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Preface

Science is built up with facts, as a house is built with stones. But a collection of facts is no more a science
than a heap of stones is a house.

Jules Henri Poincaré

There are several outstanding mathematical biology books at the advanced undergraduate and
beginning graduate level, each with its own set of topics and point of view. Personal favorites
include the books by Britton, Brauer and Castillo-Chavez, and Otto and Day. These books are
largely inaccessible to biologists, simply because they require more mathematical background
than most biologists have. This book began as lecture notes for a course intended to help biol-
ogists bridge the gap between the mathematics they already know and what they need to know
to read advanced books. The only prerequisite for the course was the first semester of the cal-
culus sequence. Topics included mathematical modeling, probability, and dynamical systems.
My original notes included a brief review of calculus, which I subsequently expanded into the
first chapter of this book so that it could be used for courses that do not require a calculus
prerequisite or by biologists whose calculus experience is but a distant memory. Most students
will probably find this book to be more challenging than the typical calculus book, albeit in a
different way. I do not make as many demands on students’ computational skills, but I require
a greater conceptual understanding and an ability to harness that conceptual understanding for
service in mathematical modeling.

A Focus on Modeling

In its early days, science consisted of careful observation and experimentation, with a focus on
collecting facts. However, as eloquently stated by the French mathematician, philosopher, and
scientist Henri Poincaré, this is not enough to make science work.

In contrast with science, mathematics is a purely mental discipline focused entirely on struc-
tures that we create in our minds. It can be very useful in science, but it has to be connected
to science carefully if scientifically valid results are to be achieved. The connection is perhaps
best made by a metaphor:

The muscles of mathematics are connected to the bones of experimental science by the tendons of math-
ematical modeling.

As you read through this book, you will see that mathematical modeling goes far beyond
the “application” problems that mathematics text authors include to make mathematics appear
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viii Preface

relevant. The problem is that what little modeling work appears in these problems is generally
done by the author rather than the students. At best, the experience of doing these problems only
benefits science students if their science instructors are also good enough to do the modeling
work for them.

This book is written from a modeling perspective rather than a mathematics or biology per-
spective. The lack of modeling content in the standard mathematics and science curricula means
that the typical reader will have little or no modeling experience. Readers may find the model-
ing skills of Section 1.1 and Chapter 2 to be difficult to learn, but the effort to do so will be well
rewarded in the remainder of the book and in any subsequent attempts to read biological litera-
ture with quantitative content. While it is unreasonable to expect readers of this book to become
expert modelers, my primary goal is to make them sufficiently comfortable with mathematical
modeling that they can successfully read scientific papers that have some mathematical content.

Pedagogy

There are a lot of connections between mathematics and biology, yet most students—and even
many mathematicians and biologists—are unaware of these connections. One reason for this
situation is that neither the historical development nor the pedagogical introduction of either
subject involves the other.

Biology grew out of natural philosophy, which was entirely descriptive. Modern biology
curricula generally begin with descriptive biology, either organismal or cellular. The mathe-
matically rich areas of genetics, ecology, and physiology make their appearance in advanced
courses, after students have come to see biology as a non-mathematical subject.

Calculus and calculus-based mathematics were developed to meet the mathematical needs of
physics, and it remains standard practice to use physics to motivate calculus-based mathemat-
ics. Other areas of mathematics, such as game theory and difference equations, were motivated
to some extent by biology,1 but these topics appear in specialized courses generally taken only
by mathematics majors. Probability is another mathematical topic with strong connections to
biology, but it is generally encountered in statistics courses that emphasize social science appli-
cations.

The basic premise of this book is that there is a lot of mathematics that is useful in
some life science context and can be understood by people with a limited background
in calculus, provided it is presented at an appropriate level and connected to life science
ideas.

This is a mathematics book, but it is intended for non-mathematicians. Mathematicians like
to have a mathematical definition for a concept and consider the meaning of the concept to be
a consequence of that mathematical definition. Contrary to that plan, I prefer to begin with a
functional definition and then present the mathematical definition as the solution of a problem.
For example, in probability I define each distribution according to its purpose rather than its
mathematical representation and then present the mathematical representation as a result. This
is pedagogically appropriate; there are infinitely many functions that satisfy the mathematical
definition of a probability distribution, and we should only be interested in those that have some
practical value. The context should precede the mathematical definition.

1 Leonardo of Pisa, more commonly known as Fibonacci, developed his famous sequence as the solution of a
difference equation model of population growth.



Preface ix

A mathematics book for non-mathematicians needs to be clear about the extent to which
rigor matters. A colleague of mine once started a talk to undergraduates with a joke: “An engi-
neer, a physicist, and a mathematician are traveling in a train in Scotland when the train passes
a black sheep standing along the track. The engineer concludes that sheep in Scotland are black.
The physicist concludes that there is at least one black sheep in Scotland. The mathematician
concludes that . . .” Mathematicians have no trouble finishing the joke: the mathematician con-
cludes that there is a sheep in Scotland that is black on one side. This insistence on rigor is both
a strength and a weakness. It was long the common practice in calculus books (and such books
are still popular) not to introduce the logarithmic function until after the definite integral, even
though the students have seen logarithmic functions in precalculus. This example and others
support my contention that “Mathematicians are people who believe you should not drive a car
until you have built one yourself.”

It is my aim to provide a balanced approach to mathematical precision. Conclusions should
be backed by solid evidence and methods should be supported by an understanding of why they
work, but that evidence and understanding need not have the rigor of a mathematical proof. At
the risk of stern rebukes from my mathematics colleagues, I will say up front that I believe that
students should focus on how we use mathematical results to solve problems. For this goal, we
need to know why mathematical results are true, but we do not need to know how we prove
them to be true. An example is the limit result needed to derive the formula for the derivative
of the exponential function. The proof of this result appears in most calculus books and is
indeed a beautiful piece of mathematics; however, understanding it does not help us compute
derivatives or apply them to solve problems. Graphs and numerical computations strongly hint
at the correct limit result. While not rigorous, these methods are more convincing to anyone
but a professional mathematician and use problem solving skills that will be useful in other
contexts. Similarly, the derivation of the Akaike information criterion (AIC) is very difficult,
otherwise it would have been done prior to its actual discovery in the 1970s; nevertheless, it is
not difficult to explain AIC in general terms. The mathematical error of presenting it without
proof is far less serious in this book than would be the modeling error of omitting it.

Most of the sections are highly focused, often on one extended example. Mathematics ex-
perts know that we learn much more from a deep study of one problem than from many su-
perficial examples. Many of my biological settings are in ecology, the area of biology I know
best, but I have also tried to find settings of very broad interest such as environmental biology,
conservation biology, physiology, and the biology of DNA. In particular, these areas are more
likely to interest lower division undergraduates, many of whom are pre-medicine majors rather
than biology majors, and most of whom have very little knowledge of biology.

I have attempted to be brief, in the hope that readers will work harder to read a short presen-
tation than a long one. I use examples as contexts in which to present ideas rather than instances
where a formula is used to obtain an answer. Hence, the number of examples is limited, but each
example is treated with some depth. Similarly, I include only a small number of figures. Each
figure is essential to the presentation, and the reader should work hard to understand each one.
Being able to explain2 a figure represents a high level of understanding.

Broad modeling problems require a variety of mathematical approaches. Hence, some topics
are ideal for problems that are distributed among the relevant sections rather than being incor-
porated into a single project. I have indicated these connections within the problems themselves
and also called attention to them in each chapter introduction. It is possible to combine all of
the problems on a given model into one large project if desired.

2 An explanation includes context and analysis in addition to mere description.
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Technology

Some mathematical modeling work must be done by hand, while other work is greatly facili-
tated by the use of computers. I view both hand methods and computational methods as tools
in my modeling toolbox. I try to identify the best tool for any particular task without a bias
either for or against technology. I do have a bias against using computer algebra systems to do
routine algebra and calculus. This stems from frequently encountering problems where valu-
able results can be found only with the careful use of algebraic substitution and simplification,
which requires a human touch. I could not resist the temptation to point some of these out in
the text.

There are a multitude of platforms for doing mathematical modeling tasks on computers.
None of these is ideal, and the choice of which to use is a matter of taste. Rather than trying
to find the very best tool for each individual task, my preference is to work with one tool that
is reasonably good for any task (save symbolic computation) and is readily available. By these
criteria, my choice is R, which runs smoothly in any standard operating system and is popu-
lar among biologists. Matlab is also an excellent choice. Both R and Matlab are programming
environments, as opposed to packaged software or programming languages. Spreadsheets and
other packaged software provide easy access to mathematics because of their intuitive graphical
interface; however, programming is limited and the details of formulas are hidden from view,
making it impossible to see the overall structure of a program at a glance. Reusability is lim-
ited, as anyone who has tried to modify a spreadsheet created by another author can attest. By
comparison, one can see an entire R or Matlab program at a glance and adapt prior work to a
similar context with minimal changes. High-level languages, such as Java and C++, offer so-
phisticated programming capabilities, but they are difficult to learn compared to the languages
used in programming environments such as R or Matlab.

The choice between R and Matlab is a matter of personal taste. It is easier to get professional-
quality graphics with Matlab, but R has a more intuitive syntax that facilitates programming.
Matlab requires an add-on toolbox for probability and statistics, while R requires supplementa-
tion for dynamical systems. I use R because students can get it for free and install it seamlessly
in any operating system. R lacks the excellent documentation that comes with Matlab; how-
ever, I maintain a collection of R scripts for various algorithms presented in the text, and these
are readily available http://www.springer.com/978-1-4614-7275-9. These scripts are designed
to be simple rather than robust; that is, compared to professionally written programs, they are
easier to understand but less efficient and they lack error detection machinery. Their presence
allows students to replace the difficulty of having to learn R from scratch with the much lesser
difficulty of having to be able to read an R program and make minor modifications.

Topics

Of course, no book on mathematics for the life sciences can be complete. Some important
areas do not appear here at all because, they do not fall into the broad categories of mathe-
matical modeling, probability, and dynamical systems. Several concessions have been made in
the interest of accessibility. Some topics are given only a partial treatment as compared to the
treatment they would receive in a higher level course; for example, I do not find eigenvectors
for complex eigenvalues, since they are not generally needed in biology. Others are presented
in a roundabout way.

Finding the “correct” order of topics in this book was an insoluble problem. Mathematics
is a hierarchical subject, but the hierarchy is not linear. Arguments can be given for significant
rearrangements of the topics that are included here. Ultimately, the only reasonable solution
was to group topics into related clusters. In particular, Parts II and III could easily have been

http://www.springer.com/978-1-4614-7275-9
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reversed. Those who read this book for their own benefit or to design a course should be flexible
in the way they structure their study. Each part introduction contains a graph with sections as
nodes and arrows indicating which sections are necessary background for others. A syllabus
that moves frequently between chapters is entirely possible, but for me to have written the book
in that way would have excluded other topic orders.

One feature of mathematical models that causes difficulties for students is the appearance of
parameters, which are constants whose values are not necessarily assigned. Without parameters,
a function is merely an example to be used for routine calculations. With parameters, a function
can be a model, which can serve as an environment for theoretical experimentation. Even the
reader with a solid background in calculus should study Section 1.1.

The remainder of Chapter 1 can serve as a review of calculus or a conceptually oriented
calculus primer. This chapter is not a complete treatment of calculus, which would require far
more space than is available in one chapter. I present here only those aspects of calculus that
provide the necessary background for the modeling, probability, and dynamical systems that
make up the rest of the book. The reader who works through this chapter will be well equipped
with the calculus background needed for the purpose at hand. The material in this book has
been used successfully with life science graduate students who had no background in calculus.
Anyone who requires a more complete understanding of calculus can consult any calculus book.

After the calculus primer comes a chapter on mathematical modeling, which is the necessary
focus of any study of mathematics for those whose purpose is to use mathematics to better
understand science. Even the most mathematical of topics, such as probability, are best seen by
scientists from a viewpoint of mathematical modeling. Unfortunately for the science student,
mathematical modeling has not been granted a place in the standard mathematics and science
curricula. In mathematics books, we generally present mathematical ideas and then look for
their applications to science. The result is a collection of idiosyncratic examples devoid of
the analysis necessary for good mathematical modeling. In science books, the mathematics
is usually presented as a collection of formulas, to be used as facts when required. Neither
approach teaches modeling skills. If we are to use mathematics to improve our understanding
of the natural and physical world, we must focus on the connections of mathematics to science.

Chapters 3 and 4 present the basic ideas and some applications of probability, including
applications commonly classified as statistics. The treatment given here is organized differently
from the treatment of this topic in statistics or probability books. Mathematicians generally use
an axiomatic approach to introduce probability. My colleagues in biology helped me appreciate
that the central topic of probability for scientists is that of the probability distribution, and this
topic is best approached informally by thinking of a probability distribution as a mathematical
model of a data set. My aim has been to get to probability distributions as quickly as possible
while saving other topics, such as conditional probability, for later. The essentials of probability
distributions form the subject of Chapter 3. Chapter 4 includes additional topics that build
onto or supplement the basic material on probability distributions. The high point of these two
chapters is Section 4.4, which looks at the question of how likely it is that a subpopulation used
to provide sample data is distinct from some larger population.

The final three chapters introduce the mathematics of dynamical systems, which consist of
one or more related quantities that change in time according to prescribed rules. These rules may
be in the form of difference equations, where time is taken as discrete, or differential equations,
where time is taken as continuous. It is usual to make this the primary distinction within the
area of dynamical systems; however, there are valuable connections to be made between the
two kinds, particularly for models with only one dynamic quantity. For this reason, I have
chosen to treat all dynamic models of one variable together in Chapter 5 before presenting
multivariable discrete systems in Chapter 6 and multivariable continuous systems in Chapter 7.
For reasons presented in the modeling chapter, I believe that continuous models are almost
always preferable to discrete models. Nevertheless, the analysis of continuous models requires
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an understanding of some discrete mathematics. Hence, Chapter 6 precedes Chapter 7. The
reader whose primary interest is in continuous dynamical systems needs the tools developed in
Section 6.3, and these tools are more easily acquired with Sections 6.1 and 6.2 as background.
The high points of the three chapters on dynamical systems are the graphical and analytical tools
used for continuous systems; these are the topics of Sections 7.3 and 7.5 respectively. The book
contains three additional sections on discrete dynamical systems, presented in Appendix A.

Advice for the Reader

How one reads a book depends on what one wishes to get from the reading. I assume that my
reader wants a working knowledge of mathematics that will enable him/her to read biological
literature with quantitative content or to read a more advanced book on mathematical biology.
At the same time, many readers will be interested in only a portion of the topics presented here.
As noted above, each part begins with a schematic diagram showing the logical relationships
among the topics of that part and any essential topics from earlier parts. In particular, the reader
is cautioned not to skip Chapters 1 and 2 to get to some other topic more quickly. People who
try to learn to play the organ without having already learned to play the piano are starting
with an enormous handicap; the same is true for anyone who attempts to learn probability or
dynamical systems without an adequate mastery of calculus and mathematical modeling. Not
every section in Chapters 1 and 2 is essential for the remainder of the book; however, parts
of these chapters are indispensable background and should be mastered before moving on. In
particular, an understanding of parameters (Section 1.1) and the basic concepts of mathematical
modeling (Section 2.2) is essential.

It is natural to try to work a large number of problems as quickly as possible. However, this
is not the best way to learn mathematics. A mathematician learning something new will work
through a relatively small number of examples carefully rather than a large number of examples
superficially. At a talk I heard on mathematics pedagogy, the speaker asked the audience, “Why
do we ask our students to work problems? Is it because we want to know the answer?” Usually
we don’t care about the answer; we work problems to learn mathematics. Keep this in mind
when you are working a problem: your goal is to learn mathematics, not to get the answer to
the problem. There are only a small number of routine problems in this book. Most problems
are guided case studies and require quite a bit of time for a thorough understanding. Carefully
working a small number of these will benefit the reader more than a cursory look at a larger
number.

Course Designs

There is no standard curriculum of mathematics for biology. Mathematical biology can be in-
corporated into a calculus course, or calculus can be incorporated into a mathematical biology
course for students who have not had calculus. There are also mathematical biology courses
with a calculus prerequisite, and these can be offered for students with or without backgrounds
in linear algebra and differential equations. Many institutions treat probability/statistics as be-
ing distinct from mathematics. However, the difficulty of finding room for either in the program
of a biology major suggests the idea of incorporating some probability and some topics often
included in a statistics course within the mathematical biology or calculus-for-biology course.
I have tried to make this book suitable for a variety of plans.

Before listing possible course plans using the material in this book, it is important to start
with a broad discussion of pacing. Books for some lower division courses are generally written
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under the assumption that each section will require 1 day of class. At this pace, it is not difficult
to put more than 30 sections into a standard 3-credit course. This is typically what is done in
a differential equations course, but not a calculus course. At the University of Nebraska, we
cover something like 32 sections in our first-semester calculus course; however, we structure
this course with a lecture-recitation format and offer it for 5 credits. This means that our actual
rate of coverage is more like 6 sections per credit hour than 10 sections per credit hour. My own
mathematics-for-biology course was originally a 5-credit course with a one-semester calculus
prerequisite, and I covered approximately 32 sections of this book, which is again an average
of only 6 sections per credit hour. The next time I use this book for a course, it will be a 5-
credit calculus-for-biology course with 3 h of lecture and 2 h of recitation/laboratory. I expect
to do only the 24 sections of Chapters 1, 2, 5, and 6. For students at the calculus level, I would
certainly not try to do more than 16 sections for a 3-credit course. A slightly faster pace could
be used with students who are more sophisticated or very highly motivated. I spend less than
half of the total class time presenting lectures; in particular, I mark out days for laboratory-
style activities such as collecting data from a virtual laboratory, writing a computer program
to run a computer simulation, or working through one of the more difficult problems either
in small groups or as a ”committee of the whole.” The standard requirement that mathematics
courses cover as much material as possible sacrifices depth for breadth; a mathematics course
for biology students should have some balance between the two, with some case studies being
included at the expense of broad coverage.

A 2-Course Sequence of 4-Credit Courses

It should be possible to do almost the entire book with a total of 8 credit hours. I would do
Chapters 1, 2, and 5 in a first-semester calculus-for-biology course and most of Chapters 3, 4,
6, and 7 in a second-semester probability and dynamical systems course.

A 2-Course Sequence of 3-Credit Calculus-for-Biology Courses

Given two courses for students with no calculus background, I would use Chapters 1 and 2 for
the first semester and then make the second semester a dynamical systems course that would
include Chapters 5–7, and possibly with parts of Appendix A. Both of these courses would
be well focused, and the second course could be open to strong students with a background
somewhat beyond one course in calculus.

A 3-Credit Calculus-for-Biology Course

In a 3-credit calculus-for-biology course, I would expect to complete all of Chapter 1 in about
half of the semester or perhaps a little more. I would probably try to do some dynamical systems
rather than a complete treatment of Chapter 2. It would be possible to do Sections 2.1, 2.2, 2.5,
and 2.6 along with all of Chapter 5. I would present only a minimal version of Section 2.5, the
point being to do just enough to set up Section 2.6.
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A 3-Credit Empirical Modeling and Probability Course with a Calculus I Prerequisite

One could teach a course on empirical modeling and probability as an alternative to a standard
statistics course. For such a course, I would do Sections 1.1, 2.1–2.4, 2.7, all of Chapter 3, and
as much of Chapter 4 as could be done without rushing.

A 3-Credit Dynamical Systems Course with a Calculus I Prerequisite

A course on dynamical systems could not reasonably assume an adequate modeling back-
ground, so it would be necessary to start with Sections 1.1, 2.1, 2.2, 2.5, and 2.6, with 2.1
done in a cursory manner. It would then be possible to cover all of the material in Chapters 5–7.
If any extra time is available, Section A.1 would round out the course.

Lincoln, NE, USA Glenn Ledder
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2 Part I Calculus and Modeling

The first two chapters contain core material in mathematics: calculus and the basic elements
of mathematical modeling. Section 1.1 is an essential preparatory section for the entire book.
A significant part of the power of mathematics lies in its capacity for generalization. A single
symbol can represent a range of numerical values, allowing the mathematical work to be done
on a whole class of problems rather than an individual example. One cannot read any quanti-
tative work in biology or any other science without an ability to understand how symbols are
used in a particular context. This is a topic that most readers will find difficult, but one that is
essential to master.

Aside from the opening section, Chapter 1 contains five sections on differential calculus
and three on integral calculus. Each of these topics includes material on concepts, techniques,
and applications. Contrary to the view of most students, calculus is largely a conceptual topic.
Concepts are needed to understand the important applications of calculus; hence, the reader
should spend enough time on the conceptual material for a thorough understanding. In partic-
ular, the derivative concept is essential to understanding dynamical systems, while the definite
integral concept is essential for continuous probability distributions. The amount of effort to be
expended on techniques is a matter of taste. Differentiation techniques are needed in the rest
of the book, but all such cases are fairly elementary. Integration techniques are not needed for
the rest of the book. Both of these can be done using computer algebra systems if desired. The
applications that appear in Chapter 1 can generally be considered as ends in themselves, and
can be accorded as much or as little interest as the reader desires. There are a few exceptions.
Related rates (in Section 1.6) are vital background for nondimensionalization, which appears
in Section 2.6, and linear approximation (in Section 1.4) is vital background for the nonlinear
dynamics that appears in Chapter 5 and 7 and Appendix A.1.

In the preface, I described mathematical modeling as the tendons that connect the muscle
of mathematics to the bones of science. Colleagues who teach science and engineering courses
often say that their students do not seem to be able to do the mathematics necessary for their
subject. The real problem is not so much an inability to do mathematics but an inability to
harness the power of mathematics in a scientific context. More or different mathematics will
not address this problem; it requires attention to mathematical modeling, which is largely absent
from courses in either mathematics or science. This is the purpose of Chapter 2. The first two
sections provide basic terminology and ideas. There does not seem to be a lot of material in
these sections, and there are very few associated problems. The reader should plan to reread
these sections several times while working through the rest of the book, as the ideas in them
are hard to understand well without prior experience in mathematical modeling. The remainder
of the chapter is divided into sections on mechanistic modeling, which starts with assumptions
about the scientific setting, and empirical modeling, which starts with examination of data. The
three sections on empirical modeling are of value to anyone who collects and analyzes data,
but they are not essential background for the rest of the book. The basic ideas of mechanistic
modeling (Section 2.5) are helpful to try to work through, but the reader does not need to
be expert on this subject. Most biologists need to be able to read and understand mechanistic
models but do not need to be able to create them. The reader of Part III of this book is often
asked to interpret mathematical models mechanistically, but is never asked to construct one. In
contrast, nondimensionalization (Section 2.6) is a vital skill for anyone who wants to do any
work with dynamical systems. It would have been impossible to write a useful introduction
to dynamical systems using complete versions of well-known models without relying on the
power of nondimensionalization to simplify model analysis.

The accompanying sketch shows the interdependencies of the sections in Part I. Sec-
tions 1.1–1.3 and 2.2 are necessary background for the remainder of the book. Sections 1.7
and 1.8 are needed for Part II, while Section 2.5 and 2.6 are needed for Part III. Sections 1.4–
1.6, and 1.9 are important topics in calculus, but are not necessary for the rest of the book;
similarly, the empirical modeling topics in Section 2.3, 2.4, and 2.7 are not needed later.
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Chapter 1
A Brief Summary of Calculus

Calculus is one of the greatest intellectual achievements of humankind. It allows us to solve
mathematical problems that cannot be solved with ordinary algebra, and that in turn allows
us to make predictions about the behavior of real-world systems that could not be made with
algebra alone. Beyond its usefulness, calculus has an elegant beauty that leads mathematicians
to view it as a work of art.

A full presentation of calculus requires the equivalent of four standard-length American
college courses, although this is usually achieved through three larger one-semester courses.
Because many methods in probability and dynamical systems are calculus-based, biologists
need to know some calculus in order to proceed to these other areas. However, much of the
important material in probability and dynamical systems does not require a complete calculus
background. The typical reader of this book has probably taken no more than the first course
in calculus (corresponding to barely one-third of the full presentation), and this should be ad-
equate. Other readers may not have had a good first course in calculus, or their prior calculus
study may be part of the distant past. We therefore begin with a brief summary of the calculus
background required for the mathematical work that follows. Most of this material corresponds
to that found in standard calculus books, but there are some exceptions. First, standard calculus
books have nothing comparable to the first section of this chapter. Second, the presentation in
this chapter is more intuitive and less formal than what is typically found in calculus books.
The reader who wants a more complete or rigorous treatment should still find the material of
this chapter to be helpful background when reading a more standard presentation of calculus.

Many calculus books begin with a review of topics drawn from prior courses, particularly
precalculus and trigonometry. In the interest of space, these topics are not presented here. The
reader should have a reference available for use when needed. However, there is one precalculus
topic that is always overlooked in mathematics books and which is therefore included here:
parameters. Mathematicians are comfortable with abstraction and easily appreciate the role
each mathematical symbol plays in a formula. However, this vital skill does not come easily to
most people, and this is why a study of parameters is the place to start a study of calculus. The
reader is therefore urged not to move beyond the opening section without having first acquired
some facility with the material in it.

Section 1.2 discusses rates of change for functions defined only at discrete points, functions
defined on a continuous interval but known only at discrete points, and functions defined and
known on a continuous interval. Discrete rates of change and discrete approximations to a con-
tinuous rate of change are computed using algebra, but rates of change for continuous functions
cannot be calculated exactly without using calculus. The problem of computing rates of change
leads to the definition of the derivative.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 1,
© Springer Science+Business Media, LLC 2013
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6 1 A Brief Summary of Calculus

The development of differential calculus continues in Section 1.3 with techniques for using
a small number of predetermined derivative formulas and rules to obtain derivative formulas for
all functions composed of simple elements. Complete mastery of differentiation techniques is
unnecessary, but the reader should have enough experience to be able to compute the relatively
simple derivative formulas used in subsequent application problems.

Sections 1.4–1.6 present additional topics in differential calculus, beginning in Section 1.4
with several mathematical ideas that can be grouped together under the broad heading of local
behavior, an imprecise term that essentially means “what you see when you zoom in on a point
on a graph.” In some cases, this means identifying a line tangent to the graph of a function;
in other cases it means identifying local maximum and minimum points on a graph. The fol-
lowing section treats the related subject of optimization. Here one wants to find the value of
a variable or parameter that maximizes or minimizes some desired objective function. This is
global behavior, rather than local behavior, but the topics are related because local extrema are
points where global extrema are likely to occur. Optimization problems occur naturally in biol-
ogy. Natural selection works by tuning an organism’s genome to solve optimization problems;
hence, we often know the solution of a biological optimization problem even though we don’t
fully understand the problem itself. It can be an interesting modeling task to try to construct
a mathematical optimization problem whose solution corresponds to the biological solution
we see in observation or experiment. Section 1.6 contains two mathematical topics that can be
grouped together as related rates. The general idea is that an algebraic equation that relates more
than one dependent variable can be differentiated to produce an algebraic equation that relates
the derivatives of those variables. These topics feature in the development of many models that
will be seen later.

Having completed a brief summary of differential calculus, we turn to integral calculus for
the final three sections. Section 1.7 introduces the concept of the definite integral, which shares
center stage with the derivative in the drama of calculus. We begin by examining ways to de-
termine how much of a quantity accumulates over time using the rate of accumulation. This is
a way of introducing the definite integral that profits most from the reader’s everyday intuition
about accumulation of changes. The definite integral is also tied to aggregation over space and
area under a graph.

Section 1.8 presents the key result that the integral of a rate of change is the total change. This
result allows us to compute definite integrals if we can recognize the integrand as the derivative
of a known function. Section 1.9 elaborates on this theme by extending the method to integrals
over infinite regions and integrals that can be converted to a more tractable form through the
method of substitution. As with differentiation, the aim of this treatment of integration is not
to make the reader a master of technique, but to enable the reader to do the more elementary
computations of calculus that are needed in application examples.

After studying this chapter, you should be very comfortable with the concepts of the deriva-
tive and the definite integral and how they are applied to a variety of problem types, and you
should have an intuitive feel for continuous mathematics. You should be able to compute simple
derivatives and definite integrals, but you do not need to be an expert at calculus computations.

The problem sets include several case studies that are split over multiple sections:

Section 1.1 1.2 1.4, 1.5 1.6 1.7 1.8, 1.9 Chapter 2
Measles infection 1.1.8 1.4.1 1.8.9
Weightlifting 1.1.13 2.4.9
Population growth 1.1.15 1.7.9 1.8.12 2.2.7
Demographics 1.1.16 1.2.11 1.8.12
Swimming speed of fish 1.5.3 2.6.6
Dogs and calculus 1.5.5 1.6.7 2.6.7
Organism growth 1.6.5 1.9.11 2.4.7
Optimal organism size 1.7.10 1.9.12
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1.1 Working with Parameters

After studying this section, you should be able to:

• Perform algebraic manipulations on functions with parameters.
• Graph functions with parameters.
• Identify the mathematical significance of a parameter in a function.
• Interpret graphs of system properties in terms of a parameter.

We begin with an application problem typical of those found in a precalculus text.

Example 1.1.1. Q) Jan takes two acetaminophen tablets (650 mg) for her headache. The
amount y of acetaminophen in Jan’s system is given by the function

y = 650e−0.3t , (1.1.1)

where t is the time in hours after the dose and y is given in milligrams. At what time will
there be only 130 mg of acetaminophen in Jan’s system?

A) We solve this problem by setting y = 130 in (1.1.1) and solving for t:

e−0.3t =
130
650

= 0.2.

We can take a natural logarithm now, but it is easier to take the reciprocal of the equation
first:

e0.3t = 5.

Now the natural logarithm yields

0.3t = ln5,

or

t =
ln5
0.3

≈ 5.36.

According to (1.1.1), the amount of acetaminophen in Jan’s system will be 130 mg at about
5 h and 22 min (5.36 h) after the dose. ��
Example 1.1.1 is fine as far as it goes, but that isn’t very far. There is an underlying mathe-

matical model, which we can write as

y = Ae−kt , A,k > 0, (1.1.2)

where the quantities A and k are parameters.

Parameter: a quantity in a mathematical model that can vary over some range, but takes
a specific value in any instance of the model.

Equation (1.1.1) is only an instance of the model (1.1.2).1 The model has been used, but not
fully utilized, because the results cannot be extended to related or broader questions.

1 We’ll consider more general versions of the model in Examples 1.1.3–1.1.5.
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1. If we want to see what would happen with a different initial dose, or with aspirin instead
of acetaminophen, we have to repeat the whole calculation.

2. We obtain quantitative results but no useful qualitative information.

In contrast, the same mathematical work can be done with the full model rather than an instance
of the model, with advantages corresponding to the drawbacks of Example 1.1.1.

1. Work done in solving the full model need not be repeated when parameter values are
changed.

2. Analysis of the full model can yield qualitative results that disclose model weaknesses or
enhance scientific understanding.

Analysis of mathematical models requires more experience working with parameters than the
reader of this book is likely to have—hence the need for this opening section. An understanding
of parameters is also helpful for understanding the concepts and methods of calculus.

1.1.1 Scaling Parameters

Example 1.1.2. Q) Consider the one-parameter family of functions defined by f (x) = mx,
where m ∈ R.2 How are we to understand this family of functions?

A) With modern technology, we can easily plot graphs and do computations with specific
functions (that is, functions with no unspecified parameters). The presence of parameters
makes the job more difficult. As a first try, we can graph several examples of the function
by selecting a few values of the parameter. Figure 1.1.1 illustrates the family y = mx.3

Graphically, the effect of the parameter m is to control the slope of the line y = mx. Alge-
braically, the effect of the parameter m is to modify all function values by the multiplicative
constant m. This property of proportional change marks m as a scaling parameter. ��

0 1 2
0

1

2

3

4

x

y

Fig. 1.1.1 The function y = mx, with m = 0,0.5,1,1.5,2

Scaling parameters have a very simple effect on the graph of a function. They magnify the
function values by a fixed factor, so they cannot change the “shape” of the graph.

2 This notation means that the parameter m can be any real number.
3 We use the word “illustrate” rather than “plot” or “graph” here because we can’t simultaneously plot all lines
y = mx. Instead, we plot several representative examples together and infer the properties of the whole family.
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Example 1.1.3. Consider the family of functions

y = Ae−0.3t .

The parameter A in this family, like the parameter m in the family y=mx, is a scaling parameter.
In Example 1.1.1, where A = 650, the function value is reduced from 650 to 130 in 5.36 h. In
the general case, the function value after 5.36 h is

y = Ae−(0.3)(5.36) = 0.2A.

A time of 5.36 h reduces any dose to 20% of its initial value. Figure 1.1.2 illustrates the family
of functions, using A = 650 and A = 325, corresponding to doses of one and two standard
acetaminophen tablets. The scaling parameter no longer represents the slope of the graph, but
it remains true that two instances with values of A differing by a factor of 2 have results at any
given time that also differ by a factor of 2. ��

0 2 4
0

200

400

600

800

t

y

Fig. 1.1.2 The function y = Ae−0.3t , with A = 325,650

We are now ready to rework Example 1.1.1 using the family y = Ae−0.3t .

Example 1.1.4. Q) Jan takes acetaminophen of initial dose A mg. The amount y of acetamino-
phen in Jan’s system is given by the function

y = Ae−0.3t , (1.1.3)

where t is the time in hours after the dose and y is given in milligrams. At what time will
there be only 130 mg of acetaminophen in Jan’s system?

A) We must solve
130 = Ae−0.3t

for t, which we can do following the same steps as in Example 1.1.1. Dividing by A yields

e−0.3t =
130
A

.

Taking the reciprocal of the equation gives us

e0.3t =
A

130
,
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and then the natural logarithm yields

0.3t = ln

(
A

130

)
= lnA− ln130.

Thus, we arrive at the answer

t =
lnA− ln130

0.3
. (1.1.4)

Because no numerical value has been specified for A, the answer retains A as a parameter.
We can understand this answer by plotting a graph of time to 130 mg against A, shown in
Figure 1.1.3. Doses smaller than 650 mg take less time to be reduced to 130 mg than a 650-
mg dose, but the curvature of the graph means that a dose of only half the size takes more
than half as long. ��
Notice that A is not a scaling parameter in (1.1.4). It magnifies y(t) by a fixed factor, but

its effect on answers to more complicated questions is more subtle. Consequently, the result of
Example 1.1.4 contains much more information than that of Example 1.1.1. We can now easily
determine the required time for any size of dose, just as we can use Figure 1.1.2 to determine the
amount of medication remaining in the system at any given time. While application problems
generally consist of simple numerical questions, mathematical models permit a large variety
of questions, some answered simply with numerical values or functions of time and others
answered by formulas involving parameters.

200 300 400 500 600 700 800
0

1

2

3

4

5

6

A

t

Fig. 1.1.3 The time (in hours) required for an acetaminophen dose of A mg to be reduced to 130 mg

Scaling parameters simplify mathematical analysis. In Section 2.4, we will see a method
of analysis that works for f (x) = qx/(a+ x), but does not work for g(x) = sx/(1+ shx); the
method relies on identification of q as a scaling parameter. The simple properties of scaling
parameters will also be utilized in Section 2.6.

1.1.2 Nonlinear Parameters

Most parameters are not scaling parameters. We can still study their effects by using thought
experiments similar to those of Examples 1.1.3 and 1.1.4.
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Example 1.1.5. Q) Determine the key features of the one-parameter function defined by f (t) =
e−kt , where k > 0, on the interval t > 0.

A) All of these functions have f (0) = 1, all are decreasing, and all are positive. One way to
see the effect of k is to find the times required for the function to decrease to one-half of its
initial value. Let T be the desired time. Then

e−kT =
1
2
,

or

ekT = 2.

Taking logarithms yields kT = ln2. Thus, e−kt is reduced to one-half of its initial value at
time

T =
ln2
k

. (1.1.5)

The time T defined here is called the half-life for the decaying exponential function y= e−kt .
The half-life decreases as k increases, so larger k values make the function decrease faster.
Figure 1.1.4 illustrates the function e−kt . ��
Decaying exponential functions of the form y0e−kt are used to model radioactive decay, drug

clearance, and many other phenomena. The parameter y0, which represents the initial value, is
entirely dependent on context. The parameter k, which represents the decay rate, is a property
of the specific quantity undergoing decay. Published sources generally provide the half-life T
rather than the rate parameter k, but the relationship in (1.1.3) makes it easy to connect the
desired parameter value to the known half-life.

Example 1.1.6. Suppose the half-life of a drug in the human body is 4 h. Then the rate constant
k is

k =
ln2
4

≈ 0.173hr−1.

��

0 1 2
0

0.5

1

t

y

Fig. 1.1.4 The function y = e−kt , with k = 0.5 (dash-dotted line), k = 1 (solid line), and k = 2 (dashed line),
showing the points (T,0.5)
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1.1.3 Bifurcations

In each of our examples so far, the parameter has had only a quantitative effect on the function.
Nonlinear parameters can have a qualitative effect as well.

Example 1.1.7. Q) Determine the nonnegative solutions of the equation f (x) = x3−2x2+bx=
0, where b is any real number.

A) We can start by factoring out an x:

f (x) = x3 − 2x2 + bx = x(x2 − 2x+ b).

Thus, the function f always has a root at x = 0 and may have additional roots at points where
x2 − 2x+ b= 0. Applying the quadratic formula to the latter equation, we have

x =
2±√

4− 4b
2

= 1±√
1− b.

There are two special cases. At b = 1, the quadratic formula yields only one root, x = 1;
hence, the roots are x = 0 and x = 1. At b = 0, one of the roots from the quadratic formula
is 0 and the other is 2, so the roots are x = 0 and x = 2. These special cases divide the range
of b values into three intervals where the numbers of roots are different.

• For b > 1, there are no roots from the quadratic formula.
• For 0 < b < 1, the square root quantity is between 0 and 1; hence the quadratic formula

yields two roots, one in the interval 0 < x < 1 and one in the interval 1 < x < 2.
• For b < 0, the square root yields a number larger than 1, so there is one positive root in

the interval x > 2.

Figure 1.1.5 is a plot of the roots as a function of b. The horizontal line indicates that x = 0
is a root for all values of b. The curve indicates roots that come from the quadratic formula,
showing that there is one such root if b < 0, two such roots if 0 < b < 1, and no roots (other
than 0) for b > 1. ��

−4 −2 0 2

0

1

2

3

4

b

x

Fig. 1.1.5 The nonnegative roots of x3 −2x2 +bx as a function of b
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The function f (x) = x3−2x2+bx of Example 1.1.7 is a case where the qualitative properties
change as a parameter crosses a specific value. This kind of behavior is called a bifurcation.4

Bifurcations are common in biological models and are often of critical importance. For exam-
ple, conservation models generally include a parameter representing the ratio of populations
in successive years. If this parameter is greater than or equal to one, the population will be
successful, while a value of 0.999 represents a population headed for extinction.

Problems

1.1.1.* Rework Example 1.1.1 for an initial dose of 390 mg. Check your result for the time
needed for the drug amount to drop to 130 mg against the appropriate figure in the text.

1.1.2.* For the data of Example 1.1.1, find a formula for the time tz at which the amount of
acetaminophen in Jan’s system is some unspecified amount z. Plot a graph of tz versus the
parameter z. Interpret the graph in terms of the drug clearance process.

1.1.3. The clearance rate constant k in (1.1.2) is slightly different for different individuals, as
well as being considerably different for different drugs. Suppose k is the clearance rate for
acetaminophen of a patient who takes two acetaminophen tablets (650 mg). Determine the time
t1 at which a patient’s system has only 130 mg of acetaminophen, in terms of the parameter k.
Plot a graph of t1 versus k. Interpret the graph in terms of the drug clearance process.

1.1.4. Do an Internet search to find the half-life of acetaminophen in a healthy body. Look at a
variety of sites so that you will find a range of values. Determine the constant k for the largest
and smallest half-lives and plot the functions f (t) = Ae−kt using these values together on the
same axes. Use a standard dose for A.

1.1.5. Do an Internet search to find the half-life of naproxen sodium in a healthy body. Look at
a variety of sites so that you will find a range of values. Determine the constant k for the largest
and smallest half-lives and plot the functions f (t) = Ae−kt using these values together on the
same axes. Use a standard dose for A.

1.1.6. Determine the nonnegative roots of the polynomial x3 − bx2 + x as a function of b. Plot
these roots as in Figure 1.1.5.

1.1.7.*

(a) The one-parameter function f (x) = x2 − bx, where b is any real number, has a graph that is
a parabola. Find the vertex of the parabola in terms of the parameter b. [Hint: All quadratic
equations can be written in the form f = a(x− h)2 + k, where the vertex is at (h,k) and
a is a parameter that represents the “broadness” of the parabola. By setting the formula
given for the function equal to the desired form and requiring the polynomials to be iden-
tical, determine three equations that relate the desired parameters h, k, and a to the given
parameter b.]

(b) Plot f with b =−2,0,2,4. Verify that the vertices are in the location determined in part (a).

1.1.8. Data for the number of infected cells during the course of a measles infection show
roughly 1,470 infected cells at 14 days after exposure, which is approximately the peak of the
infection [5].

4 It is pronounced BYE-fur-ca-shun.
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(a) What features of the function

f (t) = t(21− t)(t+ k) , k > 0

make it a plausible model for the data?
(b) What value for k is necessary to get f (14) = 1,470?
(c) Plot f with the value of k from part (b). Your plot should only include the portion of the

graph that is biologically relevant. Confirm that the peak is in fact close to 14 days after
infection.

(This problem is continued in Problem 1.4.1.)

1.1.9. Influenza is an example of a disease that exists in multiple strains with frequent mu-
tations. This means that individuals who recover from the disease are immune to the current
strain, but not to the next strain to reach the population. Now suppose a new strain reaches a
closed population. Under these circumstances, the standard model for such diseases5 can be
used to predict the fraction d of individuals who contract the disease in terms of the basic re-
productive number R0, a parameter that represents the average number of secondary infections
due to one infected individual in a population of susceptibles. Values of R0 can vary from 0 to
about 20,6 with measles estimated at 12–18 and smallpox at 5–7 [4]. If R0 < 1, then the disease
can only infect a few individuals before it dies out. If R0 > 1, then a disease epidemic occurs,
and the model predicts that the fraction who get the disease satisfies the equation

R0d+ ln(1− d) = 0.

(a) Solve the equation for R0 and use a “guess-and-check” method to estimate the value of d
for R0 = 5. Independent of disease mortality, what does this suggest about the impact of
smallpox on a Native American population newly exposed by explorers in the late fifteenth
century?

(b) Plot d as a function of R0 for the range 0 < R0 < 5. (Keep in mind that the given formula
is not correct for all values of R0. Note that tabular data for two related variables can be
plotted with either variable on the horizontal axis.)

1.1.10. A resource x is consumed at the rate

f (x) =
Ax

B+ x
,

where A and B are positive parameters.

(a) What is the maximum consumption rate in terms of A and/or B, achieved in the limit as
x → ∞?

(b) Suppose the actual consumption rate is half of the maximum from part (a). What is the
corresponding resource level x?

1.1.11. In this problem, we consider the additional difficulties of modeling ibuprofen amounts
in a patient, given that ibuprofen is slowly absorbed from the digestive system and relatively
quickly eliminated from the body.

5 See Problem 7.1.3.
6 The mathematical epidemiologists Valerie Tweedle and Robert J. Smith? (The question mark in “Smith?” is
part of the spelling of his name. I do not know whether this is to distinguish him from all the other Robert J.
Smiths in the world or to disprove the popular belief that mathematicians are the most uninteresting people alive.
I prefer not to ask.) claim that the most infectious “disease” is the social disease they call “Bieber fever,” whose
basic reproductive number they estimate to be about 27 [2].
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(a) Plot a concentration curve for ibuprofen using the model y = Ae−kt . Assume a dose of
200 mg and a rate constant of k = 0.35.

(b) How long does it take for one-half of the drug to be eliminated? (Do this algebraically, not
by trial and error.)

(c) A more sophisticated drug clearance model takes account of the need for an oral dose to be
absorbed by the digestive system. This model is

y =
Ab

b− k
(e−kt − e−bt),

where A is the amount of the dose, k is the clearance rate for the bloodstream, and b is
the clearance rate for the digestive system. Normally, b > k. Use this model to plot a drug
versus time curve for a 200- mg dose of ibuprofen, assuming k = 0.35 and b = 0.46.

(d) Describe the important differences between the curves of part (a) and part (c). Consider
qualitative features of the graphs as well as quantitative properties such as the peak value
and the time at which the peak occurs.

1.1.12.* Medication regimens for multiple doses are designed so that the minimum level (just
before a dose) is high enough to be therapeutic and the maximum level (just after a dose) is not
high enough to be toxic. We explore this idea in this problem.

(a) Suppose a person has been taking 650- mg doses of acetaminophen every 4 h for several
days. This will result in a drug versus time curve that repeats over a period of 4 h. Let
A be the unknown concentration immediately after taking a dose. Use the model for ac-
etaminophen drug clearance, with k = 0.3, to obtain a formula for the amount of drug
present after 4 h, immediately before the next dose.

(b) Use the result from part (a) to obtain a formula for the amount present immediately after
the next dose.

(c) Given that the concentration curve is periodic, the amount present immediately after that
next dose (from part (b)) must be A. Use this fact to calculate the value of A and to determine
the minimum amount present during the 4-h period.

(d) Repeat parts (a)–(c) with doses of B mg of a drug with rate constant k taken every T hours.
[Keep in mind that we are using A to represent the amount in the system at time 0, which
includes both the new dose and whatever is remaining of previous doses.]

(e) Prepare a drug versus time curve showing the amount of acetaminophen from parts (a)–(c)
over a 24-h period.7

1.1.13. In Olympic-style weightlifting, competitors are scored in two events, called the snatch
and the clean and jerk; each competitor’s final score is the sum of his/her best lift in each
event. As with many other sports in which body size is important, a weightlifting competition
takes place in several classes. Using mathematical models, it is possible to compare the totals
across the classes to calculate a theoretical all-class champion. The International Weightlifting
Federation recognizes the use of the Sinclair coefficient for this purpose, but no Olympic all-
class medals are awarded. The Sinclair coefficient C(m) is calculated using the model

C(m) = 10A[log10(m/b)]2 ,

where m is the mass of a weightlifter, b is the mass of the heavyweight world record holder,
and A is a constant determined by some modeling procedure. The parameters A and b are reset

7 Note that we are assuming the patient has been taking the drug for several days already. The results would be
more complicated if our study began with the very first dose.
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after each Olympic competition and then fixed for the next 4 years.8 In the period from the
2008 Olympics to the 2012 Olympics, the parameter values for men were A = 0.78478 and
b = 173.961. The Sinclair-adjusted total score for a lifter is obtained by multiplying his/her
actual score by the Sinclair coefficient for that lifter’s mass. Table 1.1.1 includes the masses
and actual scores for the gold medalists in each event of the men’s division, along with the
three silver medalists who very nearly won their event.

(a) Show that the 342.5 kg score achieved at the 1988 Olympic games by Naim Suleymanoglu
in the 60 kg class corresponds to a Sinclair-adjusted total score of 504.0 using the 2008–
2012 parameter values. At the time of this writing, Suleymanoglu is the only weightlifter
to have earned a Sinclair-adjusted score over 490.

(b) Look up the values of the Sinclair parameters for the period between the 2012 and 2016
Olympics. What is Suleymanoglu’s Sinclair-adjusted total score with these new parameter
values?

(c) Calculate the Sinclair-adjusted total scores for each of the lifters in the table, using the
2008–2012 parameter values. If there had been all-class medals based on Sinclair-adjusted
total scores, who would have won the three medals?

(d) Recalculate the Sinclair-adjusted total scores for the 2008 Olympics using the parameter
values adopted in 2012. With these values, are there any changes in the top three places?

(This problem is continued in Problem 2.4.9.)

1.1.14. R. McNeill Alexander presents a simple model for the optimal amount of territory for a
bird to try to maintain [1]. Let A be the area of the territory and let p be the daily food availability
per unit area, so that the total amount of food available per day is pA. If k is the amount of time
(in days) per unit area needed to defend the territory, then (1− kA) is the amount of time (in
days) available for collecting food. Assuming that the bird can collect food at the rate of q units
per day, then the amount that can be collected in the time not spent defending the territory is
q(1− kA). The optimal territory is that which has just enough food available so that the bird
can collect all of it.

(a) Determine the optimal territory size in terms of the various parameters in the model.
(b) Let Q = q/p. Use this new quantity to obtain a formula for optimal territory size that de-

pends on just two parameters.
(c) What is the biological meaning of the parameter Q? [Hint: The units of Q are the units of q

divided by the units of p.]
(d) Suppose k = 1. This means that A = 1 represents the largest territory that can be defended.

We can then interpret a specific value of A as the fraction of defendable territory that the
bird should choose. Plot the optimal territory size as a function of the parameter Q.

(e) Interpret the graph biologically.

