of GDP, G = 0.1472 · Y , and
consumption can be computed from the resource constraint, C = Y − δK − G =
0.303. Finally, we can solve (5.14b) for ι = 0.3423. The steady state and the
following results for the welfare losses from labor income taxation are computed
with the help of the GAUSS program Ch5_welfare_taul.g.

As our first exercise in the neoclassical growth model, we compute the partial
equilibrium effect of a one-percentage-point tax increase to τ̃ L = 0.24, where
the wage rate w is held constant (assuming a perfectly elastic labor demand),
and the loss in income only decreases consumption, not savings (which is exactly

24You can derive (5.13) by substituting (5.11) and (5.12) into (5.7), noticing that Yt = wtLt +rtKt .
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the assumption used in the partial equilibrium analysis in the previous section).
Accordingly, the new optimal labor supply is provided by:

L′ = 1 − 1 − ι

ι

C′

(1 − τ̃ L)w

C′ = (1 − τ̃ L)wL′ + (r − δ)K,

If we solve this equation, we find that the household changes its optimal consump-
tion and labor supply from (L,C) = (0.3, 0.303) to (L′, C′) = (0.2994, 0.2998).
We can also compute the consumption equivalent change Δ from

u ((1 + Δ)C,L)) = u(C′, L′)

implying

Δ =
(

u(C, 1 − L)

u(C′, 1 − L′)

)− 1
ι(1−σ) − 1 = −1.07%.

Notice that the welfare change is quantitatively significant. A one-percentage-
point increase in the labor income tax rate decreases welfare by approximately 1.1%
of consumption. Of course, we need to consider that, by assumption, the additional
government expenditures generated by the additional revenues are simply waste and
do not have any effect on either utility of the household or productivity. Therefore,
to give a fair evaluation of the welfare costs, we instead compute the deadweight
loss as the difference between the consumption loss, 1.07 ×C = 0.003244, and the
additional tax revenues or, equivalently, government expenditures,ΔG = 0.003238.
Accordingly, the deadweight loss amounts to DWL = 0.000005 or, relative to the
additional revenues, DWL

ΔG
= 0.17%.

Next, we consider general equilibrium effects under the assumption that both
savings and factor prices w and r are endogenous. Accordingly, we have to solve
the steady-state conditions (5.14) for the new value of τL. As our new steady-state
values, we compute L′′ = 0.2995 and C′′ = 0.2998. The welfare loss is almost the
same and amounts to Δ = −1.10% and is presented in Table 5.4.25

25Take care when you compare the general equilibrium effects in Table 5.4 with those resulting
from the partial equilibrium analysis reported in Table 5.3. For the partial equilibrium effect, (5.3)
provides an estimation of the average welfare costs from the imposition of a tax, while, in the
general equilibrium model, we computed the marginal welfare costs of a one-percentage-point
increase in the tax rate. One can show that the marginal deadweight loss in the partial equilibrium
model is equal to

dDWL

dR
=

τL

1−τL
ηh,w

1 − τL

1−τL
ηh,w

.
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Table 5.4 General equilibrium welfare effects of a 1% labor income tax increase

Δ Δ

τL (%) steady state (%) DWL/R (%) incl. transition (%)

10 −0.9 3.4 −0.9

23 −1.1 6.8 −1.1

40 −1.3 16.4 −1.3

50 −1.6 29.1 −1.5

59 −1.9 54.7 −1.8

To apply our general equilibrium computation to the characteristics of the US
and German economies, we use the tax wedges proposed by Prescott (2004) and set
τL ∈ {0.40, 0.59} in the two cases. For the US economy (characterized by a tax
wedge of 40%), the deadweight loss relative to the tax revenues rises to dDWL

dG
=

16.4%. For the case of Germany (with a tax wedge equal to 59%), the distortions
are exorbitantly high, and the losses from increases in taxes from 59% to 60% are
equal to 54.7% of the additional tax revenues.

In our final step, we also consider the transition dynamics after a permanent
change in the tax rate, which we neglected when considering the partial equilibrium
effect (where we assumed that K would remain constant) and the general equilib-
rium steady-state analysis. To do so, we assume that the labor income tax rate is
changed in period t = 0 and that the change is unanticipated, meaning that the
economy is in the old steady state prior to period t = 0. In period 0, the capital
stock is predetermined, K0 = K .

The transition paths of the endogenous variablesK , L, Y , C, and G are illustrated
in Fig. 5.10.26 As presented in the top-left panel, the capital stock gradually
declines to its new steady-state value.27 The other variables adjust much faster to
the new steady-state values. Labor, as illustrated in the top-right panel, actually
undershoots its long-run equilibrium value because the household is able to pay for
its consumption from reduced savings. Since the marginal utility of leisure increases
with consumption, leisure 1 − L increases to a larger extent than in the new steady
state.

Although it is difficult to see in Fig. 5.10, government consumption (= tax
revenue) only adjusts gradually after the initial jump in period t = 1. Therefore,
when we compare the steady-state welfare effects with the welfare effects during

For example in the German economy with τL = 0.59, the marginal deadweight loss in partial
equilibrium, therefore, is equal 56.2% and is close to the general equilibrium effect reported in
Table 5.4.
26The transition is computed using the method of reverse shooting described in Appendix 4.1. The
method is implemented in the Gauss program Ch5_welfare_taul.g.
27In our computational algorithm, we set the number of transition periods equal to 40, which
appears to be sufficient time for the capital stock to converge.



5.3 Labor Income Tax 197

–10 0 10 20 30 40 50

Period t

–10 0 10 20 30 40 50

Period t

–10 0 10 20 30 40 50

Period t

–10 0 10 20 30 40 50
Period t

–10 0 10 20 30 40 50

Period t

Capital K Labor L

Consumption CProduction Y

Tax revenue
0.

29
95

0.
30

10
0.

30
25

0.
29

94
0.

29
96

0.
29

98
0.

30
00

0.
07

44
0.

07
56

0.
07

68
0.

07
80

0.
50

61
0.

50
64

0.
50

67
0.

50
70

1.
28

60
1.

28
68

1.
28

76
1.

28
84

Fig. 5.10 Transition dynamics after a permanent increase of τL

the transition in all periods t = 0, 1 . . ., we compare two situations with different
government expenditure paths.

To compute the change in welfare over the entire transition period, we compute
lifetime utility from (5.4) for the paths of consumption and labor illustrated in
Fig. 5.10 for τLt = 0.23, t = 0, 1, . . . with constant labor L and consumption C

and compare it to the lifetime utility (for tax rates τL0 = 0.23 and τLt = 0.24 for
t = 1, . . .). The former is simply calculated as

(
Cι(1 − L)1−ι

)1−σ

(1 − σ)(1 − β)
,

while we need to use computational methods to calculate lifetime utility for τL =
0.24. Again, we can compute the consumption equivalent change Δ:

∞∑

t=0

βtu((1 + Δ)Ct , Lt ) =
∞∑

t=0

βtu(C′
t , L

′
t ),
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where L and C are the steady-state values of labor and consumption for τL = 0.23,
and L′

t and C′
t denote the equilibrium values of labor and consumption for τLt =

0.24 for t = 1, 2, . . .. The resulting consumption equivalent change, Δ = −1.07%,
is again very close to our estimate from the steady-state evaluation (Δ = −1.10%).
Notice that the welfare loss is smaller if we also account for the transition because
consumption and leisure are higher during the initial phase of the transition than in
the new steady state.

At this point, we offer a word of caution. The three estimates of the consumption
equivalent change from the partial equilibrium, the steady state in general equi-
librium, and the complete transition in general equilibrium are very close to one
another and in range between −1.07% and −1.10%. This need not be the case in
general (for other models). In fact, we will discuss a finding from the literature
according to which the consideration of the transition not only significantly changes
the quantitative results but may also overturn the steady-state welfare effect and
change the sign.

The present analysis is also close in spirit to Prescott (2004), in which the
Nobel laureate Edward C. Prescott attempts to answer the following question:
“Why do Americans work so much more than Europeans?”. In the early 1970s,
Europeans and Americans were working nearly the same amount. For example,
Germans worked 5% more hours than the Americans during the period 1970–1974,
according to Table 1 in Prescott (2004). During the 1990s, however, Americans
worked approximately 50% more than Europeans. For example, Americans worked
56% more than Italians and 33% more than Germans. Prescott finds that different
marginal tax rates on labor income and consumption are sufficient to fully explain
this finding.28 Therefore, he studies a neoclassical growth model just like that above
and uses the same preferences for households in the US and Europe; however, the
tax rates are set as those prevailing in the individual countries.29 As one important
conclusion from this study, we find that the tax policy implies significant distortions
in the real economy, and the focus on supply-side economic policy in the US
during the 1980s helped to increase employment.30 In Problem 5.2, you are asked
to recompute some of the results from Prescott’s study.

28In his analysis, Prescott emphasized that it is important to consider the marginal rather than the
average tax rates for consumption, labor, capital, and investment.
29If, instead, the explanation for the observed puzzle were that Europeans were lazier than
Americans, the parameter ι in the above utility function should be different for the households
in the individual countries.
30A similar result is presented by Chakraborty, Holter, and Stepanchuk (2015), who analyze
the effects of both income taxes and the divorce rate in an OLG model. In their cross-country
comparison of the US with 17 EU countries, they find that the lower income tax rates and higher
divorce rates in the US explain approximately 45% of the higher labor supply in the US.
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5.4 Capital Income Tax

In this section, we will first analyze the effects of a capital income tax τK on
equilibrium values of consumption, savings, employment, and output. Next, we will
present the Chamley-Judd result that it is optimal not to tax capital income in the
long run and study the effects of depreciation-deductibility.

5.4.1 Distortionary Effects of Capital Taxes

To derive the general equilibrium effects of capital taxation, we extend the model
in the previous section by introducing a capital income tax τK that is levied upon
interest income, τKrtKt . We will distinguish two cases: (1) The tax law allows
for the deductibility of the depreciation costs of capital. Therefore, the household
can subtract the amount τKδKt from its capital income taxes, and the budget
constraint (5.7) changes to

(1 − τLt )wtLt + (1 − τK)rtKt + τKδKt = Ct + Kt+1 − (1 − δ)Kt ,

(2) Alternatively, we consider the case in which depreciation is not tax-deductible.
Accordingly, we use the following two budget constraints:

Ct +Kt+1 −Kt =
{
(1 − τLt )wtLt + (1 − τK)(rt − δ)Kt , case 1,
(1 − τLt )wtLt + (1 − τK)rtKt − δKt , case 2.

(5.15)

Consequently, the first-order condition in the form of the Euler equation also
needs to be adjusted

λt =
{
λt+1β

[
1 + (1 − τK) (rt+1 − δ)

]
, case 1,

λt+1β
[
1 + (1 − τK)rt+1 − δ

]
, case 2.

(5.16)

In addition, government expenditures also include capital income taxes, and thus,
the balanced government budget is given by

Gt =
{
τLt wtLt + τK(rt − δ)Kt , case 1,
τLt wtLt + τKrtKt , case 2.

(5.17)

All other equilibrium conditions of the model with capital taxation are identical
to those of the model in the previous section, and the steady state is characterized
by the following equations in the six variables K , L, C, w, r , and τK for given
government expenditures G and labor income taxes τL:

1

β
=
{

1 + (1 − τ k) (r − δ) , case 1,
1 + (1 − τ k)r − δ, case 2,

(5.18a)
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(1 − τL)w = 1 − ι

ι

C

1 − L
, (5.18b)

w = (1 − α)KαL−α, (5.18c)

r = αKα−1L1−α, (5.18d)

KαL1−α = C + G + δK, (5.18e)

G =
{
τLwL + τK(r − δ)K, case 1,
τLwL + τKrK, case 2.

(5.18f)

To derive numerical results, we use the same calibration as in Sect. 5.3.2. In
addition, we need to calibrate the capital income tax rate τK , which we set equal to
41% (see the empirical evidence presented in Sect. 5.2).31 The steady state and the
following results for the welfare losses from capital income taxation are computed
with the help of the GAUSS program Ch5_welfare_tauk.g. The two different tax
scenarios 1 and 2 have a significant effect on tax revenues and, hence, equilibrium
government expenditures. If capital depreciation is tax-deductible, government
consumption G amounts to 20.8% of GDP, which is close to the values observed
empirically in the US economy (see Chap. 4). In case 2, the government share G

rises to 29.5% of GDP.
In the following, we consider the equilibrium effects of a change in the capital

income tax τK . To balance the government budget (5.17), the labor income tax τL

adjusts while government expenditures G remain constant in each of the two cases.
Since we assume in our model that government consumption G is a pure waste and
does not increase either utility or productivity, it would not make sense to compare
the welfare of tax policies with different levels of G.

Figure 5.11 presents the effects of the capital income tax rate τK on the steady-
state values of the model. If the capital tax rate is reduced from the present level
of 41.0%, the labor income tax rate τL has to increase to balance the budget.
For example, if capital taxes are abolished, τK = 0, the labor income tax rate
τL increases from 23.0% to 30.3%. Since the net return on capital (after taxes)
increases, households increase their savings (the substitution effect dominates the
income effect), and the capital stock K increases by 29%, from 0.963 to 1.245.
Labor supply L, however, falls by 4% from 0.300 to 0.289. There are two opposing
effects of lower capital taxes on the labor supply. On the one hand, higher capital
increases the wage rate w because the marginal product of labor increases. On the
other hand, higher labor income taxes τL reduce the net wage. Since the latter
effect dominates, labor supply decreases (again, the substitution effect dominates
the income effect of lower net wages). The increase in capital is more pronounced
than the decrease in labor, and as a result, production rises by 16.0%, from 0.633

31Again, we calibrate the utility parameter ι = 0.3355 (ι = 0.3256) such that the steady-state labor
supply is equal to 30% in case 1 (case 2), L = 0.30.
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Fig. 5.11 Steady-state effects of capital income tax rate τK in case 1 (depreciation tax-deductible)

to 0.734. Since part of the higher production has to be invested to keep the capital
stock constant in steady state, the increase in consumption C is smaller and only
amounts to 1.9% as C rises from 0.265 to 0.270.

How do capital income taxes affect welfare as measured by the steady-state
utility of the household? Lower capital income taxes reduce labor and increase
consumption, meaning that utility rises unanimously in case 1. In fact, it is optimal to
subsidize capital income. The welfare increase that is associated with the abolition
of capital income taxes τK amounts to 3.4% of total consumption as measured by
the consumption equivalent change.

Figure 5.12 illustrates the effects of capital income taxes in case 2 where
deprecation is not tax-deductible. In this case, again, capital increases and labor
decreases for lower values of τK . Total production increases over the total range
considered, −10% ≤ τK ≤ 70%. Notice, however, that consumption is now a
concave function that peaks at approximately τK = 0%. For lower values of the
capital income tax rate, the increase in production is not sufficient to offset the
higher depreciation of capital, and thus, consumption falls. Consequently, there
are two opposing effects of very low capital income taxes on utility. While labor
supply falls, and hence, leisure and utility increase, consumption and, therefore,
utility decrease. The optimal capital income tax rate τK as presented in the lower-
left panel of Fig. 5.12 is approximately zero in case 2. In fact, we will show in the
next section that the optimal capital tax rate is zero in case 2. The welfare effects of
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Fig. 5.12 Steady-state effects of capital income tax rate τK in case 2 (depreciation not tax-
deductible)

the optimal capital tax are much higher than in case 1 and amount to approximately
17.3%.

5.4.2 Optimal Capital Taxation: Chamley-Judd Result

In the quantitative analysis in the previous section, we found that capital income
taxes should be equal to zero if depreciation of capital is not tax-deductible. In this
section, we present the famous Chamley-Judd result that long-run capital income
taxes (and, similarly, wealth taxes) should indeed be equal to zero in this case and
sketch the proof of this theoretical result.

Chamley (1986) and Judd (1985) independently analyzed the optimal policy of
a social planner who maximizes the welfare of an infinitely lived household via the
choice of a time path for taxes. The government cannot resort to non-distortionary
lump-sum taxes to finance an exogenously given path of government expenditures
but instead has to use proportional labor and capital income taxes. They find that
whenever the economy converges to a balanced growth path, capital income taxes
τK must converge to zero.
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To show their optimal taxation result, let us revisit the Ramsey model from the
previous section. However, we do not need to assume specific functional forms for
utility and production as above but only assume that utility from consumption and
leisure u(C,L) is concave and production F(K,L) is concave and characterized by
constant returns to scale. Therefore, the Chamley-Judd result holds for very general
forms of preferences and technology.

We assume that deprecation is not tax-deductible, meaning that the household
budget constraint (5.15) for case 2 holds. Households maximize utility u(Ct , Lt ),
and thus, the maximization of the Lagrangian

L =
∞∑

t=0

βt
[
u(Ct , Lt ) + λt

(
(1 − τLt )wtLt

+
(

1 + (1 − τKt )rt − δ
)
Kt − Ct − Kt+1

)]

implies the first-order conditions

λt (1 − τLt )wt = − ∂u

∂Lt

= −uLt , (5.19a)

λt = ∂u

∂Ct

= uCt , (5.19b)

λt = βλt+1

(
1 + (1 − τKt+1)rt+1 − δ

)
. (5.19c)

We can eliminate λt from the above equations to obtain

0 = uLt + uCt (1 − τLt )wt , (5.20a)

0 = βuCt+1

(
1 + (1 − τKt )rt+1 − δ

)
− uCt . (5.20b)

To derive the optimal tax,
{
τLt , τ

K
t

}∞
t=0, for given exogenous government expen-

ditures, {Gt }∞t=0, the government maximizes the intertemporal utility of the house-
hold (5.4), subject to the following constraints:

1. The government budget (5.17) for case 2 is balanced. As a consequence, the
aggregate resource constraint holds:

Ct + Gt + Kt+1 = F(Kt , Lt ) + (1 − δ)Kt . (5.21)

To derive (5.21), we assumed that production is characterized by constant returns
to scale and factor and goods markets are competitive such that the Euler’s
theorem holds:

F(Kt , Lt ) = wtLt + rtKt .
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2. The household maximizes intertemporal utility, and thus, its consumption,
savings, and labor supply are described by (5.20) for given exogenous tax rates,{
τLt , τ

K
t

}∞
t=0.

3. Firms maximize profits such that the factor prices are equal to their marginal
products, wt = ∂F

∂Lt
, rt = ∂F

∂Kt
.

Consequently, the government maximizes the following Lagrangian:

max
τKt ,τLt ,Ct ,Lt ,Kt+1

∞∑

t=0

βt

{
u(Ct , Lt )+ (5.22)

ψt

[
τKt FKtKt + τLt FLt Lt − Gt

]

+ θt [F(Kt , Lt ) + (1 − δ)Kt − Ct − Gt − Kt+1]

+ μ1t

[
uLt + uCt (1 − τLt )wt

]

+ μ2t

[
βuCt+1

(
1 + (1 − τKt+1)rt+1 − δ

)
− uCt

] }
.

The solution to this problem,
{
τLt , τ

K
t

}∞
t=0, is called the Ramsey policy and is

derived in greater detail in Appendix 5.1. In particular, it is easy to show that the
following condition holds in steady state:

[ψ + θ ] τKFK = 0, (5.23)

which is true only for τK = 0.
Notice the following:

• The result of zero capital income taxation holds only in the long run. During
the transition, it may be optimal to set τKt > 0. In particular, it is optimal
in the first period to tax capital income because the capital stock is in fixed
supply when the tax policy is announced. To understand this result, notice that
only the capital income tax in period t + 1 (but not in period t) affects the
intertemporal optimization behavior of the household in period t , as indicated
directly by (5.19c). More formally, assume that the government has to satisfy the
following intertemporal budget constraint:

∞∑

t=0

[
τLt wtLt + τKt rtKt∏t

s=0(1 + rs)

]
=

∞∑

t=0

[
Gt∏t

s=0(1 + rs)

]
, (5.24)
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where we set r0 ≡ 0. In addition, K0 is given. One can show32 that the optimal
solution is given by a tax policy whereby the government should raise as much
taxes from capital income in the initial period t = 0, τK0 r0K0, as possible.

However, this policy suffers from the curse of time inconsistency.33 If the
households knew that it would be optimal for the government to prohibitively
tax capital in period t = 1, they would not have accumulated any in period 0.
Moreover, the government has a problem committing to a policy of zero capital
income taxation in the long run because at the beginning of each period t , it has
an incentive to deviate from its policy and prohibitively tax capital income. If
the public learns from the government’s past behavior, it would predict that the
government will again tax capital in period t + 1; therefore, the public will not
invest. As a consequence, the government cannot use a prohibitive tax in any
period t .

• It is easy to show34 that it is also optimal to set a wealth tax τV equal to zero.
With a wealth tax, the budget constraint is represented by

Ct + Kt+1 = (1 − τLt )wtLt + (1 + rt − δ)Kt − τVt Kt . (5.25)

Again, one can show that in steady state, the effects of a capital income tax and
a wealth tax are identical if the rates satisfy

τKr = τV .

• In the US economy, capital income taxes averaged 41% during the period 1948–
2008, although they have declined in recent decades. The Chamley-Judd result
suggests that it is optimal to substantially reduce capital income taxation. In our
computation exercise, we find that considerable welfare effects equal to multiple
percentage points of total consumption accrue in the long run. Thus, what
might keep politicians from decreasing capital income taxes? Besides political
arguments, are there any economic arguments in favor of capital income taxes?

To derive their results, Chamley (1986) and Judd (1985) analyze a representa-
tive agent model. If, instead, households are heterogeneous, capital income taxes
may help to redistribute from wealth-rich households, which are characterized by
a low marginal utility of consumption, to wealth-poor households, which have a
much higher marginal utility of consumption. Consequently, average utility may
increase.

32For a formal proof, see Chapter 2 in Kocherlakota (2010).
33More formally, a time-consistent policy is a policy in a multi-period problem that is optimal
in the present period and remains optimal in future time periods. The main reference for the
presentation of the time-inconsistency problem is provided by Kydland and Prescott (1977).
Fischer (1980) presents the problem of time-inconsistent fiscal policy in a two-period model.
A good textbook illustration of the Fischer model and its implications for optimal tax policy is
presented in Chapter 6.2 of Wickens (2011).
34You will be asked to show these results in Problem 5.3.
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In addition, Chamley (1986) and Judd (1985) assume that households are
infinitely lived. If one considers a finite lifetime and overlapping generations, the
older households may leave bequests to their children in the form of both human
and physical capital. To ensure equality of opportunity and allow a household
with poor parents (but, perhaps, with high learning abilities and intelligence)
to invest in education, it may be welfare-improving to tax inheritances and
redistribute among the young generation by providing better public education.

Moreover, many studies introduce heterogeneous households into the represen-
tative agent Ramsey model to study the welfare effects of income taxation, e.g., the
distributional effects of capital income taxes or the optimal degree of progressivity
in the income tax schedule. In these models, households are heterogeneous in
their productivity and assets. In this vein, Domeij and Heathcote (2004) show that
household heterogeneity and market incompleteness imply different welfare effects
of tax changes. In fact, it is optimal not to reduce the capital income tax rate in this
case. A capital income tax redistributes income from the wealth-rich to the wealth-
poor, where the latter are usually characterized by lower income and consumption.35

Therefore, as pointed out above, wealth-poor households have a higher marginal
utility of income than do wealth-rich households, and thus, such a tax increase
increases the mean utility in the economy.

For the US economy, Conesa and Krueger (2006) find that the optimal progres-
sivity of income taxation (of both labor and capital income) is rather flat and well
approximated by a constant income tax of 17.2%. Here, the disincentive effect of
a more progressive income tax on the labor supply of the most productive workers
is so detrimental to aggregate output and income that the redistributive effect does
not compensate for it. In Heer and Trede (2003), we compare two revenue-neutral
income tax reform proposals, (i) a flat-rate income tax and (ii) a consumption tax,
in a general equilibrium model with an elastic labor supply and progressive income
taxation. The model is calibrated to the German economy in 1996 such that the
endogenous labor income distribution as computed from our model is equal to
the empirical labor income distribution in Germany. Both tax reform proposals
result in a moderate increase in aggregate employment and a strong increase in
aggregate savings. Importantly, the two reform proposals imply significant steady-
state welfare gains that are equivalent to increases in total consumption of 3.6% and
8.2%, respectively.

35Notice that income and wealth are not perfectly correlated. Budría Rodriguez, Díaz-Giménez,
and Quadrini (2002), for example, find that the correlation between labor income and wealth only
amounts to 0.27 in the US economy.
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5.5 The Laffer Curve

During the recent financial crisis, many governments increased their debt (relative
to GDP) to unprecedented levels since World War II. The larger debt service that
is associated with this development has raised the question of whether government
debt and expenditures are sustainable. To answer this question, one has to consider
the amount of revenues that the government is able to generate from taxes.

One concept that has prominently been used in US economic policy since the
1970s is the Laffer curve.36 This curve illustrates the amount of tax revenues that
is associated with different levels of the income tax rate. It is hump-shaped, as
illustrated in Fig. 5.13. Let the tax revenues be equal to R = τY , where τ and
Y denote the income tax rate and taxable income, respectively. If the tax is zero,
τ = τ0 = 0%, revenues are equal to zero, R = 0. If the tax rate τ increases,
therefore, revenues R also increase. Given increasing revenues, however, the tax
base Y will shrink because households have less incentive to generate income. If
income is taxed at τ = τ100 = 100%, income Y and, hence, revenues R drop to
zero.

For the politician, it is important to identify the location of the tax rate associated
with the present income tax system on the Laffer curve. If the tax rate is higher than

Fig. 5.13 Laffer curve

36Arthur Betz Laffer was a member of Reagan’s Economic Policy Advisory Board (1981–1989)
and a 2016 campaign advisor of Donald Trump.
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τ̃ , for example at τ = τ3, the government should cut tax rates. We will find below
that the US income tax is at a point τ1 to the left of the Laffer curve peak τ̃ . As a
consequence, the US government can still raise tax revenues R. In addition, we will
separately analyze tax revenues for labor and capital income taxes because these
two forms of income are taxed differently in the US (see Fig. 5.6). In our analysis in
this section, we find that the two tax rates are approximately half of those associated
with the peak and that tax revenues from labor and capital income can be raised by
approximately 50–70%.

To derive these results, we use a simplified version of the model proposed by
Trabandt and Uhlig (2011).37 To compare our results to theirs, we also adopt their
calibration with respect to the functional forms of utility and production and their
parameterization for the US economy. In addition to the ingredients of the model in
the previous section, here, the government issues debt, and the economy is growing.

5.5.1 TheModel

5.5.1.1 Households
Households maximize intertemporal utility

U0 =
∞∑

t=0

βt [u(Ct , Lt ) + ϕ(Gt)] , (5.26)

where instantaneous utility is a function of consumption C and labor L:

u(C,L) = 1

1 − σ

(
C1−σ

[
1 − ν0(1 − σ)L1+1/ν1

]σ − 1
)
. (5.27)

The functional form of utility is very convenient. (1) Utility from government
consumption ϕ(Gt) is additive, meaning that there is no direct effect of Gt on the
marginal utility from consumption C or leisure 1 − L. (2) This form of utility is
in accordance with the fact that labor L is constant in the long run on the balanced
growth path. 1/σ denotes the constant intertemporal elasticity of substitution, while
ν1 is equal to the Frisch labor supply elasticity.38

The household holds two forms of assets, government bonds Bt and capital Kt .
The real return on bond rBt is set by the government, while the return on capital is
denoted by rt . The household invests It in the accumulation of capital:

Kt+1 = (1 − δ)Kt + It . (5.28)

37In particular, we neglect income from abroad.
38See Appendix 4.2 for the definition of the Frisch labor supply elasticity.
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The household budget constraint is presented by:

(1+τC)Ct+It+Bt+1 = (1−τLt )wtLt+(1−τKt )(rt−δ)Kt+δKt+(1+rBt )Bt+T rt ,

(5.29)

where τC and T rt denote the constant consumption tax rate and government
transfers to the households in period t . Depreciation is tax-deductible.

The first-order conditions are represented by

λt (1 + τC) = C−σ
t

[
1 − ν0(1 − σ)L

1+1/ν1
t

]σ
, (5.30a)

λt (1 − τLt )wt = ν0σ

(
1 + 1

ν1

)
C1−σ
t

[
1 − ν0(1 − σ)L

1+1/ν1
t

]σ−1
L

1/ν1
t ,

(5.30b)

λt = βλt+1

[
1 + (1 − τKt+1)(rt+1 − δ)

]
, (5.30c)

λt = βλt+1(1 + rBt+1). (5.30d)

From (5.30c) and (5.30d), it follows that the two assets Bt and Kt must yield the
same return after taxes,

rBt+1 = (1 − τKt+1)(rt+1 − δ).

5.5.1.2 Production
Production is Cobb-Douglas in the two production factors capital Kt and labor Lt :

Yt = AtK
α
t L

1−α
t . (5.31)

Total factor productivity At grows at the exogenous rate γA39:

At = A0(1 + γA)
t . (5.32)

39Notice that, different from the production function (3.37), we did not introduce At as labor
productivity, but as total factor productivity. These two specifications are equivalent for the Cobb-
Douglas production function if the growth of labor productivity γ is related to γA according to

1 + γ = (1 + γA)
1

1−α .

The above equation follows from

Yt = AtK
α
t L

1−α
t = Kα

t

(
A

1
1−α
t Lt

)1−α

.

In Sect. 3.4 we also showed that, in steady state, output, capital and consumption all grow at the

rate γ so that (1 + γA)
1

1−α denotes the stationary growth factor.
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Define ψ = (1 + γA)
1/(1−α), where ψ denotes the stationary growth factor.

Accordingly, stationary output is given by:

Ỹt ≡ Yt

ψt
= A0(1 + γA)

tKα
t L

1−α
t

ψt
= A0K̃

α
t L

1−α
t , (5.33)

where K̃t ≡ Kt/ψ
t . Without loss of generality, we set the total factor productivity

in period 0 to unity, A0 = 1.
In factor market equilibrium with competitive goods and factor markets, profit-

maximizing firms set the wage and the interest rate equal to their marginal products:

w̃t = (1 − α)
Ỹt

Lt

, (5.34a)

rt = α
Ỹt

K̃t

. (5.34b)

Again, we define the stationary variable w̃t = wt/ψ
t .

5.5.1.3 Government
The government finances government expenditures with taxes and debt according
to40:

Gt + T rt + rBt Bt = Tt + Bt+1 − Bt, (5.35)

with taxes Tt represented by

Tt = τCCt + τLwtLt + τK(rt − δ)Kt . (5.36)

5.5.1.4 EquilibriumConditions
In equilibrium, the resource constraint of the economy holds:

Yt = Ct + Gt + It . (5.37)

40We will analyze government debt in greater detail in Chap. 7.
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The first-order conditions, budget constraints and equilibrium conditions can be
expressed in stationary variables. The steady state is described by the following
seven equations in the seven endogenous variables rB , K̃ , C̃, Ỹ , L, w̃, and Ĩ 41:

1 + τC

1 − τL

1 + 1/ν1

1 − α

C̃

Ỹ
= 1

σν0L
1+1/ν1
t

+ 1 − 1

σ
, (5.38a)

1 + rB = ψσ

β
, (5.38b)

Ỹ

L
=
(
K̃

Ỹ

) α
1−α

, (5.38c)

w̃t = (1 − α)
Ỹt

Lt
, (5.38d)

Ỹ

K̃
= rB

α(1 − τK)
+ δ

α
, (5.38e)

Ỹ = C̃ + Ĩ + G̃, (5.38f)

Ĩ = (ψ − 1 + δ)K̃. (5.38g)

In the economy, the real return on bonds in the long run is determined by the Euler
condition:

1 + rB = ψσ

β
.

As a consequence, the real interest rate r and, hence, the capital-labor ratio K̃/L

depend on the capital income tax rate τK but not on the labor income tax rate τL

according to42:

1 + (1 − τK)(r − δ) = ψσ

β
.

Therefore, an increase in the labor income tax rate τL does not change the steady-
state wage w̃ before taxes, and the total incidence of the labor income tax change is
borne by the workers.

41You are asked to derive these equations in Problem 5.4. Notice that the stationary value of the
Lagrange multiplier λt is represented by λ̃t = λt

(
ψt
)σ .

42This observation does not hold in the OLG model. Why is this the case? In Sect. 7.5, we embed
the model of Trabandt and Uhlig (2011) in an OLG framework to study the dynamics of debt and
the real interest rate.
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5.5.1.5 Calibration
We follow Trabandt and Uhlig (2011), who calibrate their model for the US
economy. In particular, the real interest rate on bonds is set equal to 4% annually,
rB = 0.04. The empirical estimates for the Frisch labor supply elasticity, which
measures the (absolute) percentage change in the labor supply if the wage increases
by 1%, vary considerably.43 We use a value ν1 = 1.0 that is in the upper range of the
estimates. The intertemporal elasticity of substitution is equal to 1/σ = 1/2.0. The
tax rates on labor income, capital income, and consumption are identical to those
values observed in the US economy: τL = 0.28, τK = 0.36, and τC = 0.05. In
addition, the growth factor of the economy is calibrated as ψ = 1.02, the debt-GDP
ratio of the US economy is set to B/Y = 63%, and government consumption as
a share of GDP amounts to G/Y = 18%. Finally, the production parameter values
for the capital income share, α = 0.38, and the depreciation rate, δ = 0.07, are
close to the values that we used in previous chapters. The value of ν0 = 3.732 is
calibrated such that steady-state labor supply is equal to L̄ = 0.25, as in Trabandt
and Uhlig (2011). The solution is computed with the help of the GAUSS program
Ch5_laffer.g.

5.5.2 Results

We separately study the effects of a change in the two tax rates, τL and τK , on
revenues, holding the other tax rates constant. Figure 5.14 presents the Laffer curve
for the labor income tax rate τL (holding the other taxes τC and τK constant). At
the benchmark with τL = 28%, labor income tax revenues (the solid red line) are
equal to 0.08278, which amounts to 17.4% of GDP. Labor income tax revenues peak
at τL = 71% and can be increased by 67%. Accordingly, there is still considerable
leeway for the US government to increase taxes.44

As the labor income tax rate τL increases, labor supply L decreases, while the
capital-labor ratio K̃/L, as argued above, remains constant. As a consequence,
capital and labor decrease by the same percentage rate, and capital income taxes
decline with a higher τL. The effect of τL on total revenues Tt is illustrated by the
broken green line in Fig. 5.14. In this case, the revenue-maximizing labor income tax
rate τL is lower and amounts to only 65%. Total tax revenue increases by only 31.5%
because of the decline in the capital stock and, hence, tax revenue from capital
income and consumption. Nevertheless, the government can raise its revenues by

43See also the discussion of these values in Sect. 4.4.5.
44Bear in mind that in all tax scenarios that we consider in this subsection, we only compare steady
states and neglect transition dynamics.
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Fig. 5.14 US Laffer curve: labor income tax rate τL

Fig. 5.15 US Laffer curve: capital income tax rate τK

8.4% of present GDP. Accordingly, government consumption can be increased to
approximately 26.4% of GDP.45

The Laffer curve for the capital income tax rate τK (holding the other taxes
τC and τL constant) is presented in Fig. 5.15. Capital income tax revenue peaks

45Trabandt and Uhlig (2011) also consider 14 EU countries and there ability to generate additional
revenues with the help of income taxation. They find that all Scandinavian EU countries Denmark,
Finland, and Sweden, and some other European countries, e.g., Austria, Italy, France, and Belgium
cannot raise their labor income tax revenues by more than 5% because they are already so close to
the peak of the Laffer curve.
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at τK = 83%. Total tax revenue, however, already fall beyond the tax rate τK =
64%. At this high rate of capital income taxation, the decline in the capital stock
and, hence, the marginal product of labor also reduces revenue from labor income
taxation to such an extent that it offsets the increase in capital income taxes.46 Since
capital income taxes are a small share of total tax revenue, the capital income tax
only exhibits limited potential for increasing tax revenue. For capital income to
make a more significant contribution to total tax revenues, one possible solution
would be to no longer make depreciation tax-deductible.47

5.6 Growth Effects of Taxes

Tax policy can affect economic growth through various channels. First, income taxes
might alter factor inputs. For example, lower labor income taxes could increase labor
supply, while lower capital income taxes could increase savings and investments.
Second, lower income taxes might increase incentives to invest in human capital.
For example, lower labor income taxes increase the benefit from both education
and working. Third, lower taxes on or even subsidies for research activities may
increase total factor productivity growth. In addition, how taxes are spent will affect
economic growth. For example, if taxes are mainly used for redistributive purposes,
the effect on economic growth may be less pronounced than in the cases in which
revenues are spent on infrastructure, education, or health.

The results of cross-country growth regressions offer little support for a strong
effect of taxes on economic growth.48 For example, Mendoza, Milesi-Ferretti, and
Asea (1997) find that tax policies do not affect long-run growth. In particular, the
effect of tax rates on growth rates is weak once additional control variables such
as initial GDP or other conditioning variables are included, as noted by Levine and
Renelt (1992). However, these growth regressions are subject to various estimation
problems. First, it is difficult to empirically identify the correct tax variable. For
example, should the researcher use average or marginal tax rates? Second, the esti-
mation suffers from the endogeneity problem. Taxes and government expenditures
are highly correlated. Higher government expenditures temporarily increase output
via the multiplier effect, as argued in the previous section. However, higher income
may also increase government spending and, hence, taxes, especially if the tax
code is progressive. More recent studies have considered the importance of the tax

46Furthermore, labor supply attains a minimum at τK = 73% and increases for higher capital
income tax rates beyond this threshold. For these high capital income tax rates and corresponding
low wage rates, the income effect dominates the substitution effect, and lower wages imply higher
labor supply.
47You are also asked to estimate the Laffer curves for this case in Problem 5.4.
48For an overview of these studies, see Chapter 12 of Barro and Sala-i-Martin (2003).
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structure rather than the level of taxes. In his OECD panel study, Arnold (2008)
finds that the distortions and the forgone economic growth from taxation increase in
the following order49:

1. Property taxes
2. Consumption tax
3. Personal income tax
4. Corporate income tax.

He also finds a negative effect of the progressivity of the personal income tax system
on economic growth.

In addition to these regression studies, one can gauge the effects of different
tax policies on economic growth with the help of both qualitative and quantitative
analysis of dynamic general equilibrium models. We will pursue this approach in
the following. In the first section, we present a model in which income taxes are
used to finance public expenditures, such as public investments in infrastructure,
that increase aggregate productivity. We find that the growth-maximizing tax policy
is the one where the income tax rate is set equal to the production elasticity of the
public input. In the second section, we analyze the Lucas (1990) supply-side model
in which growth is driven by investment in human capital. In this model, we find
that an increase in capital relative to labor income taxation fosters growth because
the latter has a stronger disincentive effect on human capital accumulation.

5.6.1 Endogenous Growth with Government Expenditures

In Chap. 4, we analyzed the effects of public expenditures on consumption. How-
ever, many government expenditures on public infrastructure such as roads, educa-
tion, an efficient administration, or health also have significant effects on productiv-
ity. The seminal article by Aschauer (1989) presents empirical evidence on how an
increase in productive government expenditures raises output. Moreover, Easterly
and Rebelo (1993) show that public investment in infrastructure increases the long-
run growth rate.

Hereinafter, we will account for the productivity-enhancing nature of (some)
public expenditures and present a derivation of the optimal amount of government
services based on the analysis of Barro (1990).50 Government expenditures will
enter the production function. In addition to the production sector, we will also

49Di Sanzo, Bella, and Graziano (2017) also study the empirical effects of the tax structure on
economic growth. In a panel cointegrated VAR analysis, they find that a property tax has the least
harmful effects on growth, while they cannot verify a significant difference between the growth
effects of the income and the consumption tax when the total tax burden (relative to GDP) exceeds
a threshold of 30%.
50However, we formulate the model in discrete time to comply with the approach used in the rest
of the book. In addition, we consider exogenous labor supply in our model.
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specify the behavior of the household sector, public finances, and the competitive
equilibrium for our model in the following.

5.6.1.1 Production
The government provides services Gt free of charge in period t that are used as
a production input. When we model productive government spending, we need to
decide whether to consider a flow variable, a stock variable, or both. For simplicity,
we will assume government expenditures to be a flow variable, but you will be asked
in Problem 5.6 to derive results for government expenditures as a stock variable. In
addition, we have to make an assumption regarding the congestion effect that is
caused by increased use of the public good. For example, excessive use of public
infrastructure such as roads or the legislative system may result in lower productivity
for individual users. In the model, we exclude congestion effects, but you will be
asked to analyze them in Problem 5.7.

There is a unit mass of firms that can be studied by means of a representative
firm. Production F(Kt , Lt ,Gt) in period t uses capital Kt , labor Lt , and public
services Gt as inputs according to:

Yt = F(Kt , Lt ,Gt ) = AL1−α
t Kα

t G
1−α
t . (5.39)

Notice that the production functionF(.) is characterized by constant returns to scale
in the private inputs Kt and Lt . As a consequence, Euler’s theorem (on linearly
homogeneous functions) holds in markets with perfect competition, meaning that
profits are equal to zero. In addition, we assume constant returns to scale in the two
production factors Kt and Gt , which are able to grow at strictly positive rates γK
and γG, respectively, in the long run, while the labor factor cannot grow without
bound.

The assumptions concerning the production function are not innocuous. For a
more general production function, e.g., F̃ (K,L,G) = KαLβGε , there would be
no endogenous growth if β + ε < 1. In this case, the marginal product of capital
would diminish in the long run. In steady state, to maintain growth, β + ε = 1 must
hold for capital and government expenditures to grow at the same rate, γK = γG.
Moreover, if β + ε > 1, the possibility of multiple equilibria may arise. Therefore,
we restrict our consideration to the knife-edge assumption of constant returns to
scale in K and G.51

We assume perfect competition in goods and factor markets. The representative
firm maximizes profits Πt in period t

Πt = [1 − τ ]AL1−α
t Kα

t G
1−α
t − rtKt − wtLt , (5.40)

51For this reason, Irmen and Kuehnel (2009) suggest considering the growth effects of productive
government expenditures in models with Schumpeterian innovation instead of the simple ‘Ak’-
model.
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where w and r denote the real wage and interest rate, respectively. Production is
taxed at rate τ . The necessary first-order conditions are given by

wt = (1 − τ )FLt = (1 − τ )(1 − α)AL−α
t Kα

t G
1−α
t , (5.41a)

rt = (1 − τ )FKt = (1 − τ )αAL1−α
t Kα−1

t G1−α
t . (5.41b)

In equilibrium, profits are zero.