8 This seems very strange. The ordering of two weightlifters who competed in the 2004 Olympics might have
changed after the 2008 Olympics, even though the two performances being compared were already histori-
cal. This is not the only strange thing about Olympic weightlifting. The International Weightlifting Federation
changed the weight classes in 1993 and again in 1998, so currently recognized world records are all for per-
formances after 1997, in spite of obvious problems. For example, the pre-1993 world record for the 60 kg class
is a full 5% larger than the currently accepted world record for the 62 kg class. An additional quirk deals with
the rules for breaking ties, under which the world record in the 85 kg class was claimed by the silver medalist
in the 2008 Olympics. Andrei Rybakou posted the score of 394 kg a few minutes before fellow competitor Lu
Yong posted the same score. Rybakou got the world record because he was the first to get the score, but Yong
was awarded the gold medal by virtue of being 0.28 kg smaller (about 0.5 pounds) than Rybakou at the official
weigh-in. For the sake of completeness, we note that a “world record” score was also achieved in the 105 kg
weight class by gold medalist Andrei Aramnau; the quotation marks are used because Aramnau’s score at 105 kg
was less than the pre-1993 world record for the 100 kg class.
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Table 1.1.1 Selected medalists from the 2012 Summer Olympics Men’s Weightlifting competition

Name Class Place Mass Total Lifted
Long Qingquan 56 kg First 55.37 292
Zhang Xiangxiang 62 kg First 61.91 319
Liao Hui 69 kg First 68.97 348
Sa Jae-Hyouk 77 kg First 76.46 366
Li Hongli 77 kg Second 76.91 366
Lu Yong 85 kg First 84.41 394
Andrei Rybakou 85 kg Second 84.69 394
Ilya Ilin 94 kg First 93.64 406
Andrei Aramnau 105 kg First 104.76 436
Matthias Steiner > 105 kg First 145.93 461
Evgeny Chigishev > 105 kg Second 124.13 460

1.1.15. Under a given set of assumptions (see Problem 2.2.7), we can obtain the model

r =
lnn
a

for the fractional yearly population growth (i.e., r = 0.01 corresponds to a growth rate of 1%
per year) as a function of the average number of children per adult (n) and the average age of
the mother when a child is born (a).

(a) Plot r as a function of n over the reasonable range 0.5 ≤ n ≤ 2, with a values of 25, 30,
and 35. These three curves should be plotted together on one set of axes. Use this figure
to discuss the dependence of growth rate on number of children, focusing on how this
dependence changes for different average reproduction ages.

(b) Plot r as a function of a over the reasonable range 25 ≤ a ≤ 35, with n values of 1, 1.5,
and 2. These three curves should be plotted together on one set of axes. Use this figure to
discuss the dependence of growth rate on average reproductive age, focusing on how this
dependence changes for different average numbers of children.

1.1.16.* Consider a species that has a constant death rate of m individuals per capita per time
unit.

(a) Given a constant per capita death rate, survival of individuals in a cohort born at the same
time is mathematically identical to maintenance of a drug in a patient who gets a single dose
at time 0. Use this fact to find a formula for the fraction y(t) of individuals alive at age t. In
particular, find the fraction s of individuals alive at age 1 as a function of m.

(b) Suppose individuals of our hypothetical species mature at age 1 and reproduce at constant
rate n until age 2. It can be shown (Problem 1.8.12) that the birth rate necessary for the
overall population to stay at the same size is

n =
m

e−m − e−2m .

Combine this formula with the result of part (a) to obtain an equation that determines the
birth rate necessary for population maintenance as a function of the probability of surviving
to maturity.

(c) Plot the resulting function n(s). Choose a biologically reasonable range of s values for the
plot. Discuss the biological significance of the result by comparing the birth rate require-
ments for animal species with different probabilities of survival to maturity.

(This problem is continued in Problem 1.2.11.)
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1.2 Rates of Change and the Derivative

After studying this section, you should be able to:

• Compute rates of change for a function defined at discrete points.
• Approximate the instantaneous rate of change for a function defined on a continuous interval.
• Discuss rates of change, tangent slopes, and spatial gradients in terms of the derivative

concept.

The ancient Greek philosopher Heraclitus taught that the world is in a perpetual state of
change, a view shared by modern science. Some change is obvious and unidirectional, such
as the changes observed in evolution and aging. Some change is obvious, without necessarily
appearing unidirectional, such as seasonal temperature changes. Some change is not obvious,
but is nevertheless present on a small scale, as in the exchange of gases in the lungs when you
breathe. The primacy of change has consequences for mathematical modeling in biology. An
approximate description of physical processes often consists of rules that predict rates of change
in terms of the current state of the system. Any serious attempt at mathematical modeling must
begin with development of the mathematics of rates of change.

1.2.1 Rate of Change for a Function of Discrete Time

A function of discrete time is any quantity that has a clearly defined value at regularly spaced
times. We need not know how to compute the values, as long as we can measure them.

Example 1.2.1. Table 1.2.1 shows a portion of the dataset for the mean annual atmospheric
carbon dioxide concentration at Mauna Loa observatory in Hawaii [8]. The full data set is
shown in Figure 1.2.1. Because this is real data, there is no formula that allows us to calculate
the function values. ��

Table 1.2.1 Average annual CO2 concentration at Mauna Loa, in ppm, for selected years

Year 1960 1965 1970 1975 1980 1985 1990
Average CO2 316.91 320.04 325.68 331.08 338.68 345.87 354.16

Year 1995 2000 2005 2007 2008 2009 2010
Average CO2 360.63 369.40 379.78 383.72 385.57 387.36 389.78

Given data for a discrete function of time, we can use the difference in function values to
calculate an average rate of change.

Example 1.2.2. From Table 1.2.1, the average rate of change of CO2 concentration for the pe-
riod 1960–1970 is

Δy
Δ t

=
325.68− 316.91

1970− 1960
= 0.877.

Similarly, the average rate of change for the period 2005–2010 is

Δy
Δ t

=
389.78− 379.78

2010− 2005
= 2.000.

��
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Fig. 1.2.1 Average annual CO2 concentration at Mauna Loa, in parts per million, from 1960 to 2010

Check Your Understanding 1.2.1:
Find the average rate of change of CO2 concentration at Mauna Loa for the period 1975–
1980.

How rapidly is the carbon dioxide concentration of the air at Mauna Loa changing right
now? Unlike Example 1.2.2, this question is about the instantaneous rate of change. This is
a much more difficult question. In principle, we could imagine a device that would actually
measure the rate of change of carbon dioxide concentration. In practice, we do not have such
a device, so the best we can do is to calculate an approximate instantaneous rate of change
from the discrete Mauna Loa data. This is problematic. For example, the average rate of change
from 2008 to 2009 is 1.79, while the average rate of change from 2009 to 2010 is 2.42. Each
of these values has equal claim to be the rate of change at 2009. Perhaps the best estimate is
the average, which is 2.105. However, this is still not an instantaneous rate of change, since
there is a seasonal pattern that would only be apparent through examination of monthly data.
Although the carbon dioxide concentration is generally increasing over a period of years, it
has annual peaks every May and falls through the Northern Hemisphere summer.9 Hence, the
instantaneous rate of change is negative for a few months of each year.

1.2.2 Rate of Change for a Function of Continuous Time

As with atmospheric carbon dioxide, most quantities in the natural and physical world change
over continuous time rather than discrete time. For example, population changes are them-
selves discrete, but they can occur at arbitrary times. Discrete change over continuous time
poses mathematical difficulties, so we confine ourselves at present to continuous quantities that
change over continuous time.10

Example 1.2.3. While a quantity of some chemical includes a discrete number of individual
molecules, there are so many of these that we can reasonably assume that the mass of a chemical
can take on any positive value, and chemical reactions occur continuously. Likewise, changes

9 This is the pattern as measured at Mauna Loa.
10 Discrete changes occurring in continuous time are best dealt with in mathematical modeling, rather than
mathematics per se. This topic is discussed in some detail in Section 2.2.
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in the amount of a drug in a patient’s system are distributed over a continuous interval of time
rather than concentrated at a discrete set of times. These assumptions were implicit in Exam-
ple 1.1.1, where we used the function y = 650e−0.3t to model the amount (in milligrams) of
acetaminophen in a patient’s system at time t hours after a dose of 650 mg. ��

Given the importance of rates of change, we must find a way to understand the rate of change
of continuous quantities over continuous time. This issue was a major theme of mathematical
thought in the sixteenth and seventeenth centuries, and it was resolved by the invention of
calculus. The problem is conceptually difficult because we tend to focus our thinking on exact
quantities. To understand calculus, one has to think about approximations. Our plan of attack is
actually rather simple:

1. Find a way to approximate the rate of change so that the error is arbitrarily small (but not
zero, as that would indicate an exact answer).

2. Calculate what would happen to the approximation if the error actually could be reduced
to zero. This requires the concept of the limit, the central notion on which all of calculus is
based.11

Because the rate of change of a discrete function y(t) is denoted by Δy
Δ t , it is both suggestive

and convenient to use the notation dy
dt (t) to represent the instantaneous rate of change of a

continuous function y(t) at the time t.12 Of course we do not yet know how to calculate the rate
of change, or even whether there is any reasonable definition for it.

Table 1.2.2 Acetaminophen data for Example 1.2.4

Time (h) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Acetaminophen (mg) 650.0 559.5 481.5 414.5 356.7 307.0 264.3 227.5 195.8

Example 1.2.4. Table 1.2.2 shows some data for acetaminophen levels in the hypothetical pa-
tient of Example 1.1.1. Suppose we want to know the rate of change of the acetaminophen
amount immediately after the dose at time 0; that is, dy

dt (0). With the data in Table 1.2.2, the
best we can do is calculate an average rate of change using the first two data points:

dy
dt

(0)≈ Δy
Δ t

(0,0.5)≈ 559.5− 650
0.5

≈−181.

��
In our hypothetical drug clearance scenario, we have a formula, y = 650e−0.3t, which can be

used to calculate more data points than those in Table 1.2.2. We can approximate the instanta-
neous rate of change at time 0 more accurately than we did in Example 1.2.4 by using a smaller
time interval for the average rate of change. We could even use a parameter to represent the
duration of the time interval, and then we would be able to see how the average rate of change
depends on that duration.13

11 The limit is a very subtle mathematical concept that was not rigorously defined until many years after the
original development of calculus. The creators of calculus were able to manage without a rigorous definition of
the limit, and so can we.
12 The actual meaning of the distinct symbols dy and dt will be considered later. For now, the reader should
think of dy

dt as a single symbol rather than a quotient.
13 This is the reason for the assertion in Section 1.1 that understanding parameters is very helpful for under-
standing calculus.
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Example 1.2.5. In Example 1.2.4, we calculated an approximate rate of change at time 0 for the
function y = 650e−0.3t using data at time 0 and time 0.5. Assuming that we can compute y for
any positive time h, we have the approximation

dy
dt

(0) ≈ Δy
Δ t

(0,h)≈ 650e−0.3h− 650
h

= 650
e−0.3h− 1

h
.

The approximation of Example 1.2.4 can be obtained from this formula using h= 0.5, and better
approximations can be obtained using smaller values.14 Table 1.2.3 shows the approximations
for several values of h. Each is one-tenth of the previous value, which allows us to get to very
small values of h with only a few calculations. From the data, it seems likely that the rate of
change is exactly

dy
dt

(0) =−195.

Note that we cannot obtain this value by using the approximation formula with h = 0. Both
e−0.3h −1 and h evaluate to 0 for h = 0. Of course, this had to happen, because these quantities
are the changes in y and t, both of which are 0 if the end of the time interval used for the
approximation is the same as the beginning. ��

Table 1.2.3 Approximations for dy/dt(0) in Example 1.2.5

h (hours) 1.0 0.1 0.01 0.001 0.0001 0.00001

Δy/Δt −168 −192.1 −194.7 −194.97 −195.00 −195.00

There was nothing special about the choices of the function y = 650e−0.3t and the evalua-
tion point t = 0. A similar calculation could be accomplished using most functions and most
evaluation points. We arrived at what appears to be the correct instantaneous rate of change by
taking h to be progressively smaller and looking for the logical conclusion of the trend. We had
to identify this logical conclusion without allowing the time interval to shrink all the way to 0.

Check Your Understanding 1.2.2:
Determine a formula for the average rate of change for the function y = 650e−0.3t in
an interval of duration h that begins at t = 3. Use this formula to generate a table of
approximations for dy/dt at t = 3, similar to Table 1.2.3. From the table, conjecture the
value of dy/dt at t = 3 to two decimal places.

1.2.3 The Derivative

So far, we have explored rates of change using algebra. In Example 1.2.5, we succeeded in
calculating an approximate rate of change good to at least two decimal places, but only for one
value of t. This is not a satisfactory method, because the calculation would have to be repeated
for many other times to get a complete picture of the rate of change. A better answer requires
the mathematics of calculus.

14 In practice, too small a value of h causes difficulties because of the way real numbers must be stored in
computers. This is not a serious practical difficulty; we just have to avoid ridiculously small values of h.
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In general, suppose we have a function y(t) and a time t for which we want to know the rate of
change dy/dt. Using a time interval of arbitrary positive length h, we obtain the approximation

dy
dt

(t)≈ Δy
Δ t

(t) =
y(t + h)− y(t)

h
. (1.2.1)

This approximation formula never works for the one value we care about (h = 0), but in most
cases we can infer the correct rate of change using calculations with h 
= 0.

Think of our problem in this way: Given a function y(t) and a time t, find a numerical value
for the rate of change that “makes sense” for h = 0, where “makes sense” means that the value
is consistent with the values that we can compute for arbitrarily small h. To determine such a
value, if there is one, we can compute the approximation for a sequence of h values that get
progressively smaller. If this procedure yields the same result no matter what we actually pick
for the decreasing sequence of h values, we call this result the limit of the approximation as h
approaches 0.

With the introduction of the limit concept, we are now prepared to define the derivative to
be the mathematical solution of the rate of change problem.

Derivative of a function y(t): the function defined by the formula

dy
dt

(t) = lim
h→0

Δy
Δ t

(t,h), (1.2.2)

where
Δy
Δ t

(t,h) =
y(t + h)− y(t)

h
, (1.2.3)

provided the limit exists.

There are two difficulties with this definition of the derivative.

1. From a theoretical perspective, the definition rests on the limit, which we haven’t properly
defined. This is not mathematically satisfying, but it will not prevent us from getting the
right answers. The interested reader can consult any calculus book.

2. From a practical perspective, it is a significant disadvantage to have to calculate a quantity
using a complicated procedure rather than a single formula. This difficulty will be elimi-
nated in Section 1.3.

1.2.4 Slope of a Tangent to a Graph

Any data indicating the values of a quantity at different times can be plotted on a graph. If the
data represents a continuous process, the graph consists of infinitely many points on a smooth
curve. Often this curve is computed using a formula that gives a result for any time within some
given interval. The average rate of change of a continuous function on any interval (t, t + h)
is given by (1.2.3) and is represented on the graph by the slope of the straight line connecting
the points (t,y(t)) and (t + h,y(t + h)). As the time interval duration h decreases toward 0, the
straight line connecting the approximation points becomes closer and closer to the tangent line
at the fixed point (t,y(t)). Thus:
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The rate of change of a function of continuous time corresponds to the slope of the tangent
to the graph of the function.

The interpretation of the rate of change as the slope of a smooth curve on a graph holds for
any graph, including graphs where the independent variable is something other than time.

Example 1.2.6. A possible model for the rate of change of a consumed resource x is given by
the differential equation

dx
dt

=− x
1+ x

,

given appropriate units for the resource and the time. We can think of the quantity x/(1+ x)
as a function y = f (x) that represents the consumption rate in terms of the current amount of
resource. This function is illustrated in Figure 1.2.2, along with the tangent line at the point
(1,0.5). The slope of the tangent line at this point, using the definition of the derivative, is

dy
dx

(1) = lim
h→0

y(1+ h)− y(1)
h

= lim
h→0

1+h
2+h − 0.5

h
.

Using numerical approximations, we obtain the result

dy
dx

(1)≈ 0.25.

We will show in Section 1.3 that this result is exactly correct. ��
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Fig. 1.2.2 The resource consumption function from Example 1.2.6, along with the tangent line at the point
(1,0.5)

Example 1.2.7. Suppose the temperature in a laboratory environment is controlled by heating a
flat metal plate to a fixed temperature that is 20 ◦ higher than normal room temperature. Using
a mathematical model (Newton’s law of cooling), we can derive the formula T (x) = 20e−kx for
the difference between the temperature a distance x from the hot plate and room temperature.
Several members of this one-parameter family are plotted in Figure 1.2.3 along with the tangent
lines at position x = 1. Using the definition of the derivative, we can write the slope as
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dT
dx

(1) = lim
h→0

T (1+ h)−T(1)
h

= lim
h→0

20e−k−kh − 20e−k

h
= 20e−k lim

h→0

e−h − 1
h

.

Numerical approximations suggest the limit result

lim
h→0

e−h − 1
h

=−1,

with the result
dT
dx

(1) =−20e−k.

Indeed, this formula was used to calculate the slopes of the tangents plotted in the figure. ��
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Fig. 1.2.3 The temperature profiles of Example 1.2.7, with k = 0.5,1,2 (top to bottom), along with the tangent
lines at the point x = 1

Check Your Understanding Answers

1. 1.500
2.

dy
dt

(3)≈ 650e−0.9 e−0.3h − 1
h

.

h (hours) 1.0 0.1 0.01 0.001 0.0001 0.00001

Δy/Δ t −68.5 −78.1 −79.2 −79.27 −79.28 −79.28

Problems

1.2.1.* Use the data in Table 1.2.1 to determine the average rates of change for the 10-year
intervals beginning in 1960, 1970, 1980, 1990, and 2000. Plot these average rates of change
versus time. Is there an apparent trend?
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1.2.2. Use the data in Table 1.2.1 to determine the average rates of change for the 5-year inter-
vals beginning in 1970, 1975, 1980, 1985, 1990, 1995, 2000, and 2005. Plot these average rates
of change versus time. Is there an apparent trend?

1.2.3. Use the Mauna Loa CO2 annual mean data [8] to determine average rates of change for
the 2-year intervals beginning in 1970, 1972, . . ., and 2008. Plot these average rates of change
versus time. Notice that it is difficult to give a quantitative summary of these values, because
of the high variability of the data. We will address the issue of extracting summary information
from variable data in Section 2.3 and 2.4. Qualitatively, it is certainly clear that carbon dioxide
concentration in the atmosphere has been increasing for a long time.

1.2.4. Use the Mauna Loa CO2 monthly mean data [8] to determine average rates of change
for the 1-month intervals beginning in January 2011 and continuing to the end of the data. Plot
these average rates of change versus time. How predictable is the seasonal variation from 1 year
to the next?

1.2.5.*

(a) Use the data in Table 1.2.2 to approximate the average rates of change on the intervals
[0.5,1], [1,1.5], and [0.5,1.5].

(b) Approximate the rate of change of the function y= 650e−0.3t at time t = 1 using forward dif-
ferences (Equation (1.2.1)) and the time intervals h= 0.1, 0.01, 0.001, 0.0001, and 0.00001.
Use these results to infer the value of dy/dt(1).

(c) Which of the estimates in part (a) comes closest to the answer determined in part (b)?

1.2.6. Repeat Problem 1.2.5 with the time t = 2.

1.2.7. Use the results of Example 1.2.5, Problem 1.2.5b, and Problem 1.2.6b to plot three points
on a graph in which the horizontal coordinate is y and the vertical coordinate is dy/dt. Conjec-
ture the quantitative relationship between these quantities for this function.

1.2.8.* Approximate the rate of change of the function y =
√

x at time x = 0 using forward
differences (Equation (1.2.1)) and the time intervals h = 0.1, 0.01, 0.001, and 0.0001. What
happens when you try to use these results to infer the value of dy/dx(0)? Conjecture the slope
of the tangent line at the point (0,0).

1.2.9.* Use the approximation method to determine the slopes of the tangent lines to the
graph of

f (x) =
x

2+ x

at the points x = 1,2,3. Does the trend of these calculated tangent line slopes reflect the shape
of the graph of f ?

1.2.10. Repeat Problem 1.2.9 with the function f (x) = xex at the points x = 0,1,2.

1.2.11. (Continued from Problem 1.1.16.)
In Problem 1.1.16, we derived the formula

n(s) =
− lns
s− s2

for the average number of offspring per individual in a population needed to maintain the total
population size, where s is the probability of living long enough to reach maturity. (The for-
mula includes other assumptions about death rates and maximum age for reproduction.) Use a
sequence of s values that rapidly approaches 1 to conjecture the value of
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lim
s→1−

n(s).

[Note: In general, limits can be defined using points to the right or left of the limiting value.
In the definition of the derivative, for example, it does not matter whether one looks at small
positive values or small negative values as h→ 0. In this case, the superscript in s→ 1− indicates
that this limit is to be considered specifically for values of s that are less than 1. In the biological
context, s > 1 is not meaningful.]

1.3 Computing Derivatives

After studying this section, you should be able to:

• Compute derivatives for power functions, exponential functions, logarithmic functions, sine
functions, cosine functions, and more complicated functions composed from these elemen-
tary ones.

• Compute partial derivatives.
• Use different notations for derivatives.

In Section 1.2, we defined the derivative dy/dt by the formula

dy
dt

(t) = lim
h→0

Δy
Δ t

(t,h), (1.3.1)

where
Δy
Δ t

(t,h) =
y(t + h)− y(t)

h
. (1.3.2)

The derivative is defined in this way so that it will represent the rate of change of a quantity y
with respect to the independent variable t. While this definition is useful for understanding what
derivatives are, it is not practical as a method for calculating actual values. A more convenient
strategy is to use the mathematical definition to determine:

• A small number of elementary derivative formulas and
• Some very general rules for reducing complex derivative problems to elementary ones.

1.3.1 Two Notations

In the formula y= 650e−0.3t, it is natural to think of y as a dependent variable, which is what led
to the notation dy/dt for the rate of change of y with respect to t. However, sometimes there is
an advantage to using the mathematical concept of a function, and the notation for this concept
leads to an alternative notation for the derivative.

Function: a rule that associates a single output value to each allowable value of an
independent variable.

The formula 650e−0.3t is a function of t in this mathematical sense. All real numbers are
allowed for the independent variable t, although negative values for t lack a physical meaning
in the biological context of the example. Suppose we use the name f to indicate the function that
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produces the output 650e−0.3t for any input t. Then our mathematical model for acetaminophen
clearance can be written as

y = f (t) = 650e−0.3t .

The distinction between y and f (t) is subtle, but it is worth understanding. The symbol f rep-
resents the rule from which the quantity represented by the symbol y is calculated, given t as
the input variable. Thus, the meaning of y depends on a nonmathematical context, whereas f is
a strictly mathematical quantity. The symbol used for the independent variable in a function is
not relevant. For example, the same function f could be defined by the formula

f (v) = 650e−0.3v.

Regardless of whether the input quantity is represented by the symbol t or the symbol v, the
function f defines a unique output quantity by raising e to the power of −0.3 times the input
quantity and multiplying the result by 650. In similar fashion, there is no calculation required
to determine f (x2) for this function f ; it is:

f (x2) = 650e−0.3x2
.

We do not need to know anything about x to write this result; indeed, we do not even need to
know whether x2 means x times x or is an independent symbol like x2.

When computing derivatives, it is usually convenient to think of formulas as representing
functions rather than quantities. The mathematical notation f ′ is used in such cases to represent
the derivative of the function f . Thus, if the acetaminophen concentration is given by

y = f (t) = 650e−0.3t ,

then the rate of change can be denoted either as dy/dt or f ′(t). In practice, we often use notation
that ignores the distinction between quantities and functions, so there is no harm in using the
mixed notations y′(t) or d f/dt, as long as the meaning is clear from the context. As a general
rule, this text will use whichever notation seems better suited to the context. For derivative
computation, the prime notation seems to be the better choice.

1.3.2 Elementary Derivative Formulas

Table 1.3.1 summarizes the elementary derivative formulas that we need to be able to find
derivatives for all polynomial, rational, exponential, logarithmic, and trigonometric functions,
as well as more complicated functions composed of these elements. The derivatives of arctan-
gent and arcsine are included for reference.

Table 1.3.1 Elementary derivative formulas

f (x) xp [p 
= 0] eax lnx sinax cosax arctan
x
a

arcsin
x
a

f ′(x) pxp−1 aeax 1
x

acosax −asinax
a

a2 + x2

1√
a2 − x2
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These formulas can be obtained from the definition of the derivative with varying amounts of
difficulty and use of the following limit results, which we present without proof. These values
can be approximately confirmed with graphs and/or numerical experiments.

lim
x→0

ex − 1
x

= 1, lim
x→0

ln(1+ x)
x

= 1, lim
x→0

sinx
x

= 1, lim
x→0

1− cosx
x

= 0. (1.3.3)

Example 1.3.1. Let f (x) = eax. Then the average rate of change from x to x+ h is

Δ f
Δx

(x,h) =
eax+ah − eax

h
=

eaxeah − eax

h
= eax

(
eah − 1

h

)
= aeax

(
eah − 1

ah

)
.

Thus,15

f ′(x) = lim
h→0

[
aeax

(
eah − 1

ah

)]
.

This calculation looks uninviting, but there are two things we can do to simplify it. First, we
observe that aeax is independent of h, so it can be factored out of the limit expression. We now
have

f ′(x) =
(

lim
h→0

eah − 1
ah

)
aeax.

Next, suppose we let y = ah. Having h go to 0 is equivalent to having y go to 0, so we can
simplify the limit expression and obtain

f ′(x) =
(

lim
y→0

ey − 1
y

)
aeax.

This is the closest we can get to computing the derivative using algebra alone. However, the
limit in this last formula is exactly the same as the first limit result of (1.3.3) (since the symbol
chosen for the independent variable does not matter), so we have the final result

f ′(x) = aeax. ��

1.3.3 General Derivative Rules

The task of symbolic differentiation is greatly facilitated by the use of general rules that al-
low us to reduce differentiation of various algebraic structures to differentiation of elementary
functions. The derivation of the product rule is left as a problem.16 A mathematical justification
for the chain rule is deferred to Section 1.6, at which point we will be able to use linear ap-
proximation.17 The quotient rule can be derived by combining the product rule with the chain
rule.18

Let f and g be differentiable functions and let a and b be real constants.

15 It seems silly to have the extra factor a in the denominator of the fraction, since it must be balanced by an
extra factor a in the front. The point will be clear in the calculation that follows. Mathematics contains many
instances where something that appears to make extra work turns out to be helpful by the end.
16 Problem 1.3.31.
17 Section 1.4.
18 See Problem 1.3.32.
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Linearity Rule:
[a f (x)+ bg(x)]′ = a f ′(x)+ bg′(x). (1.3.4)

Example 1.3.2. Let f (x) = 3x2 + 4
√

x. Using the linearity rule, we can reduce the task of cal-
culating f ′ to application of the power rule from Table 1.3.1:

f ′ = 3
(
x2)′+ 4

(
x1/2
)′

= 3× 2x+ 4× 1
2

x−1/2 = 6x+
2√
x
.

��
Example 1.3.3. Let f (x) = 2x+ ln(3x). This derivative can also be computed using the linearity
rule and basic rules. However, some algebraic manipulation of the exponential and logarithmic
functions is necessary. We have

2x = ex ln2, ln(3x) = ln3+ lnx.

Thus,
f (x) = ex ln2 + ln3+ lnx.

The first term is of the form eax, with a= ln2. The second term is a constant; hence, its derivative
is 0. We therefore have

f ′ =
(

ex ln2
)′
+(ln3)′+(lnx)′ = (ln2)ex ln2 + 0+

1
x
= (ln2)2x +

1
x
.

��

Product Rule:
[ f (x)g(x)]′ = f ′(x)g(x)+ f (x)g′(x). (1.3.5)

Example 1.3.4. Let f (x) = x2 cos3x. This function is a product of two elementary functions
listed in Table 1.3.1. Hence, we apply the product rule and obtain

[
x2 cos3x

]′
= (x2)′ cos3x+ x2(cos3x)′ = 2xcos3x+ x2(−3sin3x)

= 2xcos3x− 3x2 sin3x.

��

Check Your Understanding 1.3.1:
Find the derivative of f (x) = (x+ 1)sin2x.

Quotient Rule: [
f (x)
g(x)

]′
=

f ′(x)g(x)− f (x)g′(x)
[g(x)]2

, g 
= 0. (1.3.6)
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Example 1.3.5. Let

f (x) =
x

a+ x
.

This function is a quotient, with a parameter a. Using the quotient rule, we have

[
x

a+ x

]′
=

(x)′(a+ x)− x(a+ x)′

(a+ x)2 =
(a+ x)− x× 1

(a+ x)2 =
a

(a+ x)2 . ��

Compare Example 1.3.5 with Example 1.2.6. In the earlier example, we had the special case
a = 1, and we found the derivative value f ′(1)≈ 0.25. It took quite a bit of effort to accomplish
this result, which is specific to one value of a and one value of x. The result of Example 1.3.5
holds for all a and all x, and it yields the exact result 1/4 for f ′(1) with a = 1 rather than the
approximate result 0.25 of the earlier example.

Check Your Understanding 1.3.2:

Find the derivative of
e2x

1+ ex .

Example 1.3.6. Let

f (x) =
x

y(x)+ x
.

This function is similar to that in Example 1.3.5, except that it has a function y(x) in place of
the parameter a. The quotient rule still applies:

[
x

y(x)+ x

]′
=

(x)′(y+ x)− x(y(x)+ x)′

(y+ x)2 =
(y+ x)− x(y′+ 1)

(y+ x)2

=
y+ x− xy′− x

(y+ x)2 =
y− xy′

(y+ x)2 .

Note that it is helpful to use the full notation y(x) wherever it is important to remember that y is
a function of x rather than a parameter, while using the abbreviated notation y wherever it does
not matter that y is a function. Note also that we cannot compute y′, since y is not given. In such
cases, it is acceptable to leave y′ in the answer. ��

Chain Rule:
[ f (g(x))]′ = f ′(g(x))g′(x). (1.3.7)

The chain rule is often confusing to students. It is helpful to think of it in a verbal form rather
than the abstract mathematical form:

The derivative of f (g(x)) is f ′ evaluated at g(x) multiplied by the derivative of g(x).

As the examples show, it is also helpful to focus on the specific function f , while continuing
to think of g in general terms.
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Example 1.3.7. Let f (x) = sin(e2x). This function is a composition of the form sin(g(x)), so we
apply the chain rule. This rule says, “The derivative of sin(g(x)) is cos(g(x)) multiplied by the
derivative of g(x).” Hence,

[sin(e2x)]′ = cos(e2x)× (e2x)′ = cos(e2x)× 2e2x = 2e2x cos(e2x). ��

Check Your Understanding 1.3.3:
Find the derivative of f (x) = esin2x.

Our small list of elementary formulas and general rules allows us to compute derivatives for
any function that is built up from sums, products, quotients, and compositions of elementary
functions. The mechanics of the calculation can become messy for functions whose structure is
complicated; the important thing is to reduce the structure “from the outside in.”

Example 1.3.8. Let f (x) = sin(x2e3x). This function is a composition of the form sin(g(x)), just
like the function in Example 1.3.7. The only difference is that g(x) is now a product. Hence,

[sin(x2e3x)]′ = cos(x2e3x)× (x2e3x)′ = cos(x2e3x)× (2xe3x+ x2 × 3e3x)

= (2x+ 3x2)e3x cos(x2e3x).

��

1.3.4 Partial Derivatives

We can define derivatives for functions of more than one variable by treating all but one of the
variables as parameters. We also modify the notation.19

Partial derivative of f(x,y) with respect: to x: the formula obtained by treating y as a

parameter and differentiating with respect to x. This quantity is denoted by
∂ f
∂x

. Thus,

∂ f
∂x

(x,y) = lim
h→0

f (x+ h,y)− f (x,y)
h

.

Example 1.3.9. Let

f (x,y) =
sxy

a+ x
, s,a > 0.

To compute the partial derivative of f with respect to x, we treat y (as well as s and a) as a
parameter:

∂ f
∂x

(x,y) = sy
∂
∂x

(
x

a+ x

)
= sy

a
(a+ x)2 =

asy
(a+ x)2 ,

19 In some contexts, it is important to have a partial derivative notation that is distinguishable from ordinary
derivative notation.
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where we have used the result of Example 1.3.5. Similarly,

∂ f
∂y

(x,y) =
sx

a+ x
∂
∂y

(y) =
sx

a+ x
.

��
Partial derivatives are important in models of quantities that depend on more than one in-

dependent variable; for example, a population in a region near a river might depend on the
distance x from the river as well as the time t. The partial derivative with respect to t represents
the instantaneous rate of change at any particular location x. The partial derivative with respect
to x represents the spatial gradient at any particular time t. Most applications of partial deriva-
tives are beyond the scope of this book; however, we will use them in Chapter 7 to analyze
dynamical system models.

Check Your Understanding Answers

1. f ′(x) = sin2x+ 2(x+ 1)cos2x.

2. f ′(x) =
2e2x + e3x

(1+ ex)2 .

3. f ′(x) = 2(cos2x)esin2x.

Problems

1.3.1.* Use the definition of the derivative to compute the derivative of f (x) = x2.

1.3.2. Use the definition of the derivative to compute the derivative of f (x) = x3.

1.3.3.* Use the definition of the derivative and the appropriate limit result(s) from (1.3.3)
to compute the derivative of f (x) = sinx. [Hint: You will need a trigonometric identity for
sin(x+ h).]

1.3.4. Use the definition of the derivative and the appropriate limit result(s) from (1.3.3) to
compute the derivative of f (x) = cosx. [Hint: You will need a trigonometric identity for
cos(x+ h).]

1.3.5. Use the definition of the derivative and the appropriate limit result(s) from (1.3.3) to
compute the derivative of f (x) = lnx. [Hint: Write ln(x+ h) as ln[x(1+ h/x)].]

In Problems 1.3.6–1.3.30, compute the derivative of the indicated function. Simplify the
resulting formulas.

1.3.6. f (x) = 3x4 − 1
x

1.3.7.* f (x) = e−5x + sinπx

1.3.8. g(x) = 3x + lnπx

1.3.9. f (t) = t3e3t
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1.3.10. f (t) = t2 cos4t

1.3.11.* g(x) = x2 lnx

1.3.12. g(x) = eax sinkx, a,k 
= 0

1.3.13.* f (x) = tanx [Hint: Write tanx in terms of sinx and cosx.]

1.3.14. f (x) =
cosx
1+ x

1.3.15. f (v) =
ev

ev + v

1.3.16.* g(t) =
ev(t)

ev(t) + v(t)

1.3.17.* g(t) =
t2

t3 + 1

1.3.18. g(t) =

√
x

x2 + 1

1.3.19. f (x) = ex2

1.3.20. g(x) = xex2

1.3.21. y(u) = ln(2+ sinu)

1.3.22.* g(x) = sin(e2x + lnx)

1.3.23. f (t) = (t2 + 1)et2

1.3.24. f (t) =
et2

t2 + 1

1.3.25.* f (x) = eπ sinx

1.3.26. g(x) = exsinx

1.3.27.* g(t) = cos

(
π

t2 + 1

)

1.3.28. g(y) = ln(ex2
+ x2)

1.3.29. f (x) = sinex2

1.3.30. g(x) = esinx2

1.3.31. Use the definition of the derivative to derive the product rule.

1.3.32. Use the product rule with the chain rule to derive the quotient rule.

1.3.33.* In Problem 1.1.15, we derived the formula

n =
− lns
s− s2

for the average number of offspring per individual in a population needed to maintain the total
population size, where s is the probability of living long enough to reach maturity. (The for-
mula includes other assumptions about death rates and maximum age for reproduction.) Use
the appropriate formula of (1.3.3) to compute the limiting fertility rate as the survival proba-
bility approaches 1. [Note: You can factor limits and you can convert one limit to another by a
substitution, as in Example 1.3.1.]
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1.4 Local Behavior and Linear Approximation

After studying this section, you should be able to:

• Use the derivative to determine local behavior of functions near points on the graph.
• Use the derivative for linear approximation.

Interesting features of a graph can be classified into two types. Global behavior refers to gen-
eral features that are best seen over a large interval, such as the overall maximum and minimum
values and trends of increase and decrease. In contrast, the term local behavior refers to the lim-
iting behavior one sees when zooming in on a point on a graph. Local behavior includes slope,
relative maxima and minima (peaks and valleys), and concavity (whether the graph curves up
or down); calculus is necessary to determine these features.

1.4.1 Tangent Lines

Figure 1.4.1 shows the graph of y= x/(1+x) along with the line tangent to the graph at the point
(1,1/2). Figure 1.4.1a shows the global behavior of the function because the domain of x values
for the graph is large. Figure 1.4.1b shows only a small portion of the graph, corresponding to
the box in Figure 1.4.1a and magnified so that the plot uses the same amount of space on the
paper. As we zoom in on a particular point on a graph, the graph looks more and more like the
tangent line; hence, the tangent line can reasonably be said to show the local behavior of the
function.

We can use the derivative to find the equation of the tangent line.

Example 1.4.1. Given

y = f (x) =
x

1+ x
,

the slope of the tangent at any point x is (see Example 1.3.5)

f ′(x) =
(x)′(1+ x)− x(1+ x)′

(1+ x)2 =
1+ x− x
(1+ x)2 =

1
(1+ x)2 ;

in particular, the slope at the point
(
1, 1

2

)
is f ′(1) = 1

4 . Now suppose (x,y) is any point on the
tangent line other than the point

(
1, 1

2

)
. The slope of the line connecting these two points is

m =
Δy
Δx

=
y− 1

2

x− 1
.

This slope must be the value obtained from the derivative; hence, we have the equation

y− 1
2

x− 1
=

1
4
.

Solving for y yields the formula

y =
1
2
+

1
4
(x− 1).

This is the tangent line shown in Figure 1.4.1. ��
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The tangent line to a graph y = f(x) at a point (x0,y0) is given by

y = x0 + f ′(x0)(x− x0). (1.4.1)

1.4.2 Local Extrema

Sometimes the tangent line alone does not give an adequate picture of local behavior.

Example 1.4.2. The function f (x) = x3 −3x has derivative f ′(x) = 3x2 −3. Note that f ′(−1) =
f ′(1) = 0. This means that the tangent lines at the points x = −1 and x = 1 are horizontal.
However, as the graph in Figure 1.4.2 shows, there is a very significant difference in the local
behavior of the function at these two points. The function shows a local maximum at x = −1
and a local minimum at x = 1. A horizontal tangent line is suggestive of a local extremum, but is
of no help in distinguishing the two. As we will see, a horizontal tangent is not even a guarantee
of a local extremum. ��
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Fig. 1.4.1 The function x/(1+ x), along with the tangent line at the point (1,0.5). The small box in (a) is the
entire viewing window in (b)
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Fig. 1.4.2 The function f (x) = x3 − 3x from Example 1.4.2, along with the tangent lines at the points (−1,2)
and (1,2)
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The graph in Figure 1.4.2 shows that the function f (x) = x3 − 3x is increasing for x < −1,
decreasing for −1 < x < 1, and increasing again for x > 1. As we zoom in on the point (−1,2),
the essential fact (other than the horizontal tangent slope) is that the function is increasing
to the left of the point and decreasing to the right, marking the point as a local maximum.
Mathematically, f ′ changes from positive to negative at a local maximum. Similarly, f ′ changes
from negative to positive at the local minimum point (1,−2).

Local maximum (minimum) of a continuous function f: a point x0 where f ′ changes
from positive to negative (negative to positive).

If f ′ = 0 at a point x0, then the tangent line at x0 is horizontal. If f ′ does not exist at a point,
then there is no tangent line. These are the only two cases where a local extremum can occur. It
is convenient to have a term that takes these two cases together.

Critical point of a continuous function f: a point where f ′ = 0 or f ′ does not exist.

A systematic way to identify local extrema by calculation is to first find all the critical points
and then use some method for classifying them. The definition of a local maximum or minimum
classifies critical points of a continuous function using the first derivative.

Example 1.4.3. Consider the function

f (x) = x4 − 8x3 + 18x2 − 16x,

for which

f ′(x) = 4x3 − 24x2+ 36x− 16= 4(x3 − 6x2 + 9x− 4).

Critical points are the solutions of

x3 − 6x2 + 9x− 4= 0.

Normally we must resort to numerical approximation to solve a cubic equation, but observe that
x = 1 is a solution of this equation. This means that x− 1 is a factor of x3 − 6x2 + 9x− 4. The
factorization must have the form

x3 − 6x2 + 9x− 4 = (x− 1)(x2 + ax+ 4),

for some value of a, with the terms x2 and 4 in the second factor necessary to obtain x3 and −4
in the product. Multiplying out the product in terms of a yields

x3 − 6x2 + 9x− 4= x3 +(a− 1)x2+(4− a)x− 4,

from which we obtain a =−5. Thus, the equation for the critical points becomes

0 = x3 − 6x2 + 9x− 4= (x− 1)(x2 − 5x+ 4) = (x− 1)[(x− 4)(x− 1)] = (x− 1)2(x− 4).

The critical points are x = 1 and x = 4. Moreover, we can use the result of the factoring to
rewrite f ′ as

f ′(x) = 4(x3 − 6x2 + 9x− 4) = 4(x− 1)2(x− 4).
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From this form, we can see that f ′ is positive for x > 4 and negative for x < 4 (except for the
critical point x = 1). The function changes from decreasing to increasing at x = 4, so x = 4 is a
local minimum. The point x = 1 is not a local extremum because the function is decreasing on
both sides of the point. A graph of this function appears in Figure 1.4.3. ��
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Fig. 1.4.3 The graph of y = x4 −8x3 +18x2 −16x, showing the points with horizontal tangents

The first derivative indicates whether a function is increasing or decreasing. Because the
second derivative is the rate of change of the first derivative, it can be used to determine if the
slope is increasing or decreasing. This information, when applied to a point where the slope is
zero, can often be used to determine whether such a point is a local extremum.

Example 1.4.4. The function f (x) = x3 − 3x has derivatives f ′(x) = 3x2 − 3 and f ′′(x) = 6x.
Specifically, f ′(−1) = 0 and f ′′(−1)< 0. A negative value for the second derivative means that
the slope of the graph is decreasing at x = −1. Since the slope is 0 at x = −1, this decreasing
trend implies that the slope is positive to the left of x = −1 and negative to the right of x =
−1. These facts establish that the point (−1,2) meets the requirements for a local maximum.
Similarly, the facts f ′(1) = 0 and f ′′(1)> 0 establish that the point (1,−2) is a local minimum.
These results are consistent with the graphical evidence in Figure 1.4.2 and the first derivative
analysis in Example 1.4.2. ��

The argument of Example 1.4.4 applies at any point where f ′ = 0, as long as f ′′ exists and
is not 0. We present this result as a theorem.20

Theorem 1.4.1 (Second Derivative Test). If f ′(x0) = 0 and f ′′(x0)< 0, then x0 is a local
maximum; similarly, if f ′(x0) = 0 and f ′′(x0)> 0, then x0 is a local minimum.

Check Your Understanding 1.4.1:
Apply the second derivative test to the problem of Example 1.4.3.

20 Don’t be intimidated by the word “theorem.” Mathematicians use the word to indicate a significant mathemat-
ical result that follows logically from a relatively simple set of mathematical assumptions. The student should
think of a theorem as a statement that combines some quantitative or qualitative result with a set of conditions
that are sufficient to ensure that the result is correct.
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Example 1.4.5. Suppose we want to analyze the family of functions f (x) = x3−2x2+bx, where
b is any real number. We start by computing the derivative, f ′(x) = 3x2 − 4x+ b. The function
has a horizontal tangent line if the derivative is 0, which occurs at the points

x =
4±√

16− 12b
6

=
2±√

4− 3b
3

.

The existence of any such points requires 3b< 4; hence there are two principle cases to consider.
If b > 4/3, then there are no points with a horizontal tangent. The derivative must always be
positive, so the function is increasing for all x. The case b < 4/3 is more interesting. Here, there
are two points where the tangent line is horizontal. The second derivative is f ′′ = 6x−4, which
is positive for x > 2/3 and negative for x < 2/3. By Theorem 1.4.1, any critical point with
x > 2/3 is a local minimum, while any critical point with x < 2/3 is a local maximum. From
the formula for the critical points, it is clear that there is one of each. Hence, as x increases, the
graph increases to a maximum, decreases to a minimum, and then increases again. Figure 1.4.4
illustrates several members of the family of functions, two that have a pair of local extrema and
two that do not.

For the special case b = 4/3, we have

f (x) = x3 − 2x2 +
4
3

x, f ′(x) = 3x2 − 4x+
4
3
, f ′′(x) = 6x− 4.

From f ′ = 0, we obtain a single critical point:

x =
2±√

0
3

=
2
3
.

Theorem 1.4.1 does not apply, because f ′′(2/3) = 0. ��
To see what to do when f ′′ = 0 at a critical point, it helps to review what we have learned

so far about local behavior. For any point where f ′ 
= 0, the tangent line serves as an adequate
representation of local behavior. For the special case f ′ = 0, we need to examine f ′′ to fully
determine local behavior. There is a general rule at work here:
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Fig. 1.4.4 The function f (x) = x3 −2x2+bx, with b =−2 (dotted), b = 0 (dash-dotted), b = 2 (solid) and b = 4
(dashed)
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The local behavior of a function f near a point x0 is determined by the lowest order
derivative whose value is not zero, provided such a nonzero derivative exists.

Example 1.4.6. Let f (x) = x3 − 2x2 + 4
3 x, which is the function from Example 1.4.5 with b =

4/3. We have already seen that f ′(2/3) = f ′′(2/3) = 0. From f ′′(x) = 6x−4, we have f ′′′(x) =
6. Although f ′′′ is not the slope of the function or the rate of change of the slope, it nevertheless
indicates the local behavior at points where f ′ = f ′′ = 0. Just as a positive value of f ′ means that
the function is increasing on both sides of the point, a positive value of f ′′′, given f ′ = f ′′ = 0,
indicates that the function is increasing on both sides. As shown in Figure 1.4.5, the point
x = 2/3 is not a local extremum. ��

1.4.3 Linear Approximation

The formula for the line tangent to the graph of y = f (x) at a point can be used as the linear
approximation for the function. For x near x0, we have

f (x) ≈ f (x0)+ f ′(x0)(x− x0). (1.4.2)
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Fig. 1.4.5 The function f (x) = x3 −2x2 +(4/3)x

Linear approximation can be used to estimate the change in a function value due to a change
in the independent variable. It is convenient to rearrange the formula. Defining Δx and Δ f to
be the changes in the variable values from base values x0 and f (x0), we have

Δx = x− x0, Δ f = f (x)− f (x0),

and the linear approximation formula becomes

Δ f ≈ f ′(x0)Δx. (1.4.3)

This simple formula says that a small change in the independent variable x results in a change
in the function f that is proportional to the change in x; the proportionality factor is the constant
f ′(x0). Thus, the derivative can be interpreted as the marginal value of the function.
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In the simple context of a function f (x), it seems silly to use a linear approximation, since
better approximate values can be obtained using a calculator or computer.21 This does not
mean that linear approximation has no value; it simply means that the value of linear ap-
proximation can only be seen in more complex contexts. For example, much of the analysis
of dynamical systems in Chapters 5 and 7 and Appendix A.1 will be done with the use of
linear approximation.

Check Your Understanding Answers

1. We have f ′′ = 12x2 − 48x+ 36, so f ′′(1) = 0 and f ′′(4) = 36. The test indicates that there
is a local minimum at x = 4, but it does not apply at x = 1.

Problems

1.4.1. (Continued from Problem 1.1.8.)
Find the local maximum of the function f (t) = t(21− t)(t+1) that has been used to model the
number of infected cells on day t of a measles infection [5]. Verify that your result is consistent
with the graph of the function.

(This problem is continued in Problem 1.8.9.)

1.4.2. Determine equations for the tangent lines to the graph of f (x) = x3 − 4x at the points
x = 0,1,2. Plot these tangent lines on the graph of the function, using the interval −3 ≤ x ≤ 3.

1.4.3. Repeat Problem 1.4.2 with the function f (x) = xex at the points x = 0,1,2,3 and the
interval 0 ≤ x ≤ 5.

1.4.4. Repeat Problem 1.4.2 with the function

f (x) =
x

2+ x

at the points x = 0,2,4 and the interval 0 ≤ x ≤ 5.

1.4.5. In Example 1.4.6, we classified the critical point of the polynomial f (x) = x3 −2x2 + 4
3 x

by using the third derivative. Obtain the same result by considering the sign of the first derivative
on intervals, as in Example 1.4.3.

1.4.6.* Use the first derivative to find any local extrema for the function f (x) =
x2 − 1
x2 + 3

.

1.4.7. Use the first derivative to find any local extrema for the function f (x) =
x

x2 + 1
.

In Problems 1.4.8–1.4.11, identify local extrema and confirm your results by plotting the
function. Note that you can use a variety of methods, based on the first derivative, as in Ex-
ample 1.4.3, the second derivative, as in Example 1.4.4, and higher order derivatives, as in
Example 1.4.6. Also note that polynomial equations for critical points can be factored if you
can find a root, as in Example 1.4.3. Sometimes you can guess a root by trying small integers;
you can also use a graph to guess a root.

21 In most cases where a decimal value is obtained by a calculator or computer from a formula that includes
functions other than polynomials, the computed value is a numerical approximation. The point here is that the
numerical approximation obtained by a computer is almost always more accurate than the linear approximation.
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1.4.8.* f (x) = x4 − 8x2.

1.4.9. f (x) = x4 − 8x3.

1.4.10.* f (x) = x4 − 4x3 + 16x+ 8.

1.4.11. f (x) = x3 + 6x2 + 6x+ 1.

1.4.12. Plot the function f (x) = 0.1x5 − 0.19x3 + 0.07x on the interval −3 ≤ x ≤ 3. Can you
identify local extrema from this graph? Now use the first derivative to find and classify critical
points. Confirm your results by plotting the function on the interval −1.5 ≤ x ≤ 1.5.