5.6.1.2 Government
The government finances the public input by a tax on production.52 In equilibrium,
the budget is balanced in each period t:

Gt = τYt . (5.42)

5.6.1.3 Households
The representative household is infinitely-lived and maximizes its intertemporal
utility

U =
∞∑

t=0

βtu(Ct ), (5.43)

where β < 1 denotes its discount factor.
Instantaneous utility is presented by

u(Ct ) = C1−σ
t − 1

1 − σ
, (5.44)

where 1/σ denotes the intertemporal elasticity of substitution.
Household labor supply is exogenous and given by Lt = L. The household

owns the capital stock Kt and receives interest income from capital rtKt and wage
income from labor wtL. Capital depreciates at rate δ. Accordingly, the household
budget constraint is represented by

Ct + Kt+1 = wtL + (1 + rt − δ)Kt . (5.45)

The optimization problem can be studied with the help of the Lagrangian

L =
∞∑

t=0

βt {u(Ct ) + λt [wtL + (1 + rt − δ)Kt − Ct − Kt+1]} ,

52Alternatively, we could consider an income tax on both labor and capital income.
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that implies the following first-order conditions:

λt = ∂u

∂Ct

= uCt , (5.46a)

λt = βλt+1 (1 + rt+1 − δ) , (5.46b)

where we can eliminate the Lagrange multiplier to obtain the Euler equation:

(
Ct+1

Ct

)σ
= β (1 + rt+1 − δ) . (5.47)

5.6.1.4 Competitive Equilibrium
To derive the properties of the competitive equilibrium, we express consumption
growth as a function of the tax rate. Therefore, we first rewrite the real interest rate
rt as a function of τ . Notice that

Gt = τYt = τAL1−αKα
t G

1−α
t ,

or, noticing that Lt = L,

Gt = (τA)
1
α L

1−α
α Kt .

Insert this expression for public consumption Gt into (5.41b) to derive

rt = (1 − τ )αA
1
α [Lτ ]

1−α
α . (5.48)

Next, insert the expression for the real interest rate into (5.47):

Ct+1 − Ct

Ct

= {β [1 + rt+1 − δ]} 1
σ − 1 (5.49)

= β
1
σ

[
1 + (1 − τ )αA

1
α [Lτ ]

1−α
α − δ

] 1
σ − 1.

Notice that the growth rate of consumption

γ C
t ≡ Ct+1 − Ct

Ct
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is constant over time and attains its maximum if the factor

(1 − τ )τ
1−α
α

is maximized. To find the maximum, take the logarithm of this expression

ln(1 − τ ) + 1 − α

α
ln τ

and differentiate it with respect to τ , implying:

1

1 − τ
= 1 − α

α

1

τ
,

or

τ = 1 − α.

Accordingly, the maximum consumption growth rate is attained for a production tax
τ = 1 − α:

γ C = β
1
σ

[
1 + α2(1 − α)

1−α
α A

1
α L

1−α
α − δ

] 1
σ − 1. (5.50)

For this value of τ , the marginal product of the public input is equal to one and,
therefore, equal to its marginal costs:

∂F (Kt ,Gt , L)

∂Gt

= (1 − α)
Yt

Gt

= (1 − α)
Yt

τYt
= 1 − α

1 − α
= 1.

If τ > 1 − α, we observe that a reduction in taxes increases consumption growth.
In a competitive equilibrium, all variables G, K , and C grow at the same rate γ .

To see this, let us begin with the growth rate of consumption (5.49). For a constant
γ C , the interest rate r is also constant. A constant interest rate, however, implies
a constant ratio of government expenditures G to capital K according to (5.41b).
Therefore, the growth rates of the two inputs G and K must be equal, γK = γG.
Finally, if we divide the resource constraint, Yt = Ct +Gt +Kt+1 − (1 − δ)Kt , by
Kt , we obtain

Ct

Kt

= (1 − τ )AL1−α

(
Gt

Kt

)1−α

+ 1 − δ − Kt+1

Kt︸ ︷︷ ︸
:=γK

t

.
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From this equation, we notice that Ct/Kt must also be constant in steady state.
Therefore, γ C = γK must hold.

In the present model setup, an additional consumption tax τC > 0 helps to
increase the growth rate γ . The growth rate of consumption γ C can be derived
as above. Only the individual budget constraint (5.51)

(1 + τC)Ct + Kt+1 = wtL + (1 + rt − δ)Kt (5.51)

and the government budget constraint (5.42)

Gt = τYt + τCCt (5.52)

need to be adjusted.53

5.6.1.5 Pareto Efficiency
How does the solution in the competitive equilibrium compare with that in the
command optimum? To determine this, we consider the case in which the central
planer maximizes (5.43) subject to the resource constraint

Ct + Gt + Kt+1 = AL1−αKα
t G

1−α
t + (1 − δ)Kt . (5.53)

The first-order conditions are given by

λt = C−σ
t , (5.54a)

λt = βλt+1

(
1 + αAL1−αKα−1

t G1−α
t − δ

)
, (5.54b)

1 = (1 − α)AL1−αKα
t G

−α
t . (5.54c)

With the help of (5.54c), we derive the Pareto-efficient level of government
expenditures:

Gt = [A(1 − α)]
1
α L

1−α
α Kt .

If we plug this expression for Gt into the Euler condition, we derive

Ct+1 − Ct

Ct

≡ γ̃ C =
[
β
(

1 + α(1 − α)
1−α
α A

1
α L

1−α
α − δ

)] 1
σ − 1.

Notice that, for 0 < α < 1, the Pareto-efficient growth rate γ̃ C is larger than the
growth-maximizing rate γ C in Eq. (5.50) for the case of a decentralized economy!

53You are asked to solve this case in Problem 5.5.
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5.6.2 Capital Taxation in a GrowthModel with Human Capital

In the following, we present the analysis of the capital income tax rate in the
Lucas (1990) supply-side model. The central new element in Lucas’ analysis is the
consideration of human capital accumulation, which drives economic growth. The
more time people spend on education, the higher the economic growth rate will be.
Since the benefit from better education consists of higher wages and, hence, higher
labor income in future periods, the opportunity costs of learning are inversely related
with labor income tax levels. Accordingly, in the Lucas supply side model, higher
capital income taxes are associated with higher growth because the government is
able to reduce labor income taxation. We will present this mechanism in greater
detail in the following.

The model that we specify is a discrete-time version of the Lucas (1990) model.
In this way, we are able to maintain the same model setting as in the rest of the
chapter. In addition, we consider a constant population rather than a growing one as
in the model of Lucas (1990). The rest of the model is basically identical to that of
Lucas.

5.6.2.1 Production
Firms use both physical and human capital Kt and Ht as production inputs. Let
ut denote the working time of the household, and production is described by the
following constant elasticity of substitution (CES) function:

Yt = A0

(
αK

ρp
t + (1 − α)(utHt)

ρp
) 1

ρp
, (5.55)

where σp = 1/(1−ρp) denotes the CES in production. In factor market equilibrium,
the factor prices are equal to their marginal products:

wt = A0(1 − α)
(
αK

ρp
t + (1 − α)(utHt)

ρp
) 1

ρp
−1

(utHt )
ρp−1, (5.56a)

rt = A0α
(
αK

ρp
t + (1 − α)(utHt)

ρp
) 1

ρp
−1

(Kt)
ρp−1. (5.56b)

Notice that w denotes the wage per efficiency unit uH , which is the product of
working time and human capital.

5.6.2.2 Human Capital Accumulation
Individuals spend vt units of time on education, and, hence, human capital ht
accumulates according to:

ht+1 = ht + Dv
ς
t h̄t , (5.57)
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where h̄t and ς denote the average human capital in the economy and the elasticity
of human capital growth with respect to learning v, respectively. The household
takes h̄t as given.

5.6.2.3 Households
The number of households is equal to one, which allows us to study the behavior of
the individual and aggregate households by means of the representative household.
The household allocates its time endowment, which is normalized to one, to
working, ut , learning, vt , and leisure, 1 − ut − vt . The household derives utility
from consumption Ct and leisure 1 − ut − vt .

The representative household maximizes intertemporal utility:

∞∑

t=0

βt [Ct (1 − ut − vt )
ι]1−σ

1 − σ
(5.58)

subject to the budget constraint in period t

(1 − τLt )wtutht +
(

1 + (1 − τKt )rt − δ
)
Kt + trt = Ct + Kt+1. (5.59)

The household pays taxes on labor and capital income at the rates τLt and τKt ,
respectively. In accordance with Lucas (1990), we assume that depreciation cannot
be deducted from capital income taxes.54 In addition, the household receives
transfers trt from the government.

The Lagrangian of the household is presented by

L =
∞∑

t=0

βt

{
[Ct (1 − ut − vt )

ι]1−σ

1 − σ

+ λt

[
(1 − τLt )wtutht +

(
1 + (1 − τKt )rt − δ

)
Kt + trt − Ct − Kt+1

]

+ μt

[
ht + Dv

ς
t h̄t − ht+1

] }
.

Since average human capital h̄t is taken as exogenous by the individual, the first-
order conditions with respect to Ct , Kt+1, ut , vt , and ht+1 are presented by:

λt = C−σ
t (1 − ut − vt )

ι(1−σ), (5.60a)

λt = βλt+1

(
1 + (1 − τKt+1)rt+1 − δ

)
, (5.60b)

54You are asked to consider this change in assumptions in Problem 5.8.
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λt (1 − τLt )wtht = ιC1−σ
t (1 − ut − vt )

ι(1−σ)−1, (5.60c)

μtςDv
ς−1
t h̄t = ιC1−σ

t (1 − ut − vt )
ι(1−σ)−1, (5.60d)

μt = β
[
μt+1 + λt+1(1 − τLt+1)wt+1ut+1

]
. (5.60e)

5.6.2.4 Government
The government finances exogenous government consumption Gt and transfers T rt
with the help of labor and capital income taxes such that its fiscal budget is balanced:

Gt + T rt = τLt wtutHt + τKt rtKt . (5.61)

We assume that government consumptionGt and transfers T rt grow at the economic
growth rate γ of the economy.

5.6.2.5 Equilibrium
In equilibrium, the following resource constraint holds:

Yt = Kt+1 − (1 − δ)Kt + Ct + Gt. (5.62)

In addition, both aggregate human capital Ht and average human capital h̄t are equal
to individual human capital ht :

Ht = h̄t = ht . (5.63)

Moreover, aggregate transfers are equal to individual transfers:

T rt = trt . (5.64)

5.6.2.6 Steady State
In steady state, the aggregate variables Yt , Ht , Kt , and Ct all grow at the endogenous
growth rate γ , and the time allocation of the household is constant, ut = u and
vt = v. To derive these properties, assume that consumption grows at a constant
rate γ . As a consequence, substitution of (5.60a) into (5.60b) implies that the interest
rate rt = r is also constant:

1

β

(
Ct+1

Ct

)σ
= (1 + γ )σ

β
=
(

1 + (1 − τK)r − δ
)
.

With the help of (5.56b), we can express the steady-state interest rate r as a function
of the stationary variable K̃ ≡ K/H :

r = A0α
(
αK̃ρp + (1 − α)uρp

) 1
ρp

−1
K̃ρp−1. (5.65)
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Since r is constant in steady state, K/H must also be constant, meaning that K and
H grow at the same rate. Similarly, the wage rate per efficiency unit uH is also
constant:

w = A0(1 − α)
(
αK̃ρp + (1 − α)uρp

) 1
ρp

−1
uρp−1. (5.66)

Since both H and K grow at the same rate γH = γK , Y also grows at the same rate
γ Y = γH = γK . Since exogenous government consumption Gt is also assumed to
grow at the rate of output γG = γ Y , we derive from the resource constraint that all
aggregate variables must grow at the same rate (after dividing (5.62) by Ht ):

Ỹt ≡ Yt

Ht

= (1 + γH )K̃t+1 − (1 − δ)K̃t + C̃t + G̃t ,

or, in steady state,

Ỹ = (γ + δ)K̃ + C̃ + G̃. (5.67)

In sum, the steady state is described by the following nine equations in the nine
endogenous variables K̃, Ỹ , u, v, C̃, γ , r , w, and τL55:

(1 + γ )σ

β
= 1 + (1 − τK)r − δ, (5.68a)

γ = Dvς , (5.68b)

(1 + γ )σ−1

β
= 1 + uςDvς−1, (5.68c)

(1 − τL)w = ι
C̃

1 − u − v
, (5.68d)

r = A0α
(
αK̃ρp + (1 − α)uρp

) 1
ρp

−1
K̃ρp−1, (5.68e)

w = A0(1 − α)
(
αK̃ρp + (1 − α)uρp

) 1
ρp

−1
uρp−1, (5.68f)

Ỹ = (γ + δ)K̃ + C̃ + G̃, (5.68g)

Ỹ = A0

(
αK̃ρp + (1 − α)uρp

) 1
ρp

, (5.68h)

G̃ + T̃ r = τLwu + τKrK. (5.68i)

55The Lagrange multipliers λt and μt are transformed into stationary variables by the division by
H−σ
t , λ̃t = λt /H

−σ
t and μ̃t = μt /H

−σ
t .
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5.6.2.7 Calibration
We follow Lucas (1990) in selecting most parameters. For the production parame-
ters, we set ρp = −2/3 (implying a substitution elasticity σp = 0.6) and α = 0.361.
The steady-state growth rate is set equal to γ = 1.5%, and the elasticity of human
capital growth with respect to the time spent learning is set equal to ς = 0.8. Annual
depreciation amounts to δ = 8.0%. The productivity parameter A0 is normalized to
one.

For the preference parameters, we choose β = 0.96, and thus, the annual
discount rate is equal to 4%. The intertemporal elasticity of substitution is set equal
to 1/σ = 1/2. We also assume that the working time amounts to u = 30%. Finally,
we set the government share equal to G/Y = 19%, and the two income tax rates
are set as τK = 41% and τL = 28% as above.

The remaining parameters are calibrated using the equilibrium conditions of the
model in steady state. Equation (5.68a) implies the steady-state value of the real
interest rate r , which allows us to solve (5.68e) for K̃ . The wage per efficiency unit
w is implied by (5.68f), while production Ỹ is given by (5.68i). From the resource
constraint (5.68g), we obtain C̃. Next, we have to solve (5.68b) and (5.68c) to
compute v = 0.0628 and D = 0.137. From (5.68d), we compute the preference
parameter ι = 5.327.56

For our calibration, government transfers are equal to 13.1% of GDP, with T̃ r =
0.0435, G̃ = 0.0631, and Ỹ = 0.322 in the benchmark of our economy.

5.6.2.8 Growth Effects
We consider the effect of a change in the capital income tax rate τK on the
economic growth rate γ . For this purpose, we follow Lucas (1990) and assume that
government expenditures relative to human capital are constant across the different
tax policy scenarios, G̃ = 0.0631 and t̃ r = 0.0435.57 In addition, τL adjusts such
that the government budget is balanced.

The effects of a change in the capital income tax rate τK on the economic growth
rate γ are illustrated in Fig. 5.16. For a reduction in the capital income tax rate τK

from 41% to 0%, the economic growth rate falls by 4.6%, from 1.50% to 1.43%.
What explains this decline in economic growth? To answer this question,

consider Fig. 5.17, which presents the endogenous variables labor income tax rate
τL, working hours u, learning v, capital K̃ , output Ỹ , and consumption C̃ as
functions of the capital income tax rate τK . To finance government expenditures

56The calibration and the computation of the steady states are implemented in the Gauss program
Ch5_lucas.g.
57Grüner and Heer (2000) note that this assumption is not innocuous and favors a policy that
does not tax capital. As capital income taxes decrease, labor income taxes must increase, and
consequently, human capital declines relative to physical capital and output. Therefore, if Gt is
held constant relative to Ht , government expenditures decline relative to GDP, and we compare
economies with different sizes of the government sector. In particular, Grüner and Heer (2000)
derive that the welfare-maximizing flat rate of capital τK increases from 9% to 32% if G/Y is held
constant instead. Their result explicitly accounts for transitional dynamics of tax policies where a
once-and-for-all change in τKt is announced in period t = 0 and the tax rate τKt = τK is held
constant during the transition and in steady state.
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Fig. 5.16 Growth rate effects of capital income taxation τK
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Fig. 5.17 Steady-state effects of capital income taxation τK
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G̃+T̃ r , the government has to increase labor income taxes from 28.0% to 38.4%. As
a consequence, the opportunity costs of leisure decline, and the household increases
leisure, 1 − u − v. Therefore, the household reduces both working hours u and
learning time v. The opportunity costs of reduced learning time are the forgone
wage income in the future due to the lower human capital ht+1. As a consequence,
the economic growth rate that is determined by v declines.

In addition, we observe that working hours are hump-shaped and decline again
for values of τK above 50%. At high levels of the capital income taxes, the decline
in savings and, hence, the marginal product of labor and wages is so strong that
is offsets the effects of lower labor income tax rates. Net wages decline beyond a
capital income tax rate of 50% and, consequently, workers reduce their labor supply.
Eventually, the government has to increase labor income taxes at capital income
taxes in excess of 70% in order to finance government expenditures. Therefore,
growth declines again for high values of the capital income tax rate and the growth
rate is a hump-shaped function of the capital income tax rate τK , too.

Notice that our steady-state analysis does not allow for a welfare analysis of
capital income taxes. In steady state, consumption Ct grows at different rates
for the particular tax policies {τK, τL}, meaning that we cannot simply compare
instantaneous utilities. To make the welfare comparison meaningful, one has to
compare the entire time paths of consumption and leisure and, hence, the utility,
associated with different tax policies. In this vein, Grüner and Heer (2000) consider
the benchmark case of the model as the initial state prior to period t = 0 and
compare different tax policies that announce a once-and-for-all change in the capital
income tax rate τKt = τK starting in period t = 0.58 They compare the discounted
lifetime utility associated with these different paths and find that the optimal capital
income tax rate is equal to τK = 9%.

D’Erasmo, Mendoza, and Zhang (2016) also consider endogenous utilization
of capital in their model. In this case, it is not optimal to fully tax the inelastic
source (the initial capital stock) in the presence of endogenous utilization. The
distortion in the utilization rate makes capital income taxes more welfare-reducing.
Limited depreciation allowances (e.g., for residential capital) actually increase the
distortionary effects of capital income taxation, and it is optimal to further decrease
capital income taxes.

5.7 The Real Business Cycle Model and Stochastic Taxes

In the following, we introduce a stochastic capital and labor income tax into our
RBC models from Sect. 4.4. We will find that stochastic taxes significantly help to
improve the modeling of empirical business cycle effects, e.g., the low correlation of
wages and employment, which was one of the main puzzles for early RBC studies.

58One reason to restrict the analysis to constant capital income tax rates τKt is the time-consistency
problem associated with capital income taxation. See also Footnote 33 in this chapter.
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5.7.1 Literature

Various articles report that stochastic taxes help to improve the business-cycle
properties of RBC models with respect to both the second moments of the time
series and the dynamic effects of fiscal policy. In this vein, McGrattan (1994) shows
that stochastic taxes help to explain the volatility of output, investment, and hours
of work.

Burnside, Eichenbaum, and Fisher (2004) find that the simple stochastic neo-
classical model with stochastic government consumption and taxes can qualitatively
account for the empirical effects of fiscal policy shocks. To replicate the quantitative
properties, they suggest introducing habit formation and capital adjustment costs.59

In a more recent contribution, Gomme, Ravikumar, and Rupert (2011) show that
the standard RBC model produces a volatility of the return to capital relative to
output that is too low and only 50% of the values observed empirically. One of the
most promising ingredients of the RBC model to align its second moments of the
return to capital data with the asset returns computed from the S&P 500 index is the
consideration of stochastic taxes on capital and labor income. They show that the
model with a joint stochastic process for total factor productivity, the capital income
tax, and the labor income tax can explain nearly 80% of the volatility of the return
to capital.

With the emergence of news shock in the more recent literature on business
cycle models, shocks affecting future productivity, monetary policy or exogenous
stochastic technological progress have become more important. In this regard,
Mertens and Ravn (2011) also consider the anticipated effects of tax policy shocks
and show that tax cuts can provide stimulus to the economy prior to the tax policy
implementation.

5.7.2 TheModel

In the following, we extend the RBC model with stochastic government in Sect. 4.4
to include stochastic taxes.

5.7.2.1 Households
We study the behavior of a representative household. For this reason, we assume
that households are identical and of measure one. Households are infinitely lived
and maximize expected value of intertemporal utility

E0

∞∑

t=0

βtu(Ct , 1 − Lt ), 0 < β < 1, (5.69)

59Recall that we presented a New Keynesian model that specifies habits and capital adjustment
costs in Sect. 4.5.2.
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where instantaneous utility u(., .) is discounted by the factor β and described by a
function of effective consumption Ct and leisure 1 − Lt according to:

u(Ct , 1 − Lt) =
(
Cι
t (1 − Lt )

1−ι
)1−σ

1 − σ
. (5.70)

Effective consumption is presented by the CES aggregator (4.21) of private con-
sumption C

p
t and government consumption Gt :

Ct =
[
φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t

] 1
1−1/ρc

.

We will also consider the special case with φ = 1 in which government consumption
does not affect utility, meaning that Ct = C

p
t .

The household owns the capital stock, which evolves according to

Kt+1 = (1 − δ)Kt + It . (5.71)

Capital depreciates at rate δ. The household receives income from labor wtLt and
capital rtKt , which are taxed at the rates τLt and τKt , respectively, and lump-sum
transfers trt . Depreciation δK is tax-deductible. The household spends its income on
private consumption C

p
t and investment It . The budget constraint of the individual

is presented by

C
p
t + It = (1 − τLt )wtLt + (1 − τKt )rtKt + τKt δKt + trt . (5.72)

The household maximizes intertemporal utility (5.69) subject to (5.72), resulting in
the following first-order conditions:

λt = ιφC
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ) (Ξt )
1

1−1/ρc
−1 (

C
p
t

)− 1
ρc ,

(5.73a)

λt (1 − τLt )wt = (1 − ι)C
ι(1−σ)
t (1 − Lt )

(1−ι)(1−σ)−1, (5.73b)

λt = βEt

{
λt+1

[
1 + (1 − τKt+1) (rt+1 − δ)

]}
, (5.73c)

with Ξt as defined in (4.25):

Ξt ≡ φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t .

5.7.2.2 Production
Firms are owned by the households and maximize profits with respect to their labor
and capital demand. Production Yt is characterized by constant returns to scale in
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labor Lt and capital Kt :

Yt = ZtK
α
t L

1−α
t . (5.74)

Production is also subject to a technology shock Zt that is governed by the following
AR(1) process:

lnZt = ρZ lnZt−1 + εZt , εZt ∼ N
(

0, σZ
)
, (5.75)

The individual firm takes Zt as exogenous.
In a factor market equilibrium, factors are compensated by their marginal

products:

wt = (1 − α)ZtK
α
t L

−α
t , (5.76a)

rt = αZtK
α−1
t L1−α

t . (5.76b)

5.7.2.3 Government
The government purchases an amount Gt of the final good in each period t . Gt

follows a first-order autoregressive process:

lnGt = (1 − ρG) lnG + ρGGt−1 + εGt , εGt ∼ N(0, σG), (5.77)

where G denotes steady-state government consumption.
The labor and capital income taxes also follow stochastic processes. We follow

Gomme, Ravikumar, and Rupert (2011) and assume that the capital income tax rate
follows an AR(1) process60:

ln τKt = (1 − ρK) ln τK + ρK ln τKt−1 + εKt , εKt ∼ N(0, σK), (5.78)

while the labor income tax rate can be described by an AR(2) process:

ln τLt = (1−ρL1 −ρL2) ln τL+ρL1 ln τLt−1 +ρL2 ln τLt−2 + εLt , εLt ∼ N(0, σL).

(5.79)

Government expenditures are financed with taxes on labor and capital income.
The residual tax revenues that are not spent on government consumption are
transferred lump-sum to the households in the amount T rt such that the government
budget is balanced in each period t:

T rt = τLt wtLt + τKt (rt − δ)Kt − Gt . (5.80)

60As one of the first articles in this literature, McGrattan (1994) assumed a VAR process of order
2 in the variables Zt , Gt , τKt , and τLt . Burnside, Eichenbaum, and Fisher (2004) even use lags of
order 50 and 16 for government consumption and the two tax rates, respectively.
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5.7.2.4 Competitive Equilibrium
In a competitive equilibrium, (1) households maximize their intertemporal utility,
(2) firms maximize profits, (3) the government balances its budget, (4) the sum of
individual transfers equals aggregate transfers, and (5) the goods market clears:

Yt = C
p
t + Gt + It . (5.81)

The last equation can be derived by inserting (5.80) into the individual budget
constraint (5.72) and noticing that production is subject to constant returns to scale
such that Yt = wtLt + rtKt .

To summarize, the equilibrium of the economy can be characterized by the
following eight equations in the eight variables Yt ,C

p
t ,Ct ,It , Lt , wt ,rt ,λt :

λt = ιφC
ι(1−σ)−1
t (1 − Lt )

(1−ι)(1−σ) (Ξt )
1

1−1/ρc
−1 (

C
p
t

)− 1
ρc ,

(5.82a)

λt (1 − τLt )wt = (1 − ι)C
ι(1−σ)
t (1 − Lt )

(1−ι)(1−σ)−1, (5.82b)

λt = βEt

{
λt+1

[
1 + (1 − τKt+1) (rt+1 − δ)

]}
, (5.82c)

Ct =
[
φ
(
C
p
t

)1−1/ρc + (1 − φ)G
1−1/ρc
t

] 1
1−1/ρc

, (5.82d)

Yt = C
p
t + It + Gt , (5.82e)

Kt+1 = (1 − δ)Kt + It , (5.82f)

wt = (1 − α)ZtK
α
t L

−α
t , (5.82g)

rt = αZtK
α−1
t L1−α

t . (5.82h)

The four exogenous variables {Zt,Gt , τ
K
t , τLt } follow the AR-processes (5.75)

and (5.77)–(5.79).

5.7.2.5 Calibration
To compute the model, we need to calibrate the parameters α, δ, β, ι, φ, σ , ρc, ρZ ,
σZ, ρG, σG, τK , ρK , σK , τL, ρL1, ρL2, and σL. The parameters α, δ, β, σ , ρZ, σZ ,
ρG, and σG are taken from Table 4.3. The preference parameters for the composite
consumption good are set to φ = 3/4 and ρc = 0.5. τK = 32% and τL = 28% are
chosen as the values of the capital and labor income tax rates for 2008.iv reported in
Gomme, Ravikumar, and Rupert (2011). From these authors, we also take the values
ρK = 0.9725, ρL1 = 0.7841, and ρL2 = 0.2047. Notice that both autoregressive
processes for the tax rates are highly persistent.
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ι is calibrated such that L = 0.3 in steady state. For this reason, notice that in
steady state, Zt = Zt+1 = Z = 1.0 and

r = 1/β − 1

1 − τK
+ δ = 3.99%.

From (5.76b), we can compute the steady-state capital intensity K/L:

K

L
=
(α
r

) 1
1−α = 31.15,

which implies K = K
L
L = 9.345 for L = 0.30. Therefore, production amounts to

Y = ZKαL1−α = 1.03. Government consumption is equal to 20% of production,
or G = 0.207. Steady-state investment follows from (5.71) for Kt+1 = Kt = K

such that I = δK = 0.234. From the goods market equilibrium (5.81), we obtain
Cp = Y−G−I = 0.594. Given the values of ρc and φ, we can compute C = 0.405
with the help of (4.21). The equilibrium wage follows with the help of (5.76a),
w = 2.21. Dividing (5.73b) by (5.73a), we find that

(1 − τL)w = 1 − ι

ι

C

1 − L
φΞ

1
1−1/ρc

−1 (
Cp
)− 1

ρc ,

which we can solve for ι = 0.511. The solution is implemented in the
GAUSS program Ch5_RBC_stoch_tax.g, which computes the solution in the
form of policy functions for the next-period capital stock K ′(K,Z,G, τK, τL),
consumption Cp(K,Z,G, τK, τL), labor supply L(K,Z,G, τK, τL), and
investment I (K,Z,G, τK , τL) as functions of the state variables K , Z, G, τK ,
and τL.

Autoregressions of the HP-filtered components of the (logarithmic) two tax rates
τK and τL, of order 1 and 2, respectively, results in standard deviations of the
residual equal to σK = 0.027 and σL = 0.028.

5.7.3 Results

5.7.3.1 Impulse Responses
The impulse responses for the technology shock and the government consumption
shock are identical to those in the case with deterministic taxes, as presented
in Figs. 4.12 and 4.13, respectively. Therefore, the model is able to replicate
the empirical evidence from VAR studies that (1) a positive technology shock
increases output, investment, consumption, wages, and the interest rate, and that (2)
a positive shock to government consumption increases output, private consumption,
employment, and interest rates, while it crowds out investment.

The response of the equilibrium variables to a one-standard-deviation shock
(2.7%) to the capital income tax rate τKt (increasing it from 32.00% to 32.86%)
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Fig. 5.18 Impulse responses to a capital income tax shock

is presented in Fig. 5.18. Higher capital income taxes reduce investment (see the
upper-right panel in Fig. 5.18), and thus, income is shifted from savings into
consumption. The total effect on demand is negative, and output declines. The
household also reduces its labor supply because its incentives to generate income
and save it for future periods is reduced.61 Since the effect of reduced labor supply
dominates the effect of a smaller capital stock, the marginal product of capital
(labor) decreases (increases), and therefore, the interest rate (wage) falls (rises).

Figure 5.19 presents the impulse responses of equilibrium variables to a one-
standard-deviation shock (2.8%) to the labor income tax rate τLt , increasing it from
28.00% to 28.78%. Since the opportunity costs of leisure are decreased, households
work less, and hours decline by 0.7% (the black line in the lower-left panel in
Fig. 5.19). As a consequence, both output and income fall, and the household has to
reduce both consumption and savings. Therefore, investments also decline. As the
quantitative effect of higher labor income taxes on labor is more pronounced than
that on capital, the marginal product of labor (equal to the wage w) rises, while the
real interest rate r declines.

In summary, the impulse responses of the model variables are in accordance
with economic intuition from the AS-AD framework. Labor income taxes primarily
reduce the labor supply, while capital income taxes reduce investment. In both cases,
output, investment and employment all decline. Private consumption increases in
the case of higher capital taxation, while it declines in the case of higher labor

61Recall that one basic mechanism in the standard RBC model is the intertemporal substitution of
labor. If wages rise, the household increases labor supply in the present period. If the real interest
rate increases, the household shifts its working hours from future periods into the present period
because the discounted income in future periods from a marginal increase in its labor supply is
reduced.
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Fig. 5.19 Impulse responses to a labor income tax shock

taxation.62 In both cases, we also find that the effect on labor supply relative to that
on the capital stock dominates and wages rise, while the real interest rate decreases.

5.7.3.2 Explanation of SecondMoments
Table 5.5 presents the second moments from the simulation of the model with
stochastic taxes. In comparison with the case of deterministic taxes presented in
Table 4.4, output, investment and consumption are more volatile. This observation
is not surprising because both stochastic taxes introduce more volatility in these
variables. In addition, investment is also more volatile relative to output, which is in
better accordance with empirical observations. Therefore, our results confirm those
found by McGrattan (1994).

Given the impulse responses of labor to shocks to the tax rates, it is not surprising
that both tax rates τK and τL are negatively correlated with labor supply L,
exhibiting correlation coefficients equal to −0.15 and −0.63, respectively, while
they are positively correlated with the wage rate (not presented). As a consequence,
the positive correlation of wages with employment falls to 0.02 (from 0.55 in the
case without stochastic taxes) and is in much better accordance with empirical
evidence. As presented in Table 2.1, the correlation of wages with output and
employment amounted to −0.27 and −0.26 in the US economy during the period
1953–2014.63 In sum, the introduction of stochastic taxes helps to improve both
the volatility and correlation behavior of the model variables relative to empirical
observations.

62The reader is invited to determine how the response of consumption to higher capital taxes
depends on the elasticity of substitution between private and public consumption.
63In the RBC literature, many studies have analyzed and attempted to replicate the fact that wages
and labor productivity are uncorrelated or even negatively correlated with working hours. One of
the early studies is by Burnside, Eichenbaum, and Rebelo (1993), who introduces labor hoarding
into the standard RBC model.
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Table 5.5 Second moments
for the RBC model with
stochastic taxes

Variable sx sx/sY rxY rxL rxG

Output Y 1.30 1.00 1.00 0.78 0.22

Private consumption Cp 0.58 0.45 0.84 0.85 0.27

Investment I 4.50 3.46 0.95 0.61 −0.05

Hours L 1.00 0.77 0.78 1.00 0.45

Real wage w 0.81 0.62 0.63 0.02 −0.20

Real interest rate r 1.35 1.04 0.96 0.79 0.21

Public consumption G 1.23 0.94 0.22 0.45 1.00

Capital tax τK 3.38 2.60 −0.06 −0.15 0.01

Labor tax τL 3.06 2.35 −0.35 −0.63 0.00

Notes: sx : = Standard deviation of the HP-filtered simulated
time series x, sx/sY : = standard deviation of the variable
x relative to the standard deviation of output Y , rxY : =
Cross-correlation of the variable x with output Y , rxL: = Cross-
correlation of the variable x with labor L, rxG: = Cross-
correlation of the variable x with government consumption G

Appendix 5.1: Derivation of the Chamley-Judd Result

The optimality conditions for the derivation of (5.22) with respect to τKt and τLt
are given by (after the replacement of the factor prices r and w by their marginal
products FK and FL, respectively):

ψtKt − μ2t−1uCt = 0, (5.83)

and

ψtLt − μ1tuCt = 0. (5.84)

The optimality condition with respect to Kt is represented by:

ψt

[
τKt
(
FKt + KtFKtKt

)+ τLt FLtKtLt

]
+ θt

[
FKt + 1 − δ

]− 1

β
θt−1

+ μ1tuCt

[
1 − τLt

]
FLtKt + μ2t−1uCt

[
1 − τKt

]
FKtKt = 0.
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Inserting Eqs. (5.83) and (5.84) into the above equation and noticing that for a
constant-returns to scale production function, FKKK + FLKL = 0, holds,64 we
derive

ψtτ
K
t FKt + θt

[
FKt + 1 − δ

]− 1

β
θt−1 = 0.

In steady state, all variables are constant: Kt = K , Ct = C, Lt = L, θt = θ , and
ψt = ψ:

ψτKFK + θ [FK + 1 − δ] − 1

β
θ = 0. (5.85)

In addition, the Euler equation of the household

β = 1

1 − δ + (1 − τK
)
FK

can be substituted into (5.85), yielding:

[ψ + θ ] τKFK = 0

This equation is only fulfilled if τK = 0.

Appendix 5.2: Data Sources

In addition to the macroeconomic data presented in Appendices 2.4 and 4.6, we
introduce the following variables in our empirical analysis:

• Tax Revenue The data for Fig. 5.1 are retrieved from OECD Revenue Statistics
1965–2015: OECD (2018), Tax revenue (indicator). doi: 10.1787/d98b8cf5-en
(Accessed on 26 March 2018).
https://data.oecd.org/tax/tax-revenue.htm.
The data for Table 5.1 are retrieved from OECD Revenue Statistics 1965–
2016 (2017). and OECD (2018), Tax on corporate profits (indicator). doi:
10.1787/d30cc412-en (Accessed on 26 March 2018).

64FKKK + FLKL = 0 follows from Euler’s theorem and the derivation of

F(Kt , Lt ) = FKt
(Kt , Lt )Kt + FLt

(Kt , Lt )Lt

with respect to Kt .

https://data.oecd.org/tax/tax-revenue.htm
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The shares of Italian taxes on goods and services in GDP and total revenues are
retrieved from the OECD: OECD (2018), Tax on goods and services (indicator).
doi: 10.1787/40b85101-en (Accessed on 26 March 2018).
https://data.oecd.org/tax/tax-on-goods-and-services.htm#indicator-chart.

• Income Tax Rates The US income tax schedule presented in Fig. 5.3 is generated
with data from the Tax Foundation (Accessed on 26 March 2018).
http://taxfoundation.org/article/2016-tax-brackets.
For Germany, the respective data (as presented in Figs. 5.4 and 5.5) are retrieved
from the web page of the Bundesministerium für Finanzen (Ministry of Finance)
(Accessed on 26 March 2018).
https://www.bmf-steuerrechner.de/ekst/.

Problems

5.1. Recompute the model of Sect. 5.3.2. Instead of (5.5), use the following additive
utility function:

u(Ct , Lt ) = C1−σ
t

1 − σ
− ν0

L
1+ 1

ν1
t

1 + 1
ν1

,

where ν1 denotes the Frisch elasticity of labor supply. Set the Frisch labor supply
elasticity equal to 0.2, ν1 = 0.2. All other parameters are set as in Sect. 5.3.2.

1. Calibrate ν0 such that the steady-state labor supply is equal to L = 0.3.
2. Compute the welfare effects of an increase in τL from 23% to 24% in partial

equilibrium and in general equilibrium (for both the steady state and the
transition). Are the consumption equivalent changes close to one another and
insensitive to the Frisch labor supply elasticity?

5.2. This problem follows Prescott (2004). Assume that instantaneous utility is
logarithmic. Lifetime utility is given by

U =
∞∑

t=0

βt [lnCt + ι ln(1 − Lt)] .

The capital stock accumulates according to

Kt+1 = (1 − δ)Kt + It ,

https://data.oecd.org/tax/tax-on-goods-and-services.htm#indicator-chart
http://taxfoundation.org/article/2016-tax-brackets
https://www.bmf-steuerrechner.de/ekst/
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and production is Cobb-Douglas:

Yt = AtK
α
t L

1−α
t .

In goods market equilibrium,

Yt = Ct + Gt + It .

The household’s budget constraint is represented by

(1 + τC)Ct + (1 + τ I )It = (1 − τL)wtLt + (1 − τK)(rt − δ)Kt + δKt + T rt ,

where τC , τ I , and τK denote the tax rates on consumption, investment, and capital
income, respectively. Capital depreciation is tax-exempt. The government spends
tax revenues, τCCt + τ I It + τLwtLt + τK(rt − δ)Kt , on government consumption
Gt and transfers T rt . Assume that α = 0.36, δ = 0.10, and β = 0.96.

1. Derive the first-order conditions of the household and the firm. Notice that the
wedge on labor income also depends on the consumption tax rate τC .

2. Calibrate the parameter ι such that the steady-state labor supply is equal to L =
0.3 for τ I = 0, τK = 0.42, τL = 0.23, and τC = 0.26. τC is set such that
τC+τL

1+τL
= 0.40 as given in Table 2 of Prescott (2004) for the US economy during

the periods 1970–1974 and 1993–1996. Compare the values of the endogenous
variables C, L, K , and Y with those in the the case in which τL and τC increase
to the Italian values of the tax rates, τC = 0.485 and τL = 0.429.65 How large is
the change in the steady-state labor supply? Does this account for the observation
that Americans worked 56% more hours than Italians during this period?

5.3. Show that the Chamley-Judd result also holds for the wealth tax. Use the
budget constraint (5.25) to derive the first-order conditions of the household
optimization problem:

λt (1 − τLt )wt = − ∂u

∂Lt

= −uLt , (5.86a)

λt = ∂u

∂Ct

= uCt , (5.86b)

λt = βλt+1

(
1 + rt+1 − δ − τVt+1

)
. (5.86c)

65According to Table 2 in Prescott (2004), the tax wedge τC+τL

1+τL
amounted to 64% in Italy during

the period 1993–1996.
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Show that these conditions are equivalent to those presented in (5.19) if

τKt rt = τVt ,

implying that the tax revenues are the same in both cases:

τKrK = τV K.

5.4. Consider the Laffer curve in Sect. 5.5.

1. Show that the equilibrium conditions (5.38) hold.
2. Recompute the Laffer curves in Fig. 5.14.
3. Compute the sensitivity of the results with respect to a Frisch labor supply

elasticity ν1 = 0.3.
4. Recompute Fig. 5.15 for the case in which depreciation is not tax-deductible.

5.5. Show that a replacement of the income tax τ with a consumption tax τC

increases the economic growth rate in the decentralized economy of the endogenous
growth model with the public input good presented in Sect. 5.6.1.

5.6. Productive Government Expenditures as a Stock Variable In contrast
to (5.39), assume that production uses public capital KG

t as an input:

Yt = F(Kt , Lt ,Gt ) = AL1−α
t Kα

t

(
KG
t

)1−α

. (5.87)

Public capital accumulates according to:

KG
t+1 = (1 − δ)KG

t + IGt .

Public investment IGt is financed by a production tax:

IGt = τYt .

Compute (1) the maximum growth rate in the decentralized economy and (2) the
Pareto-efficient growth rate.

5.7. Congestion Effects and Productive Government Expenditures (follows
Turnovsky 1996) To introduce congestion effects, we distinguish between the
capital that is used in the production of the individual firm k and the aggregate
capital K . The ratio k/K measures the size of the individual firm relative to the
economy. Accordingly, the public expenditures G imply the following service g to
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the individual firm:

gt = Gt

(
kt

Kt

)1−σG

,

where σG ∈ [0, 1] denotes the degree of congestion.
Assume that the production of the individual firm is represented by

yt = Al1−α
t kαt g

1−α
t

Derive the equilibrium growth rate in the decentralized economy in which Kt = kt ,
lt = L, and gt = Gt . In addition, assume that the individual firm does not consider
the impact of its investment decision on Gt and Kt .

5.8. Analyze the effects of capital income taxation on the growth rate in the Lucas
supply-side model if depreciation can be deducted from capital income taxation.
Derive the growth-rate effects of capital income taxation and compare it to the case
presented in Sect. 5.6.2.

5.9. Introduce adjustment costs of capital in the RBC model with stochastic taxes
presented in Sect. 5.7. Use the specification of the adjustment cost function (4.54)
with the parameterization ζ = 3.0. How do adjustment costs affect the results
presented in Table 5.5?
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Part III

Social Security, Demographics, and Debt



6Pensions

6.1 Introduction

In this chapter, we first review empirical facts of public pension systems in OECD
countries. Subsequently, we introduce a public pension system in the standard
two-period overlapping generations (OLG) model of Chap. 2. We consider two
different social security systems, pay-as-you-go (PAYG) versus fully funded. While
a fully funded pension system does not have any effect on aggregate savings if
capital markets are perfect, aggregate savings fall significantly in a PAYG system.
Since public pensions are likely to distort household labor supply decisions, we
endogenize labor supply below. In addition, we extend the two-period model to a
more realistic 70-period model in which the retirement period is smaller than the
working period. Next, we derive the optimal amount of pensions in a PAYG system
and study how the demographic transition and aging of the population affect the
sustainability of social security. We also discuss the findings of the literature on
quantitative pension studies in detail. Finally, we introduce the concept of fiscal
space and point out its sensitivity with respect to the aging that takes place in many
industrialized countries at present.

6.2 Empirical Regularities

The modern state public pension system began in Germany. In 1889, the national
parliament (the Reichstag) enacted Otto von Bismarck’s social legislation in the
form of the Old Age and Disability Insurance Bill. The pension system was devised
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as a PAYG system in which the contributions of the young are used to finance the
pension payments to the old.1

At the time of its introduction, workers in Germany could retire at age 70.2

Average life expectancy at this time amounted to 45 years. However, we have to
take care in interpreting this number and using it as a parameter for evaluating the
burden on the pension system because infant mortality was high at the end of the
nineteenth century. Therefore, the life expectancy of a worker entering insurance,
which amounted to 70 years, is more useful for understanding the financing needs
of the public pension system. The contribution rate to the public pension system in
Germany in 1889 amounted to a modest 1.7% of the gross wage income.

A critical number for the solvency and viability of a public pension system is
the old-age dependency ratio (sometimes also called the aged dependency ratio),
which is defined as the ratio of the number of people aged 65 and over to
the number of working-age individuals aged 25–64.3 In other words, the ratio
expresses the number of young people (contributors) who have to finance the
pension payments to the number of elderly people (pensioners).4 The evolution of
the old-age dependency ratio over time and its forecast for selected countries are
presented in Fig. 6.1.5 While the old-age dependency ratio approximately doubles
for the US between 2000 and 2050, the number of retirees to workers increases even
more significantly for Japan, Italy, Germany, and China. For instance, in the case of
Japan, the ratio amounted to 30% in 2000 and 50% in 2015 and is forecasted to
increase to 86% by 2050.

When inspecting Fig. 6.1, one needs to bear in mind that the accuracy of the
dependency ratio forecasts declines with the forecast horizon. In Fig. 6.1, we used
the numbers of the old-age dependency ratio (OADR) that are associated with the
medium-fertility scenario of the UN projection. The United Nations uses Bayesian
hierarchical models for their official population projections, which are described
in greater detail in Alkema, Raftery, Gerland, Clark, Pelletier, Buettner, and
Heilig (2011), Raftery, Li, Sevčíková, Gerland, and Heilig (2012), Raftery, Chunn,
Gerland, and Sevčíková (2013), Gerland, Raftery, Sevčíková, Li, Gu, Spoorenberg,
Alkema, Fosdick, Chunn, Lalic, Bay, Buettner, Heilig, and Wilmoth (2014) and UN

1In the United Kingdom, the modern pension system was introduced in 1908 with the help of the
Old Age Pensions Act. The United States initially only provided pensions for federal employees
under the Civil Service Retirement System in 1920.
2In 1916, the retirement age was reduced to 65 years.
3Sometimes, the working age is defined over a larger age range, e.g., 15–64, 20–64, or 20–69 years.
Accordingly, take care when comparing old-age dependency ratios from different sources.
4In this book, we will sometimes distinguish the two old-age dependency ratios OADR2 and
OADR3, which refer to the retirees aged 65 (and above) and those aged 70 (and above). While
we primarily use OADR2 as our reference value, it may sometimes be important to consider
the evolution of OADR3, e.g., when we study pension policies that extend the retirement age
to 70 years.
5The data are taken from the UN population division and refer to the medium-fertility variant. See
Appendix 6.3 for a more detailed description of the data.
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Fig. 6.1 Old-age dependency ratios in 2000, 2015, and 2050
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Fig. 6.2 Frequency distribution of the OADR2 in the US in 2050

(2015). In Fig. 6.2, we present the frequency distribution of the old-age dependency
ratio (OADR2) for the United States in the year 2050 that results from this Bayesian
model.6 Notice that the distribution of the old-age dependency ratio has a standard
deviation of 2.5 percentage points and is not shaped like the normal distribution.7 A
90% confidence interval of the OADR2 for the year 2050 lies in the range 36.3%–

6Thanks to Hana Ševčíková for providing the data on dependency ratio forecasts in the United
States and the EU14 countries.
7For the US economy in the year 2050, standard empirical distribution tests such as the Lilliefors,
Cramer-von Mises, Anderson-Darling, and Watson tests reject the normality assumption of the
OADR2 distribution at the 1% or 5% level of significance. This observation does not hold uniquely
for all countries in our data sample (the US and 14 EU-countries).
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Fig. 6.3 Pension spending, OECD, 2012, as a percentage of GDP

44.5%. By the year 2100, the standard deviation of the old-age dependency ratio in
the US increases to 7.1 percentage points.

Population aging, i.e., longer lifetimes and lower fertility rates, poses the most
serious challenge to modern public pension systems.8 Public pension expenditures
already account for a large share of GDP, averaging 7.8% for the OECD countries
in 2012 (see Fig. 6.3). Public pension payments vary considerably across OECD
countries. In 2012, while they only constituted 4.5% and 6.8% of GDP in Canada
and the US, they amounted to 13.6% in France and 15.9% in Italy. The large
share of social security expenditures in GDP reflects the high generosity of most
modern public pension systems. Figure 6.4 presents the gross replacement rate
of pensions for men in selected OECD countries, which is defined as gross
pension entitlement divided by gross pre-retirement earnings. The OECD average
replacement rate amounts to 52.9% and ranges between 22.1% in the UK and 96.9%
in the Netherlands.

When the old-age dependency ratio increases, pension expenditures will continue
to rise, ceteris paribus. There are various ways to reform the public pension system
to meet the challenges of aging societies: The government can (1) increase the
contribution rates, (2) reduce pension payments, and/or (3) increase the retirement
age. In addition, the social security system may use debt financing during the
transition when adjustment costs for the respective cohorts are largest.9

In recent decades, the public pension systems of individual countries have
predominantly responded to the demographic challenge by increasing contribution

8An excellent non-technical survey of pension designs to meet the demographic challenge is
provided by Barr and Diamond (2008).
9There are many other public policies that may help to alleviate the pressure on public pension
systems during the demographic transition that we do not study in here. Among others, the gov-
ernment could attempt to increase the labor force participation rate, encourage higher immigration
(of young individuals), or to use family policies to increase the fertility rate.
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Fig. 6.4 Gross pension replacement rates, men, percentage of pre-retirement earnings, OECD,
2016

rates.10 For example, the contribution rate to the German public pension system
increased from 11.0% in 1955 to 17.0% in 1970 and 18.9% in 2013.11 If pension
benefit levels remain at their present levels, contribution rates are estimated to
exceed 40% in Germany by 2030.12 Similar developments are expected to take place
in many other industrialized countries, as presented in Table 6.1. For example, the
dynamics of pension payments relative to GDP in France are comparable to those
in Germany, while in Italy, the contribution rate will have to increase to levels of
60% and above to finance pensions in 2030 (assuming that the levels of pension
entitlements are not reduced and financed by higher contributions rather than debt).
For the US economy, De Nardi, Imrohoroğlu, and Sargent (1999) find that, if the
government were to use a tax on labor income to finance the additional fiscal burden
from the pension system, the tax rate would have to increase by 29.8 percentage
points between 2000 and 2060.13

10However, in recent years, as the baby boomers have begun to retire, many countries have also
started to reduce pension benefits, e.g., Italy in 1995 through the Dini reform.
11In Germany, the contribution was evenly split between the employer and employee in 2013. Each
side pays a contribution rate of 9.45%. In a Walrasian labor market, the legal incidence, i.e., who
pays the contribution rate, does not affect the economic incidence, i.e., who actually bears the
burden of the tax. If, however, the labor market is subject to a distortion such as a minimum gross
wage, the legal incidence does affect the economic incidence.
12Börsch-Sopan and Winter (2001) estimate that the pension payments in Germany will increase
from 10.0% of GDP in 1995 to 18.4% of GDP in 2030. To finance these higher expenditures
resulting from an aging population, the contribution rate will have to increase to 41.1% by 2030.
13The authors study a variety of pension reform proposals for the US economy in a general equi-
librium model with labor-augmenting technical progress, endogenous bequests, and endogenous
labor supply similar to the model we will study in this chapter. They consider different scenarios
for the reform of the public pension system. The number reported in the text above corresponds to
their experiment 1.
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Table 6.1 Pension payments
and contribution rates

Country 1995 (%) 2030 (%)

France
Pensionsa 12.5 19.4

Contribution ratesb 24.3 37.7

Germany
Pensionsa 10.0 18.4

Contribution ratesb 22.6 41.1

Italy
Pensionsa 16.0 23.3

Contribution ratesb 4.6 61.9

Notes: Source: Börsch-Sopan and Winter
(2001)
aPension payments relative to GDP
bIf additional pensions are exclusively
financed by higher contributions

In addition to changes affecting revenues and expenditures, national social
security systems have also adjusted to the demographic transition by reforming the
incentives of contributors. Many systems, e.g., the Italian pension system through
the 1995 Dini reform, have transformed their benefit entitlements from defined
benefits to defined contributions. In a defined benefit system, the pension payment
is usually tied to the wage income during the last working period, while in a
defined contribution system, the pension payment is related to the accumulated
pension contributions over the working life. In Germany, for example, the two
systems coexist. Public employees belong to a separate defined benefit social
security system. Their pensions depend on the number of contribution years and
the wage income in the last year. For example, if you have contributed to the
pension system for 40 years, you receive a pension that amounts to 71% of your last
gross wage income (independent of your income history). All other (non-public)
employees in Germany belong to a separate defined contribution public pension
system. For these employees, the pension depends on the accumulated sum of
all contributions (without any discounting of contributions in later years), and the
pension entitlement is computed as a (non-linear) function of the contributions.14

Of course, a defined benefit system has much stronger labor supply disincentives
than a defined contribution system, and we will quantitatively explore this issue in
this chapter.

14There are other institutional details of the German social insurance system that we will neglect
in the following, e.g., there is a social security contribution ceiling, meaning that, in 2013,
contributions were only paid on a gross annual income up to an amount of e69.600 (West
Germany) or e58.800 (East Germany). In addition, the number of contribution years enters the
formula used to compute the pensions. For further details on the German pension system, see Fehr
(1999).
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Besides the PAYG pension system outlined above, in which current expenditures
are financed by current revenues, some countries such as Switzerland and Chile
have (additional) mandatory individual accounts where the savings are invested in
financial markets and paid out in full as they come due.15 These systems are called
fully funded. The accumulated savings are usually paid out as an annuity during
retirement. The advantages of fully funded versus PAYG systems will be considered
analytically and quantitatively in the next Sect. 6.3. In particular, we will find that
the PAYG systems dramatically reduce aggregate savings (public and private), while
fully funded systems do not. In addition, the two systems are subject to two different
types of risk, financial market risk on the one hand and demographic risk on the
other hand.16 Moreover, the transition from a PAYG system, which is now the most
common in OECD countries, to a fully funded system implies a huge burden on
the current young generation, which has to finance both the pensions of the current
elderly and its own pensions.

In Sect. 6.4, we study PAYG systems and the optimal contribution rate (or,
equivalently, level of pensions). For this reason, we will consider the extension of
the standard two-period model introduced in Sect. 3.2 to a multi-period framework.
In particular, we will present the model of Auerbach and Kotlikoff (1987) with
70 overlapping generations. As a consequence, we are much better able to model
the demographic structure of the population and, thus, derive much more accurate
predictions of the efficiency and distributional effects of pension reform proposals.

6.3 Fully Funded Versus Pay-As-You-Go Public Pension
Systems

In the following, we will contrast a fully funded public pension system with a
PAYG system. For this reason, we extend the two-period OLG model of Sect. 3.2
for a government that collects lump-sum contributions dt . The government either
invests dt in the capital market or pays these contributions out to current pensioners.
Again, the young population consists of Nt households and grows at rate n, Nt+1 =
(1 + n)Nt . A special focus of our analysis will be the effects of the two systems on
savings.

15In Switzerland, for example, the fully funded pension system is part of a three-part pension
system. The other two parts are a mandatory PAYG public pension and an employer-based pension.
16From the theory of finance, we know that it is optimal to diversify risk, which implies that pension
systems should combine the two different systems as is done, for example, in the three-part public
pension system in Switzerland.
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6.3.1 OLGModel with Fully Funded Pensions

In a fully funded system, the young generation pays the contribution dt to the
government, and the government invests dt in the capital market. In old age, the
government repays the contribution plus interest, (1 + rt+1)dt , to the households.17

Accordingly, the budget constraints of the household in young age and old age are
represented by

wt = c1
t + st + dt , (6.1a)

c2
t+1 = (1 + rt+1)(dt + st ), (6.1b)

where, again, cit denotes consumption in young (i = 1) and old (i = 2) age, st
denotes savings, wt the wage rate, and rt the real interest rate in period t . Notice that
the government and the household are assumed to receive the same rate of return rt
in the capital market. Labor supply is assumed to be inelastic and is normalized to
1, meaning that the wage rate wt is also equal to the wage income of the young
household.

Household preferences are described as in Sect. 3.2 by the time-separable
lifetime utility function (3.3), which we restate for the reader’s convenience:

Ut = u(c1
t ) + βu(c2

t+1), (6.2)

where β denotes the discount factor, and the standard assumptions with respect
to the utility function apply; in particular, instantaneous utility u(.) is a concave
function.

The first-order condition, the so-called Euler equation, is identical to (3.7) in the
OLG model without public pensions:

u′(c1
t ) = β(1 + rt+1)u

′(c2
t+1). (6.3)

Substituting the household budget constraint (6.1) into the Euler equation (6.3) and
noticing that, in the capital market equilibrium, total private and public savings,
(st + dt )Nt , at the end of period t are equal to the beginning-of-period capital stock
Kt+1 we derive the following equilibrium conditions:

u′ (wt − (st + dt )) = β(1 + rt+1)u
′ ((1 + rt+1)(st + dt )) , (6.4a)

st + dt = (1 + n)kt+1. (6.4b)

The production sector of the economy is modeled as in Sect. 3.2.3. In particular,
production is characterized by constant returns to scale, and firms are competitive,

17All payments are made at the end of the period.
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meaning that the factor prices are equal to their marginal products, as presented in
Eq. (3.12).

Therefore, to compare the economy without and with a fully funded public
pension system, we need only consider (6.4) for the two cases dt = 0 and dt > 0. All
other equilibrium conditions are identical. As a consequence, the young household
chooses exactly the same intertemporal consumption profile {c1

t , c
2
t+1} in the two

cases. If s̃t denotes the household’s optimal private savings in the case without a
public pension system, it simply saves st = s̃t − dt in the case of a fully funded
system with dt > 0. As a consequence, aggregate savings (private plus public)
are identical in the two models, and therefore, (6.4b) implies that the dynamics of
the capital stock per capita kt are also identical. As a result, we find that a fully
funded social security system does not have any effect on total savings and capital
accumulation, equilibrium factor prices, or the lifetime utility of the household. In
the following, we discuss the sensitivity of this result to two assumptions, perfect
capital markets and lump-sum contributions.

6.3.1.1 Imperfect Capital Markets
To derive the previous result, we assumed that capital markets are perfect. This
assumption might not be very realistic. First, we assumed that debtors and creditors
pay or receive the same interest rate rt . Usually, this is not the case, and banks
demand a default premium from the debtors. Assume that without a public pension
system, dt = 0, the private households are creditors, st > 0. If a fully funded
pension system with dt > st is introduced, private savings might fall below zero,
and the household then becomes a debtor. If the interest rates were different for
creditors and debtors, the interest rate in (6.3) would change, and therefore, the
optimal intertemporal consumption profile {c1

t , c
2
t+1}. Things get even uglier if the

household were credit-constrained st ≥ 0, making it unable to receive a loan. If the
constraint is binding, st = 0, a higher contribution dt to the public pension system
increases aggregate savings. Of course, the lifetime utility of the household would
decrease.

6.3.1.2 Social Security Tax onWage Income and Elastic Labor
In modern pension systems, contributions are mostly levied upon the individual
(wage) income.18 To study the possible distortionary effects of a social security tax
on wage income, let us consider the case of elastic labor supply. For this reason,
assume that lifetime utility is given by the following time-separable function:

U(c1
t , c

2
t+1, lt ) = uy(c1

t , lt ) + uo(c2
t+1), (6.5)

where uy and uo denote the instantaneous utility when young and old. The young
household is working lt hours. Total endowment over time is normalized to one such
that leisure is given by 1 − lt . Social security contributions dt are levied on wage

18As one exception, the first pillar of the Swiss pension system is also financed by sources other
than wage income, e.g., by a levy on the income of the self-employed.
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income wt lt at rate τ , and thus, the budget constraints in young and old age are
given by

(1 − τ )wt lt = c1
t + st , (6.6a)

c2
t+1 = (1 + rt+1)(dt + st ), (6.6b)

dt = τwt lt . (6.6c)

Inserting (6.6b) and (6.6c) into (6.6a), we derive the intertemporal budget constraint
of the household:

wt lt = c1
t + c2

t+1

1 + rt+1
, (6.7)

which does not depend on τ . As a consequence, maximizing (6.5) with respect to the
intertemporal budget constraint (6.7) implies the Euler equation and the first-order
condition with respect to labor supply

∂uy(c1
t , lt )

∂c1
t

= β(1 + rt+1)
∂uo(c2

t+1)

∂c2
t+1

, (6.8a)

−∂uy(c1
t , lt )

∂lt
= wt, (6.8b)

that also do not depend on τ . All other equilibrium conditions, i.e., the first-order
conditions of the firms and the capital market equilibrium condition (see Sect. 3.2)
are unchanged and do not depend on τ either:

wt = ∂F (Kt , Lt )

∂Lt

= f (kt ) − ktf
′(kt ), (6.9a)

rt = ∂F (Kt , Lt )

∂Kt

= f ′(kt ), (6.9b)

(1 + n)kt+1 = st + dt = (1 − τ )wt lt − c1
t + τwt lt = wt lt − c1

t , (6.9c)

with Lt ≡ Nt lt . Since all equilibrium conditions, (6.7), (6.8), and (6.9), are
independent of τ , we have shown that a social security contribution that is levied
proportional to wage income does not affect the equilibrium allocation in a fully
funded public pension system either.

6.3.2 OLGModel with a PAYG Pension

In this section, we introduce a PAYG public pension system in the two-period OLG
model. We will study the quantitative effects of the PAYG system on capital and
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output and will find that public pensions dramatically reduce aggregate savings and
output. For example, in the case of inelastic labor supply, the capital stock falls by
64% if a contribution rate of 30% is imposed on wage income!

We will study the sensitivity of this result with respect to various modifications in
the next sections. In addition to endogenous labor, we will also consider the effects
of pension savings accounts where future pensions are related to past contributions,
and we will introduce growth, which might help to improve the return from a PAYG
system. If future generations have higher wage income due to productivity growth,
a transfer from the young to the old in the future will imply higher pensions relative
to one own’s contributions. In addition, we also derive the welfare implications of
the introduction of a PAYG system. We will find that substantial welfare losses are
associated with a public pension system irrespective of whether we assume elastic
or inelastic labor or a defined contribution pension system. Only growth helps, to
some extent, to reduce the welfare losses from a PAYG system.

6.3.2.1 TheModel
In the PAYG system, each of the Nt young households pays a contribution dt to the
social security system, while each of the Nt−1 old households receives a pension
pent from it. We assume that the budget of the social security system is balanced:

Ntdt = Nt−1pent .

If the (young) population grows at rate n, Nt = (1 + n)Nt−1, the social security
budget constraint can be expressed in stationary variables:

pent = Ntdt/Nt−1 = (1 + n)dt . (6.10)

Social security is a pure transfer scheme, and the ‘rate of return’ is related to the
population growth rate n. For constant contributions, dt−1 = dt = d , pensions are
given by pent = (1 + n)d , meaning that n = pent−dt−1

dt−1
is also the rate of return for

the individual who ‘invests’ the amount d into the PAYG system.
The budget constraints of the young and old households are given by:

wt = c1
t + st + dt , (6.11a)

c2
t+1 = (1 + rt+1)st + pent+1, (6.11b)

implying the following intertemporal budget constraint (after solving the old
household’s budget constraint for st and substituting it into the young household’s
budget constraint):

c1
t + c2

t+1

1 + rt+1
= wt − dt + pent+1

1 + rt+1
. (6.12)



256 6 Pensions

Households maximize lifetime utility (6.2) subject to (6.12). Differentiating the
Lagrange function

L = u(c1
t ) + βu(c2

t+1) + λ

[
wt − dt + pent+1

1 + rt+1
− c1

t − c2
t+1

1 + rt+1

]

with respect to c1
t and c2

t+1 results in the following first-order condition:

u′ (c1
t

)
= β(1 + rt+1)u

′ (c2
t+1

)
. (6.13)

If we substitute the intertemporal budget constraint (6.12) and the social security
budget (6.10) constraint into the Euler equation (6.13), we derive the equilibrium
condition:

u′ (wt − st − dt ) = β(1 + rt+1)u
′
(
(1 + rt+1)st + (1 + n)dt+1

)
. (6.14)

To understand how the PAYG pension system affects private savings, let us assume
that the wage and the interest rates are given (implying rt+1 = r) and that social
security contributions are changed by ddt = ddt+1 in period t and t + 1 (changes
are expressed with respect to the steady state value d so that dt = d + ddt is also
equal to dt+1 = d+ddt+1). The total differential of the above equation results in19:

∂st

∂dt
= −u′′

1 + β(1 + n) (1 + r) u′′
2

u′′
1 + β(1 + r)2u′′

2
< 0,

with u′′
1 ≡ ∂2u(c1

t )(
∂c1

t

)2 and u′′
2 ≡ ∂2u(c2

t+1)(
∂c2

t+1

)2 . From this equation, we derive that, in general,

savings are reduced for higher contributions and pensions because u′′ < 0.
Moreover, we observe in most industrialized countries that the population growth

rate n is low and smaller than the real interest rate r , n < r . Therefore, lifetime
income, as represented by the right-hand side of (6.12), reduces to the following
term (assuming constant social security contributions, dt = dt+1 = d , and dropping
time indices for convenience):

w + n − r

1 + r
d.

Therefore, lifetime income declines with higher contributions d for n < r , and
savings decrease unanimously if consumption in old age c2

t+1 is a normal good.20

19This argument is taken from Chapter 3.2 in Blanchard and Fischer (1989).
20Recall that (1 + r)st = c2

t+1 − (1 + n)d.
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Of course, in the derivation of this partial equilibrium effect, we have ignored
general equilibrium effects. The decrease in savings st reduces the capital stock kt+1
in the capital market equilibrium, meaning that wages fall and interest rates rise. The
fall in wages decreases savings further because lifetime income is reduced.21 The
effect of higher interest rates on savings, however, is ambiguous. If the substitution
effect (savings are more attractive because of higher interest rates) dominates the
income effect (discounted lifetime income decreases), savings will actually increase.
The total effect, therefore, can only be derived by considering the effect of higher
contributions d in general equilibrium. For this reason, consider the capital market
equilibrium:

(1 + n)kt+1 = s [wt(kt ), rt+1(kt+1), dt ] .

Differentiating this equation with respect to dt for a given kt , we derive for sr > 0:

dkt+1

ddt
=

∂st
∂dt

1 + n − srf ′′(kt+1)
< 0. (6.15)

Recall that, in Sect. 3.2.5, we showed that the two-period OLG model is stable if
sr > 0.22 As a consequence, the derivative is smaller than zero because ∂st

∂dt
< 0.

As you learned in Sect. 3.3.2, the market equilibrium in the OLG model can be
Pareto-inefficient if f ′(k) < n. In this case, the households accumulate excessive
capital, and a PAYG system that reduces savings and capital accumulation can
improve welfare. As we argued in Sect. 3.3.2, the condition f ′(k) < n is rarely
fulfilled in practice. In addition, we need to add a word of caution at this point. Thus
far, we have assumed that labor supply is inelastic and that contributions are lump-
sum. If labor supply is endogenous and contributions are levied on wage income,
the PAYG system distorts labor supply decisions and reduces welfare. Therefore,
with endogenous labor supply, a PAYG system is not dynamically efficient, even
for r < n. Before we demonstrate this result in an OLG model with elastic labor
supply, we first present a numerical example to develop an idea of the magnitude of
the quantitative effects.

21This effect is absent in the derivation of (6.15) where we only consider an unexpected change
of dt and dt+1 on the savings of the generation born in period t . Since the capital stock kt is
predetermined, the wage wt does not change for the present (working) generation, but only for
future generations.
22The intuition for this result given in Sect. 3.2.5 was that increasing the capital stock results in
lower interest rates r and, with sr > 0, in lower savings s, such that capital cannot grow without
bound.



258 6 Pensions

6.3.2.2 Numerical Example: PAYG Systemwith Inelastic Labor Supply
Assume utility to be logarithmic in consumption and additively separately according
to

Ut = ln c1
t + β ln c2

t+1 − ν0
l
1+ 1

ν1
t

1 + 1
ν1

. (6.16)

Labor lt = l̄ is exogenous and causes disutility ν0l
1+1/ν1
t /(1 + 1/ν1) to the

household. ν1 denotes the Frisch labor supply elasticity and measures the percentage
change in the labor supply if the net wage increases by 1%.23 In our example, we set
l̄ = 0.3 to ensure that, subsequently, we are able to compare the results for the case
of exogenous labor with those for the case of endogenous labor (where, in the initial
steady state, we will assume that the household works 30% of its time endowment
and ν0 is calibrated accordingly).

As above, the contributions to the PAYG pension system are constant, dt = d ,
meaning that the equilibrium condition of the social security system, Ntdt =
Nt−1pent , implies the intertemporal budget constraint

wt lt + n − rt+1

1 + rt+1
d = c1

t + c2
t+1

1 + rt+1
. (6.17)

Maximizing lifetime utility (6.16) subject to the above budget constraint with
respect to c1

t and c2
t+1 implies:

1

c1
t

= λt , (6.18a)

β

c2
t+1

= λt

1 + rt+1
, (6.18b)

where λt denotes the Lagrange multiplier of the intertemporal budget constraint.
The first-order conditions can be solved for c2

t+1:

c2
t+1 = βc1

t (1 + rt+1) .

Substitution of this expression into the intertemporal budget constraint results in:

c1
t = 1

1 + β

[
wt l̄ + n − rt+1

1 + rt+1
d

]
,

23See Appendix 4.2 for the derivation of the Frisch labor supply elasticity in the case of a Cobb-
Douglas utility function.
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which yields private savings

st = wt l̄ − c1
t − dt

= β

1 + β
wt l̄ − 1 + β + βrt+1 + n

(1 + β)(1 + rt+1)
d.

In capital market equilibrium, aggregate savings at the end of period t are equal to
the beginning-of-period t + 1 capital stock, st = (1 + n)kt+1, and the dynamics
of the capital stock per capita, kt = Kt/Nt , for given initial capital stock k0 are
described by the following first-order difference equation:

(1 + n)kt+1 = β

1 + β
wt l̄ − 1 + β + βrt+1 + n

(1 + β)(1 + rt+1)
d. (6.19)

We, again, assume that production is described by a Cobb-Douglas technology:

Yt = Kα
t (Nt lt )

1−α . (6.20)

Therefore, wages and the real interest rate are given by:

wt = (1 − α)Kα
t (Nt lt )

−α = (1 − α)kαt l
−α
t , (6.21a)

rt = αKα−1
t (Nt lt )

1−α = αkα−1
t l1−α

t . (6.21b)

We numerically solve the problem described by Eqs. (6.19) and (6.21). The
parameter values of α, β, and n are taken from Sect. 3.2, with α = 0.36, β = 0.40,
and n = 0.1. The steady-state labor supply is set equal to l ≡ 0.3, and the Frisch
labor supply elasticity is set equal to ν1 = 0.3.24 Pensions initially amount to 0%
of the steady-state wage. For comparative dynamic analysis, we consider pension
benefits that are equal to 30% of the (new) steady-state wage. Notice that this gross
pension replacement rate of 30% is approximately equal to the lower limit among
the OECD countries presented in Fig. 6.4 and is close to that observed for Poland or
Australia.

First, we compute the steady state for d = 0 with the help of Eq. (6.19) for
kt = kt+1 = k. The numerical problem is one of solving a non-linear equation for
which we use the Gauss program Ch6_social_security1.g. The solution
for the steady-state capital stock is given by k0 = 0.0182. Second, we compute
the steady-state kd for dt = d = 0.3wl = (1 − α)

(
kd
)α

l1−α , implying the value
kd = 0.00687. As a result, we find that the introduction of pensions equal to 30%
of the wage reduces the steady-state capital stock by almost 62%! As presented in
Table 6.2, output per capita, y = Y/N = kα , falls by 29%, from 0.109 to 0.0770.

24See also Sect. 4.4.5 for a discussion of the empirical evidence on ν1.
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Table 6.2 Efficiency and
welfare effects of PAYG

τ = 0 τ = 30%

Inelastic Inelastic Elastic CD
labor labor labor pensions

Capital stock k 0.0182 0.00687 0.00672 0.00679

Labor l 0.300 0.300 0.294 0.297

Output y 0.109 0.0770 0.0754 0.0761

Welfare Δ 0.0% −38.4% −38.5% −38.4%

Notes: Values in column τ = 0 report the numbers for the case
without PAYG pensions; values in the three columns with τ =
30% report the values for a gross replacement rate of pensions
equal to 30%; CD pensions: defined contribution pensions, Δ:
consumption equivalent change

The change in the consumption profile, denoted by {c1, c2} and {c̃1, c̃2} in the
old and the new steady state, affects lifetime utility (6.16). The associated values
of (6.16) are −4.42 and −5.10 for τ = 0% and τ = 30%, respectively.25 However,
these numbers are difficult to interpret, and thus, we use a more convenient measure,
the consumption equivalent changeΔ that you learned about in Sect. 5.3.2. To apply
this concept in the present context, let utility in the old steady state with c1, c2, and
l̄ be given by

U = ln c1 + β ln c2 − ν0
l̄
1+ 1

ν1

1 + 1
ν1

.

Utility in the new steady state with c̃1, c̃2, and l̃ is represented by

Ũ = ln c̃1 + β ln c̃2 − ν0
l̃
1+ 1

ν1

1 + 1
ν1

.

The consumption equivalent change Δ is defined implicitly by the following
equation:

Ũ = ln(1 + Δ)c1 + β ln(1 + Δ)c2 − ν0
l̄
1+ 1

ν1

1 + 1
ν1

.

Accordingly,Δ measures the percentage change by which we need to raise the initial
consumption levels {c1, c2} in the old steady state to have the same utility as in the

25You should attempt to compute these values. In the computation, we set ν0 = 257.15 as implied
by the calibration in the case of elastic labor supply (see the following section).
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new steady state.26 For our logarithmic utility with exogenous labor supply l̄ = l̃,
Δ can be computed with the help of

(1 + β) ln(1 + Δ) = Ũ − U.

In our example, an increase in the pension replacement rate τ from 0% to 30% is
associated with a welfare changeΔ equal to a decline in total consumption by 38.4%
(see Table 6.2).

Finally, we will consider the dynamics following a change in the pension system.
To consider a realistic scenario that is likely to prevail in modern industrialized
countries in the coming decades, we consider the effects of a reduction in the level
of pension benefits. As an illustration, we consider the transition from a replacement
rate of 30% to 0%, which is announced in period t = 1 and effective in period
t = 2. As a consequence, the capital stock increases from an initial k0 = 0.00687
to k20 = 0.0182 in the long run. We also assume that the transition is complete after
20 periods (which corresponds to 600 (!) years if each period is equal to 30 years).

In period t = 0, we are in the old steady state. The utility of the present (young)
generation at t = 0 is 38.4% (as measured by the consumption equivalent change
Δ) below that of the generation at the end of the transition at t = 20. Therefore,
one might have the impression that all generations may benefit from such a change.
Unfortunately, this is not the case. The reason is simple: The young generation in
period t = 1 still has to finance the pension of the old in period t = 1; however, they
will not receive a pension when they are old in period t = 2. We, therefore, have
to reformulate the above equilibrium conditions for this generation. In particular,
consumption by the young generation in period t = 1 is represented by

c1
1 = 1

1 + β

[
w1l̄ − d

]
,

which yields private savings (using the household first-order condition)

s1 = w1 l̄ − c1
1 − d

= β

1 + β

(
wt l̄ − d

)
.

However, the generation born in period t = 1 does not receive a pension when old.
Therefore, consumption by the old generation in period t = 2 is given by

c2
2 = (1 + r2)s1.

26As an alternative measure of the welfare change, some authors use output equivalent change. In
this case, Δ is computed as the percentage of output by which the consumption levels in the old
steady state need to be raised to obtain the same utility as in the new steady state.
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In capital market equilibrium, (1 + n)k2 = s1, the dynamics of the capital stock per
capita k2 are described by the following first-order difference equation:

(1 + n)k2 = β

1 + β

(
w1 l̄ − d

)
. (6.22)

Notice that (6.22) differs from (6.19) because the pension payments dt are no longer
constant but change between periods t = 1 and t = 2.

More generally, we can restate the dynamics of the model as follows:

(1 + n)kt+1 = β

1 + β

(
wt l̄ − dt

)− 1

1 + β

1 + n

1 + rt+1
dt+1, (6.23)

with

dt = τtwt l̄,

and τt = 30% for t = 0, 1 and τt = 0% for t = 2, . . ..
The dynamics are also computed with the help of the Gauss program

Ch6_social_security1.g. For a given initial capital stock k0, we can
compute k1 with the help of (6.19). To obtain the value k2, we use (6.22). For
t < 2, we, again, use (6.19) to compute kt+1 for a given kt in periods t = 2, . . . , 19.
Once we have computed the final capital stock k20, we compare it to the value of
the capital stock in the new steady state. If the values are close (which is indeed the
case), we are done. Otherwise we would have to increase the number of transition
periods, which we set equal to 20. We find that the new steady state of the capital
stock is stable and the convergence is smooth.

The dynamics of the (per capita) capital stock kt and the consumption equivalent
changeΔt are presented in Figs. 6.5 and 6.6.Δ is evaluated with respect to the utility
level in the final steady state with τ = 0%. The capital stock converges to the new
steady state within 4–5 periods (corresponding to 120–150 years). Although utility
increases in the long run, the transition generation (born in period t = 1) experiences
a decline in welfare because it still has to finance the pensions of the old but does
not receive pensions. The consumption equivalent changeΔ with respect to the new
steady state is equal to −43.7%. If there had been no change in the pension policy,
Δ1 would only have amounted to −38.4%. Consequently, the generation born in
t = 1 would have been better off by an equivalent of 5.3% of total consumption (in
units in the new steady state).

To alleviate the pressure on the generations during the transition to new pension
systems, most industrialized countries, therefore, have opted to gradually reform
their social security systems. For example, in Germany, the parliament (Bundestag)
decided in 2007 to increase the retirement age gradually from age 65–67. Between
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Fig. 6.5 Dynamics of the capital stock: abolition of PAYG pensions

Fig. 6.6 Dynamics of the consumption equivalent change Δ (in percent): abolition of PAYG
pensions

2012 and 2023, the retirement age increases by 1 month each year. Starting in 2024,
the retirement age increases by 2 months each year until it reaches its final value of
67 years in 2029. Therefore, all workers born in 1964 or after need to work until age
67 to receive the full benefit.27

27We will consider the effects of a gradual policy change in Sect. 6.4.3.
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6.3.3 Public Pensions and Elastic Labor Supply

Thus far, we have assumed that the pension system has no distortionary effect on
the labor supply. However, pensions are financed by worker contributions, which
are raised at the rate τ on wage income. In essence, contributions act like a tax on
labor supply, and consequently, the marginal rate of substitution, MRS = dct

dlt
, is no

longer equal to the marginal product of labor, MPLt = (1 − α)kαt l̄
−α = wt , but

rather equal to (1−τ )wt . Depending on the strengths of the income and substitution
effects, this reduces (increases) the labor supply if the latter is stronger (smaller)
than the former. For our calibration with standard preference parameters for the US
economy, the substitution effect will dominate, and therefore, higher pensions will
decrease aggregate labor supply.

In the following, we assume that pensions are financed by a tax τ on wage
income:

dt = τwt lt .

The budget constraints of the young and old generations are now given by:

(1 − τ )wt lt = c1
t + st , (6.24)

c2
t+1 = (1 + rt+1)st + pent+1, (6.25)

implying the following intertemporal budget constraint (and imposing a balanced
social security budget, pent = (1 + n)dt ):

(1 − τ )wt lt + 1 + n

1 + rt+1
dt+1 = c1

t + c2
t+1

1 + rt+1
. (6.26)

Maximizing (6.16) subject to (6.26) with respect to c1
t , c2

t+1, and lt implies the first-
order conditions:

1

c1
t

= λt , (6.27a)

β

c2
t+1

= λt

1 + rt+1
, (6.27b)

ν0l

1
ν1
t = λt (1 − τ )wt , (6.27c)
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where λt denotes the Lagrange multiplier of the intertemporal budget constraint.
Notice that for constant λ, (6.27c) implies that28

∂lt

∂ ((1 − τ )wt)

(1 − τ )wt

lt
= ν1,

so that ν1 is equal to the Frisch labor supply elasticity. The first-order conditions can
be solved for c2

t+1:

c2
t+1 = βc1

t (1 + rt+1) .

Substitution of this expression in the intertemporal budget constraint results in:

c1
t = 1

1 + β

[
(1 − τ )wt lt + 1 + n

1 + rt+1
dt+1

]
.

Combining this equation with the first-order condition (6.27c), we derive a non-
linear equation in lt that can only be solved numerically:

(1 − τ )wt

ν0l

1
ν1
t

= 1

1 + β

[
(1 − τ )wt lt + 1 + n

1 + rt+1
dt+1

]
. (6.28)

Savings follow from

st = (1 − τ )wt lt − c1
t

= β

1 + β
(1 − τ )wt lt − 1

1 + β

1 + n

1 + rt+1
dt+1. (6.29)

In capital market equilibrium with (1+n)kt+1 = st , the dynamics of kt are described
by:

(1 + n)kt+1 = β

1 + β
(1 − τ )wt lt − 1

1 + β

1 + n

1 + rt+1
dt+1. (6.30)

28To derive the elasticity, simply take the logarithm on both sides of (6.27c) implying

ln lt = ν1 [ln ((1 − τ)wt ) + ln λt − ln ν0]

and notice that

∂ ln lt
∂ ln ((1 − τ)wt )

= ∂lt

∂ ((1 − τ)wt )

(1 − τ)wt

lt
= ν1.
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The equilibrium dynamics are therefore described by the four equations (6.21),
(6.28), and (6.30). In steady state, these four equations imply the steady state
values for kt = kt+1 = k, w, r , and l. We calibrate ν0 such that steady state
labor supply amounts to 30% of the time endowment, l = 0.3, for the case in
which τ = 0 to make our results comparable with the numerical example of a
pension reform in an economy with inelastic labor supply presented in the previous
section. For this reason, we solve the 4 equations (6.21), (6.28), and (6.30) for the
variables k, w, r , and ν0 for l = 0.3, implying ν0 = 257.15. The Gauss program
Ch6_social_security2.g computes the calibration of ν0.

Our main results are presented in the third entry column of Table 6.2. We find
that the declines in the capital stock, output, and welfare following the introduction
of a PAYG pension system are even more pronounced than in the case of inelastic
labor. Since labor supply falls by 2%, the steady-state output falls by 30.8%. The
impact of endogenous labor on steady-state lifetime utility is of approximately the
same magnitude. The introduction of a pension that is financed by a contribution
rate of 30% on wages also implies welfare costs that are equivalent to reducing total
consumption by 38.5%.

The Gauss program Ch6_social_security2.g also computes the dynam-
ics following a decrease in τ from 30% to 0% in period t = 1, where the economy
is in steady state in t = 0 for τ = 30%. Since the dynamics are similar to those
displayed in Figs. 6.5 and 6.6, we refrain from presenting them. However, it will
be instructive to describe the numerical computation of the dynamics because we
encounter a new problem. In the case of inelastic labor supply, we could simply
iterate over the dynamic equation (6.19) given an initial value k0. In the case of
elastic labor supply, we cannot proceed in the same way. For this reason, assume
that we would like to solve Eqs. (6.21), (6.28) and (6.30) in t = 0 for given k0 and
l0. Since dt+1 = d1 = τw1l1 and rt+1 = r1 = αkα−1

1 l1−α
1 , the system of five

equations has six unknowns k1, w0, w1, r1, l0, l1.29 Households need to know the
labor supply of the next generation to compute their pensions. The next generation,
which is born in period t = 1, however, needs to know the labor supply of the
generation in period t = 2 to optimally choose its labor supply, and so forth. As
a consequence, the generation born in period t needs to project the labor supply
and the capital stock over the complete transition period until the new steady state
is reached. The method that starts the iteration over kt with a guess of k1 is called
forward shooting and, evidently, does not work well in the present case.

Instead, we have to use a method called reverse shooting.30 We start with the final
steady state. We assume that the final steady state is reached in period t = 6 (we
took the number of transition periods from the case with inelastic labor supply).31

29More specifically, we need to solve (6.21a) for w0 and w1 in periods 0 and 1, (6.21b) for r1 in
period 1, and (6.28) and (6.30) in period 0.
30See also Appendix 4.1.
31The algorithm used in our program is also very sensitive to the number of transition periods. In
particular, for a larger number of transition periods, the solution does not converge.
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Let k7 = 0.0182 and l7 = 0.300 denote final steady-state values associated with the
contribution τ = 0%. Next, we provide a guess for k6 that is close to k7. Since
savings are higher for τ = 0% than for τ = 30%, we project that the capital
stock approaches the final steady-state value from below. Therefore, we choose
k̃6 = 0.99 · k7 as an initial guess for the true k6. With the help of Eqs. (6.21)
and (6.30), we can solve for l6, w6, and r6. In the next step, we iterate backward
in time and compute the equilibrium values of kt , lt , wt , and rt at t = 5. Therefore,
we solve four equations (6.21), (6.28), and (6.30) in t = 5 for the four endogenous
values k5, l5, r5, and w5. Notice that this system in four equations is now a system
in four unknowns, and we exploit its recursive nature. Continuing in this fashion,

we can compute the sequence of all endogenous variables
{
k̃t , l̃t , w̃t , r̃t

}6

t=0
. If k̃0

is equal to the steady-state value of kt associated with the case of no pensions,
τ = 30%, we are done. If not, we need to adjust our guess k̃6 and restart. In essence,
we are computing the solution to a non-linear equation problem f (k̃6) = k̃0−k0 = 0
and use conventional procedures for the solution, e.g., the Gauss-Newton Algorithm
as described in Appendix 2.2.

6.3.4 Contribution-Based Benefits

We extend our numerical example with elastic labor supply from the previous
section and allow for defined contribution pensions. Let the contributions of the
young amount to dt = τwt lt . In old age, their pension now depends on the
contributions according to32:

pent+1 = penmin + ρpendt . (6.31)

Depending on the values of {penmin, ρpen}, a pension system redistributes
among retirees. In a pure flat-rate pension system with ρpen = 0, pensions
are completely independent of the earnings history, while for the polar case of
penmin = 0, pensions are completely proportional to pre-retirement income. We
will characterize a pension system as more progressive if it is more redistributive
(higher penmin). Two measures of the public pension system’s progressivity that
are used in the literature are the Gini coefficient of the pension income and the
pension progressivity index. The latter is computed as 100 minus the ratio of the
Gini coefficient of pension income and the Gini coefficient of earnings. Table 6.3
displays the values for selected countries in 2007. Canada and the UK have very
progressive pension systems, while the pension systems of Germany and Italy are
more earnings-based. The US system is an intermediate case.