1.4.13. Consider the family of functions f (x) = x+ ax2 − x3, where a is any real number.

(a) Find and simplify the formula for the critical points of f . Are there any requirements that a
must satisfy for these critical points to exist?

(b) Use the second derivative to show that the classification of a critical point x� depends only
on whether it is larger or smaller than a/3.

(c) Use the results of parts (a) and (b) to classify the two critical points. Note that you do not
need to compute f ′′ at the critical points.

1.4.14.* Consider the family of functions f (x) = x4 − 4x3 − 2bx2, where b > 0.

(a) This function has one critical point that does not depend on b. Find and classify this critical
point.

(b) Factor f ′ to obtain a quadratic polynomial q(x), with a coefficient that depends on b, whose
roots are critical points of f . Are there any requirements that b must satisfy for these critical
points to exist?

(c) Suppose x� is one of the critical points satisfying q(x�) = 0. Combine this with the formula
for f ′′ to obtain a formula for f ′′(x�) that does not contain b.

(d) Use the formula for f ′′(x�) from part (c) to design a test for determining if x� is a maximum
or minimum directly from the value of x� (so that you won’t have to calculate f ′′ at x�).

(e) Use the test from part (d) to classify the critical points that satisfy q(x) = 0.

Biological parameters can seldom be measured exactly. One important use of linear ap-
proximation is to estimate the error in a calculated quantity that results from an error in an
input quantity. Typically, one is interested in the relative error (error divided by value) rather
than the absolute error. For example, suppose the value of an input quantity x is estimated
to be 5, but it is expected that this amount could have as much as a 4% error, and that we
would like to estimate the error in the value x2. It requires three steps to connect percent-
age error in x to percentage error in x2. First, we need to determine the absolute error in
x, which is 4% of 5, or Δx = ±0.2. Note that the error could be either positive or nega-
tive. Second, we need to use linear approximation to estimate the absolute error in the cal-
culated quantity. Since the derivative of x2 is 2x, and x ≈ 5, we have Δx2 ≈ 10Δx ≈ ±2.
Finally, we compute the relative error in the calculated quantity. In the example, the calcu-
lated value is 25, so an absolute error of ±2 corresponds to a relative error of ±8%. Note
that the actual value of 5.22 is 27.04, which is an error of 8.16%. Using calculus to ob-
tain information at a point slightly removed (x = 5.2 rather than x = 5) almost never gives
the exact answer, but it usually gives a useful approximation. Real data is not good enough
to warrant anything better than an approximation. (If we can make as much as a 4% er-
ror in a measurement, how do we know that the maximum error is exactly 4% rather than
3.9%?)
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1.4.15.(a) In the above example, the estimated relative error in x2 corresponding to a measure-
ment error of ±4% in the measurement x = 5 is ±8%. Show that the estimated relative error
in x2 corresponding to a measurement error of ±p% in the measurement x = x0 is ±2p%.

(b) Use calculus to find the estimated relative error in the volume of a sphere if the radius is r0

and there is a measurement error of ±p%.
(c) In general, what is the estimated relative error in a function Axn if the error in the measure-

ment x0 is ±p%?

1.4.16.* Use calculus to estimate the maximum relative error in e2x and e−2x if there is a
maximum error of ±1% in the measurement x = x0 > 0.

1.4.17. Suppose f (x) and g(x) are positive and increasing. Assume the measurement x = x0 has
an absolute error of Δx. Show that the estimated relative error in the product f g is the sum of
the estimated relative errors in the individual factors f and g.

1.5 Optimization

After studying this section, you should be able to:

• Use the derivative to determine extreme values of a function on a given domain.
• Explain the marginal value theorem with reference to lines on a graph of the function that

represents the net resource collection in one patch.

Optimization problems have the goal of finding the best value of a variable for achieving
some purpose. In medicine, we may want to find the best dosage to benefit a patient. In biology,
we may want to understand natural selection as a process by which a genome maximizes fitness.
In both of these examples, we can employ a mathematical approach, provided we can construct
a function that quantifies the desired outcome in terms of the parameter we want to control.
We get a global extremum problem rather than a local extremum problem. In other words, we
are interested in finding that value of the parameter that yields the largest or smallest outcome
over a broad range of parameter values. This difference changes the nature of the problem
in a small but important way. Usually, we would expect the global maximum or minimum on
an interval a ≤ x ≤ b to be a local maximum or minimum, and therefore also a critical point.
However, the function could be always increasing on the interval, in which case the maximum
is at x� = b and the minimum is at x� = a, or always decreasing, with the opposite conclusions.
Other combinations are also possible.

Theorem 1.5.1 (Global Extrema). Suppose x� yields the largest or smallest value of a
continuous function f (x) on an interval a ≤ x ≤ b. Then either x� is a critical point,
x� = a, or x� = b.

Example 1.5.1. Q) Suppose an organism takes in resources at a rate proportional to its surface
area and uses resources (for maintenance of its tissues) at a rate proportional to its mass.
How large should the organism be at maturity if natural selection works to maximize the
availability of resources for reproduction?

A) To answer this question, we need a mathematical model for the resource balance of the
organism. Let x represent the organism’s length and assume that the organism maintains the
same shape as it grows. We assume that the intake rate is ax2 and the maintenance rate is bx3,
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where a and b are positive parameters.22 The function we want to maximize is the surplus
of resource intake rate minus resource expenditure rate, which is

f (x) = ax2 − bx3.

First we need to consider the possible values of x. Certainly we must have x > 0. We cannot
have f < 0, as that would mean that the organism spends more resources on maintenance
than it is able to collect; hence we must also have x < a/b. In this example, the endpoints
x = 0 and x = a/b both yield the minimum value f = 0. Hence, biological considerations
in conjunction with Theorem 1.5.1 guarantee that the optimal size is a critical point of f .
Differentiating f and setting the result equal to 0 yields

0 = 2ax− 3bx2 = x(2a− 3bx).

There are two critical points, but we have already ruled out x = 0. Hence the optimal size
must be

x =
2a
3b

.

We have found the correct answer to the mathematical problem; however, we have not yet
found a meaningful biological interpretation. Consider that the maximum possible size for
our organism is a/b. Thus, the optimal size is 2/3 of the maximum size. This is a very robust
result, because it does not depend on the specific parameters a and b. Note that our perception
of the result depends on how we state it. Two-thirds of the maximum length sounds large,
but it corresponds to less than one-third of the maximum mass (8/27).

Figure 1.5.1 shows the function f (x) = x2−x3 and indicates the maximum at x = 2/3 that
we have calculated. At present, this is merely an example that illustrates our work with one
set of parameter values. We shall see in Section 2.6 that a slight change in the formulation of
the model makes it possible to illustrate all sets of parameter values with a single figure. ��
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Fig. 1.5.1 The function f (x) = x2 − x3

Example 1.5.2. The gene responsible for sickle cell disease has two possible alleles, A and a.
Individuals with the aa genotype have sickle cell anemia. Under natural conditions, people with
sickle cell anemia did not live long enough to have children. Since the gene reduces fitness, one

22 See Example 1.6.3 for justification of these assumptions.
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would expect it to have been eliminated by natural selection. Indeed, people whose ancestors
come from cold climates do not have the a allele, but this allele is not uncommon in parts
of Africa. Individuals with the Aa genotype have a higher natural resistance to malaria than
individuals with the AA genotype; where malaria is endemic, individuals with the Aa genotype
have a longer life expectancy, which means they are likely to have more surviving children.
Thus, the a allele has an indirect benefit along with its direct liability.

To model the population dynamics of the sickle cell gene, let p be the fraction of A genes in
the gene pool. We assume that the fitness of the aa genotype is 0, the fitness of the Aa genotype
is 1, and the fitness of the AA genotype is a parameter w. According to the theory of genetics,
the overall fitness of the gene pool is

F(p) = wp2 + 2p(1− p) = wp2 + 2p− 2p2 = 2p+(w− 2)p2.

If conditions remain fixed for many generations, natural selection works to achieve optimum
fitness. Mathematically, this is a global extremum problem in which we seek the value of p
that produces maximum fitness, with 0 ≤ p ≤ 1. The problem is somewhat complicated by the
parameter w. Theorem 1.5.1 tells us that global extrema for F(p) can only occur at p = 0,
p = 1, and critical points of F . These critical points, and the global extrema, will depend on the
parameter w. As examples, we consider two specific values: 0.75 and 1.2.

If w = 1.2, then

F(p) = 2p− 0.8p2,
dF
d p

= 2− 1.6p.

Solving dF/d p = 0 for p yields the critical point p = 1.25. This critical point lies outside the
interval 0 ≤ p ≤ 1, so it is not relevant. With no critical points in the interval of interest, the
optimal value must occur at one of the endpoints, p = 0 and p = 1. These values yield F(0) = 0
and F(1) = 0.4. Hence, the global maximum fitness occurs at p = 1, as shown in Figure 1.5.2.
Thus, the sickle cell trait should disappear from the population. This makes sense biologically,
because with w = 1.2, the AA genotype is more fit than the Aa genotype. Unfortunately, this is
not the case for the sickle cell trait. In reality, w = 1 in an environment that is free of malaria
and 0 < w < 1 in an environment where malaria is present.

If w = 0.75, then

F(p) = 2p− 1.25p2,
dF
d p

= 2− 2.5p.

Solving dF/d p = 0 for p yields the critical point p = 0.8. This critical point lies inside the
interval 0 ≤ p ≤ 1, so it is a possible optimal value, along with p = 0 and p = 1. We have
F(0) = 0, F(0.8) = 0.8, and F(1) = 0.75. The optimal value occurs at p = 0.8, as shown in
Figure 1.5.2. This means that 20% of the alleles in the gene pool will be of type a, which in
turn means that the probability of an individual having two copies of the sickle cell allele is
0.22 = 0.04. Hence, 4% of the population inherits sickle cell anemia.

As we saw in Section 1.1, there is a lot more that we can learn about the model if we do not
choose specific values for w. We defer this additional study to Problem 1.5.4. ��

1.5.1 The Marginal Value Theorem

Suppose you are visiting an apple orchard, and you are allowed to take as many apples as you
can pick in one hour. For the sake of a good thought experiment, we assume that the trees are
far enough apart that it takes about a minute to walk from one tree to the next. What strategy
do you follow? At first thought, it makes sense to start at the nearest tree and pick all of its
apples before moving on. You begin with the apples that are easily within reach, but it gets
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Fig. 1.5.2 The fitness function of Example 1.5.2 with w = 1.2 (upper) and w = 0.75 (lower)

progressively more difficult to pick the next apple. At some point, you have to jump to get an
apple, and eventually you will have to climb the tree to get more. So you change your strategy.
You decide to move on to another tree, even though you could still have picked more apples at
the first tree. There is clearly a trade-off at work. It costs some time to move from one tree to
the next, which suggests that you should stay longer at the first tree. However, the apples get
harder to pick as time goes on, which suggests that you should move to a new tree sooner.

For animals that forage, getting close to the right time to move from one patch to another
is critical. Suppose some individuals are good at picking the right time to move, while others
tend to linger too long and others are too quick to move. Suppose further that this “persever-
ance” trait is genetically controlled. In each generation, individuals with the optimal amount
of perseverance will be more successful at foraging; consequently, they will produce more off-
spring, each one inheriting its perseverance from its parents. Over time, the population will be
dominated by individuals who have just the right amount of perseverance.

Our scenario has two phases for each patch, one phase for changing patches and one phase
for collecting food. Alternatively, we could just look at the collection phase using a function
that starts out negative to account for the resources used up in the process of changing patches.
This formulation is easier. To complete it, we need to prescribe a function to represent the
net resource gain as a function of time. This function should be negative at time 0, always
increasing, and curved downward. In mathematical notation the requirements are

f (0)< 0, f ′(t)> 0, f ′′(t)< 0.

We consider an example and then look at the general case.

Example 1.5.3. Suppose the net resource gain for a forager is given by the function f (t) =√
t − 1. Note that this function has the properties indicated in the previous discussion—it is

negative at time 0, increasing, and curved down.
The challenge for us now is to determine the appropriate function to maximize. Clearly, it

is not the function f , which we have already said is always increasing. The maximum of f is
achieved only in the limit t → ∞, but it is clear from our thought experiment that it is bad to
stay too long in the same patch.

The key to finding the correct function to optimize is to recognize that the forager will move
on to the next patch when that optimal time is reached. Hence, the total amount of resources
collected over a long period of time will include resources from multiple patches. In effect, an
optimal forager will collect resources at the largest average rate. Since each patch in our model
is identical, the average rate over multiple foraging steps is the same as the average rate for each
step, and that is the net resource gain divided by the time spent at the patch:
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Fig. 1.5.3 The average resource gain function g and the resource gain function f from Example 1.5.3. The
dotted line on the graph of f connects the origin to the point of maximum average resource gain; at this point,
the secant slope (average resource gain) is equal to the tangent slope (marginal resource gain)

g(t) =

√
t − 1
t

= t−1/2 − t−1.

We also need to determine the time interval to be considered. The average gain of resources
for our given f is negative up to the time t = 1, which is the amount of time required for the
forager to collect enough food to make up for the initial deficit. Of course, the optimal amount
of time spent in the patch must be at least 1 time unit. While there is no strict maximum time,
it is clear that the average gain of resources is 0 in the limit as t → ∞, so we may consider
the interval 1 ≤ t < ∞. Our function is continuous on this interval, zero at both endpoints, and
positive in the middle; clearly, there is an optimal time somewhere in the interval, and it must
be a time for which g′ = 0. If we find just one critical point, that point must be the optimal time.

Using the formula for g, we have

g′ =−1
2

t−3/2 + t−2.

This quantity is zero when

t−2 =
1
2

t−3/2.

Taking reciprocals on both sides yields the equation

t2 = 2t3/2,

or
√

t = 2. Thus, the forager should stay in a patch for 4 time units before moving on.
Figure 1.5.3 shows the functions f (t) and g(t), along with a dotted line connecting the point
(0,0) and the point (4, f (4)). ��

In Example 1.5.3, the optimal point on the graph of f appears to be the point for which
the tangent passes through the origin. This is no accident. We can derive this result mathe-
matically,23 but it can also be explained graphically. For any time t, the quantity g(t) = f (t)/t
represents the slope of the line connecting the point (0,0) and the point (t, f (t)). Thus, we can
visualize the function g on the graph of f as the slope of a line. The optimum point is the one for
which this slope is the largest; graphically, it is clear that this is achieved when the line whose
slope is g(t) is tangent to the graph of f . This principle is summarized by the marginal value
theorem.

23 See Problem 1.5.8.
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Theorem 1.5.2 (Marginal Value Theorem). Suppose f (t) satisfies the properties f (0)<
0, f ′ > 0, and f ′′ < 0. Then the maximum of the average value f (t)/t occurs at the point
where that average is equal to the marginal value f ′(t).

Problems

1.5.1.* Find the global maximum of the function

f (r) =−r lnr

on the interval (0,1]. You can use the first derivative test to rule out the possibility of a global
maximum as r → 0. Plot a graph of the function to confirm your result.

1.5.2.* Find the global maximum and minimum of the function

f (r) =
q
r
+ lnr

on the interval r > 0, where q > 0 is fixed. To confirm your result, you need to determine the
behavior of the function as r → 0 and r → ∞. The easiest way to do this is to examine f ′ on the
intervals (0,r�) and (r�,∞).

1.5.3. Consider a fish that swims at speed v relative to the water against a current of speed u< v.

(a) How fast is the fish actually moving relative to a fixed reference point?
(b) The energy expended by the fish per unit time is equal to the speed relative to the water

multiplied by the force required to move through the water. Assuming that force to be kv2,
where k > 0 is a parameter that depends on the shape of the fish, find a formula for the
energy expenditure per unit time.

(c) Combine the answers to parts (a) and (b) to determine the energy expenditure per unit
distance actually traveled.

(d)* Find the speed the fish should swim relative to the water to minimize the energy expenditure
per unit distance traveled. Experiments have shown that fish generally do swim at roughly
this speed when not trying to catch prey or avoid being caught by a predator.

(This problem is continued in Problem 2.6.6.)

1.5.4.* In the sickle cell problem of Example 1.5.3, we derived a formula for the gene pool
fitness F as a function of the fraction p of non-sickle alleles in the gene pool. We used this
formula to predict the optimal value p = p� for w = 0.75 and w = 1.2. Here we consider a more
complete analysis of the model.

(a) Find the value of w for which F ′(1) = 0.
(b) Suppose w is larger than the value found in part (a). Determine the optimal p for this case.

What should happen to the sickle cell trait in this case?
(c) Suppose w is smaller than the value found in part (a). Determine the optimal p for this case.
(d) Plot a graph of the optimal p as a function of w. Explain the graph in biological terms.
(e) Determine the fraction of individuals who inherit sickle cell disease (individuals of the aa

genotype). Plot this fraction as a function of w.

1.5.5.* In what is arguably the best known modern mathematics paper on elementary calculus,
Hope College mathematics professor Tim Pennings reported on experiments he conducted with
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his dog Elvis [9]. In each experiment, Pennings threw a tennis ball into a lake at an angle to
the shoreline. Elvis ran along the shore toward the point closest to the ball, but he jumped
into the water for the final swim before reaching that closest point. Pennings measured his
dog’s running and swimming speeds and used calculus to determine the optimal point for Elvis
to switch from running to swimming so as to minimize the total time required to reach the
ball. Repeated experiments showed that Elvis consistently chose a point near the optimal point,
even though Pennings varied the distance and angle of the throw. In this problem, we consider
Pennings’s optimization model along with an improved model that shows how a lot of careful
thought put into the modeling can result in more meaningful answers.

(a) A dog owner standing near a lake with a straight shoreline throws a ball into the water. (See
Figure 1.5.4.) The ball lands at a point Y meters (m) away from the shore, as in the figure.
The dog begins to run with speed r along the shore toward the point P that is directly across
from the ball’s location. At a distance x from the point P, the dog jumps into the water
and swims the remaining distance to the ball at speed s < r. Determine the total time t(x)
required for the dog to get to the ball. Assume that the distance between the start and the
point P is X . [Note: Use the equation “distance = rate × time” to determine the times spent
running and swimming.]

(b) The function t(x) from part (a) contains parameters X ,Y,r,s. Without loss of generality, we
can assume s < r = 1, which removes the parameter r from the problem. The derivative
dt/dx then contains only two parameters. Find the critical point x� in terms of these two
parameters.

(c) Under what circumstances is this critical point the optimal solution? [Hint: Think about the
range of possible x values.]

(d) The distance x is only one of the variables that could be used to indicate the optimal jump
point. One could also use either of the angles marked in the figure. While we would prefer
the answer to be in terms of φ rather than θ , the calculations work better in terms of θ . Begin
by writing down formulas for the swimming distance and the running distance in terms of
θ rather than x, using the simplification r = 1. Then find the total time as a function t(θ ).

(e) The function t(θ ) from part (c) contains the same parameters as the original function t(x),
and the same parameter disappears in the computation of dt/dθ . Find a simple trigonomet-
ric equation for the critical point θ ∗ in terms of the remaining parameters. This critical point
is the optimal solution whenever the condition from part (c) is met.

(f) Note that θ and φ are complementary angles, meaning that the triangle containing them is
a right triangle. What does this say about the relationship between the cosine of one of the
angles and the sine of the other? Use this information to write the answer to part (e) in the
form cosφ∗ =C, where C depends on one or more of the parameters.

(g) The model of parts (a) and (b) yields an answer for the optimal x, and the model of parts
(d)–(f) yields an answer for the optimal angle, either as θ or φ . Suppose you were going to
design a robot dog to participate in a race from the starting point to the finishing point. Each
of your answers carries with it an implication of the capabilities the robot would require.
For example, the robot for part (b) must be able to measure x as it moves, while the robot for
part (f) must be able to measure φ . We can assume that the speed s is built into the robot’s
program, so that it does not need to be measured. What must the robot for part (b) be able
to measure that the robot for part (f) does not need? The answer is of biological importance,
because the capability of optimal behavior must be acquired by natural selection. The better
model is the one that gives the simplest plausible explanation of behavior. Which of the two
models is better in this sense?

(This problem is continued in Problems 1.6.7 and 2.6.7.)

1.5.6. In a well-known optimal foraging paper, R. Zach reported data on the foraging behavior
of crows [12]. The crows break whelk shells by carrying them above a rocky area and then
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dropping them onto the rocks. Zach measured the probability of a shell breaking in a fall from
a height of x m and observed that the crows consistently dropped the whelks from a height
of approximately 5.25 m. He explained these results as the solution of an optimal foraging
problem. Zach did not use calculus to solve the problem, but we will do so in this problem.

P

Y

start

ball

x

θ

φ

Fig. 1.5.4 The geometry for Problem 1.5.5

It seems reasonable that the optimal strategy for the crows would be to minimize the product
of the height and the average number of drops required for the shell to break. This assumption is
based on the fact that the energy the crow expends on an upward flight is proportional to the total
height. The product of the height per attempt and the number of attempts therefore represents
the total energy cost of breaking a shell. Note, however, that the average number of drops
required should be a function of the height of the drop. Thus, the function to be minimized is

f (x) = xn(x),

where we need a model for the function n(x).

(a) What properties should we expect a graph of n(x) to have? Think in terms of slopes and
limiting values.

(b) Joe Mahaffy has proposed the model

n(x) = 1+
a

x− b

for the average number of drops needed to break a shell falling from a height of x [6].
Mahaffy found the estimates a ≈ 16 and b ≈ 1.2 using Zach’s data for shell breaking ex-
periments.24 Plot the functions n(x) and f (x) with these parameter values. Your plot should
only cover the range of x values that make sense (What happens if x = 1, for example?).
What happens physically if x is outside of the reasonable range? Does Mahaffy’s model
have the right properties?

(c) Determine the optimal dropping height for Mahaffy’s model with the parameter values he
obtained from Zach’s data. How does the answer compare with what Zach observed? Does
this answer support the model?

(d) Determine the optimal dropping height for unspecified parameter values.
(e) Suppose b = 1.2. Plot the optimal dropping height as a function of the parameter a.
(f) Does a larger value of a indicate a harder surface or a softer one? How do you know?

1.5.7. Let f (t) =
t − 1
t + 1

.

(a) Show that f has the properties required of a function that can be the net resources in the
marginal value theorem.

24 These experiments were simply to determine data points for the function n(x); as such they did not have
anything to do with the independent measurement of the crows’ behavior.
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(b) Use the marginal value theorem to compute the time at which the forager should move to a
new patch.

(c) Plot f (t) along with the line segment connecting the origin and the point found in part (b).
Confirm that you have found the correct optimal solution.

1.5.8. Derive the result stated in the marginal value theorem.

1.5.9.* The marginal value theorem determines the optimal time at which to move to a new
patch. A more useful result would be the optimal level of remaining resources. We explore this
issue in this problem. Let f (t) be the net amount of resources collected at time t and let x(t) be
the size of the patch at time t. Assume that the patch is initially of unit size and that the initial
resource deficit is an amount D; that is, f (0) =−D, with D < 1.

(a) Suppose the rate at which the forager obtains resources from a patch is proportional to the
resource level of the patch; that is,

dx
dt

=−kx, k > 0,

where the parameter k represents the feeding rate of the forager. Use this equation, along
with the information about the initial size, to determine the resource amount x(t). [See
the discussion of (1.6.2) in the text. Note that your answer will contain the unspecified
parameter k.]

(b) Explain why the quantity f (t)+ x(t) should be constant. Use this fact, the initial data, and
the answer to part (a) to obtain a formula for f (t).

(c) Apply the marginal value theorem to the function f from part (b) to determine an equation
relating the optimal time t� and the parameters k and D. You will not be able to solve this
equation by hand.

(d) Use the result of part (a) to eliminate t� from the equation of part (c). The result should be
an equation that has only x� and D.

(e) Plot the optimal residual resource amount x� against D, using the result of part (d). Note
that the equation does not need to be solved for x�. Given any x� between 0 and 1, you can
calculate the corresponding value of D and plot the point in the Dx� plane.

(f) Interpret the graph of part (e), noting that D is the cost of travel between patches and x�

is the optimal amount of resource left at the time the forager moves to a new patch. Your
discussion should note whether x� increases or decreases with D and explain this result. It
should also address the issues of how large D can be, what happens in the limit as D → 0,
and what resource deficit amounts correspond to the limiting values x� = 0 and x� = 1.

(g) The final result does not include the rate parameter k. Explain why it is reasonable that the
relationship of x� and D should not depend on k.

1.5.10. In this problem, we develop a different version of the marginal value theorem. Suppose
the total resources collected in time t, starting when the forager reaches the patch, is m(t) and
the time required to change patches is T . As in the text version, our goal is to maximize the
average rate of resource collection.

(a) We require m to satisfy the properties m(0) = 0, m′(0) > 0, and m′′(0) < 0. Explain the
biological justification for these properties.

(b) Write down a formula that gives the average rate of resource gain from a patch, given that
the resource gain is m(t) for the time in the patch and 0 for the time traveling to the next
patch.

(c) Let t� be the optimal time to switch patches. Find a formula that relates m′(t�) and m(t�).
(d) Suppose m(t) = t/(1+ t). Use the result of part (c) to determine the optimal switching time

in terms of the parameter T .
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(e) Sketch a graph of the resource accumulation, given T = 1. Note that this should be m(t)
up to the time t� and remain constant for an additional time of duration T . Add the line
segment that connects the beginning of the curve to the end and add a line segment that is
tangent to the curve m(t) at the point t�. What is the geometric relationship between these
lines?

1.5.11. Many optimization problems have multiple independent variables but only a linear
objective function and constraints. These linear programming problems have mathematical
properties and techniques that are quite different from the problems found in calculus books.
Here we consider a particularly simple example, adapted from work originally done by G.E.
Belovsky in 1978 [3] and subsequently described by R.M. Alexander [1]. Suppose a moose
eats x kg of aquatic plants and y kg of terrestrial plants each day. Experiments have shown that
a moose can extract four times as much energy from a given amount of terrestrial plants than
from the corresponding amount of aquatic plants. Thus, the total energy the moose gets from
its food is proportional to the function z = x+ 4y. This is the function to be maximized. Two
constraints control the possibilities for the moose diet. Salt is available primarily from aquatic
plants, and the moose can meet its salt requirement by consuming 17 kg of these per day; as-
sume that it would require 51 kg of terrestrial plants to meet the salt requirement without any
aquatic plants. Also, the digestive capacity of the moose limits its total consumption to 33 kg
per day.

(a) Write down a pair of inequalities to represent the total consumption constraint and the salt
requirement. For the salt requirement, note that 3 kg of terrestrial plants and 1 kg of aquatic
plants produce the same amount of salt, in the same way that 4 kg of aquatic plants have
the same energy value as 1 kg of terrestrial plants. The problem is to maximize z while
satisfying the two constraints.

(b) Plot the (triangular) region in the xy plane that satisfies both constraints. This is the feasible
region for the problem.

(c) Certainly one possibility is that the moose could simply eat 33 kg of aquatic plants, yielding
a total value of z = 33. Add the graph of the line x+ 4y = 33 to the graph of the feasible
region. All of the points on this line produce the same value of the objective function.

(d) The line from part (c) divides the feasible region into two portions, one that produces z > 33
and one that produces z < 33. The optimal solution must be in the z > 33 portion. Now plot
the line x+ 4y = 70 on the same graph. This confines the optimal solution to a smaller
subregion.

(e) Notice the simple geometric relationship between the lines from parts (c) and (d). Any line
of constant z has the same geometric relationship, which means that such lines can be drawn
without any calculations. Sketch several more lines of constant z, each with a progressively
larger value. Stop with the line that is just tangent to the feasible region.

(f) Find the optimal point in the feasible region, which is the point of tangency found in part (e).

1.6 Related Rates

After studying this section, you should be able to:

• Differentiate equations to obtain relationships between derivatives.
• Apply the chain rule to find rate relationships among variables.
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In Section 1.2, we defined the derivative for a function of continuous time. We used the
definition in Section 1.3 to devise a calculation scheme for obtaining a derivative formula from
a formula for the function. This is useful whenever we have a known formula for a function,
but that is not always the case. Sometimes we have an equation that defines the relationship
between two functions, even though we don’t know either of the functions explicitly.

Example 1.6.1. Many organisms, such as fish, grow without changing geometric proportions.
A model for the growth of such an organism can use length, volume, or mass as the primary
measure of the organism’s size, since these are all related by simple formulas. Let x(t) be the
length, V (t) the volume, and m(t) the mass for an organism of fixed proportions. Then the
relationship between volume and length can be modeled as V (t) = c[x(t)]3 for some constant
shape factor c. For example, we would have V = x3 for a cubic shape. In the case of a sphere,
the volume is given by V = (4/3)πr3. Since the radius would be half of the length, this gives us

V =
4
3

π
( x

2

)3
=

π
6

x3.

In general, the factor c indicates the volume of an organism of unit length. If the measurement
chosen for x is the largest dimension, then of course c < 1; the greater the deviation from a
cubical shape, the smaller the value of c.

Similarly, mass and volume are related by the formula m = ρV , where ρ is the density of the
material of which the organism is made. Living organisms are mostly water, so ρ ≈ 1.

Thus, the functions x(t), V (t), and m(t) are related by the equations

V (t) = c[x(t)]3, m(t) = ρV (t), m(t) = ρc[x(t)]3, (1.6.1)

regardless of the actual growth history of the organism. ��
Whenever we have an equation relating functions, as in Example 1.6.1, we can obtain an

explicit relationship between the derivatives by differentiating that equation.

Example 1.6.2. Suppose an organism grows with length x(t) and mass m(t) in a way that main-
tains the geometric proportions. Then the length and mass are related by the third formula of
(1.6.1), which we can write as

m(t) = k[x(t)]3, k > 0,

by defining a new parameter k = cρ for convenience to replace the two individual parameters.
Differentiating the left side of the equation with respect to t simply results in the derivative
m′(t). Differentiating the right side of the equation requires the chain rule, because we have
an explicit function of x but are differentiating with respect to t. Application of the chain rule
results in the equation

m′(t) = 3k[x(t)]2x′(t).

The result of differentiating an equation is an algebraic equation that relates the rates of
change. ��

1.6.1 Differential Equations

Frequently, functions are defined by the properties of their derivatives. For example, we might
have a mathematical model that defines a quantity y as a function of t by the equation



1.6 Related Rates 53

dy
dt

=−ky, (1.6.2)

where k is some positive parameter. Equation (1.6.2) is called a differential equation because
the equation includes the derivative of y as well as y itself. Differential equation models arise
in many contexts, and they constitute a portion of the content of Chapter 5 and all of Chapter 7.
Most differential equations are difficult to solve; however, (1.6.2) can easily be solved by in-
spection. A review of the basic derivative formulas in Table 1.3.1 shows that the derivative of
eax with respect to x is aeax. Hence, the derivative of e−kt with respect to t is −ke−kt , which is
−k times the original quantity. The function defined by y = e−kt satisfies (1.6.2) because both
sides of the equation evaluate to −ke−kt . More generally, any function y = Ae−kt satisfies the
differential equation.

Mathematically, (1.6.2) represents the same model as the explicit formula y = Ae−kt . It may
seem to be less useful, but it has the significant advantage of being directly equivalent to a
conceptual statement about a process of change. A literal translation of (1.6.2) is “The rate of
change of the quantity y is equal to −k times the quantity y.” This is correct as far as it goes, but
the equation actually makes a much stronger statement. The parameter k is arbitrary; not only
is the choice of symbol unimportant, but the actual numerical value only matters in a specific
context. What is really important about (1.6.2) is that values of the rate of change of the quantity
y are simply a multiple of the quantity present at any time. A mathematical modeler would read
the equation as “The rate of change of the quantity y is proportional to the amount of y present.”
This is a mechanistic assumption about the physical process of change.25

In many mathematical models, the rate of change of one quantity is a function of a related
quantity.

Example 1.6.3. We can only eat as fast as we can digest our food. If an organism grows propor-
tionally, as in Examples 1.6.1 and 1.6.2, then the length and diameter of its digestive tract are
proportional to its overall length. This means that the area of the digestive tract is proportional
to the square of the organism’s length. Therefore, it is reasonable to guess that the rate of change
of an organism’s mass is also proportional to the square of its length:

dm
dt

= a[x(t)]2,

where a is a parameter that represents the food consumption capability of an individual of unit
length. Our model contains the unknown length along with the derivative of the unknown mass,
but the mass and length are related by the formula m = kx3 from Example 1.6.2. Differentiating
m = kx3 with respect to t as in Example 1.6.2 yields the formula m′ = 3kx2x′, which we can use
to replace m′ by x′ in our growth model. We then have

3kx2 dx
dt

= ax2,

which we can rewrite as
dx
dt

=
a
3k

≡ r,

using the single parameter r for convenience in place of the combined expression a/(3k). This
differential equation for the length of the organism is one that we can solve by inspection. The
derivative of a function ax with respect to x is a, so the derivative of a function rt with respect
to t is r. Thus, the function x = rt satisfies the differential equation, as does the more general
formula x =C+ rt where C is an arbitrary constant. ��
25 See Section 2.5 on mechanistic modeling.
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Example 1.6.3 seems to show that organisms grow equal increments of length in equal
amounts of time. However, extensive data on growing organisms shows that this is not what
happens. Instead, subsequent intervals in time produce progressively smaller changes in length
as an organism grows. What went wrong?

As we shall explore in more detail in Chapter 2, a mathematical model is only as good as
its underlying assumptions. Sometimes assumptions that seem plausible lead to predictions that
are contradicted by experimental data. Occasionally it is the data that is wrong, but usually
the problem is a flaw in the model. This does not mean that the model has no value at all.
Finding and correcting flaws in models can lead to biological insight. The flaw in the model of
Example 1.6.3 is discussed in Problem 1.6.5.

1.6.2 The Chain Rule

The chain rule is of vital importance in many applications of mathematics, not just the compu-
tation of derivatives. In particular, it is often used to change variables in a differential equation
model, an essential technique in mathematical modeling. When we introduced the chain rule in
Section 1.3, we merely presented it without any justification. Now we can use linear approxi-
mation for this purpose. To make the argument easier to follow, we provide a simple context.

Consider a long rod placed so that one end is in a campfire and the other end is resting on the
cold ground outside of the fire. An insect is walking along the rod in the direction away from
the fire. We define the following quantities:

• t is the time;
• x is the position of any point along the rod, measured from the hot end;
• s(t) is a function that indicates the location of the insect on the x axis;
• T (x) is a function that indicates the temperature at any point x on the rod;
• u(t) is a function that indicates the temperature at the insect’s location at any time.

Assume that we know the temperature function T (x), the location function s(t), and the deriva-
tives of both functions. How are we to calculate u(t) and du/dt?

Let t1 be the current time. Then the insect is at the point x1 = s(t1). In a small amount of
time, the insect’s position changes by an amount Δx, which we can relate to the change in time
using linear approximation:

Δx ≈ ds
dt

(t1)Δ t.

This change in position creates a corresponding change in the insect’s temperature, which we
can approximate as

Δu ≈ dT
dx

(s(t1))Δx ≈ dT
dx

(s(t1))
ds
dt

(t1)Δ t.

Dividing by Δ t gives us the ratio of temperature change to change in time:

Δu
Δ t

≈ dT
dx

(s(t1))
ds
dt

(t1).

This result becomes exact in the limit as Δ t goes to 0:

du
dt

(t1) = lim
Δ t→0

Δu
Δ t

=
dT
dx

(s(t1))
ds
dt

(t1).

The time t1 is not specified, so the result holds for all time. This is the chain rule.
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Chain Rule in terms of functions
If

u(t) = T (s(t)), (1.6.3)

then
du
dt

(t) =
dT
dx

(s(t))
ds
dt

(t). (1.6.4)

In the context of the moving insect scenario, du/dt is the rate of change of the insect’s
temperature with respect to time, dT/dx is the rate of change of temperature with respect to
distance at any point on the rod, dT

dx (s(t)) is the rate of change of temperature with respect to
distance at the insect’s location, and ds/dt is the velocity of the insect’s motion.

Example 1.6.4. Suppose s(t) = 3t and T (x) = e−2x in the moving insect scenario. Then ds
dt = 3,

dT
dx =−2e−2x, and dT

dx (s(t)) =−2e−2(3t) =−2e−6t . Using (1.6.4),

du
dt

(t) =
dT
dx

(s(t))
ds
dt

(t) =−2e−6t × 3 =−6e−6t .

We can check the result in this simple example by calculating and differentiating u directly.
We have

u = T (s(t)) = e−2(3t) = e−6t ,

so
du
dt

=−6e−6t .

��
The notation of (1.6.4) is precise, but somewhat difficult to interpret. It is common in math-

ematical modeling to address this difficulty by abandoning the standard function notation of
mathematics. If you carefully reread the thought experiment, you will see that the quantities
T , x, s, t, and u are related by the equations x = s(t), which gives the insect’s location, and
u = T (s(t)), which gives the insect’s temperature. In a sense, t, x, and u are variables, while T
and s are functions that are used to indicate relationships between pairs of variables. The tem-
perature of the insect depends on the location of the insect, which in turn depends on the time.

Given the dependencies of position on time and temperature on position, there are three
meaningful derivatives in terms of the variables: du/dt, dx/dt, and du/dx. The first of these is
clearly the rate of change of the insect’s temperature with respect to time. The second is equiv-
alent to ds/dt, since the insect’s position x is given by the function s(t). The spatial derivative
du/dx represents the rate of change of the insect’s temperature with respect to its position. In
general, the rate of change of temperature with respect to position is dT/dx; this is the same
as the rate of change of insect temperature to insect position if it is evaluated specifically at
x = s(t). Thus, du/dx is a simpler notation for dT

dx (s(t)).
Substituting dx/dt for ds/dt and du/dx for dT

dx (s(t)) in (1.6.4) yields the equation

du
dt

=
du
dx

dx
dt

.

While less mathematically precise than (1.6.4) because it fails to indicate that du/dx must be
evaluated at x = s(t), this version of the chain rule is much easier to interpret. It looks like an
equation about multiplication of fractions, an interpretation that, while not precisely correct,
makes the formula easy to remember. To summarize, we have the following rule:
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Chain Rule in terms of variables
If t, x, and u are variables such that u depends on x and x depends on t, then

du
dt

=
du
dx

dx
dt

. (1.6.5)

In applying the chain rule as written in (1.6.5), one must be careful to remember that the
derivative du

dx is to be evaluated specifically at x = s(t), and not some other value of x.

Problems

1.6.1.* Sunflowers make seeds at a constant rate, which means that the area of the flower head
increases at a constant rate. Suppose that each seed occupies 3 mm2 of head area and the head
generates 20 seeds per day. How rapidly is the flower head diameter changing when the current
diameter is D mm?

1.6.2. Suppose the number of prey animals eaten per predator per day is given by

y =
x

1+ hx
, h > 0,

where x is the number of prey animals per unit area.

(a) Determine the rate at which predation is changing with respect to time in terms of the
quantities x(t) and x′(t).

(b) Suppose the prey population is growing at the rate rx, where r > 0. Use this additional
information to determine the rate at which predation is changing with respect to time in
terms of x(t) alone.

1.6.3. The male fiddler crab Uca pugnax grows one oversize claw whose only purpose appears
to be attracting a mate. The relationship between the claw mass C and the body mass B (not
counting the claw mass), both given in milligrams, has been reported to be

C = 0.036B1.356.

(a) Find a formula to relate the growth rates of the claw mass and body mass.
(b) Plot the ratio of the claw mass growth rate to the body mass growth rate, as a function of

the body mass size in grams. Assume the body mass can be as large as 40 g.
(c) For what body mass size in grams is the growth rate of the claw as large as the growth rate

of the body mass?
(d) At what body mass size in grams is the mass of the claw equal to the mass of the body?
(e) Assume that the density of body tissues is roughly 1 mg per mm3 of volume, that the largest

dimension of the claw is about 44 mm, and that the body mass is 30 g. Use this information
to estimate the shape factor in the length-volume relationship (V = cx3) for a large male
claw.

1.6.4. The focal length of the lens in the human eye adapts to the distance of the object being
viewed. The necessary length is given approximately by the thin lens formula

1
f
=

1
x
+

1
v
,
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where f is the focal length of the lens, x is the distance of the object, and v is a positive constant.
[The lens has a maximum focal length f0; muscles in the eye automatically decrease the focal
length when viewing nearby objects.]

(a) What is the physical significance of the parameter v? [Hint: Find a value of x for which the
relationship between f and v is particularly simple.]26

(b) Suppose an object is approaching you at a speed of 10 miles per hour (16.1 km/h, or
4.47 m/s). How rapidly must your eye’s focal length change when the distance of the object
is 30 m? What about 10 m? You may assume v = 17 mm.

1.6.5. The von Bertalanffy equation, which is often used to model the growth of an organism, is

dx
dt

= r(x∞ − x),

where x(t) is the linear size of the organism, x∞ is a theoretical maximum organism size, and r is
a rate constant. In this problem, we derive this differential equation by correcting the model of
Example 1.6.3. In that model, we made two quantitative assumptions: that mass is proportional
to linear size cubed (m = kx3) and that mass increases at a rate proportional to linear size
squared (dm/dt = ax2). The differential equation resulting from these assumptions incorporates
a model for growth due to feeding, but it fails to account for the cost of staying alive. This is
clearly important, as an organism needs to eat enough to maintain its weight before it can use
additional food for growth. It is reasonable to assume that this maintenance need is proportional
to the mass.

(a) Write down a differential equation model that relates changes in mass to the combination
of an increase due to feeding and a decrease (proportional to the mass) due to maintenance
requirements.

(b) Differentiate the equation m = kx3 with respect to time and eliminate m from the differential
equation of part (a).

(c) Rearrange the resulting equation so that it is equivalent to the von Bertalanffy equation. You
will need to define the von Bertalanffy parameters x∞ and r in terms of the parameters a, k,
and the parameter you introduced in part (a).

(This problem is continued in Problem 1.9.11.)

1.6.6.* Suppose the biomass x(t) of a plant changes according to the differential equation

dx
dt

= rx− qx
a+ x

, a,q,r > 0,

where the first term represents plant growth and the second represents herbivory. Define new
variables X and T and parameter q by

X =
x
a
, T = rt, Q =

q
ra

.

(a) Use the chain rule to obtain a differential equation for X(T ). [Hint: You can work with
more than two factors, which is necessary here since you have a derivative formula for
dx/dt along with algebraic relations between x and X and between t and T . Note that you
must also use the algebraic formula to replace x by X ; your result should have no lowercase
symbols.]

26 The parameter v is determined by the focal power of the cornea and the distance from the lens to the retina. If
your focal length f0 is smaller than v, then you need glasses.
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(b) Note that X and T represent the plant biomass and time. If we want to study the effect of
growth and herbivory on plant biomass, why might we prefer to study X(T ) rather than
x(t)?

1.6.7. (Continued from Problem 1.5.5.)
In Problem 1.5.5, we worked through the optimization model used by Hope College mathe-
matics professor Tim Pennings to determine the appropriate point for his dog to switch from
running along the shore of a lake to swimming through the water, given the goal of reaching a
ball in the lake as quickly as possible [9]. Pennings’s paper has generated quite a bit of com-
mentary,27 particularly with regard to attempts to account for the dog’s success at solving the
problem.28 In Problem 1.5.5, we found a simpler version of the original optimization prob-
lem that made the solution more intuitive. It is still difficult to see a connection between the
mathematical solution and a mechanism for animal behavior. More recently, two French ani-
mal behavior specialists, Pierre Perruchet and Jorge Gallego, repeated Pennings’s experiments,
concluding that European dogs are as good as American dogs at consistently determining the
optimal launch point. Their paper offers a more plausible explanation for the dogs’ success that
is based on related rates rather than optimization [10]. This problem explores their model.

(a) A dog owner standing near a lake with a straight shoreline throws a ball into the water. (See
Figure 1.6.1.) The ball lands at a point Y meters away from the shore and X meters along
the shore, as in the figure. The dog begins to run with speed r along the shore toward the
point P that is directly across from the ball’s location. Let z(t) be the distance between the
dog and the ball, and compute z′ for the simplified case r = 1. [Hint: Let x(t) be the distance
along the shore between the dog and the point P. This distance is decreasing at the same rate
that the distance of the dog from its initial location is increasing; however, this distance is
easier to use in writing an equation to relate the distance z to known functions.]

(b) Plot the rate of change of the distance between the dog and the ball as a function of the
distance between the dog and the point P. Assuming that the dog wants to get the ball as
quickly as possible, why is it not a good idea for the dog to run all the way to the point P?
[Keep in mind that x(t) is decreasing.]

(c) Suppose the dog swims with speed s < r = 1. Determine the point x at which the dog should
switch from running along the shore to swimming directly toward the ball, assuming that
the immediate goal is to always progress as rapidly as possible. [Hint: What is the rate of
change of z while the dog is swimming?]

(d) Plot the optimal jump distance x as a function of the dog’s swimming speed s for the case
Y = 1. Examine the behavior of the graph near the extreme values s = 0 and s = 1 to verify
that the result makes sense.

(e) What must a dog be able to measure for the strategy suggested by the related rate solution
to work? Is this a more or less plausible explanation of dog behavior than the strategy used
in Problem 1.5.5?

27 As of this writing, some of this discussion can be found in the Wikipedia entry for “Fetch (game).”
28 While any discussion of dogs solving calculus problems is obviously tongue in cheek, it should not be at
all surprising that animals can choose near-optimal strategies for finding objects quickly. The wild ancestors of
today’s dogs needed to hunt efficiently to survive, so natural selection developed whatever behavior strategies
today’s dogs now use to fetch balls thrown into water.
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Fig. 1.6.1 The geometry of Problem 1.6.7

1.7 Accumulation and the Definite Integral

After studying this section, you should be able to:

• Approximate the total accumulation of a quantity distributed over time.
• Approximate the total aggregation of a quantity distributed over space.
• Discuss area, total accumulation, and total aggregation in terms of the definite integral

concept.

On April 20, 2010, a drilling rig in the Gulf of Mexico called the Deepwater Horizon suffered
a catastrophic explosion. By April 22, a large oil slick could be observed at the site. The spill
continued to increase until the well was successfully capped on July 15. It has been estimated
that the oil was leaking at a rate of 8400 m3/day at the time it was capped. Since the pressure in
the oil reservoir was slowly decreasing as a result of the spill, the leakage rate must have started
at a higher value. Scientists eventually estimated the initial leakage rate at 9900 m3/day, with
an estimated reliability of ±10% [7]. Given that the oil spill lasted for a total of 84 days, these
rates allow us to estimate the total amount of oil that leaked from the well. At the lower rate,
the total amount would be the product of 8400 m3/day and 84 days, which is about 705600 m3.
At the higher rate, the total would be about 831600 m3. Without any additional data, our best
guess is the average of these values, or 768600 m3.29

1.7.1 Estimating Total Volume from Flow Rate Data

The calculations in the above paragraph are estimates whose accuracy is limited by the lack of
moment-to-moment exact data for the spill rate. A better approximation could be made if more
data were available. We illustrate how this could be done with a hypothetical data set.

Table 1.7.1 Hypothetical flow rate data for the Deepwater Horizon oil spill

Day 0 14 28 42 56 70 84

Flow rate (m3/day) 9900 9620 9350 9100 8850 8620 8400

Example 1.7.1. Table 1.7.1 shows some hypothetical flow rate data for the Deepwater Horizon
oil spill. For each of the six 2-week intervals of the spill, we can now make separate lower and

29 This is enough to cover the entire state of Delaware to a depth of 1.2 cm. On the other hand, if the spill were
spread across the entire Gulf of Mexico, it would only reach a depth of 0.05 mm. The enormity of the spill is a
matter of perspective, and the environmental damage from the spill was highly dependent on concentration at
any particular location.
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Table 1.7.2 Hypothetical total flow approximations for the Deepwater Horizon oil spill

Interval (days) 0–14 14–28 28–42 42–56 56–70 70–84 0–84

Maximum volume (m3) 138600 134680 130900 127400 123900 120680 776160
Minimum volume (m3) 134680 130900 127400 123900 120680 117600 755160

upper estimates, just as we did for the entire spill in the first paragraph. These lead to a max-
imum volume estimate of 776160 m3 and a minimum of 755160 m3, as shown in Table 1.7.2.
Our best estimate from these results is the average of 765660 m3. ��

Check Your Understanding 1.7.1:
Verify several of the entries in Table 1.7.2.

The mathematical value of these calculations lies not in the estimates themselves, which
depend on uncertain data, but in the differences between the maximum and minimum estimates.
For our original estimate, the difference is 831600−705600= 126000, whereas for the estimate
of Example 1.7.1, it is only 776160− 755160 = 21000. The new estimates are significantly
better than the old ones. Notice that these two values differ by a factor of 6; it is no accident that
this is the same as the number of subintervals in the second calculation. Notice in Table 1.7.2
that the maximum estimate for the second time interval is the same as the minimum estimate
for the first time interval. The same thing is true for the maximum estimate for the third time
interval and the minimum estimate for the second, and so on. In fact, the lists of maximum and
minimum estimates contain the same numbers, except for the maximum on the first interval and
the minimum on the last interval. Thus, the entire difference between the sum of the maxima and
the sum of the minima comes down to these two values: 138600−117600= 21000. The first of
these values is the product of the flow rate 9900 and the time interval 14; similarly, the second
is the product of 8400 and 14. Hence, if we took the flow rate difference of 9900−8400= 1500
and multiplied it by the time interval, we would once again get the same answer of 21000. The
actual estimates of flow rates in Table 1.7.1 don’t affect this result as long as the flow rates don’t
increase over any of the intervals.

The verbal argument of the preceding paragraph can be put in a more precise mathematical
form. Let Q0 be the flow rate on day 0, Q1 the flow rate on day 14, and so on, so that Q6 is the
flow rate on day 84. We have Q0 = 9900 and Q6 = 8400. Assume that Q0 ≥ Q1 ≥ ·· · ≥ Q6.
Since each Qi underestimates the flow rate on interval i and each Qi−1 overestimates the same
flow rate, we have

14(Q1 +Q2 +Q3 +Q4 +Q5 +Q6)≤V ≤ 14(Q0 +Q1 +Q2 +Q3 +Q4 +Q5).

The difference between the maximum and minimum estimates is

14(Q0 −Q6) = 14(9900− 8400)= 21000.

Example 1.7.2. Assume that the flow rate for the Deepwater Horizon oil spill was 9900 at the
beginning and 8400 at the end and was slowly decreasing throughout the interval. If we divide
the time interval of 84 days into 42 equal subintervals of 2 days each, then the difference
between the maximum and minimum estimates of total flow will be 1500×2= 3000. Similarly,
if we divide the time interval into n equal subintervals, then the time interval is 84/n days
and the difference between the maximum and minimum estimates will be 1500× (84/n) =
126000/n; thus, the difference becomes progressively smaller as the time interval decreases. If
we had enough data to divide the 84 days into 126000 subintervals, each approximately 1 min
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in length, then the difference between the maximum and minimum estimates would only be
1 m3. If we had a formula for computing the flow rates at all times, we could come arbitrarily
close to an exact answer in the limit as the time interval drops to zero. ��

So how much oil actually did enter the Gulf of Mexico from the Deepwater Horizon spill?
We can’t answer the question without more data. With a formula for the flow rate as a func-
tion of time, we could construct maximum and minimum estimates for large numbers of small
subintervals, as in Example 1.7.2. Theoretically, the difference between the maximum and min-
imum estimates approaches 0 in the limit as the number of subintervals becomes infinite. Thus,
the maximum and minimum estimates converge to the same answer, which must be the exact
amount of the spill.

1.7.2 The Definite Integral

In general, assume we have a formula Q(t) at which some quantity V is produced over an inter-
val of a≤ t ≤ b. As a thought experiment, suppose we divide the interval [a,b] into an arbitrarily
large number of subintervals, each starting at a time t and of duration dt. If we use Q(t) to ap-
proximate the rate for each of these time intervals, the total amount produced in that interval
is approximately Q(t)dt. With a finite number of subintervals, the total is given approximately
as V ≈ ∑Q(t)dt.30 As the number of subintervals increases to infinity, the interval duration
dt approaches 0 and the approximation becomes exact. The summation notation ceases to be
appropriate, and our new notation must specifically indicate the time interval, which the sum
lacks. This new notation is that of the definite integral. In the case of the Deepwater Horizon
oil spill, the volume is given in terms of the flow rate by

V =

∫ 84

0
Q(t)dt.

There is simple visual interpretation of the definite integral. We can think of the differential
dt that appears in the integral as representing an arbitrarily small amount of time. The product
of Q(t) (which in this case has the dimension of volume per time) and dt then represents an
arbitrarily small amount of volume collected at time t. The integral from a to b indicates the
sum of these arbitrarily small amounts collected at all times in the interval. Suppose we have a
graph of Q(t) versus t, and assume Q ≥ 0. At any particular time in an interval a ≤ t ≤ b, we
can draw a line segment that goes up from the t axis to the graph of Q(t). Think of this line
segment as having an arbitrarily small width dt. The height of the line segment is Q(t), so the
quantity Q(t)dt represents the arbitrarily small area of the line segment. Adding these up gives
us the whole area, so the quantity

∫ b
a Q(t)dt is the area under the graph of Q between t = a

and t = b. Figure 1.7.1a shows the area that represents the total volume of the oil spill, given a
made-up function Q(t) that matches the known data. The highlighted line segment represents
the arbitrarily small volume spilled during the interval from time 30 to time 30+ dt.

Example 1.7.3. Figure 1.7.1b illustrates
∫ 1

0
x dx. We do not need to approximate this integral

because we can calculate it using ordinary geometry. The triangular region has a base of 1 unit
and a height of 1 unit, so the area is 1/2. Hence,

30 Indices have been omitted from the sum because we are thinking of an arbitrarily large number of subintervals
rather than a fixed number.
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Example 1.7.4. Let A be the area between the graph of y = 1/(1+ x2) and the x axis, for x ≥
0. Figure 1.7.2 shows the portion of this area that is on the interval [0,8]; however, we are
interested in the area on the interval [0,∞). It is not clear that this area is finite, because the
horizontal extent of the region is infinite. If the area is finite anyway, then we can write it as

A =

∫ ∞

0

1
1+ x2 dx.

Note that we cannot approximate this integral using finite sums as we have in other examples.
Nevertheless, we’ll compute the value of the integral in Section 1.9. ��
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Fig. 1.7.2 The area represented by the integral
∫ 8

0 1/(1+ x2)dx

A more formal definition of the definite integral appears in Appendix B. It is not presented
here because definite integrals are much more difficult to calculate from the definition than
derivatives. In the next section, we obtain a formula that can sometimes be used to calculate
definite integrals exactly; for now, we can use the method of Examples 1.7.1 and 1.7.2 to ap-
proximate definite integrals to any desired accuracy.
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Example 1.7.5. Suppose we want to estimate
∫ 1

0 x2 dx. With two subintervals, we have

∫ 1

0
x2 dx ≈ 0.5(Q1 +Q2),

where the factor 0.5 is the interval width h and the numbers Q1 and Q2 are function values drawn
from the subintervals [0,0.5] and [0.5,1]. It seems reasonable that the best approximation would
use the function values at the middle of the subintervals, yielding the approximation

∫ 1

0
x2 dx ≈ 0.5(0.252+ 0.752) = 0.3125.

A better approximation, using the midpoint of each of 10 subintervals, is

∫ 1

0
x2 dx ≈ 0.1(0.052+ 0.152+ · · ·+ 0.952) = 0.3325.

Using 100 subintervals yields the approximation 0.333325. The fact that increasing the number
of subintervals from 10 to 100 makes very little change in the approximation suggests that we
are close to the correct answer. Given the values obtained so far, we might guess that

∫ 1
0 x2 dx =

1
3 . This is the correct answer, as we will see in Section 1.8. ��

1.7.3 Applications of the Definite Integral

The oil spill problem is merely one example of a large class of problems. We want to determine
the total amount of some quantity—volume in the case of the oil spill—that accumulates over
a time interval a ≤ t ≤ b. It is natural to estimate this result using constant approximated rates
over small subintervals of time. In the case of the oil spill, the volume over a time interval is
the product of the rate, in volume per time, with the length of the interval. Hence, we obtain an
accumulation of volume by integrating the volume per unit time with respect to time. The same
principle applies to any quantity that is accumulated over time. We can represent this as

total stuff =
∫ b

a
(stuff per unit time)dt. (1.7.1)

Example 1.7.6. Suppose we want to connect the birth rate of a population with survival and
fecundity31 data. For simplicity, we consider only the females. Let B(t) be the birth rate at time
t. Each newborn individual has exactly one mother, so we could calculate the birth rate at time
t by adding up the births to mothers of various ages. Consider the cohort of individuals who
are of age a to a+ da at time t. These individuals were all born over an interval of duration da
at time t − a. The birth rate at that time was B(t − a); hence, the initial size of this cohort was
B(t −a)da. If �(a) is the fraction of individuals who survive to age a or greater, then the size of
our cohort at time t is �(a)B(t −a)da. Now suppose the rate of births per capita for individuals
of age a is m(a). Then the total rate of births for mothers of age a is m(a)�(a)B(t − a)da. The
overall birth rate is obtained by summing the birth rates for cohorts of mothers of all possible
ages. Thus, the birth rate satisfies the equation

B(t) =
∫ a2

a1

B(t − a)�(a)m(a)da, (1.7.2)

31 Fecundity is the expected reproductive capacity, usually given as a function of the age of the mother.
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where a1 and a2 are the minimum and maximum ages of reproduction.
In practice, several assumptions can be used to simplify (1.7.2). Suppose the population is

growing exponentially with rate constant r. Then the birth rate is also growing exponentially
with rate constant r, and we may assume B(t) = B0ert . Substituting this formula into (1.7.2),
we obtain the equation ∫ a2

a1

e−ra�(a)m(a)da = 1. (1.7.3)

This is the Euler–Lotka32 equation, which can be used to determine the unknown growth rate r
from survival and fecundity data.33

Under some circumstances, the Euler–Lotka equation can be further simplified by the as-
sumption that the risk of death is independent of age. In this case, the survival function is
�(a) = e−μa, with μ > 0, so we have

∫ a2

a1

e−(r+μ)am(a)da = 1. (1.7.4)

It can be shown through probability analysis that the mortality parameter μ is the reciprocal of
the life expectancy. ��

Some quantities are distributed over space rather than accumulated over time. In such cases,
definite integrals can be used to determine the total amount of “stuff” aggregated over a spatial
region. Here we focus on situations where it is possible to identify the density of “stuff” per
unit length.34 In this case, we have the generic formula

total stuff =
∫ b

a
(stuff per unit length)dx. (1.7.5)

Example 1.7.7. Suppose a population of microorganisms is distributed along a stream of length
10, with linear density 1000e−0.1x individuals per unit length. (Note that the “stuff” has the
dimension “individuals,” so the quantity we need to integrate must be given in individuals per
unit length. Note also that it doesn’t matter how the individuals are distributed—they could
be lined up on the surface of the stream along a line running from one bank to the other,
or they could be distributed beneath the surface as well as on the surface.) Then the number
of individuals associated with a point along the line is 1000e−0.1x dx and the total number of
individuals in the stream is

p =

∫ 10

0
1000e−0.1x dx.

��

32 The name Euler is pronounced “oiler.”
33 Leonhard Euler (1707–1783) was one of the most prolific mathematicians of all time. He remained productive
even after becoming blind in 1766. Alfred J. Lotka (1880–1949) did a lot of pioneering work in mathematical
population dynamics, including (1.7.3).
34 In general, definite integrals can be used to determine the total amount of stuff aggregated over two-
dimensional and three-dimensional regions, even when the density of stuff needs to be given per unit area
or per unit volume. These multiple integrals are beyond the scope of our treatment. Details can be found in any
calculus book that includes multivariable calculus.
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Problems

1.7.1.* Consider the integral y =
∫ 3

0 x2 dx.

(a) Use three subintervals to obtain estimates yL and yR for the integral. Also find the difference
between the two estimates.

(b) Repeat part (a) with six subintervals.
(c) Find a formula for the difference between the estimates with n subintervals.
(d) Using the formula from part (c), determine the number of subintervals necessary so that the

difference between the estimates is not greater than 0.1.
(e) Use the number of subintervals you found in part (d) to obtain yL and yR.
(f) What is the best estimate you can give for the integral using the estimates of part (e)?
(g) Estimate the integral using the same number of subintervals as in part (e), but with the

midpoint rather than the endpoints, as in Example 1.7.3.
(h) The methods used in parts (f) and (g) are called the trapezoidal rule and midpoint rule,

respectively. A better rule, called Simpson’s rule, is obtained by using the weighted average

Sn =
2Mn +Tn

3
,

where Sn, Mn, and Tn are the Simpson, midpoint, and trapezoidal estimates using n subin-
tervals. Determine the Simpson’s rule approximations for n = 3 and n = 6.

(i) Based on the results from part (h), what do you think is the exact value of the integral?

1.7.2. Repeat Problem 1.7.1 for the integral y =
∫ 1

0 x3 dx, but with 2 and 4 subintervals instead
of 3 and 6 subintervals in parts (a), (b), and (h) and a difference between estimates of 0.01 in
parts (d)–(g).

1.7.3. A runner’s respiration rate during a 30-min training run is r(t) breaths per minute. Con-
struct an integral to calculate the total number of breaths over the course of the run.

1.7.4. The development rate of many organisms shows an approximately linear dependence on
temperature. Biologists measure the development of such organisms in terms of “degree-days.”
These accumulate over time at a rate equal to the difference between the current temperature and
a threshold temperature Tm. This temperature varies among species, as does the total number of
degree-days required for full development.

(a) Construct an integral to represent the total number of degree-days in t1 days. This integral
represents a function F(t1) that contains the parameter Tm and the function T (t) in addition
to the independent variable t1.

(b) In their study of the insect species Thrips major, David Stacey and Mark Fellowes deter-
mined that a total of 230 degree-days are required for development, with the threshold value
Tm = 7 ◦C [11]. Calculate the total amount of time needed for development of this species
if the temperature is a constant 27 ◦C.

(c) Suppose the temperature is a constant value T . Calculate the corresponding development
time. Plot the development time as a function of T .35

(d) Find data for mean daily temperature for the month of July in your area. Use this data set to
estimate the number of days required for development of thrips born on June 30.

35 Among the more subtle effects of global warming are changes in the development times for plants and
animals. Some species have evolved to develop in conjunction with a host or food species. Different degree-
day requirements and threshold temperatures mean that synchronized development of two species may be lost
when the mean temperature changes.
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(e) How should the definition of the function F(t1) be modified if the function T (t) can be less
than Tm? [Hint: Although the term “degree-day” reflects the connection with temperature
data, we should think of degree-days as a measure of development rate rather than a record
of temperature. Hence, the accumulation of degree-days should take into account the fact
that development is not negative during periods when T < Tm.]

(f) Use the modified formula from part (e) to calculate the number of degree-days that accumu-
late in 1 day if the temperature is T (t) = 14+ 14sin(2πt). [Hint: You can get a reasonably
good estimate of the integral value by using either a right-hand or left-hand sum with 24
subdivisions, which corresponds to using hourly average temperatures rather than exact
temperatures.

(g) Use the result from part (f) to calculate the development time for the temperature T (t) =
14+14sin(2πt). Compare this result with the development time for a constant temperature
of 14 ◦C.

1.7.5. Suppose t =
∫ Y

0 f (y)dy represents the time required for Y grams of a toxin to be elim-
inated from an organism’s bloodstream. What does f (y) represent? In particular, what does
f (Y/2) represent?

1.7.6.* The population density of a plant species is f (x) individuals per square meter, where x
is the distance from a river, with f (x) ≥ 0 for x ≤ 100 and f (x) = 0 for x ≥ 100. Construct an
integral to calculate the number of plants along a section of river of length L. [Hint: You have
to be careful about the integrand; pay attention to (1.7.5).]

1.7.7. The population density of a plant species is f (r) individuals per square meter, where r is
the distance from the center of a circular lake of radius 100 m. Assume the density falls to 0 at
a distance of 100 m from the lake. Construct an integral to calculate the total number of plants.
[Hint: You have to be careful about the integrand; pay attention to (1.7.5).]

1.7.8. Let m(t) be the mass of a plant. The mass changes over time because of photosynthesis
and root uptake, which increase the mass, and respiration, which decreases the mass. Let p(t),
u(t), and r(t) be the rates per unit time for mass changes due to photosynthesis, root uptake,
and respiration, respectively. Construct a definite integral formula for the change in mass from
time a to time b.36

1.7.9.* In Problem 2.2.7 we use the Euler–Lotka equation to investigate the dependence of
population growth rates on average number of offspring and average age of reproduction. Part
of the analysis depends on evaluating the integral

∫ 1

0
(1− x)(e0.1x + e−0.1x)dx.

(a) Estimate how many subdivisions are necessary so that the approximation using left-hand
sums and the approximation using right-hand sums differ by no more than 0.001.

(b) Approximate the integral using 5 subdivisions, with sampling points x j at the middle of
each interval.

(c) Repeat part (b) with 10 subdivisions.
(d) Compute the value of the integral using mathematical software (a computer algebra system

or a calculator that can compute definite integrals).

36 The formula from this problem could be used as part of a model, but it is not complete as it is. In any practical
setting, the rates of photosynthesis, root uptake, and respiration would not be known functions of time; instead,
they would be functions of the plant mass. The model equation would then have m on both sides and would be
a problem to be solved rather than a quantity to be calculated.



1.7 Accumulation and the Definite Integral 67

(e) Use the known integral value to compute the error in the midpoint approximations from
parts (b) and (c).

(f) Explain the discrepancy between the accuracy achieved with the midpoint approximation
and accuracy predicted in part (a). [Hint: Examine the graph of the integrand and think
about how the midpoint rule works.]

1.7.10. In Example 1.5.1, we proposed the model f (x) = ax2 − bx3 for the net rate at which
an organism of size x can accumulate resources, where a and b are positive parameters. We
then associated this function with the maximum reproduction rate of an organism of size x and
used it as a way to tie the fitness of the organism to its mature size. Associating fitness with
maximum reproduction rate makes sense if an organism is immortal; however, it seems clear
that an organism that cannot expect to live forever should stop growing earlier than one that
will never die. For real organisms, we should associate fitness with the total expected lifetime
reproduction rather than the maximum rate of reproduction.

(a) Given that an organism so large that f (x) = 0 cannot grow, we can use the resource ac-
cumulation model to determine a maximum possible size, which will be a function of the
parameters a and b. Define a parameter x∞ for this quantity and use it to eliminate a from
the formula for f (x). The result will be a model with parameters b and x∞. The advantage
of this change is that models are easier to understand when the parameters have a clear
biological significance.

(b) Suppose an organism puts all of its resources into growth until it reaches a mature size of
x = X at time t = T . Then the organism’s life history has two distinct phases. In the first
phase, which lasts up to time T , all resources are used for growth, and none for reproduction.
A model for this phase must use the function f (x) to determine the relationship between
X and T ; hence, we must think of T as a function of X . This will be considered in Section
1.9. A model for the second phase, which lasts from time T until the death of the organism
at age tm, must use the function f evaluated at x = X to determine the total amount of re-
sources spent on reproduction. Construct a definite integral that represents the total amount
of resources invested in reproduction in this second phase, assuming that the organism lives
long enough to reach its mature size (so that tm > T ). Without loss of generality, you may
set b = 1. Your integral will contain the quantities X , T (X), tm, and x∞.

(c) Use the integral from part (b) to determine a fitness function F(X). There are two things to
keep in mind while doing this. First, the integrand is independent of the integration variable t
and can be factored out of the integral, because the rate of resource accumulation is the same
throughout the reproductive phase of the life history. Second, the final form of the fitness
function includes the unknown function T (X) as well as three parameters. We cannot use
this new model to determine the mature size that maximizes fitness until we have obtained
a formula for T (X), and this must be deferred to Section 1.9.

(d) There is still a significant flaw in our fitness model. We have assumed tm to be a fixed
parameter, which is not realistic. Instead, tm is necessarily probabilistic—individuals live
to different ages. One idea is to average the reproduction over the individuals in a cohort.
The reproduction computed in part (b) at any time t would be correct for the fraction of
individuals still alive, while a reproduction of 0 is correct for those individuals who have
already died. Compute a new fitness integral using this modification, with survival function
� as in Example 1.7.6. Rather than assuming a maximum age tm, you may take the integral to
∞. The maximum age can be incorporated into the survival function by requiring �(tm) = 0
if desired. Note that t in this model is time since birth, so there is no difference between t
and a. Note also that the integrand is no longer independent of t, so we do not yet have the
methods needed to evaluate the integral.

(This problem is continued in Problem 1.9.12.)
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1.8 Properties of the Definite Integral

After studying this section, you should be able to:

• Use the elementary properties of definite integrals.
• Use the fundamental theorem to compute definite integrals of power functions, sine and

cosine functions, and exponential functions.

Like the derivative, the definite integral is a linear operator. This means that we can break
up sums and factor out constants.

Linearity Rule: Let a, b, A, and B be any constants. If the functions f and g have integrals
on the interval [a,b], then

∫ b

a
[A f (x)+Bg(x)] dx = A

∫ b

a
f (x) dx+B

∫ b

a
g(x)dx. (1.8.1)

Example 1.8.1. Q) Suppose

∫ π

0
f (x)dx = 2,

∫ π

0
g(x)dx =

1
4

π4 +π2.

Compute ∫ π

0
[4g(t)−π2 f (t)]dt.

A) It does not matter what symbol is used for the integration variable in a definite integral;
hence, the integral formulas for f and g can be applied to the new computation, along with
the linearity rules:

∫ π

0
[4g(t)−π2 f (t)]dt = 4

∫ π

0
g(t)dt −π2

∫ π

0
f (t)dt

= 4

[
1
4

π4 +π2
]
−π2× 2 = π4 + 4π2− 2π2 = π4 + 2π2.

��
Because integrals represent area, they can be split into components over a partition of the

interval.

Partition Rule: If the function f has integrals on the intervals [a,b] and [b,c], then

∫ c

a
f (x)dx =

∫ b

a
f (x)dx+

∫ c

b
f (x)dx. (1.8.2)

Example 1.8.2. Given that ∫ π

0
sin x dx = 2,

find ∫ π/2

0
sinx dx.



1.8 Properties of the Definite Integral 69

Using the partition rule,

2 =

∫ π

0
sinx dx =

∫ π/2

0
sinx dx+

∫ π

π/2
sinx dx.

From the graph of sinx (see Figure 1.8.1), the two integrals on the right side of the equation are
equal; hence, ∫ π/2

0
sinx dx = 1.

��

0 1 2 3
0

0.5

1

x

y

Fig. 1.8.1 The area represented by the integral
∫ π

0 sinxdx, with vertical line at x = π/2

1.8.1 The Fundamental Theorem of Calculus

So far, we have treated the derivative and the definite integral as two important but unrelated
concepts. In actuality, the connection between derivative and definite integral is so intimate that
the formal statement of this connection is called the fundamental theorem of calculus.

The fundamental theorem is not difficult to derive from the definitions of the derivative and
definite integral. However, in keeping with our emphasis on understanding and use of ideas, we
choose instead to develop the fundamental theorem by solving the same problem twice, from
two different points of view.

Suppose you begin to drive on a major highway. You travel in the direction of increasing
mileposts for 1 h. How much change has there been in your position?

One method for determining total change in position is to examine the mileposts at the
beginning and end of the hour.

Example 1.8.3. Let x(t) be distance in miles at time t. If you start at time 0 and finish at time 1,
then you have traveled from milepost x(0) to milepost x(1). The total change in your position37

37 There is a subtle distinction between “total change in position” and “distance traveled” that matters if you
travel both forward and backward. For simplicity, we assume that you only travel forward; however, we use the
language that is still correct if backward travel is allowed. This is also why we use mileposts to measure distance
rather than using the car’s odometer.
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is the difference between the starting and ending mileposts:

Δx = x(1)− x(0).

��
We can also determine the change in position from the car’s velocity. Distance accumulates

over time at the rate given by the velocity.

Example 1.8.4. Suppose your car has a device that records your velocity v(t), with negative
velocities corresponding to backward motion. Velocity is the rate of change of distance with
respect to time, which is exactly what we need to integrate to determine change of position. In
words,

total distance (forward) =
∫ b

a
(distance (forward) per unit time)dt.

In mathematical notation,

Δx =
∫ 1

0
v(t)dt.

��
We can approximate the distance traveled in Example 1.8.4 using velocity data at a discrete

set of times. If we know the velocity at all times, we can compute the distance to arbitrary
accuracy.

Examples 1.8.3 and 1.8.4 solve the same problem using different pieces of information. The
solutions have to be the same, and so we can combine them to obtain the formula

∫ 1

0
v(t)dt = x(1)− x(0).

We could have made our result more general by choosing arbitrary start and stop times a and b:

∫ b

a
v(t)dt = x(b)− x(a). (1.8.3)

The left side of this equation represents the area under the graph of the velocity function be-
tween the times a and b. The right side is the change in position during that time interval. Hence,
(1.8.3) says that the total change in position is the area under the graph of the rate of change of
position.

We derived (1.8.3) from a specific scenario involving a car driving on a highway, with vari-
ables indicating the mileposts and the velocity. But what details were really necessary for the
mathematical result? The answer is that the narrative in which the mathematics is phrased is not
important. All that matters are the relationships among the quantities. The primary requirement
is that the quantity represented by v must be the rate of change of the quantity represented by x.
Rewriting (1.8.3), with a little extra attention to mathematical issues, brings us to the first part
of the fundamental theorem:

Theorem 1.8.1 (Fundamental Theorem of Calculus, Part 1). Suppose f ′ is continuous
on the interval [a,b]. Then

∫ b

a
f ′(t)dt = f (b)− f (a). (1.8.4)
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Conceptually, this part of the fundamental theorem is really just a restatement of the general
application of accumulation. In every accumulation problem, we express the total change in a
quantity as the integral of the rate of change.

1.8.2 Computing Definite Integrals with the Fundamental Theorem

The fundamental theorem gives us a simple result for the integral of a derivative, but not for the
integral of a general function. To calculate

∫ b
a f (x)dx with the fundamental theorem, we first

need to be able to write the integrand f (x) as the derivative of some known function.

Example 1.8.5. In Example 1.7.5, we conjectured the result

∫ 1

0
x2 dx =

1
3

based on approximation. We can calculate this integral exactly using the fundamental theorem,
because we can express x2 as the derivative of the function f (x) = x3/3. We then have

∫ 1

0
x2 dx =

∫ 1

0
f ′(x)dx = f (1)− f (0) =

1
3
× 13 − 0 =

1
3
.

��

Check Your Understanding 1.8.1:

Compute
∫ 1

0
2x3 dx by using the fundamental theorem, as in Example 1.8.5.

Example 1.8.6. In Example 1.8.2, we were given the result

∫ π

0
sinxdx = 2.

This result is easily calculated using the fundamental theorem and the derivative formula
[cosx]′ =−sinx. We have

∫ π

0
sinxdx =

∫ π

0
[−cosx]′dx =−[cosπ − cos0] =−[−1− 1] = 2.

��
Each of the elementary derivative rules in Table 1.3.1 can easily be converted to a suitable

rule for integration; these rules are summarized in Table 1.8.1.

Table 1.8.1 Elementary antiderivative formulas

f ′(x) xr [r 
=−1] eax 1
x

cosax sinax
1

a2 + x2

1√
a2 − x2

f (x)
xr+1

r+1
1
a

eax ln |x| 1
a

sinax −1
a

cosax
1
a

arctan
x
a

arcsin
x
a
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Example 1.8.7. In Example 1.7.7, we derived the integral

∫ 10

0
1000e−0.1x dx.

We can calculate this integral using the fundamental theorem because −10000e−0.1x is an
antiderivative of 1000e−0.1x.

∫ 10

0
1000e−0.1x dx =

∫ 10

0

[
−10000e−0.1x

]′
dx =

[
−10000e−1

]
−
[
−10000e0

]
= 10000(1−e−1).

��

Check Your Understanding Answers

1.
1
2

.

Problems

Compute the definite integrals in Problems 1.8.1–1.8.8.

1.8.1.*
∫ 2

1
(x4 − 3x2)dx.

1.8.2.
∫ x

0
(y2 + 3y− 1)dy.

1.8.3.
∫ 4

1

1√
x

dx.

1.8.4.*
∫ e

1
(x+ x−1)dx.

1.8.5.
∫ 1

0
(e2t + e−2t)dt.

1.8.6.
∫ b

0
e−kx dx, k > 0.

1.8.7.*
∫ π/4

0
(cosx+ sin2x)dx.

1.8.8.
∫ π/6

0
(cos2x+ sinx)dx.

1.8.9. (Continued from Problem 1.4.1.)
If f (t) is the number of infected cells on day t of a disease epidemic, then the total extent of

infection up to day T can be defined as the integral F(T ) =
∫ T

0 f (t)dt.

(a) Compute the total extent of infection over the course of a bout of measles, using the function
f (t) = t(21− t)(t+ 1) and using the end of the infection for T .
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(b) Repeat part (a), but without specifying T .
(c) Plot the graph of the function F(T ).
(d) Use the graph from part (c) to estimate the effective halfway point of the infection.

1.8.10. (a) Plot f (x) = 1/
√

1− x2 on the interval 0≤ x< 1. Can you tell from the graph whether
the area under this curve is finite?

(b) Use Table 1.8.1 to compute g(b) =
∫ b

0

1√
1− x2

dx for 0 ≤ b ≤ 1.

(c) Plot the function g(b) from part (b).

(d) What is
∫ ∞

0

1√
1− x2

dx?

1.8.11. (a) Find the derivative of F(x) =
x
a

eax.

(b) Find the derivative of F(x)+ ceax, where F is as in part (a).
(c) Find an antiderivative G(x) for g(x) = xeax. [Hint: Choose the correct value of c for the

function in part (b).]

(d) Use your antiderivative formula to compute
∫ 1

0
xex dx.

(e) Use your antiderivative formula to compute
∫ ∞

0
xe−kx dx, where k > 0.

1.8.12. Consider the Euler–Lotka equation with age-independent death risk μ38:
∫ a2

a1

e−(r+μ)am(a)da = 1,

where r is the overall population growth rate, a1 and a2 are the ages at which reproduction
begins and ends, and m(a) is the reproduction rate per individual.

(a) Suppose an organism matures at age 1 and reproduces at constant per capita birth rate n
until age 2. Show that n represents the total lifetime reproduction for individuals that live to
age 2 or older.

(b) Our goal is to determine the reproduction rate needed to maintain the population. To that
end, set r = 0, use the function m described in part (a), and evaluate the integral. Solve the
resulting equation for n. This gives the necessary replacement rate needed to sustain the
population with a given death rate.

(c) It is more meaningful to compare the replacement rate with the probability of survival to
maturity at age 1. Given that e−μa is the probability of survival to age a, determine the
relationship between s and μ . Use this relationship to replace μ in the equation of part
(b), obtaining a formula that gives the necessary replacement rate as a function of survival
probability.

(d) Suppose the probability of survival to maturity is 1/2. Common sense suggests that each
surviving individual would need to have two offspring in order for the population to be
maintained. Use your result from part (c) to obtain the correct replacement rate and offer a
biological explanation of why the answer is not 2.

(e) Plot the resulting function n(s). Choose a biologically reasonable range of s values for the
plot. Discuss the biological significance of the result by considering the life histories of
various animal species. For example, where would elephants be on the plot? How about
fish?

38 Equation (1.7.4).
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1.9 Computing Antiderivatives and Definite Integrals

After studying this section, you should be able to:

• Use the method of substitution to compute definite integrals.
• Use the fundamental theorem of calculus to differentiate definite integrals.
• Use the fundamental theorem of calculus to construct antiderivatives.

In Section 1.3, we were able to use the definition of the derivative to create some basic
derivative formulas and general rules, which we then used to develop a scheme for computing
derivatives. We would now like to do the same thing for the definite integral, but there is no
general method for doing so. We can use the fundamental theorem

∫ b

a
f ′(t)dt = f (b)− f (a), (1.9.1)

but only if we know a function f whose derivative is the integrand in the definite integral. In

other words, we can only compute
∫ b

a
F(x)dx by the fundamental theorem if we can find a

function f (x) for which f ′ = F . Such a function f is called an antiderivative of F .

Example 1.9.1. Integrals of the form

∫ b

a
e−x2/2 dx

are important in probability. These integrals cannot be computed by the fundamental theorem
because there is no elementary function y(x) whose derivative is

y′(x) = e−x2/2.
��

Even when we have an antiderivative, we have to be careful integrating over regions that are
unbounded.

Example 1.9.2. In Example 1.7.4, we derived the integral

∫ ∞

0

1
1+ x2 dx ;

however, it was unclear whether the area represented by the integral is finite. Table 1.8.1 shows
that arctanx is a suitable antiderivative, so we have

∫ ∞

0

1
1+ x2 dx =

∫ ∞

0
[arctanx]′ dx = lim

x→∞
[arctanx]− [arctan0] =

π
2
.

The limit exists, so the area is finite.
��

Example 1.9.3. The integral ∫ 1

0

1
x

dx

represents the area between the graph of 1/x and the x axis from x = 0 to x = 1, as shown on
the right half of the graph in Figure 1.9.1, provided that area is finite. If we try the same method
as in Example 1.9.2, we have
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Fig. 1.9.1 The (infinite) area between 1/x and the x axis on the interval [−1,1]

∫ 1

0

1
x

dx =
∫ 1

0
(lnx)′ dx = ln1− lim

x→0
lnx.

The limit is infinite, so the integral does not exist.
��

Example 1.9.4. The integral ∫ 1

−1

1
x

dx

represents the area between the graph of 1/x and the x axis from x = −1 to x = 1, as shown
in Figure 1.9.1, provided that area is finite. By symmetry, we might think that the integral is 0,
since the area below the x axis counts as negative. However, definite integrals must satisfy the
partition rule, (1.8.2). Hence, we must have

∫ 1

−1

1
x

dx =
∫ 0

−1

1
x

dx+
∫ 1

0

1
x

dx

if the integral exists. We saw in Example 1.9.3 that the second of these integrals does not exist,
so
∫ 1
−1

1
x dx does not exist. ��

1.9.1 Substitution

Suppose we have a pair of functions w(x) and F(w), and F ′(w) = f (w). We can compute the
derivative of F with respect to x using the chain rule:

d
dx

[F(w)] =
dF
dw

dw
dx

= f (w)
dw
dx

. (1.9.2)

By integrating (1.9.2) and applying the fundamental theorem, we obtain the result

∫ b

a
f (w(x))

dw
dx

dx =
∫ b

a

d
dx

[F(w)]dx = F(w(b))−F(w(a)). (1.9.3)
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We can also integrate the function f (w) on the interval bounded by w(a) and w(b), obtaining

∫ w(b)

w(a)
f (w)dw =

∫ w(b)

w(a)
F ′(w)dw = F(w(b))−F(w(a)). (1.9.4)

Combining (1.9.3) and (1.9.4) yields the substitution rule, which makes it possible to change
variables in a definite integral, regardless of whether we actually know an antiderivative for it.

Theorem 1.9.1 (Substitution Rule). If w′(x) is continuous on [a,b] and the area under
f (w(x)) between w(a) and w(b) is finite, then

∫ b

a
f (w(x))

dw
dx

dx =
∫ w(b)

w(a)
f (w)dw.

It is helpful to think of the substitution rule as a matter of replacing
dw
dx

dx by dw, provided

that you are careful to change the limits of integration from the limits appropriate to the graph
of f (w(x)) versus x to the limits appropriate to the graph of f (w) versus w.

Example 1.9.5. To compute
∫ 1

0 x
√

2x2 + 1dx, we let w = 2x2 + 1. Then we have

∫ 1

0
x
√

2x2 + 1dx =

∫ 1

0

√
2x2 + 1

4
× 4x dx =

∫ 1

0

√
w(x)

4
dw
dx

dx =
∫ 3

1

√
w

4
dw

=
∫ 3

1

(
w3/2

6

)′
dw =

33/2 − 1
6

≈ 0.699.

Note that the integration limits changed in the third equality from 0≤ x ≤ 1 to 1≤w ≤ 3, which
follows from the equation w = 2x2+1. Also, the function f (w) (in this case

√
w/4) is whatever

remains of the integrand after dw/dx = 4x is attached to dx. Figure 1.9.2 shows the integrals
in both x and w coordinates. The axes have been scaled so that the entire area of each box is 2;
hence, the shaded areas are each 35% of the area of the box. ��
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Fig. 1.9.2 The areas represented by the integrals
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√
w

4 dw
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1.9.2 Constructing Antiderivatives with the Fundamental Theorem

Suppose we apply the first part of the fundamental theorem to an integral with a variable upper
limit. We have ∫ x

a
f ′(t)dt = f (x)− f (a).

The quantities on both sides of this equation are the same function of x; hence, they have the
same derivative:

d
dx

∫ x

a
f ′(t)dt = f ′(x).

This result indicates how to take the derivative of a definite integral. Its restatement, using F
in place of f ′, constitutes the second part of the fundamental theorem of calculus.

Theorem 1.9.2 (Fundamental Theorem of Calculus, Part 2). Suppose a function f (x)
is defined by

f (x) =
∫ x

a
F(t)dt

where a is a constant and F is continuous. Then the derivative of f (x) is F(x).

Example 1.9.6. In probability, we often want to compute quantities of the form

Pa,b =
1√
2π

∫ b

a
e−z2/2 dz.

These integrals cannot be computed directly using part 1 of the fundamental theorem, because
the function e−z2/2 does not have an antiderivative that can be written in terms of elemen-
tary functions. The lack of an antiderivative with a simple formula doesn’t mean there is no
antiderivative at all. In fact, the second part of the fundamental theorem says that every contin-
uous function has an antiderivative, even though that antiderivative might need to be written as
a definite integral. Specifically, we can define a function N by

N(z) =
1√
2π

∫ z

−∞
e−t2/2 dt.

We can then connect P to N using the fundamental theorem:

Pa,b =
1√
2π

∫ b

a
e−z2/2 dz =

∫ b

a
N′(z)dz = N(b)−N(a).

Values of N can be computed numerically with computers, and these values can also be
tabulated. The function N is always part of the standard package of mathematical computer
software, including scientific calculators. Its easy availability allows us to calculate a numerical
approximation for any integral Pa,b.

Note that we could have chosen any constant for a. For reasons that will be discussed in
Section 3.6, a = −∞ is the standard choice. While the region −∞ < t ≤ z is unbounded, the
integral is always finite; indeed, the strange factor 1/

√
2π is used so that N(∞) = 1, which is

necessary if N is to represent a probability.39 ��

39 The function N represents the standard normal distribution. See Section 3.6.
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1.9.3 Obtaining a Graph of f from a Graph of f ′

We sometimes know more information about the derivative of a function than we know about
the function itself. It is very helpful to be able to use such information to sketch the graph of the
original function. The key to doing this is to keep in mind that f ′ indicates the rate of change
of f , and hence the slope of the graph of f . The graph of f ′ therefore provides qualitative
information that can be used to sketch the graph of f . Numerical values of f can be calculated
from f ′ by means of the fundamental theorem, provided that one starting value of f is known.

0 1 2 3
−1

−0.5

0

0.5

1

x

y

a

0 1 2 3
−1

−0.5

0

0.5

1

x

y

b

Fig. 1.9.3 The functions (a) f ′(x) = cosx and (b) f (x) = sinx (solid) and f (x) = sinx−1 (dashed), with vertical
line at x = π/2

Example 1.9.7. Suppose
f ′(x) = cosx.

Figure 1.9.3a shows the graph of f ′(x) = cosx and Figure 1.9.3b shows the graphs of sinx and
sin x−1 on the interval [0,π ]. The value f ′(0) = 1 means that f has a slope of 1 at x = 0. From
x = 0 to x = π/2, f ′ remains positive, so f continues to have a positive slope. However, f ′ is
becoming less positive in this interval, so the graph of f becomes flatter. Both the graphs of
sin x and sinx− 1 have the right general shape on the interval [0,π/2] to be f . Quantitatively,
we know that both sinx and sinx−1 increase by a total of 1 on the interval [0,π/2]. We can use
the fundamental theorem to see just how much f increases over this interval:

f
(π

2

)
− f (0) =

∫ π/2

0
f ′(x)dx =

∫ π/2

0
cos(x)dx.

By the symmetry of the cosine and sine functions, the areas under the graphs on the interval
[0,π/2] are the same. This area was determined in Example 1.9.2 to be 1. Thus,

f
(π

2

)
− f (0) = 1.

This result is consistent with the guesses f (x) = sinx and f (x) = sinx− 1. ��
Example 1.9.7 is somewhat contrived because we could have seen from the start that f ′(x) =

cosx implies f (x) = sinx+C. However, we can often use this graphical method for cases where
we cannot find a function f that has the desired derivative.

Example 1.9.8. In Example 1.9.6, we defined a function

N(z) =
1√
2π

∫ z

−∞
e−t2/2 dt,



1.9 Computing Antiderivatives and Definite Integrals 79

for use as an antiderivative of the function

N′(z) =
1√
2π

e−z2/2.

Figure 1.9.4 shows the functions N′ and N. Note that

N′′(z) =− z√
2π

e−z2/2.

Thus, N′ is always positive and N′′ is positive when z < 0 and negative when z > 0. These
calculations correspond to the qualitative features of the graph of N—this graph is increasing
everywhere, with a slope that is greatest at z = 0. ��
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Fig. 1.9.4 The functions (a) N′(z) = (1/
√

2π)e−z2/2 and (b) N(z) = (1/
√

2π)
∫ z
−∞ e−t2/2 dt

Problems

In Problems 1.9.1–1.9.8, compute the indicated integral by substitution.

1.9.1.*
∫ 1

0
x2
√

x3 + 1 dx.

1.9.2.*
∫ 1

0

u
(3u2 + 1)2 du.

1.9.3.
∫ 1

0

1
x+ h

dx.

1.9.4.
∫ 1

0

√
ax+ bdx.

1.9.5.
∫ 4

0

x
x+ 4

dx. [Hint: You can do a substitution or you can do an algebraic operation that

leaves you with two integrals—one of a constant and one of a quotient with a constant in the
numerator.]

1.9.6.
∫ 1

0
xekx2

dx.
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1.9.7.*
∫ √

π

0
xsin

(
x2 +

π
2

)
dx.

1.9.8.
∫ √

e

1

lnx
x

dx.

1.9.9. The sum
∫ 0

−1
(1+ x)e−kx dx+

∫ 1

0
(1− x)e−kx dx, where k 
= 0, can conveniently be written

as a single integral by changing variables in the first integral.

(a) Use the substitution y = 1− x in the first definite integral.
(b) Reverse the limits in the new definite integral by using the fact that

∫ a
b f (x)dx =−∫ b

a f (x)dx
for any function f for which the integrals are defined.

(c) Add the integrals together to obtain a single integral. Note that you can freely change the
symbol used for the integration variable in an integral.

1.9.10. The exponential integral function E1(x) is defined to have the derivative E ′
1(x) = e−x/x

and the value E1(1) = 0.

(a) Write the formula that defines the exponential integral function.
(b) Use numerical experiments to approximate the value E1(∞).
(c) Use the graph of E ′

1, the result of part (b), and additional calculations to sketch the graph
of E1.

1.9.11. (Continued from Problem 1.6.5.)
In Problem 1.6.5, we derived the von Bertalanffy equation for growth of an organism:

dx
dt

= r(x∞ − x),

where x(t) is a measurement of the linear size of the organism (length or diameter, for example),
x∞ is a parameter that represents the theoretical maximum size, and r is a rate constant. Our goal
in this problem is to determine the amount of time t needed for the organism to reach size x. In
effect, we will think of t as a function of x rather than the other way around. This is reasonable,
given that our model organism is continuously growing. Each size is achieved only once at a
specific time. The implicit function theorem says that if the variables x and t are related so that
each could be thought of as a function of the other, then the derivatives dx/dt and dt/dx are
reciprocals. Thus, we can rewrite the von Bertalanffy equation as

dt
dx

=
1
r

1
x∞ − x

.

Use substitution to find the function t(x) that has the correct derivative and has the value t = 0
when x = 0.

1.9.12. (Continued from Problem 1.7.10.)
In Problem 1.7.10, we derived a model for fitness of an organism that puts all resources into

growth until it reaches size x = X at time t = T (X) and then uses all resources for reproduction
until it dies at age tm > T . A better model is that the fitness of an organism is given by

F(X) =
∫ ∞

T (X)
e−μt × bX2(x∞ −X)dt,

where X is the size at maturity, T (X) is the time at which maturity is reached, x∞ is the theo-
retical maximum size, b > 0 is a parameter that represents the collection rate of resources, and
e−μt is the probability that the organism survives to age t, with μ > 0 the so-called hazard rate.
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(a) Compute the integral in the definition of F .
(b) Obtain a complete model for F(X) by substituting the result from Problem 1.9.11 into the

result of part (a). After algebraic simplification, your result should have the form

F(X) =CX2(x∞ −X)1+p,

where C and p are combinations of model parameters.
(c) Find the mature size X that maximizes the function F(X) from part (b). Note that the optimal

size does not depend on the parameter b.
(d) Check your answer to part (b) by examining the limit as μ → 0. This should agree with

Example 1.5.1, where we used a simpler model. Why do we expect these answers to agree?
(e) Suppose r = 1. Plot the optimal size at maturity as a function of the hazard rate μ . What

general prediction does the model make about the way mature size should depend on the
daily risk of life?

(f) Suppose μ = 1. Plot the optimal size at maturity as a function of the growth rate r. What
general prediction does the model make about the way mature size should depend on the
growth rate of immature organisms? Discuss the biological plausibility of the result.
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Chapter 2
Mathematical Modeling

All mathematics texts include story problems. These are almost always of the sort that I call
“applications”:

• Applications are narrow in scope because they use fixed numbers rather than parameters and
because the questions call for answers that are simply numbers. One example is “If a bacteria
colony doubles every hour, how long does it take a single bacterium to become a population
of one million?” Sometimes the parameter values must be calculated indirectly, as in “A jar
initially contains 1 g of a radioactive substance X. After 1 h, the jar contains only 0.9 g of X.
How much more time is required before the jar contains only 0.01 g of X?”

• The mathematical setting in an application is implicitly assumed to be exactly equivalent to
the scientific setting. Hence, the mathematical answers are unquestioningly accepted as the
answers to the scientific questions.

I use the term “applications” for problems with these characteristics because the emphasis
is on the mathematics rather than the setting. Some effort may be required for modeling tasks
such as determining parameter values and/or interpreting results in context, but all or most of
the effort in application problems is in obtaining mathematical solutions. Even when word prob-
lems ask more sophisticated questions, they still often suffer from the common interpretation
of mathematical models as “mathematical constructions that describe real phenomena in the
physical world.”

I view mathematical models as “mathematical constructions based on real world settings and
created in the hope that the model behavior will resemble the real world behavior.” With this
interpretation, mathematical modeling is as much theoretical science as it is mathematics. In
contrast to applications, model analysis requires us to determine the extent to which models are
able to replicate real-world phenomena before we accept mathematical answers as meaningful.
Mathematical modeling can be used for narrow questions that call for numerical answers, but it
can also be used for broad questions about general behavior (e.g., for what ranges of parameter
values will a population go extinct?).

Mathematical modeling requires interdisciplinary skills that are seldom taught in any
courses, and this is one important reason why many students who have always had good grades
in mathematics find themselves at a loss when they need to use mathematics to do work in
science. The purpose of this chapter is to introduce modeling ideas and skills in a small number
of simple settings. These ideas and skills are then utilized in the remainder of the text.

Sections 2.1 and 2.2 introduce the ideas of mathematical modeling. A brief example of
scientific data is introduced in Section 2.1 to serve as a concrete focus for the development
of the chapter. The section also discusses the interplay between data analysis and modeling

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 2,
© Springer Science+Business Media, LLC 2013
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and the limitations of using deterministic models in biology. Section 2.2 presents a qualitative
discussion of mathematical modeling, focusing on the differences and connections between
mathematics, mathematical modeling, and theoretical science. These introductory ideas pro-
vide a framework with which the reader can construct his/her understanding of mathematical
modeling.

In standard application problems, the reader is given a mathematical model. In actual
practice, mathematical models are not given by some higher authority; hence, mathematical
modeling requires skills in obtaining mathematical models, fitting models to data, and selecting
among competing models. The remainder of the chapter is focused on these skills. The different
topics are unified by the use of the data set of Section 2.1 and the framework of Section 2.2.

Models can be classified as empirical and mechanistic. Empirical models define a mathemat-
ical relationship between quantities in a data set. These are obtained from the general appear-
ance of a data set without regard for underlying biological ideas. Mechanistic models attempt
to show how certain quantities in a data set are causally linked to other quantities, independent
of any links suggested by data.1 The distinction between mechanistic modeling and empirical
modeling is a central theme of this chapter.

While empirical models are “identified” rather than “derived,” it does not follow that em-
pirical modeling lacks mathematical validity. Empirical modeling requires determination of
parameter values from data and selection among several candidate models. Both of these tasks
can be done with statistical methods, which are developed in Sections 2.3, 2.4, and 2.7. Unlike
in story problems, the data needed to determine parameters in mathematical modeling are not
exact, and the experimenter collects a surplus of data to compensate for the uncertainty in each
measurement. To assign values to parameters, we must identify a quantitative measure of fitting
error and then solve the mathematics problem of minimizing that error. This topic is introduced
in Section 2.3 on linear least squares and extended in Section 2.4 to models that are linear in
one parameter and nonlinear in another. Selection among competing models is discussed in
Section 2.7 in terms of the Akaike information criterion (AIC), a method for determining the
statistical support provided for a given model by a specific data set. The method is simple to
apply, although the mathematical justification is far beyond the scope of any undergraduate
course—perhaps this accounts for the curious absence of AIC from elementary texts in statis-
tics. The value that biologists gain from the use of AIC argues for its inclusion in any statistics
text written for general use, as well as those written specifically for biologists.

Section 2.5 focuses on the primary task of mechanistic modeling: developing models from
biological assumptions based on biological theory and observational data. In Section 2.6, we
examine the use of different algebraic forms for the same mathematical model. Differences
in form can be as simple as using different symbols for the same quantity, but they can be
more complex as well. The modeler often has a variety of ways to define the parameters in a
mathematical model, with the choice of parameters affecting the algebraic form. In particular,
the work of modeling is almost always simplified by deriving a dimensionless version of the
model. Readers of theoretical science papers will often encounter dimensionless models and
need to understand what they are and how they relate to the original model. The point of these
two sections is not to make the reader an expert on mechanistic modeling, but to give the reader
a feel for how mechanistic modeling is done. In particular, Section 2.5 is long and contains some
sophisticated modeling. Some readers will want to focus on the ideas, while readers who want
to learn how to construct mechanistic models should devote extra time to understanding the
details. Additional discussion and examples of mechanistic modeling appear in Chapters 5–7.