32Of course, we are quite idealistic in assuming that the individual is able to determine the
parameters ρpen and penmin . Usually, the pension is a complicated function of contributions and
the number of contribution years. In Germany, for example, years of university eduction increase
your pension despite that students do not contribute to the PAYG system.
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Table 6.3 Progressivity of
pensions

Gini Progressivity
Country pensions index

Canada 3.7 86.6

Germany 20.0 26.7

Italy 26.4 3.1

UK 5.1 81.1

US 16.1 40.9

Notes: The data are taken from the
CESifo DICE report 4/2007 and is
based upon OECD, Pensions at a
glance, 2007, pages 44–45

With contribution-based benefits, households maximize intertemporal
utility (6.16) subject to the budget constraint

(1 − τ )wt lt + pent+1

1 + rt+1
= c1

t + c2
t+1

1 + rt+1
, (6.32)

and (6.31). The differentiation of the Lagrange function

L = ln c1
t + β ln c2

t+1 − ν0
l
1+ 1

ν1
t

1 + 1
ν1

+ λt

[
(1 − τ )wt lt + penmin + ρpenτwt lt

1 + rt+1
− c1

t − c2
t+1

1 + rt+1

]

with respect to c1
t , c2

t+1, and lt results in the first-order conditions of the household

1

c1
t

= λt , (6.33a)

β

c2
t+1

= λt

1 + rt+1
, (6.33b)

ν0l

1
ν1
t = λt (1 − τ )wt + λt

ρpenτwt

1 + rt+1
. (6.33c)

Notice that the first-order condition for the optimal labor supply (6.33c) has an
additional additive term on the right-hand side not present in Eq. (6.27c). Young
households choose their labor supply while considering their increased entitlement
to pension payments when old. For ρpen = 0, the economy is equivalent to that with
elastic labor supply studied in the previous section.
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In equilibrium, the social security budget is balanced:

Ntdt = Nt−1pent . (6.34)

The rest of the model is identical to that of the previous Sect. 6.3.3. The new
parameters are chosen as τ = 0.3 and ρpen = 0.5. Accordingly, half of the
contributions are accounted for the pension in old age. The steady state is computed
with help of the GAUSS program Ch6_social_security3.g, which solves
the following system of seven non-linear equations in the seven endogenous
variables c1, c2, k, l, w, r , and penmin:

c2 = c1β(1 + r), (6.35a)

(1 + n)τwl = penmin + ρpenτwl, (6.35b)

w = (1 − α)kαl−α, (6.35c)

r = αkα−1l1−α, (6.35d)

ν0l
1
ν1 c1 = (1 − τ )w + ρpenτw

1 + r
, (6.35e)

c1 + c2

1 + r
= (1 − τ )wl + penmin + ρpenτwl

1 + r
, (6.35f)

(1 + n)k = (1 − τ )wl − c1. (6.35g)

The results are displayed in the rightmost column of Table 6.2. Following an
introduction of a defined contribution pension with τ = 30%, the changes in capital,
output, and labor are an intermediate case between the two cases of inelastic and
elastic labor supply. The decline in labor is reduced by half, from 2% to 1% in
comparison with the elastic labor supply and ρpen = 0. Welfare still declines by
38.4% of total consumption (as measured by the consumption equivalent change
Δ). Although the labor supply decisions are now less distorted than in the case with
ρpen = 0 (because the individual considers the effect of working more hours on his
pension), pensions are still welfare-reducing to a quantitatively significant extent.
One reason for this result is that, with ρpen = 50%, only part of the contributions
helps to increase future pensions. In addition, the return on the contributions to the
PAYG system is still determined by the population growth rate n, while the return on
savings, the real interest rate r , is much larger. For our calibration, the annual return
is approximately 5.5%, corresponding to a 30-year return of r = 404%. Obviously,
this return is much larger than the return from population growth with n = 10%.

Thus far, however, we have neglected productivity growth. The return on the
public pension increases if wages and, hence, pensions increase over time and old
generations participate in this productivity growth.
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6.3.5 Public Pensions and Growth

We introduce growth into the two-period OLG model as described in Sect. 3.4. In
particular, production is given by:

Yt = Kα
t (AtNt lt )

1−α . (6.36)

Labor-augmenting technology At grows at the exogenous rate γ :

At = (1 + γ )At−1.

In the following, we set γ = 0.80 = 80%, such that output per capita grows at
approximately 2.0% per year (periods correspond to 30 years).33 The effective labor
supply of the household at a young age is equal to At lt , and the household receives
the wage rate wt per efficiency unit At lt , implying the following savings st , old-age
consumption c2

t+1, and intertemporal budget:

st = (1 − τ )wtAt lt − c1
t , (6.37a)

c2
t+1 = (1 + rt+1)st + pent+1, (6.37b)

c1
t + c2

t+1

1 + rt+1
= (1 − τ )wtAt lt + pent+1

1 + rt+1
. (6.37c)

The first-order conditions implied by maximizing (6.16) subject to (6.37c) are given
by:

c2
t+1 = β(1 + rt+1)c

1
t , (6.38a)

ν0l

1
ν1
t = (1 − τ )wtAt

c1
t

, (6.38b)

and in stationary variables c̃1
t ≡ c1

t /At , c̃2
t+1 ≡ c2

t+1/At+1:

(1 + γ )c̃2
t+1 = β(1 + rt+1)c̃

1
t , (6.39a)

ν0l

1
ν1
t = (1 − τ )wt

c̃1
t

, (6.39b)

33In steady state, output and capital both grow at the rate γ . The US growth rate of real GDP per
capita amounted to 2.00% during the period 1960–2011.
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implying equilibrium stationary savings s̃t ≡ st/At :

s̃t = β

1 + β
(1 − τ )wt lt − 1

1 + β

(1 + γ )p̃ent+1

1 + rt+1
,

where p̃ent ≡ pent/At .
In equilibrium, the social security budget is balanced:

Ntpent+1 = Nt+1τwt+1At+1lt+1,

or

p̃ent+1 = (1 + n)τwt+1lt+1. (6.40)

Following the description of the production sector in Sect. 3.4, firms maximize
profits:

Πt = Kα
t (AtNt lt )

1−α − wtAtNt lt − rtKt ,

implying the first-order conditions

wt = (1 − α)

(
Kt

AtNt

)α
l−α
t = (1 − α)kαt l

−α
t , (6.41a)

rt = αkα−1
t l1−α

t , (6.41b)

with k ≡ K/(AN).
In capital market equilibrium,

Ntst = Kt+1,

or after dividing by AtNt on both sides,

s̃t = kt+1(1 + γ )(1 + n) = β

1 + β
(1 − τ )wt lt − 1

1 + β

(1 + γ )p̃ent+1

1 + rt+1
. (6.42)

In steady state, all stationary variables k̃t , c̃1, c̃2, l, w, r , and p̃en are constant and
can be computed as the solution of the following non-linear system of equations:

(1 + γ )c̃2 = β(1 + r)c̃1, (6.43a)

ν0l
1
ν1 c̃1 = (1 − τ )w, (6.43b)

w = (1 − α)kαl−α, (6.43c)

r = αkα−1l1−α, (6.43d)
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Table 6.4 Output and
welfare effects of PAYG
pension with productivity
growth

τ = 0 τ = 30%

k̃ 0.00725 0.00259

l 0.300 0.293

ỹ 0.0786 0.0534

Δ 0.0% −27.5%

Notes: Δ denotes the con-
sumption equivalent change.
Entries are computed with the
help of the Gauss program
Ch6_social_security4.g

k(1 + γ )(1 + n) = β

1 + β
(1 − τ )wl − 1

1 + β

(1 + γ )p̃en

1 + r
, (6.43e)

p̃en = (1 + n)τwl, (6.43f)

c̃1 + (1 + γ )c̃2

1 + r
= (1 − τ )wl + (1 + γ )p̃en

1 + r
. (6.43g)

The introduction of the pension system results in a decline in the labor supply
relative to the case without a pension system because the social security contribution
reduces the net wage and distorts the individual labor supply decision, as presented
by (6.43b). According to Table 6.4, labor supply falls by 2.2%, from 0.300 (for
τ = 0%) to 0.293 (for τ = 30%). In the case of public pensions, savings decrease
because the young have less need to provide for old age, and thus, the steady-state
capital stock is reduced by 64.4%. Savings are also reduced because net income
falls; the decline in savings in the presence of economic growth is comparable to
that in the case without growth.34

For this economy, we cannot compute the welfare changes Δ by comparing it
to the case with inelastic labor supply and no growth. How can we compare two
economies when one eventually outgrows the other? To do so, we compute the
consumption equivalent change in Table 6.4 by comparing lifetime utility in the
growth economy for τ = 0 and τ = 0.3. Clearly, the welfare losses, to some
extent, are reduced in the presence of growth. In fact, the consumption equivalent
change still amounts to a loss of Δ = 27.5%. Although the return from the PAYG
pension system has increased due to productivity growth γ , it still falls short of the
return on savings as represented by the real interest rate r . Furthermore, the social
security contribution rate τ still distorts the labor supply of the household, resulting
in reduced lifetime utility.

34The results are computed with the help of the GAUSS program Ch6_social_security4.g, which
solves the non-linear system of equations (6.43) with the Gauss-Newton Algorithm. In addition,
we recalibrate ν0 such that, for τ = 0 and γ = 80%, the steady-state labor supply is equal to
l = 0.30.
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6.4 Optimal Pensions

In the preceding two sections, we learned that public PAYG pension systems
imply huge welfare costs and considerably decrease equilibrium savings and
output. Nevertheless, we observe that most OECD countries have rather generous
PAYG pension systems. One obvious reason for their prevalence is, of course,
political. When a public pension system is introduced, the old generation benefits
unanimously, and politicians may be inclined to capture their votes. In addition,
most public pension systems, e.g., in the US or Germany, were introduced when the
population growth rate was much higher than at present, while life expectancy was
much lower. At the time, the return from a public pension system was much higher
than at present.

In the following, we will focus on the economic rather than the political reasons
for a PAYG public pension system and analyze whether a PAYG public pension may
be welfare-increasing given the present demographic situation in the US economy.
Welfare will be measured by the average lifetime utility of the newborn generation.
There are basically five effects that will affect household utility:

1. Distortion of labor supply
2. Decrease in aggregate savings
3. Credit constraints
4. Insurance against negative income shocks
5. Uncertain lifetime: missing annuities markets.

The first two effects are detrimental to output and welfare. Households reduce
their labor supply because the net wage is lower due to pension contributions. We
saw in the previous section that the quantitative effect on labor supply is reduced but
not completely offset if pensions are based on contributions rather than operated on
a defined benefit basis. In addition, we observed substantial reductions in savings
and, hence, the aggregate capital stock in the presence of public pensions.

In the model in this section, we introduce a third distortion. We will study het-
erogeneous agents that are subject to idiosyncratic productivity shocks. Therefore,
some individuals will be confronted with very low wages and would like to indebt
themselves. However, we will assume that financial markets do not provide access
to credit for these households, meaning that these individuals are credit-constrained,
kt ≥ 0. In the presence of public pensions, this constraint becomes more binding
because households receive lower net wages and, hence, welfare is further reduced.

The remaining two effects (4) and (5) help to explain why public pensions
may be welfare-improving. In our model (and in real life), households are subject
to stochastic productivity shocks. Their hourly wage can vary for deterministic
reasons, e.g., it increases initially with age, but also for stochastic reasons, e.g., due
to health or unemployment risks. A public pension system that also redistributes
from the income-rich to the income-poor might therefore increase average utility
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Fig. 6.7 Age-productivity profiles in the US and Germany

because those households with lower income and wealth are also the households
with higher marginal utility of consumption.

Households in our model, in particular, will face wages that depend on an age
component, a permanent efficiency type, and a stochastic individual productivity.
The age component is hump-shaped and depicted in Fig. 6.7 for the US and German
economies. In both countries, efficiency peaks at ages 46–48 and is much higher
at the age of retirement than in youth.35 As a second component, we distinguish
two types of permanent productivity, ε ∈ {ε1, ε2}, which may be interpreted
as households with college (high school) education. The third component is a
stochastic component, η ∈ {η1, η2}, which may simply reflect good or bad luck
during employment. For example, technological change may favor some types of
workers while detrimentally affecting others.

Our specification of the individual productivity process and, hence, the labor
earnings is a simplification with respect to recent empirical evidence. Guvenen,
Karahan, Ozkan, and Sang (2015), for example, study the dynamics of individual
labor earnings over the life-cycle and find, among others, that (1) earnings shocks
display substantial deviations from log-normality in the form of an extremely high
kurtosis and that (2) the statistical properties of the labor earnings process vary over
the life-cycle. In our analysis, we neglect age-specificity in the variance of earnings

35The data for the US economy are taken from Hansen (1993). The efficiency profile for Germany
is computed with the help of the average hourly wages of s-year-olds during the period 1990–1997
following the method of Hansen (1993). Average productivity is normalized to one. We further
interpolated the productivity-age profile with a polynomial function of order 3. We used data from
the Cross National Data Files for West Germany during the period 1990–1997, which are extracted
from the German Socio Economic Panel, GSOEP.
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and do not model the top income percentiles.36 With respect to the lower tail of the
labor income distribution, our model is able to closely replicate the empirical income
and wealth heterogeneity. In particular, we are also able to model the fact that a sub-
stantial fraction of households are credit-constrained. These households will be sub-
ject to considerable changes in lifetime utility if the public pension system is altered.

Finally, a public pension system may increase welfare because financial markets
are imperfect (in addition to not providing credit). Specifically, we assume that
annuities markets are absent, meaning that individuals cannot insure against early
death. What would perfect financial markets look like? Assume that there are no
transaction costs. In this case, a bank would collect savings kt from the individuals at
the end of period t−1, borrow the savings to firms and earn interest rate rt . Between
periods t − 1 and t , only a fraction φ of households survive. At the end of period
t , the bank (which faces no transaction costs) would be able repay (1 + rt )kt/φ to
those who survive and nothing to the deceased. As a consequence, the banks would
end up with zero profits (which would be the outcome if we assumed free entry into
financial markets and if the law of large numbers holds). In the absence of perfect
annuity markets, a public pension may, in part, substitute for these missing annuity
markets. Those who survive receive a payment from the young, while those who
die early do not. Consequently, it redistributes from those who may die early to
those who survive until old age. In this regard, Hubbard and Judd (1987) show that
a fully funded social security system can increase welfare in the absence of liquidity
constraints and annuity markets because it provides insurance against longevity.37

Next, we describe the large-scale OLG model that we use to study these welfare
questions in greater detail. The basic policy question that we address is the optimal
size of the public pension. What is the optimal replacement rate of pensions with
respect to wages? The details of the model with respect to the demographics, the
household optimization, and the production and government sectors are described
in turn.

6.4.1 TheModel

The model is a simplified version of that studied in Heer (2018).38

36The consideration of the highest income households would not significantly affect our welfare
results on optimal social security. The welfare effect of social security is a second-order
consideration for these households since the pension income from social security is a relatively
small share of total savings for the top income earners.
37In a recent study, however, Caliendo, Guo, and Hosseini (2014) demonstrate that this result is
sensitive to the assumption of whether (1) bequest income is fixed or endogenous and (2) bequest
income is redistributed anonymously or through a direct linkage between deceased parents and
surviving children.
38In addition, Heer (2018) models income uncertainty from unemployment and specifies a
more general utility function with Epstein-Zin preferences that include the Cobb-Douglas utility
function (6.45) as a special case.
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6.4.1.1 Demographics and Timing
A period, t , corresponds to 1 year. In each t , a new generation of households is born.
Newborns have a real-life age of 20, denoted by s = 1. All generations retire at age
s = R = 46 (corresponding to real-life age 65) and live up to a maximum age of
s = J = 70 (real-life age 89).

Let Nt(s) denote the number of agents of age s in t . We denote total population
in t by Nt which grows at the rate nt . In t , all agents of age s survive until age s + 1
with probability φt,s where φt,0 = 1 and φt,J = 0.39

6.4.1.2 Households
Each household comprises one (possibly retired) worker. Households maximize
expected intertemporal utility at the beginning of age 1 in period t40

maxEt

J∑

s=1

βs−1

⎛

⎝
s∏

j=1

φt+j−2,j−1

⎞

⎠ u(cst+s−1, l
s
t+s−1), (6.44)

where β > 0 denotes the discount factor; cst and lst denote consumption and
labor supply of the s-year old in period t . Per-period utility u(c, l) is a function
of consumption c and labor supply l

u(c, l) =
(
cι(1 − l)1−ι

)1−σ

1 − σ
, σ > 0, ι ∈ (0, 1). (6.45)

Households are heterogeneous in age s, individual labor efficiency ηεj ȳs , and
wealth kst . We stipulate that an agent’s efficiency depends on its age, s ∈ S ≡
{1, 2, . . . , 70}, and its efficiency type, εj ∈ E ≡ {ε1, ε2}. We choose the age-
efficiency profile {ȳs} in accordance with the US wage profile presented in Fig. 6.7.
The permanent efficiency types ε1 and ε2 are meant to capture differences in
education and ability. In addition, we follow Krueger and Ludwig (2007) and
assume that a household’s labor productivity is affected by an idiosyncratic shock,

39Be careful when you compare our equilibrium conditions to those in the literature. In some cases,
the indexation of the survival probabilities is different and φs denotes the probability to survive up
to age s conditional on surviving up to age s−1 as in İmrohoroğlu, İmrohoroğlu, and Joines (1995)
or Huggett (1996), while our notation follows Conesa and Krueger (1999).
40In the literature, expected lifetime utility is either stated in the form of (6.44) (e.g., in
İmrohoroğlu, İmrohoroğlu, and Joines 1995 or Huggett 1996) or the product of the cumulative
survival probabilities,

∏s
j=1 φt+j−2,j−1, is dropped from this expression (e.g., in Conesa and

Krueger 1999). In the latter case, expectations are also formed with respect to (stochastic) survival
and instantaneous utility of being dead is set equal to zero. We adhere to the former notation so
that expectations Et {.} are only formed with respect to stochastic idiosyncratic productivity. This
notation will be useful in a model of Chap. 7.5 where we analyze the demographic transition. In
this model, survival of the individuals is stochastic, while individual productivity is deterministic.
As a consequence, the derivation of the Euler equation that contains the survival probability of the
individual as an additional factor will become more evident.
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η ∈ Γ ≡ {η1, η2}, that follows a time-invariant Markov chain with transition
probabilities

π(η′|η) =
(
π11 π12

π21 π22

)
. (6.46)

The net wage income in period t of an s-year-old household with efficiency type
ηε is given by (1 − τw − τp)wtAtηεȳsl

s
t , where wt denotes the wage rate per

efficiency unit in period t , and At is labor productivity. The wage income is taxed at
the constant rate τw. Furthermore, the worker has to pay contributions to the pension
system at rate τp.41 A retired worker receives a lump-sum pension pent .42

Households are born without assets at the beginning of age s = 1; hence, k1
t = 0.

Parents do not leave bequests to their children, and all accidental bequests are
confiscated by the government. The household earns interest rt on its wealth kst ∈
R

+. Capital income is taxed at the constant rate τK . In addition, households receive
lump-sum transfers trt from the government. As a result, the budget constraint of
an s-year-old household with productivity type ηε and wealth kst in period t is
represented by:

cst + ks+1
t+1

=

⎧
⎪⎪⎨

⎪⎪⎩

(1 − τw − τ
p
t )wtAtηεȳsl

s
t + [1 + (1 − τK)rt

]
kst + trt ,

for s ≤ 45,

pent + [1 + (1 − τK)rt
]
kst + trt , for s > 45.

(6.47)

In addition, households face a borrowing constraint, kst ≥ 0.

6.4.1.3 Production
The production sector is modeled as in Sect. 3.4, where we introduced economic
growth into the OLG model. Production is assumed to be described by a Cobb-
Douglas function:

Yt = Kα
t (AtLt )

1−α ,

where labor-augmenting technological progress At grows at the exogenous rate γ :

At = (1 + γ )At−1. (6.48)

41In Chap. 5, we denoted the labor income tax rate by τL. Notice that the tax on labor income in this
model is the sum of the wage income tax and the social security contribution rate, τL = τw + τp .
42In contrast to Sect. 6.3.4, we do not assume pensions to be related to the individual’s lifetime
social security contributions. Our simplifying assumption is supported by the results of Fehr, Kall-
weit, and Kindermann (2013) and Heer (2018), who find in their studies with earnings-dependent
pensions that pensions should optimally be provided lump-sum rather than earnings-dependent.
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Lt denotes aggregate efficient labor that will be defined in greater detail below for
the stationary equilibrium.

Firms maximize profits:

Πt = Kα
t (AtLt )

1−α − wtAtLt − rtKt − δKt ,

implying the first-order conditions

wt = (1 − α)

(
Kt

AtLt

)α
= (1 − α)k̃αt L̃

−α
t , (6.49a)

rt = αk̃α−1
t L̃1−α

t − δ, (6.49b)

where k̃ ≡ K/(AN) is defined as capital per efficiency population, and L̃ ≡ L/N .
For convenience, we will also refer to k̃ as capital.

6.4.1.4 Government
The government collects income taxes Tt to finance its expenditures on government
consumption Gt and transfers T rt . In addition, it confiscates all accidental bequests
Beqt . The government budget is balanced in every period t , i.e.,

Gt + T rt = Tt + Beqt . (6.50)

In view of the tax rates τw and τK , the government’s tax revenue is given by

Tt = τwwtAtLt + τKrtKt . (6.51)

Government spending is exogenous and grows at the rate of labor augmenting-
technological progress γ and the population growth rate nt :

Gt = Gt−1(1 + γ )(1 + nt ). (6.52)

6.4.1.5 Social Security
The social security system is a PAYG system. The social security authority collects
contributions from the workers to finance its pension payments to the retired agents.
The pension is provided lump-sum, with the net replacement rate being denoted
by θ

p
t :

pent = θ
p
t (1 − τw − τ

p
t )wtAt l̄, (6.53)

where l̄ denotes the average labor supply (working hours) of the workers.43

43The mean of the workers’ efficiency ηεȳs is normalized to one.
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In equilibrium, the social security budget is balanced such that total expenditures
on pensions Pent are equal to total contributions:

Pent = τ
p
t wtAtLt . (6.54)

6.4.1.6 Stationary Equilibrium
In the stationary equilibrium, individual behavior is consistent with the aggregate
behavior of the economy: firms maximize profits, households maximize intertempo-
ral utility, and factor and goods markets clear. To express the equilibrium in terms of
stationary variables only, we have to divide aggregate quantities by AtNt (with the
exception of aggregate labor supply Lt ) and individual variables by At . Therefore,
we define the following stationary aggregate variables:

B̃eqt ≡ Beqt

AtNt

, T̃t ≡ Tt

AtNt

, G̃t ≡ Gt

AtNt

, P̃ ent ≡ Pent

AtNt

, L̃t ≡ Lt

Nt

,

C̃t ≡ Ct

AtNt

, Ỹt ≡ Yt

AtNt

,

and stationary individual variables:

c̃st ≡ cst

At

, p̃ent ≡ pent

At

, k̃st ≡ kst

At

, ˜tr t ≡ trt

At

.

Notice that we divide aggregate labor supply Lt by total population in period t , Nt ,
to obtain a stationary variable. The mass of all individuals in our economy, therefore,
is normalized to one in every period t .

Let ft denote the cross-sectional measure of households in period t . The
household policy functions depend on an individual household’s wealth k̃st , age s,
permanent efficiency type ε, and idiosyncratic productivity η.

A stationary equilibrium for a constant government policy {τK, τw, τp, θp, G̃,

t̃r} corresponds to a price system, an allocation, and a sequence of aggregate
productivity indicators {At} that satisfy the following conditions:

1. Population grows at the constant rate n = Nt+1
Nt

−1 and the survival probabilities
are constant, φt,s = φs .

2. The aggregate productivity indicator At evolves according to (6.48).
3. The individual productivity shock η follows the Markov transition

matrix (6.46).
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4. Households maximize intertemporal utility (6.44) subject to the budget con-
straint (6.45), lst ∈ [0, 1], and k̃st ≥ 0. In stationary variables, the budget
constraint is represented by

c̃st + (1 + γ )k̃s+1
t+1

=

⎧
⎪⎪⎨

⎪⎪⎩

(1 − τw − τ
p
t )wtηεȳsl

s
t + [1 + (1 − τK)rt

]
k̃st + t̃ rt ,

for s ≤ 45,

p̃ent + [1 + (1 − τK)rt
]
k̃st + t̃ rt , for s > 45.

(6.55)

Moreover, there is a transversality condition requiring k̃71
t = 0.

As a result, for each period t , individual labor supply lt (k̃, s, ε, η), consumption
c̃t (k̃, s, ε, η), and optimal next-period assets k̃′

t (k̃, s, ε, η) are functions of the
individual state variables k̃ ∈ ˜K , s ∈ S , ε ∈ E , and η ∈ Γ and are constant
over time in the stationary equilibrium.

5. Firms maximize profits by satisfying (6.49a) and (6.49b). In equilibrium, firm
profits are zero.

6. Aggregate variables are equal to the sum of the individual variables, the capital
market is in equilibrium, and all accidental bequests are collected from the
deceased:

L̃t = 1

Nt

∫
ηεȳs lt (k̃, s, ε, η) ft (dk̃ × ds × dε × dη), (6.56a)

C̃t = 1

Nt

∫
c̃t (k̃, s, ε, η) ft (dk̃ × ds × dε × dη), (6.56b)

T̃t = τwwt L̃t + τKrt K̃t , (6.56c)

K̃t+1 = 1

Nt+1

∫
k̃′
t (k̃, s, ε, η) ft (dk̃ × ds × dε × dη), (6.56d)

B̃eqt+1 = 1

Nt+1

∫
(1 − φt,s)(1 + rt+1(1 − τK)) k̃′

t (k̃, s, ε, η) ft (dk̃ × ds × dε × dη).

(6.56e)

7. The government budget is balanced:

G̃ + t̃ rt = T̃t + B̃eqt . (6.57)

8. The budget of the social security system is balanced:

P̃ ent = τ
p
t wt L̃t . (6.58)
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9. The final goods market clears:

Ỹt = K̃α
t L̃

1−α
t = C̃t + G̃t + (1 + γ )K̃t+1 − (1 − δ)K̃t . (6.59)

10. The cross-sectional measure ft evolves as

ft+1( ˜K ×S × E × Γ ) =
∫

Pt

(
(k̃, s, ε, η), ˜K × S × E × Γ

)
ft (dk̃ × ds × dε × dη)

for all sets ˜K , S , E , and Γ , where the Markov transition function Pt is given
by

Pt

(
(k̃, s, ε, η), ˜K × S × E × Γ

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φsπ(η
′ |η) if k̃′

t (k̃, s, ε, η) ∈ ˜K ,

for ε ∈ E , s + 1 ∈ S , η′ ∈ Γ,

0 else,

and for the newborns

ft+1( ˜K × 1 × E × Γ ) = Nt+1(1) ·
⎧
⎨

⎩

Υ1 if 0 ∈ ˜K ,

0 else.

The initial distribution Υ1(ε, η) of ε ∈ E = {ε1, ε2} and η ∈ Γ = {η1, η2}
among the one-year-olds is chosen to be uniform: Υ1(ε1, η1) = Υ1(ε1, η2) =
Υ1(ε2, η1) = Υ1(ε2, η2) = 1/4.

Notice that, in (6.56d), we divide the integral over the next-period capital stock
by population size Nt+1. The capital market equilibrium condition is formulated
in an analogous way to the condition (3.15) in the two-period OLG in Sect. 3.
Accordingly, total savings in efficiency units, Kt+1/At+1, is equal to the sum of
the individual savings k′(.) (in efficiency units At+1) of the population at the end
of period t . After division by Nt+1, (6.56d) holds. Equation (6.56e) states the
equilibrium condition for the accidental bequests. According to this equation, the
net interest payments of the deceased are also collected by the government. The
economic reason for inclusion of the term (1 − τK)rt+1k̃t+1 in the accidental
bequests is as follows. The s-year old households saves the capital stock k̃s+1

t+1 at
the end of period t . The capital stock is used in production and at the end of period
t +1, the firms pay the capital plus net interest to the households and capital income
taxes to the government. The fraction φs of the s-year old households do not survive
until the end of period t + 1 and, therefore, the government also collects the net
interest payments (plus the principal) from these households. The formal argument
for the setup of (6.56e) is presented in Appendix 6.1. The numerical computation
of the model applies value function iteration and is described in greater detail in
Appendix 6.2.
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Table 6.5 Calibration of parameters in the large-scale OLG model

Parameter Value Description

n {0.8%, 0.4%} Population growth rate

β 1.011 Subjective discount factor

1/σ {1/2, 1/4} Intertemporal elasticity of substitution

ι 0.31 Relative weight of leisure and consumption in utility

α 0.36 Share of capital income

δ 8.0% Rate of capital depreciation

γ 2.0% Growth rate

{ε1, ε2} {0.57, 1.43} Permanent productivity types

{η1, η2} {0.727, 1.273} Stochastic individual productivities

G/Y 19.5% Share of government spending in steady-state production

τw 24.8% Wage income tax

τK 42.9% Capital income tax

θp 50% Net pension replacement rate

π11 = π22 0.98 Persistence of idiosyncratic productivity shock

6.4.1.7 Calibration
We calibrate the parameters of the model in accordance with the US economy. The
population forecast for the US until 2050 is taken from UN (2015). We use the two
sets of the survival probabilities, {φt,s}70

s=1, t ∈ {2015, 2050}, and the corresponding
population growth rates, n = 0.8% and n = 0.4%, to study the optimal public
pension policy. For simplification, we assume that the economy is in stationary
competitive equilibrium in 2015 and 2050, respectively.

The preference and production parameters are set as in the economies in
Sect. 6.3.2. The intertemporal elasticity of substitution 1/σ is chosen with σ = 2.0
in accordance with İmrohoroğlu, İmrohoroğlu, and Joines (1995). The parameter ι,
which reflects the relative weight of consumption and leisure in utility, is set equal
to 0.31 such that the average working hours amount to approximately 0.30 in the
benchmark equilibrium for the year 2015. We choose the discount factor β = 1.011
in accordance with the empirical estimates of Hurd (1989), who explicitly accounts
for mortality risk.44 This choice of the discount factor implies a real interest rate of
5.8%. By our choice of β, the value of the real interest rate is somewhat higher than
observed empirically and usually applied in these types of models. The calibration
of the parameters is summarized in Table 6.5.

The elasticity of production with respect to capital is set equal to α = 0.36, and
capital depreciates at a rate of δ = 8.0% annually. We set γ = 2.0%, corresponding

44Related research that uses such a value for β includes İmrohoroğlu, İmrohoroğlu, and Joines
(1995) and Huggett (1996). With this value of β, the effective time discount factor of the newborn

for utility at age s, βs−1
(∏s

j=1 φj−1

)
, displays an increasing weight to instantaneous utility until

real lifetime age 63, before it declines again and even falls below one after the real lifetime age 82
(for the survival probabilities for the year 2015).
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to the average growth rate of US GDP per capita during the period 1960–2011 (using
data provided by the Federal Reserve Bank of St. Louis, available at ‘http://research.
stlouisfed.org/fred2’).

A s-year-old household of temporary productivity type i and permanent produc-
tivity type j has productivity ηiεj ȳs . The age-efficiency profile {ȳs}45

s=1 is taken
from Hansen (1993) as illustrated in Fig. 6.7. The set of the equally distributed
productivity types {ε1, ε2} = {0.57, 1.43} is taken from Storesletten, Telmer, and
Yaron (2004). Our choice of the stochastic individual productivity component, η ∈
{η1, η2}, is also motivated by Storesletten, Telmer, and Yaron (2004). In particular,
the two-state Markov chain is calibrated such that the annual persistence amounts
to 0.98 with an implied conditional variance of 8%. Accordingly, {η1, η2} =
{0.727, 1.273} and

π(η′|η) =
(
π11 π12

π21 π22

)
=
(

0.98 0.02
0.02 0.98

)
.

With this calibration, we are able to approximately replicate the empirical distribu-
tion of US wages. In our model, the Gini coefficient of the wage income distribution
is equal to 0.38, which is somewhat lower than the empirical values reported by,
e.g., Budría Rodriguez, Díaz-Giménez, and Quadrini (2002). The primary reason
for this is that we omit the top income percentiles from our model.

Government expenditures G̃ are set such that the government share G/Y is equal
to the average ratio of government consumption to GDP, G/Y = 19.5%, in the US
economy during the period 1959–1993 according to the Economic Report of the
President (1994). The tax rates τw = 24.8% and τK = 42.9% are computed as
the average values of the effective US tax rates over the period 1965–1988 that
are reported by Mendoza, Razin, and Tesar (1994). Government transfers T r are
computed using the equilibrium condition of the government budget (6.50) and
amounted to 5.4% of GDP in 2015.

The social security contribution rate on wage income τp is set such that the net
replacement rate of pensions relative to wage income θp is equal to 50%, following
İmrohoroğlu, İmrohoroğlu, and Joines (1999). The value is close to the most recent
one reported by the OECD in 2014, which amounts to 45%.

6.4.1.8 MeasuringWelfare Effects
In the following, we wish to compare different public pension policies with respect
to their effects on the stationary-state allocation. In particular, we are interested in
how much the value of lifetime utility, as measured by the average value of the
newborns’ value function, changes if pensions, as measured by their replacement
rate θp, are adjusted. Therefore, we compute the average value of the newborn:

W(θp) = 1

4

∑

ε,η

Ṽ (0, 1, ε, η),

http://research.stlouisfed.org/fred2
http://research.stlouisfed.org/fred2
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where Ṽ (.) denotes the (stationary) value function of a one-year-old with zero assets
and individual productivity εη.45

The aggregate capital stock K̃ and efficient labor L̃ and, hence, output Ỹ will vary
with the public pension policy {θp}. Notice that we calibrated the model such that
the government share of GDP is equal to G/Y = 19.5%. In the computation of the
allocations for different public pension policies {θp}, we do not hold G/Y constant
because this would imply different values of exogenous government spending G.
Since government spending G does not have any effect in our economy and is
pure waste, it would make no sense to compare economies that are characterized
by different sizes of the government sector G̃. We, therefore, hold G̃ constant and
equal to the value in our calibration for all other computations.46

To compute the welfare change associated with a different policy {θp}, we
compute the consumption equivalent change Δ as before. As our comparison case,
we choose the benchmark policy with θp = 50%. The consumption equivalent
change is now simply computed as the percentage by which we need to increase
(or reduce) the consumption in the benchmark case to obtain the same welfare as
under the policy {θp}. Noticing the functional form of our utility function, Δ can be
computed with the help of:

(1 + Δ)ι(1−σ)W(50%) = W(θp). (6.60)

6.4.2 Results

We will first discuss the allocation in the stationary equilibrium in 2015 and compare
it to the case without social security, before the optimal pension policy is studied.
We will establish that the optimal pension in the stationary equilibrium in 2015 is
rather low and only amounts to 14% of net wages. Next, we will analyze the effect
of aging and find that the quantitative welfare effects of lower pensions are even
larger for a grayer population.

6.4.2.1 Stationary Equilibrium in 2015
In the following, we assume that the population is stationary. For this reason, we
assume that the survival probabilities φt,s are constant and equal to those prevailing
in the year 2015. Figure 6.8 presents the survival probabilities estimated by UN
(2015) for the years 2015, 2050, and 2100. Clearly, the probability of surviving
from age s to age s + 1 declines with age s and increases over time. In addition,
we assume that population growth is constant and equal to 0.80%. Consequently,
the implied stationary old-age dependency ratio of the retired relative to the 20–65-
year-olds, OADR2, amounts to 27%. Furthermore, the distribution of the capital

45The concept of the value function is introduced in Appendix 6.2.
46An alternative would be to either let government expenditures be a production input or let the
government provide a public consumption good. See the applications in Chaps. 4 and 5.
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Fig. 6.8 (Projected) Survival probabilities in the years 2015, 2050, and 2100
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Fig. 6.9 Wealth-age profile

stock per (effective) capita, k̃ = K/(AN), is constant across age s and productivity
types η and ε.

The average wealth k̃s of the s-year-old cohort with high (broken green line)
and low (solid red line) permanent productivity over the life-cycle is graphed in
Fig. 6.9. High-income (low-income) households accumulate savings until age 59
(53) before they start to dissave. In their effort to smooth consumption over their
lifetime, households start to consume part of their savings as their income declines.
The decline in wage income is caused by the decrease in age-dependent efficiency
ȳs , which peaks at age 50 (see Fig. 6.7). The decline in wealth is accelerated as soon
as the households retire because pensions are below the former wage income.
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The profile of average working hours of the s-year-old over the life-cycle in
Fig. 6.10 mirrors the age-productivity profile in Fig. 6.7 because the substitution
effect of higher wages dominates the income effect. However, the peak of working
hours (at age 30) takes place prior to the peak in age-dependent efficiency ȳs because
of increasing wealth over the lifetime, which reduces labor supply.

Labor supply and wealth also depend on the permanent and temporary produc-
tivity types {ε, η}. Both increase with higher productivity, ε = ε2 and η = η2. The
household with ε = ε1 that experiences a negative productivity shock, η = η1, is
also liquidity-constrained, k̃ = 0, if it has not accumulated sufficient savings in prior
periods. In fact, the percentage of households without savings amounts to 36.5%
in our benchmark calibration. Empirically, a large fraction of households are also
credit-constrained. Budría Rodriguez, Díaz-Giménez, and Quadrini (2002) report
that 2.5% of households have zero wealth and 7.4% actually have negative wealth
in the 1998 Survey of Consumer Finances.

The average consumption-age profile displayed in Fig. 6.11 attains its maximum
one period prior to retirement and declines in old age. These observations are in
accordance with empirical evidence for the US economy reported by Fernández-
Villaverde and Krueger (2007). If we had used the assumption of perfect annuities
markets to address accidental bequests (rather than the case in which the government
collects the accidental bequests and redistributes them lump-sum), the consumption-
age profile would be increasing over the entire life-cycle, as demonstrated by
Hansen and İmrohoroğlu (2008). This behavior, however, would be at odds with
the empirically observed hump-shaped consumption-age profile. Notice further
that consumption declines as the households enter retirement. This consumption
behavior results from the household’s effort to smooth utility over its lifetime.
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Since consumption and leisure are substitutes and leisure increases to 100% during
retirement, consumption is reduced.47

The heterogeneity in individual productivity, εηȳs , results in inequality in wages,
income, and wealth. The Gini coefficient of wage income amounts to 0.379 and
implies inequality in gross income and wealth, which are characterized by Gini
coefficients of 0.390 and 0.669, respectively. The results are summarized in the
second column of Table 6.6. Notice that the OLG model is able to generate much
more inequality in wealth than in income as observed empirically.48 However, all
our inequality measures fall short of the values observed empirically. For example,
Budría Rodriguez, Díaz-Giménez, and Quadrini (2002) report Gini coefficients
of (gross) income and wealth equal to 0.553 and 0.803. Our model’s inequality
measures underestimate the empirical measures for two main reasons49: (1) We do
not consider self-employed workers and entrepreneurs. Quadrini (2000) presents
empirical evidence that the concentration of income and wealth is higher among
entrepreneurs and that the introduction of entrepreneurs into a model similar to ours
helps to reconcile the inequality in the model with that in the US economy. (2)
We omit bequests. De Nardi and Yang (2016) develop a model that considers both
bequests of wealth and inheritance of abilities from parents and is able to match the
skewness of the distribution of income, wealth, and bequests.

47In Problem 6.6, you are asked to test whether consumption habits help to improve the modeling
of consumption-age behavior in a standard Auerbach-Kotlikoff model that implies a downward
jump in consumption at the age of retirement.
48One of the first studies to highlight the role of the OLG model in accounting for observed wealth
heterogeneity was Huggett (1996).
49See De Nardi (2015) for a survey of modeling wealth heterogeneity in quantitative general
equilibrium models.
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Table 6.6 Allocative effects of social security

2015 2050

θp 50% 0% 14% 50% 0% 12%

Ỹ 0.425 0.501 0.479 0.420 0.514 0.481

K̃ 1.110 1.551 1.369 1.145 1.725 1.504

L̃ 0.248 0.265 0.259 0.239 0.261 0.253

l̄ 0.298 0.319 0.310 0.307 0.336 0.324

τp 8.53% 0% 2.59% 10.92% 0% 2.94%

T̃ r 0.0229 0.0390 0.329 0.0179 0.0340 0.0286

Gini coefficients

Wage income 0.379 0.367 0.373 0.374 0.360 0.366

Gross income 0.390 0.418 0.409 0.395 0.447 0.430

Wealth 0.669 0.604 0.631 0.665 0.588 0.616

Consumption 0.276 0.287 0.282 0.270 0.289 0.283

Liquidity-
constrained 36.5% 26.6% 29.2% 35.8% 24.5% 27.0%

Δ 0% 1.30% 1.80% 0% 2.27% 2.91%

Note: Welfare is measured by the average lifetime utility of the newborn generation in stationary
state. The welfare change Δ is computed as the consumption equivalent change relative to the
benchmark case (θp = 50%) in the years 2015 and 2050

Our model is also able to replicate the fact that consumption inequality is
considerably smaller than income inequality. Using US data from the Consumer
Expenditure Survey, Krueger and Perri (2006) present evidence that the Gini
coefficient of consumption was 0.26 in 2003, while it is equal to 0.276 in the model.

6.4.2.2 Abolition of Social Security
In the second and third columns of Table 6.6, the stationary-state allocation of
the benchmark (with a net pension replacement rate θp of 50%) is compared
with the case without social security (θp = 0%). The abolition of social security
increases savings for old age considerably, and thus, the aggregate capital stock
K̃ rises by 39.7%, from K̃ = 1.110 to K̃ = 1.551. In addition, the abolition of
distortionary pension contributions τp increases the labor supply (which is also
augmented because of the rise in the marginal product of labor) such that the average
working hours increase by 7.0%, from l̄ = 0.298 to l̄ = 0.319. As a consequence,
equilibrium output Ỹ increases by 17.9% in response to the abolition of social
security, and tax revenue rises. Therefore, the government is able to increase the
lump-sum transfers T̃ r by 70%, from 0.0229 to 0.0390. The share of transfers
relative to GDP, T̃ r/Ỹ , also rises, from 5.4% to 7.8%.

Without social security, wage income is less concentrated because the substitu-
tion effect of a higher net wage rate affects the labor supply of the low-efficiency
workers to a larger extent than that of the high-efficiency workers. Therefore,
the Gini coefficient of wage income falls from 0.379 to 0.367. However, gross
income is nevertheless more concentrated than in the case with social security
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because retired households with only interest income do not receive any income
from pension payments in the no-social-security case. For this reason, the Gini
coefficient of gross income increases from 0.390 to 0.418 if pensions are abolished.
The inequality of the wealth distribution decreases without pensions because, in this
case, many low-income workers have to save to provide for old age, and the number
of households without any savings decreases from 36.5% to 26.6%. Accordingly,
the Gini coefficient of wealth decreases considerably, from 0.660 to 0.604, if
social security is abolished. Although the social security system redistributes from
the income-rich to the income-poor, the distortionary effect of public pensions
dominates, and welfare increases significantly by a consumption equivalent of 1.3%
in the case without social security.