1 Ideally, a model should be both empirically and mechanistically based, but the methods for the two types of
modeling are distinct.



2.1 Mathematics in Biology 85

There are several sets of related problems:

Section 2.3 2.5 2.6 2.7
Fluorine at South Pole 2.3.4 2.7.7
Grape harvests 2.3.8 2.7.9
Lake ice duration 2.3.9 2.7.10
Chemostat 2.5.3 2.5.5 2.5.8 2.6.9
SIR disease 2.5.4 2.5.6 2.5.7 2.6.10

2.1 Mathematics in Biology

After studying this section, you should be able to:

• Identify the role of mathematical modeling in science.
• Discuss the concept of demographic stochasticity and apply this concept to biological

experiments.
• Generate questions about an experiment that could possibly be addressed with a mathemati-

cal model.

The tremendous success of science stems from the interaction of two enterprises: theory and
observation.2 Theory without observation is nothing more than myth, and observation without
theory is nothing more than a collection of disjointed facts. Progress in science is therefore
possible only by combining them. Theory is used to explain and unify observations and to
predict results of future experiments. Observations are used to motivate and validate theory.

The connection between theory and observation is the realm of mathematical modeling.
Theory provides statements of scientific principles, while observation provides numerical data.
Mathematics is a language that can bridge the gulf between the two. Metaphorically speaking,
mathematical modeling is the tendon that connects the muscle of mathematics to the skeleton
of science.

2.1.1 Biological Data

Pick up a calculus or precalculus book and find a story problem with a scientific setting. Most
likely, the problem you find has exact data. Real scientific data is not exact, and this difference
must be understood before we can do mathematical modeling. We can explain the difference
here, but you will understand it much better if you discover it yourself. This section will be un-
necessary for practicing biologists, but it will be helpful for those readers who have not collected
research data themselves.

The real world is not an easy setting for the collection of biological data. Even ignoring
the difficulties in getting a good data set, there is the problem that data collection takes a lot
of time and effort. This effort is necessary if we are going to practice real science, but it is a
distraction if our purpose is to learn mathematical modeling. An alternative to collecting data
from an experiment in the real world is to collect data from an experiment in a virtual world.
Virtual worlds can be studied in a comfortable chair in front of a computer, without having to
wait for events to occur in natural time. If the virtual world is carefully designed, what we learn
from it might even be helpful in understanding the real world.

2 I am using the word “observation” to encompass both observation of the natural world and observation directed
by experiments.
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A famous virtual-world experiment in ecology was conducted by C. S. Holling in the late
1950s, before the capability of creating virtual worlds with computers. Holling was interested
in understanding the relationship between the availability of prey and the amount of prey eaten
by predators in a given amount of time. He set up a virtual world consisting of sandpaper
discs tacked onto a plywood board. The discs represented insects and a blindfolded student
represented a predatory bird. In each experimental run, a student tapped the board with a finger
at a steady pace, moving randomly around the board. Each time the student touched a sandpaper
disk, he removed it, placed it in a cup, and then returned to tapping. After 1 min, the student
recorded the number of disks “eaten” in this manner. The data set consisted of pairs of numbers:
disks available and disks “eaten.” Holling used the data, along with his observations, to create
the predation models that now bear his name [6].

The first time I taught mathematical modeling in biology, I recreated Holling’s experiment
with my class. It was only partly successful, both because the students focused as much on the
activity itself as on careful collection of data and also because the virtual world of Holling’s
human experiment is not well regulated.3 For the following year, I wrote a software appli-
cation that creates a virtual world based on Holling’s experiment [7]. The application, called
BUGBOX-predator, consists of a Windows executable file with supplementary data files, all of
which can be downloaded from my web page [8] or the web page for this book: http://www.
springer.com/978-1-4614-7275-9.

The BUGBOX-predator world consists of a grid populated by x virtual aphids (the number x
is chosen by the experimenter). In each experiment, a virtual coccinellid (ladybird beetle) moves
randomly through the virtual-world environment, stopping to consume any virtual aphids in its
path. The experiment outcome y is the number of prey animals eaten in 1 min.4 The animation
is unsophisticated, which has the advantage of helping the experimenter appreciate the extreme
simplicity of the BUGBOX-predator world.

The problem set for this section consists largely of experiments using BUGBOX-predator. If
you do not have a lot of experience collecting biological data, do these problems before reading
the rest of the section.

2.1.2 Overall Patterns in a Random World

Table 2.1.1 BUGBOX-predator consumption (y) for various prey densities (x)

Prey density x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

P. steadius y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38
P. speedius y 0 7 11 19 19 22 25 21 25 26 23 27 29 30 29

Table 2.1.1 contains some data from trials with two of the predator “species” in the BUG-
BOX world. The same data is plotted in Figure 2.1.1. Like real data, the BUGBOX predation
data does not appear to fall on a perfectly smooth curve. The BUGBOX-predator world is ex-
tremely simple, but is based on rules for biological behavior rather than a mathematical model
of the relationship between the variables. The distribution of prey animals is random, and there
is also significant randomness built into the predator’s movement algorithm. These elements
create uncertainty in the outcome, just as in real experiments. It is important to understand

3 Few students can resist the impulse to tap faster whenever they are having only minimal success.
4 Given unit time for the experiment and unit area for the environment, we can interpret y as the consumption
rate per predator, in prey animals per unit time, and x as the prey density, in prey animals per unit area.

http://www.springer.com/978-1-4614-7275-9
http://www.springer.com/978-1-4614-7275-9
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Fig. 2.1.1 Predation data for (a) P. steadius and (b) P. speedius from Table 2.1.1

the inevitability of this uncertainty. Real-world experiments can have uncertainty caused by
difficulties with experiment design or measurement and by our inability to completely control
an experimental environment; our virtual-world experiment is free from these sources of un-
certainty. However, there is still variation among individuals. This random effect, called demo-
graphic stochasticity, is present whenever the number of individuals in an experiment is small
and differences in individual behavior are significant. In contrast, experiments in chemistry are
free of demographic stochasticity because of the extremely large number of particles in even a
small amount of material.5 This beneficial averaging does not occur in experiments with single
individuals. Even if we designed an experiment with a population of 1,000 independently acting
predators,6 the number is insufficient to obtain a fully predictable average.7

At first thought, the inevitable randomness in biological data seems to suggest that mathe-
matical modeling is pointless in biology. Mathematics is the most deterministic of disciplines,
with many problems defined in such a way that there is a unique solution. If all biological events
are affected by random factors, how can mathematics have any value in biology?

Obviously, the highly stochastic nature of biological events limits the possibilities for using
mathematical methods in biology. It certainly is pointless to attempt to use mathematics to pre-
dict how many virtual aphids will be consumed by a virtual coccinellid in a single experimental
run. However, mathematics can be used to study the patterns that arise when experiments are
repeated many times.

If you run the same BUGBOX-predator experiment (the same predator species and the same
initial prey population) hundreds of times, you will see that some outcomes are more likely
than others. If your friend also runs the same experiment hundreds of times, the pattern of
outcomes obtained by you and your friend will be very similar. In principle, if we repeat a
BUGBOX-predator experiment millions of times, the average y for that given x for a particular
species might be fully predictable. Averages, and also the expected distribution of results, can
be estimated using descriptive statistics.8

5 Demographic stochasticity of virus particles is not an issue in a model that tries to predict quantities of these
particles in a person suffering from a communicable disease; however, demographic stochasticity in a population
of people could be quite significant.
6 An additional complication occurs if, as would usually be the case, the behavior of each individual is influenced
by the behavior of the other individuals in the population.
7 The connection between number of individuals and predictability is explored in Chapter 4.
8 See Section 3.1.



88 2 Mathematical Modeling

2.1.3 Determining Relationships

So far we have only considered the patterns obtained in repetition of a specific experiment.
We are often more interested in identifying patterns in relationships between quantities in an
experiment. At its most elementary level, this is the goal of ANOVA (analysis of variance),
a statistical extension of descriptive statistics. However, ANOVA only seeks to determine the
significance of the relationship between quantities. A more ambitious goal is to search for a
quantitative description of a relationship. Here again, we have to understand how the highly
determined subject of mathematics can possibly be useful in the highly stochastic world of
biology. The actual number we would obtain as the average of millions of repeated BUGBOX-
predator experiments would be different for different initial numbers of prey. While the data
from individual trials show clear evidence of stochasticity (as seen in Figure 2.1.1), it seems
reasonable to expect that data from the averages of millions of trials would appear to lie on a
smooth curve. That smooth curve is conceivably something that we could identify using math-
ematics. Think of an actual result of an individual trial as consisting of random variation super-
imposed on a predictable average y, which depends on the particular x for the experiments. We
could then use our limited data set to model that predictable average. This is the aim of this
chapter—to develop methods for obtaining deterministic models for the average behavior
of fundamentally stochastic biological processes.

Examine the data in Figure 2.1.1. Allowing for the overall randomness of the data, there is an
obvious difference between the two species. The data for P. steadius look approximately linear,
but the data for P. speedius are definitely not. These kinds of qualitative differences occur in
the real world as well as the virtual world. We can attempt to model each species individually;
however, a more interesting question is whether we can develop a mathematical model that can
explain the data for both predator species. A model that works for a collection of species would
have much more value than a model that works for just one.

As noted above, the value of a model depends on the questions it is used to address. The
modeler has to develop these questions along with the model. The possibilities are limited
primarily by the creativity of the modeler, and the most worthwhile questions are generally not
the obvious ones. Here is a brief list, by no means exclusive, of possible questions motivated by
the BUGBOX-predator experiments. These are ordered from the most limited to the broadest.

1. If we want to represent the P. steadius data by a linear function (a straight line on
Figure 2.1.1a), what parameters should we choose?

2. Is there a (clearly nonlinear) function we can use to represent the P. speedius data?
3. To what extent can we use the models to predict average predation for x values not given in

the data?
4. If we find more than one model for the P. speedius data, is there some way to rank the

models?
5. Can we identify biological characteristics that could account for the fact that different species

have graphs of different shapes?
6. Can we use our predation models as part of a larger model of interacting populations?

The first five of these questions are addressed in the course of this chapter; the last one is
addressed in Chapters 5 and 7.

Problems

These problems require BUGBOX-predator, which can be downloaded from http://www.math.
unl.edu/∼gledder1/BUGBOX/. Save the data sets from these problems, as they will be needed
for problems in other sections.

http://www.math.unl.edu/~{}gledder1/BUGBOX/
http://www.math.unl.edu/~{}gledder1/BUGBOX/
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2.1.1. Collect a predation data set for P. steadius, using the default choice of no replacement.
Use prey values of approximately 10, 20, and so on up to 140. It is not necessary that the values
be exact multiples of 10 (indeed, it is somewhat difficult to accomplish), but they should be
roughly evenly spaced. Plot these data on a graph similar to Figure 2.1.1.

(This problem is continued in Problems 2.3.1 and 2.3.7.)

2.1.2. Collect a predation data set for P. speedius, using the default choice of no replacement.
Use prey values of approximately 10, 20, and so on up to 140. It is not necessary that the values
be exact multiples of 10 (indeed, it is somewhat difficult to accomplish), but they should be
roughly evenly spaced. Plot these data on a graph similar to Figure 2.1.1.

(This problem is continued in Problem 2.4.6.)

2.1.3. Repeat Problem 2.1.1, but with replacement.
(This problem is continued in Problems 2.3.1 and 2.3.7.)

2.1.4. From your experience in Problems 2.1.1 and 2.1.3, discuss the significance of the replace-
ment option. Which option would be easier to implement in an experiment with real organisms?
Which option allows for unambiguous reporting of data (think about possible differences be-
tween what x is supposed to mean and the way we measure it)? This example illustrates the
difficulty of designing biological experiments, given the need for practical implementation and
the importance of avoiding ambiguity.

2.2 Basic Concepts of Modeling

After studying this section, you should be able to:

• Discuss the relationships between the real world and mathematical models.
• Discuss the distinctions between mechanistic and empirical modeling.
• Discuss the concepts of parameterization, simulation, and characterization with mathemati-

cal models.
• Discuss the concepts of the narrow and broad view of mathematical models and the function

of parameters in each view.

A mathematical model is a self-contained set of formulas and/or equations based on an ap-
proximate quantitative description of real phenomena. This definition is useful in the semantic
sense, but it fails to distinguish between models that are extremely useful and models that are
totally worthless. Instead, I prefer to adopt a working definition that is necessarily vague:

Mathematical model: a self-contained set of formulas and/or equations based on an
approximate quantitative description of real phenomena and created in the hope that the
behavior it predicts will be consistent with the real behavior on which it is based.

Note the tentative language of the added phrase. The emphasis is on the uncertainty in the
connection between the mathematical model and the real-world setting to which it is applied.
This emphasis means that modeling requires the theoretical science skills of approximation and
validation, and it changes the focus of the mathematical skills from proof and solution to char-
acterization (understanding the broad range of possible behaviors) and simulation (visualizing
the behavior in specific examples). The thinking you need for mathematical modeling is there-
fore somewhat different from the thinking associated with mathematics per se and more like
the thinking associated with theoretical science, as illustrated in Example 2.2.1.
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Example 2.2.1. The Lotka–Volterra model tries to use a linear predation model9 to explain
the quantitative relationship between populations of predators and populations of prey. It was
originally developed to explain changes in Mediterranean fish populations that occurred during
and after World War I, which it succeeded in doing. Subsequently, it has been used (improperly,
as explained in Example 2.2.6 below) in some differential equations textbooks to “prove” that
hunting coyotes (to keep them from eating farm animals) increases the population of the coy-
otes’ natural prey without decreasing the coyote population. This claim is unsupported by any
biological data and is obviously incorrect. ��

The coyote–rabbit setting does involve a predator and prey, but it does not follow that just
any predator–prey model will be useful. The correct approach is to think of the Lotka–Volterra
model as only one possible model.10 Instead of accepting a ridiculous result, such as the im-
possibility of eliminating predators, we should conclude that the model is wrong.

The lesson of Example 2.2.1 bears frequent repetition:

The value of a model depends on the setting to which it is applied and the questions it is
used to address.

Mathematics has the benefit of certainty, as exemplified by proofs of theorems. This is of
great value to mathematicians, because it minimizes the time spent arguing about facts. Once a
mathematical claim has been proven, everyone is obligated to accept it. However, this certainty
only applies to mathematical claims; it does not extend to mathematical modeling. Mathemat-
ical results about a model can be confirmed with mathematical proof, and proven results are
correct—but only for the model. Conclusions drawn from models are only correct for the real-
world setting to the extent that the behavior of the model reflects that of the real world. This
question is not mathematical and must be addressed by other means. It is therefore mislead-
ing to think of models as “correct” or “true” for a real-world setting. At best, a mathematical
model can be valid, in the sense of “giving meaningful results under a given set of real-world
circumstances.” There are almost certainly quantitative differences between model results and
real-world empirical results, and there may be important qualitative differences as well. If the
differences are small enough in the given setting, we judge the model to be valid and use it with
confidence. The model may work for somewhat different settings as well, but we must worry
about its validity in the new setting. Where the validation is not satisfactory, we must revise the
model and try again.

Example 2.2.2. The exponential decay model

y = y0e−kt , k,y0 > 0 (2.2.1)

is valid for a macroscopic amount of a single radioactive substance. The model can also be
applied to other settings where a quantity is decreasing or increasing to a fixed value, such as
the clearance of medication from the bloodstream of an animal. The ultimate value could be
nonzero, in which case we can interpret y as the difference between the current value and the
ultimate value. Whatever the context, we have to be careful that the model is appropriate. In lead
poisoning, a significant portion of the lead is deposited in the bones, so a more sophisticated
model11 is needed to incorporate this physiological mechanism. Time-release medications are
slow to absorb from the digestive system and require a more sophisticated model as well. ��

9 We might use this model for P. steadius, but we ought not use it for P. speedius.
10 We return to this scenario later in this section. More appropriate models are presented in Chapter 7.
11 See Section 7.1.
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2.2.1 Mechanistic and Empirical Modeling

Mathematical models can be classified according to the method used to obtain them.

Mechanistic model: a mathematical model based on assumptions about the scientific
principles that underlie the phenomena being modeled.

Empirical model: a mathematical model based on examination of numerical data.

The distinction between the two types of models is sharpened by separating the “approximate
quantitative description” in the definition of a mathematical model into two distinct processes:
that of approximation and that of quantitative description. To clarify this point, it is helpful to
introduce the concept of the conceptual model.

Conceptual model: an approximation of the real world that serves as a verbal descrip-
tion of a mathematical model.

Conceptual models are seldom explicit in the presentation of mathematical models. Identi-
fying the underlying conceptual model is necessary to understand biological literature that uses
mathematics. Identification of conceptual models from examination of mathematical formulas
is a recurring theme in the problems sets of this chapter and those of Part III.

Figure 2.2.1 illustrates the processes of mechanistic and empirical modeling. The flow of
modeling is not unidirectional. Each of the components feeds into the others, but it is important
to note the lack of a direct connection from the mathematical model to the real world. It is this
point that distinguishes mathematical modeling from the “applications” of mathematics that
appear in most textbooks.

Because of the lack of a clear direction in the flow, we describe these processes in alphabet-
ical order before discussing some key issues in mathematical modeling.

Approximation: An intentional process of choosing features to include in models, analogous
to drawing a political cartoon. Caricatures of President Obama always have ears that are much
larger than any real person while omitting some of his more subtle features. Yet anyone who
has seen the president can easily identify him in a political cartoon. Similarly, a conceptual
model in mechanistic modeling focuses on features of the real world that the modeler believes
are critical while omitting anything thought to be an unnecessary complication. The hope is
that the resemblance of the simple model to the complicated real world will be unmistakable.
Approximation is treated in more detail in Section 2.5 and parts of Chapters 5–7.

Characterization: Obtaining general results about a model. Sometimes we can reduce a model
to an explicit solution formula. In other cases, we can use graphical or approximation methods
to determine how the values chosen for the parameters influence the model behavior. Whatever
we learn from characterization applies to the conceptual model, not the real world. Characteri-
zation uses techniques of calculus as well as advanced techniques discussed in Parts II and III.

Derivation: Constructing a mathematical model from a verbal description of assumptions and
simplifying the model prior to analysis. Sections 2.5 and 2.6 contain examples of model deriva-
tion and simplification, as do Chapters 5 and 7. The associated problem sets focus on the reverse
skill of identifying the underlying conceptual model from a given mathematical model. Model



92 2 Mathematical Modeling

real
world

approximation

validation
conceptual

model

derivation

characterization
&/or simulation

mathematical
model

parameterization

real
world validation

conceptual
model characterization

&/or simulation

mathematical
model

parameterizationb

a

Fig. 2.2.1 Relationships between the real world, a conceptual model, and the corresponding mathematical
model. Solid arrows indicate processes amenable to mathematical certainty, while dashed arrows indicate pro-
cesses that must be viewed with scientific skepticism. (a) Mechanistic modeling. (b) Empirical modeling

derivation is a skill needed primarily by mathematical modelers, but anyone who wants to read
quantitative biological literature needs to be able to understand the biological assumptions of a
model, including assumptions that are only implied.

Model selection: Choosing a mathematical model from multiple options. In mechanistic mod-
eling, construction of a conceptual model constitutes model selection. In empirical modeling,
selection of a model should be done with the aid of the Akaike information criterion, a method
for quantifying the statistical support a data set gives to a model. This topic is addressed in
Section 2.7.

Parameterization: Using data to obtain values for the parameters in a model. Parameterization
is necessary if the model analysis is to include simulation. If the analysis is to be general,
then it is helpful to have ranges for parameter values; however, precise values fitted to data are
unnecessary. Parameterization is addressed in Sections 2.3 and 2.4.

Simulation: Using mathematics and computation to visualize model behavior for a given set
of parameters. If an explicit solution formula can be found, then simulation is just a matter of
graphing the solution. However, in most cases, it is necessary to implement a numerical method
with a computer. Parts II and III contain simulation techniques for specific problem types.

Validation: Determining whether a model reproduces real-world results well enough to be use-
ful. The criteria for validation depend on the purpose of the model. This topic is addressed in
more detail later in Section 2.2.2.

Few research projects in biology are simple enough to incorporate all of the processes in
Figure 2.2.1a in a single study. One such project is summarized in Example 2.2.3.

Example 2.2.3. The University of Nebraska-Lincoln has a course called Research Skills for
Theoretical Ecology that focuses on combining experiment and theory to understand the growth
of a population of pea aphids.12

• Approximation: We assume that the population at day t + 1 depends only on the population
at day t and make specific quantitative assumptions about this dependence.

• Derivation: The assumptions made in the approximation step lead us to a model consisting
of formulas for determining day t + 1 populations from day t populations.

12 Aphids are particularly convenient organisms for the study of population dynamics because many aphid
species exist for long periods as asexual females that reproduce by cloning. Simple models are more likely to
yield accurate results when applied to simple systems.
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• Parameterization: We use laboratory experiments and statistical analysis to determine values
for the various model parameters, such as the average number of offspring an adult produces
in 1 day. These parameters are needed so that we can obtain quantitative results.

• Characterization: Independent of parameter values, the model predicts that the popula-
tion will tend toward stable proportions of nymphs and adults with unrestricted population
growth at some fixed rate. This rate is about 32 % per day for the parameter values deter-
mined from the laboratory data.13

• Simulation: We write a computer program to simulate an experiment in which a population
consisting initially of a single adult is allowed to grow for several weeks. Using the param-
eters determined from laboratory data, the simulation predicts a variable growth rate that
approaches 32 % per day over the first 2 weeks.

• Validation: The students measure the quantitative growth rate by experiment and obtain a
result of approximately 32 %, as long as the food supply in the experiment is maintained at
a high level. However, the unrestricted population growth predicted by the model is qualita-
tively wrong under conditions where food and space are limited. The model could be used
to forecast future aphid populations subject to the condition of virtually unlimited resources
and no predators, but not in more general circumstances. ��

2.2.2 Aims of Mathematical Modeling

Mathematical models can be used for different purposes, and the aim of the model plays a large
role in determining the type of analysis and the criteria for validation. For example, sometimes
the goal of modeling is to predict the results of hypothetical experiments.

Example 2.2.4. Mathematicians and biologists at the University of Tennessee have created a
sophisticated computer simulation called Across Trophic Level System Simulation (ATLSS)
that models populations of animal and plant species in the Florida Everglades [13]. This model
has been used by the Army Corps of Engineers and other agencies to predict the effects of
environmental policy on the Everglades ecosystem. For example, the model can be used to
address the question “What effect would a new housing development in a particular area of the
Florida Everglades have on the endangered Florida panther population?” ��

A model such as ATLSS needs specific geographic and climate data and specific values for
many parameters, such as the average size of a litter of Florida panther cubs and the survival rate
for newly hatched whooping cranes. The parameters are estimated for the model because the
goal is to predict populations in a hypothetical experiment for a real scenario. Given this goal,
the criteria for model validity are quantitative. The model is valid if the results it predicts for
experiments are within an acceptable tolerance of the actual experiment results. Demonstrating
validity of a model used for quantitative prediction can be difficult. In a laboratory setting, such
as that of Example 2.2.3, the model simulation can be designed to match a specific experiment
and the results can be directly compared. But we cannot conduct designed experiments for
the Everglades. Instead, we look for historical events that can be thought of as experiments,
in which case we can match the simulation to the historical event. If we know the effect of a
historical housing development on the panther population, we can check to see that our model
is quantitatively accurate for that specific case. If so, then we have evidence that our model will
correctly predict the effect of a similar hypothetical event.

13 One could not design a better organism for rapid population growth than the aphid. When reproduction is by
cloning, individuals do not need to mature before they begin the reproduction process. Indeed, pea aphids are
born pregnant and begin to give birth to live young within hours after becoming adults.
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Quantitative prediction for hypothetical experiments is not all that can be done with mathe-
matical models. In Section 1.5, we used a mathematical model to obtain a prediction for forag-
ing behavior in a patchy environment. This required mathematical characterization rather than
numerical simulation, and it resulted in the marginal value theorem, which we can think of as
a qualitative prediction for a general setting. Broad questions, such as that of optimal foraging
behavior, require mathematical characterization rather than numerical simulation. Other ques-
tions are less broad but require characterization of a general model because parameter values
can vary.

Example 2.2.5. The side effects of chemotherapy and its efficacy against tumors depend on
the dosage schedule. We could administer the medication at a constant rate over a fixed time
interval, we could make the rate large initially but then decrease it to zero over some interval,
or we could choose any other time-dependent dosage schedule. A reasonable goal for modeling
is to identify a protocol that minimizes side effects while reducing the tumor at a desired rate.
One way to attempt this is to run simulations with a chemotherapy model, but we could only
test a few of the infinitely many dosing protocols. Instead, it is possible to use mathematical
methods to obtain an approximate solution to the problem of optimizing the dosage schedule.

��
The validation of a model intended to address broad theoretical questions is different from

that for a model intended for quantitative prediction. For a general model, the task of validation
involves trying to confirm that the model behavior is qualitatively consistent with the behavior
of the real biological system we are trying to model. Of course, we must specify what we
mean by “consistent with the real behavior.” For example, a model whose purpose is to study
extinction risk for endangered species would need to be checked to ensure that it is actually
capable of predicting extinction under some set of circumstances.

Example 2.2.6. Suppose we want to know what effect coyote hunting will have on a coyote
population (the question of Example 2.2.1). From our reading of the biology literature, if not
from direct experience, it should be obvious that predator extinction is a possibility. However,
characterization of the Lotka–Volterra model shows it to be incapable of predicting this possi-
bility. The proper response to this mathematical result is to immediately reject the use of the
Lotka–Volterra model for the given setting. Careful examination of the conceptual model can
identify the flaw that accounts for its failure to make correct qualitative predictions, which in
turn can suggest a better model.14 ��

2.2.3 The Narrow and Broad Views of Mathematical Models

In any particular instance of a mathematical model, we have one or more dependent variables
and one or more independent variables, and a set of given values are assigned to the parame-
ters. The focus of a simulation is on determining how the dependent variables depend on the
independent variables. This is the narrow view of mathematical models. In contrast, there is a

14 See Problem 2.2.1.
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broad view of mathematical models, in which the objective is to understand the effect of the
parameter values on the model behavior. The relationship between these views is illustrated in
Figure 2.2.2. In the broad view, the role of “independent variable” is played by the parameters
and the role of “dependent variable” is played by whatever aspects of the model behavior are of
interest.

equations
independent
variable(s)

dependent
variable(s)

narrow view

parameters behavior

broad view

Fig. 2.2.2 Narrow and broad views of mathematical models

Example 2.2.7. Consider the family y = sinkt, which is sometimes used as an empirical model
for periodic data. When we choose a specific value for k and plot y as a function of t, we are
working in the narrow view. Without choosing k, we can calculate the period to be the smallest
time T such that y(t +T ) = y(t). Since the sine function repeats as the angle increases by 2π ,
the period is when kT = 2π , or T = 2π/k. If we plot T as a function of k, we are working in
the broad view. ��

As in Example 2.2.7, parameters function as constants in some aspects of model analysis
and as variables in other aspects, corresponding to the narrow and broad views, respectively.
This can be very confusing. Generally we are working with the narrow view for simulations
and the broad view for characterization. Both are important. We can make use of the full power
of computers for simulations, but we can address deeper questions when we retain the broad
view.

2.2.4 Accuracy, Precision, and Interpretation of Results

Most people make little distinction in ordinary language between the terms “accuracy” and
“precision,” but these terms have very distinct meanings in science. Accuracy is the extent to
which results are correct, while precision is the extent to which results are reproducible. Preci-
sion is easier than accuracy to measure, but of course it is accuracy that we really need. Never-
theless, one cannot be confident of accuracy in the absence of precision. A repeated theme of
this book, starting with the discussion of biological data in Section 2.1 and continuing through
the rest of the book, with special emphasis in Chapter 4 on probability distributions of sam-
ples, is that precision is limited in most areas of biology. Even where careful measurements are
possible, results are not very reproducible. Have your blood pressure taken on five consecutive
days, and you will see the point.

The lack of precision in most biological data has strong implications for how we interpret
mathematical results. Computers give very precise results—divide 1.0 by 3 and you will not
get 0.33, but 0.333333333333. This is alright if the numerator is certain to be very close to
1.0, but in biology it could be that you measured 1.0 when the “correct” value is 0.9. If the
data is off by 10 %, then the additional digits beyond the second one are surely meaningless.
Mathematics, of course, offers the possibility of infinite precision. In terms of biology, this does



96 2 Mathematical Modeling

more harm than good. Apply infinitely precise methods to crude results and you get results that
are infinitely precise in appearance without being reproducible. It is easy to take this apparent
precision more seriously than it deserves. This is what I call the “measure it with your hand,
mark it with a pencil, cut it with a laser” fallacy. The risk of this fallacy must be kept firmly
in mind whenever we interpret results obtained from mathematical modeling applied to crude
data.

Problems

2.2.1. Suppose we want to construct a realistic model for a predator–prey system. This model
should allow for a variety of realistic results; in particular, it should predict three possible long-
term results:

1. The predator and prey can coexist.
2. The prey can survive while the predator becomes locally extinct.
3. Both species can become locally extinct.

We look in a mathematical biology book and find the Lotka–Volterra model:

dx
dt

= rx− qxy,

dy
dt

= cqxy−my,

where x and y are the biomasses of the prey and predator, respectively,15 r is the growth rate
of the prey, m is the death rate of the predator, q measures the extent of predation, and c is a
conversion factor for prey biomass into predator biomass. The model is presented as a predator–
prey model, but we recognize the need to check that a model is appropriate for the setting we
have in mind.

(a) Suppose the prey and predator populations stabilize to fixed biomasses X ≥ 0 and Y ≥ 0. If
the biomasses at some time are x=X and y=Y , then there should be no further change. This
means that the fixed biomasses must make the right-hand sides of the differential equations
be 0. Use this idea to find all possible pairs X and Y . Is this model capable of predicting all
three possible long-term results? If not, which is missing?

(b) To help see what is wrong with the model,16 write down the prey equation for the special
case where the predator is absent. What does the model predict will happen?

2.2.2. Find an instance of a mathematical model in a biology book or research paper. Describe:

(a) The mathematical model itself,
(b) The conceptual model that corresponds to the mathematical model, and
(c) Features of the real-world setting that do not appear in the conceptual model.

2.2.3.* Some genetic traits are determined by a single gene having two variants (alleles),
with one (A) dominating the other (a). This means that individuals who have two domi-
nant alleles (AA) and individuals who have one of each type (Aa) both exhibit the physical

15 Most descriptions of predator–prey models interpret the variables as the numbers of individuals, but the
models are more realistic if the variables are viewed as being the total biomass of the individuals.
16 The point here is that using the Lotka–Volterra model to demonstrate that something can’t happen in the real
world is a logical fallacy when the model itself contains the assumption that the thing can’t happen.
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characteristics (phenotype) of the dominant trait, while the recessive phenotype is only found
among individuals who have two recessive alleles (aa). It is sometimes helpful in genetics to
model inheritance as a two-step process: first, all of the parents’ genes are assembled into a
gene pool; then, pairs of genes are randomly withdrawn from the gene pool for individuals in
the next generation.

(a) Suppose q is the fraction of recessive genes in the gene pool. Based on the two-step concep-
tual model, what will be the fraction of individuals in the next generation who exhibit the
recessive trait? What will be the fraction of individuals who have one dominant allele and
one recessive allele? What will be the fraction of individuals who do not have the recessive
allele? (The combination of these results is called the Hardy–Weinberg principle.)

(b) About 13 % of the people of Scotland have red hair. Assuming that red hair is caused by a
single recessive gene pair, what does the Hardy–Weinberg principle predict for the fraction
of the recessive trait in the gene pool and the fraction of the population who do not have the
recessive allele?

(c) Demographers estimate that 60 % of the people of Scotland do not have the recessive allele
for red hair. What flaws in the conceptual model might account for the difference between
this estimate and the estimate you obtained from the Hardy–Weinberg principle?

2.2.4. The model y = y0e−kt , with k > 0, is often used to model radioactive decay, where y is
the amount of radioactive material remaining and y0 is the initial amount of the material. This
model is derived in Section 2.5 using a conceptual model in which the decay rate is k times the
quantity of material. Without calculus, we can get some sense of what this means. Consider the
specific instance y = e−2t . The average rate of decay over the interval t1 < t < t1 + h is

rh(t1) =
y(t1 + h)− y(t1)

h
.

For the intervals 0 < t < 0.1, 0.1 < t < 0.2, and so on up to 0.9 < t < 1.0, calculate the average
rate of decay and compare it to the average of the quantities of radioactive material at the be-
ginning and end of the time interval. Explain why the results are consistent with the conceptual
model as described here.

2.2.5. The model y = y0ekt , with k > 0, is sometimes used to model bacterial growth.

(a) Describe the qualitative predictions made by the model. In particular, show that

G(t) =
y(t + 1)

y(t)

does not actually depend on t.
(b) Describe an experiment that tests the prediction of part (a).
(c) Describe a physical setting in which this model for population growth is clearly not appro-

priate.
(d) Describe a physical setting in which this model for population growth might be appropriate.

2.2.6. Of Problems 2.2.4 and 2.2.5, one works primarily with the narrow view of a model and
the other primarily with the broad view. Match these descriptions with the problems, explaining
why that view is the focus of the problem.

2.2.7. In this problem, we develop and study a model to predict the future effects of changes in
the average number of children per adult and the average age for childbirth on human population



98 2 Mathematical Modeling

growth rates in a highly developed country. The model is based on the Euler–Lotka equation,
which was developed in Section 1.7:

∫ ∞

0
e−rt�(t)m(t)dt = 1 ,

where r is the unknown population growth rate resulting from a fecundity of m(t) births per
year per parent of age t, given a probability of �(t) of survival to age t.

(a) For the sake of a simple thought experiment, we assume particularly simple forms for �
and m. We take �= 1 since survival to adulthood is high in highly developed countries. For
m we assume a piecewise linear function with peak at age a, tapering to 0 at ages a− 5 and
a+ 5, and having a total (integrated over time without the factor e−rt ) of n. This will allow
us to modify just the parameters a and n rather than the whole fecundity function m. Show
that the function

m(t) = 0.04n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < a− 5

5+ t− a, a− 5 < t < a

5− t+ a, a < t < a+ 5

0, t > a+ 5

has all of the desired properties.
(b) Substitute � = 1 and the function m from part (a) into the Euler–Lotka equation to obtain

the integral equation

0.2n

[∫ a

a−5

(
1+

t − a
5

)
e−rt dt +

∫ a+5

a

(
1− t − a

5

)
e−rt dt

]
= 1.

(c) Make the substitution x = (t − a)/5 to simplify the integrals. You should now have one
integral with −1 < x < 0 and one with 0 < x < 1.

(d)* Make an additional substitution y =−x in the integral on −1 < x < 0 and combine the two
integrals into a single integral on the interval (0,1). See Problem 1.9.9.

(e) You should now have an equation of the form

ne−raF(r) = 1 ,

where F(r) is a complicated definite integral. Show that F(0) = 1 and F(0.02) < 1.001.
You can do the latter by calculating the integral (see Problem 1.8.12) or by numerical ap-
proximation (see Problem 1.7.9). The function F is strictly increasing, so the approximation
F(r) = 1 has error less than 0.1 % if r ≤ 0.02.

(f) Indicate at least one biological assumption in this model that we can expect to introduce
more than a 0.1 % error; conclude that the approximation F = 1 is fully justified.

(g) Plot a graph of r against n, with three curves using different values of a, and use this curve
to discuss the effects of average number of children and average age of reproduction on
population growth. To do this intelligently, you must choose reasonable low, medium, and
high values for a and a reasonable range of n values for the horizontal axis.

(h) Repeat part (g), reversing the roles of n and a.

2.2.8. Suppose individuals of group X and individuals of group Y interact randomly. If x and y
are the numbers of individuals in the respective groups, it is reasonable to expect each member
of group Y to have kx interactions with members of group X , where k > 0 is a parameter. (This
says that doubling the membership of group X should double the contact rate with group X for
a member of group Y .)
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(a) Use the information about contact rates for individuals in group Y to find a model for the
overall rate at which members of the two groups interact.

(b) Suppose p is the (fixed) fraction of encounters between individuals of the two groups that
results in some particular event occurring between the individuals. Use this assumption to
create a model for the rate R at which the events occur in the population.

(c) If the model of part (b) is used for the rate of infection of human populations with some
communicable disease, what do the groups X and Y represent?

(d) The model of part (b) was used successfully to model an influenza outbreak in a small
boarding school in rural England. Why do you think the model worked well in this case?

(e) The Center for Disease Control in Atlanta did not use the model of part (b) to make pre-
dictions about the spread of the H1N1 virus in the United States in 2009. Explain why the
model would not have been appropriate in this case.

(f) Describe some real-world settings other than epidemiology that could conceivably use this
interaction model [Hint: This model finds common usage in chemistry and ecology as well
as epidemiology.] How accurate do you expect the model to be in these different settings?

2.3 Empirical Modeling I: Fitting Linear Models to Data

After studying this section, you should be able to:

• Use the linear least squares method to obtain the best-fit parameter values for the linear
models y = mx and y = b+mx.

• Discuss the assumptions made in claiming that the results of the linear least squares method
are the best parameter values for the data.

Simulations require values for the model parameters, which raises the question of how pa-
rameter values should be determined. Occasionally they can be measured directly, but more
often they can only be inferred from their effects. This is done by collecting experimental data
for the independent and dependent variables and then using a mathematical procedure to de-
termine the parameter values that give the best fit for the data. In this section, we develop a
parameterization method for two linear models:

y = mx, y = b+mx , (2.3.1)

where m and b are parameters. These models, together with the exponential model,

y = Aekx , (2.3.2)

and the power function model,
y = Axp , (2.3.3)

comprise the principal empirical models commonly encountered.17 Parameterization of expo-
nential and power function models is considered in Section 2.4.

17 The symbols in these models are generic; that is, they represent whatever actual variables are in a given model.
For example, a model H =CLq is a power function model with independent variable L, dependent variable H,
exponent parameter q, and coefficient parameter C. Most symbols in mathematics are not standard, so the reader
must be able to identify models as equivalent when the only difference is the choice of symbols. This theme is
extended much further in Section 2.6.
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2.3.1 The Basic Linear Least Squares Method (y = mx)

Table 2.3.1 Predation rate y for prey density x

x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38

Table 2.3.1 reproduces the P. steadius data from Table 2.1.1. Because the data points appear
to lie roughly on a straight line through the origin (Figure 2.1.1a), it makes sense to try a
linear model without a parameter to represent the y intercept; that is, y = mx rather than y =
b+mx.18 The parameterization process consists of finding and solving a mathematics problem
to determine a value of m for this data set.

Obviously there is no single value of m for which the model y = mx fits the data exactly. For
any given value of m, some or all of the data points lie off the graph of the model. Figure 2.3.1
shows the data with several possible straight lines. Clearly, the slope m for the top line is too
large and that for the bottom is too small.

2.3.1.1 Overview of the Method

Any optimization problem has a modeling step and an analysis step:

1. Determine a function that expresses the quantity to be maximized or minimized in terms of
one or more variable quantities.

2. Determine the set of values for the variable quantities that yields the maximum or minimum
function value among permissible values of the variables.

Optimization problems for mathematical models are conceptually more difficult than
optimization problems in calculus because of the different roles played by variables and
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Fig. 2.3.1 Consumption rate y for prey density x from Table 2.3.1, showing several instances of the model
y = mx; the heavy line is the instance that will emerge as the best fit

18 There are two advantages to omitting the parameter b. Mathematically, it is much easier to find one parameter
from data than two. More importantly, the model y =mx may be more appropriate on biological and/or statistical
grounds, as will be seen in Sections 2.5 and 2.7, respectively.
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parameters. In our current example, the variables x and y represent specific data points, while
the parameter m is unknown.

When parameterizing a mathematical model from data, the parameters in the model are
the variables in the optimization problem, while model variables appear in the optimiza-
tion problem only as labels of values in the data set.

The imagery of the narrow and broad views of mathematical modeling (Figure 2.2.2) is
helpful in thinking about the problem of determining a best value of m. In step 1, we assume
a fixed value of the parameter m, generate a set of “theoretical” (x,y) data points using the
model y = mx with the x values from the actual data, and calculate some quantitative measure
of the total discrepancy between the actual data and the data obtained using the model. This
step occurs within the narrow view because m is fixed. Once we have a formula for calculating
the total discrepancy, we change our perspective. Now we think of the data as fixed and the
total discrepancy for that fixed data set as a function F(m). We then obtain the optimal value of
m using methods of ordinary calculus. Treating m as a variable locates step 2 within the broad
view.

2.3.1.2 Quantifying Total Discrepancy

There are several reasonable ways to measure quantitative discrepancy. The standard choice is

F(m) = (Δy1)
2 +(Δy2)

2 + · · ·+(Δyn)
2 , (2.3.4)

where the residuals Δyi are the vertical distances between the data points and the corresponding
points from the model. For the model y = mx, we have

Δyi = |mxi − yi| . (2.3.5)
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Fig. 2.3.2 Consumption rate y for prey density x, showing the model y = 0.3x and the residual for x = 90

Example 2.3.1. Let m= 0.3. The data, model, and one of the residuals are shown in Figure 2.3.2.
The total discrepancy is F(0.3) = 218, calculated as the sum of the bottom row of Table 2.3.2.

��
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Table 2.3.2 Total discrepancy calculations for y = 0.3x with the P. steadius data

x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0.3x 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38
Δy 0 1 −1 −1 3 1 −3 1 −1 7 0 8 7 4 4

(Δy)2 0 1 1 1 9 1 9 1 1 49 0 64 49 16 16

Check Your Understanding 2.3.1:
Repeat Example 2.3.1 for the model y = 0.25x. Is this model better or worse than y =
0.3x?

Total discrepancy calculations are easily automated with a spreadsheet; however, we cannot
do the calculation for all possible values of m. We shall see that the optimal m can be determined
mathematically, without actually computing any values of F(m).

2.3.1.3 Minimizing Total Discrepancy

The problem of choosing m to minimize F is surprisingly easy to solve. Substituting (2.3.5)
into (2.3.4) and expanding the squares, we have

F(m) = (m2x2
1 − 2mx1y1 + y2

1)+ · · ·+(m2x2
n − 2mxnyn + y2

n),

which we can rearrange as

F(m) = (x2
1 + x2

2 + · · ·+ x2
n)m

2 − 2(x1y1 + x2y2 + · · ·+ xnyn)m+(y2
1 + y2

2 + · · ·+ y2
n).

We can simplify this formula using summation notation19:

F(m) =
(
∑x2)m2 − 2

(
∑xy

)
m+

(
∑y2) , (2.3.6)

where the sums are understood to be over all of the data points. In the context for (2.3.6), the
data points are known; hence, the total discrepancy formula is a function of a single variable
m.20 The function is a simple parabola pointing upward, so we need only find the vertex of that
parabola to obtain the important mathematical result21:

19 For ease of reading, I use a simplified form of summation notation. What I have as ∑xy, for example, is more
properly given as ∑n

i=1 xiyi. In the given context, the extra notation decreases readability unnecessarily.
20 Context is crucial. As noted earlier, the parameter m functions as a constant in the model y = mx (narrow
view) but as a variable in the total discrepancy function F (broad view). Meanwhile, x and y are variables in the
model, but the data points (xi,yi) function as parameters in the total discrepancy calculation because we have a
fixed set of data.
21 The proof of Theorem 2.3.1 is given as Problem 2.3.10.
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Theorem 2.3.1 (Linear Least Squares Fit for the Model y = mx). Given a set of points
(xi,yi) for i = 1,2, · · · ,n, the value of m that minimizes the total discrepancy function for
the model y = mx is

m =
∑xy

∑x2 ; (2.3.7)

the corresponding residual sum of squares is

RSS = ∑y2 − (∑xy)2

∑x2 = ∑y2 −m∑xy . (2.3.8)

The residual sum of squares is the total discrepancy for the model when the best value of
m is used; that is, it is the minimum value of the function F . It will be needed for the semilinear
data fitting scheme of Section 2.4 and the model selection scheme of Section 2.7.

We now have the mathematical tools needed to find the optimal value of m for the P. steadius
data set.

Example 2.3.2. For the data of Table 2.3.1, we obtain the results

∑x2 = 101,500, ∑xy = 27,080, ∑y2 = 7,331 ;

therefore, (2.3.7) and (2.3.8) yield the results m ≈ 0.267 and RSS ≈ 106.1. The best-fit line is
the heavy one in Figure 2.3.1. ��

Check Your Understanding 2.3.2:
Verify the values given in Example 2.3.2.

2.3.2 Adapting the Method to the General Linear Model

Most straight lines in a plane do not pass through the origin. While there are theoretical reasons
for insisting that the predation model pass through the origin, this is obviously not valid for all
linear models; hence, Theorem 2.3.1 would seem to be of limited use. However, the problem
of fitting the model y = b+mx to data can be reduced to the problem of fitting the model
y = mx to data. The derivation of the mathematical result for this two-parameter model is given
as Problem 2.3.11.

Theorem 2.3.2 (Linear Least Squares Fit for the General Linear Model y = b + mx).
Let x̄ be the mean of the values x1,x2, . . . ,xn, let ȳ be the mean of the values y1,y2, . . . ,yn,
and define shifted data points by

Xi = xi − x̄ , Yi = yi − ȳ , for i = 1,2, . . . ,n . (2.3.9)
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Then

1. The best-fit slope and residual sum of squares for the model y = b+mx can be found
by fitting the XY data to the model Y = mX;

2. The best-fit intercept b is given by

b = ȳ−mx̄ . (2.3.10)

Example 2.3.3. To fit the model y = b+mx to the data of Table 2.3.1, we first compute the
means x̄ = 70 and ȳ = 19. Then we subtract the means from the original data set to obtain a
shifted data set, as shown in Table 2.3.3. Applying Theorem 2.3.1 to the shifted data yields the
results

m = 0.255 , RSS ≈ 100.4 .

By Theorem 2.3.2, these results hold for the model y = b+mx with the original data, and we
calculate b from (2.3.10):

b = 1.175 .

��

Table 2.3.3 Consumption rate y for prey density x, along with the shifted data X = x− x̄, Y = y− ȳ

x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38

X −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70
Y −19 −17 −12 −9 −10 −5 2 1 6 1 11 6 10 16 19

Check Your Understanding 2.3.3:
Verify the values given in Example 2.3.3.
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Fig. 2.3.3 Consumption rate y for prey density x, showing the linear least squares fits for the models y = mx
(solid) and y = b+mx (dashed)
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We now have two best-fit results for the Table 2.3.1 data: the line y = 0.267x from Example
2.3.2, with residual sum of squares 106.1, and the line y = 1.175+0.255x from Example 2.3.3,
with residual sum of squares 100.4. Figure 2.3.3 shows both of these lines along with the data.
Does the slightly lower residual sum of squares mean that the two-parameter model is better
than the one-parameter model? Not necessarily. The calculation of the residual sum of squares
treats all data equally. However, the data point (0,0) is free of experimental uncertainty, so
perhaps we should be less tolerant of the discrepancy Δy1 = 1.175 than the discrepancies at the
other points. Perhaps we should insist that y(0) = 0 is a requirement for our model, even though
doing so slightly increases the residual sum of squares. We take up this issue in Section 2.7 after
we have laid more groundwork.

2.3.3 Implied Assumptions of Least Squares

The sum of squares of vertical residuals is not the only function that could be used to quantify
the total discrepancy between an instance of a model and a set of data. We need some way to
measure the distance between each point and the model line, but why not measure it horizontally
or along a normal to the line? In choosing Δy as the measure of discrepancy, we are implicitly
assuming that we have very accurate measurements of x and uncertainty primarily in y. This is
frequently true, but not always. However, it is common to use (Δy)2 even in cases where there
is significant uncertainty in x values because the least squares formula is so easy to apply.22

Check Your Understanding Answers

Table 2.3.4 Total discrepancy calculations for y = 0.25x with the P. steadius data

x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0.25x 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38
Δy 0 0.5 2 2.5 1 1.5 6 2.5 5 2.5 5 2.5 1 2.5 3

(Δy)2 0 0.25 4 6.25 1 2.25 36 6.25 25 6.25 25 6.25 1 6.25 9

1. The total discrepancy is F(0.25) = 134.75, which is less than F(0.3) = 218.

Problems

2.3.1. (Continued from Problems 2.1.1 and 2.1.3.)

(a) Fit the model y = mx to your P. steadius data from Problem 2.1.1.
(b) Fit the model y = mx to your P. steadius data from Problem 2.1.3.
(c) How much different (in percentage) are your results from the result in the text?
(d) Discuss whether or not replacement appears to be a significant source of differences in the

results.

(This problem is continued in Problem 2.7.4.)

22 See [10] for a much more complete discussion of this topic.
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2.3.2. One of the data sets in Table 2.3.5 has the origin as its mean point. Find the equation of
the straight line that best fits that data. Plot the data and the best-fit line together on a graph.