6.4.2.3 Optimal Pension Policy
The welfare effects of social security are ambiguous. On the one hand, public
PAYG pensions increase the distortions affecting labor supply and savings because
contributions are levied on labor income. On the other hand, social security insures
against negative income shocks and against the risk of longevity if, in particular,
annuity markets are missing. The overall effect can only be computed numerically.

The welfare changes associated with different net pension replacement rates θp

are presented in Fig. 6.12. We find that the optimal benefit level in 2015 (solid red
line) amounts to a replacement rate of 14% (if we assume the population to be
stationary with the demographics, survival probabilities and population growth rate
prevailing in 2015 and the economy to be in steady state). In this case, welfare
increases by 1.80% of total consumption relative to the benchmark. This number
likely represents a lower limit of the steady-state welfare effects. In particular, we
assume in our computation that additional tax revenue is re-transferred lump-sum to
the households. This assumption is not very realistic. Alternatively, we could have

Fig. 6.12 Welfare effects of pension policy θp
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Table 6.7 Decomposition of
welfare effects

Household type Δ

Low permanent productivity ε = 0.57

η = 0.727 −0.04%

η = 1.273 −1.11%

High permanent productivity ε = 1.43

η = 0.727 4.44%

η = 1.273 4.05%

Notes: The entries in the second col-
umn represent the consumption equiva-
lent change that accrues to a 20-year-old
household with the efficiency type {ε, η}
resulting from a reduction of θp from
50% to the optimal rate θp∗ = 14%

assumed that the government reduces the wage income tax rate τw instead and thus
that the distortion of the labor supply could have been further reduced. In this case,
welfare gains would have been even higher, and you are asked to compute them in
Problem 6.5.

Aggregate equilibrium values for the optimal pension policy θp∗ = 14% are
displayed in the fourth column of Table 6.6. Compared with the benchmark case,
the economy with the optimal pension policy is characterized by higher capital stock
K̃ , aggregate labor L̃, and output Ỹ . Comparing the second and the fourth columns,
we observe that, for example, the capital stock increases by 23%, from K̃ = 1.110 to
K̃ = 1.369. Accordingly, we should be careful to conclude from this comparative
steady-state analysis that the government should decrease pensions from 50% to
14%. During the transition from the old steady state with θp = 50% to the new
steady state with θp∗ = 14%, households have to accumulate savings and forgo
consumption, meaning that the generations during the transition between the two
steady states suffer welfare losses. Recall also that we noted in the previous section
that the transitional generations also suffer because they still have to pay the higher
pensions for the retired workers, while they will only receive a smaller pension
during their retirement. We will turn to the transition dynamics in the next section.

At this point, let us offer another word of caution. In Table 6.6, we report the
average lifetime utility of newborns. However, some are fortunate and are endowed
with high productivity at birth, while others have low productivity. If we reduce
pension benefits from a replacement rate of 50% to the optimal rate of 14%, poor
(or low-productivity) households will suffer disproportionally because they, in turn,
benefit the most from PAYG pensions that are not defined contribution based.
The low-income workers contribute relatively little in comparison with the rich
households but receive the same lump-sum pension. In Table 6.7, we present the
welfare gains or losses of the different productivity types εη. The workers with
the high permanent productivity type, ε = 1.43, benefit to a much larger extent
from the reduction in social security benefits than do low-productivity workers and
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gain approximately 4% of their total consumption, while the workers with low
productivity actually suffer welfare losses.

6.4.2.4 Aging and Optimal Pensions
The consequences of the demographic transition represent one of the greatest
economic challenges facing modern economies. In the fourth column of Table 6.6,
we present the equilibrium effects of an older population assuming that the
population is stationary and characterized by the survival probabilities and birth rate
projected by UN (2015) for the year 2050. The survival probabilities are presented
by the broken green line in Fig. 6.8, and population growth falls to 0.41% in 2050,
meaning that the implied stationary old-age dependency ratio OADR2 amounts to
36%.

As a consequence of aging, the share of workers in the population falls for a
constant replacement rate θp = 50%, and thus, aggregate labor supply L̃ declines by
3.4%, from 0.248 to 0.239. The decline in aggregate (efficient) labor is smaller than
the decline in the number of workers because (1) the age composition changes (such
that the workers are more productive on average) and (2) the average working hours
l̄ increase by 3.0%, (from 0.298 to 0.307). If the pension policy remains unchanged
and maintains a pension replacement rate of θp at 50%, the contribution rate τp

has to increase from 8.53% to 10.92% between 2015 and 2050, and government
transfers T̃ r fall from 0.0229 to 0.0179 due to lower tax revenue. With respect
to savings, we observe two opposing effects. On the one hand, we have a larger
share of retired households who dissave. Furthermore, net income decreases because
the pension contribution rate τp has to be augmented. On the other hand, the
composition of workers changes, and the workforce ages. Since older workers have
a higher savings rate than younger workers, aggregate savings increase because of
this composition effect. Furthermore, all workers accumulate higher precautionary
savings because they expect to live longer. The net effect is small but positive, and
thus, the capital stock K̃ increases by a small amount, from 1.110 in 2015 to 1.145
in 2050. Furthermore, the inequality of the income distribution increases to a small
extent, as the number of retired workers with a (relatively small) pension income
rises.

How does a grayer population affect the optimal amount of pension payments?
On the one hand, an increase in the old-age dependency ratio and a decline in the
birth rate reduce the return from the pension system. On the other hand, retirees are
becoming older on average, and thus, the (discounted) loss from old-age utility as a
consequence of possible negative income shocks is decreased to a larger extent. The
overall effect can only be computed numerically.

For the population in 2050 that is characterized by a higher old-age dependency
ratio, the optimal pension policy consists of a net pension replacement rate that
is somewhat smaller than the optimal one in 2015. In fact, the optimal pension
rate θp falls from 14% in 2015 to 12% in 2050. The welfare effects of different
pension policies θp are illustrated by the broken green line in Fig. 6.12. For the
new optimum, θp∗∗ = 12%, consumption gains in 2050 are more than 50% larger
than under the optimal policy in 2015 and amount to 2.91% of total consumption.
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Therefore, we can conclude that pension reform policies are even more welfare-
improving in economies with an older population than in younger economies.

In summary, we found two main results in this section, in which we focused on
the steady state and neglected transitional dynamics. (1) Social security substantially
decreases welfare for the present high levels of pensions that are observed in
OECD countries and should be decreased to levels that are characterized by a
net pension replacement rate θp below 20%. (2) The optimal level of pensions is
somewhat smaller in an economy with a grayer population, and the quantitative
welfare effects of an optimal pension policy are even more significant and in the
amount of several percentage points of total consumption. This result is found to be
rather robust in the literature. For example, Heer (2018) shows that the two results
above continue to hold if we assume recursive preferences, a lower intertemporal
elasticity of substitution, a lower Frisch labor supply elasticity,50 or additional
income uncertainty from unemployment.51

6.4.3 Transition Analysis

In the following, we also consider the transitional dynamics associated with a
change in pension policy and during the demographic transition. To do so, we
assume that the economy is in steady state in 2015 and that the population
evolves according to the population projections for the US economy during the
period 2015–2100. In particular, we assume that the survival probabilities and the
population growth rates of the model population are equal to those forecasted by
UN (2015). Starting in 2100, the demographic variables are constant and equal to
those prevailing in the year 2100, with a population growth rate equal to 0.2%.
Therefore, the dependency ratio increases from 27.0% in 2015 to 43.0% in the long
run. The behavior of the dependency ratio is illustrated in Fig. 6.13. Notice that the
dependency ratio does not stabilize until the year 2150, despite that we assume that

50İmrohoroğlu and Kitao (2009) also study the effect of the Frisch labor supply elasticity on
aggregate labor and the labor-age profile. They distinguish between two different scenarios for
the pension reform, consisting of the downsizing of the system by 50% or the total elimination
of social security. İmrohoroğlu and Kitao show that the effect of pension reforms on aggregate
labor is rather insensitive to the Frisch elasticity, while the profile of hours over the life-cycle
is highly sensitive. They also find substantial welfare gains from the reduction in pensions even
in the case of a low labor supply elasticity. According to their Table 6.2, the long-run welfare
gain of half-privatization amounts to 4.3% of total consumption for a low Frisch elasticity equal
to ηlw = 0.5. In contrast to our approach, however, they do not model permanent productivity
differences between the workers, and thus, income heterogeneity is smaller in their model than in
ours.
51We neglect one factor that might increase the welfare effects of social security, however.
Fuster, İmrohoroğlu, and İmrohoroğlu (2003) find that in the case of two-sided altruism towards
ancestors and descendants, the welfare effects of social security are enhanced. Altonij, Hayashi,
and Kotlikoff (1997), however, present empirical evidence that rejects the implications of altruism
for intergenerational risk-sharing behavior.
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Fig. 6.13 Demographic transition in the OLG model

the survival probabilities and birth rates are constant after 2100. In our computation,
we therefore assume that the transition to the new steady state is complete by the
year 2250. In addition, the levels of government expenditures and the tax rates are
held constant at the levels prevailing in the steady state in 2015 such that government
transfers T̃ r adjust to balance the government budget (6.50).52

In 2015, the government announces an unexpected policy change that becomes
effective in the same year. The new pension policy consists of a change in the
replacement rate from 50% to θ̃p∗∗ = 12% that was found optimal for the stationary
state population in 2050. We also present the results for the case of no policy change,
θ̃p = 50%, and one intermediate case, θ̃p = 30%. In addition, we assume that the
policy is implemented gradually and stretched over a period of nθ = 45 years such
that the number of years accord with the length of the working life. Furthermore, the
net pension replacement rate decreases linearly over the implementation period.53

Figure 6.14 illustrates the pension policy θp for the case of a reduction to θp∗∗ =
12%.

Figure 6.15 plots the evolution of aggregate capital K̃ , aggregate labor L̃,
aggregate output Ỹ , the pension contribution rate τp, and government transfers
T̃ r (which are equal to household transfers t̃ r) during the transition for the three
policies with a long-run pension replacement rate θp equal to 50% (solid red
line), 30% (broken green line), and 12% (broken and dotted blue line). The results
are in line with those of similar transition experiments in the literature and our
comparative steady-state analysis in the preceding section. During the demographic
transition, the population is aging due to increasing life expectancy, and the old-age

52More precisely, we assume that the per capita government expenditures grow at the exogenous
rate of technological growth.
53For example, Kitao (2014) also considers a linear adjustment over a period of 50 years.
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Fig. 6.14 Pension policy change and net pension replacement rate θp

dependency ratio of the 65+/(20–65) year-olds increases from 27% to 43% between
2015 and 2200. As a consequence, the labor force share and, hence, aggregate labor
L̃ is shrinking.54 There are multiple effects of the demographic transition on savings.
On the one hand, a higher share of the population is retired and decumulates savings.
On the other hand, households live longer, and therefore, workers accumulate more
retirement savings. If pensions are also decreased, the latter effect compensates for
the former effect, and aggregate savings and the capital stock increase over time.
Since capital increases relative to labor over time, the real interest rate decreases,
while the wage rate increases (not presented).

When the pension replacement rate θp is gradually reduced to its optimal steady-
state rate θp∗∗ = 12% for the year 2050, both pensions pen and the contribution
rate τp (see the broken blue line in the middle-right panel of Fig. 6.15) fall until
the year 2060. As a consequence, the net wage rate (1 − τw − τp)wt increases,
and the individual augments his labor supply. Therefore, aggregate labor actually
increases during the initial phase of the transition during the years 2015–2060 for the
pension policies θp ∈ {12%, 30%}. Thereafter, the effect of a shrinking labor force
dominates, and L̃ declines to its new long-run equilibrium value. The dynamics
of the capital stock over time are also hump-shaped for θp ∈ {30%, 50%}, and
aggregate savings peak later, around the year 2080, due to the sluggishness of the
capital stock.55 Therefore, aggregate output Ỹ also displays a hump-shaped profile
over time. In the case of medium to high pensions, θp ∈ {30%, 50%}, government

54Recall that aggregate labor Lt in period t is expressed relative to total population Nt .
55For example, young workers in the years 2050–2060 supply the highest number of working hours
during the entire transition period, but their wealth peaks only at the end of their working life in
later years.



6.4 Optimal Pensions 295

1.
7

0.
26

6
0.

25
8

0.
25

0
0.

24
2

0.
23

4

1.
6

1.
5

1.
4

1.
3

1.
2

1.
1

0.
49 0.

14
0.

10
0.

06
0.

02

0.
47

0.
45

0.
43

0.
41

0.
03

0
0.

02
4

0.
01

8
0.

01
2

Year

K L

Y Pension contribution rate τp

50%
30%
12%

2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

Year

Government transfers Tr

2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

Year
2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

Year
2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

Year
2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

Fig. 6.15 Transition dynamics in the OLG model

transfers T̃ r to households have to decline in the medium and long run relative to the
year 2015 because the share of government expenditures (government consumption)
increases relative to GDP, while government revenues shrink.56

Figure 6.16 presents the welfare effects of a switch from the present policy,
θp = 50% to the two pension reform policies, θp ∈ {30%, 12%}, for the
individual generations that enter the labor force during the years 1946–2200. The
first generation that is affected by this change in policy is the one that is still alive
in the year 2015 and entered the labor force at age 20 in the year 1946. Since this
generation is only affected in the last period of life, the effect on lifetime utility is
negligible and close to zero. Later generations, however, suffer substantial welfare
losses, which are the largest for those agents who enter the labor force around the
year 1995 and are in the mid-period of their working life when the policy change
is implemented in the year 2015. For those households, average lifetime utility
declines by a consumption equivalent of 3.8% or 8.5% depending on the policy,
θp ∈ {30%, 12%}. These households receive a lower pension in old age but still

56Recall that we assumed that G̃ would remain at its 2015 level. In addition, government revenue
from accidental bequests declines due to higher survival probabilities. The latter effect, however,
is rather modest.
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Fig. 6.16 Generational welfare and pension policy reform θp ∈ {50%, 30%, 12%}

have to provide for those retirees with the higher pension during the transition.
Households born after the years 2040 and 2050 benefit from the new pension policy
via a reduction in θp to 30% and 12%, respectively. Notice that the number of
generations that will benefit from such a policy depends on the boldness of the
reform. The stronger the reform, the longer it takes for its benefits to manifest
as improved generational welfare. The implementation of a policy that maximizes
steady-state lifetime utility, θp = 12%, therefore, implies significant costs for the
current and even the initial future generations. Note further that if the government
had asked the voters in 2015 if it should implement a pension policy change, it
would not have obtained a majority, as no generation living would have benefitted
from such a reform.57,58

6.5 Quantitative Studies of Pension Reform Proposals

The literature includes many quantitative studies on the effects of pension reforms
akin to that in the previous section. The majority of these general equilibrium studies
are based on OLG models with income uncertainty that are calibrated with respect

57Recall that we consider only the average lifetime utility of the individual generations. The welfare
effects might vary considerably across the different productivity types (see also Table 6.7 for the
steady-state analysis for the year 2015).
58A study that focuses on the political implementability of a transition from the status quo to a
reduction in PAYGO pensions in the US is provided by Conesa and Krueger (1999). In accordance
with our argument, they find that although the transition to a fully funded pension system would
imply substantial welfare gains, a majority of voters would be worse off from this option and thus
favor the status quo.
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to the US economy. As one of the first such studies, the seminal work on US
demographics and social security is Auerbach and Kotlikoff (1987), who study the
effect of (1) a reduction in the pension replacement rate with respect to wages from
60% to 40% and (2) an increase in the retirement age from 65 to 67.59 These policies
result in considerable welfare effects of several percentage points.

While Auerbach and Kotlikoff only study two possible situations for the
demographic transition (one with a sudden drop in the fertility rate and one with
a boom and bust cycle), De Nardi, Imrohoroğlu, and Sargent (1999) use the
‘medium’ population projection of the Social Security Administration as an input
into their model. In addition to the model in the previous section, they also introduce
bequests to improve the modeling of the capital stock (relative to GDP) and its
distribution. Bequests are introduced as a warm glow, meaning that instantaneous
utility has an additive component that depends on the amount of bequests. To
keep the model tractable and computable,60 they assume a special function of
utility from consumption and disutility of labor (both quadratic and additive). In
addition, the insurance properties of the social security are not motivated by a
temporary shock to individual labor productivity but rather a shock to the wealth
endowment. As a consequence of these assumptions, individual policy functions
(e.g., individual consumption) are a linear function of individual state variables
(in particular, wealth), meaning that aggregation is straightforward and does not
depend on the distribution of wealth (in contrast to our model above). De Nardi,
Imrohoroğlu, and Sargent (1999) analyze different policies to finance additional
expenditures on pensions due to the demographic transition, including raising
different taxes (consumption, labor income), reducing benefits, or increasing the
mandatory retirement age. In addition, the authors also account for the welfare of
the cohorts during the transition. They find that the only policy of those considered
in their paper that raises the welfare of all generations is one that switches to a purely
defined contribution system. A model that is closely related to ours is provided by
İmrohoroğlu, İmrohoroğlu, and Joines (1995). These authors find that the optimal
social security replacement rate amounts to 30% and that the benefits are equal to
2.08% of GNP.61 In contrast to our model, they assume that there are only two

59See pages 174–177 in Auerbach and Kotlikoff (1987).
60Recall (if your age allows for it) that computer technology in these years was less capable of
handling such numerical problems with a high dimension of (individual) state variables.
61As noted by İmrohoroğlu, İmrohoroğlu, and Joines (1999), this high value for optimal pensions
results from the fact that their model is characterized by dynamic inefficiency in the absence of
social security. Higher pensions and, hence, lower savings actually increase total consumption at
low replacement rates. In addition, İmrohoroğlu, İmrohoroğlu, and Joines (1999) argue that the US
economy is dynamically efficient, as shown by Abel, Mankiw, Summers, and Zeckhauser (1989).
In our model above, we only consider dynamically efficient economies in which the population
growth rate is below the economic growth rate. İmrohoroğlu, İmrohoroğlu, and Joines (1999) also
include land as a (constant) production factor in addition to capital and labor and, as a consequence,
their economy is dynamically efficient. They find the optimal unfunded PAYG public pensions in
the US to be zero in the stationary state.
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types of households, employed and unemployed. Therefore, they do not model
the heterogeneity of the wage rate distribution that is observed empirically except
for the age-efficiency profile. Within cohorts, all workers have equal individual
productivity. In addition to the within-cohort heterogeneity, we also endogenize the
individual’s labor supply decision and, therefore, the distortion to the labor supply,
and thus, our optimal pension replacement rate is lower.62 We already introduced
technological growth into our benchmark, while İmrohoroğlu, İmrohoroğlu, and
Joines (1995) only provide a sensitivity analysis for this case.63

In addition to our above problem of the optimal pension, Fehr, Kallweit, and
Kindermann (2013) compute the optimal mix between flat and earnings-related
pensions for the German pension system. They find that the flat-rate pension share
should be equal to 30% of total pensions to optimize the trade-off between the
increased labor supply distortion and the benefit from increased insurance provision
against labor market risk. In addition to our model above, Fehr, Kallweit, and
Kindermann (2013) endogenize the decision on the retirement age and also allow for
disability risk, reflecting the fact that 20% of new entries into the German pension
system are due to disability. In their analysis, however, the contribution rate τp is
set to be constant; moreover, they abstract from population growth.

Many studies, e.g., Nishiyama and Smetters (2007) or Kitao (2014), compute
the transition dynamics, as we did in the previous section. In addition, they go
one step further in their analysis, following Auerbach and Kotlikoff (1987), and
ask whether it is possible to compensate the losers who are alive in 2015 from
a change in the social security system and still induce long-run welfare gains.
In our setup in the previous section, we might wonder whether a transfer from
the generations that are born after the year 2015 to those born before is possible
such that these agents are indifferent between a pension reform that reduces the
replacement rate from 50% to 12% and a constant pension policy. This transfer
is also called Hicksian compensation. To finance these transfers, the government
must accumulate debt (and sometimes assets under different policies) that has to
be financed by the generations born after the year 2015.64 For those generations
that are born after 2015, the government debt is re-distributed among them such

62Another study with exogenous labor supply that focuses on the distortion of social security
contributions affecting the accumulation of capital is Storesletten, Telmer, and Yaron (1999). The
main channel emphasized in their model is the financing of pensions with a distortionary income
tax that is levied on labor and capital income. Since labor supply is exogenous, the distortion only
affects capital accumulation. The authors compare the current system (as of 1996) to alternative
scenarios including the abolition of the social security system and a system that is partially PAYG
and partially fully funded. They find the alternatives to imply significant welfare gains if general
equilibrium effects are taken into account.
63İmrohoroğlu, İmrohoroğlu, and Joines (1995) find that the optimal level of social security
“appears to be zero when . . . we incorporate exogenous technological progress in the model”.
64Notice that another asset variable in the form of government debt enters our model, and in general
equilibrium, the sum of debt (equivalently, government assets) and capital is equal to aggregate
savings.
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that the welfare effect (as measured by the consumption equivalent change of the
average newborn) is equalized across all these future generations. This change in
welfare for the generations during the period 2015–2200 is called the Hicksian
efficiency gain.65 If future generations benefit from such a combination of pension
and debt policy, the pension reform is welfare-enhancing. Using this approach,
Nishiyama and Smetters (2007) analyze a 50% privatization of social security and
find the welfare effects to be sensitive to the assumptions of a closed economy,
missing annuities markets, and the progressivity of pensions. Similarly, Kitao (2014)
compares four different financing policies to keep social security sustainable but
does not derive the optimal pension. In particular, Kitao (2014) compares polices
that (1) increase the payroll tax while keeping the benefit level constant, (2) keep
the payroll tax constant, (3) increase the retirement age, and (4) introduce means-
tested benefits. In accordance with our results, he finds that reducing the benefit is
the most efficient policy in the long run.

In comparison to the demographics in the United States, many other indus-
trialized countries are experiencing more rapid aging, especially in Japan or in
many areas of Europe, e.g., in Italy and Germany. Modeling the US as an open
economy, Krueger and Ludwig (2007) demonstrate in a multi-country OLG model
that the stronger worldwide decline in the labor force relative to aggregate savings
reduces the interest rate in the US economy even more markedly, while the increase
in the wage rate is also reinforced.66 The effect on factor prices is shown to
be sensitive to the pension reform considered (cutting pensions or increasing the
retirement age or contributions). They find that due to the compositional effects of
an aging workforce, income inequality increases over the subsequent decades. The
welfare effects of the demographic transition depend on the age of the household.
Younger households gain because wage rates increase, while older households lose.
Attanasio, Kitao, and Violante (2007) consider a two-region model that includes
both a North (North America, Europe, Japan, Australia and New Zealand) and a
South (Africa, Asia (excluding Japan), Latin America, and the Caribbean) region.
While the former is at the end of the demographic transition, the latter is in the midst
of it. They note that the welfare effects of pension policies diverge significantly
between the closed- and the open-economy models.

The above studies all assume that productivity growth is constant and indepen-
dent of the age distribution within the population. In contrast, Heer and Irmen (2014)
endogenize growth. In their model, firms have a higher incentive to invest in labor-
saving technological progress if labor becomes scarcer (relative to capital). Again,
the quantitative effect of aging on the growth rate is sensitive to the particular

65You are asked to compute the Hicksian efficiency gain for the two-period OLG model from
Sect. 6.3.2 in Problem 6.4.
66To keep the model tractable, Krueger and Ludwig (2007) assume that pensions depend only on
the permanent efficiency type, not on the stochastic individual component. In addition, the authors
study the transition dynamics under the assumption that contribution rates freeze in 2004. Beyond
these assumptions, the model closely resembles that in the previous section.
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pension reform considered. They find that the average annual growth rate, which
amounted to 1.74% during the period 1990–2000, increases to 2.41% in 2100
when the replacement rate of pensions is held constant and financed by additional
contributions. The effect is even larger if the contribution rate is frozen at its 2000
level.

In summary, the studies of the demographic transition above come to the
conclusion that the quantitative effects of the demographic transition on income and
its distribution are quantitatively significant. The government’s policy responses to
social security issues are crucial in this matter and make a substantial difference
with respect to income, its distribution, welfare, and growth. The common factor of
the studies reviewed above is that contribution rates should not be increased over
the coming decades; rather pensions should be reduced and the retirement age be
raised (or, at least, workers should be able to choose a longer working life).

6.6 Demography and the Fiscal Space

The demographic transition in modern industrialized (as well as developing)
countries has significant effects on the sustainability of public finances. Dependency
ratios, as presented in Sect. 6.2, are on the rise and will double in many countries
between 2015 and 2050, implying twice as many retirees relative to workers.
This development will seriously impact both sides of public finance, revenues and
spending. On the one hand, a grayer population has a smaller number of workers
and, hence, income tax payers. Tax revenue will decline. On the other hand, public
expenditures on social security will increase. As we considered in the previous
sections of this chapter, public PAYG pensions will rise relative to GDP (and wage
income), and thus, pension contributions will have to rise if pension replacement
rates are left unchanged. Similarly, health expenditures for the older population will
rise relative to GDP.

To study the sustainability of public finance, we introduce the concept of fiscal
space. Let us assume that (1) government expenditures also include both public
pension and public debt payments and that (2) the government holds the debt level
constant. Therefore, government expenditures are equal to tax revenue. In addition,
we assume that the government only collects revenue from income taxes and social
security contributions (on wage income). Figure 6.17 presents the tax revenue
(including social security contributions) and government expenditures G2015 for
different tax rates τ . Tax revenue is hump-shaped and equal to zero for a tax rate
τ of 0% or 100%, as you learned in Sect. 5.5 on the Laffer curve. The level of
government expenditures is assumed to be independent of the income tax rate τ and
is illustrated by the line G2015. To balance the budget (in 2015), the fiscal authority
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Fig. 6.17 The Laffer curve and the fiscal space

has to set the income tax rate equal to τ2015.67 In the depicted situation for the year
2015, the fiscal authority is still able to further increase tax revenue (and, hence,
government spending). As a concept to measure fiscal sustainability, we define the
fiscal space as the additional possible tax revenue relative to total tax revenue (or,
alternatively, relative to GDP).

Aging will affect both curves, the Laffer and government expenditures curves.
First, possible tax revenue will fall as the (relative) number of workers declines.
Therefore, the Laffer curve moves inward between 2015 and 2050, as illustrated in
Fig. 6.18. Second, government expenditures (on social security) will rise, and thus,
the line for government expenditures in the year 2050, G2050, lies above the line for
present government expenditures in the year 2015, G2015. As a consequence, the
fiscal space shrinks during the demographic transition.

Heer, Polito, and Wickens (2017) study the sustainability of pension systems for
the United States and 14-EU countries. To do so, they use an OLG model similar to
that in Sect. 6.4.1 above.68 They calibrate the model with respect to the individual
characteristics of the 15 countries and use UN projections for the dependency ratios
to estimate the year when the fiscal space will have shrunk to zero, meaning that
public finances are no longer sustainable. The findings are rather mixed for the group
of countries considered and depend on many factors including demographics, the

67There are two different tax rates that fulfill the condition of a balanced budget (the two points
of interception of the Laffer curve and the line of government expenditures G2015); naturally, the
government chooses the lower tax rate on the upward-sloping side of the Laffer curve.
68However, they simplify the model by not considering income uncertainty.
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Fig. 6.18 Fiscal sustainability and aging

generosity of pension systems, and the level of total government expenditures. For
the United States in 2010, for example, Heer, Polito, and Wickens (2017) estimate
a fiscal space of 32% of additional tax revenue (holding the pension levels constant
at their 2010 level), while the fiscal space only amounts to 6% on average in the
EU-14 countries. Moreover, countries such as the United Kingdom, Ireland, and the
United States are characterized by a very reassuring situation, and public finances in
the United States, for example, do not become unsustainable over the time horizon
2015–2100. Many continental European countries, e.g., Germany, France, Italy, or
Spain, reach the limit of their fiscal spaces over the next 20 years. Table 6.8 presents
the estimates of Heer, Polito, and Wickens (2017) for two scenarios, an unchanged
pension policy and an increase in the retirement age to 70. Evidently, reforming
pension policy helps to improve fiscal sustainability in all countries, although the
fiscal outlook remains rather bleak for Italy and Spain. The table also contains recent
estimates from Braun and Joines (2015) for Japan. They find in a model that is
very similar to ours69 that even after the inclusion of planned increases in taxes
and planned reductions in pensions, current fiscal policies are unsustainable. They
project a sovereign debt crisis in Japan by 2039.70

69Their model is in some respects more elaborate than ours, in particular with respect to the
projection of public medical expenditures; it also includes age-specific fertility rates. In addition,
the authors assume that the interest rate on government debt is 1.145% lower than the rate of return
on capital throughout the transition.
70We will discuss the role of debt in the next chapter.
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Table 6.8 Years when the
fiscal space is forecasted to be
zero

Country No reform Retirement age 70

France 2025 2085

Germany 2035 —

United Kingdom 2090 —

Ireland 2075 —

Italy 2030 2040

Japan 2039

The Netherlands 2035 —

Spain 2035 2050

US — —

Notes: Estimates are taken from Heer, Polito, and
Wickens (2017) for Europe and the US and from
Braun and Joines (2015) for Japan. A ‘—’ indicates
that the fiscal space remains strictly positive. For
Japan, no estimates are available for the case of later
retirement

Appendix 6.1: Accidental Bequests

To understand why accidental bequests in (6.56e) are given by the sum of next-
period assets k̃′ and the interest rt+1k̃

′, we will consider a simplified two-period
model. In particular, let Nt(1) and Nt(2) denote the sizes of the young and old
generations in period t . The survival probability of the young is denoted by φ1, and
population grows at rate n, implying:

Nt+1(2) = φ1Nt(1), (6.61a)

Nt+1(1) = (1 + n)Nt (1). (6.61b)

Consequently, total population is given by

Nt = Nt(1) + Nt(2).

Total accidental bequests are confiscated by the government and redistributed lump-
sum to the total population in the amount Nt+1trt+1 in period t + 1:

Beqt+1 = Nt+1trt+1.

For the rest of the model, we stipulate that the standard equilibrium conditions of
the two-period OLG model in Chap. 3 hold. Therefore, the aggregate capital stock
Kt+1 at the beginning of period t+1 is equal to total savings of the young generation
at the end of period t , Nt(1)st ; consumption of the young c1

t+1 is equal to their
wage income plus transfers minus savings; and consumption of the old c2

t+1 is equal
to savings plus interest and transfers. Finally, the factor prices are equal to their
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marginal products. These conditions are summarized by the following equations:

Nt(1)st = Kt+1, (6.62a)

Nt+1(1)st+1 = Kt+2, (6.62b)

c1
t+1 = wt+1lt+1 + trt+1 − st+1, (6.62c)

c2
t+1 = (1 + rt+1)st + trt+1, (6.62d)

rt+1 = FK (Kt+1, lt+1Nt+1(1)) − δ, (6.62e)

wt+1 = FL (Kt+1, lt+1Nt+1(1)) . (6.62f)

As before, we assume that production is characterized by constant returns to scale,
implying:

Yt = F(Kt , ltNt (1)) = FK (Kt , ltNt (1))Kt + FL (Kt , ltNt (1)) ltNt (1).

In the goods market equilibrium:

Kt+1(1 − δ) + Yt+1 = Nt+1(1)c
1
t+1 + Nt+1(2)c

2
t+1 + Kt+2. (6.63)

Inserting the above equations into the equation for the goods market equilibrium,
we derive

Kt+1 + wt+1lt+1Nt+1(1)+ rt+1Kt+1

= wt+1lt+1Nt+1(1) + Nt+1(1)trt+1 − Nt+1(1)st+1

+ Nt+1(2) [1 + rt+1] st + Nt+1(2)trt+1 + Kt+2,

and therefore,

Kt+1 + rt+1Kt+1 = Nt+1trt+1 + Nt+1(2) [1 + rt+1] st

= Nt+1trt+1 + φ1Nt(1) [1 + rt+1] st

= Nt+1trt+1 + φ1 [1 + rt+1]Kt+1.

Consequently,

Beqt+1 = Nt+1trt+1 = (1 − φ1) [1 + rt+1]Kt+1. (6.64)
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Appendix 6.2: Computation of the Large-Scale OLGModel
in Sect. 6.4

Solving for the stationary equilibrium is a computational challenge. Recall how
we solved the two-period OLG model with a PAYG pension system and defined
contribution benefits in Sect. 6.3.2. We were able to directly solve the first-order
conditions of the households together with the equilibrium equations. In particular,
the optimality condition with respect to the labor supply was given by (6.33c). In
the large-scale OLG model in Sect. 6.4, the computational problem is much more
complicated. We cannot solve for the optimal labor supply for all workers alive
because of their high numbers. For this reason, consider the first period of life,
s = 1. In this cohort, we have four different types of workers with the productivity
types ηiεj with i = 1, 2 and j = 1, 2. They all accumulate different amounts of
savings. At age 2, they may change their productivity type such that the number
of heterogeneous workers increases to 4 × 2 = 8. Since the workers accumulate
different amounts of savings depending on their employment history, the workers in
a cohort are different (with respect to their savings) even for the same productivity
type εiηj . Prior to retirement at age s = 45, we observe 4×244 = 7.0·1013 different
workers. We cannot solve this problem with the help of direct computation for such
a large number of agents. Instead, we use value function iteration.

Value Function Iteration

To describe the optimization problem, we use a recursive representation of the con-
sumer’s problem, following Stokey, Lucas, and Prescott (1989). This specification
is very amenable to the solution methods described below. Let Vt(kst , s, ε, η) be
the value of the objective function of the s-year-old agent with wealth kst , age s,
permanent efficiency type ε, and individual productivity η in period t . The value
function Vt(.) is equal to the optimized discounted expected lifetime utility. Thus,
for the individual during the last period of his life, s = 70, the stationary value
function is simply given by:

Vt(k
70
t , 70, ε, η) = max

c70
t ,k71

t+1

u(c70
t , 1)

subject to k71
t+1 ≥ 0 and the budget constraint (6.55) noticing that cst = At c̃

s
t and

kst = At k̃
s
t . Obviously, the optimal policy is given by k̃71

t+1 = 0 and

c̃70
t = p̃ent +

[
1 + (1 − τK)rt

]
k̃70
t + t̃ rt .

The household completely consumes its income (from pensions and interest) and
wealth during the last period of life.
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In the second-to-last period of life, s = 69, the value function is given by the
following equation:

Vt(k
69
t , 69, ε, η) = max

c69
t ,k70

t+1,c
70
t+1,k

71
t+2

{
u(c69

t , 1) + βEtu(c
70
t+1, 1)

}

subject to the budget constraint (6.55) in periods t and t + 1. It will be convenient to
transform the above equation into one with stationary values. For this reason, divide
the equation by A

ι(1−σ)
t , which results in

Ṽt (k̃
69
t , 69, ε, η)

= max
c̃69
t ,k̃70

t+1,c̃
70
t+1,k̃

71
t+2

{
u(c̃t (69), 1) + (1 + γ )ι(1−σ)βEt u(c̃

70
t+1, 1)

}
,

with Ṽt ≡ Vt/A
ι(1−σ)
t . In addition, we have used the fact that

u(c70
t+1, 1)

A
ι(1−σ)
t

= (c70
t+1)

ι(1−σ)

1 − σ

1

A
ι(1−σ)
t

= (c̃70
t+1)

ι(1−σ)

1 − σ
(1 + γ )ι(1−σ).

Equivalently, the above dynamic equation can be restated as a recursive equation as
follows:

Ṽt (k̃
69
t , 69, ε, η) = max

c̃69
t ,k̃70

t+1

{
u(c̃69

t , 1)

+(1 + γ )ι(1−σ)βEt Ṽt+1(k̃
70
t+1, 70, ε, η)

}
.

For the household aged s, we can use this recursive formulation more generally
as follows:

Ṽt (k̃
s
t , s, ε, η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
k̃s+1
t+1 ,c̃

s
t ,l

s
t

[
u
(
c̃st , l

s
t

)

+ (1 + γ )ι(1−σ)βEt Ṽt+1(k̃
s+1
t+1 , s + 1, ε, η′)

]
,

s = 1, . . . , R − 1

max
k̃s+1
t+1 ,c̃

s
t

[
u
(
c̃st , 1

)+

(1 + γ )ι(1−σ)βEt Ṽt+1(k̃
s+1
t+1 , s + 1, ε, η)

]
,

s = R, . . . , J,

(6.65)

subject to (6.55) and (6.46). Equation (6.65) is also known as the Bellman equation.
We will exploit its recursive nature to compute the optimal policy functions of the
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households (for given factor prices {wt , rt }, government transfers t̃ rt , and pension
policies p̃ent ).

We solve for the optimization problem of the household starting in the last period
of its life, working our way back to the first period of the household’s life. As we
do not know the exact value of k̃70

t , we compute the value function Ṽ (k̃, 70, ε, η)
over a range of k̃ ∈ [k̃min, k̃max]. Since we assume a liquidity constraint k̃ ≥ 0,
we choose k̃min = 0. Finding a good value for the upper limit of the interval k̃max
is more difficult. Since we do not yet know the equilibrium values of w, r , t̃ r , or
p̃en, we do not know the maximum income of households that is required to obtain
a possible guess for the upper limit of savings. We, instead, advocate for a rather
pragmatic procedure. We will calibrate our model such that the real interest rate r

is approximately equal to 4% as observed in the US economy. In addition, we know
the mass of working agents in our model, which is approximately 2/3. Assuming
that average productivity is equal to one and agents work approximately 30% of
their available time (we will calibrate the model accordingly below), we obtain a
rough estimate of L̃ ≈ 0.2. From the first-order condition of the firm, we know
that r = αk̃α−1L̃1−α − δ. Consequently, we can compute an approximate value
of k̃ = 6.19. Since savings initially increase over the working life, wealth k̃st will
also be hump-shaped over the life-cycle and may well exceed average wealth. We,
therefore, choose an initial value of k̃max = 20 and find it to be non-binding in our
computations.

Since we cannot compute the value function of the 70-year-old at each point of
the interval [k̃min, k̃max] (the number of all points is infinite), we only perform this
calculation at certain grid points. We choose equispaced grids with nk = 100 points.
In the computation of the value function of the 69-year-old, we will need the value
of the value function at age s = 70 between grid points. To obtain this, we will
interpolate linearly between grid points if necessary.

Computing the value function Ṽ (k̃, s, ε, η) at a grid point (k̃i , 70, ε, η), i =
1, . . . , nk , is straightforward and follows from the budget constraint and the
definition of the utility function:

Ṽt (k̃
i , 70, ε, η) =

(
p̃ent + [1 + (1 − τK)rt

]
k̃i + t̃ rt

)ι(1−σ)

1 − σ
.

Notice that the value of the value function is the same for all productivity types
(ε, η) since they no longer affect income as long as households have accumulated
the same wealth k̃i .

For the retired households with age s = 69, 68, . . . , 46, we have to solve an
optimization problem in one variable. To do so, let us consider the Bellman equation
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at age s = 69 at a grid point (k̃i , 69, ε, η)71:

Ṽt (k̃
i , 69, ε, η) = max

c̃69
t ,k̃70

t+1

{
u(c̃69

t , 1) + (1 + γ )ι(1−σ)βEt Ṽt (k̃
70
t+1, 70, ε, η)

}
.

If we substitute for c̃69
t from the budget constraint (6.55), the maximand within the

brackets is a function of k̃70
t+1. There are various numerical procedures to solve such

a maximization problem. In the Gauss program Ch6_optimal_pension.g, we use the
so-called golden section search.72 The basic idea of this method is to bracket the
maximum k̃− ≤ k̃70

t+1 ≤ k̃+ and let this interval shrink against zero. The limit points

are easy to choose, e.g., k̃− = 0 for the lower limit and k̃+ as the value for which
c̃t = 0. In the next step, two points within the interval are selected, and the one
with the lower value for the right-hand side of the above equation becomes the new
limit point of the interval. The golden section search method optimizes the choice
of these new points. This procedure is iterated until the interval length is sufficiently
small, e.g., 10−6, and we then stop.

For the working agent, the maximization problem is more complicated because
he also chooses his optimal labor supply lst . There are various numerical methods
that are able to compute this two-dimensional optimization problem. We have
chosen to transform the problem into two nested one-dimensional optimization
problems and apply golden section search in the outer loop over the next-period
capital stock k̃t+1 and direct computation from the first-order condition with respect
to labor lt with the help of the Gauss-Newton algorithm in the inner loop.

Once we have solved the individual optimization problem, we can aggregate
individual savings and labor supply to derive aggregate quantities and update our
initial guesses of K̃ , L̃, and the factor prices w and r . The budgets of the government
and the pension system imply the values for t̃ r and τp. We update the old values by
taking a weighted average of the two and iterating until convergence. The complete
algorithm is described in Algorithm 6.1.

Algorithm 6.1 (Computation of the Stationary Equilibrium of the OLG Model
in Sect. 6.4.1)

Purpose: Computation of the stationary equilibrium.

Steps:

Step 1: Make initial guesses of the steady-state values of the aggregate capital
stock K̃ , efficient labor L̃, and aggregate accidental bequests B̃eq .

71In fact, we could drop the expectational operator Et in the Bellman equation for the retired and
replace it by the survival probability φs,t because they do not face income uncertainty (in contrast
to workers).
72A detailed description can be found in Chapter 11.6.1 in Heer and Maußner (2009).
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Step 2: Compute the values w, r , t̃ r , τp, and pent , which solve the firm’s Euler
equations and the budgets of the government and social security.

Step 3: Compute the optimal policy functions for consumption, savings, and labor
supply for the newborn generation by value function iteration.

Step 4: Compute the aggregate capital stock K̃ , efficient labor L̃, and aggregate
accidental bequests B̃eq .

Step 5: Update K̃ , L̃, and B̃eq , and return to step 2 until convergence.

We compute the transition dynamics for the US economy as described in
Algorithm 9.2.1 in Heer and Maußner (2009). We first choose a number of transition
periods under the assumption that the transition is complete by 2250.73 Next, we
compute the initial and final steady states and project a trajectory for the endogenous
values of {K̃t , L̃t , l̄t , τ

w
t , τ

p
t , t̃ rt }2250

t=2015. As our initial guess, we postulate a linear
adjustment path for all endogenous variables. We assume that the economy is in
steady state in and prior to 2015. For given path of {K̃t , L̃t , l̄t , τ

w
t , τ

p
t , t̃ rt }2250

t=2015,
we compute the individual policy functions in each year and aggregate individual
labor supply and consumption. With the help of the consistency conditions and
the fiscal budget constraints, we are able to provide a new guess for the path
of {K̃t , L̃t , l̄t , τ

w
t , τ

p
t , t̃ rt }2250

t=2015. Again, we use a simple dampening iterative
scheme, as described in Section 3.9 of Judd (1998), to update the sequence
{K̃t , L̃t , l̄t , τ

w
t , τ

p
t , t̃rt }2250

t=2015 until the sequence converges (with an accuracy equal
to 10−6).