Table 2.3.5 Two xy data sets for Problem 2.3.2

x −4 −1 0 2 3
y1 −5 −2 0 2 4
y2 −5 −2 1 2 4

2.3.3.* The data sets of Table 2.3.6 contain a parameter c that perturbs some of the data points
away from the straight line y = x, while still maintaining an average y of 0. By examining the
change in slope m as a function of c, we can measure the effect of measurement error on the
result of the least squares procedure. To do this, plot the linear regression slope m as a function
of the parameter c, where 0 ≤ c ≤ 1, for each data set. How do measurement errors affect the
least squares line? In particular, which errors are the least squares line more sensitive to?

Table 2.3.6 Two data sets for Problem 2.3.3
x1 −2 −1 0 1 2
y1 −2+c −1 0 1 2−c
x2 −2 −1 0 1 2
y2 −2 −1+c 0 1−c 2

2.3.4.(a) Fit a linear model to the data of Table 2.3.7 (using a calculator to do the computa-
tions). The data gives the concentration C, in parts per trillion, of the trace gas F-12 at the
South Pole from 1976 to 1980.

(b) Discuss the quality of the fit of the model to the data.
(This problem is continued in Problem 2.7.7.)

Table 2.3.7 Concentration of F-12 at the South Pole by year, with 1976 as year 0 [11]

t 0 1 2 3 4
C 195 216 244 260 284

2.3.5.*

(a) Fit a linear model to the data of Table 2.3.8 (using a calculator to do the computations).
(b) Discuss the quality of the fit of the model to the data.

(This problem is continued in Problem 2.7.8.)

Table 2.3.8 A data set for Problem 2.3.5
t 8.7 9 11 18 19 22 28
C 25 25 26 48 65 90 100
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2.3.6. In a convenient programming environment, write a program that inputs a file with two
columns of data and uses the least squares procedure to fit the model y = b+mx using the first
column for the x values and the second column for the y values. Test the program with the data
from Problems 2.3.4 or 2.3.5.

2.3.7. (Continued from Problems 2.1.1 and 2.1.3.)
Repeat Problem 2.3.1 with the model y = b+mx using the program of Problem 2.3.6.

2.3.8. The National Oceanographic and Atmospheric Administration (NOAA) has a data set on
its web site that gives the dates of the beginning of the grape harvests in Burgundy from 1370
to 2003 [5]. This data offers a crude, but long-term, look at global climate change.

(a) Fit a linear model to the data using the program of Problem 2.3.6. Do three different calcu-
lations: (1) the years 1800–1950, (2) the years 1951–1977, and (3) the years 1979–2003. Of
particular interest is the slope.

(b) On the average, grape harvest dates have been getting earlier since 1800. By how many days
did the expected grape harvest date change in each of the three periods?

(c) Plot all of the data from 1800 to 2003 as points on a graph. Explain why it is a mistake to
connect the points to make a dot-to-dot graph.

(d) Add the three linear regression lines to the plot, being careful to use only the appropriate
time interval for each.

(e) What do the results appear to say about global climate change?
(f) Offer at least one possible explanation for the results that does not involve global climate

change. [Hint: Think about possible biological explanations.]

(This problem is continued in Problem 2.7.9.)

2.3.9. The National Snow and Ice Data Center has a data set on its web site that gives the
duration of ice cover for a number of Northern Hemisphere lakes dating back to the 1800s in
some cases. These data sets offer a look at global climate change that is shorter term than the
grape harvest data in Problem 2.3.8 but which has fewer confounding factors.

(a) Go to the search engine for the Global Lake and River Ice Phenology Database: http://nsidc.
org/data/lake river ice/freezethaw.html
Type a name code in the appropriate box (in capitals). Suitable lakes for this study in-
clude JGL03 (Iowa); DMR1, JJM22, JJM27, and JJM33 (Wisconsin); KMS10, KMS11,
and KMS14 (New York); GW240, GW341, GW369, GW512, and GW592 (Sweden); JK02,
JK03, JK09, JK17, JK31, JK48 (Finland); and NG1 (Russia). In the output parameter op-
tions list, choose Ice Off Date, Ice Duration, Latitude, Longitude, Lake Name, and Country
Name. In the output sort options list, choose Ice Season. Click the Submit Request button.

(b) Copy the data and paste it into a text file. Save the data with the file extension csv (comma-
delimited).
Of course you will want to look at the lake name, latitude, longitude, and country name
for context, but these columns are not part of the data to be analyzed. Open the file in a
spreadsheet program and delete all but the first and fourth columns, which give the year
and number of days of ice cover. Also delete any rows in which the ice duration is given as
−999, which means that the data is unavailable. Save the file again.

(c) Fit a linear model to the data using the program of Problem 2.3.6. Do three different calcu-
lations: (1) the full data set, (2) the years 1930–1970, and (3) the years 1970 to the present.
Of particular interest is the slope.

(d) Plot all of the data as points on a graph. Explain why it is a mistake to connect the points to
make a dot-to-dot graph.

http://nsidc.org/data/lake_river_ice/freezethaw.html
http://nsidc.org/data/lake_river_ice/freezethaw.html
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(e) Add the three linear regression lines to the plot, being careful to use only the appropriate
time interval for each.

(f) What do the results appear to say about global climate change?

(This problem is continued in Problem 2.7.10.)

2.3.10. Derive the results of the linear least squares method for the model y = mx,

m =
∑xy

∑x2 , RSS = ∑y2 − (∑xy)2

∑x2 =∑y2 −m∑xy,

by applying optimization methods from calculus to the total discrepancy function

F(m) =
(
∑x2)m2 − 2

(
∑xy

)
m+

(
∑y2) .

2.3.11. Derive the general linear least squares results (Theorem 2.3.2) by using the results for
the y = mx case.

2.4 Empirical Modeling II: Fitting Semilinear Models to Data

After studying this section, you should be able to:

• Use the least squares method to fit the linearized versions of the models z = Ae±kt and
y = Axp to data, where A, k, and p are parameters.

• Use a variant of the linear least squares method to fit models of the form y = q f (x, p) to data,
where q and p are parameters.

In Section 2.3, we learned the basic least squares method for linear models. The method can
be adapted for some nonlinear models.

2.4.1 Fitting the Exponential Model by Linear Least Squares

Taking natural logarithms of both sides of the model

z = Ae−kt (2.4.1)

changes the model equation to
lnz = lnA− kt . (2.4.2)

Now suppose we define a new set of variables and parameters by the equations

y = lnz, x = t , m =−k , b = lnA . (2.4.3)

The result is the standard linear model

y = b+mx . (2.4.4)

The algebraic equivalence of the original model (Equation (2.4.1)) and the linearized model
(Equation (2.4.4)) allows us to fit the exponential model to data using linear least squares.23

23 Equivalent models are the subject of Section 2.6.
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Algorithm 2.4.1 Linear least squares fit for the exponential model z = Ae−kt

1. Convert the tz data to xy data using y = lnz and x = t.
2. Convert the xy data to XY data using X = x− x̄ and Y = y− ȳ, where x̄ and ȳ are the

means of the x and y values, respectively.
3. Find the parameters m and b for the xy model using the linear least squares formulas:

m =
∑XY

∑X2 , b = ȳ−mx̄ . (2.4.5)

4. Calculate the parameters for the exponential model: A = eb and k =−m.

Example 2.4.1. Table 2.4.1 shows data from a radioactive decay simulation of 1,000 particles,
each of which had an 8 % chance of decaying in any given time step. The original data consists
of the time t and number of remaining particles z for each time. The xy and XY data sets were
calculated in steps 1 and 2 of Algorithm 2.4.1, with x̄ = 4.5 and ȳ = 6.542. The linear least
squares formulas (2.3.7) and (2.3.8) yield the results

m =−0.0835 , b = 6.917 ,

from which we obtain
k = 0.0835 , A = 1010 .

Figure 2.4.1 shows the data and best-fit model in both the xy and tz planes. ��

Table 2.4.1 Data sets for the exponential model in Example 2.4.1

t 0 1 2 3 4 5 6 7 8 9
z 1,000 929 855 785 731 664 616 568 515 471

x 0 1 2 3 4 5 6 7 8 9
y 6.908 6.834 6.751 6.666 6.594 6.498 6.423 6.342 6.244 6.155

X −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5
Y 0.366 0.292 0.209 0.124 0.053 −0.043 −0.118 −0.200 −0.297 −0.387
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Fig. 2.4.1 The exponential model fit to the data of Table 2.4.1 using linear least squares (a) y = b + mx,
(b) z = Ae−kt
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2.4.2 Linear Least Squares Fit for the Power Function Model y = Axp

The predation data for P. speedius (Table 2.1.1 and Figure 2.1.1) appears superficially to resem-
ble a square root graph. This suggests a model of the form

y = Axp , A, p > 0 . (2.4.6)

This model can be fit using the same linearization technique used for the exponential model.
However, we have to be careful about notation. Often a particular symbol has different meanings
in two or more formulas needed to solve a particular problem. Here, the symbol x represents
the number of prey animals in the biological setting (and hence in the model (2.4.6)), but it also
represents the generic independent variable in the generic models y = b+mx and y = mx. This
kind of duplication is unavoidable because many formulas have their own standard notation.
One way to avoid error in these cases is to rewrite the generic formulas using different symbols.
In this case, let’s use U , V , u, and v in place of X , Y , x, and y in the generic linear least squares
formulation.

Taking a natural logarithm of (2.4.6) yields

lny = lnA+ p lnx ,

which is equivalent to the linear model v = b+mu using the definitions

u = lnx , v = lny , m = p , b = lnA .

We can then formulate an algorithm for fitting a power function model using linearized least
squares.

Algorithm 2.4.2 Linear least squares fit for the power function model y = Axp

1. Convert the xy data to uv data using u = lnx and v = lny.
2. Convert the uv data to UV data using U = u− ū and V = v− v̄, where ū and v̄ are the

means of the u and v values, respectively.
3. Find the parameters m and b for the uv model using the linear least squares formulas:

m =
∑UV

∑U2 , b = v̄−mū . (2.4.7)

4. Calculate the parameters for the power function model: A = eb and p = m.

Notice that all the symbols used in Algorithm 2.4.2 are defined within the algorithm state-
ment. The meaning of a biological symbol is seldom clear from the context alone, so it is good
modeling practice to define all symbols in the statement of a model or algorithm.

Example 2.4.2. In fitting the model y = Axp to the P. speedius data from Table 2.1.1, we run
into a problem. The change-of-variables formulas u = lnx and v = lny do not work for the point
(0,0). This is not a serious problem, because (0,0) satisfies y = Axp exactly for any values of
the parameters. Omitting (0,0), we obtain the linearized least squares result

y = 2.71x0.499 . (2.4.8)

This model is plotted together with the data in Figure 2.4.2. The first plot shows the data and
model as a plot of y versus x, while the second plot shows the linearized data and model as a
plot of lny versus lnx. ��
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Fig. 2.4.2 The power function model fit to the P. speedius data [without (0,0)] using linear least squares

Check Your Understanding 2.4.1:
Construct a data table, similar to Table 2.4.1, to verify the results of Example 2.4.2. Note
that the data point (0,0) must be omitted.

2.4.3 Semilinear Least Squares

In Example 2.4.2, the parameter values A = 2.71 and p = 0.499 minimize the fitting error on
the graph of lny versus lnx. This is not the same thing as minimizing the fitting error on the
graph of y versus x. It is tempting to accept the results as optimal, but this is not necessarily
appropriate. If we want to minimize the fitting error in the original data, we must find a way to
do so without linearizing the model. For this purpose, we need to adapt the linear least squares
method to apply to what we can call semilinear models: models of the form y= q f (x, p), where
f is a nonlinear function of the independent variable x and one of the parameters, while the other
parameter appears as a multiplicative factor.24

2.4.3.1 Finding the Best A for Known p

The semilinear regression method for the model y = Axp involves two distinct mathemat-
ics problems: first we find the best A in terms of an arbitrary choice of p, and then we find
the best p. The first of these problems can be solved for any particular p by using linear least
squares on a data set that has been modified to account for the chosen value of p.

Example 2.4.3. Suppose we assume p = 0.5. Then, for each data point, we can calculate the
quantity xp exactly. Defining z = x0.5, we can rewrite the model y = Ax0.5 as y = Az. This
allows us to convert the original xy data into the zy data of Table 2.4.2. The mathematical result
for models of the form y = mx (with z playing the role of x and A playing the role of m) then
yields the slope and residual sum of squares:

A =
∑ zy

∑ z2 ≈ 2.67, RSS = ∑y2 −A∑zy ≈ 80.1.

24 This could be done with the exponential model z = Ae−kt as well, if the goal is to minimize the fitting error in
the original data. However, for reasons beyond the scope of this discussion, it is usually better to fit exponential
models in the linearized form lnz = lnA− kt rather than the original form.
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In comparison, the residual sum of squares for y = 2.71x0.499 is approximately 80.7. Thus, the
model y = 2.67x0.5 is a little more accurate on a graph in the xy plane than the best fit obtained
by linearization. ��

Table 2.4.2 Data points for the model y = Ax0.5 of Example 2.4.3

z = x0.5 0 3.16 4.47 5.48 6.32 7.07 7.75 8.37
y 0 7 11 19 19 22 25 21

z = x0.5 8.94 9.49 10.0 10.49 10.95 11.40 11.83
y 25 26 23 27 29 30 29

The very slight improvement we found in Example 2.4.3 is not enough to justify the more
complicated procedure for finding the parameter values. However, we only guessed the value
p = 0.5; what we really need is a way to find the best p.

2.4.3.2 Finding the Best p

When fitting the model y = Axp to data, we define a residual sum of squares in terms of the
parameters A and p. The goal is to choose the pair (p,A) that minimizes the residual sum of
squares. Optimization problems for two-parameter nonlinear models are usually very difficult,
but in this case we already know how to find the best value of A for any given choice of p. If
we assume that we will always use the best A, then we can think of the residual sum of squares
as a function of p only.

Formally, define a residual sum of squares function F by

F(p) = min
A

(RSS(p,A)) = RSS(p, Â(p)), (2.4.9)

where Â(p) is found as in Example 2.4.3. From the calculation in the example, we have
Â(0.5) = 2.67 and RSS(0.5,2.67) = 80.1; therefore, F(0.5) = 80.1. For any given value of
p, we have to create a modified data set and use the linear least squares formulas to get the cor-
responding F for that p. That is a lot of work, but it is a type of work for which computers are
ideally suited. The simplest way to use a computer to identify the best parameters is to calculate
a lot of points on the graph of F and identify (approximately) the smallest F from that set of
points.

Check Your Understanding 2.4.2:
Repeat the calculation of Example 2.4.3 to obtain the result F(0.4) = 63.1. This result
shows that p = 0.4 is closer to the optimal value than our original guess of p = 0.5.

Example 2.4.4. Table 2.4.3 shows some values of F(p) for the model y = Axp using the
P. speedius data from Table 2.1.1. From this table, we can see that the optimal p value
is somewhere in the interval 0.35 ≤ p ≤ 0.45. We then compute the values of F(p) for
p = 0.350,0.351,0.352, . . .0.450. These are plotted in Figure 2.4.3. By examining the list of
F values, we see that the optimal p value, to three significant figures, is 0.409, with a cor-
responding residual sum of squares of 62.9. We then obtain A by linear least squares, as in
Example 2.4.3, leading to the result

y = 4.01x0.409 , RSS = 62.9 . (2.4.10)

This new model is plotted along with that of Example 2.4.2 in Figure 2.4.4. ��
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A visual examination of Figure 2.4.4 shows the clear superiority of the semilinear least
squares method compared to the linear least squares method for power function models. The

Table 2.4.3 Some values of the residual sum of squares function F(p) for the model y = Axp using the
P. speedius data from Table 2.1.1

p 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
F(p) 92.3 71.2 63.1 66.6 80.1 102.4 132.3 168.7 210.7

0.36 0.38 0.4 0.42 0.44
60

65

70

75

p

F

Fig. 2.4.3 The minimum residual sum of squares (F in (2.4.9)) for the P. speedius predation data with the power
function model (Example 2.4.4)

semilinear method is also superior to the Lineweaver–Burk linearization that is commonly used
to determine parameters for Michaelis–Menten reactions in biochemistry.25

0 50 100 150
0

10

20

30

40

x

y

Fig. 2.4.4 The power function model fit to the P. speedius data (without (0,0)) using linear least squares
(dashed) and semilinear least squares (solid)

25 See Problem 2.4.8 for an illustration of how important this is. Other authors (see [10], for example) also state
that one should use nonlinear regression rather than using linear regression on a linearized model, but they don’t
always explain the reason carefully or present an illustrative example.
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The procedure described here works for any model of the general form y = q f (x, p), where
x is the independent variable, y is the dependent variable, and q and p are parameters.26 We
summarize the result here.

Theorem 2.4.1 (Semilinear Least Squares). Given a model y = q f (x, p) with data
points (x1,y1), (x2,y2), . . ., (xn,yn), define a function F by

F(p)=min
q

(RSS(p,q))=∑y2− [∑y f (x, p)]2

∑ f 2(x, p)
.

Let p̂ be the value of p that yields the minimum value of F. Then the minimum residual
sum of squares on the graph in the xy plane is achieved with parameter values

p = p̂ , q =
∑y f (x, p̂)

∑ f 2(x, p̂)
.

Check Your Understanding Answers

Table 2.4.4 Total discrepancy calculations for y = 0.25x with the P. speedius data

x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0.25x 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

y 0 2 7 10 9 14 21 20 25 20 30 25 29 35 38
Δy 0 0.5 2 2.5 1 1.5 6 2.5 5 2.5 5 2.5 1 2.5 3

(Δy)2 0 0.25 4 6.25 1 2.25 36 6.25 25 6.25 25 6.25 1 6.25 9

1. The total discrepancy is F(0.25) = 134.75, which is less than F(0.3) (Table 2.4.4).

Problems

2.4.1.* The data of Table 2.4.5 gives the population of a bacteria colony as a function of time.
Find the exponential function that best fits the data set using the linearization method. Plot the
linearized data with the best-fit line. Plot the original data with the exponential curve corre-
sponding to the best-fit line.

Table 2.4.5 Population of bacteria after t hours

t 0 1 2 3 4
N 6.0 9.0 13.0 21.0 29.0

2.4.2.* Use semilinear least squares with the data in Problem 2.4.1 to fit the exponential model
without linearization. Compare the parameter results from the two calculations. Plot the two
resulting models as y versus t and again as lny versus t. Discuss the results.

26 In Example 2.7.3, we will use this method with a model derived in Section 2.5.
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2.4.3. (Continued from Problem 2.3.4.)

(a) Use the semilinear method to fit the model y = Axp to the data from Problem 2.3.4 and
determine the residual sum of squares.

(b) What is clearly wrong with using the model y = Axp for this data set?

2.4.4. (Continued from Problem 2.3.5.)

(a) Use the linearization method to fit the model y = Ae−kt to the data from Problem 2.3.5.
(b) Use the semilinear method to fit the model and data from part (a).
(c) Find the residual sums of squares for the results of parts (a) and (b) on graphs of y versus t

and on graphs of lny versus t.
(d) Which is better, the linearization result or the semilinear result?

2.4.5.* Use semilinear least squares with the data in Table 2.4.1 to fit the exponential model
without linearization. Compare the parameter results with Example 2.4.1, which used the same
data. Why are the results different? Plot the two resulting models as y versus t and again as lny
versus t. Draw a reasonable conclusion from your observations.

2.4.6. (Continued from Problem 2.1.2.)

(a) Fit the model y = Axp to your P. speedius data from Problem 2.1.2 using linearized least
squares.

(b) Fit the model y = Axp to the same data using the semilinear method.
(c) Plot the model from part (a) along with the data on a graph of lny versus lnx. Repeat for the

model from part (b). Compare the visual appearances of the two plots.
(d) Plot the model from part (a) along with the data on a graph of y versus x. Repeat for the

model from part (b). Compare the visual appearances of the two plots.
(e) Describe and explain any conclusions you can draw from this set of graphs.

(This problem is continued in Problem 2.7.5.)

2.4.7. Table 2.4.6 shows data for average lengths in centimeters of Atlantic croakers (a species
of fish) caught off the coasts of three states. Use this data to fit the von Bertalanffy growth
equation,

x(t) = x∞(1− e−rt),

where x(t) is the length of the fish, x∞ is the asymptotic maximum length, and r is a positive
parameter.27 How well does the model fit the data?

Table 2.4.6 Average length in centimeters of Atlantic croakers from New Jersey, Virginia, and North
Carolina [4]

Age 1 2 3 4 5 6 7 8 9 10

NJ 30.3 31.1 32.4 34.2 35.0 34.8 37.4 36.6 36.1 37.4
VA 25.8 28.9 31.8 34.0 35.2 36.1 37.4 40.2 40.2 40.3
NC 24.6 27.3 29.7 33.1 35.2 37.2 37.8 38.4 37.7 38.1

2.4.8. Michaelis–Menten reactions are enzyme-catalyzed reactions in biochemistry. The initial
reaction rate v depends on the concentration S of the principal reactant (called the substrate),
according to the Briggs–Haldane model

27 It would be better to fit the data for individual lengths rather than averages; however, the raw data sets are
quite large and not generally available.
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v =
vmS

KM + S
, S,vm,KM > 0,

where vm is the maximum rate (corresponding to a very large substrate concentration) and KM

is the semisaturation parameter (see Section 2.6). Lineweaver and Burk rewrite the reaction rate
equation as

1
v
=

1
vm

+
KM

vm

1
S

and then fit the data to this form [9].28

(a) Derive the Lineweaver–Burk formula from the original model.
(b) Use the Lineweaver–Burk linearization to determine the parameter values using the data

in Table 2.4.7; that is, use the data to create a data set for variables y = 1/v and x = 1/S.
After fitting the model y = b+mx to this data using linear least squares, determine the
corresponding parameters vm and KM from the original model.

(c) Find the parameter values for the model using the data in Table 2.4.7 with the semilinear
least squares method.

(d) Prepare a plot that includes:

a. The data points (S,v);
b. The Briggs–Haldane curve, using the parameter values obtained in part (b); and
c. The Briggs–Haldane curve, using the parameter values obtained in part (c).

(e) Calculate the residual sum of squares for each parameter set. Discuss the results. In partic-
ular, which of the curves seems to fit the data better, and why is this the case?

Table 2.4.7 Substrate concentration S and reaction velocity v for nicotinamide mononucleotide adenylyltrans-
ferase in pig livers [3]

S 0.138 0.220 0.291 0.560 0.766 1.46
v 0.148 0.171 0.234 0.324 0.390 0.493

2.4.9. (Continued from Problem 1.1.13.)
In Problem 1.1.13, we considered the Sinclair coefficient used to compare weightlifters of dif-
ferent sizes:

C(m) = 10A[log10(m/b)]2 ,

28 A 1975 paper presents compelling evidence that other methods in use in the mid-1970s were preferable to the
Lineweaver–Burk method [2]. Unfortunately, Lineweaver–Burk was entrenched by then, and scientific progress
has failed in this case to overcome the inertia of standard practice. The Lineweaver–Burk method remains in
common usage today. The 1975 tests included an implementation due to Wilkinson of the nonlinear method
[14], which of course produced the best results with simulated data under reasonable assumptions about the
types of error in the data. There can be no question that the semilinear least squares method produces the best fit
on a plot of the original data, nor is there any reason in the world of fast computing to settle for a method that is
not as good simply because it is faster for hand computation. In general, a good understanding of the theories of
various methods for solving problems helps us to identify cases, such as this one, where older methods should
be replaced by newer computer-intensive methods.
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where m is the mass, b is the mass of the heavyweight world record holder, and A is a positive
parameter of unclear meaning. The formula is based on the assumption that the two-lift total
should fit the model

T (m) =C 10−A[log10(m/b)]2 .

(a) Although this model could be fit as a three-parameter model, which would be outside the
scope of our semilinear method, the parameter b in practice is fixed at b = 173.961 as of
this writing. The value of the parameter A should be chosen to make the model fit the data
optimally. To test this point, use the semilinear method to fit the model for T (m) to the data
in Table 2.4.8, which gives the official post-1998 world records for each weight class as of
June 2012. Report A to the nearest four decimal digits and compare with the official value
A = 0.7848.

(b) Redo Problem 1.1.13 using the new value of A. Does this change the top three spots in the
overall ranking?

Table 2.4.8 Post-1998 world records for men’s weightlifting as of June 2012, with T the total amount lifted in
two events by lifters of mass m kg

m 56 62 69 77 85 94 105 174
T 305 326 357 378 394 412 436 472

2.5 Mechanistic Modeling I: Creating Models from Biological Principles

After studying this section, you should be able to:

• Discuss the relationship between biological observations, a conceptual model, and a mecha-
nistic mathematical model.

• Discuss the conceptual model for the Holling type II predation function.
• Explain the mathematical derivation of the Holling type II predation function.

In Section 2.4, we modeled radioactive decay with an exponential model. We were able to
fit the data quite well, but the empirical justification for the model limits its explanatory value.
Would an exponential model be a good fit with a different data set for the same substance?
What about a data set that extends the total time of the experiment or a data set for a different
radioactive substance? Empirical modeling cannot answer these questions, because empirical
reasoning must begin with the data.

The alternative approach to modeling is mechanistic modeling, in which we obtain a model
from assumptions based on theoretical principles. Sometimes a mechanistic justification can be
found for a model we have already identified empirically, as we will see with our exponential
model for radioactive decay. In this case, the model gains explanatory value. In other cases, we
may be able to discover a model not previously identified empirically.

2.5.1 Constructing Mechanistic Models

Textbooks in algebra and calculus include story problems, where you have to derive mathe-
matical models from a verbal statement. These verbal statements are conceptual models, as
discussed in Section 2.2. They can be translated into mathematical statements simply by fol-
lowing some basic rules. This process is routine, in the sense that mastery of the rules is all that
is needed for it. The hard part of model construction is getting the conceptual model in the first
place—this work is done by the author of the story problem rather than the student.
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How do we write our own conceptual models? In practice, we typically use whatever we
have learned from prior experience in modeling. More fundamentally, conceptual models come
from qualitative observation and measurement of data. The observations and data have to be
generalized, and the conceptual model is obtained by restating these generalizations as fact.
As an example, we consider the development of a model for radioactive decay. Imagine that
radioactivity has only just recently been discovered. We have observations and data from ex-
perimental scientists, and we must use this information to construct a conceptual model.

Example 2.5.1. From examining data on radium decay rates, we obtain a specific observation.

Specific Observation:
All samples of radium-226 lose approximately 0.043 % of their number in 1 year.
By itself, this observation is interesting enough to suggest more studies with other time

intervals and other radioactive isotopes. All such studies yield similar observations, except that
the percentage loss and time unit are different for each. Taken together, these experiments allow
us to write a much stronger statement.

General Observation29:
The percentage of particles lost by a given radioactive substance in one time unit is approx-

imately constant.

Idealizing the general observation yields a mechanistic assumption. In this simple example,
only one mechanistic assumption is needed to complete the conceptual model.

Conceptual Model 1:
The fraction of particles lost by a given radioactive substance in one time unit is fixed.

This conceptual model differs only slightly from the corresponding general observation: the
latter uses the qualifier “approximately,” while the former reads as a statement of fact. Models
are not necessarily correct, but they are always specific.

Now that we have a conceptual model, we need only rewrite it in mathematical notation.

Mathematical Model 1:
If y(t) is the amount of radioactive material at time t, then

y(t)− y(t+ 1)
y(t)

= K , (2.5.1)

for some K > 0.

Equation (2.5.1) is a direct translation of the conceptual model. The quantity y(t)− y(t + 1)
is the number of particles lost between time t and time t+1. Dividing this quantity by y(t) gives
the fraction of particles lost between time t and time t+1. It is easier to work with fractions than
percentages, so we simply assign the parameter K to be the constant fraction lost in one time
unit. In a specific example, we need to know the value of K; otherwise we keep it unspecified
so that we can apply the mathematical model to any radioactive substance.

Equation (2.5.1) is a discrete mathematical model for radioactive decay. We can rearrange
the model so that it makes a prediction about the number of particles at time t + 1:

y(t + 1) = (1−K)y(t) .

Given y0 particles at time 0, the model predicts

29 The simulated experiment in Example 2.4.1 was based on this general observation, with 8 % used as the
percentage for the hypothetical substance.
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y(0) = y0 , y(1) = y0(1−K), y(2) = y1(1−K) = y0(1−K)2 , · · · .

There is a clear pattern—the number of particles at time t is30

y(t) = y0(1−K)t . (2.5.2)

��
Note that the mathematical model in Example 2.5.1 did not come directly from the data of

one or more experiments, but indirectly from a set of assumptions suggested by the results of
many experiments. These assumptions are the conceptual model.

The result (2.5.2) of the discrete model in Example 2.5.1 is not the usual exponential func-
tion y = y0e−kt ; however, we can obtain the exponential function model by means of algebraic
manipulation.

Example 2.5.2. Beginning with the model y = y0(1−K)t , we can replace the factor 1−K with
the factor e−k. There is no harm in doing this; K is an arbitrary parameter, and it is alright to
use a different arbitrary parameter if we prefer the new one. The advantage of k over K is that
we can then write the model as y = y0(e−k)t = y0e−kt . If we already know the value of K for a
specific substance, we can use the equation 1−K = e−k to calculate the corresponding value of
k. Solving for k gives us the formula

k =− ln(1−K) (2.5.3)

which gives the exponential rate parameter in terms of the fraction of particles lost in one time
unit. For the simulation used for Example 2.4.3, we have K = 0.08, so k = 0.0834. The empirical
result k = 0.0835 obtained in the example agrees very nicely with this theoretical result. ��

The model y = y0e−kt of Example 2.5.2 can also be obtained using calculus.

Example 2.5.3. To derive the model y = y0e−kt directly, we need a more sophisticated concep-
tual model. Suppose we could measure the instantaneous rate of radioactive decay (particles
per time) rather than the average rate of decay (particles in one unit of time). Because equal
fractions of particles decay in equal units of time, we expect a sample of 100 atoms to have
twice as many decays in a given amount of time as a sample of 50 atoms. Thus, the rate of
decay for a sample should be proportional to the sample size.

Conceptual Model 2:
In any radioactive decay process, the rate of decay is proportional to the amount of the

substance.

Translating this into mathematical notation gives us the corresponding mathematical model.

Mathematical Model 2:
If y(t) is the amount of radioactive material at time t, then

dy
dt

=−ky (2.5.4)

for some k > 0.

Note that we can identify the family of functions y = y0e−kt as the functions that satisfy
(2.5.3).

30 Formally, this result can be proved by mathematical induction.
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To understand the meaning of the parameter k, we can rewrite the model as

− 1
y

dy
dt

= k . (2.5.5)

Thus, k is the decay rate −dy/dt divided by the amount y, which is called the relative rate
of decay. An alternative statement of Conceptual Model 2:

The relative decay rate of a radioactive substance is constant. ��
The derivation of Example 2.5.3 is preferable to that of Examples 2.5.1 and 2.5.2 on general

principles:

Conceptual models for continuous processes should be based on rates of change rather
than discrete change.

2.5.2 Dimensional Analysis

Dimensional analysis is a powerful tool that simplifies the construction of mathematical models.
The idea is that all models must be dimensionally consistent; colloquially, “You can’t add apples
to oranges.” There are three requirements for dimensional consistency.31

Rules for Dimensional Consistency

1. Quantities can be added together or set equal to each other only if they have the same
dimension.

2. The dimension of a product is the product of the dimensions.
3. The argument of a transcendental function, such as a trigonometric, exponential, or

logarithmic function, must be dimensionless.

Example 2.5.4. The circumference of a circle of radius r has length 2πr. The ratio of circum-
ference to radius is 2π , which is, by definition, the radian measure of a full circle. The radian
measure of any other angle is similarly defined as the ratio of the length of the corresponding
circular arc to the radius of the circle. Because both circumference and radius are lengths, the
radian measure of an angle is dimensionless. The rule that arguments of trigonometric functions
must be dimensionless suggests that these arguments should be given in radians. ��
Example 2.5.5. In functions such as sin kt, the argument does not necessarily correspond to a
geometric angle, so the term “radians” does not really apply. Nevertheless, dimensional consis-
tency requires the quantity k to have dimension 1/time. ��
Example 2.5.6. The mathematical model dy

dt = −ky must be dimensionally consistent. The in-
dependent variable t is a time. The dependent variable y can be considered to be either a mass
or a count of atoms; to be specific, let’s take it to be a mass. Hence, the derivative dy/dt has
dimension mass per time. The right side of the model must also be mass per time, and so the
dimension of k must be 1/time.

31 Note the distinction between dimensions, such as length, and the associated units of measurement, such as
meters, feet, and light-years.
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The related mathematical model, y(t) = y0 (1−K)t , also has to be dimensionally consistent,
so the parameter K and the variable t must both be dimensionless. In general, time is dimen-
sionless in any discrete model. ��

2.5.3 A Mechanistic Model for Resource Consumption

We are now ready to develop mathematical models for resource consumption, which we hope
will explain the differences between the predation data for the two species of predator intro-
duced in Section 2.1.

Consider a situation in which an organism is placed in an environment with a fixed concen-
tration of resource x. Since the organism consumes the resource, it is therefore necessary for the
resource to be replenished. We measure the rate y with which we have to replenish the resource;
this is equivalent to measuring the rate at which the resource is being consumed. Our goal is
to construct a mathematical model that relates the intake rate y to the resource concentration x.
Note that it doesn’t make any difference how the organism obtains the resource. The organism
could be a predator that feeds by hunting, an herbivore that feeds by grazing, or a single cell
that feeds by absorbing nutrients through its surface.

To develop a conceptual model for this experiment, it helps to create a narrative version that
appeals to human experience. Imagine yourself as the organism in the experiment. You live
alone in a building with numerous hiding places that could contain servings of food. A total
of x servings of food are distributed randomly throughout the building. Each time you eat a
serving, a restaurant worker hides another serving in some randomly chosen location within
the building, thereby keeping the food concentration at a constant level.32 In this setting, our
question is “How much do you eat per unit time in an environment with a constant food supply
x per unit area?”33 We denote the amount eaten per unit time by y. Thus, we seek a model to
predict y as a function of x.

We begin with the simplest conceptual model.

Example 2.5.7. You have to get to the food in order to eat it. For the simplest conceptual model,
we imagine that you continually search the building, eating the food as you find it. It seems
reasonable that you will search some fixed amount of space per unit of time. The amount of
space you can search in one unit of time could vary a lot, depending on the size of the rooms
and the possible number of hiding places. However, it does not depend on the amount of food
available. Every experiment in a given building with a given person can use the same search rate,
regardless of x. Thus, the search rate is a parameter, which we designate as s. The food density
x could be measured in servings per square meter, and the intake rate y could be measured in
servings consumed per hour. The rate at which you locate food should be the product of the
food density and the search rate; thus, we have the model

y = sx . (2.5.6)

Note that the model also makes sense if we replace the quantities by their dimensions:

food
time

=
area
time

× food
area

. �

32 Of course, this does not happen in a real feeding scenario; however, this is an assumption in the conceptual
model. In practice, this discrepancy between the real experiment and the conceptual model causes difficulties in
the measurement of the parameters.
33 Note that x need not be very large. In our human version, we could have a restaurant the size of a shopping
mall with an average of one serving of food in each of the stores.
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2.5.4 A More Sophisticated Model for Food Consumption

We now have a mechanistic formulation for the linear model that we used in Section 2.3 for
P. steadius. The model is obviously not useful for P. speedius because the plot of the data
(Figure 2.1.1) is not approximately linear. We must conclude that the conceptual model of
Example 2.5.7 is missing some biologically significant features. The crucial step in finding a
better model for P. speedius is the search for a more realistic conceptual model.

Example 2.5.8. The model (2.5.6) is based on the assumption that you spend all of your time
searching for food. This might be the case if food is extremely scarce. However, if you live in
a buffet restaurant, where food is plentiful and easy to find, you spend only a tiny fraction of
your time searching for it. You don’t keep eating just because you can find more food! Instead,
you spend nearly all of your time digesting and hardly any of it searching for more. The time
required for digestion is a feature of the actual experiment that our first conceptual model lacks.
Run another BUGBOX-predator trial with P. speedius and a large prey density. Notice that
the predator spends only a small portion of the experiment time searching, because it pauses
whenever it locates prey.

We need a conceptual model in which time is partitioned into two types: search time and
“handling” time. With this distinction between two types of time, our first model is no longer
dimensionally consistent; the “time” in y is total time, while the “time” in s is search time. Our
dimensional equation needs an additional factor to account for the distinction:

resource
total time

=
search time
total time

× area
search time

× resource
area

.

Using f to denote the fraction of time spent searching, we have

y = f sx . (2.5.7)

If f is a parameter, like s, then we are done. However, this is not the case. We’ve already
observed that f is approximately 1 when the resource is scarce, but approximately 0 when it is
plentiful. Thus, f is a second dependent variable. We therefore need a second equation. From
our conceptual model,

search time+ handling time = total time.

Dividing by total time, we have

search time
total time

+
handling time

total time
= 1 .

It seems reasonable that the amount of handling time should be proportional to the amount of
resource consumed, so we define a new parameter h to be the time required to handle one unit
of the resource. Now we can think of the dimensional equation as

search time
total time

+

(
handling time

resource
× resource

total time

)
= 1.

In symbols, this is
f + hy = 1 . (2.5.8)

Equations (2.5.7) and (2.5.8) are a pair of equations for a pair of dependent variables. Thus,
we have the right number of equations for a complete model. Substituting from Equation (2.5.8)
into (2.5.7), we have
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y = (1− hy)sx = sx− shxy ,

or
y+ shxy = sx .

Thus, we arrive at the model
y =

sx
1+ shx

. (2.5.9)

One instance of this model is shown in Figure 2.5.1. The model shows the right general shape
to fit the P. speedius data. ��
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Fig. 2.5.1 Side-by-side comparison of (a) the Holling type II model y = x/(1+x) and (b) the predation data for
P. speedius, showing the same general shape

Equation (2.5.9) is one form of the model known in ecology as the Holling type II predation
function and in microbiology as the Monod growth function. In its current form, the model is
not semilinear, so we cannot use the method of Section 2.4 to fit it to data. In Section 2.6, we
obtain the more common semilinear form of the model and fit this form to the P. speedius data.
The model is also mathematically equivalent to the Briggs–Haldane model used to determine
reaction rates for Michaelis–Menten reactions.

2.5.5 A Compartment Model for Pollution in a Lake

Suppose we want to model the concentration of pollutants in a lake. There is a general modeling
framework, called compartment analysis, that is used when the primary structure of the model
consists of accounting for changes in one or more quantities. For simplicity, we consider a
single body of water and a single pollutant. We can think of the amount of pollutant in two
ways, as the total mass Q and as the concentration C, which is the mass per unit volume. It
is easier to think of mass while doing the accounting, but it is more meaningful to think of
concentration if we want to understand the biological significance of the pollution.

The idea of compartment analysis is that the net rate of increase (or decrease) of a quantity is
the sum of the various processes that work to increase or decrease that quantity. In other words,
we have

net rate of
increase

=
input
rate

− output
rate

+
production

rate
− decay

rate
,

(2.5.10)
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where each of the rates is expressed as mass of pollutant per unit time. Lakes are continually
fed by some streams and drained by others, so we can expect to have inflow and outflow of
water. If the inflow is polluted, then the rate equation will include an input rate of pollutant,
which we will have to express in terms of basic quantities. The outflow will, of course, carry
some of the pollutant along with the water. There is probably no mechanism for production of
pollutants within the lake, but there may be decay because of chemical instability or a chemical
reaction with something else in the water. The term “decay” should be broadly interpreted as
any process that removes pollutant from the lake other than flow with the water, which could
include processes whereby the pollutant is absorbed onto rocks or sinks into the sediment. The
exact mechanism is unimportant as long as we can make a simple assumption about the rates
of the processes collected together as pollutant decay.

Real lakes are complicated, with multiple input streams that vary in flow rates as the seasons
change and the weather varies between dry and rainy. The concentration of pollutant is higher in
areas near polluted inflow streams and lower in areas near clean inflow streams, so C depends on
location as well as time. There may be multiple decay processes, some involving complicated
chemical reactions. In some circumstances, we may want to account for all of these details,
but our model will be of more general value if we keep it simple. We therefore adopt a simple
conceptual model. Suppose we have a tank in a laboratory playing the role of the lake, and we
imagine the simplest experiment we can do that might be similar to what happens in a real lake.
Our conceptual model includes the following assumptions:

1. The water in the tank is stirred so that there are no spatial variations in concentration.
2. Any decay processes are proportional to the amount present, as in radioactive decay. This

assumption requires a proportionality constant, which we will call R.
3. The input and output flow rates are constant in time and equal so that the volume in the tank

is constant. We take V to be the volume and F to be the flow rate (volume/time).
4. The input stream has a fixed pollutant concentration Cin (mass/volume).

The net rate of increase is simply dQ/dT , where we are using T for time to facilitate some
additional analysis that will appear in Section 2.6. Since Q is a mass, we know by the re-
quirement of dimensional consistency that each of the other terms in the equation must have
the dimension mass/time. This observation helps us quantify the rates of the three nonzero
processes on the right side of the equation. The decay rate, by assumption 2, is RQ, with R
having the dimension of 1/time. The input rate of pollutant should be larger for larger water
flow rates as well as for larger concentrations. The product FCin has a dimension of (vol-
ume/time)*(mass/volume) = (mass/time), so this quantity has the right dimension to be the
input rate. Similarly, the output rate is FC(T ), where the assumption of adequate mixing jus-
tifies equating the concentration of the pollutant in the output stream with that in the lake.
Combining all of these formulas, we have the equation

dQ
dT

= FCin−FC(T )−RQ(T) .

This equation is not quite what we need, because it contains both of the related quantities
Q and C. Given that C is mass of pollutant per volume, these quantities are related by the
equation C(T ) = Q(T )/V . We can use this to eliminate either of the variables; given that the
concentration is of greater biological importance, we replace Q by VC and divide by V to get

dC
dT

=
F
V

Cin−
F
V

C(T )−RC(T) . (2.5.11)

We will do some preliminary analysis with this model in Problem 2.6.8.
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2.5.6 “Let the Buyer Beware”

As noted in Section 2.2, all mathematical models come with a disclaimer. Results obtained from
their analysis are only guaranteed to be true for the corresponding conceptual models. Whether
they are also true for the real-world setting depends on the quality of the approximation process,
which is non-mathematical. Each of the models developed in this section requires validation to
justify application to a real problem. The radioactive decay model has been validated innumer-
able times and is accurate for any macroscopic quantity to within any degree of accuracy that
has been achieved by any experiment. Likewise, Figure 2.5.1 serves as a qualitative validation
of the Holling type II predation model for the BUGBOX data, though similar data is needed to
validate the model for a real biological setting. The pollutant model (2.5.11) also requires ex-
perimental validation. It would be easy to validate it for a laboratory experiment, but that would
not guarantee its validity for use as a model of pollutants in a real lake. Most likely, historical
data collected to monitor improvement in polluted lakes would serve for validation, but this
would depend on the extent to which the assumptions in the conceptual model are actually true
for that lake. A lake that is poorly mixed and has highly variable pollutant inflow and water
flow rates will behave less like the model than one that has steady currents and nearly constant
pollutant inflow and water flow rates.

Problems

2.5.1. Two possible models for the dynamics of a renewable resource (biotic or abiotic) are

dx
dt

= 0.1− xy
1+ x

and
dx
dt

= 0.1x− xy
1+ x

,

where x(t) is the amount of resource present at time t and y is the number of consumers.

(a) For each of these models, describe a mechanism that accounts for the growth of the resource
in a way that is consistent with the model.

(b) Explain the assumption the models make about the consumers.

2.5.2. The populations x(t) and y(t) of two interacting species are modeled using the equations

dx
dt

= ax+ bxy ,
dy
dt

= cx+ dxy ,

where a, b, c, and d are parameters, not necessarily positive.

(a) Suppose the species are herbivores that compete for a common plant resource. Which of the
four parameters should be positive and which negative? Explain.

(b) Repeat (a) for the case where x is an herbivore and y is a predator that eats the herbivore.

Problems 2.5.3–2.5.8 are based on models for a chemostat and an SIR disease.

• A chemostat is a device that grows bacteria in a steady environment by continuously adding
fresh nutrient solution at rate Q and removing the whole mixture at the same rate. One
possible model for a chemostat is given by the equation

dN
dT

= RN

(
1− N

K

)
−QN , R,K,Q > 0 ,
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where N is the population of bacteria at time T , R is the maximum bacterial growth rate,
K is the maximum population that the chemostat can support, and Q is the flow rate of the
mixture.

• The SIR disease model tries to predict the sizes of three subgroups—Susceptible, Infective,
and Recovered—of a population of constant size N subjected to a disease pathogen. The
model is

dS
dT

=−pBSI ,
dI
dT

= pBSI−KI ,
dR
dT

= KI , B,K > 0 , 0 < p ≤ 1,

where S, I, and R are the sizes of the three subgroup populations at time T , B is a parameter
that quantifies the rate at which encounters among population members occurs, p is the
probability of transmission in an encounter between an infected and a susceptible individual,
and K is the recovery rate parameter.

2.5.3. Explain the chemostat model by comparing it with the exponential growth model

dN
dT

= RN .

Specifically,

(a) What is the effect of the extra factor 1−N/K in the growth term?
(b) What physical process in the chemostat is represented by the term −QN?
(c) What assumption does the algebraic form −QN make about the process it describes?
(d) Fluid flows out of the chemostat at the rate Q, but the model does not include the volume as

a dependent variable. Why not?

2.5.4. Explain the SIR model. Specifically,

(a) Why is the change in S proportional to both S and I?
(b) Why do the terms pBSI and KI appear in two different equations, and why are they positive

in one instance and negative in the other?
(c) The model

dR
dT

= KR

represents exponential growth of R. Why does

dR
dT

= KI

not represent exponential growth?
(d) Does the model clearly limit how large R can be? What do you expect will happen to I after

a long time?

2.5.5. Consider a conceptual model similar to the chemostat model, but with two differences:

1. There is no fluid flow.
2. There is a predator that feeds on the bacteria. Assume that the population of predators is

fixed at P and that the rate of predation per predator is given by the Holling type II model:

y(N) =
sN

1+ shN
, s,h > 0 .

Write down the mathematical model that corresponds to this conceptual model.
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2.5.6.* Suppose scientists discover that immunity to a disease is lost at a rate proportional to
the recovered population with rate constant Q. Rewrite the SIR model equations to include this
additional mechanistic process.

2.5.7. Suppose the original SIR model is changed by including vaccination of susceptibles at a
rate VS, where V is the vaccination rate constant. Rewrite the model equations for this revised
conceptual model.

2.5.8. For the chemostat model:

(a) Explain how we know that the dimension of K is the same as the dimension of N.
(b) Explain how we know that the dimension of R is 1/time.
(c) Determine the dimension of Q.

2.6 Mechanistic Modeling II: Equivalent Forms

After studying this section, you should be able to:

• Identify equivalent forms of a mathematical model.
• Convert a mathematical model to dimensionless form, given appropriate choices for refer-

ence quantities.
• Explain why equivalent forms do not always produce equivalent parameter values when fit

to a data set.

In physics, almost everyone chooses the same way to write Newton’s Second Law of Mo-
tion: F = ma. The model could be written in other ways, but this form has become standard.
This uniformity makes it easy for a reader to compare material written by different authors. In
contrast, uniformity of model appearance is rare in biology. Different authors inevitably choose
different ways to write the same model. Hence, the reader who wants to understand mathemat-
ical models in biology needs to develop the skill of discriminating between different models
and different forms of the same model. This is a skill that mathematicians take for granted, but
it is problematic for most students. In this section, we consider different ways of writing the
same model, working our way up from forms that differ only in notation to forms with more
substantive differences.

2.6.1 Notation

Any given model can be written with a variety of notations. Sometimes these differences are
due to the different settings in which the model can arise; other times, they are due simply to
lack of standardization.

Example 2.6.1. Many important biochemical reactions are of the Michaelis–Menten type. The
initial rate of reaction depends on the concentration of the principal reactant, called the sub-
strate. In Chapter 7, we derive the well-known Briggs–Haldane model that relates the rate of
reaction and substrate concentration. This model is generally written as

v0 =
vmax[S]
KM +[S]

, [S],vmax,KM > 0 ,
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where v0 is the initial rate of the chemical reaction, [S] is the concentration of one of the
chemical reactants, vmax is the initial rate of chemical reaction for infinite [S], and KM is called
the semisaturation parameter.

The Monod growth function in microbiology is used to model the rate of nutrient uptake by
a microorganism as a function of the concentration of nutrients in the environment. The Monod
model, in one of several common notations, is

r =
qS

A+ S
, S,q,A > 0 ,

where r is the rate of nutrient uptake, S is the concentration of the nutrient, q is the maximum
uptake rate, and A is the semisaturation parameter.

The Briggs–Haldane and Monod models were designed for different contexts. Although
the interpretation of each model is based on its own context, the models are mathematically
identical, differing only in notation. ��

The notation for the Briggs–Haldane equation is now standard, while the Monod growth
function has almost as many systems of notation as the number of authors who have written
about it. Although the two formulas use different symbols, they are identical in mathematical
form. Both formulas say that the dependent variable is a rational function of the independent
variable, with the numerator of the form “parameter times independent variable” and the de-
nominator of the form “parameter plus independent variable.” If we focus on the symbols, we
are misled by the apparent differences. If we focus on the roles of the symbols, we see that the
formulas are identical. Few symbols in mathematics have a fixed meaning. Even π , which is the
universal symbol for the ratio of circle circumference to circle diameter, is occasionally used
for other purposes. This lack of standardization makes it necessary to provide the meaning of
each symbol for any given context.