The run time of the computer program Ch6_optimal_pension.g depends sen-
sitively on the amount of grid points nk and is considerable. Using Windows 7
on a computer with a 64-BIT system, 32 MB RAM, and an Intel(R) Xeon(R)
2.90 GHz processor, the stationary equilibrium is computed within 4 min, while the
computation of the transition takes approximately 14 h.

Appendix 6.3: Data Sources

The data on population are taken from the UN, while the pensions-related data are
retrieved from the OECD.

• Old-age dependency ratio The data presented in Fig. 6.1 is published by the
UN in its World Population Prospects: The 2017 Revision, ‘File POP/13-D:
Old-age dependency ratio 65+/(25–64) by region, subregion and country, 1950–
2100 (ratio of population 65+ per 100 population 25–64)’. The UN provides
projections of the OADR for a ‘low’, ‘medium’, and ‘high’ fertility variant. If
not mentioned otherwise, we use the ‘medium’ fertility variant.

73This value for the final year is found by trial and error. We choose 2250 because the transition
of the endogenous values is complete by then. In Fig. 6.15, we drop the presentation of the final
periods to better illustrate the transition.
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• Pension spending The data displayed in Fig. 6.3 are taken from the OECD
(2015), Pensions Statistics: Pensions at a Glance (Accessed on February 15,
2018).
http://data.oecd.org/socialexp/pension-spending.htm.

• Pension replacement rates The data in Fig. 6.4 presents the gross pension
replacement rates of men as a percentage of pre-retirement earnings and can be
retrieved from OECD (2017), Gross pension replacement rates (indicator). doi:
10.1787/3d1afeb1-en (Accessed on February 15, 2018).
https://data.oecd.org/pension/gross-pension-replacement-rates.htm.

Problems

6.1. Recompute the solution to Numerical Examples in Sect. 6.3 with the following
changes:

1. Check the robustness of the results with respect to the intertemporal elasticity of
substitution 1/σ , with σ ∈ {2, 4}.

2. Assume that capital depreciates completely so that the real interest rate is
represented by

rt = αkα−1
t l1−α

t − 1.0.

6.2. Contribution-Based Pensions in the Three-Period OLG Model Assume
that an agent lives three periods. Each period length is equal to 20 years. In the
first two periods, the agent is working, and in the third period, he receives a pension.
Each generation has mass 1/3. We will only consider the steady state.

Lifetime utility is given by

U =
3∑

s=1

βs−1u(cs, 1 − ls ). (6.66)

Instantaneous utility is presented by

u(c, 1 − l) = u(c, 1 − l) = (c(1 − l)ι)1−σ

1 − σ
,

with ι = 2.0 and σ = 2.0. Assume that β = 0.90. Time is allocated to either work
or leisure.

During the first two periods, households work; in the third period, they retire
(l3 ≡ 0). Agents are born without assets, k1 = 0. In addition, the workers pay

http://data.oecd.org/socialexp/pension-spending.htm
https://data.oecd.org/pension/gross-pension-replacement-rates.htm
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contributions to the pension system equal to τ = 10% of their gross labor income.
Therefore, the budget constraint at age s = 1, 2 is given by

(1 − τ )wls + (1 + r)ks = cs + ks+1.

During retirement, agents receive pensions that depend on past earnings

d =
2∑

s=1

τwls .

In particular, the pension system does not pay any interest on accumulated contri-
butions. The pension depends on accumulated contributions as follows:

pen(d) = penmin + ρpend.

Therefore, the budget constraint of the retired worker is given by:

pen(d) + (1 + r)k3 = c3.

In addition, we assume that the government runs a balanced budget:

τw
l1 + l2

3
= 1

3

(
penmin + ρpend

)
.

Assume that ρpen = 0.5, implying

penmin = 0.5τw(l1 + l2).

Production is modeled as in Sect. 6.3:

Y = KαL1−α,

with

L = l1 + l2

3
, K = k2 + k3

3
,

and α = 0.36.
Factors are rewarded by their marginal products:

wt = (1 − α)

(
Kt

Lt

)α
,

rt = α

(
Kt

Lt

)α−1

− δ.

The depreciation rate is set equal to δ = 0.5.
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1. Solve the problem with the help of direct computation (solving a system of non-
linear equations). Show that the first-order conditions are given by

λ1 =
(
c1
)−σ (

1 − l1
)ι(1−σ)

,

λ2 =
(
c2
)−σ (

1 − l2
)ι(1−σ)

,

λ3 =
(
c3
)−σ

,

ι
(
c1
)1−σ (

1 − l1
)ι(1−σ)−1 = λ1(1 − τ )w + β2λ3ρpenτw,

ι
(
c2
)1−σ (

1 − l2
)ι(1−σ)−1 = λ2(1 − τ )w + βλ3ρpenτw,

λ1 = βλ2(1 + r),

λ2 = βλ3(1 + r).

For given aggregate variables w and r , the 7 first-order conditions together with
the 3 budget constraints are a system of non-linear equations in 10 unknowns
cs and λs , s = 1, 2, 3, l1, l2, k2, k3. Use numerical methods to solve the
system. Start with educated guesses for K and L, compute the individual policy
functions, and update K and L accordingly. Compute the implied gross pension
replacement rate with respect to the earnings in the second period. How does the
abolition of social security affect output, labor, and welfare?

2. Assume that the government switches from a defined contribution to a defined
benefit system and that it applies the same gross pension replacement rate with
respect to the earnings in the second period as above (for the case with τ = 10%).
What are the effects on labor supply, savings, output, and the social security
contribution rate τ?

6.3. Quasi-Hyperbolic Discounting Recompute the three-period OLG model
from Problem 6.2. However, instead assume (1) that pensions are not contribution-
based but provided lump-sum (ρpen = 0) and (2) that the household behaves
inconsistently and in a naive way. Therefore, let the household at age 1 assume
that its lifetime utility is represented by

U = u(c1, 1 − l1) + μβu(c2, 1 − l2) + μβ2u(c3, 1 − l3), μ < 1, (6.67)
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rather than by Eq. (6.66), where μ denotes the hyperbolic discounting parameter.
The household maximizes its utility for μ = 0.85 in period 1, where the first-order
conditions are given by:

λ1 =
(
c1
)−σ (

1 − l1
)ι(1−σ)

,

λ2 =
(
c2
)−σ (

1 − l2
)ι(1−σ)

,

λ3 =
(
c3
)−σ

,

ι
(
c1
)1−σ (

1 − l1
)ι(1−σ)−1 = λ1(1 − τ )w,

ι
(
c2
)1−σ (

1 − l2
)ι(1−σ)−1 = λ2(1 − τ )w,

λ1 = μβλ2(1 + r),

λ2 = βλ3(1 + r).

Solve this system of equations for 10 unknowns cs and λs , s = 1, 2, 3, l1, l2, k2, k3

and denote the solutions by c̃s , λ̃s , k̃s , and l̃s .
In period 2, however, the household behaves in an inconsistent way and, for a

given k2, re-maximizes74

U = u(c2, 1 − l2) + μβu(c3, 1 − l3).

The first-order conditions with respect to c2, c3, l2, and k3 are given by:

λ2 =
(
c2
)−σ (

1 − l2
)ι(1−σ)

,

λ3 =
(
c2
)−σ

,

ι
(
c2
)1−σ (

1 − l2
)ι(1−σ)−1 = λ2(1 − τ )w,

λ2 = μβλ3(1 + r).

74Our households are naive in the sense that they ignore their future behavior in the optimization
decision in period 1; in other words, in period 1, they do not realize that they will behave the same
way in period 2 (applying quasi-hyperbolic discounting to the discounted utility of the remaining
lifetime).
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Denote the solutions to these equilibrium conditions as ĉs and λ̂s , s = 2, 3, l̂2, and
k̂3. The household suffers from inconsistent behavior and chooses smaller savings
for μ < 1 in period 2 than it would have chosen in period 1.75

In general equilibrium, aggregate capital and labor are given by

K = k̃2 + k̂3

3
,

L = l̃1 + l̂2

3
.

In a large-scale OLG model with individual income uncertainty, İmrohoroğlu,
İmrohoroğlu, and Joines (2003) show that quasi-hyperbolic discounting at the rate
of 15% lowers the capital stock by approximately 20% at any social security
contribution rate.76 Can you verify this result in the above example for pension
replacement rates θpen ∈ {0, 50%}?

6.4. Hicksian Compensation Consider Fig. 6.5. Recompute the dynamics of the
model under the assumption that the two cohorts alive at the time of the policy
changes in period 1 are compensated such that the consumption equivalent change in
comparison to the cohorts in the economy without the policy change is zero. Further
assume that future generations receive transfers or pay lump-sum taxes such that (1)
they all have equal lifetime utility and (2) the net present value of these transfers
is equal to the payments of transfers to the cohorts in period 1. How large is the
Hicksian efficiency gain?

6.5. Compute the optimal pension in the model of Sect. 6.4.1 under the assumption
that the government holds both government consumption G̃ and transfers T̃ r

constant at their benchmark equilibrium values. Adjust the wage income tax rate
τw such that the government budget (6.50) is balanced.

6.6. A Simple Auerbach-Kotlikoff Model77 Consider a 60-period OLG model
in the tradition of Auerbach and Kotlikoff (1987). Three sectors can be depicted:
households, production, and the government.

Households Every year, a generation of equal measure is born. The total measure
of all generations is normalized to one. Their first period of life is period 1.

75A seminal paper that introduces you to quasi-hyperbolic discounting and commitment technolo-
gies is Laibson (1997).
76In addition, İmrohoroğlu, İmrohoroğlu, and Joines (2003) find that social security is not effective
in correcting for under-saving that results from time-inconsistent preferences.
77The following description is taken from Chapter 9.1 in Heer and Maußner (2009).
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Households live J = 60 years. Consequently, the measure of each generation is
1/60. During their first T = 40 years, agents supply labor lst at age s in period t

enjoying leisure 1 − lst . After 40 years, retirement is mandatory (lst = 0 for s > 40)
for the remaining T R = 20 years. Agents maximize lifetime utility at age 1 in period
t:

J∑

s=1

βs−1u(cst+s−1, 1 − lst+s−1),

where β denotes the discount factor. Instantaneous utility is a function of both
consumption and leisure:

u(c, 1 − l) = (c(1 − l)ι)1−σ − 1

1 − σ
. (6.68)

Agents are born without wealth, k1
t = 0, and do not leave bequests, k61

t = 0.
Agents receive income from capital kst and labor lst . The real budget constraint of
the working agent is given by

ks+1
t+1 = (1 + rt )k

s
t + (1 − τt )wt l

s
t − cst , s = 1, . . . , T ,

where rt and wt denote the interest rate and the wage rate in period t , respectively.
Wage income in period t is taxed at rate τt . We can also interpret τtwt l

s
t as the

worker’s social security contributions.
The first-order conditions of the working household are given by:

(1 − τt )wt = u1−l (c
s
t , 1 − lst )

uc(c
s
t , 1 − lst )

= ι
cst

1 − lst
, (6.69)

1

β
= uc(c

s+1
t+1 , 1 − ls+1

t+1 )

uc(c
s
t , 1 − lst )

[1 + rt+1]

=
(
cs+1
t+1

)−σ (
1 − ls+1

t+1

)ι(1−σ)

(
cst
)−σ (1 − lst

)ι(1−σ)
[1 + rt+1] . (6.70)

During retirement, agents receive public pensions pen irrespective of their
employment history, and the budget constraint of the retired worker is given by

ks+1
t+1 = (1 + rt )k

s
t + pen − cst , s = T + 1, . . . , T + T R.

The first-order condition of the retired worker is given by (6.70) with lst = 0.

Production Firms are of measure one and produce output Yt in period t with labor
Lt and capital Kt . Labor Lt is paid wage wt . Capital Kt is hired at rate rt and
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depreciates at rate δ. Production Yt is characterized by constant returns to scale and
assumed to be Cobb-Douglas:

Yt = Kα
t L

1−α
t . (6.71)

In factor market equilibrium, factors are rewarded with their marginal products:

wt = (1 − α)Kα
t L

−α
t , (6.72)

rt = αKα−1
t L1−α

t − δ. (6.73)

Government The government uses the revenues from taxing labor to finance its
expenditures on social security:

τtwtLt = T R

T + T R
pen. (6.74)

Following a change in the provision of public pensions pen or in gross labor income
wtLt , the labor income tax rate τt adjusts to keep the government budget balanced.

Equilibrium An equilibrium for a given government policy pen and initial distri-
bution of capital

{
ks0

}J
s=1 is a collection of individual policy rules c(s, kst ,Kt , Lt ),

l(s, kst ,Kt , Lt ), and k′(s, kst ,Kt , Lt ), and relative prices of labor and capital
{wt, rt }, such that:

(i) Individual and aggregate behavior are consistent:

Lt =
40∑

s=1

lst

60
,

Kt =
60∑

s=1

kst

60
.

The aggregate labor supply Lt is equal to the sum of the labor supplies of each
cohort, weighted by their mass 1/J = 1/60. Similarly, the aggregate capital
supply is equal to the sum of the capital supplies of all cohorts.

(ii) Relative prices {wt, rt } solve the firm’s optimization problem.
(iii) Given relative prices {wt, rt } and the government’s policy pen, the individual

policy rules c(.), l(.), and k′(.) solve the consumer’s optimization problem.
(iv) The goods market clears:

Kα
t L

1−α
t =

60∑

s=1

cst

60
+ Kt+1 − (1 − δ)Kt .

(v) The government budget is balanced.
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Calibration The benchmark case is characterized by the following calibration:
σ = 2, β = 0.99, α = 0.3, δ = 0.1, replacement rate θp = pen

(1−τ )wl̄
= 0.3

(where l̄ denotes the average labor supply in the economy). ι is chosen to imply a
steady-state labor supply of the working agents approximately equal to l̄ = 35% of
available time and amounts to ι = 2.0.

1. Compute the steady state using numerical methods. To do so, you have to
consider a system of 99 non-linear equations in the variables ks , s = 2, . . . , 60
and ls , s = 1, . . . , 40. Show that the shape of the consumption-age profile
resembles that presented in Fig. 6.11 and displays a downward jump at the
beginning of retirement. Show that the steady-state level of output is equal to
Y = 0.3842.

2. Introduce a consumption tax of 10% that is retransferred lump-sum to the
household. How does the consumption tax affect steady-state values?

3. Introduce a government sector that consumes 20% of steady-state output Y ,
G = 0.0768. Compare the following three tax instruments to finance G: (1) a tax
on consumption τ c, (2) a tax on capital income τK (assuming that depreciation
is tax-deductible), and (3) a wage income tax rate τw. Assume further that
government consumption provides utility to the household that is additively
separated from the utility in consumption and leisure such that the first-order
conditions of the household are not affected by government consumption G.
What are the steady-state effects of these three tax instruments on capital, labor,
and output? What is the tax instrument that results in the lowest welfare losses?
To answer these questions, compute the consumption equivalent change of each
policy measure with respect to the case without government consumption.

4. Introduce consumption habits

u(cs, ls; cs−1) =
[
(cs − κcs−1) (1 − ls)ι

]1−σ

1 − σ
, κ ∈ [0, 1)

with κ = 0.7. In addition, assume that the utility of the newborn generation

is given by u(c1, l1) =
[
c1
(
1−l1

)ι]1−σ

1−σ
. Notice that you cannot solve the

problem recursively but have to solve the system of 99 variables simulta-
neously. Use your solution from the case without habits as an initial value
for {l1, l2, . . . , l40, k2, k3, . . . , k60}. Do consumption habits help to make the
consumption-age profile smoother? In particular, does the downward jump in
consumption at the beginning of retirement disappear?

5. In the literature, two types of PAYG pension systems are often distinguished, the
Bismarck versus the Beveridge system. In the former, only employed workers
contribute to the pension system, and the contribution is levied on the wage
income. In the latter, all households contribute prior to their retirement age, and
contributions are based on total income, i.e., including capital income. Moreover,
while in the Bismarck system, pensions are closely linked to contributions,
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the Beveridge pension system provides a guaranteed minimum income during
retirement and redistributes strongly.
In the above model, introduce a pension system that provides a lump-sum
payment to the retired worker that is financed by a tax on both labor and capital
income. Compare this with the average lifetime utility under a PAYG pension
system that collects contributions that are levied only on labor income.
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7Public Debt

7.1 Introduction

During the 1980s and 1990s, we observed many public debt crises in Latin America
and Asia. Prior to, during, and after the financial crisis of 2007–2008, we also
observed many countries in the European Monetary Union (EMU) with severe
public debt problems. Government debt has increased to unprecedented levels in
the post-World War II era in the so-called “GIIPS” countries (Greece, Ireland, Italy,
Portugal, and Spain). The Greek, Spanish, and Italian governments have had to
pay premiums of 16, 3, and 3 percentage points on their public debt relative to
Germany. Consequently, the president of the European Central Bank (ECB), Mario
Draghi, initiated a program whereby the ECB extended 3-year loans in the amount
of 1 trillion (!) euros to the Eurozone banking sector. Interest rates subsequently
converged, but debt levels remain high and still amounted to 179%, 100%, and 132%
of GDP in Greece, Spain, and Italy in 2015, almost 10 years after the onset of the
crisis. As a second major second case of severe public debt, Japan had accumulated
a gross public debt equal to approximately 240% of GDP by 2015.

Two natural questions arise in face of the present Eurozone debt crisis (and the
high debt in Japan): (1) Are these levels of high public debt sustainable, and are
the governments able to repay and service their debt? (2) What are the empirical
and quantitative effects of high debt on output and investment? To answer these
two questions, in this chapter, we will consider the US economy, which is currently
characterized by a sustainable level of debt. We simulate the demographic transition
until 2100 and find that the US government can still increase its debt to a level
above 200% of GDP. The costs of this fiscal policy in terms of output, investment,
and consumption are dramatic. For example, we find that if the increased pension
payments over the next 50 years are financed by debt rather than taxes, output falls
by more than an additional 10 percentage points until the end of the demographic
transition.
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This chapter is structured as follows. In Sect. 7.2, we present empirical facts on
government debt. We distinguish among net, gross, and implicit debt. Accounting
for off-balance-sheet obligations of the government in the form of future pensions
and medical expenditures, we observe (implicit) debt levels in excess of 700% of
GDP for some European countries, including Ireland and Spain. We also present
the literature on and the controversy surrounding the empirical result established by
Reinhart and Rogoff (2009) that growth is reduced once a certain threshold value of
government debt is passed (estimated to be 90% of GDP in explicit gross debt). In
Sect. 7.3, we present simple debt arithmetic and discuss the idea of the Eurozone’s
Stability and Growth Pact.1 In Sect. 7.4, we present the concept of Ricardian
equivalence and show that government financing decisions affect the real economy
in the standard overlapping generations (OLG) model in which households have a
finite lifetime, and parents are not altruistic. We also derive quantitative effects and
show that public debt significantly crowds out investment. Section 7.5 presents a
conglomeration of our results from Chaps. 6 and 7. We study a large-scale OLG
model of the demographic transition in which the aging of the population increases
the pension burden over the next century. We will consider different pension policies
and financing decisions of the US government and study the transition dynamics
with respect to output, investment, and (generational) welfare. In the concluding
epilogue in Sect. 7.6, we review the studies on debt default in quantitative models. In
contrast to the material presented in the previous sections, the (overwhelming part
of the) literature on both sovereign and domestic debt default assumes that fiscal
policy is sustainable, but a sovereign nevertheless might find it optimal to default.

7.2 Empirical Facts: Government Debt

At present, governments in many industrialized countries have accumulated record
levels of public debt relative to rest of the period since World War II. Table 7.1
presents the debt levels relative to GDP in 2015 for a cross-section of countries.2

Among the industrialized countries, Japan, Greece, and Italy have the highest
indebtedness and were characterized by gross debt levels of 238%, 179%, and 132%
of GDP in 2015, respectively.

Figure 7.1 displays the accumulated public debt in the United States during
the period 1966–2015.3 In 1981, the debt-GDP ratio reached an all-time low for
the post-World War II period, amounting to 30.6%. In 1946, the US government
had accumulated wartime debt equal to 119% of GDP, which it efficiently reduced

1The former President of the European Commission, Romano Prodi, referred to this pact as the
“stupidity pact”.
2The data for the gross and net debt-GDP ratios are taken from the IMF World Economic Outlook
database. A more detailed description is presented in Appendix 7.3.
3The empirical figures in this section are computed with the help of the Gauss program
Ch7_data.g which is available as a download from the author’s homepage.
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Table 7.1 Debt-GDP ratios
in 2015

Debt-GDP ratio

in 2015

Country Gross debt Net debt

Argentina 56.0%

Australia 37.9% 17.9%

Canada 91.6% 25.2%

China 41.1%

France 95.6% 86.9%

Germany 70.9% 50.5%

Greece 179.4%

Italy 132.1% 119.8%

Japan 238.1% 118.4%

Mexico 53.7% 47.2%

Spain 99.8% 86.0%

Turkey 27.5% 23.0%

UK 89.0% 80.3%

US 105.2% 80.2%

Fig. 7.1 US debt-GDP ratio
during the period 1966–2015 11
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during the subsequent three decades. Notice that even during the severe recessions,
namely, in the form of the oil crises during the 1970s, total federal debt fell. At the
beginning of the 1980s, the Reagan administration implemented a major income tax
reform, which resulted in both an economic boom and a shortfall in government
revenue. In the following decade 1980–1990, federal debt increased from 30% to
approximately 60% of GDP. The next dramatic change in public debt resulted from
the increase in fiscal spending during the financial crisis of 2007–2008. From 2007
to 2011, federal debt increased from 62% to 94% and reached 105% of GDP in
2015. At the end of 2017, the Trump income tax reform was approved by Congress.
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Fig. 7.2 Gross debt-GDP ratios, 1/2

According to estimates from the Committee for a Responsible Federal Budget, the
plan will add approximately $2.2 trillion to deficits over the next decade, which
amounts to approximately 12% of GDP.4

Many European and other industrialized countries have also experienced similar
significant increases in public debt during and in the aftermath of the financial
crisis of 2007–2008. As presented in Figs. 7.2 and 7.3, debt increased by more than
20 percentage points during the period 2005–2015 in Eurozone countries France,
Greece, Italy, and Spain, as well as in the Anglo-American countries (the UK,
the US, Australia, and Canada). In China and, in particular, Germany, however,
the change in debt was much more moderate. In these two countries, federal debt
increased from 26% to 41% and from 67% to 71% of GDP between 2005 and 2015,
respectively.

The debt dynamics are reflected in the emergence of large fiscal budget deficits
during the recent financial crisis of 2007–2008. Figures 7.4 and 7.5 display the
fiscal deficits as a share of GDP during the period 1988–2015 for a cross-section of
countries. The Anglo-American countries the UK and the US display government
budget deficits of approximately 10% and 12% in 2009, which slowly recovered
to approximately 4–5% by 2016. Australia, which had actually run a government
surplus prior to the crisis, has been characterized by relatively mild deficits of 3–5%
since 2007–2008. The Eurozone countries Italy, Spain, and Greece, which were hit
the hardest by the financial crisis5 are running deficits equal to 5%, 10%, and 15%,

4Annual nominal GDP amounted to $18.6 trillion in 2016.
5Comparing the per capita incomes (as measured by the per capita GDP in constant prices) for these
countries between the year 2000, prior to the introduction of the euro, and the year 2015 (7 years
after the onset of the financial crisis), we find that it fell in Greece (−3.5%) and Italy (−7.1%),
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clearly violating the Stability and Growth Pact of the European Union that provides
for a deficit ceiling of 3%. Moreover, the two heavyweights in the Eurozone, France
and Germany, also did not meet the deficit ceiling of 3% in 2008 or 2009.

In the face of these unprecedented post-World War II debt levels, it is natural
to wonder whether there is a debt level threshold beyond which government debt
becomes unsustainable. Government default is not only a merely academic question

while it only slightly increased in Spain (+7.5%). By comparison, in Germany, per capita income
increased by 18.3% during the period 2000–2015.
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but has been observed throughout history. Reinhart and Rogoff (2009) provide
a narrative of these episodes in their book entitled “This Time is Different”. In
Table 7.2, we replicate some of their data on default periods. For example, Argentina
defaulted on its debt in 1890 and 2001. By 1890, the Argentine government had
accumulated massive levels of government debt, on which it defaulted. The crisis
was reinforced by a lack of coordination in monetary and fiscal policy and eventually
also lead to a financial crisis. Another government default occurred at the end of the
twentieth century, when the Argentine peso was pegged to the US dollar. Starting in
1998, Argentina experienced a severe recession and had to seek assistance from the
IMF. The appreciation of the dollar and inadequate adjustments through fiscal and
economic reforms resulted in a massive sell-off of Argentine government bonds.
By the end of 2001, the Argentine government defaulted on its international debt
obligations, amounting to $95 billion. At the time, this was the largest default in
history.

When they defaulted, the governments considered by Reinhart and Rogoff
had accumulated large amounts of public debt. In the two rightmost columns of
Table 7.2, government debt is presented relative to government revenue. The reason
to report debt relative to revenue rather than GDP is twofold. First, data on GDP
prior to World War II are of limited accuracy or not readily available. Second,
government revenues are a very good measure of the government’s ability to service
its debt, both at present and in the future. We observe a wide range of threshold debt
levels at which government default sets in, amounting to a multiple of 2.4–15.8 of
government revenue. Comparing these numbers to the present debt-revenue ratios
(as presented in the right column of Table 7.2), some countries, such as the US
and Italy, are already in the lower range of the interval, while Japan, with a debt-
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Table 7.2 Debt default
periods

Debt-revenue Debt-revenue

ratio ratio

Country Default year default year in 2015

Argentina 1890 12.46 1.57

2001 2.62

China 1939 8.96 1.44

Germany 1932 2.43 1.59

Mexico 1827 4.20 2.33

1982 5.06

Spain 1877 15.83 2.58

Turkey 1978 2.69 0.86

Australia 1.09

Canada 2.33

US 3.33

UK 2.49

France 1.80

Italy 2.76

Japan 7.18

Notes: The data for the entries in columns 2 and 3 are taken
from Table 8.1 in Reinhart and Rogoff (2009). The data in
the right column are taken from the IMF World Economic
Outlook database at https://www.imf.org/external/pubs/ft/
weo/2017/02/weodata/index.aspx

revenue ratio of 7.2, is in the middle of the observed default ratios.6 In addition,
we recognize that the level of debt seems to be more tolerable in the case of
industrialized countries than in the case of emerging countries. For example, at the
time of default, the (gross) debt-GDP ratio only amounted to 49% in Argentina in
2001.

Regarding the effects of high debt levels on economic performance, one of the
most influential and controversial research articles in economics in this century is a
study by Carmen Reinhart and Kenneth Rogoff, “Growth in Times of Debt,” that was
published in the American Economic Review in 2010. Considering a cross-section of
20 industrialized countries in the post-war period, they find that a country’s annual
growth declined by 2% if gross external debt reached 60% of GDP and was “roughly
cut in half” for levels of external debt in excess of 90%. As this result was published
shortly after the financial crisis of 2007–2008, it has often been used as an argument
in the political debate to justify or demand pro-austerity policies.

6When you compare the present values of the debt-revenue ratio with those from the default years,
bear in mind that prior to World War II, government revenue constituted a much smaller share of
GDP than at present. In the US, for example, government revenue only amounted to 11–12% of
GDP during the 1920s, while it was equal to 23.5% in 2015. Consequently, the debt-GDP ratios of
the defaulting countries in the default years and in 2015 are even closer to one another.

https://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx
https://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx
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The study of Reinhart and Rogoff (2010) has been challenged on many grounds.
(1) Reinhart and Rogoff made their data available to Thomas Herndon, Michael
Ash and Robert Pollin, who found coding errors and selective data omissions7

that resulted in sample bias.8 Correcting for these data-handling errors, they found
the 90% debt threshold level to imply no significant changes in a country’s
growth performance. Subsequently, Reinhart and Rogoff (2012) responded to these
critiques and re-estimated their results. They find that periods of public debt
overhang (above the 90% debt threshold) to be characterized by significantly lower
economic growth, and they maintain their initial position despite that the threshold’s
impact on economic growth is lower than they originally found (but still amounts
to more than 1% lower growth).9 (2) The study might suffer from reverse causality;
in other words, periods of weak growth result in high debt accumulation. (3) Other
control variables such as the exchange rate regime or the denomination of public
debt in either domestic or foreign currency were not considered. In summary, it
is fair to say that the threshold controversy remains unsettled, and at present, no
consensus has been reached among economists.

Nevertheless, many Eurozone countries have reached the 90% public debt
threshold, and in particular, countries such as Italy and Greece have far surpassed
this point. As the financial crisis continued to depress the economic and fiscal
situations in these countries, investors began to demand higher interest rates on the
government bonds of the GIIPS countries. Figure 7.6 displays the yield on the 10-
year government bonds for the countries in the EMU. Evidently, the interest rate
spreads increased after the financial crisis of 2007–2008 and reached a maximum
during the years 2011–2012. At the beginning of 2012, Greece, Portugal, Ireland,
Italy, and Spain had to pay premiums of 29, 10, 4, 3, and 3 percentage points
vis-à-vis Germany. Since all government bonds are denominated in the same
currency, the euro, this premium reflects investors’ concern that either the Eurozone
will break up and government bonds will be repaid in the former currencies
and/or that governments default on the repayment of their debt. Of course, the
accumulation of higher public debt and its sustainability were a driving force of
this interest rate behavior.10 Nevertheless, there does not seem to be an automatic
relationship between higher debt and default probabilities. After 2012, interest
rates on government bonds in the Eurozone converged, and by 2014, interest rate

7For example, data for Australia, New Zealand, and Canada in the late 1940s were excluded.
8The critique of Herndon, Ash, and Pollin (2014) is only directed at the 1949–2009 dataset for the
20 industrialized countries. Reinhart and Rogoff (2010) also consider two other datasets, including
one for an extended period from 1791 to 2009.
9In addition, they find that the lower growth performance prevails even for those countries that do
not experience higher real interest rates because of their indebtedness. Accordingly, the growth-
reducing effects do not stem exclusively from higher real interest rates.
10In this regard, Polito and Wickens (2015) present a measure of sovereign credit ratings that is
derived solely from the fiscal position of a country and its ability to repay future debt obligations.
It is capable of identifying the European debt crisis and the deterioration of credit rating quality
among GIIPS countries even 2 years prior to the release of official credit ratings.
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Fig. 7.6 Interest rates in the EMU

differentials amounted to 2 percentage points or less.11 Accordingly, although debt
levels (relative to GDP) were elevated (and rising) in countries with government
debt in excess of 90% of GDP, default probabilities were shrinking.

Before we conclude this section, two comments on the measurement of debt and
implications for its sustainability are worthwhile. First, we presented data on the
gross public debt to assess the wealth position of a government. However, some
part of government lending is between the different local, state, and federal layers
of the government. A measure that corrects for such intra-government debt is given
by the net debt-GDP ratio that is presented in the right column of Table 7.1.12 The
relationship between the gross debt and net debt-GDP ratios in the table is close but
not perfect, with a correlation coefficient equal to 0.80. For example, the UK and
the US have the same net debt-GDP ratio, but their gross debt ratios amount to 89%
and 105%, respectively. Furthermore, in the case of Japan, the net debt-GDP ratio
is only half the amount of the gross debt GDP-ratio.13

11In February 2012, the ECB president, Mario Draghi, started the tender “Big Bertha” whereby the
ECB offered one trillion euros in 3-year loans to the banking sector. By mid-year, Mario Draghi
went one step further and announced new measures, promising that they would be sufficient. In
particular, Mario Draghi said, “within our mandate, the ECB is ready to do whatever it takes to
preserve the euro. And believe me, it will be enough.”
12For the countries with the empty entries in Table 7.1 – Argentina, China and Greece – no data on
net debt are available in the IMF statistics.
13Another debt-ratio measure of the sustainability of public finances that is the most relevant for
the evaluation of emerging countries is the amount of external debt or debt denominated in foreign
currency. A detailed description of external debt and historical periods of high external debt is
provided by Reinhart and Rogoff (2009).
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The dynamics of the net debt-GDP ratios during the period 1989–2016 are
illustrated in Figs. 7.7 and 7.8. The characteristics of the time profiles are in close
accordance with those presented for the gross debt-GDP ratios. In particular, there
is a steep increase in the net debt-GDP ratios at the onset of the financial crisis of
2007–2008 – the value rose by more than 20 percentage points during the period
2007–2012 in the EMU countries France, Italy, and Spain and in the US, the UK,
and Japan. Throughout the period, the most dramatic increase in net indebtedness is
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observed in the case of Japan, where the net debt-GDP ratio increased from 12% in
1992 to 120% in 2012.14

Second, a large part of public debt is only reported off the balance sheet and
not contained in the official government debt data, for example unfunded public
pensions. As you learned in Chap. 6, the nature of an unfunded public pay-as-
you-go pension is basically the same as that of a debt contract. The government
collects payments from its workers today that it repays in the future. A similar
reasoning applies to some parts of public health services. Evaluating these future
claims on the government is difficult for at least three reasons. (1) Future payments
depend on the (projected) survival probabilities of workers and retirees. (2) Future
payments need to be expressed in present value, meaning that the assumed discount
rate has a significant impact. (3) Assumptions of future indexation and future
effective retirement age enter the computation of the liabilities in a non-trivial way,
i.e., the extent to which pensions and contributions are adjusted for inflation and
productivity growth over the upcoming decades and when workers will (effectively)
retire.

These off-balance-sheet government liabilities are captured in the concept of
“implicit debt”. Table 7.3 presents European Commission estimates of the implicit
debt of European countries.15 Notice that in European countries, the net present
value of future liabilities varies considerably, and implicit debt is often a multiple
of gross debt. For example, implicit debt amounted to 709% and 665% of GDP
in Spain and Ireland in 2016, while gross debt only amounted to 79% and 100%,
respectively. Italy is actually one of the countries with the lowest total debt in the
EMU if implicit debt is accounted for, while the fiscal sustainability of Ireland,
Luxembourg, and Spain is much more problematic in light of their future pension
obligations.16

In conclusion, some measures of fiscal sustainability such as the debt-GDP ratio
and the current budget deficit as a share of GDP bear little relationship with the
sustainability of fiscal policy. Some countries such as Italy appear to be on relatively
sustainable paths in terms of fiscal and pension policy despite challenging short-

14At the end of 1991 and early 1992, an asset price bubble burst in Japan and was followed by
a long period of stagnation. The period 1990–2010 is sometimes referred to as Japan’s “Lost 20
years”.
15The introduction of the European System of National and Regional Accounts (ESA 2010)
obliged the EU countries to publish their implicit public debt.
16Notice that estimates for implicit debt are subject to much stronger volatility than the official
numbers on gross or net debt. Numbers on implicit debt are very sensitive with regard to reforms
of the pension or health system and changes in the growth dynamics of a country. For example,
Hagist, Moog, Raffelhüschen, and Vatter (2009) use the method of generational accounting to
provide estimates of the implicit debt-GDP ratio in 2004 at the amount of 254% (France), 252%
(Germany), 35% (Spain), 510% (UK), and 350% (US). Compared to the values in Table 7.3, their
numbers are higher and the ordering of the implicit debt numbers is the same except for Spain, for
which the authors report a drastically lower implicit debt-GDP ratio.
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Table 7.3 Explicit and
implicit debt levels in 2016

Debt-GDP ratio 2016

Country Gross debt Implicit debt Total debt

France 96% 170% 286%

Germany 71% 90% 161%

Greece 177% 154% 331%

Ireland 79% 709% 788%

Italy 132% −25% 107%

Luxembourg 22% 803% 825%

Spain 100% 665% 765%

UK 89% 301% 390%

run statistics, while for others, e.g., Luxembourg and Ireland, favorable short-term
measures mask very substantial long-term problems.17

7.3 Debt Arithmetic

Let B̃t denote nominal government debt at the end of period t − 1 (equivalently, the
beginning of period t).18 For simplicity, we assume that the government only issues
zero-coupon bonds with a maturity of one period. The face value of the bonds is
unity, meaning that B̃t also measures the number of bonds. At the beginning of
period t , the government issues new government bonds B̃t+1 at price PB

t and thus
borrows PB

t B̃t+1. The nominal interest rate iBt on the government bond in period t

is therefore

1 + iBt = 1

PB
t

. (7.1)

17We should be extremely careful to assess the accuracy of the implicit debt numbers since all
the data are self-reported by the individual EU countries. In January 2010, for example, the
European Commission condemned Greece for falsifying its data on public finances and deliberate
misreporting after the official 2009 deficit numbers had been revised from 3.7% to 12.5% of GDP
in fall 2009 by the newly elected Greek government (which was led by the center-left PASOK).
18Sometimes, B̃t−1 or Bt−1 is used as the notation for the beginning-of-period-t government debt
level because it is equal to the government debt at the end of period t − 1. We use the notation
B̃t such that the time index is in accordance with that of the capital stock Kt at the beginning of
period t in the Ramsey and OLG models from the previous chapters.
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Nominal government debt increases by the government budget deficit19:

PB
t B̃t+1 − B̃t = PtGt − PtTt . (7.2)

The difference between government expenditures (excluding interest payments) and
taxes, PtGt − PtTt , is called the primary budget deficit.

Let Bt denote aggregate real government bonds, Bt ≡ B̃t /Pt .20 To derive the
government budget constraint in real terms, we divide (7.2) by the price level Pt in
period t

PB
t

Pt+1

Pt

B̃t+1

Pt+1
= B̃t

Pt
+ Gt − Tt .

Recalling the definition of the inflation rate, πt = (Pt − Pt−1)/Pt−1, and using
the nominal interest rate iBt from (7.1), we can derive the real government budget
constraint:

1

1 + rBt
Bt+1 = Bt + Gt − Tt , (7.3)

where the real interest rate on government bonds rBt follows with the help of the
Fisher equation

1 + iBt = (1 + rBt )(1 + πt+1). (7.4)

By induction, we can solve this equation forward to derive the intertemporal
government budget constraint:

B0 +
∞∑

t=0

1
∏t

s=0(1 + rBs−1)
Gt =

∞∑

t=0

1
∏t

s=0(1 + rBs−1)
Tt ,

19In Appendix 7.1, we also consider the case in which the government finances its deficit with the
help of money, so-called seignorage. Since seignorage, however, only constitutes a small share of
government finance in industrialized countries, we neglect it in the remainder of the main text. For
example, King and Plosser (1985) estimate that seignorage amounted to 0.3% and over 2% of GDP
in the US and Italy during the period 1952–1982, respectively.
20In the literature, real government debt is often denoted by the lower-case variable bt . Our
notational convention in this book is that upper-case variables denote aggregate variables, while
lower-case variables denote individual variables. For example, we will use the notation bst and bt
for the real bonds of the s-year-old individual and the per capita bonds in period t in subsequent
sections.
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or

B0 =
∞∑

t=0

1
∏t

s=0(1 + rBs−1)
[Tt − Gt ] , (7.5)

with rB−1 ≡ 0. Accordingly, the budget constraint (7.5) states that the government
must run (in present value) primary budget surpluses large enough to offset its initial
debt B0. In the derivation of this intertemporal budget constraint, we have ruled out
Ponzi schemes by imposing the transversality condition21

lim
t→∞

Bt∏t
s=0(1 + rBs−1)

= 0. (7.6)

Notice that a sustainable fiscal policy for given real debt B0 requires the net
present value of primary surpluses to satisfy (7.5). Therefore, the budget surplus,
PtTt − iBt Bt − PtGt , is not a good measure to gauge fiscal sustainability in
times of volatile inflation. In times of high inflation, the nominal interest rate,
iBt = rBt +πt+1, increases, and thus, the budget deficit also increases, ceteris paribus.
However, higher inflation also reduces the amount of nominal debt equally and thus
does not affect (7.5) if the real interest rate rBt remains constant.

Often, it will be convenient to relate the government debt level to GDP, particu-
larly if we study a growing economy or compare different countries. Dividing (7.2)
by nominal GDP PtYt results in

1

1 + iBt

Yt+1

Yt

Pt+1

Pt

B̃t+1

Pt+1Yt+1
= B̃t

PtYt
+ Gt − Tt

Yt
. (7.7)

Let the economic growth rate be defined as the growth rate of real output, γt =
(Yt − Yt−1)/Yt−1. We can simplify this expression to

1 + γt+1

1 + rBt

Bt+1

Yt+1
= Bt

Yt
+ Gt − Tt

Yt
. (7.8)

21In a Ponzi scheme, an investor (or government) raises a return to the old investors (or creditors)
by raising revenue from new investors (or creditors) that are inconsistent. When the inflow of new
investors stops, the scheme falls apart. A prominent historical example of such a pyramid scheme
occurred in Albania in 1997 which lead to the bankruptcy of some 25 firms; the liabilities of
the scheme amounted to approximately $1.2 billion (which was equal to half the annual GDP of
Albania in 1997), and resulted in political unrests. As a consequence, the former economic advisor
of Prime Minister Fatos Nano was arrested and imprisoned (see also Jarvis 1999). The no-Ponzi
condition (7.6) excludes this possibility.



7.3 Debt Arithmetic 335

Equation (7.8) can be interpreted as a first-order difference equation in the debt-
output ratio B/Y . Its stability depends on the value of its autoregressive coefficient
(1 + rBt )/(1 + γt+1). Thus, for example, if the government follows a particular
government deficit rule, e.g., that the primary deficit G − T should not exceed 3%
of GDP, (Gt − Tt )/Yt = 0.03, government debt explodes if the real interest rate
is larger than the growth rate, (1 + rB)/(1 + γ ) > 1, equivalently rB > γ , and
converges to

B

Y
= 1 + rB

γ − rB

G − T

Y
,

if rB < γ .
We have to issue a warning at this point. The real interest rate on government

bonds rB and the economic growth rate γ may not be independent of the deficit
G−T and, in particular, government debt B/Y . In the previous section, you learned
about the empirical study of Reinhard and Rogoff, who argue there is a threshold
level of B/Y beyond which economic growth falls. In Sect. 7.5, we will compare
two different fiscal policies and their real impact on the US economy during the
demographic transition between the years 2010 and 2150. The first holds the debt
level constant at the 2010 level, meaning that the debt-outputB/Y reaches 73.2% in
2150, while the second uses debt financing to compensate transitory generations for
welfare losses, thereby effectively increasing the debt-output ratio B/Y to 214% by
2150. We show that these two policies imply a large difference in the real interest
rate rB which increases to 4.05% (low debt) and 6.32% (high debt) in the year 2150.
Therefore, the arithmetic of stable debt and deficit policies critically depends on the
effect of higher debt on economic growth γ and the interest rate rB .