2.6.2 Algebraic Equivalence

Occasionally, it is possible to write the same model in two different ways by performing alge-
braic operations. This is most common with formulas that include a logarithmic or exponential
function.

Example 2.6.2. In fitting an exponential model by linearization in Section 2.4, we converted the
model

z = Ae−kt

to the form
lnz = lnA− kt .

These forms are equivalent in the sense that they both produce the same z values for any given
t value. ��
Example 2.6.3. A certain problem in the life history of plants eventually reduces to the algebraic
equation

Pe−P = e−R ,

where R is the independent variable and P is the dependent variable. Hence, the formula de-
fines P implicitly in terms of R. Various algebraic operations can be performed to change this
equation. For example, we can multiply by eP and eR to obtain the equation
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PeR = eP .

We can then take the natural logarithm on both sides, obtaining

lnP+R = P .

Further rearrangement yields
P− lnP = R .

All of these forms are algebraically equivalent, although they appear different at first glance. ��
None of the formulas in Example 2.6.3 allows us to solve algebraically for P. The choice

among them is a matter of taste. I prefer the last one, because that form allows us to graph the
relationship by calculating values of R for given values of P.

2.6.3 Different Parameters

More subtle than differences in algebraic presentation are differences resulting from parameter
choices. Sometimes it requires some algebraic manipulation to see that two similar models are
actually equivalent.

Example 2.6.4. In Section 2.5, we developed the Holling type II model

y(x) =
sx

1+ hsx
, x,s,h > 0 , (2.6.1)

for the relationship between the number of prey animals eaten by a predator in a unit amount of
time (y) and the number of prey animals available in a specific region (x), where s is the amount
of habitat that a predator can search per unit time and h is the time required for the predator to
process one prey animal. The same model can also be written as

y(x) =
qx

a+ x
, x,q,a > 0 , (2.6.2)

where the parameters q and a are different from the original s and h. The functions in (2.6.1)
and (2.6.2) are mathematically different, so the models are not identical. However, the models
represented by the functions are equivalent if we define the parameters in (2.6.2) by q = 1/h
and a = 1/(hs). Note that the Holling type II model is also equivalent to the Briggs–Haldane
and Monod models, with yet another context. ��

Check Your Understanding 2.6.1:
Substitute q = 1/h and a = 1/(hs) into (2.6.2) and simplify the result to obtain (2.6.1).

Each of the equivalent forms (2.6.1) and (2.6.2) is preferable from a particular point of
view. Form (2.6.2) is preferable from a graphical point of view, because the parameters q and
a indicate properties directly visible on the graph (see Problem 1.1.10). It has the additional
advantage of being semilinear (as defined in Section 2.4), so we can fit it to empirical data
by the semilinear least squares method.34 Form (2.6.1) is better from a biological point of
view, because it allows us to study the effects of search speed and maximum consumption rate
separately.

34 See Example 2.7.2.
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2.6.4 Visualizing Models with Graphs

The appearance of a graph depends on the ranges chosen for the variables. In making a choice, it
is important to have a purpose in mind. Consider three instances of the predation model (2.6.2):

y1 =
2x

0.5+ x
, y2 =

2x
2+ x

, y3 =
0.5x
2+ x

.

If our purpose is to see what effect the different choices of q and a have on the graph, we should
plot the three models together, as in Figure 2.6.1a. But suppose instead that we want to plot
each curve separately in a way that best shows the behavior of the function. The ranges chosen
for Figure 2.6.1a look best for y2, so we plot this curve with the same ranges (Figure 2.6.1d).

0 2 4 6 8 10
0

0.5

1

1.5

2

x

y

a

0 0. 5 1 1. 5 2 2. 50

0.5

1

1.5

2

x

y

b

0 2 4 6 8 10
0

0.125

0.25

0.375

0.5

x

y

c

0 2 4 6 8 10
0

0.5

1

1.5

2

x

y

d

Fig. 2.6.1 The model y(x) = qx/(a + x), with (q,a) values of (2,0.5) (dashed), (2,2) (solid), (0.5,2) (dash-
dotted)

The function y3 has a much lower maximum value than y2, so we might choose a narrower
range for the vertical axis (Figure 2.6.1c). On the other hand, most of the variation in y1 occurs
on the left side of Figure 2.6.1a, so we might choose a narrower range for the horizontal axis
(Figure 2.6.1b). Notice that the three individual graphs are now identical, except for the numbers
on the axes.
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2.6.5 Dimensionless Variables

Look again at Figure 2.6.1. Notice that the vertical axis range is 0 ≤ y ≤ q for each of the
single-curve plots. Similarly, the horizontal axis range for each of the curves is 0 ≤ x ≤ 5a.
We can make use of this observation to produce one plot with axis values that are correct for
these three cases, and all others as well. One way is to incorporate the parameters q and a into
the axis values (Figure 2.6.2a). Alternatively, we could incorporate the parameter values into
the variables themselves, as in Figure 2.6.2b.

The quantities y/q and x/a are dimensionless versions of the original quantities y and x.
This means that they represent the same things (food consumption rate and food density, re-
spectively), but are measured differently. Where y is the food consumption rate measured in
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Fig. 2.6.2 The model y(x) = qx/(a+ x), using two different labeling schemes: (a) the factors a and q are in the
axis values; (b) the factors a and q are in the axis labels

terms of some convenient but arbitrary unit of measurement (prey animals per week or grams
per day, for example), y/q is the food consumption rate measured as a fraction of the maximum
food consumption rate q. Where x is the nutrient concentration in a convenient but arbitrary
unit, x/a is the nutrient concentration relative to the semisaturation concentration a.

2.6.6 Dimensionless Forms

The quantities y/q and x/a have an algebraic benefit as well as a graphical benefit. To see this
benefit, we define dimensionless variables Y and X by35

Y =
y
q
, X =

x
a
. (2.6.3)

Rearranging these definitions yields substitution formulas:

y = qY , x = aX . (2.6.4)

Now we replace y and x in (2.6.2) using the formulas of (2.6.4). This yields the equation

35 In this text, we will usually adopt the practice of using one case for all of the original variables in a model and
the opposite case for the corresponding dimensionless variables. Other systems, such as those that add accent
marks for either the dimensional or the dimensionless quantities, have greater flexibility but other disadvan-
tages. Distinguishing by case has the advantage of easy identification of corresponding quantities without the
clumsiness of accent marks.
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qY =
qaX

a+ aX
. (2.6.5)

Removing common factors yields the dimensionless form of the predation model:

Y =
X

1+X
. (2.6.6)

The graph of the dimensionless model is the same as Figure 2.6.2b, except that the axis labels
are X and Y instead of x/a and y/q. The dimensionless variables measure quantities in terms
of units that are intrinsic to the physical setting. The statement y = 0.5 cannot be understood
without a unit of measurement or a value of q for comparison. The statement Y = 0.5 can
immediately be understood as a predation rate that is half of the maximum predation rate.

Example 2.6.5. Consider the energy budget model from Example 1.5.1:

q = ax2 − bx3 , (2.6.7)

where x is the length of an organism, q is the surplus energy available for growth or repro-
duction, and a and b are parameters. Suppose we want to obtain a dimensionless form for this
model. One way to do this is to identify quantities made from the parameters that have the same
dimensions as x and q. We would first have to find the dimensions of a and b using the rules for
dimensional consistency introduced in Section 2.5.

An alternative method is to assume a substitution formula of the form

dimensional variable = dimensional reference quantity × dimensionless variable

using an unknown dimensional reference quantity, which can be chosen later. With this in mind,
we write the substitution formulas

q = qrQ, x = xrX ,

where Q and X are to be the dimensionless forms of q and x, and qr and xr are the yet-to-be-
determined reference quantities. With these substitutions, the model becomes

qrQ = ax2
r X2 − bx3

r X3 .

The three terms in this equation must all have the same dimension. Since Q and X are dimen-
sionless, this means that qr, ax2

r , and bx3
r all have the same dimension as q. At this point, the

choices of qr and xr are free, so we can either choose them directly or we can specify two equa-
tions that they must satisfy. The simplest option is to make all three coefficients equal. Thus,
we have

qr = ax2
r = bx3

r .

From these equations, we get the results

xr =
a
b
, qr =

a3

b2 . (2.6.8)

Given these choices, the final dimensionless model is

Q = X2 −X3 . (2.6.9)

��
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Differential equation models can also be nondimensionalized. This requires substitution
formulas for the independent variable of derivatives. It is easiest to write these substitution
formulas in terms of the differentials.

Example 2.6.6. Consider the differential equation

dy
dt

=−ky .

We can define new variables Y and T by

Y =
y
y0

, T = kt .

These formulas corresponds to the differential substitution formulas dy = y0 dY and dT = k dt,
so we have the substitution formulas

d
dt

= k
d

dT
,

dy
dt

= ky0
dY
dT

.

The final result is
dY
dT

=−Y . (2.6.10)

��
Dimensionless models are not always parameter-free like (2.6.6), (2.6.9), and (2.6.10), but

they always have fewer parameters than the original dimensional model. That alone makes
them preferable for model characterization. Sometimes making a model dimensionless provides
valuable insight into the behavior of the model, even before any analysis is performed.36

Problems

2.6.1. Derive (2.6.2) from (2.6.1). In so doing, find the algebraic formulas that define h and s in
terms of the parameters q and a.

2.6.2. Explain the graphical significance of the parameter a in the model

y =
qx

a+ x
.

[Hint: What is y if you set x = a?]

2.6.3.* Rewrite the model y = y0e−kt in dimensionless form by choosing appropriate dimen-
sionless quantities to replace y and t.

2.6.4. Create a set of four plots similar to Figure 2.6.1 using the functions

y1 =
4x

2+ x
, y2 =

2x
2+ x

, y3 =
2x

4+ x
.

Your plots of the individual functions should be identical to those of Figure 2.6.1, except for
the numerical values on the axes.

36 See Chapter 7.
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2.6.5.(a) Redo the nondimensionalization of the energy budget model q = ax2 − x3 using as
reference quantities the value x� that maximizes q and the corresponding maximum value
q� = q(x�).

(b) Create a plot of the model q = ax2 − x3 similar to Figure 2.6.2, using the same reference
quantities as part (a).

2.6.6. (Continued from Problem 1.5.3.)
Redo Problem 1.5.3, but nondimensionalize the function in part (c) before solving the optimiza-
tion problem in part (d).

2.6.7. (Continued from Problem 1.6.7.)
Repeat Problem 1.6.7, but without assuming r = 1. Instead, replace the quantities x(t), z(t),
and s using x = YX , z = YZ, t = T/r, and s = rS and determine the optimal jumping point
X� in terms of the dimensionless swim speed S. Note that the key equations for the model are
z2 = x2 +Y 2 and dx/dt = r, which are used to determine the rate of change of z with respect
to t while running, and dz/dt = s, which defines the rate of change of z with respect to t while
swimming.

2.6.8.* In Section 2.5, we derived the model

dC
dT

=
F
V

Cin − F
V

C(T )−RC(T )

for the concentration C(T ) of pollutant in a lake of volume V , where F is the flow rate of water
in and out of the lake and R is the decay rate of the pollutant. Nondimensionalize the differential
equation using Cin for the reference concentration and V/F for the reference time. Your model
will contain one dimensionless parameter. Explain the biological meaning of that parameter.

Problems 2.6.9–2.6.11 use the chemostat and SIR models that were introduced in the Sec-
tion 2.5 problem set.

2.6.9.(a) Dimensionless variables for the chemostat model can be defined by

n =
N
K

, t = RT .

Use these definitions to write appropriate substitution formulas to replace N and T in the
model.

(b) Obtain a dimensionless model by making the substitutions for N and T . Note that you will
have to divide through by RK so that the left side of the model will be dn/dt. The last term
of the equation should include a dimensionless parameter q, which you will need to define.

2.6.10.(a) Determine the dimension of B and the dimension of K in the SIR model. Show that
the quantities

s =
S
N

, i =
I
N

, t = KT

are dimensionless. (Note that p is dimensionless.)
(b) Use the definitions of s, i, and t to obtain substitution formulas for S, I, and d/dT .
(c) Use the substitution formulas of part (b) to derive a dimensionless model for the variables

s and i. (You need not consider the R equation, as the first two form a self-contained model
and R = N − S− I.) Your model should include a single dimensionless parameter, b, which
represents the rate of spread of the infection.
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2.6.11. An SI epidemic model is similar to an SIR epidemic model, except that recovered indi-
viduals are assumed to be susceptible again. The model can be written as

dS
dT

=−pBSI+KI,
dI
dT

= pBSI−KI,B,K > 0, 0 < p ≤ 1 ,

where S and I are the sizes of the subgroups at time T , B is the encounter rate parameter, p is
the transmission probability, and K is the recovery rate parameter.

(a) Let N = S+ I. Show that dN/dT = 0.
(b) Use the fact that N is constant to eliminate the variable S from the I equation. The result is

a model consisting of a single equation for I with four parameters (p, B, K, and N).
(c) Determine the dimension of B and the dimension of K. Show that the quantities

i =
I
N

, t = KT

are dimensionless. (Note that p is dimensionless.)
(d) Use the definitions of i and t to obtain substitution formulas for I and d/dT .
(e) Use the substitution formulas of part (c) to derive a dimensionless model for the variable i.

Your model should include a single dimensionless parameter, b, which represents the rate
of spread of the infection.

2.7 Empirical Modeling III: Choosing Among Models

After studying this section, you should be able to:

• Use the Akaike information criterion to compare the statistical validity of models as applied
to a given set of data.

• Choose among models based on a variety of criteria.

In this section, we consider the issue of how to choose from among several different mod-
els for a given setting. There are three key criteria: quantitative accuracy, complexity, and the
availability of a mechanistic model.

2.7.1 Quantitative Accuracy

Quantitative accuracy is clearly an important criterion for choosing among possible models. It
can easily be measured by the residual sum of squares, but comparisons can only be made when
the residual sums of squares are measured on the same graph.

Example 2.7.1. In Examples 2.4.2 and 2.4.4, we fit a power function model using linear least
squares on the linearized data and semilinear least squares on the original data. Each set of
parameter values wins on its “home field”; the semilinear result is clearly better when viewed
on a plot of y versus x, while the linearized result is clearly better when viewed on a plot of lny
versus lnx. The question of better fit in this case is not settled mathematically, but by the choice
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of which graph to use to measure errors. Unless we have a scientific reason for considering a
graph of logarithms to be more meaningful than a graph of original values, we should use the
semilinear method.37 ��
Example 2.7.2. Using the semilinear least squares method to fit the Holling type II model

y =
qx

a+ x

to the P. speedius data from Table 2.1.1, we obtain

a = 36.4 , q = 36.3 , RSS = 43.2 . (2.7.1)

Previously we fit the power function model y = Axp to the same data, with the result
RSS = 62.9.38 The Holling type II model has a significantly smaller residual sum of squares
than the power function model. Quantitative accuracy favors the Holling model; other criteria
will be considered below. ��

2.7.2 Complexity

Before we conclude that model selection is usually a simple matter, we turn to the question
“Shouldn’t we always use the model that has the smallest residual sum of squares?” The answer
to this question is an emphatic NO, as the following example makes clear.

Table 2.7.1 A small partial data set for consumption rate y as a function of prey density x

x 0 20 40 60 80
y 0 7 9 21 25

Table 2.7.2 A larger partial data set for consumption rate y as a function of prey density x

x 0 10 20 30 40 50 60 70 80
y 0 2 7 10 9 14 21 20 25

Example 2.7.3. Suppose we collected the P. steadius data from Section 2.1 in stages. The initial
data set, in Table 2.7.1, consists of every other point from the first part of the full data set. We
could fit the models y = mx and y = b+mx to this data set, and we would find that the second
model yields a smaller residual sum of squares than the first model. In fact, it is possible to
show that adding a parameter to a model always decreases the residual sum of squares until it
falls to 0. So if our goal is minimum residual sum of squares, we can just add more parameters.
A fourth degree polynomial has five parameters, which means that we can find one whose graph

37 For models that have more than one nonlinear parameter, one can use a fully nonlinear method. These can be
found in any mathematical software package, such as R or Maple. Other packages, such as spreadsheets, that fit
exponential or power function models to data use the linearization method.
38 See Example 2.4.4.
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passes through all five data points, giving us a residual sum of squares of 0. The result is the
model

y ≈ 1.1375x− 0.0628x2+ 0.00134x3− 0.00000859x4 .

On the basis of quantitative accuracy for the data points used to obtain the parameters, this
model is perfect. However, the graph of this model shows a problem. Figure 2.7.1a shows the
five points used for the fit, the fourth degree polynomial that passes through the points, and the
least squares line y = 0.313x. The sharp curves in the polynomial are suspicious.

Table 2.7.2 includes the full set of data. A useful model should remain reasonably good when
more data is added; however, Figure 2.7.1b shows that the fourth degree polynomial has very
little predictive value for the extra data in this case. If we fit a fourth degree polynomial to the
larger set of data, the graph of the best fit will be significantly changed. Meanwhile, the model
y = 0.313x looks reasonably good with the larger set of data. ��
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Fig. 2.7.1 The linear and fourth degree polynomial models fit to the data of Table 2.7.1, with the additional data
of Table 2.7.2 included in (b)

Example 2.7.3 shows that there is such a thing as too much accuracy in fitting a data set.
Adding parameters to a model increases the accuracy by allowing the model graph to conform
more closely to the individual data points. However, real data has measurement uncertainty as
well as the demographic stochasticity discussed in Section 2.1. This means that bending the
graph to make it conform to the data can be overdone, resulting in a loss of predictive power.
We can use this discovery to formulate a general principle of model selection39:

Additional parameters should not be added to models unless the increased accuracy jus-
tifies the increase in complexity.

Note that we are not arguing that simpler models are better than complex models for philo-
sophical or aesthetic reasons. We are saying that greater complexity can sometimes lead to an
undesirable loss of predictive power.

39 This statement is a mathematical version of Occam’s razor, a well-known scientific principle attributed to
the fourteenth-century philosopher William of Ockham, although not found in his extant writings and actually
appearing in some form before Ockham. The most common form was written by John Punch in 1639 and trans-
lates literally from the Latin original as “Entities must not be multiplied beyond necessity.” My interpretation is
much more in keeping with the actual statement than its more common renderings in English.
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2.7.3 The Akaike Information Criterion

We have now established the idea that quantitative accuracy needs to be balanced against
complexity. We can quantify accuracy using the residual sum of squares and complexity us-
ing the number of parameters. The challenge is to combine these measures in a meaningful
way. As an example, consider the P. steadius data set, which we fit in Section 2.1 using the lin-
ear models y = mx and y = b+mx, with residual sums of squares 106.1 and 100.4, respectively.
Is the improvement in accuracy for the model y = b+mx worth the added complexity?

The issue of balancing accuracy and complexity was addressed by Hirotugu Akaike using
information theory and statistics in a 1974 paper, which defined what has come to be known
as the Akaike information criterion, or AIC [1]. An alternative measure, the corrected Akaike
information criterion (AICc), is also in common use. Based on recent work of Shane Richards
[12], I recommend using the original version, which we can write as

AIC = n ln

(
RSS

n

)
+ 2(k+ 1) , (2.7.2)

where RSS is the residual sum of squares for the specific model, k is the number of parameters
that are in the specific model, and n is the fixed number of data points used to determine the
model parameters.40 The actual values of AIC are unimportant. What matters is that smaller
values represent a higher level of statistical support for the corresponding model. A comparison
can only be made when both models are fit to the same data set using a residual sum of squares
defined in the same manner.

Armed with the AIC, we are now ready to address the issue of model selection for the
P. steadius predation data.

Example 2.7.4. In Section 2.3, we obtained two results from linear least squares for the full
P. steadius data set41:

y = 0.267x ,

y = 1.175+ 0.255x .

As an additional empirical option, we can also determine (using methods beyond the scope
of this section) the best-fit parabola to be

y = 0.197+ 0.300x−0.00032x2 .

Finally, the best fit for the Holling Type II model is

y =
196x

628+ x
.

Table 2.7.3 summarizes the results and Figure 2.7.2 displays the data and the various models.
The model y=mx has the smallest AIC value. The very slight improvements in accuracy for the
other models do not quite compensate for the additional complexity. ��

40 The usual formula for AIC ends with 2K rather than 2(k + 1), where K is the number of parameters that
have to be fit using statistics. This includes the statistical variance along with the k model parameters. For those
readers not well versed in statistics, it is easier to count the number of model parameters than the number of
statistical parameters, so our version builds the extra parameter into the formula.
41 See Table 2.1.1.
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Table 2.7.3 Comparison of three models for the P. steadius data of Table 2.1.1 using AIC

Model RSS n k n ln

(
RSS

n

)
2(k+1) AIC

y = mx 106.1 15 1 29.3 4 33.3
y = b+mx 100.4 15 2 28.5 6 34.5

y = b+mx+ax2 96.1 15 3 27.9 8 35.9
y = qx/(a+ x) 95.5 15 2 27.8 6 33.8

2.7.4 Choosing Among Models

Choosing a model is a matter of informed judgment. The best choice using empirical criteria is
determined by the AIC; however, AIC results are only as good as the data set being fit. When
two models have very close AIC scores with a given data set, there is a possibility that the
rankings would be reversed with a different data set. It is reasonable to ask how much of a
difference in AIC should be considered definitive. We must consider two separate cases.

A pair of models is said to be nested if one can be obtained from the other merely by setting
one of its parameters to zero. For example, the pair y = mx and y = b+mx is nested, as is the
pair y = mx and y = qx/(a+ x); however, the pair y = b+mx and y = qx/(a+ x) is not nested.
For a nested pair, the best the simpler model can do is to achieve the same residual sum of
squares. In this case, the complexity penalty gives the simpler model an AIC advantage of 2.
Thus, a difference of 2 must be considered significant for a nested pair. As a rule of thumb, an
AIC difference of 1 in a nested pair should probably be taken as definitive.

In contrast, it is harder to be confident in the significance of AIC differences for models
that are not a nested pair. A difference of 6 is generally taken to be definitive, but this seems
far too conservative, as a difference of 6 is achieved when two models have the same residual
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Fig. 2.7.2 The data and models of Example 2.7.4: (a) y = mx, (b) linear, (c) quadratic, (d) Holling type II
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sum of squares but one has three more parameters than the other. It seems intuitively clear that
the model with three fewer parameters is the better choice, pending new information such as
additional data. In practice, a difference of 2 is probably enough in most cases. It is hard to
argue on empirical grounds that a model with an extra parameter that fails to achieve a lower
residual sum of squares than a simpler model can be the best choice, even when the models are
not nested.

AIC has the advantage of being quantitative, but we should not overestimate its value. Non-
quantitative criteria must often be considered. We should usually prefer models that have a
mechanistic justification, even if such models have AIC values that are not significantly better
than the best empirical model.

Example 2.7.5.Q) Which model should we use for P. steadius?
A) In Example 2.7.4, we found the lowest AIC score for the model y = mx, but with only a

slightly higher score for the Holling type II model. A different data set for the same experi-
ment could yield a lower AIC score for the Holling model, or the difference could be greater
than in the example. Both models have a mechanistic justification, which the other two mod-
els lack. Either is arguably the best choice. In practice, it is generally wise not to use a more
complicated model than necessary, so the simple y = mx is probably the better choice. ��

Example 2.7.6.Q) Which model should we use for P. speedius?
A) We have already obtained42 best fits for the power function and Holling type II models.

We can also try polynomials of various degrees. Table 2.7.4 summarizes the results and
Figure 2.7.3 illustrates the four models with the original data. According to the AIC values,
the Holling type II model is the best. The cubic curve scores close to the Holling type II;
however, the shape of the cubic curve is clearly not quite right, nor is it supported by a
mechanistic justification. Note how the curve turns sharply upward at the right end of the
interval. ��

Table 2.7.4 Comparison of four models for the P. speedius data of Table 2.1.1 using AIC

Model RSS n k n ln

(
RSS

n

)
2(k+1) AIC

y = axp 62.9 15 2 21.5 6 27.5
y = qx/(a+ x) 43.2 15 2 15.9 6 21.9

y = b+mx+ax2 88.1 15 3 26.6 8 34.6
y = b+mx+ax2 + cx3 38.5 15 4 14.1 10 24.1

2.7.5 Some Recommendations

The Akaike information criterion should be thought of as a theoretical tool for empirical mod-
eling. When we want to determine calculated values to represent theoretical data for an ex-
periment, we should usually choose the model with the smallest AIC. Nevertheless, there are
pitfalls that we must avoid:

• Empirical models that fit data well over a given range may not work over a larger range.
Empirical models should not be extrapolated.

42 See Examples 2.4.4 and 2.7.3.
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Fig. 2.7.3 The data and the two best models of Example 2.7.6: (a) Holling type II, (b) cubic

• The ranking of models for a set of data depends on the location of the points on a graph,
which can be expected to vary because of random factors. If we collect a new set of data
from the same experiment, the model selected by AIC for the first data set may not be the
best fit for the second set.

• Part of the amazing success of models in the physical sciences owes to their mechanistic
derivation from physical principles. Empirical models, by definition, do not attempt to do
this. We can have more confidence in a model that can be obtained mechanistically than in
one that is strictly empirical.

For theoretical work, we should always prefer a mechanistic model, even if its AIC value
for a given data set is a little larger than that of a strictly empirical model. Of course, we must
also be careful with mechanistic models. If the data from experiments fits an empirical model
significantly better than it fits a mechanistic model, then either the experimental data is severely
flawed or the mechanistic model is not valid for that experimental setting.

Problems

2.7.1.(a) Compute the residual sum of squares for the model

y ≈ 1.1375x− 0.0628x2+ 0.00134x3− 0.00000859x4

with the full data set of Table 2.7.2.
(b) Compute the residual sum of squares for the model y = 0.313x with the full data set of

Table 2.7.2.
(c) Both of the models used in parts (a) and (b) were obtained by fitting to the partial data set

of Table 2.7.1. Which has the better quantitative accuracy for the full data set?

2.7.2.* The points corresponding to x values of 0, 10, 20, and 30 in Table 2.7.2 seem to lie close
to the least squares line y = 0.313x. We can find a polynomial of the form y = ax+ bx2 + cx3

that passes through the points (0,0), (h,y1), (2h,y2), and (3h,y3) by the method of successive
differences. The method yields simple formulas for the three coefficients:

c =
y3 − 3y2 + 3y1

6h3 , b =
y2 − 2y1

2h2 − 3hc , a =
y1

h
− hb− h2c .
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(a) Use these coefficient formulas to fit the data from Table 2.7.2 for the x values 10, 20, and 30.
(b) Plot the polynomial from part (a), along with the three data points, on a common graph.
(c) Does the cubic polynomial model work well for these data? Why or why not?

2.7.3. Using the method of successive differences, relatively simple formulas can be found to
determine the coefficients of a polynomial of degree n that passes through n+ 1 points having
equally spaced x values. Suppose the points are (x1,y1), (x2,y2), (x3,y3), and (x4,y4), and x4 −
x3 = x3−x2 = x2−x1 = h. Then the polynomial y= a+bx+cx2+dx3 has coefficients given by

d =
y4 − 3y3+ 3y2 − y1

6h3 , c =
y3 − 2y2 + y1

2h2 − 3x2d ,

b =
y2 − y1

h
− (x1 + x2)c− (3x1x2 + h2)d , a = y1 − x1b− x2

1c− x3
1d .

(a) Use these coefficient formulas to fit the data from Table 2.7.2 for the x values 10, 30, 50,
and 70.

(b) Repeat part (a) using the data for the x values 20, 40, 60, and 80.
(c) Plot the polynomials from parts (a) and (b), along with all of the data, on a common graph.
(d) How good are these two models for the full data set?

2.7.4. (Continued from Problems 2.3.1 and 2.3.7.)

(a) Use your P. steadius data set from Problem 2.1.1 to fit the Holling type II model.
(b) Compute the AIC for the Holling type II model, the model y = mx (Problem 2.3.1a), and

the model y = b+mx (Problem 2.3.7a).
(c) Which model gives the lowest AIC with your data? Combining these results with Example

2.7.4, which model do you recommend should be used for P. steadius? [Note: Comparison
of AIC values is only meaningful when those values were obtained from one data set.]

2.7.5. (Continued from Problem 2.4.6.)

(a) Use your P. speedius data set from Problem 2.1.2 to fit the Holling type II model.
(b) Compute the AIC for the Holling type II model and the model y = Axp (Problem 2.4.6b).
(c) Which model gives the lowest AIC with your data? Combining these results with Example

2.7.5, which model do you recommend should be used for P. speedius? [Note: Comparison
of AIC values is only meaningful when those values were obtained from one data set.]

2.7.6.* Suppose we have a set of data points (xi,yi), which we would like to fit to a model
y = b+mx+ ax2.

(a) Suppose further that we construct a new data set (Xi,Yi) with Xi = xi − x̄ and Yi = yi − ȳ. By
substituting x = X + x̄ and y =Y + ȳ into the model y = b+mx+ax2, find the parameters B
and M, in terms of b, m, c, x̄, and ȳ, such that the model is equivalent to Y = B+MX +aX2.

(b) Use the result from part (a) to obtain formulas for b and m in terms of B, M, a, x̄, and ȳ.
(c) Set up a spreadsheet to fit the model y = b+mx+ax2 to a set of data by converting the data

to X and Y as in part (a), calculating B, M, and a, and then finding b and m as in part (b).
The formulas for B, M, and a can be shown (using calculus) to be

a =
∑X2Y ∑X2 −∑XY ∑X3

∑X2 ∑X4 − (∑X3)2 − (∑X2)3/n
, M =

∑XY − a∑X3

∑X2 , B =−a∑X2

n
,

where n is the number of data points. Test your spreadsheet by confirming the results of
Example 2.7.4.
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2.7.7. (Continued from Problems 2.3.4 and 2.4.3.)

(a) Use the spreadsheet from Problem 2.7.6 to fit the model y = b+mx+ ax2 to the data from
Problem 2.3.4.

(b) Use the AIC to compare the results of part (a) with the linear model y = b+mx and the
results from Problem 2.4.3 for the model y = Axp. Are the AIC differences significant? Is
the best model very good?

2.7.8. (Continued from Problems 2.3.5 and 2.4.4.)

(a) Use the spreadsheet from Problem 2.7.6 to fit the model y = b+mx+ ax2 to the data from
Problem 2.3.5.

(b) Use the AIC to compare the results of parts (a) with the linear model y = b+mx and the
results from Problem 2.4.4 for the models y = Axp and y = Aekt . Are the AIC differences
significant? Is the best model very good?

2.7.9. (Continued from Problem 2.3.8.)

(a) Use the spreadsheet from Problem 2.7.6 to fit the model y = b+mx+ ax2 to the data from
Problem 2.3.8, from 1979 to 2003.

(b) Use the AIC to compare the results with the linear model.

2.7.10. (Continued from Problem 2.3.9.)

(a) Use the spreadsheet from Problem 2.7.6 to fit the model y = b+mx+ ax2 to the data from
Problem 2.3.9, from 1970 to the present.

(b) Use the AIC to compare the results with the linear model.
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Chapters 3 and 4 provide a foundation in probability and a small amount of inferential statis-
tics. In most books, probability appears in the context of statistics. I prefer to think of probability
as a subject in its own right. Descriptive statistics is essential background for probability and
appears in Section 3.1. I can then present probability as the study of mathematical models of
data sets. This viewpoint places the focus on probability distributions, which play a prominent
role in the characterization of data and are needed to run simulations for stochastic dynamical
system models.

Much of statistics is concerned with the assessment of inferences, and one can see Chapter 3
and Sections 4.1–4.3 as providing the necessary background for the brief treatment of inferen-
tial statistics that occupies Section 4.4. A full treatment of this subject lies beyond the scope
of this book. I do not present analysis of variation, which asks questions such as, “Does this
characteristic explain variation in that characteristic?” My treatment of inferential statistics is
limited to questions such as, “Is the population from which this data was collected different
from the general population?,” which can be addressed using the standard distributions that
characterize simple data sets. Section 4.4 focuses on using probability models, with minimal
attention to the statistical rules of thumb that convert probability results into answers of “yes”
or “no.”

Conditional probability (Sections 4.6 and 4.7) is normally presented before probability dis-
tributions and could be studied immediately after Section 3.2. I have placed this material at the
end of Part II so as not to interrupt the flow toward Section 4.4. I also believe that it is better
pedagogy to focus on independent random variables in detail before examining dependence.

The problem sets include several case studies that are split over multiple sections:

Section 3.1, 3.4 3.5 3.6 3.6, 3.7 4.2 4.4 4.5
Dopamine and psychosis 3.1.3 4.2.1 4.4.2 4.5.1
Fruit fly egg production 3.1.4 4.2.2 4.4.3 4.5.2
Weight gain in rats 3.1.5 4.2.3 4.4.4 4.5.3
Blood pressure medication 3.1.6 4.4.6
Resting pulse rates 3.1.7 3.6.9 4.2.5
Left-handed presidents 3.4.5 4.4.8
Chest sizes of soldiers 3.5.2 3.6.6
Cuckoo egg measurements 3.5.3 3.6.7
Butterfat in cow milk 3.5.4 3.6.12 3.6.13 4.2.4 4.4.5 4.5.4
Iris sepal lengths 3.5.5 3.5.6 3.6.10 3.6.11 4.2.7 4.5.5
Malaria parasite counts 3.7.6 4.5.9
Spiders under boards 3.7.7 4.5.10
Nerve pulse times 3.7.13 4.2.8
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The accompanying sketch shows the interdependencies of the sections in Part II and
connections to prerequisite topics.

1.7 1.8 4.4

1.3 3.5 3.6 4.3

3.7 4.5 4.2

2.2 3.3 3.4 4.1

4.7 4.6 3.2

1.1 3.1



Chapter 3
Probability Distributions

I have yet to see a problem, however complicated, which, when you looked at it in the right way, did not
become still more complicated.

Poul Anderson, 1969.

Poul Anderson might have been thinking about probability when he wrote this quip. The
concepts are more abstract than in many other areas of mathematics, and the notation can be
quite confusing. In an effort to minimize this confusion, this chapter focuses on the central con-
cept of the probability distribution, with other probability topics deferred to Chapter 4. We can
approach the probability distribution concept by beginning with descriptive statistics and then
conceptualizing it as a model for a large population of data.

Understanding a few distributions thoroughly makes it much easier to understand other dis-
tributions. Hence, this chapter focuses on the basic ideas of discrete and continuous probability
distributions rather than attempting to present a large catalog of useful distributions.

In Section 3.1, we examine a simple data set and show how to visualize it with histograms
and characterize it with the mean and standard deviation, which are measures of central ten-
dency and variation, respectively. In Section 3.2, we introduce the notion of a probability dis-
tribution as an infinite population in which the fractions falling in any particular interval are
given. We can then think of probability as the fraction of times in which a desired result would
occur over infinitely many experiments, thereby generalizing what we know about properties
of finite data sets.

Section 3.3 introduces the general concepts for distributions of discrete numerical outcomes,
using examples in which the number of outcomes is finite. These distributions can be charac-
terized by a mean and standard deviation, similar to the characterization of populations of real
data. Section 3.4 deals with binomial distributions, using elementary genetics as a source of
examples.

Section 3.5 extends the probability distribution concept to distributions of continuous nu-
merical outcomes. Such distributions can be defined using a cumulative distribution function
or a probability density function. We emphasize the relationship between these functions and
use probability density functions to define the mean and standard deviation of a continuous
distribution. Section 3.6 deals with normal distributions, the most ubiquitous of all probability
distributions.

The chapter concludes with two other distributions of common use in biology: Poisson and
exponential distributions. These distributions provide an opportunity to review the similarities
and differences between discrete and continuous distributions; placing them in the same section
allows for a focus on the relationship between them.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 3,
© Springer Science+Business Media, LLC 2013
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There is a wealth of named probability distributions besides the four presented in this
chapter. Some of these are included in the problem sets. Also, a table showing connections
among problems in this chapter and Chapter 4 can be found in the introduction to Part II.

3.1 Characterizing Data

After studying this section, you should be able to:

• Classify data by type.
• Display data in a histogram.
• Compute the mean of a set of data.
• Compute the variance and standard deviation of a set of data.

3.1.1 Types of Data

Different classes of data must be treated differently, so a first step in data analysis is data clas-
sification. We begin by dividing all data into two large categories, arithmetic data and non-
arithmetic data.1

Arithmetic data: data consisting of numerical values that can be averaged in a mean-
ingful way.

Non-arithmetic data can be further subdivided into several classes:

Categorical or nominal data: data consisting of descriptive terms, such as “male” and
“female,” or “married,” “single,” “divorced,” and “widowed,” etc.

Ordinal data: numerical data in which the ordering of categories is significant, but the
distance between the category descriptions is ambiguous. An example of ordinal data is
the data from a survey in which respondents are asked to rate a statement with an integer
from 1 through 5, with 1 for “strongly agree” and 5 for “strongly disagree.”2

Arithmetic data can be further categorized according to relationships with other variables.

Univariate data: data consisting of values of a single arithmetic quantity, such as a
listing of the ages of all members of a population.

1 The word “arithmetic” used here is the adjective, pronounced “eh-rith-MEH-tic,” not the noun of the same
spelling that is pronounced “a-RITH-muh-tic.”
2 If one person gives a rating of 3 and another gives a rating of 1, we can say that the “average” rating is 2, but
this average has no clear meaning in terms of the actual categories. There is no objective reason to think that one
“agree” and one “disagree” are interchangeable with two “neither agree nor disagree.”
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Multivariate data: data consisting of sets of values of more than one arithmetic quantity;
for example, multivariate data used for public health might include the height, weight,
and age of each subject.

Multivariate data is independent if there is no mathematical relationship between the values
of the different quantities. For example, the heights, weights, and ages of people are clearly not
independent,3 but the number of letters in the hometown of each person is probably independent
of that person’s height, weight, and age. Independent data collected as part of a multivariate set
can be treated as univariate.

Both univariate and multivariate data may also be stratified, meaning that the data are split
into several different subsets according to a categorical variable. For example, a data set on the
height of adult Americans might be subdivided into male and female subsets.

In the remainder of this section, we consider only univariate arithmetic data.

3.1.2 Displaying Data

In a study published in 1904, A.R. Cushny and A.R. Peebles studied the effects of the drug
hyoscine hydrobromide on the sleep of ten subjects. The researchers measured the average
increase in hours of sleep per night on each of two forms of the drug, as compared with a
placebo. This data set appears in Table 3.1.1.4

Table 3.1.1 Hours of sleep gained on D- and L-hyoscine hydrobromide

Number 1 2 3 4 5 6 7 8 9 10

D-hyoscine hydrobromide, X 0.7 −1.6 −0.2 −1.2 −1.0 3.4 3.7 0.8 0.0 2.0
L-hyoscine hydrobromide, X 1.9 0.8 1.1 0.1 −0.1 4.4 5.5 1.6 4.6 3.4

How should we make sense of this data? The first important point is that, like all univariate
data, there is no significance to the order in which the numbers are listed. We could just as
easily have given the data as a list: 0.7, −1.6, −0.2, . . .. We could also have sorted the data to
present it in ascending or descending order.

The primary difficulty in understanding a mass of data is that the crucial information is
overwhelmed by the level of detail. To see this crucial information, we need a way to filter out
the excess detail. One way to do this is to partition the range of the data into subintervals of
equal width, called classes or bins. We can then think of each item of data as a member of a
class rather than a specific value.

3 On the whole, taller people weigh more than shorter people, and children weigh less than adults.
4 The drug tested in the study is more commonly known as scopolamine; today it is used in a patch applied to
the skin to prevent motion sickness. The subjects were not insomnia patients; they were inmates at the Michigan
Asylum for the Insane and obviously not volunteers. (Medical ethics has improved a lot since the early 1900s!)
The clinicians who administered the test first checked the drugs’ safety by trying them on themselves. (Exper-
imental protocols have also improved a lot since the early 1900s!) The data was subsequently used by William
Sealy Gosset, better known by the pseudonym “Student,” in a classic 1908 paper that introduced the test now
known as “Student”’s t test [19]. Gosset incorrectly copied the column headings, so he did not reach the correct
conclusion from the data. (Publication standards in science have improved a lot since the early 1900s as well!)
For a more complete history of this interesting story, see [15].
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Example 3.1.1. Suppose we partition the data of Table 3.1.1 into the bins

(−0.5,0.5),(0.5,1.5),(1.5,2.5), . . .,(5.5,6.5).

We can name these bins “0,” “1,” . . ., “6.” In effect, we are rounding off the original data to
the nearest hour.5 With the data grouped by class, we can display it as a table that gives the
number of occurrences, or frequency, of each class. The resulting frequency table for the L-
hyoscine data appears in Table 3.1.2. Note that the value 5.5 could be counted as either “6” or
“5.” Typically, these borderline values are rounded up, but there is no valid reason for choosing
to do so. I prefer to count 5.5 as 0.5 occurrence of each of the values “5” and “6.” ��

Table 3.1.2 Frequency table for the number of hours of sleep gained on L-hyoscine hydrobromide

Hours 0 1 2 3 4 5 6
Frequency 2 2 2 1 1 1.5 0.5

Check Your Understanding 3.1.1:
Prepare a frequency table for the D-hyoscine hydrobromide data, using bins
(−2.5,−1.5),(−1.5,−0.5), . . ..

The obvious advantage of a frequency table over a list of data is that it looks simpler. A more
important advantage is that frequency tables can be meaningfully plotted, using the classes on
the horizontal axis and the frequencies on the vertical axis. Frequency data is visualized as a
histogram—a bar graph in which the heights of the bars give the frequencies of the data classes.
Figure 3.1.1a is a histogram for the L-hyoscine hydrobromide data using the frequencies in
Table 3.1.2.
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Fig. 3.1.1 Hours of sleep gained on L-hyoscine hydrobromide: (a) bin width of 1 hr; (b) bin width of 2 hr

Check Your Understanding 3.1.2:
Prepare a histogram for the frequency table in Check Your Understanding 3.1.1.

There are a number of different ways to collate data for any given data set; hence, different
histograms can be used to represent the same data.

5 If the data set contained 100 values instead of 10, we might prefer rounding off to the nearest half-hour instead.
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Example 3.1.2. Table 3.1.3 and Figure 3.1.1b show the L-hyoscine hydrobromide data using a
different set of bins. ��

Table 3.1.3 Frequency table for the number of hours of sleep gained on L-hyoscine hydrobromide

Hours (−1,1) (1,3) (3,5) (5,7)
Frequency 3 3 3 1

3.1.3 Measures of Central Tendency

Suppose we want to summarize the L-hyoscine hydrobromide sleep data with just a single
number that represents the “average” sleep gain. There are two reasonable ideas for how to
do this.

Example 3.1.3. One idea of average is “the average of the individual values.” We simply add up
the values and divide by the total:

1.9+ 0.8+ 1.1+0.1−0.1+4.4+5.5+1.6+4.6+ 3.4
10

= 2.33.

The other idea of average is “the value of the average individual.” Here, we discard the values
in pairs, always discarding the largest and smallest of the remaining values, until only one or
two values are left. If one value remains, we have found “the value of the average individual.”
If two values remain, we find their average. With ten values, we discard the largest four and
the smallest four, leaving the fifth and sixth, which are 1.6 and 1.9. The “value of the average
individual” is

1.6+ 1.9
2

= 1.75. ��
“The average of the individual values” is more properly called the mean, while “the value of

the average individual” is more properly called the median:

Mean: the arithmetic average of the data values.

Median: the numeric value separating the upper half of the data values from the lower
half, taken to be the middle value when the number of values is odd and the average of
the two middle values when the number of values is even.

As in linear least squares,6 it is customary to use x̄ for the mean of x data.

Check Your Understanding 3.1.3:
Find the mean and median of the D-hyoscine hydrobromide data.

6 See Section 2.3.
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The choice of whether to use the median or the mean depends on the purpose of the data.
To cite a non-biological example, consider a set of data that gives the yearly salaries of a Major
League Baseball team. The owner has to pay all of the salaries, regardless of how the money
is distributed among the players, so he is most concerned about the mean of the salaries. The
players’ union represents the views of the players as individuals, so it is most likely concerned
with the median salary. This difference of viewpoint helps explain some of the perceptual dif-
ferences in labor negotiations—salaries in any organization usually include a small number of
larger salaries and a large number of smaller salaries, a case for which the mean is larger than
the median. If management thinks the “average” is too high and labor thinks it is too low, we
could justifiably argue that both are right.

Another issue to consider in measuring central tendency is the importance of outliers, which
are values that seem rather far from the others.

Example 3.1.4. Suppose we decide that the data for the subject whose sleep increased by 5.5 h
per night cannot be correct. Omitting this point changes the sum of the hours from 23.3 to 17.8.
This causes the average to drop from 2.3 to 2.0. The median becomes the sixth largest from the
original set of 10, which is 1.6 rather than 1.75. The change in the mean for this example is
twice the change in the median. This means that more extreme outliers have a proportionately
greater effect on the mean, sometimes without changing the median at all. For example, if we
replace 5.5 with 6.5, this raises the mean by 0.1 but leaves the median unchanged. ��

While the mean is almost always the correct measure to use for scientific work, its sensitivity
to outliers raises the question of whether outliers should be included or omitted from a set of
scientific data. There is no definitive answer to this question, but it is possible to make an
informed choice based on probability. This issue is addressed in Section 4.2.

3.1.4 Measuring Variability

To characterize the variability of a set of data, we need to look at the differences between the
data values and the mean. Table 3.1.4 extends the original L-hyoscine hydrobromide data table
to include these deviations.

Table 3.1.4 Hours of sleep gained on L-hyoscine hydrobromide, along with the deviations from the mean

Number 1 2 3 4 5 6 7 8 9 10

Hours gained, x 1.9 0.8 1.1 0.1 −0.1 4.4 5.5 1.6 4.6 3.4

Deviations, x− x̄ −0.43 −1.53 −1.23 −2.23 −2.43 2.07 3.17 −0.73 2.27 1.07

We could suggest several different ways to combine the deviations of the data values from the
mean. A good starting point is the sum of the squares of the deviations, which is consistent with
the use of the residual sum of squares to measure the total discrepancy between data values and
values predicted by a mathematical model.7 This logical choice requires some modifications.
In the first place, the sum of a number of data values depends on how many data values are
being added. For example, if every data value is counted twice, then the sum of the square
deviations from the mean will be twice as large. Clearly, we do not want to say that a data set
in which all of the values appear twice has more variability than the corresponding set without
doubled values. A good measure of variability should depend only on the way the values are

7 See Section 2.3.
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distributed, not on the size of the data set. This suggests that we should use the mean of the
square deviations. The standard deviation, which is the accepted measure of variability in data,
is only slightly different from the mean of the square deviations.

Standard deviation of a set of values x1,x2, . . . ,xn: the quantity given by

s =

√
(x1 − x̄)2 +(x2 − x̄)2 + · · ·+(xn − x̄)2

n− 1
,

where x̄ is the mean.

Example 3.1.5. The standard deviation of the L-hyoscine hydrobromide data is

s =

√
(−0.43)2+(−1.53)2+(−1.23)2+ · · ·+(1.07)2

9
≈ 2.00.

��

Check Your Understanding 3.1.4:
Find the standard deviation of the D-hyoscine hydrobromide data.

The definition of the standard deviation indicates two differences from the more natural
choice of the mean of the square deviations. The first is that the definition includes a square root
so that the standard deviation has the same units of measurement as the data values themselves.
Each data value is a time measured in hours. The mean of the square deviations calculated from
the data set has a unit of h2, so the standard deviation ends up being measured in hours, just
like the data values. The other difference is that the definition of the standard deviation has
denominator n− 1 rather than n. The standard deviation is thus a little larger than the square
root of the mean of the square deviations.8

Obviously a data set with a larger standard deviation has more variability than a data set
with a smaller standard deviation. Other than this simple comparison of data set variability, it is
difficult to ascribe a specific meaning to a standard deviation value. The exact interpretation is
only clear under certain circumstances. We’ll return to this point in Section 3.6 when we study
the normal distribution.

Check Your Understanding Answers

1. See Table 3.1.5.
2. See Figure 3.1.2.
3. x̄ = 0.66 and the median is 0.35.
4. s = 1.86

8 The correct denominator actually is n when the data represents the full population of interest. The choice n−1
is appropriate for the much more common case where data for a sample is being used to try to characterize a
larger population. The reason for this change is beyond the scope of an elementary treatment. As the sample size
increases, the distinction makes less of a difference.
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Table 3.1.5 Frequency table for the number of hours of sleep gained on D-hyoscine hydrobromide

Height −2 −1 0 1 2 3 4
Frequency 1 2 3 1 1 1 1
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Fig. 3.1.2 Hours of sleep gained on D-hyoscine hydrobromide

Problems

The data sets for Problems 3.1.2–3.1.8 are from [5] and can be found in both csv and xlsx form
at http://www.springer.com/978-1-4614-7275-9.

3.1.1. The actual purpose of the experiment that yielded the data of Table 3.1.1 was to measure
differences between the D and L versions of pharmaceuticals. Determine the mean and standard
deviation of the differences between the D and L data. Also prepare a histogram to display
the data. Without doing any statistical tests, do you think the data support the claim that the
biological activity of the D and L versions is different?

3.1.2.* The file JACKAL.* lists lengths for golden jackal (Canis aureus) mandibles in the
British Museum.