In this vein, the Stability and Growth Pact of the European Union for the mem-
bers of the EMU sets two upper limits for public finances in Eurozone countries.
The debt-output level B/Y and the fiscal deficit, (G+ iBB−T )/Y = D/Y , should
not exceed 60% and 3%, respectively.22 Let us counterfactually assume that the
countries adhere to this policy and that, in addition, the economic growth rate γ

and the real interest rate rB are both equal to 3%, while inflation π amounts to
2%. To interpret the effects of this rule, let us use a different representation of the
government budget (7.2) by assuming that the government bonds are no longer zero-
coupon bonds but pay a nominal interest rate iBt (which adjusts such that the price
of the bonds PB

t is equal to one)

B̃t+1 − B̃t = iBt B̃t + PtGt − PtTt . (7.9)

22Clearly, the Stability and Growth Pact has been violated dozens of times since its creation.
Frequently during the period 2001–2015, all EMU countries presented in Figs. 7.4 and 7.5 –
France, Germany, Italy, and Spain – ran deficits in excess of 3% in some years.
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For this type of nominal debt instrument, we derive

B̃t+1 − B̃t

PtYt
= PtDt

PtYt
,

(1 + γt+1)(1 + πt+1)
Bt+1

Yt+1
− Bt

Yt
= PtDt

PtYt
.

If the debt-output level is stationary, Bt+1
Yt+1

= Bt

Yt
= B

Y
, and all other economic

variables are constant, the above equation simplifies to:

[(1 + γ )(1 + π) − 1]
B

Y
= D

Y
. (7.10)

For a debt-output level of 60%, B/Y = 0.6, and a nominal economic growth rate
of 5%, (1 + γ )(1 + π)− 1 = 0.05, the implied deficit-output ratio D/Y is equal to
3%.

A nominal growth rate of 5%, however, seems overly optimistic given the initial
experience of the EMU during the period 2001–2015. During this period, when the
euro became the official currency of the EMU, nominal growth was well below
3% on average. In this case, the implied deficit ratio for a target of B/Y equal to
60% (with π + γ = 0.03) would only amount to 1.8%. Examining the relationship
in (7.10) in a different way by starting at a given constant fiscal deficit D/Y , we can
also derive the implied long-run debt-output level. If we take the case of Italy, where
the real GDP growth rate, inflation rate, and government deficit during the period
2001–2015 amounted to 0.28% (see Fig. 7.9), 1.85%, and 3.3%, respectively, we
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derive an implied long-run debt-output ratio B/Y of 155%. For comparison, the
actual debt-GDP ratio amounted to 132% in Italy in 2015.

7.4 Ricardian Equivalence

Does it matter whether the government finances its expenditures with debt or (non-
distortionary) lump-sum taxes? In his seminal article “Are Government Bonds Net
Wealth?” in the Journal of Political Economy, Barro (1974) showed that the means
of financing public expenditures does not matter for the real allocation of the
economy if the following holds23:

1. Families act as infinitely lived dynasties because of intergenerational altruism.
2. Capital markets are perfect (i.e., all can borrow and lend at a single rate). In

particular, private and public debt are perfect substitutes.
3. The path of government expenditures is fixed. Therefore, the government can

precommit itself and its successors to a specific fiscal policy.

Under conditions (1)–(3), it does not matter whether the government finances
deficits by issuing bonds rather than with lump-sum taxes. In the case of debt
financing, the households completely offset the government policy and save the
additional income (from lower lump-sum taxes) for the future periods when the
government bonds have to be repaid, and the government raises (lump-sum) taxes.
If the repayment of the debt will take place after the death of the currently living
cohorts, the families simply accumulate bequests for their children such that they
will be able to pay the higher taxes. This result is called the Ricardian equivalence
proposition and is also known as the Barro-Ricardo equivalence theorem.24

In this section, we proceed as follows. We first show that Ricardian equivalence
holds in the Ramsey model. Second, we show, both theoretically and by means of a
numerical example, that Ricardian equivalence fails in the simple two-period OLG
model without bequest motives. The crowding-out effect of public debt is shown
to be quantitatively significant. Third, we demonstrate that altruism helps to restore
Ricardian equivalence in the two-period OLG model.25

23The title from Barro’s article derives from the fact that, in his model, an individual’s consumption
is proportional to net wealth. For this reason, if higher government debt increases net wealth,
consumption rises, while savings decline.
24In 1974, Robert J. Barro provided the theoretical foundation for hesitant speculation by Ricardo
(1817) that it “is only by saving from income, and retrenching in expenditures, that the national
capital can be increased.”
25In the next section, we analyze the effects of debt financing of the pension reform during the
demographic transition in a large-scale OLG model and show that the effects of debt financing are
dramatic and result in substantial long-run output and welfare losses.
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7.4.1 The Ramsey Model with Government Debt

In the following, we introduce real government debt Bt into the standard Ramsey
model from Chap. 2. For a given exogenous path of government consumption
{Gt }∞t=0, we will demonstrate that it does not matter whether Gt is financed by
means of debt or (non-distortionary) lump-sum taxes in period t . The reason is
straightforward. If the government uses debt rather than taxes today, the household
knows that taxes have to increase in the future and saves the additional income for
this date.

7.4.1.1 Demographics
Let us consider an economy in which the populationNt grows at the constant rate n:

Nt = (1 + n)Nt−1. (7.11)

Since each member of the household supplies one unit of labor, aggregate labor is
also equal to Nt .

7.4.1.2 Production
Production is characterized by a Cobb-Douglas function:

F(Kt , Lt ) = Kα
t (AtLt )

1−α, (7.12)

where aggregate labor Lt is equal to population size Nt , Lt = Nt .26 Labor-
augmenting technology At grows at the exogenous rate γ .

Assuming perfect competition in the goods and factor markets, efficient labor
AtLt and capital Kt are rewarded by their marginal products:

wt = (1 − α)

(
Kt

AtLt

)α
= (1 − α)kαt , (7.13a)

rt = αkα−1
t − δ, (7.13b)

where δ denotes the rate of depreciation.

7.4.1.3 Government
We assume that the government issues one-period bonds and pays the nominal
interest iBt on outstanding debt. Therefore, we use the more convenient form of
the government budget constraint (7.9) in the following.27 The government finances

26We distinguish between aggregate labor Lt and population size Nt to allow us to use the same
specification of the production sector in the next section on the OLG model.
27Both representations of the government budget are used in the literature. For example, Trabandt
and Uhlig (2011) use the specification (7.9), while Heer and Scharrer (2018) use (7.3). The
representation (7.9) has the advantage that we can use individual wealth ωt = kt + bt , which is
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its consumption Gt , transfers T rt , and the real interest payment on outstanding debt
rBt Bt by means of debt. Since we also introduce economic growth into this model,
we divide (7.9) by the product of the price level Pt , population size Nt , and labor
efficiency level At to derive the real government budget constraint in per capita (and
efficiency) units28

(1 + n)(1 + γ )bt+1 = (1 + rBt )bt + gt + trt , (7.14)

where we have replaced taxes Tt with (negative) lump-sum transfers T rt and defined
bt ≡ B̃t /(Pt−1AtNt ).29 Similarly, gt ≡ Gt/(AtNt ) and trt ≡ T rt /(AtNt) denote
government consumption and transfers per capita (in efficiency units).

Again, we impose a no-Ponzi condition in a form similar to that of (7.6) to rule
out Ponzi schemes:

B0 +
∞∑

t=0

1
∏t

s=0(1 + rBs )
Gt = −

∞∑

t=0

1
∏t

s=0(1 + rBs )
T rt , (7.15)

using the definition Bt ≡ B̃t /Pt−1. According to (7.15), the discounted stream of
taxes (or negative transfers) must equal the current value of outstanding government
debt plus the present value of government consumption.

7.4.1.4 Households
In the Ramsey model with government debt, households may hold two types of
assets, physical capital Kt and government bonds Bt . Total wealth is denoted by
Ωt :

Ωt = Kt + Bt . (7.16)

Government bonds Bt and physical capital Kt provide real returns rBt and rt ,
respectively. As a second source of income, the household receives wage income
wtAtNt . In addition, the household (of size Nt ) receives lump-sum transfers T rt (or
pays lump-sum taxes when T rt < 0) in period t , and its real budget constraint is

equal to the sum of the two assets, as the individual state variable, while Heer and Scharrer (2018)
have to define ω̃t = kt + bt /(1 + rB

t−1) as the individual state variable to solve their model. Since
the former is easier to interpret and more convenient to handle, we will use it in the following.
28We commit a small notational sin here (since we have exhausted all arabic letters for the notation
of variables in this book). In Sect. 4.5.2, we used the variable gt to denote the mark-up. Here, it
stands for real government consumption Gt divided by AtNt .
29Since we define real debt per capita bt with respect to the price level in period t − 1, Pt−1, the
nominal interest rate is related to the real interest rate according to

1 + iBt = (1 + rBt )(1 + πt )

rather than by (7.4).
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represented by

(1 + rBt )Bt + (1 + rt )Kt + wtAtNt + T rt = Ct + Kt+1 + Bt+1, (7.17)

where Ct denotes household consumption. In per capita (efficiency) terms, the
budget constraint (7.17) can be re-written as (after dividing by AtNt ):

(1 + rBt )bt + (1 + rt )kt +wt + trt = ct + (1 +n)(1 + γ ) (kt+1 + bt+1) , (7.18)

with ct ≡ Ct/(AtNt ).
The household maximizes its intertemporal utility

U =
∞∑

t=0

βtu(ct ) (7.19)

subject to (7.18), implying the first-order condition in the form of the Euler-
equation:

u′(ct ) = β
u′(ct+1)

(1 + n)(1 + γ )
(1 + rt+1) , (7.20)

and the equality of the two asset returns (since we do not consider uncertainty in the
model):

rt = rBt . (7.21)

7.4.1.5 Equilibrium
If we insert (7.14) into (7.18), we derive

(1 + rt )kt + wt = ct + gt + (1 + n)(1 + γ )kt+1. (7.22)

The equilibrium conditions for the household, (7.20) and (7.22), and for the
firm, (7.13a) and (7.13b), together with the initial capital stock k0, describe
the dynamics of the model and are the same as in the Ramsey model without
government debt (bt ≡ 0). None of the four equilibrium equations depend on bt
or trt . As a consequence, only the time path of government consumption {Gt }∞t=0
affects the dynamics of the capital stock kt and, hence, output yt = kαt and
consumption ct but not its financing. This result is called Ricardian equivalence.

7.4.2 The Two-Period OLGModel with Government Debt

Ricardian equivalence holds in the Ramsey model because households have infinite
lifetimes. If the government chooses to finance its expenditures by higher debt
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today and, therefore, higher future taxes, the household saves the additional income
for this repayment period. In the OLG model, by contrast, households have
finite lifetimes. Therefore, if future generations have to pay higher taxes, current
generations do not accordingly increase savings in the absence of altruism and a
bequest motive. We will both qualitatively and quantitatively illustrate the effects of
debt in the standard OLG model from Chap. 3.

As in the Ramsey model with government debt above, population grows at rate n.
Let Nt denote the number of young households such that (7.11) holds. In addition,
the production and government sectors are also described as above.

7.4.2.1 Households
Households live for two periods. Lifetime utility is additive in instantaneous utility
u(c) from consumption in young and old age c1

t and c2
t+1

30:

Ut =
(
c1
t

)1−σ − 1

1 − σ
+ β

(
c2
t+1

)1−σ − 1

1 − σ
, (7.23)

where β denotes the discount factor, and 1/σ is equal to the intertemporal elasticity
of substitution. The young household inelastically supplies one unit of labor and
does not work in old age.

The young household is born without any assets, b0
t = k0

t = 0, and thus, its
savings are given by:

St = wtAtNt + T rt − C1
t , (7.24)

or, after dividing by AtNt

st = wt + trt − c1
t . (7.25)

We assume that the government only transfers income (trt > 0) to or levies lump-
sum taxes (trt < 0) on the young household.31

The household finances its old-age consumption with the help of his savings and
interest earnings32:

c2
t+1 = (1 + rt+1)st , (7.26)

30In particular, we define c1
t ≡ C1

t /(AtNt ) and c2
t+1 ≡ C2

t+1/(AtNt ) where C1
t and C2

t+1 denote
household consumptions in period t and t +1, respectively. See also Appendix 3.2 for a discussion
of this assumption with respect to preferences and alternative specifications of the lifetime utility
in the 2-period OLG model in the presence of economic growth.
31In Problem 7.1, you are asked to consider the case in which the government transfers trt equally
to both the young and the old generation.
32In the following, we have already incorporated the result from the previous section that the two
form of assets Kt and Bt need to generate the same rate of real return rt .
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implying the household’s intertemporal budget constraint

c1
t + c2

t+1

1 + rt+1
= wt + trt . (7.27)

Maximizing lifetime utility (7.23) subject to the intertemporal budget con-
straint (7.27) implies the first-order conditions:

λt =
(
c1
t

)−σ

, (7.28a)

λt = β
(
c2
t+1

)−σ

[1 + rt+1] , (7.28b)

and hence,

c1
t = wt + trt

1 + β
1
σ (1 + rt+1)

1
σ −1

. (7.29)

Therefore, savings are equal to

st = (wt + trt )

(
1 − 1

1 + β
1
σ (1 + rt+1)

1
σ −1

)
. (7.30)

7.4.2.2 Equilibrium
In capital market equilibrium, aggregate savings St are equal to aggregate wealth,
Ωt+1 = Bt+1 + Kt+1:

Ωt+1 = St

= (wtAtNt + T rt )

(
1 − 1

1 + β
1
σ (1 + rt+1)

1
σ −1

)
,

and therefore,

(1+n)(1+γ )(bt+1+kt+1) = (wt +trt )

(
1 − 1

1 + β
1
σ (1 + rt+1)

1
σ −1

)
, (7.31)

with the factor prices given by (7.13a) and (7.13b).
Let us consider a steady state in which the capital stock and the debt per efficiency

unit of labor, k = K/(AN) and b = B/(AN), are constant, implying

(1 + n)(1 + γ )(b + k) = (w + tr)

(
1 − 1

1 + β
1
σ (1 + r)

1
σ −1

)
. (7.32)
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From the government budget (7.14), equilibrium transfers (or lump-sum taxes) are
given by

g + tr = (n + γ + nγ − r) b. (7.33)

Accordingly, a government that finances its expenditures by debt rather than taxes
in the short run accumulates higher debt in the long run and needs to impose higher
lump-sum taxes on the household in the steady state (for the case r > n + γ +
nγ ). If we substitute (7.33) into (7.32), we notice that the financing decision of
the government (as reflected in a lower or higher level of government transfers tr)
affects the steady-state capital stock k:

(1 + n)(1 + γ )

(
g + tr

n+ γ + γ n − r
+ k

)
= (w + tr)

(
1 − 1

1 + β
1
σ (1 + r)

1
σ

−1

)

(7.34)

With r = αkα−1 − δ and w = (1 − α)kα , the implicit solution of this equation for
the steady-state capital stock k depends on government transfers tr or, equally, debt
b. In other words, Ricardian equivalence fails.

We will illustrate the dependency of the capital stock on the government’s
financing policy by means of a numerical example. For this reason, we calibrate
the model as in Chap. 3 and use a period length of 30 years. We choose an annual
discount rate of 4%, implying β = 0.9630 = 0.294, and the production elasticity
of capital α = 0.36; capital depreciates by δ = 100%. Annual growth amounts to
2%, implying γ = 0.81. The intertemporal elasticity is set equal to 1/σ = 1/2,
and population grows at the rate n = 20%. In our example, we ignore government
consumption G = 0 and set the debt-output ratio equal to zero in the benchmark.
The solution is computed with the help of the Gauss program Ch7_debt1.g.

Figure 7.10 presents the effects of the steady-state debt-output ratio B/Y on the
capital stock.33 The debt-output level B/Y is expressed in percentage points. Notice
two observations: (1) The debt level has a significant effect on the capital stock and,
hence, output. If the debt-output level B/Y increases from 0% to 10%, the capital
stock k falls by 27%, from 0.0090 to 0.0066. Similarly, output y falls by 16.4%, from
0.184 to 0.164. Clearly, the quantitative steady-state effects of debt are tremendous
in the simple OLG model.34 (2) Government debt is able to completely crowd out
physical capital, meaning that the economy collapses to the no-production case.

33We annualized the debt-output level by multiplying the model’s 30-year value B/Y by 30.
34In Theorem 20.1 on page 321, Azariadis (1993) proves that, in any asymptotically stable
stationary equilibrium, capital intensity and per capita saving are decreasing functions of per
capita national debt under the following assumptions: (1) Government purchases are zero,
(2) consumption goods in young and old age are normal and gross substitutes, (3) a constant stock
of per capita public debt is serviced by lump-sum taxes on old individuals, (4) labor supply is
exogenous, and (5) production is characterized by constant returns to scale, and goods and factor
markets are competitive.
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Fig. 7.10 Capital stock and debt in the OLG model

In our simple example, this takes place at the modest debt level of approximately
22% of GDP. For high debt and low capital stock, interest rates on government debt
increase without bound for a capital stock that approaches zero. As a consequence,
the household has to pay lump-sum taxes that exceed its income.35

Of course, our simple OLG model lacks realism. We do not observe that a
country’s economy collapses if the level of debt relative to GDP exceeds 20%. In
Sect. 7.5, we will specify an OLG model that is more realistic and features multiple
cohorts in each period. Therefore, we will be better able to match the number of
retirees to workers and the amount of life-cycle savings. In this large-scale OLG
model, we will find that the economy is able to sustain a much higher threshold
value of public debt than in our simple two-period OLG model. In fact, the large-
scale OLG model will behave somewhere in between the Ramsey model and the
two-period OLG model, and the quantitative effects of higher debt on real variables,
such as the capital stock, will be smaller. Nevertheless, we will identify a threshold
value for government debt in Sect. 7.5 beyond which the economy collapses.

35Diamond (1965) shows in a competitive OLG model that, in steady state, higher debt reduces
(increases) utility when the economy is efficient (in the case of over-accumulation of capital).
However, as we noted in Chap. 3 on the OLG model and Chap. 6 on social security, it is rather
unlikely that we would observe over-accumulation of capital in industrialized countries in face of
the low population growth and the large unfunded public-pay-as-you pension systems. Therefore,
debt is likely to decrease utility in steady state, as we will also find in the subsequent section for
the case of the US economy.
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7.4.3 Altruism and Ricardian Equivalence

In the standard OLG model, parents do not care for their offspring. In the following,
we extend the model of the previous section along the lines of Sect. 3.3.3. The size
of the young generation is again denoted by Nt and grows at rate n. In addition, let
the household’s lifetime utility Vt in period t be given by (3.29), which we restate
for the reader’s convenience:

Vt = u(c1
t ) + βu(c2

t+1) + 1

1 + R
Vt+1. (7.35)

Parents discount lifetime utility of their children Vt+1 at rate R > 0. In this
specification, Vt represents the lifetime utility of a representative member of the
household, and cst , s = 1, 2 denotes per capita consumption in efficiency units with
c1
t ≡ C1

t /(AtNt ) and c2
t+1 ≡ C2

t+1/(AtNt). Accordingly, the number of children n

does not change lifetime utility, ceteris paribus.
Postponing the time index t in (7.35) and recursive substitution into (7.35) results

in

Vt =
∞∑

i=0

1

(1 + R)i

[
u(c1

t+i ) + βu(c2
t+i+1)

]
.

Parents who are born in period t can leave (per capita) bequests beqt+1 ≥ 0 to their
children at the end of period t + 1. Similarly, they receive bequests beqt ≥ 0 from
their parents at the end of period t . Accordingly, the budget constraints of generation
t are represented by:

c1
t + st = wt + beqt + trt , (7.36a)

c2
t+1 + (1 + n)(1 + γ )beqt+1 = (1 + rt+1)st , (7.36b)

implying the intertemporal budget constraint

c1
t + c2

t+1 + (1 + n)(1 + γ )beqt+1

1 + rt+1
= wt + beqt + trt .

For simplicity, we assume that only young households receive government transfers.
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Assuming an operative bequest motive, beqt+1 > 0, the first-order conditions of
the household are represented by36:

∂

∂c1
t

: λt = u′(c1
t ), (7.37a)

∂

∂c2
t+1

: λt

1 + rt+1
= βu′(c2

t+1), (7.37b)

∂

∂beqt+1
: λt

(1 + n)(1 + γ )

1 + rt+1
= λt+1

1 + R
, if beqt+1 > 0, (7.37c)

where λt denotes the Lagrange multiplier of the generation-t budget constraint. We
can simplify the first-order conditions by eliminating λt . Therefore,

u′(c1
t ) = βu′(c2

t+1) (1 + rt+1) , (7.38a)

u′(c1
t )
(1 + n)(1 + γ )

1 + rt+1
= u′(c1

t+1)

1 + R
, if beqt+1 > 0. (7.38b)

The first equation is the familiar Euler condition that equals the marginal utility
from consuming an additional unit today and from saving it. In the second equation,
the marginal utility from the consumption today is compared with the marginal
utility of saving an additional unit and leaving it as a bequest. If the household
consumes the additional unit today, it derives the marginal utility u′(c1

t ). If it saves
the extra unit, it will be able to leave (1 + rt+1) units of the consumption good
to the next generation. Since the next generation has the size (1 + n) relative to
the present generation and also applies the higher productivity level At+1 to the
normalization of the consumption good, c1

t+1 ≡ C1
t+1/(At+1Nt+1), the additional

per capita consumption in efficiency units decreases by the divisor (1 + n)(1 + γ ).
In addition, the present households discounts the utility of the next generation at the
rate R.

The production sector is described as in the previous section such that production
is given by the Cobb-Douglas function (7.12), and profit maximization implies that
the factor prices of labor and capital, w and r , are equal to their marginal products
as represented by (7.13a) and (7.13b).

For ease of exposition, we abstract from government consumption. Conse-
quently, government expenditures only consist of transfers that are financed by debt
Bt , T rt = Bt+1 − (1 + rt )Bt , or in per capita terms:

trt = ((1 + n)(1 + γ )) bt+1 − (1 + rt )bt . (7.39)

36See Appendix 3.1 for the computation of this Kuhn-Tucker problem.
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Again, we have already incorporated the no-arbitrage condition from the capital
market, rBt = rt .

In equilibrium, savings are equal to next-period assets, Ωt+1 = NtAtst , or after
dividing by NtAt ,

(1 + n)(1 + γ )(kt+1 + bt+1) = st . (7.40)

For this economy, Barro (1974) demonstrates that an increase in transfers does
not change the equilibrium capital stock. We discussed the idea behind this result
above. If the present generation receives a higher transfer tr , it leaves the complete
amount to the next generation, which will use it to repay the debt. As a consequence,
the additional savings (for the next generations) in the capital market just offset the
additional debt.

We will demonstrate this by means of an example for the steady state. Therefore,
assume the following function for instantaneous utility:

u(c) = c1−σ − 1

1 − σ
,

which is characterized by the constant intertemporal elasticity of substitution 1/σ .
The equilibrium conditions for the steady state with constant consumption (c1, c2),
bequests beq , and capital stock k are given by eight equations in the eight unknowns
w, r , tr , k, beq , b, c1, c2 and the exogenous variable, the debt-output ratio b/y:

w = (1 − α)kα, (7.41a)

r = αkα−1 − δ, (7.41b)

tr = (n+ γ + nγ − r) b, (7.41c)

b = b

y
kα, (7.41d)

c2 = [β(1 + r)]
1
σ c1, (7.41e)

1 + r

(1 + n)(1 + γ )
= 1 + R, (7.41f)

c1 + c2

1 + r
= w + beq

(
1 − (1 + n)(1 + γ )

1 + r

)
+ tr (7.41g)

(1 + n)(1 + γ )(k + b) = w + beq + tr − c1. (7.41h)

The equilibrium values of k, c1, c2, and y are independent of the debt-output ratio
b/y. To see this, observe that (7.41f) determines r for given R, γ , and n irrespective
of the debt-output ratio b/y. Then, (7.41b) determines k, and hence, (7.41a)
implies the wage w. For this reason, production, y = kα , is also determined by
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k. Accordingly, none of the variables {r,w, k, y} depend on b/y, and Ricardian
equivalence holds with respect to capital and total production. Furthermore, c1/c2

depends only on r according to (7.41e) and, therefore, depends on k but not on b/y.
In the goods market equilibrium of the economy,37

(1 + n)(1 + γ )kt+1 + c1
t + c2

t

(1 + n)(1 + γ )
= kαt + (1 − δ)kt . (7.42)

Therefore, in steady state, c1 and c2 depend only on k and n but not on b/y:

(n+ γ + nγ + δ)k + c1 + c2

(1 + n)(1 + γ )
= kα.

Finally, (7.41d) determines public debt per capita b, and (7.41c) determines tr .
Bequests beq adjust such that (7.41h) holds.

In conclusion, we have demonstrated that Ricardian equivalence holds in the
OLG model with altruistic bequests. In particular, the debt-output level only
determines transfers and bequests but does not change savings, consumption, or
output. We have also demonstrated that this result holds irrespective of the discount
factor R. Higher debt does not affect k, c1, c2, or y for a given R. Therefore, if
parents discount their children’s utility by a lower (or higher) discount rate than
they apply to their old-age consumption, R < 1/β − 1 (R > 1/β − 1), Ricardian
equivalence continues to hold.38

7.5 Putting It All Together: Demographic Transition, Pensions,
and Debt

The debt situation of modern industrialized countries is likely to deteriorate in the
coming decades due to the demographic transition. As you learned in Sect. 6.6 on
the fiscal space, public expenditures are likely to rise while tax revenue will shrink
in an aging economy. The fiscal space narrows, and thus, government might resort
to higher debt financing, in particular if it reforms the public pay-as-you-go pension
system and needs to compensate the losing generations during the transition.

In the following, we consider the effects of the demographic transition in an
OLG model that is able to closely match the US economy with respect to its
generational structure, pension system, and tax revenue. The model is based upon

37In Problem 7.2, you are asked to derive the goods market equilibrium condition (7.42). Therefore,
notice that consumption in both young and in old age, c1

t and c2
t+1, is normalized (made stationary)

by dividing by At . When you derive the goods market equilibrium, take care to sum total
consumption according to Ct = NtAt c

1
t + Nt−1At−1c

2
t .

38If the discount factor R changes, of course, equilibrium values of the variables k, y c1, and c2

will adjust.
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Heer, Polito, and Wickens (2017). We will first describe the model before we
analyze the steady-state effects of higher debt. We confirm the results of the previous
section that financing through higher government debt has real effects and crowds
out investment in both the short and long run. Next, we derive the transition
dynamics for the US economy for the projected population dynamics during the
period 2010–2100 and study the effects of different forms of public financing. Since
Ricardian equivalence fails in our model, the form of financing has real effects
on output and welfare. Therefore, we distinguish four fiscal policies for financing
higher government expenditures during the adjustment dynamics: (1) labor income
taxes, (2) lump-sum taxes (or, equally, lower lump-sum transfers), (3) labor income
taxes combined with transitory debt financing, and (4) lump-sum taxes combined
with transitory debt financing. As we will find, the four different forms of financing
imply different effects on generational welfare and long-run income.

7.5.1 Model Assumptions

The model is similar to that in Sect. 6.4; however, we simplify the model with
respect to two assumptions. We do not consider cohort heterogeneity, and thus, all
members of a given cohort are equal. In addition, we choose a longer time period
of 5 years, which greatly facilitates the numerical problem without sacrificing any
important model elements such as population demographics or life-cycle savings.

7.5.1.1 Demographics and Timing
A period, t , corresponds to 5 years. Newborns have a real-life age of 20–24, denoted
by s = 1. All generations retire at the beginning of age R = 10 (corresponding to
real-life age 65) and live up to a maximum age of J = 15 (real-life age 94). The
number of periods during retirement is equal to J − R + 1 = 6. We denote total
population in t by Nt and the number of s-year old cohort by Nt(s) so that the cohort
share in total population amounts to μs

t ≡ Nt(s)/Nt . The survival probability of the
s-year-old household in period t to survive until age s + 1, φt,s , is nonzero, except
in the last period of its life. In addition, φt,0 = 1.0 and φt,J = 0.

7.5.1.2 Households
Each household comprises one (possibly retired) individual. Households maximize
the expected intertemporal lifetime utility

Ut =
J∑

s=1

βs−1

⎛

⎝
s∏

j=1

φt+j−2,j−1

⎞

⎠ (
u(cst+s−1, l

s
t+s−1) + v(gt+s−1)

)
, (7.43)
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where the instantaneous utility is specified as a function of consumption and labor,
as in Trabandt and Uhlig (2011)39:

u(cst+s−1, l
s
t+s−1) = 1

1 − σ

(
(cst+s−1)

1−σ
[
1 − ν0(1 − σ)

(
lst+s−1

)1+1/ν1
]σ − 1

)
.

(7.44)

In this function, ν1 and 1/σ denote the Frisch labor supply elasticity and the
intertemporal elasticity of substitution. During the working life, the labor supply
of the s-year-old amounts to lst ≥ 0, s = 1, . . . , R − 1, while it is set to lst ≡ 0
during retirement, for s = R,R + 1, . . . , J . Utility from government consumption
v(gt ) is additive, meaning that government consumption per capita gt does not have
any direct effect on household behavior (it only indirectly affects behavior through
its effects on transfers and taxes). We, therefore, can drop it in the consideration of
the utility optimization problem in the following.

Let ȳs denote the productivity of the s-year-old household, where the age-
productivity profile {ȳs}R−1

s=1 is a hump-shaped function, as estimated by Hansen
(1993). Accordingly, total gross labor income wt ȳ

sAt l
s
t is the product of the wage

rate per efficiency unit wt , the age-efficiency factor ȳs , aggregate labor productivity
At , and working hours lst . The retired household receives a lump-sum pension pent
such that net non-capital income xst is represented by

xst =
{
(1 − τwt − τ

p
t )wt ȳ

sAt l
s
t s = 1, . . . , R − 1,

pent s = R, . . . , J.
(7.45)

Wage income is taxed at the rate τwt . In addition, the household also pays
contributions to the pension system at rate τpt .

The budget constraint of the household at age s = 1, . . . , R − 1 is given by

(1 + τ ct )c
s
t = xst +

(
1 + (1 − τKt )rt

)
ωs
t + trt − ωs+1

t+1 , (7.46)

where assets of the s-year-old household at the beginning of period t , ωs
t , consist

of capital stock kst and government bonds bst , ω
s
t = kst + bst . The household

is born without assets and leaves no bequests at the end of its life, implying
k1
t = kJ+1

t = 0 and b1
t = bJ+1

t = 0. The household receives interest income rt
on capital and government bonds and pays income taxes on capital income at rate
τKt . Consumption is taxed at the constant rate τ ct = τ c. In addition, the household
receives government transfers in the amount of trt in period t .

39Trabandt and Uhlig (2011) show that the utility function (7.44) has the two properties: (1) It is
consistent with long-run growth, and (2) it features a constant Frisch elasticity of labor supply ν1.
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Maximizing lifetime utility (7.43) subject to budget constraint (7.46) results in
the following first-order conditions for the s-year-old household40:

λst (1 + τ c) = (cst )
−σ
[
1 − ν0(1 − σ)(lst )

1+1/ν1
]σ

, s = 1, . . . , J

(7.47a)

λst (1 − τwt − τ
p
t )ȳ

sAtwt = ν0σ

(
1 + 1

ν1

)
(cst )

1−σ
[
1 − ν0(1 − σ)(lst )

1+1/ν1
]σ−1

· (lst )1/ν1, s = 1, . . . , R − 1 (7.47b)

λst = βφt,s λ
s+1
t+1

[
1 + (1 − τKt+1)rt+1

]
, s = 1, . . . , J − 1.

(7.47c)

In Eq. (7.47a), lst ≡ 0 for s ≥ R.
The solution to the household maximization problem implies that the household

is indifferent between holding assets in the form of physical capital and government
debt, as both yield the same (certain) after-tax return. If we only had one household
living for two periods, this would pose no problem because the proportion of
asset holdings would be the same at the individual and aggregate levels. However,
with many periods, the portfolio allocation is indeterminate. Therefore, we assume,
without loss of generality, that each household holds the two assets in the same
proportion, which is determined as the share of capital in total aggregate assets and
equal to kt/(kt + bt ).

7.5.1.3 Production
The production technology is described by a Cobb-Douglas function:

Yt = Kα
t (AtLt )

1−α. (7.48)

Capital depreciates at rate δ and At grows at exogenous rate γ :

At+1 = (1 + γ )At . (7.49)

Firms operate in competitive goods and factor markets. They maximize profits

Πt = Yt − rtKt − wtAtLt − δKt , (7.50)

40See Appendix 7.2 for the derivation.
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resulting in the first-order conditions

rt = αKα−1
t (AtLt )

1−α − δ, (7.51a)

wt = (1 − α)Kα
t (AtLt )

−α. (7.51b)

Notice that wt is the wage rate per efficiency unit (and not per working hour).

7.5.1.4 Government
The government expenditures consist of public consumption Gt , transfers T rt , and
interest on public debt Bt . Government expenditures are financed by taxes Tt , debt,
Bt+1 − Bt , and confiscated accidental bequests Beqt according to:

Gt + T rt + (1 + rt )Bt = Bt+1 + Tt + Beqt . (7.52)

Government consumption per capita gt grows at exogenous rate γ such that, for
example, g̃t ≡ Gt

AtNt
denotes stationary government expenditures per capita in

efficiency units.
Accidental bequests are collected from the households that do not survive:

Beqt+1 =
J∑

s=1

(1 − φt,s)Nt (s)
([

1 + (1 − τKt+1)rt+1

]
ωs+1
t+1

)
. (7.53)

Taxes are levied on consumption, interest income, and wage income:

Tt = τ cCt + τwt wtAtLt + τKt rtΩt , (7.54)

with

Ct =
J∑

s=1

Nt(s) c
s
t , (7.55a)

Lt =
R−1∑

s=1

Nt(s) ȳ
s lst , (7.55b)

Ωt+1 =
J∑

s=1

Nt(s) ω
s+1
t+1 . (7.55c)

According to (7.55a) and (7.55b), aggregate consumption and labor are simply equal
to the sum of the individual variables. Equation (7.55c) represents the condition
for the capital market equilibrium according to which the beginning of next-period
aggregate wealth is equal to the sum of individual savings at the end of period t .



7.5 Putting It All Together: Demographic Transition, Pensions, and Debt 353

Aggregate wealth Ωt is equal to the sum of aggregate capital Kt and government
bonds Bt .

7.5.1.5 Social Security
The social security authority runs a balanced budget:

τ
p
t wtAtLt =

J∑

s=R

Nt (s) pent . (7.56)

7.5.1.6 EquilibriumConditions
The goods market equilibrium is given by

Yt = Ct + Gt + Kt+1 − (1 − δ)Kt . (7.57)

The results for the stationary equilibrium and the transition are computed with the
help of the Gauss programs Ch7_US_debt.g and Ch7_US_transition.g.
The stationary equilibrium and the computation of the model are described in greater
detail in Appendix 7.2.

7.5.2 Calibration

In parameterizing the model, we follow Trabandt and Uhlig (2011) as closely as
possible. Table 7.4 summarizes the model calibration.

7.5.2.1 Demographics
In the initial steady state in 2010, the annual population growth rate is set equal to
0.95%, as estimated by UN (2015) for the average population growth rate prevailing
during the years 1995–2010.41 The 5-year survival probabilities for the 15 different
age groups are taken from UN (2015). These data show that survival probabilities
have increased over time and are subject to a higher rate of growth for the older age
groups.42 For our benchmark simulation, we use the average survival probabilities
during the period 1990–2010.43 Since we consider the stationary age distribution in
the steady state, the dependency ratio of the stationary population implied by these
demographic variables, in the amount of 30.6%, is higher than the empirical value
of 21.6% (24.7%) that is projected by UN (2015) for the US economy in the year
2010 (2015).

41Trabandt and Uhlig (2011) use the calibration period 1995–2007.
42Please see also Fig. 6.8 in Chap. 6.
43For the projection of future survival probabilities that serve as inputs into our subsequent
quantitative analysis, we continue to use moving averages of four periods.
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Table 7.4 Calibration of the OLG model with pensions and debt

Parameter Value Description

n 0.95% Population growth rate (annual)

OADR2 30.6% Old-age dependency ratio (20–65)/65+

β 1.0361 Discount factor (annual)

ν0 21.5 Preference parameter: weight of labor

σ 2.0 (Inverse of) Intertemporal elasticity of substitution

ν1 0.30 Frisch labor elasticity

α 0.35 Production elasticity of capital

δ 8.3% Depreciation (annual)

γ 2.0% Growth rate (annual)

G/Y 18.0% Government consumption/GDP

T r/Y 12.3% Government transfers/GDP

B/Y 63% Government debt/GDP (annual)

pen/(wAl̄) 35.2% Gross replacement rate of pensions

τp 10.8% Social security tax rate

τ c 5.0% Consumption tax rate

τK 36.0% Capital tax rate

τw + τp 28.0% Labor tax rate

7.5.2.2 Production
Following Trabandt and Uhlig (2011), the production elasticity of capital is set equal
to α = 0.35. The annual depreciation rate of δ = 8.3% implies a 5-year period value
of depreciation equal to 35.2%, δ = 1−(1−0.083)5. Also in accordance with these
authors, we choose an annual economic growth rate of 2%.

7.5.2.3 Preferences
The value of the utility parameter, ν0 = 21.5, is chosen such that the implied
steady-state average working hours are equal to 0.30. Following our discussion of
the empirical evidence on the Frisch labor supply elasticity in Sect. 4.4.5, we set
ν1 = 0.3, while we also retain the calibration of the intertemporal elasticity of
substitution, 1/σ = 1/2, in accordance with that in Chaps. 2–6. The annual value
for the discount factor, β = 1.0361, is chosen to imply an annual real interest rate
of 4%, or 21.9% over a period of 5 years.

7.5.2.4 Government
The average annual debt-GDP ratio of 63% during the period 1995–2007 corre-
sponds to a 5-year value of 12.6%. Fiscal policy is described by the tax rates of
28%, 36%, and 5% on labor income, capital income, and consumption, respectively.
Notice that the labor income tax rate in Trabandt and Uhlig (2011) is estimated
following the methods of Mendoza, Razin, and Tesar (1994), meaning that our
social security contribution tax rate τp is already a component of the labor tax
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rate of 28.0%. Therefore, τw + τp is calibrated at 28.0%, and τw = 17.2% is
computed as a residual with the help of τp. Government consumption amounts
to 18.0% of GDP, while government transfers, being determined endogenously to
satisfy the government budget constraint, amount to 12.2% of GDP. We fix the gross
replacement rate of 35.2% in accordance with the data provided in OECD (2017)
for men with average earnings (percentage of pre-retirement income) and compute
endogenously the social security tax rate, τP = 10.8%, that balances the social
security budget in the benchmark calibration.44

7.5.3 Stationary Allocation

For the benchmark calibration of the stationary equilibrium in 2010, the life-
cycle profiles of individual assets, labor supply, and the consumption and savings
rates are presented in Fig. 7.11. Wealth increases over the working life and peaks
prior to retirement at real lifetime age 60–64. Working hours are hump-shaped
over the working life and peak during the age period 30–34. The labor supply
mirrors the efficiency-age profile but peaks earlier due to the effect of increasing
wealth. Consumption increases throughout the working life because the discount
rate 1/β − 1 is smaller than the interest rate after taxes (1 − τK)r . At the age of
retirement, consumption falls because leisure increases to 100%. During retirement,
consumption is hump-shaped as the survival probability φt,s declines, and hence,
the inverse of the product φt,s · β rises above the interest rate 1 + (1 − τK)r after
age 80 (so that the factor φt,sβ(1 + (1 − τK)r)/(1 + γ )σ falls below one – see the
Euler equation (7.64c) in Appendix 7.2). The savings rate is defined as the ratio of
savings y−(1+τ c)c to disposable income y, with income y being equal to net labor
and capital income plus transfers. Savings are positive during the working life and
fall below zero during retirement. The maximum savings rate is observed during the
period with the highest labor supply at age range 30–34 and amounts to 40% of net
income.

7.5.4 Steady-State Results on Debt and Crowding-Out of Capital

Figure 7.12 presents the effects of higher debt B/Y on the capital stock.45 Ricardian
equivalence fails just as in the simple two-period OLG model, and higher debt

44In 2016, the US social security contribution rates amounted to 6.2% for each the employer and
the employee. Our endogenous value of τp falls somewhat short of this value for two main reasons.
(1) In the US, social security also encompasses disability insurance, which we do not model. (2)
In addition, there is a maximum threshold level of wage income for which the individual pays
social security contributions. In 2016, this limit amounted to $118,500. Accordingly, the effective
average social security contribution rate on wage income is lower than 12.4%.
45The results that are computed with the Gauss program Ch7_US_debt.g fluctuate around the line
presented in Fig. 7.12 due to numerical inaccuracies. We, therefore, interpolated the results by a
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Fig. 7.11 Age profiles of individual variables in the benchmark large-scale OLG model

crowds out capital. An increase in the debt-output ratio B/Y from 50% to 70%
decreases the capital stock k by 0.14%, from 0.11680 to 0.11664. We notice that
higher debt crowds out capital to a much smaller quantitative extent than in Fig. 7.10
that we computed in the stylized two-period OLG model in Sect. 7.4.2. Since we
consider a much more realistic demographic structure in the present model, the
household accumulates larger savings in an economy with higher public debt. In
this regard, a large-scale OLG model behaves much more akin to the Ramsey model
than to the simplified two-period model. Therefore, although our lifetime is finite,
it is sufficiently long to induce a relatively small failure of Ricardian equivalence,
ceteris paribus.

Furthermore, we have another countervailing effect of higher debt on savings.
In the standard two-period model presented in Sect. 7.4.2, labor supply is inelastic.
In the present model, labor supply is elastic. Since higher public debt necessitates
lower lump-sum transfers (or, equivalently, higher lump-sum taxes), we observe a
positive income effect on labor supply in the sense that labor supply increases.46

Therefore, aggregate production and, hence, income and savings increase, ceteris
paribus. The magnitude of this income effect critically depends on the Frisch labor
supply elasticity. If we even choose a Frisch labor supply elasticity ν1 = 1.0, we

smooth cubic function. The vertical distance between the computed values and the line in Fig. 7.12
is on the order of 10−5.
46Of course, the total effect on labor supply would be much different if higher debt were instead
financed by distortionary labor income taxes.
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Fig. 7.12 Capital stock and debt in the large-scale OLG model with pensions

observe that debt no longer crowds out capital and k actually increases slightly for
higher debt B/Y (not presented).47

7.5.5 Transition Results Regarding Fiscal Policy and Demographics

In this section, we analyze the effects of fiscal policy on the dynamics of aggregate
wealth, employment, and welfare. To do so, we assume that the economy is in
the steady state in 2010 that is implied by the stationary population for the 2010
survival probabilities and population growth rate. During the period 2010–2100,
the population evolves according to the medium forecast of the United Nations,
as described in UN (2015). After 2100, the survival probabilities and population
growth rates remain constant at their 2100 levels, meaning that the population is
approximately stationary circa 2150. As a consequence, the share of the labor force
in the total population shrinks from 76.6% in 2010 to 65.8% in 2150, as depicted
in the bottom-right panel of Fig. 7.13. In addition, we assume that the net pension
replacement rate remains constant at 35.2% throughout the transition period. To
balance the budget of the social security authority, the pension contribution rate τp

has to adjust and increases from 10.8% to 18.3%.
We distinguish four different fiscal policies (1)–(4). Under the benchmark policy

(1) (the red solid line in Fig. 7.13), real debt B and transfers T r (both variables
relative to population Nt and technology At ) remain constant at their 2010 levels,
while the wage income tax rate τw adjusts to balance the government budget. As a
consequence, τw has to increase from 17.2% to 27.0%, and thus, the new long-run

47The reader is asked to verify this by adjusting the parameter value in the program
Ch7_US_debt.g.



358 7 Public Debt

0.13 0.11 0.09 0.07 34

18 16 14 12 10

0.20 0.18 0.16 0.14 0.062 0.058 0.054 0.050

0.250 0.235 0.220 0.205

30 26 22 18 0.010

0.065

0.76 0.72 0.68 0.64

0.050 0.035 0.020

0.004 –0.002 –0.00814

Y
ea

r
20

20
20

40
20

60
20

80
21

00
21

20
21

40
21

60

Y
ea

r
20

20
20

40
20

60
20

80
21

00
21

20
21

40
21

60
Y

ea
r

20
20

20
40

20
60

20
80

21
00

21
20

21
40

21
60

Y
ea

r
20

20
20

40
20

60
20

80
21

00
21

20
21

40
21

60

Y
ea

r
20

20
20

40
20

60
20

80
21

00
21

20
21

40
21

60
Y

ea
r

20
20

20
40

20
60

20
80

21
00

21
20

21
40

21
60

Y
ea

r
20

20
20

40
20

60
20

80
21

00
21

20
21

40
21

60
Y

ea
r

P
en

si
on

s

P
ol

ic
y 

1
P

ol
ic

y 
2

T
ra

ns
fe

rs
D

eb
t

La
bo

r 
fo

rc
e 

sh
ar

e

P
ol

ic
y 

3
P

ol
ic

y 
4

20
20

20
40

20
60

20
80

21
00

21
20

21
40

21
60

Y
ea

r

C
ap

ita
l s

to
ck

La
bo

r
O

ut
pu

t

W
ag

e 
ta

x 
ra

te
 τ

w
P

en
si

on
 c

on
tr

ib
ut

io
n 

ra
te

 τ
p

20
20

20
40

20
60

20
80

21
00

21
20

21
40

21
60

Fi
g
.
7
.1
3

D
em

og
ra

ph
ic

tr
an

si
ti

on
an

d
fis

ca
lp

ol
ic

y



7.5 Putting It All Together: Demographic Transition, Pensions, and Debt 359

value for the tax on wage income (wage tax τw plus pension contribution rate τp)
amounts to 45.3%. In Fig. 7.13, the dynamics of τw and τp are illustrated in the
middle-left and middle panels for the years 2010–2160.

Under policy scenario 2, government transfers T r rather than the wage tax τw

adjust to balance the government budget. This scenario is presented by the broken
green line in Fig. 7.13. Policies (3) and (4), as presented by the broken blue and
solid black lines, consider the cases in which, during an initial phase of 40 years,
both the labor income tax rates and transfers are held constant at their 2010 levels
while the fiscal deficit is financed by means of debt. From 2055 onward, the debt
level remains constant, and either the wage tax rate (policy 3) or transfers (policy 4)
adjust to balance the government budget.

The dynamics for the benchmark case under policy 1 are similar to those studied
in Sect. 6.4. Due to the decrease in aggregate labor, income and savings fall in the
long run. As a consequence, the capital stock declines in the medium and long
run. The time profile of the capital stock, however, is hump-shaped, as aggregate
savings increase initially because young agents save a higher proportion of their
income. Compared with the young households in the stationary population of 2010,
the young households during the transition face a higher survival probability and,
therefore, increase their precautionary savings for old age.48 After the initial phase
of the transition, however, the decline in the share of the labor force in the total pop-
ulation and the simultaneous rise in labor income taxes reduce aggregate disposable
income to such an extent that aggregate savings fall. In the case of debt financing
during the years 2015–2055, the decline in the capital stock is even stronger. Under
policy 3, higher debt increases threefold, and the (annual) debt-output ratio increases
to 215% in the final steady state (while it remains at 73.2% in the case of policy 1).
The high debt level crowds out aggregate capital so strongly that capital falls by
approximately one-third.49 As a consequence, the (annualized) real interest rate r

is also considerably higher in the case of debt financing and amounts to 6.32% in
the long run (compared with 4.05% in the case of policy 1). Therefore, government
interest payments rtBt under policy 3 increase not only because of higher debt B
but also because of a simultaneous increase in the interest rate.50

The dynamics of aggregate labor L, as depicted in the top-middle panel of
Fig. 7.13 are also sensitive to the fiscal policy considered. Labor supply declines

48There are multiple other effects on savings; for example, the age composition of the labor force
changes and average productivity increases in the older labor force ceteris paribus. Moreover, the
savings rate of the 20–24-year old workers is below the average savings rate of the workers (as
presented in Fig. 7.11).
49If we increased the number of periods during which the government resorts to debt financing
of additional expenditures to 50 years, our economy would collapse. In this case, labor income
taxes would be insufficient to finance government expenditures in the long run and the fiscal space
would shrink to zero. In other words, the maximum tax revenues at the peak of the Laffer curve
are insufficient to balance the government budget in this case. See also Sect. 6.6 for the concept of
the fiscal space.
50Recall our discussion of the intertemporal government budget constraint in Sect. 7.3.
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more strongly if the government uses labor income taxes rather than transfers to
finance expenditures. In addition, higher debt also affects the labor supply in the
short to medium rum. First, during the initial phase until the year 2045, higher debt
helps to keep wage tax rates low so that the labor supply is higher under policy 3
than under policy 1. In the case of policies 2 and 4, the direction of the effect is
reversed. Higher debt results in higher transfers under policy 4 compared with that
under policy 2 so that the workers reduce their labor supply. Second, debt crowds out
capital, meaning that the marginal product of labor and, hence, wages fall. The latter
effect is also present in the long run, meaning that labor supply is approximately
2% lower under policies 3 compared with that under policies 1. In the case of a
constant wage tax rate under policies 2 and 4, higher debt results in lower transfers
so that labor supply is higher under policy 4 than that under policy 2 (due to the
income effects). Since both labor and capital shrink in the long run, per capita output
(relative to technology At ) also declines. Under fiscal policies 1–4, the decline in
long-run output amounts to 14.4%, 7.6%, 25.4%, and 12.6%. Notice the devastating
effect of higher debt on output.

Unsurprisingly, the fiscal policies have a significant effect on generational
welfare. Figure 7.14 presents the lifetime utility of the generations alive during the
transition, 2010–2160. The oldest generation that is affected by the policy changes
in 2015 is the generation born in 1940, for whom the last period of life is the 5-year
period starting in 2015.51 Since we assume the economy to be in steady state prior
to 2015, the effect on lifetime utility is negligible. To express welfare effects in an
interpretable way, we compare lifetime utilities for the individual generations born
in the same year to those under policy 1 and express the change in consumption
equivalent changes. As a consequence, the welfare change under policy 1 as
presented by the red solid line is zero. For the case of policy 2, all generations born
after 2070 benefit, while the generations prior to 2070 lose from transfers rather than
tax financing. The reason is straightforward. During the transition, higher transfers
benefit retired households, while workers suffer from higher taxes. In the long run,
the distortionary effects of higher labor income dominate.

Furthermore, older cohorts benefit from the temporary use of debt financing.
In particular, welfare effects of 4% of total consumption or less accrue to the
households born prior to 2120 if policy 3 rather than policy 1 is implemented. In
the case of a constant wage tax, the benefitial welfare effects of debt financing
are reduced. In this case, generations born prior to 1985 benefit if the government
increases debt during the transition. In the (very) long run, however, the welfare
effects of transitory debt financing are detrimental. Under policies 3 and 4, welfare
eventually falls by 1.5–4.5% if debt is used to smooth the transition. We, therefore,
conclude that the government should be careful using debt during the demographic
transition to ease the burden of a shrinking population. The effects of debt on both
output and welfare are dramatic.

51Remember that we assume that households are born at age 20.
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Fig. 7.14 Generational welfare and fiscal policy

Also notice the consequences of our results for the political feasibility of debt
financing. If the government asked the voters if it should use debt financing to ease
the transition, it obtained a clear majority. All generations alive in 2015 would prefer
policy 3 (policy 4) to policy 1 (policy 2). The dotted blue (solid black) line and the
solid red (dotted green) line only intersect in the year 2115 (2025). In Sect. 6.4, we
also observed that the voter would reject a reform of the pension system (a cut in
the pension benefits). Therefore, both our results emphasize that the implementation
of policies to improve fiscal sustainability in modern democracies such as the US
will be confronted with obstacles. Voters prefer higher debt, lower taxes, and more
generous public pensions.

Our model is related to the results of D’Erasmo, Mendoza, and Zhang (2016),
who study the sustainability of debt in a two-country model calibrated to the US
economy and the EU15. In contrast to our model, they assume an infinitely lived
representative household in each country and do not consider the consequences of
the demographic transition or the burden of higher pension payments. Ricardian
equivalence fails in their model because the government has to finance public
expenditures with the help of distortionary taxes. Therefore, as in our case, the fiscal
space depends on the debt level via the dynamic Laffer curves of capital and labor
income taxation.52 The results of their structural model casts doubt “that the high

52In addition to the factors considered in our model, D’Erasmo, Mendoza, and Zhang (2016) also
include endogenous utilization of capital and limited tax deprecation allowances of capital. As
a consequence, they are able to more accurately model the (stronger) capital response to higher
capital income tax rates. The two-country setup also allows them to model the externality of higher
domestic capital taxes on the foreign country. Since capital is mobile, the revenue from higher
capital income taxation is reduced. As we do not consider the use of capital income taxes to finance
higher debt in our analysis, we refrained from implementing these important model components.
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debt ratios of some countries reached by many advanced economies in the years
since 2008 will be fully repaid” (p. 2557). They also assert that there is fundamental
difference in the abilities of the US and Europe to cope with the recent increase in
debt. While in the US, only a small increase in labor income taxation makes debt
sustainable, Europe’s tax system has nearly exhausted all its financing abilities.

İmrohoroğlu, Kitao, and Yamada (2016) study the sustainability of fiscal policy
in Japan. Their model is somewhat similar to ours. In some respects, they con-
siderably improve upon the model above. For example, they much more accurately
consider heterogeneity among consumers, e.g., by explicitly considering gender and
different forms of employment by distinguishing among regular jobs, contingent
jobs, and self-employment. In addition, the Japanese pension system is modeled
in much greater detail. However, some simplifying assumptions not made in our
model are imposed. For example, the consumption age profile is not endogenous but
assumed to be time-invariant. Furthermore, both labor supply and interest rates are
exogenous. Therefore, the costs of higher debt, which results in a significant increase
in interest rates in our model, is likely to be underestimated in their model.53 They
find that government debt (relative to GDP) reaches levels of 210% in 2030 and
370% in 2050 under current policies and no further reforms. As mentioned in the
previous chapter, Braun and Joines (2015) also conduct an analysis with respect to
fiscal sustainability and debt in Japan that is similar to ours for the US economy.
To identify sustainable fiscal policies, they also consider reductions in government
purchases and/or an increase of consumption taxes. For example, an immediate,
but very dramatic, increase in the consumption tax rate from 5% to 36% restores
sustainability. Braun and Joines (2015) find that Japan will face a severe fiscal crisis
if reforms are not implemented soon. Somewhat surprisingly, they also show that a
higher fertility rate might even exacerbate Japan’s fiscal problems in the short and
intermediate run.

7.6 Epilogue

Thus far, we have assumed perfect foresight. The government is able to repay
its debt; otherwise, the government does not secure credit from private investors.
However, public debt has not always been honored in (recent) history. Reinhart and
Rogoff (2011) document the debt default histories of 64 countries over the period
1800–2010 and identify 250 cases of external debt default and 68 cases of overt
default where, in the latter case, even domestic debt holders were punished, in the
form of lower coupon rates, a suspension of payments, a unilateral reduction in
principal or a forcible conversion, e.g., after a currency reform. While most studies
have addressed the case of external defaults, few studies have analyzed the case

53İmrohoroğlu, Kitao, and Yamada (2016) perform a sensitivity analysis for the returns on
government debt and find that “if the interest rate on government debt is higher than the 1%
assumed for the benchmark case, the resulting impact on fiscal balance can be disastrous”.
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of a domestic default. We will briefly review the two types of studies. For more
comprehensive surveys of debt default studies, we recommend the two articles by
Aguiar, Chatterjee, Cole, and Stangebye (2016) and Stähler (2013) and Chapter 13
in Schmitt-Grohé and Uribe (2017) on external sovereign default and D’Erasmo,
Mendoza, and Zhang (2016) on domestic debt crises.

7.6.1 Sovereign External Default

During the 1980s and 1990s, we observed many episodes of external default in Latin
American and Asian countries, including the crises in Argentina in 1982 and 2001,
Mexico in 1983, and Thailand in 1993. Debt crises during this period, however, were
not confined to Latin America and Asia but also emerged in Europe, e.g., in Turkey,
and in Africa, e.g., in Nigeria. The circumstances differed across the individual
countries. In Mexico in 1983, for example, the onset of the crisis was initiated by
a collapse of commodity prices and a steep rise in interest rates in the early 1980s,
while the crises in South Korea, Thailand, and Indonesia were associated with the
(often implicit) currency peg against the dollar and a loss of investor confidence.

A large literature on sovereign default grounded in the pioneering work of Eaton
and Gersovitz (1981) evolved in the wake of government crises over the two final
decades of the last century. Its focus differs from that studied in this chapter. In
the model in Sect. 7.5, for example, we analyzed debt policies that are sustainable
and identified the level of debt beyond which fiscal policy becomes unsustainable
in the US economy. In the literature on sovereign debt, however, the government
is assumed to be able to service its debt but optimally decides either against or
in favor of doing so. These studies base their analysis of the sovereign’s optimal
default decision on the assumption that debt is financed by investors from abroad.
A government decision to default on its debt results in punitive action in the
form of exclusion from international capital markets. In addition, a default cost is
usually imposed exogenously, taking the form of output loss.54 Production in these
models is assumed to be both exogenous and stochastic.55 In particular, the interest

54In the early work on sovereign default, the default costs are usually assumed to be linear in
output, while in latter work such as Arellano (2008) and Aguiar, Chatterjee, Cole, and Stangebye
(2016), the focus has shifted to non-linear default costs that increase in output. Non-linear default
costs help to improve the performance of these types of models with respect to the replication
of empirical facts, particularly with regard to the volatility of interest spreads, which often serve
as a measure of default. For example, Aguiar, Chatterjee, Cole, and Stangebye (2016) identify a
“crisis” episode with a period that features an interest rate spread of government debt in the top 5%
of the distribution of quarterly changes. Mendoza and Yue (2012) provide a model with a micro-
foundation of non-linear costs in which domestic producers cannot import foreign intermediate
inputs during periods of default.
55The results from this literature are sensitive to the stochastic nature of the shock. Most of these
models assume a deterministic trend, which, at a minimum, seems questionable for a multitude
of developing countries; alternatively, a stochastic growth rate is considered. With the assumption
of deterministic growth, the economy is more responsive to a negative output shock because it
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rate that is charged by foreign investors does not affect output. The sovereign is
usually identified with the representative infinitely-lived household in the economy
and maximizes intertemporal utility as in the Ramsey model.56 The government
faces a budget constraint. Either it honors its debt obligations and retains access
to international capital markets, or it does not repay, which increases its present
consumption in the amount of the forgone debt but decreases consumption by
the imposed output costs, while it also reduces the possibility of consumption
smoothing over future periods because of its exclusion from capital markets.57

The timing in these models of sovereign default is as follows. The government
observes the state of the economy, which is described by the production (income)
and all other exogenous shocks, for example the wealth of the investors and, hence,
the external demand for government debt. There is usually a bond auction only once
per period. In the following step, the literature considers two different sequences.
Either the government first decides about default and, if it does not default, auctions
its bonds or, vice versa, first auctions its bonds and decides about default thereafter,
meaning that newly auctioned bonds also face a within-period default risk. Next,
the government consumes its exogenous income (subject to possible default costs)
and moves to the next period, where it either has access to or is excluded from
international capital markets. In the event of default, it is often assumed that
the government re-enters international credit markets without debt with a certain
probability in each period.58 Once it re-enters, it retains access until it defaults again.
Reputation effects are usually absent from these models, and the probability of re-
entry (or, equally, average length of its absence) does not depend on the previous
number and extent of defaults.

The literature has expanded in many directions including, among others, risk-
averse investors, different maturities of government debt, news shocks, fiscal policy
rules, exchange rates, ideas from political economy (myopia and political turnover
in multi-party systems), and reputation effects.59 Important results of this literature
include the following: (1) Bond prices fall and, hence, interest rates rise when

implies a recovery to trend and, therefore, a higher future level of output. As a consequence, the
government issues more debt to intertemporally smooth consumption.
56As one exception to the assumption of one sovereign, Cuadra and Sapriza (2008) incorporate the
presence of two parties, e.g., a left-wing versus a conservative party, into a model of a political
economy. Both parties give preferential treatment to their voters, which consist of two types of
households, each preferring a different public good. The incumbent party also has an incentive to
finance its expenditures by borrowing and impose potential default risk on its successor.
57In general, the possibility of smoothing consumption with the help of domestic credit markets is
also not considered in these types of models.
58In the benchmark model of Eaton and Gersovitz (1981), the government remains excluded from
international capital markets after a default.
59See, for example, Arellano (2008) on risk-averse investors, Alfaro and Kanczuk (2007) and
Aguiar and Amador (2016) on different maturities of government debt, Durdu, Nunes, and
Sapriza (2013) on news shocks, Gosh, Kim, Mendoza, Ostry, and Qureshi (2013) on fiscal policy
rules, Asonuma (2016) on exchange rates, Cuadra and Sapriza (2008) on political economy, and
D’Erasmo (2012) on reputation.
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debt increases and/or productivity is expected to be low in the future. Accordingly,
the sovereign default models are in line with the empirical observation that highly
indebted countries have a greater incentive to default and that interest spreads move
countercyclically. (2) Shocks to long-run growth have a more substantial impact on
default rates than do transitory shocks. (3) Politically unstable economies display
higher default rates and greater volatility of sovereign interest rate spreads. (4) For
emerging countries, interest rates on the long-term debt are, on average, higher than
those on short-term debt. (5) The issuance of new debt may decrease the value of
existing debt (debt dilution). (6) Empirically, fiscal policy in developing economies
acts pro-cyclically by increasing public spending and cutting taxes in good times.
This can be shown to also prevail in models in which the government also considers
the probability of default and the effects of its debt policy on interest rates. (7)
Negative shocks to productivity can lead to a decline in the real exchange rate and a
higher likelihood of a default on sovereign debt.

7.6.2 Domestic Default

Reinhart and Rogoff (2011) note that domestic debt represents the lion’s share of
total public debt, amounting to approximately two-thirds during the period that
extends from 1800 until the present. Large domestic debt helps to explain why many
countries default on their external debt at low levels. The literature on quantitative
models of debt default, however, has mostly ignored domestic debt, with only a few
exceptions.

As one prominent study on domestic default, D’Erasmo and Mendoza (2016)
examine a government which has sufficient revenue to repay its debt but may
nevertheless optimally decide to default. Therefore, the government weights the
respective changes in the utilities of the bondholders and non-bondholders. As a
consequence of a default, wealth is redistributed domestically, from bondholders
to non-bondholders. In addition, an exogenous default cost is imposed, which is
non-increasing in (stochastic) government expenditures and proportional to total
(exogenous) income. Both D’Erasmo, Mendoza, and Zhang (2016) and D’Erasmo
and Mendoza (2016) calibrate the model with respect to European data60 to
show that there is a reasonable parameter space that supports an equilibrium
with sustainable debt subject to default risk. As an implication of their model,
d’Erasmo and Mendoza show that public debt is more sustainable if the government
payoff function is biased in favor of bondholders. The latter assumption may be
justifiable with the help of arguments from the political economy literature. For

60For example, D’Erasmo, Mendoza, and Zhang (2016) assume that the (annual) logarithmic
government expenditure-GDP ratio follows an AR(1) process with an autoregressive coefficient of
0.8802 and a standard deviation of 1.7%, while the output costs of a default amount to a minimum
of 2% and increase linearly with government expenditures. Default occurs with a probability of
1%.
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example, the electoral participation of older households, which may represent a
larger share of the bondholders, is higher than that of the younger households,
which have just begun to accumulate wealth and invest a larger share of their
wealth in stocks than in government bonds.61 Notice also that a default may not
especially harm the rich or benefit the poor. For the rich households, government
bonds usually constitute a smaller proportion of total wealth since the portfolio share
of (supposedly) more risky assets in the form of stocks increases with wealth.62 In
addition, government debt may provide utility-enhancing services such as liquidity
to credit-constrained individuals or a self-insurance mechanism as emphasized by
Aiyagari and McGrattan (1998).63

RBC and dynamic stochastic general equilibrium (DSGE) models are the
standard tools to analyze the effects of fiscal policy. At present, it is rather difficult
to include the quantitative models of sovereign and debt default in the standard
growth and business cycle models and, thereby, endogenize the accumulation of
physical capital.64 A laudable exception is Gordon and Guerron-Quintana (2018),
who study a standard business cycle model with endogenous capital accumulation
that simultaneously accounts for the empirical features of sovereign default episodes
and business cycle properties of small open economies. As one major component
of their analysis, they integrate capital adjustment costs. When the economy is
hit by a positive productivity shock, firms gradually increase investment. The
sovereign also increases international borrowing during these times. When the
economy slides into a recession as a consequence of adverse productivity shocks, the
sovereign mitigates their impact on consumption by rolling over debt and reducing
investment. Consequently, debt grows relative to output. If the negative shocks
persist, the sovereign defaults, and output, consumption, and investment all decline
substantially. Capital acts as a smoothing channel against shocks, while it also

61As a different interpretation of their model, D’Erasmo, Mendoza, and Zhang (2016) argue, “in
the European debt crisis, a Greek default can be viewed as redistributing from German tax payers
to Greek households” (on p. 2559).
62D’Erasmo and Mendoza (2016) also show that default is more costly in the presence of physical
capital and, hence, an endogenous portfolio choice by the household.
63Aiyagari and McGrattan (1998) find that the optimal debt-GDP ratio amounts to approximately
2/3 in the US, which is close to the post-war average level. In Problem 7.4, you are asked to
compute the insurance mechanism that is provided by the public debt system in a simple three-
period OLG model with income uncertainty. In essence, the provision of public debt in a non-
Ricardian economy increases the interest rate, meaning that the return on savings increases, and a
(stochastic) drop in income can be more easily compensated.
64One reason for the difficulties in integrating endogenous default into the standard DSGE model
(that can be overcome) is the inherent non-linear nature of the sovereign’s optimization problem.
The choice is binary (default versus honoring debt payments), and the equilibrium bond price is a
highly non-linear function of the state of the economy. In addition, Gordon and Guerron-Quintana
(2018) note that policy functions (and the value functions of the sovereign) might become non-
monotone in the presence of capital accumulation and long-term government debt; the latter is
necessary for matching empirical spread and default statistics. As a consequence, the linearization
method for solving the DSGE model that we introduced in Chap. 2 is no longer applicable.
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makes external default more attractive, as foreign creditors cannot seize domestic
capital. The net effect of physical capital on the interest rates of external debt is
positive, meaning that the risk premium on government debt decreases. In addition,
the model is also able to match the empirical countercyclical behavior of spreads
and net exports in emerging economies.

Appendix 7.1: Government Budget withMoney Finance

In Sect. 7.3, we assumed that the government only finances its expenditures by
means of taxes and public debt. In this appendix, we also consider money financing
of the government budget. Therefore, we include high-powered money or central
bank money H̃t in the government budget constraint (7.2):

H̃t+1 − H̃t + PB
t B̃t+1 − B̃t = PtGt − PtTt . (7.58)

The revenue from money creation, H̃t+1 − H̃t , is called seignorage and can be
written in real terms as65

St = H̃t+1 − H̃t

Pt
= (1 + πt+1)Ht+1 − Ht = πt+1Ht+1 + ΔHt+1,

where ΔHt+1 = Ht+1 − Ht denotes the change in real central bank money with
Ht ≡ H̃t/Pt . Notice that only central bank money (inside money) is included in the
definition of Ht , while outside money that is created in the banking sector with the
help of credit does not provide revenues for the government.

With this approximation, the real government budget (7.3) is therefore given by

1

1 + rBt
Bt+1 + πt+1Ht+1 + ΔHt+1 = Bt + Gt − Tt . (7.59)

Similarly, one can divide (7.59) by real GDP Yt to derive

1 + γt+1

1 + rBt

Bt+1

Yt+1
+ (γt+1 + πt+1)

Ht+1

Yt+1
+ Δ

Ht+1

Yt+1
= Bt

Yt
+ Gt − Tt

Yt
, (7.60)

where we have used the approximation πγ ≈ 0. In steady state with constant B/Y
and H/Y , revenues from seignorage (relative to GDP) become

S

Y
= (γ + π)

H

Y
.

65There exist many definitions of seignorage in the literature; for example one different definition
also encompasses interest-bearing government bonds held by the central bank, which we included
in the variable Bt . For an overview, see Section 4.2 in Walsh (2010).
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Let us consider a rough approximation of real seignorage revenues for the US
in 2016. For simplification, let us assume that the US is in steady state in 2016.
Nominal GDP in 2016 amounted to $18,621 billion, while high-powered money
was equal to $3,744 billion as of July 6, 2016, according to data from the Federal
Reserve Bank of St. Louis.66 The inflation rate (for consumer prices) and real GDP
growth amounted to 2.18% and 0.81%, respectively, in the US economy during the
period 2001–2016. Therefore, as a very crude approximation,

S

Y
= (γ + π)

H

Y
≈ (0.0201 + 0.0081)× 0.201 = 0.60%.

This amount of seignorage is a very high value in the context of the post-World War
II monetary history of the United States. Prior to the financial crisis of 2007–2008,
high-powered money relative to GDP was much smaller. In the wake of this crisis
and the start of the “Quantitative Easing” program of the Federal Reserve, however,
high-powered money increased almost fivefold, from $848 billion on January 8,
2008, to $4,150 billion on September 17, 2014. Therefore, seignorage (relative to
GDP) used to be much smaller in the US. In particular, King and Plosser (1985)
report that seignorage only equalled 0.3% of GDP during the period 1952–1982.

Appendix 7.2: Computation of the Large-Scale OLGModel in
Sect. 7.5

In this Appendix, we first define the stationary equilibrium for the model in Sect. 7.5
before we describe the computation of the transition.

Stationary Equilibrium

To describe the model in stationary variables, we define the following individual
stationary variables:

c̃st ≡ cst

At

, ω̃s
t ≡ ωs

t

At

, k̃st ≡ kst

At

, b̃st ≡ bst

At

, t̃rt ≡ trt

At

, p̃ent ≡ pent

At

,

λ̃st ≡ λst

A−σ
t

,

66The data were downloaded from https://fred.stlouisfed.org/series/GDPA and https://fred.
stlouisfed.org/series/BASE and are also included in the Gauss program Ch7_data.g.

https://fred.stlouisfed.org/series/GDPA
https://fred.stlouisfed.org/series/BASE
https://fred.stlouisfed.org/series/BASE
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and aggregate stationary variables:

k̃t ≡ Kt

AtNt

, ỹt ≡ Yt

AtNt

, b̃t ≡ Bt

AtNt

, b̃eqt ≡ Beqt

AtNt

, t̃axt ≡ Tt

AtNt

,

L̃t ≡ Lt

Nt

,

implying the factor prices

rt = αk̃α−1
t L̃1−α

t − δ, (7.61a)

wt = (1 − α)k̃αt L̃
−α
t . (7.61b)

Stationary non-capital income x̃st = xst /At of the s-year-old household in period
t is represented by:

x̃st =
{
(1 − τwt − τ

p
t )wt ȳ

s lst s = 1, . . . , R − 1,
p̃ent s = R, . . . , J.

(7.62)

The stationary budget constraint of the household at age s = 1, . . . , R − 1 is
given by

(1 + τ ct )c̃
s
t = x̃st +

[
1 + (1 − τKt )rt

]
ω̃s
t + t̃ rt − (1 + γ )ω̃s+1

t+1 , (7.63)

where individual wealth ω̃s
t is equal to the sum of the two assets: capital k̃st and

government bonds b̃st , ω̃
s
t = k̃st + b̃st .

To derive the first-order conditions, the household maximizes the Lagrange
function

L =
J∑

s=1

βs−1

⎛

⎝
s∏

j=1

φt+j−2,j−1

⎞

⎠
[

1

1 − σ

(
(cst+s−1)

1−σ
[
1 − ν0(1 − σ)

(
lst+s−1

)1+1/ν1
]σ − 1

)

+ λst+s−1

(
xst+s−1 +

[
1 + (1 − τKt+s−1)rt+s−1

]
ωs
t+s−1 + trt+s−1 − ωs+1

t+s

− (1 + τ ct )c
s
t+s−1

)]
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with respect to cst+s−1, lst+s−1, and ωs+1
t+s . The first-order conditions of the s-year-old

household are represented by (7.47).67 In terms of stationary variables, (7.47) can
be expressed as follows:

λ̃st (1 + τ c) = (c̃st )
−σ
[
1 − ν0(1 − σ)(lst )

1+1/ν1
]σ

, s = 1, . . . , J

(7.64a)

λ̃st (1 − τwt − τ
p
t )ȳ

swt = ν0σ

(
1 + 1

ν1

)
(c̃st )

1−σ
[
1 − ν0(1 − σ)(lst )

1+1/ν1
]σ−1

· (lst )1/ν1, s = 1, . . . , R − 1 (7.64b)

(1 + γ )σ λ̃st = βφt,s λ̃
s+1
t+1

[
1 + (1 − τKt+1)rt+1

]
, s = 1, . . . , J − 1.

(7.64c)

The stationary budget constraint of the government in per capita terms is
represented by:

g̃t + t̃ rt + (1 + rt )b̃t = (1 + γ )(1 + n)b̃t+1 + t̃axt + b̃eqt . (7.65)

The resource constraint of the economy in stationary equilibrium is given by:

ỹt = c̃t + g̃t + (1 + γ )(1 + n)k̃t+1 − (1 − δ)k̃t . (7.66)

Steady State Computation
To compute the steady state, we solve a non-linear equations problem in 28 variables
consisting of the 14 individual asset levels, ω̃s = k̃s + b̃s , s = 1, . . . , 15,
(with ω̃1 ≡ 0), the 9 individual labor supplies, ls , s = 1, . . . , 9, and the aggregate
variables, k̃, L̃, ω̃, τp, and t̃ r .

The system of non-linear equations consists of the 23 first-order conditions
of the household (the 14 Euler conditions and the 9 first-order conditions of the
household with respect to the labor supply) as presented in (7.64b) and (7.64c)

67More specifically, Eq. (7.47) represent the first-order conditions of the s-year-old household who
was born in period t − s + 1. Therefore, we are able to present the first-order conditions of all
s-year old households, s = 1, . . . , J , who are alive in period t .



Appendix 7.2: Computation of the Large-Scale OLG Model in Sect. 7.5 371

(after the substitution of λ̃st from (7.64a)) and the following 5 aggregate equilibrium
conditions68:

(1 + n)ω̃ =
J∑

s=1

μsω̃
s+1, (7.67a)

L̃ =
R−1∑

s=1

μsȳsls, (7.67b)

k̃ = ω̃ − b̃, (7.67c)

t̃ r = t̃ax + b̃eq + (n+ γ + nγ − r)b̃ − g̃, (7.67d)

τp =
∑J

s=R μsp̃en

wL̃
, (7.67e)

where μs represents the stationary share of the population Nt(s)/Nt and t̃ax =
τwwL̃ + τKrω̃ + τ cc̃ with

c̃ =
J∑

s=1

μsc̃
s, (1 + n)b̃ =

J∑

s=1

μsb̃
s+1. (7.68)

Accidental bequests in steady state (with φt,s = φs) amount to69

(1 + n) · b̃eq =
J∑

s=1

μs(1 − φs)
[
1 + (1 − τK)r

]
ω̃s+1.

To compute b̃s , we used the condition that all agents hold the two assets k̃s and b̃s

in the same proportion.
All other variables, e.g., individual consumption, factor prices, and aggregate

bequests and taxes, can be computed with the help of the 28 endogenous variables.

68Notice that (7.67a) states the capital market equilibrium. In particular, we use the stationarity
condition ω̃′ = ω̃, so that (7.67a) is the analog to the capital market equilibrium condition (1 +
n)kt+1 = st . In order to make this correspondence even more evident, consider the economy with
just two periods, J = 2. In this case, the individual savings of the young generation at age 1 at the
end of period t amount to ω̃1

t+1. The savings of the old households at age 2 at the end of period t are
equal to zero so that total savings are equal to Nt (1)ω̃1

t+1. Therefore, in capital market equilibrium

Ω̃t+1 = Nt (1)ω̃
1
t+1.

After division by Nt+1, (7.67a) follows noticing that Nt (1)/Nt+1 = μ1/(1+n) and Ω̃t+1/Nt+1 =
ω̃′ = ω̃ in steady state. The same reasoning applies to the computation of b̃ in (7.68) below.
69The set-up of the equation for bequests is motivated in Chap. 6 and, in particular, Appendix 6.1.
Notice that accidental bequests also include net interest payments at the end of period t + 1.
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For example, for the computation of individual consumption levels c̃s , we can use
the individual budget constraint. For the computation of the factor prices w and r ,
we use the first-order conditions of the firms.

We solve this non-linear equations problem with a modified Newton-Rhapson
algorithm as described in Section 11.5.2 and applied to a large-scale OLG model in
Section 9.1.2 of Heer and Maußner (2009). The main challenge for the solution is
to determine good initial values for the individual and aggregate state variables.

Therefore, we start from a simple nine-period OLG model with exogenous labor
in which all cohorts are workers. The exogenous labor supply is set equal to 0.3, and
the initial value for the aggregate capital stock is set equal to the corresponding value
in the Ramsey model. Next, we add one additional cohort of retirees in each step
and use the solution of the model in the previous step as an input for the initial value
of the next step. Finally, we introduce endogenous labor into the model. During
these initial computations, we compute the solution for the individual optimization
problem in an inner loop and update the aggregate capital variables in an outer
loop with a dampening iterative scheme as described in Section 3.9 of Judd (1998)
that helps to ensure convergence. For the final calibration and the computation of
the steady states for different tax rates, we apply the modified Newton-Rhapson
algorithm to the complete set of the 28 individual and aggregate equilibrium
conditions. The algorithm is implemented in the Gauss programs Ch7_US_debt.g.

The transition dynamics are computed as described in Appendix 6.2. Different
from this case, however, the final steady state for policies 3 and 4 is not known
until we have computed the transition because we do not know the accumulated
government debt in 2215 in these cases. We begin with an initial guess that debt
remains constant. We update the final steady state using the solution from the
transition dynamics in each iteration.

The transition is computed much faster than in the case of the large-
scale OLG model in Sect. 6.4.1 and only amounts to approximately 2 min
(rather than several hours). The computation is executed by the Gauss program
Ch7_US_transition.g. In the absence of individual income uncertainty, we
can compute the solution of the individual optimization problem with the help of the
Newton-Rhapson algorithm and do not have to apply a time-consuming algorithm
that is based upon value function iteration. In addition, we use a period length of
5 years rather than 1 year.

Appendix 7.3: Data Sources

In addition to the macroeconomic data presented in Appendices 2.4 and 4.6 and the
population data described in Appendix 6.3, we introduce the following variables in
our empirical analysis:

• Debt-GDP ratios The gross and net debt-ratios presented in Table 7.1 are
retrieved from the IMF database (Accessed on 15 December 2017).
https://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx.

https://www.imf.org/external/pubs/ft/weo/2017/02/weodata/index.aspx
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The series for gross debt and net debt as percent of GDP are denoted with
the identifier ‘GGXWDG_NGDP’ and ‘GGXWDN_NGDP’, respectively. The
series will be read by the Gauss program Ch7_data.g from the Excel files
IMF_grossdebt.xls and IMF_netdebt.xls.
The time series data for the US gross debt-GDP ratio are taken from the series
‘GFDEGDQ188S’ from the Federal Reserve Bank of St. Louis (Accessed on 15
December 2017).
https://fred.stlouisfed.org/series/GFDEGDQ188S.

• Budget deficits Data on general government deficit are retrieved from the
OECD, Government at a Glance, 2017 (Accessed on 15 December 2017).
The government deficit is defined as the fiscal position of government after
accounting for capital expenditures. The series can be downloaded from the
OECD at
https://data.oecd.org/gga/general-government-deficit.htm.

• Government revenue Data for the 1920s are retrieved from the ‘Historical
Statistics of the United States 1789–1945’ provided by the US Bureau of the
Census with the cooperation of the Social Science Research Council (Accessed
on 15 December 2017). The document can be downloaded at
https://www.census.gov/library/publications/1949/compendia/hist_stats_1789--
1945.html.

• Government bond yields The data displayed in Fig. 7.6 are taken from the
FRED data base of the Federal Reserve Bank of St. Louis (Accessed on 15
January 2018). For France, for example, the series name of the 10-year nominal
government bond yield is ‘IRLTLT01FRM156N’.

• Implicit debt-GDP ratios European Commission, Eurostat. Calculations:
Research Centre for Generational Contracts.

• Real GDP growth The Data for Italy in Fig. 7.9 are taken from the World
Bank (Accessed on 20 February 2018) and can be downloaded at https://data.
worldbank.org/indicator/NY.GDP.DEFL.KD.ZG,
and
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG.
The data are included in the download files on my homepage that serve as an
input into the Gauss computer program Ch7_data.g.

Problems

7.1. Recompute the dynamics of the OLG model with government debt in
Sect. 7.4.2 under the assumption that the government applies the same lump-sum
transfers t̃ rt to both the young and the old generation such that aggregate transfers
are the same in both cases:

t̃ rt = 1 + n

2 + n
trt .

https://fred.stlouisfed.org/series/GFDEGDQ188S
https://data.oecd.org/gga/general-government-deficit.htm
https://www.census.gov/library/publications/1949/compendia/hist_stats_1789--1945.html
https://www.census.gov/library/publications/1949/compendia/hist_stats_1789--1945.html
https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG
https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
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How does this policy affect equilibrium capital stock and output in the numerical
example presented in Fig. 7.10?

7.2. Derive the goods market equilibrium (7.42).

7.3. Barro (1979) argues that even in the presence of Ricardian equivalence, debt
financing of government expenditures may be optimal if lump-sum taxes are not
available and only distortionary taxes such as income taxes can be used. For this
reason, reconsider the numerical example of a temporary increase in government
consumption from Sect. 4.3, where the transition dynamics are illustrated by the
solid green line in Fig. 4.11. Instead, assume now that only distortionary labor
income taxation and bond financing of government expenditures are available. The
initial and final levels of public debt in periods 0 and 40 are equal to zero. What is
the optimal fiscal policy? Is it characterized by tax smoothing?

7.4. Optimal Debt in the Three-Period OLG Model with Income Uncertainty
Assume that an agent lives for three periods. Each period length is equal to 20
years. In the first two periods, the agent is working; in the third period, he receives
a pension. Each generation has mass 1/3. We will only consider the steady state.

Lifetime utility is given by

U = E

{
3∑

s=1

βs−1u(cs, 1 − ls )

}
. (7.69)

Instantaneous utility is represented by

u(c, 1 − l) = u(c, 1 − l) = (c(1 − l)ι)1−σ

1 − σ
,

with ι = 2.0 and σ = 2.0. Assume that β = 0.50. Time is allocated to either work
or leisure.

During the first two periods, households work; in the third period, they retire
(l3 ≡ 0). Agents are born without assets, a1 = 0. Furthermore, households cannot
borrow, as ≥ 0 for s ∈ {2, 3}. In addition, the workers pay contributions to the
pension system equal to τ = 10% of their gross labor income. Gross labor income
depends on individual labor productivity, which amounts to es at ages s ∈ {1, 2}.
Therefore, the budget constraint at age s = 1, 2 is given by

(1 − τ )wesls + (1 + r)as = cs + as+1.

In the first period of life, e1 = 1.0. In the second period of life, the individual faces
income uncertainty, and insurance markets are missing. Due to health problems,
10% of the agents in the second cohort experience a decline in their labor
productivity to e2

l = 0.1, while the remaining 90% of the cohort maintain constant
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productivity with e2
h = 1.0. Therefore, average productivity drops to ē2 = 0.91 for

the two-period-old agent.
During retirement, agents receive pensions pen that do not depend on the

individual contribution history but are provided lump-sum. The budget of the social
security authority is balanced:

pen

3
= τw

1

3

(
e1l1 + 0.9e2

hl
2
h + 0.1e2

l l
2
l

)
,

where l2j , j ∈ {h, l} denotes the labor supply of the agent with high and low
productivity at age 2. The budget constraint of the retired worker is given by:

pen + (1 + r)a3 = c3.

Production is described by a Cobb-Douglas function:

Y = KαL1−α,

with

L = e1l1 + 0.9e2
hl

2
h + 0.1e2

l l
2
l

3
,

and α = 0.36.
Factors are rewarded by their marginal products:

wt = (1 − α)

(
Kt

Lt

)α
,

rt = α

(
Kt

Lt

)α−1

− δ.

The depreciation rate is set equal to δ = 0.5.

1. Consider the equilibrium without government debt in which total assets are
equal to the capital stock. Solve the problem with the help of direct computation
(solving a system of non-linear equations).

2. Consider the economy with a government sector that is subject to the public
budget constraint

T rt + rBt = Bt+1 − Bt .

Aggregate transfers are equal to individual transfers, T rt = trt . In equilibrium,
aggregate assets Ωt are equal to Kt +Bt . Higher government debt helps to insure
the one-period-old agent against negative income shocks because it increases
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interest rates and, hence, savings. However, it crowds out capital and, hence,
lowers per capita consumption. In addition, steady-state transfers decrease with
higher debt. Compute the optimal level of steady-state public debt, B ≥ 0, that
maximizes the expected lifetime utility of the households.

3. Compute the optimal level of debt B that maximizes the ex post lifetime utility of
the individuals facing a decline in labor productivity (according to the maximin
criterion).

4. Is your result for the optimal level of public debt robust with respect to the
assumption that labor supply is exogenous, l1 = l2 = 0.3, where households
cannot insure themselves against income uncertainty by adjusting their labor
supply?
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