(a) Determine separate means and standard deviations for the male mandibles and the female
mandibles

(b) Prepare a histogram of the full data set.
(c) Without doing any statistical tests, do you think the data support the claim that mandible

lengths differ between the sexes?

3.1.3. The file DOPAMINE.* lists the activity levels of an enzyme that indicates dopamine
activity in the brains of patients being treated for schizophrenia. The data are stratified into two
groups, depending on whether the hospital staff judged the patients to be psychotic.

(a) Determine the mean and standard deviation for each of the two groups.
(b) Prepare a histogram of the full data set.
(c) Without doing any statistical tests, do you think the data support the claim that dopamine

activity can be used to diagnose schizophrenia?

(This problem is continued in Problem 4.2.1.)

http://www.springer.com/978-1-4614-7275-9
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3.1.4. The file FRUITFLY.* lists the fecundity (average daily egg yield) for the first 14 days of
maturity for female fruit flies. The data are segregated by genetic markers, one group having
been bred for resistance to the pesticide DDT, one group for DDT susceptibility, and one group
not selectively bred.

(a) Determine the mean and standard deviation for each of the three groups.
(b) Prepare a histogram of the full data set.
(c) Without doing any statistical tests, do you think the data support the claim that selective

breeding for either resistance or susceptibility reduces fecundity?
(d) Suggest a reason why it is plausible for selective breeding for DDT resistance or suscepti-

bility to reduce fecundity.
(e) Suppose the DDT-resistant group is used in a follow-up experiment in which they are se-

lectively bred for fecundity. What do you think would happen to the DDT resistance of the
resulting population?

(This problem is continued in Problem 4.2.2.)

3.1.5. The file WEIGHT.* lists weight gains for rats fed four different diets.

(a) Determine the mean and standard deviation for the weight gains for each of the four diets.
(b) Prepare a histogram of the full data set.
(c) Without doing any statistical tests, do you think the data support a claim that some diets are

better than others?

(This problem is continued in Problem 4.2.3.)

3.1.6. The file BLOOD.* lists the systolic and diastolic blood pressures for 15 patients, both
before and after treatment with the drug captopril.

(a) Determine the decrease in systolic blood pressure for each patient. Find the mean and stan-
dard deviation. Prepare a histogram of relative frequency.

(b) Repeat part (a) for diastolic blood pressure.
(c) Prepare a histogram that includes the data from both pairs.
(d) Without doing any statistical tests, do you think the data support the claim that captopril is

effective in reducing blood pressure?

(This problem is continued in Problem 4.4.6.)

3.1.7. The file PULSE.* lists resting pulse rates for a group of native Americans from Peru.

(a) Find the mean and standard deviation for the pulse rate data. Prepare a histogram of relative
frequency.

(b) Based on part (a) without any statistical tests, what do you think is the “normal” range of
resting pulse rates in this population?

(This problem is continued in Problem 3.6.9.)

3.1.8. The file HEIGHT.* lists the heights and weights of a group of 11-year-old girls attending
Heaton Middle School in Bradford, England.

(a) Find the mean and standard deviation for the height data. Prepare a histogram of relative
frequency.

(b) Find the mean and standard deviation for the weight data. Prepare a histogram of relative
frequency.

(c) Use linear least squares (See Section 2.3) to fit a linear function to the data.
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3.2 Concepts of Probability

After studying this section, you should be able to:

• Identify experiments, outcomes, and events in a probability setting.
• Compute probabilities for sequences of experiments.
• Compute probabilities using the elementary probability rules.

DNA is a polymer, which means that it is a chain of indeterminate length composed of
individual units.9 Each of these individual units of DNA incorporates one of four amino acids,
collectively called nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). For
the moment, assume that all of the nucleotides are stripped out of the DNA of a cell and col-
lected together in a test tube. This collection of nucleotides can be represented as a population
of the corresponding letters of the alphabet. In theory, we could take a census of this population.
The result would be a set of categorical data,10 which we could describe in two ways. We could
report the actual count, but these numbers would be so large that it would be hard to understand
them. Alternatively, we could report the frequency of each letter, which gives each count as a
fraction of the total rather than as a number. For example, if there are 1,500 occurrences of the
letter A out of a total of 6,000 letters, then the frequency of A is 25 %. If we randomly select
one nucleotide from the population, we expect to choose A approximately 25 % of the time.
We could also say that 25 % is the probability that the chosen letter is A. For a known popu-
lation, the probability of a characteristic is simply the fraction of the population that exhibits
that characteristic. More generally, we can define the probability of some statement about the
population.

Probability: the (theoretical) frequency at which some statement about the outcome of a
random process is true.

Example 3.2.1.

Q) Suppose we have a population consisting of equal numbers of each nucleotide. What is the
probability that a randomly selected nucleotide from this population is either C or G?

A) If we randomly select a nucleotide from this population, we expect to select each of the
nucleotides C or G 25 % of the time. Thus, we will satisfy the requirement “either C or G”
50 % of the time. The probability is 0.5. ��

The analogy of DNA nucleotides with letters of the alphabet can be extended to the genetic
code that is “written” in DNA. Sequences of three nucleotides combine together to make a
codon, and it is the codons that give the genetic code its meaning. The codon “dictionary”
appears in Table 3.2.1. Each of the 64 codons functions as either a word or a period in the
DNA language. The “words” are the 20 amino acids, represented by 61 of the 64 codons. The
“periods” are the three stop codons. A gene is a long DNA “sentence” of amino acid words,
ending in a stop codon. With 64 different code words and only 21 possible meanings, there is
some redundancy in the DNA dictionary. Surprisingly, there are six different ways to “spell”
leucine, arginine, and serine, but only one way to “spell” methionine and tryptophan. Another

9 A chromosome is a large DNA molecule.
10 See Section 3.1.
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Table 3.2.1 The 64 DNA codons
TTT Phenylalanine TCT Serine TAT Tyrosine TGT Cysteine
TTC Phenylalanine TCC Serine TAC Tyrosine TGC Cysteine
TTA Leucine TCA Serine TAA Stop TGA Stop
TTG Leucine TCG Serine TAG Stop TGG Tryptophan
CTT Leucine CCT Proline CAT Histodine CGT Arginine
CTC Leucine CCC Proline CAC Histodine CGC Arginine
CTA Leucine CCA Proline CAA Glutamine CGA Arginine
CTG Leucine CCG Proline CAG Glutamine CGG Arginine
ATT Isoleucine ACT Threonine AAT Asparagine AGT Serine
ATC Isoleucine ACC Threonine AAC Asparagine AGC Serine
ATA Isoleucine ACA Threonine AAA Lysine AGA Arginine
ATG Methionine ACG Threonine AAG Lysine AGG Arginine
GTT Valine GCT Alanine GAT Aspartate GGT Glycine
GTC Valine GCC Alanine GAC Aspartate GGC Glycine
GTA Valine GCA Alanine GAA Glutamate GGA Glycine
GTG Valine GCG Alanine GAG Glutamate GGG Glycine

curiosity is that the third nucleotide in a codon doesn’t always matter. Out of the 16 possible
combinations of the first two nucleotides, there are 8 cases (TC, CT, CC, CG, AC, GT, GC, GG)
in which the same amino acid is obtained no matter what the third nucleotide is.

Imagine an experiment in which we randomly choose a sequence of three nucleotides from a
hypothetical population consisting of equal numbers of each nucleotide. We can determine the
probabilities for obtaining various amino acids simply by counting the number of associated
codons.

Example 3.2.2.

Q) If we randomly choose a sequence of three nucleotides from a population of equal numbers,
what is the probability that we choose (a) a glycine codon? (b) the tryptophan codon?

A) By counting the numbers of codons in Table 3.2.1, the probability of glycine is 4/64 or 1/16,
while the probability of tryptophan is 1/64. ��

Table 3.2.2 Set theory notation

Statement Meaning
x ∈ Ω x is an element of the set Ω .
A ⊆ Ω A is a subset of Ω (a set consisting of some or all of the elements of Ω ).
A ⊂ Ω A is a proper subset of Ω (a subset that does not include all of the elements of Ω ).

Ac The complement of A, consisting of all elements of Ω not in A.

3.2.1 Experiments, Outcomes, and Random Variables

Probability theory makes use of some notation taken from set theory, summarized in Table 3.2.2,
as well as terms whose meanings differ somewhat from their meanings in standard English
usage. The random selection of one nucleotide from a population of DNA in Example 3.2.1 is
an experiment with four possible outcomes: A, C, G, and T. The set {A,C,G,T} of possible
outcomes is the sample space for the experiment. Any set of possible outcomes (a subset of the
sample space) is called an event; for example, the set of codons representing leucine is an event
for the experiment of drawing three successive nucleotide bases.
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Experiment: any process by which one or more individuals are chosen from some popu-
lation and used to determine the value of some quantity.

Outcome: any of the various values that can be obtained from a given experiment.

Sample space: the set of all outcomes for a given experiment.

Event: a set consisting of some of the outcomes in the sample space of a given experiment.

Many of the statements whose probability we want to calculate are of the form “An experi-
ment is conducted and some specific outcome is the result.” The statement in Example 3.2.2b
is “Three nucleotides are chosen randomly from a population of equal numbers of nucleotides,
and the result is the sequence TGG.” In Example 3.2.2a, the third nucleotide is irrelevant, we
can write the statement as “Two nucleotides are chosen randomly from a population of equal
numbers of nucleotides, and the result is the sequence GG.” Structurally, we can represent these
statements by the form

experiment result = specific outcome.

This general statement is more concise than the full verbal statements, but it is still clumsy. A
mathematical notation is necessary. Because the experimental result cannot be known without
doing the experiment, it must be denoted by a variable

Random variable: a variable whose value is obtained from an experiment.

The statement “A nucleotide is chosen randomly from the uniform DNA distribution, and
the result is C” corresponds to the mathematical notation

X = C,

where X is understood to be the experiment result. The four statements X = A, X = C, X = G,
and X = T are collectively referenced as

X = x,

where x refers to a specific, but unspecified, outcome. Note the subtle difference between X
and x. We are using X to denote the randomly determined experimental outcome, while we are
using x to represent a specific outcome that we prefer not to identify. We extend the notation to
probability by using

P [X = x]

to represent the probability that the statement X = x is true.
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Example 3.2.3. Let X be a randomly selected sequence of three nucleotides from a population of
equal numbers of the four nucleotides. The result of Example 3.2.2b is written in mathematical
notation as

P [X = TGG] = 1/64. ��
The notation X = x suffices for all statements that refer to only one of the possible outcomes.

This is not adequate for Example 3.2.1, where the statement refers to both outcomes C and G.
For this example, the statement is of the form

experiment result ∈ event.

The notation X ∈ A is used to indicate that the result of an experiment is an outcome defined to
be in the desired event.

Example 3.2.4. Let CG be the event consisting of the outcomes C and G. The statement X ∈CG
means “A randomly selected nucleotide from the uniform DNA distribution is either C or G.”
Under the assumption that each nucleotide is equally probable, we have

P [X ∈CG] = 0.5. ��
Where there is no ambiguity, it is common to suppress the name of the random variable in a

probability statement. For example, when the context makes it clear that the random variable is
X , we can write P [x] instead of P [X = x] and P [A] instead of P [X ∈ A].

3.2.2 Probability Distributions

In practice, we almost never know the complete population for any problem of biological inter-
est. Even if we do know the full population, calculations based on exact data tend to be cum-
bersome. For both of these reasons, it is more convenient to work with a mathematical model
of a real population. A mathematical model of a large real population is called a probability
distribution.

Probability distribution: a sample space of outcomes along with a means for prescribing
their frequencies. The frequencies must all be in the interval [0,1], and the sum of the
frequencies of all the outcomes must be 1.

Example 3.2.5. Examples 3.2.1–3.2.3 model the population of DNA in a cell as consisting of
25 % of each of the nucleotides. For this distribution, the values are the letters A, C, G, and T,
and the frequencies are all 0.25. This is an example of the uniform distribution: a probability
distribution with a finite set of possible values, each having the same frequency. ��

Uniform distribution (discrete): a probability distribution having n outcomes, each with
probability 1/n.

So far, we have been assuming that the four nucleotides in DNA are present in equal num-
bers. This is not generally the case. For humans, the frequencies are approximately 21.5 % each
for G and C and 28.5 % each for A and T. The proportions differ for different species, but the
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proportions of G and C are always equal, as are the proportions of A and T. This happens be-
cause a DNA molecule actually consists of two matching strands connected together. Each C
nucleotide in one strand corresponds to a G nucleotide in the other, and similarly for A and T.

Example 3.2.6. Molecular biologists define the CG ratio for any species to be the combined
frequencies of the C and G nucleotides. For humans, the CG ratio is about 0.43, so human
DNA can be modeled by the distribution

P [C] = 0.215, P [G] = 0.215, P [A] = 0.285, P [T ] = 0.285.

More generally, if u is the CG ratio for any species, then the DNA for that species can be
modeled by the distribution

P [C] = 0.5u, P [G] = 0.5u, P [A] = 0.5(1− u), P [T ] = 0.5(1− u). ��
Example 3.2.6 illustrates that probability distributions for experiments with finitely many

outcomes can be defined simply by listing the probabilities for each outcome. The numbers
assigned as probabilities must satisfy two mathematical requirements.

Range rule: For any event A and sample space Ω ,

0 ≤ P [A]≤ P [Ω ] = 1. (3.2.1)

Sum rule: For any event A = {x1,x2, . . . ,xJ},

P [A] = ∑
x j∈A

P [x j]≡ P [x1]+P [x2]+ · · ·+P [xJ ] . (3.2.2)

In the sum rule, the notation ∑x j∈A simply means that the sum is restricted to those outcomes
that are in the event A.

3.2.3 Sequences and Complements

Probabilities for a uniform distribution can be determined simply by counting outcomes, as in
Example 3.2.2. Other methods are required for nonuniform distributions.

Example 3.2.7.

Q) Suppose a sequence of three nucleotides is drawn from the distribution of human DNA.
What is the probability that the sequence represents glycine?

A) Drawing a glycine codon is equivalent to drawing G in two successive experiments consist-
ing of selection of a single nucleotide. Each of these has probability 0.215. Now suppose
we set up a more complicated experiment with 10,000 trials. Since the probability is the
theoretical frequency, we can say that we expect to draw G for the first nucleotide in 2,150
of the trials. For these 2,150 trials, the probability of drawing a second G is 0.215, so we
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expect to see this occur in 0.215× 2,150 = 462.25 of the trials. Theoretically, we expect
to get glycine in 462.25 out of every 10,000 trials, so the probability is 462.25/10,000, or
0.0462.11

��
Example 3.2.8.

Q) Suppose a sequence of three nucleotides is drawn from the distribution of human DNA.
What is the probability that the sequence represents tryptophan?

A) We can follow the same reasoning as in Example 3.2.7, but there is a much simpler cal-
culation. Clearly, the probability of a sequence is always going to be the product of the
probabilities. Also, the probability of a given nucleotide does not depend on whether that
nucleotide is the first one in the sequence or a later one.12 Thus, the probability of the
sequence TGG is simply the product of the probabilities of drawing T once and G twice.

P [TGG] = P [T]×P [G]×P [G] = (0.285)(0.215)2 ≈ 0.0132. ��
The sequence rule illustrated in Examples 3.2.7 and 3.2.8 works for a sequence of any length.

Sequence rule: Suppose an experiment is a sequence of J individual experiments. Let
p1 be the probability of event A1 in experiment 1, p2 be the probability of event A2 in
experiment 2, and so on. Then the probability that the combined experiment results in the
sequence A1,A2, . . . ,AJ is p1 p2 · · · pJ.

The complement rules, based on the requirement that the probabilities of all outcomes must
sum up to 1, allow us to calculate probabilities of events using the outcomes that are not in the
event.

Complement rules: For any events A and B, from either the same or different experi-
ments,

P [A]+P [Ac] = 1, P [A∩B]+P [Ac ∩B] = P [B] . (3.2.3)

Example 3.2.9.

Q) The amino acid isoleucine is represented by the codons ATA, ATC, and ATT. Find the prob-
ability that a sequence of three nucleotides from the distribution of human DNA represents
isoleucine.

A) We could use the sequence rule to determine the probabilities of each of the three isoleucine
codons and add the results. Alternatively, we could use the symbol Gc to indicate any
nucleotide other than G. Then isoleucine corresponds to the sequence ATGc. Using the

11 Data for random variables is subject to demographic stochasticity, with considerable variation among samples.
It is customary to report probabilities with four decimal digits, which implies a higher degree of precision than
is usually warranted. Reporting any more than four decimal digits, except as a one-digit approximation for a tiny
probability, is an example of the “measure it with your hand, mark it with a pencil, cut it with a laser” fallacy.
12 This is another advantage of working with probability distributions rather than actual populations. Removing
an individual from a population changes the probabilities for the remaining population. Sampling does not
change a probability distribution. In effect, a probability distribution is a model of an infinite population.
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probabilities for human DNA, we have P [A] = P [T] = 0.285 and P [G] = 0.215. The com-
plement rule gives us P [Gc] = 1− 0.215 = 0.785. Finally, the sequence rule gives us the
result:

P [ATGc] = P [A]×P [T]×P [Gc] = (0.2852)(0.785)≈ 0.0638. ��
The complement rules mean that we always have two options for calculating the probability

of an event: we can do it directly using the outcomes that comprise the event, or we can do it
indirectly by calculating the probability of the complement.

Example 3.2.9 illustrates an important point about the use of algebraic rules. The symbols
used in the rules are generic, not specific. Equation (3.2.3) does not apply only to the pair
A and Ac. Rather, it applies to any complementary pair of events. The rules are written with
specific symbols to make them easier to write, but the specific symbols chosen for the rules
have no significance. Every time you use a rule, it is important to remind yourself of the generic
interpretation of that rule.

Problems

3.2.1.* Suppose a couple has three children.

(a) By enumerating all possible sequences of outcomes, determine the probability that all three
children have the same gender.

(b) Use the sequence rule to find the probability that all three children have the same gender.
[Note that the first child could be of either gender.]

3.2.2.*

(a) Determine the probability of rolling a sum of 8 with two standard dice by counting the
number of sequences of two die rolls that give the right sum. Write a brief explanation of
your reasoning.

(b) Identify the experiment and sample space for part (a).

3.2.3.* Suppose 60 % of Americans have dark hair and 25 % have both light hair and blue
eyes. What fraction of Americans have light hair but not blue eyes? Explain your answer as an
example of the complement rule.

3.2.4. Find the probability of obtaining a stop codon from a sequence of three nucleotides cho-
sen randomly from human DNA.

3.2.5. Use the result of Problem 3.2.4 to determine the probability that a random DNA sequence
of 50 codons does not contain a stop codon. Repeat for 200 codons.

3.2.6. In the “birthday problem” of probability, a group of n people compare their birthdays
(month and day, but not year). Ignoring the possibility of a birthday on leap day, the goal is to
determine the probability that at least two of the people share a birthday.

(a) Think of the experiment of randomly selecting four people and determining their birthdays,
in the order in which the people were selected. How many outcomes are in the sample space
of this experiment?

(b) Suppose A is defined as the set of outcomes in which there are no repeats. How many
outcomes from the experiment of part (a) are in the set A?

(c) Use the results of parts (a) and (b) to determine the probability that at least two of the four
people share a birthday.

(d) Repeat (a)–(c) for the case of 20 people rather than four.
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3.2.7. The script GeneFinder.R, available at http://www.springer.com/978-1-4614-7275-9
examines a long sequence of DNA nucleotides for the purpose of identifying sequences with-
out stop codons. The file ChiliLeafCurl Genome.txt contains a complete genome for the chili
leaf curl virus. Run the program with this data file to see the output. Then explain the function
of each of the statements that is not already annotated.

3.2.8. Use the GeneFinder script of Problem 3.2.7 to identify possible genes in the file
Ecoli plasmid pEK01102.txt. This file contains the complete sequence of a plasmid13 in E. coli
KO11 bacteria.14

3.3 Discrete Probability Distributions

After studying this section, you should be able to:

• Determine a probability distribution for a finite tree.
• Determine survival probabilities for a finite tree.
• Determine probability distribution functions and cumulative distribution functions for a

probability distribution.
• Make connections between survival probability and the cumulative distribution function.
• Compute means and standard deviations for discrete probability distributions.

In Section 3.1, we considered data for sleep gain experienced by a group of individuals, and
we made sense of the data in several ways. We counted the numbers of individuals correspond-
ing to each numerical value and prepared histograms to visualize the distribution of the data.
We also summarized the data using measures of central tendency and variability.

When real data is unavailable, it is often necessary to create a model to represent a real data
set. Such a model is similar to a real data set, but with some key differences. First, we think
of the model as representing an infinite population rather than a finite population, as we did
in Section 3.2 with an infinite population of DNA nucleotides. With an infinite population, we
cannot talk about numbers of individuals, but we can talk about frequencies (in other words,
probabilities). Second, we must prescribe the frequencies of each outcome as part of the model,
as when we assumed in Section 3.2 that the frequency of both the C and G nucleotides in human
DNA is 0.215.

Example 3.3.1. Consider a hypothetical animal species for which individuals have a 60 %
chance of surviving each of their first 3 years, but never reach the age of 4. Let x be the age
at which an individual dies. Thus, the sample space of the experiment is {0,1,2,3}, since no
individual ever becomes 4 years old. To specify the probability distribution for this hypothetical
population, we need to determine P [X = x] for each of the four outcomes. These probabilities
must all be positive and less than one, and their sum must be 1.15 ��

This is a convenient time to review the probability notation introduced in Section 3.2. In
Example 3.3.1, we use x to denote a particular (although unspecified) possible outcome of
the experiment and X to denote the randomly determined outcome of a particular instance of
the experiment. The quantity X is a random variable. This term can be very confusing. In
algebra and calculus, variables are either independent or dependent, with the dependent ones
given in terms of the possible values of the independent ones. The random variable X is not an

13 A plasmid is a DNA strand that appears in cells although it is not part of a chromosome.
14 This strain of E. coli is well studied because it is used in the process of making ethanol from corn.
15 See the range and sum rules of Section 3.2.

http://www.springer.com/978-1-4614-7275-9
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independent variable, because its value is determined by the experiment rather than chosen in
advance. Nor is it a dependent variable, because its value is not prescribed uniquely in terms
of an independent variable. In fact, the experiments that yield the outcomes are all identical, so
there is no independent variable in the usual sense.

Think of the experiment described in Example 3.3.1 as a sequence of simple experiments.
Unlike the DNA codon experiment of Section 3.2, the number of simple experiments in the
sequence can vary. The overall experiment ends whenever the individual dies. In these cases, it
can help to portray the experiment as a type of graph called a finite tree. The graph incorporates
the probability calculations as well as the structure of the overall experiments in terms of the
simple component experiments:

1. There is a single start node, labeled with probability 1.0.
2. The first simple experiment is displayed as a set of edges, one for each of the possible out-

comes (“live” and “die,” for example), labeled with the probability ascribed to that outcome.
The total of the probabilities for this simple experiment must, of course, be 1.

3. Each of the edges that represents an outcome of the first simple experiment ends in a node
that represents the state after that outcome. In the experiment of Example 3.3.1, the state
after the “live” outcome is “1 year old,” while the state after the “die” outcome is “died at
the age of zero.” In the latter case, the node is called terminal because the experiment is
now over.

4. The probability associated with each of these new nodes is the probability associated with
the simple experiment outcome that leads to the node.

5. Additional experiments appear as sets of edges emanating from the nonterminal nodes. In
each case, the total of the probabilities of the set is 1. Each of these edges ends in a new
node. In general, the probability associated with a node is the product of the probability on
the line that ends in that node and the probability of the preceding node.

6. Eventually, assuming a finite sequence of possible experiments, all paths end in terminal
nodes. These nodes represent the possible outcomes of the overall experiment, and the sum
of these probabilities must be 1.

Example 3.3.2. Figure 3.3.1 depicts the structure of Example 3.3.1 in terms of simple com-
ponent experiments, each of which covers survival through 1 year of life. The initial node on
the left is labeled with probability 1.0 because the overall survival experiment always starts
at age 0. The two edges connected to the initial node represent the first simple experiment of
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Fig. 3.3.1 A schematic representation of the calculations to determine the probability distribution for Exam-
ples 3.3.1 and 3.3.2. The probability of reaching any particular node is the product of the probability on the
edge coming from the previous node and the probability at the previous node. The numbers in the boxes are the
probability of dying in years 1–4
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survival through year 1. These edges are labeled with the corresponding probabilities for the
simple experiment. Each of them ends in a node that represents the state of the experiment at the
end of year 1 and is labeled with the corresponding probability. The upper node, corresponding
to the death of the individual, is terminal.16 The lower node corresponds to individuals who
have survived through year 1 and are now 1 year old.

The second simple survival experiment is depicted by the two edges that exit this lower node
to the right. Each edge is labeled with the corresponding probability for the simple experiment;
hence, they sum to 1. Each of these edges again ends in a node, the upper one terminal and the
lower one leading to the next simple experiment. The probabilities associated with these nodes
are the product of the probability at the previous node (which is the probability that this simple
experiment will actually occur) and the probability of the outcome on the edge connecting the
new node with its predecessor. In this way, the entire experiment is represented by the graph.
In general, probabilities on the edges corresponding to each simple experiment must always
sum to 1, while the probability on each node is always the product of the probabilities on the
preceding node and the edge that connects the two nodes. The experiment ends when the total of
the probabilities on terminal nodes is 1. For the example, the probability distribution is defined
by the formulas

P [X = 0] = 0.4, P [X = 1] = 0.24, P [X = 2] = 0.144, P [X = 3] = 0.216. ��

The information used to define a discrete probability distribution can be used in different
ways. Up to now, we have defined the probability distribution by the probabilities of the
outcomes. One can also define the probabilities that the random variable will exceed a given out-
come or not. For example, in the roll of a fair six-sided die, we can write P [X > 2] = 2/3 to in-
dicate that 2/3 of die rolls result in values larger than 2. Similarly, we can write P [X ≤ 2] = 1/3
to indicate that 1/3 of die rolls result in values of 2 or less.

Example 3.3.3. Consider the scenario of Examples 3.3.1 and 3.3.2. Both of these examples de-
fined the outcome x to be the age at which the individual dies. Biologists are often more inter-
ested in knowing the probability that an individual survives through age x than in the probability
of dying at age x. The probability of surviving through age x is equivalent to the probability of
dying at an age larger than x, which is P [X > x]. In this scenario, the probability of surviving
year j is the probability associated with the lower of the two nodes after year j in Figure 3.3.1;
hence, we obtain the distribution

P [X > 0] = 0.6, P [X > 1] = 0.36, × P [X > 2] = 0.216, P [X > 3] = 0. ��

3.3.1 Distribution Functions

In keeping with the general definition of a probability distribution,17 a discrete probability dis-
tribution has a sample space of discrete outcomes. Sometimes there are only finitely many
outcomes, as in the distribution of Examples 3.3.1 and 3.3.2. However, in many cases, there are
infinitely many outcomes, which makes it impossible to define the distribution by listing the
probability for each outcome. In such cases, it is common to define a distribution by means of
a formula that can be used to calculate the values.

16 For better clarity, the probabilities at terminal nodes are in boxes.
17 See Section 3.2.
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Example 3.3.4. Consider a model population in which there is no maximum age for individuals
and the survival probability is 0.6 for each year of life. The survival probabilities for X > 0,
X > 1, and X > 2 are again 0.6, 0.36, and 0.216, or 0.61, 0.62, and 0.63. The pattern is clear:
given x as the age at death, the cumulative survival probability (the probability of dying at age
greater than x) is P [X > x] = 0.6x+1. ��
Example 3.3.5. The probability for each outcome in the model population of Example 3.3.4 is
a little harder to determine. The key is to focus on the list of the factors rather than the result of
the calculations. From Figure 3.3.1, we have

P [X = 0] = 0.4, P [X = 1] = (0.6)(0.4), P [X = 2] = (0.6)2(0.4).

As in Example 3.3.4, the pattern is clear. The probability of dying in year x is

P [X = x] = (0.6)x(0.4).

This result comes about because of the sequence of events necessary for an individual to die
at age x. First the individual must survive x years, and then it must die in the following year.
This is represented by a sequence of x+ 1 experiments for which the probability of following
the correct edge in the graph is 0.6 for the first x experiments and 0.4 for the last one. The
probability of dying at age x is the product of these individual probabilities. ��

There is no important difference between making a list of probability values and using a
formula for probabilities. In either case, the probability of each outcome has a unique value, so
we can think of it as being determined by a function. The advantage of using a function is that
it frees us of the cumbersome notation we have used so far. There are two common ways of
using function notation to define a probability distribution; these correspond to the probabilities
P [X = x] and P [X ≤ x].

Probability distribution function: a function f (x) that represents the probability that a
given experiment has outcome x (in other words, f (x) ≡ P [X = x]); a probability distri-
bution function must satisfy the range and sum rules,

0 ≤ f (x) ≤ 1, ∑
x∈Ω

f (x) = 1. (3.3.1)

Cumulative distribution function (given a probability distribution function f ):
the function F defined by

F(x) = P [X ≤ x] = ∑
y≤x

f (y). (3.3.2)

For some biological applications, the survival probability, defined as

S(x) = P [X > x] = ∑
y>x

f (y) = 1−F(x), (3.3.3)

is used in place of the cumulative distribution function. Note that the sum of the survival and
cumulative distribution functions is always 1, because every outcome not greater than x is less
than or equal to x. Which function one uses is a matter of taste and convention: in biology,
survival probability is more commonly used, but elsewhere it is the cumulative distribution
function.
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Example 3.3.6. We have already computed the probability distribution function for the distri-
bution of Examples 3.3.4 and 3.3.5:

f (x) = (0.6)x(0.4).

The cumulative distribution function, using the survival probability formula of
Example 3.3.4, is

F(x) = 1− 0.6x+1.

��
In the definitions of probability distribution functions (pdf) and cumulative distribution func-

tions (cdf), I have deliberately used the same letter, with the lowercase for the pdf and the
uppercase for the cdf. In the next section, we will begin a catalog of common probability dis-
tributions, so it will be very helpful to use a different letter for each. The notation is much
easier to understand if we retain the convention of using the same letter for both functions and
distinguishing between the functions by case.

3.3.2 Expected Value, Mean, and Standard Deviation

In Section 3.1, we used the mean (x̄) as a measure of central tendency and the standard deviation
(s) as a measure of variability for populations of arithmetic data. Mean and standard deviation
can be used as measures of central tendency and variability for probability distributions as well,
but the definitions need to be modified. To distinguish population values from sample values,
we use the symbols μ and σ for the mean and standard deviation of a probability distribution.
Derivation of formulas for mean and standard deviation of a probability distribution is most
conveniently done by introducing the concept of expected value. We begin with an elementary
example in a context outside of biology.

Example 3.3.7. In 2011, the Nebraska Lottery offered a scratch game called “Hot 20.” The web
page for this game listed the prize amounts, the number of winners for each prize, and the
odds of winning each prize. It did not list the number of losing tickets, but that was easy to
reconstruct from the information given. Table 3.3.1 presents all the relevant data. Now suppose
you were able to buy all of the tickets for this game yourself. It is easy to calculate the value
of your purchase as the total of the prize money, which is $543,200. Given the total of 840,000
tickets, this means that the mean ticket value is $543,200/840,000, which is 64 2

3 cents. Unfortu-
nately for your bank account, the purchase price of a ticket is $1.00.18 No single ticket is worth
exactly 64 2

3 cents, so it may seem counterintuitive to call it the “expected” value of a ticket. On
the other hand, it represents a fair purchase price in the sense that it would be a good business
decision to buy thousands of lottery tickets, provided the price were less than this amount.

All of the results we obtained for the population of tickets can be stated in terms of a proba-
bility distribution, where the outcomes are the ticket values in dollars and the random variable X
is the value of a randomly selected ticket. Suppose we model the population of tickets as being
infinite, with the probabilities as given in the table.19 Now consider the hypothetical “average”

18 All state lottery authorities hire mathematicians to determine the profiles of the ticket populations, but it is
unlikely that any of the tickets are purchased by mathematicians. Those in the know refer to a lottery as “a tax
on those who are bad at math.”
19 The distribution is not exactly equivalent to the actual population because the probabilities have been rounded
to decimal values; nevertheless, the difference between the actual population and the model distribution is in-
significant. Note that we need to round 2/3 down to 0 for one value so that the total probability is exactly 1. It is
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ticket. This ticket is divided up into portions according to the values of the real tickets. For
example, 10 % of the real tickets are worth $2; hence, 10 % of the hypothetical average ticket
is valued at the rate of $2 per ticket, for a total value of $0.20. This is the contribution to the
value of the hypothetical average ticket that is made by the $2 tickets. Similarly, each outcome
contributes to the value of the hypothetical average ticket an amount equal to the product of
the outcome and the probability. The sum of all these values is $0.64668. This represents the
value of a hypothetical average ticket. In terms of probability, it is the mean of the probability
distribution and the expected value of the random variable X . ��

Table 3.3.1 Computations of mean and expected value for Example 3.3.7

Ticket Number of Total Contribution

value tickets value Outcome Probability to average

20 5,600 112,000 20 0.00667 0.13340

9 5,600 50,400 9 0.00666 0.05994

4 14,000 56,000 4 0.01667 0.06668

3 19,600 58,800 3 0.02333 0.06999

2 84,000 168,000 2 0.10000 0.20000

1 98,000 98,000 1 0.11667 0.11667

0 613,200 0 0 0.73000 0

Total: 840,000 543,200 Total: 1 0.64668

Example 3.3.7 motivates the definition of expected value, which applies not just to the ran-
dom variable X , but also to functions of X .

Expected value of a function g of a random variable X : the average value we would ex-
pect g(x) to take over infinitely many experiments, usually denoted Eg(X) and calculated
as the sum of contributions from each outcome:

Eg(X) = ∑
x∈Ω

g(x)P [X = x] . (3.3.4)

Example 3.3.8.

Q) Find EX and EX2 for the distribution of Examples 3.3.1–3.3.3.
A) Using the probabilities from Example 3.3.2, we have

EX = (0)(0.4)+ (1)(0.24)+ (2)(0.144)+(3)(0.216)= 1.176

and

EX2 = (0)(0.4)+ (1)(0.24)+ (4)(0.144)+(9)(0.216)= 2.76.

��

more important that the probabilities satisfy the definition of a probability distribution than for them to exactly
equal the real probabilities.



3.3 Discrete Probability Distributions 171

The mean and standard deviation for discrete probability distributions are defined in terms
of expected values.

• The mean (μ) of a discrete probability distribution is given by

μ = EX . (3.3.5)

• The variance (σ2) of a discrete probability distribution is given by the equivalent for-
mulas

σ2=E[X − μ ]2=EX2 − μ2=EX2 − (EX)2. (3.3.6)

• The standard deviation (σ ) is simply the square root of the variance.

Example 3.3.9. From Example 3.3.8, the mean age at death is

μ = EX = 1.176,

the variance is
σ2 = EX2 − (EX)2 = 2.76− (1.176)2 ≈ 1.377,

and the standard deviation is
σ =

√
σ2 ≈ 1.173.

��
Note that the equivalence between the two formulas for the variance is not obvious.20

Problems

3.3.1.* Approximately four million women gave birth in the United States in the year 2000,
with single births, twins, and triplets occurring 98.51 %, 1.38 %, and 0.11 % of the time, re-
spectively, with a negligible probability of more than three births. Determine the mean and
standard deviation for this probability distribution.

(This problem is continued in Problem 4.3.7.)

3.3.2. Use the definition of expected value for discrete probability distributions to show that

E[X − μ ]2 = EX2 − μ2.

3.3.3.* Are some couples prone to having babies of one particular sex? To answer this ques-
tion from data, it is first necessary to know the theoretical probabilities. Use a tree diagram to
determine the probability that a set of four siblings are all of the same sex.

3.3.4. The “law of averages” asserts that an event is more likely if it has not occurred for a
long time. Perhaps belief in this bit of folk wisdom is based on confusion of different types of
experiments.21

20 See Problem 3.3.2.
21 This is also known as the gambler’s fallacy.
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(a) Suppose Mrs. McCave has had three sons. What is the theoretical probability that her next
child will be a girl? [You can use the tree diagram from Problem 3.3.3.]

(b) Can you think of a biological reason why the actual probability of a daughter after three
sons might be different than 0.5?22 Would it be larger or smaller?

(c) Suppose you deal 12 red cards from the top of a well-shuffled deck of standard playing
cards. What is the probability that the next card will be black?

(d) What feature distinguishes settings in which the “law of averages” has some value from
settings in which it has no value or worse?

3.3.5.* An urn contains three red balls and two black balls. You remove two balls from the urn
without replacement. Let X be the number of black balls removed.

(a) Determine the probability distribution function and cumulative distribution function.
(b) Determine the mean, variance, and standard deviation.
(c) Plot a histogram of the probability distribution function.

3.3.6. A certain species of organism has an 80 % chance of surviving each of the first 2 years
of life, a 40 % chance of surviving a third year, and a 0 % chance of surviving a fourth year. Let
X be the age at death.

(a) Determine the probability distribution function, cumulative distribution function, and sur-
vival function.

(b) Determine the mean, variance, and standard deviation.
(c) Plot a histogram of the probability distribution function.

3.3.7. Find the expected value for a scratch game available in your state or a nearby state.

3.3.8. Some species of birds try to have a second nest if the first one fails early enough. Suppose
g(x) is the fraction of birds that build a second nest if the first one is raided on day x, where
g(x) = 1 for x < 4, g(4) = 0.8, g(5) = 0.6, g(6) = 0.4, g(7) = 0.2, and g(x) = 0 for x > 7.
Given that 0.1 is the probability of a successful raid on any given day and that a nest can only
be destroyed once, determine the expected value of the function g(X). What is the biological
meaning of the value E(g(X))? [Assume that the birds never build a third nest, in which case
you do not need to know if second nests are raided.]

3.3.9. Suppose Ω = {1,2,3,4} with probabilities in the ratios 1 : 2 : 3 : 4. Determine the proba-
bility distribution function, mean, and standard deviation. [Hint: Think about the properties that
probability distribution functions must satisfy. If P [X = 1] = p, then only one value is possible
for p.]

3.4 The Binomial Distribution

After studying this section, you should be able to:

• Identify the context in which a binomial distribution is appropriate.
• Use the probability distribution function for binomial distribution calculations.
• Use the formulas for mean, variance, and standard deviation for a binomial distribution.
• Discuss the significance of the parameters in a binomial distribution.

The fundamentals of genetics were first published by the Austrian monk Gregor Mendel
in 1866 and only became well known in 1900.23 Mendel’s key experiment began with two

22 The implications of this question were of great interest to the children’s author “Dr. Seuss” [16].
23 On the Origin of Species was published in 1859. Not only was Charles Darwin ignorant of the DNA mecha-
nism of inheritance—he was also ignorant of the basic facts of inheritance!
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strains of pea plants, one whose seeds were always smooth and one whose seeds were always
wrinkled.24 He bred one variety with the other, being careful to fertilize the ovules of each
flower with pollen from the opposite strain. All of the seeds produced by both strains of plants
were smooth. Next, Mendel planted this first generation of offspring seeds and used them to
produce a second generation. The result was that approximately 3/4 of the next generation of
seeds were smooth and 1/4 were wrinkled. Mendel worked out his conceptual model of genetics
from this experiment. This conceptual model consists of two assumptions.

1. The smoothness trait in peas is determined by a pair of genes, one from the pollen and one
from the ovule. The genes come in two varieties, smooth and wrinkled. A pair of smooth
genes produces a smooth seed and a pair of wrinkled genes produces a wrinkled seed.

2. An individual with one gene of each type produces smooth seeds; we say that the smooth
gene is dominant and the wrinkled gene is recessive.

The assumptions of Mendel’s model completely explain the data. If a population always
produces wrinkled seeds, then all of the individuals in it must have pairs of wrinkled genes.
While not as obvious, the same conclusion holds for a population that always produces smooth
seeds. If there are some wrinkled genes hiding inside smooth seeds, then at least some of the
seeds produced in the next generation might have two wrinkled genes. Hence, two pure strains
are the starting point for the experiment. When we produce a first generation of seeds using one
gene from a strain that always produces smooth seeds and one gene from a strain that always
produces wrinkled seeds, then all of the first generation seeds will have one of each kind of
gene; hence, they will all be smooth. Plants grown from these seeds have one of each kind
of gene, so the pollen grain and the ovule each have a 50 % chance of carrying the wrinkled
gene. Both of these events have to occur to produce a wrinkled seed. By the sequence rule, the
probability of a wrinkled seed is 1/4.

In 1936, the statistician and geneticist Ronald A. Fisher analyzed Mendel’s published data.
From this analysis, Fisher came to the conclusion that the data had been adjusted (intention-
ally or unconsciously) to give better support to Mendel’s theory.25 To the beginning student of
probability, this is a curious statement. Shouldn’t Mendel have found all of the first generation
offspring to be smooth and exactly 1/4 of the second generation to be wrinkled? Clearly the
answer to the first question is yes, but the second question is problematic, and it was this data
that Fisher examined. Let us take a look over Fisher’s shoulder. What should we expect from
Mendel’s second generation data?

Let’s begin by considering a single trial of the experiment. If we produce only one seed, it
will be either smooth or wrinkled, not 25 % wrinkled. With one seed, “all” will be smooth or
“all” will be wrinkled. Clearly, having a probability of 1/4 for a wrinkled seed is not the same
as having exactly 1/4 of the seeds be wrinkled. The key to understanding the difference is in a
correct interpretation of what it means to have a probability of 1/4. It means that the theoretical
frequency of wrinkled seeds is 1/4 for the model population, which is infinite. The frequency in
an actual population will vary because of demographic stochasticity.26 In a finite population of
seeds, the probability of containing any particular number of wrinkled seeds must be calculated
using the basic probability rules.

24 The peas also differed in color, but the extra complication is not necessary for our mathematical modeling.
25 Mendel did, in fact, clearly state that he used only a portion of the data for his calculations. Careful control of
data to minimize bias is a fairly recent innovation in science. A more complete discussion of Mendel’s data and
Fisher’s analysis appears in [2].
26 See Section 2.1.
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3.4.1 Bernoulli Trials and Binomial Distributions

Each seed produced in the second generation is a little experiment of its own, with two possible
outcomes: wrinkled and smooth. If we want to count numbers of wrinkled seeds in a large
number of trials, it is convenient for individual trials to use the outcome 1 to represent a wrinkled
seed and 0 to represent a smooth seed. The individual experiments for each seed are called
Bernoulli trials.

Bernoulli trial: an experiment in which the sample space is Ω = {0,1}, with P [1] = p
and P [0] = q ≡ 1− p.

Bernoulli trials serve as the basic component of the binomial distribution.27

Example 3.4.1.

Q) Suppose we produce three second generation seeds. What is the probability distribution for
the number of wrinkled seeds in this experiment?

A) The graph of Figure 3.4.1 displays a sequence of three Bernoulli trials with “success” prob-
ability 1/4. Each pair of edges corresponds to one Bernoulli trial, with the upper edge in-
dicating a wrinkled seed and the lower edge indicating a smooth seed. For ease of reading,
only the probabilities are labeled in the second and third trials. Each of the nodes on the far
right is a terminal node, because the experiment always has exactly three Bernoulli trials.
Each terminal node is labeled with the sequence of outcomes and the overall probability,
which is the product of the probabilities on the edges leading to the terminal node. The
outcome for the three-seed experiment is the number of wrinkled seeds, regardless of order.
Thus, we obtain the probability distribution function

f (0) =
27
64

, f (1) =
27
64

, f (2) =
9

64
, f (3) =

1
64

.

��

Check Your Understanding 3.4.1:
Repeat Example 3.4.1 to determine the probability distribution function for a sequence of
three Bernoulli trials, each with p = 1/3 rather than p = 1/4.

The distribution in Example 3.4.1 is the binomial distribution. This distribution arises in any
context where a random variable X represents the number of successes (outcomes of 1) in
some number of Bernoulli trials with equal probability of success for each. Two parameters are
needed: the number of Bernoulli trials and the success probability for each.

Binomial distribution: the discrete probability distribution having outcomes k that rep-
resent the number of successes in a set of n Bernoulli trials, each with the same suc-
cess probability p; we denote this distribution by the probability distribution function
bn,p(k).28

27 Bernoulli trials are also the basic components for the geometric and negative binomial distributions.
28 There is no standard notation for the binomial distribution. Most authors use the letter “b” or some variation
of it. The number of trials is almost always n and the success probability for one Bernoulli trial is almost always
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Fig. 3.4.1 Schematic calculation of the probability distribution b3,0.25 for the number of wrinkled seeds out of
three

Example 3.4.2. Using the results from Example 3.4.1, we can list all of the values of the bino-
mial distribution b3,0.25:

b3,0.25(0) =
27
64

, b3,0.25(1) =
27
64

, b3,0.25(2) =
9

64
, b3,0.25(3) =

1
64

.

The expected value of the distribution (Equation (3.3.4)) is

EX = ∑
k∈Ω

k b3,0.25(k) = (0)

(
27
64

)
+(1)

(
27
64

)
+(2)

(
9

64

)
+(3)

(
1

64

)
=

48
64

=
3
4
.

��
The expected value in Example 3.4.2 is equal to the product of the number of trials (3) and

the success probability for each trial (0.25). This is intuitively correct. The product np cannot
be the actual number of wrinkled seeds in this experiment, but it is nevertheless the expected
number of wrinkled seeds. If we do the experiment with four seeds instead of three, then the
expected value of the distribution is 1. In this case, the actual number of wrinkled seeds might
be the expected value np, but it does not have to be.

The brute force method of Example 3.4.1 is reasonable only when the number of Bernoulli
trials is small. Suppose we want to determine the probability distribution of wrinkled seeds from
a population of 24. Clearly we need a more sophisticated method for doing the calculations.
Such a method is available, thanks to the branch of mathematics known as combinatorics. The

p. The outcomes are usually labeled as either x or k. Many authors put the parameters inside the parentheses
along with the outcome. I prefer to use the parameters as subscripts to emphasize that they are fixed parameters
of the distribution function, whereas k is the independent variable in the function.
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development of the result is outside the scope of our treatment, but it can be found in any
standard probability or statistics text.

Theorem 3.4.1 (The Binomial Distribution Formula and Properties). The probability
of k successes in n Bernoulli trials, each with the same success probability p, is given by
the binomial distribution formula

bn,p(k) =
n!

k!(n− k)!

(
p
q

)k

qn, q = 1− p. (3.4.1)

The mean and variance of the binomial distribution with n trials and success probability
p are

μ = np, σ2 = npq. (3.4.2)

As in our first example, the mean of the binomial distribution agrees with our intuition that
the expected number of successes should be np.

Example 3.4.3.

Q) Find the probabilities of getting k wrinkled seeds out of 24, for 0 ≤ k ≤ 13.
A) For n = 24 and p = .25, we have the binomial distribution

b24,0.25(k) =
24!

k!(24− k)!

(
0.25
0.75

)k

0.7524 =
(24!)(0.7524)

3kk!(24− k)!
≈ 6.2255× 1020

3kk!(24− k)!
.

For example,

b24, 0.25(6) =
6.2255× 1020

366!18!
≈ 0.1853.

The full set of results is given in Table 3.4.1 and displayed in Figure 3.4.2a. ��

Check Your Understanding 3.4.2:
Verify any two of the results in Table 3.4.1.

There is no simple formula for the cumulative distribution function for the binomial distri-
bution. This makes some calculations difficult.

Example 3.4.4.

Q) What is the probability of obtaining 10 or more wrinkled seeds in 24 trials?
A) The event k ≥ 10 is the complement of the event k ≤ 9. Using the complement rule, we can

write the desired probability in terms of the cumulative distribution:

P [K ≥ 10] = 1−P[K ≤ 9] = 1−B24, 0.25(9),

Table 3.4.1 Probabilities for the number of wrinkled peas out of 24

k 0 1 2 3 4 5 6

b24,.25(k) 0.0010 0.0080 0.0308 0.0752 0.1316 0.1755 0.1853

k 7 8 9 10 11 12 13

b24,.25(k) 0.1588 0.1125 0.0667 0.0333 0.0141 0.0051 0.0016
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Fig. 3.4.2 (a) The probability distribution function b24, 0.25 and (b) the cumulative distribution B24, 0.25

where Bn,p(k) is defined to be the probability of having k or fewer successes in n trials
with success probability p. There is no special formula for this calculation. The best we
can do is add the relevant probabilities from Table 3.4.1, with the result that the probability
of 10 or more successes in 24 trials is 0.0546. The cumulative distribution is displayed in
Figure 3.4.2b.

��
Human intuition is a great tool for mathematical modeling, but it can be misleading in prob-

ability. The result of Example 3.4.4 is surprising if you think about its significance. Suppose
20 other biologists did the same experiment as Mendel at the same time, and each reported
his/her work to the others. Each would have collected 24 seeds from the first generation plants.
According to the probability calculations, it is very likely that at least one would have found at
least 10 wrinkled peas out of 24. Based on his data, this biologist would have proposed an in-
correct theory of inheritance and faced ridicule by his colleagues. Yet the unusual result would
be due to neither an error in Mendelian genetics nor experimental error by the biologist. As Ex-
ample 3.4.4 shows, it is a predictable consequence of demographic stochasticity. The difficulty
for the individual biologist doing experimental work is that she might unwittingly collect an
unusual data set that lies far from the population mean in spite of flawless experimental design
and technique. This point cannot be overemphasized:

A random sample is not necessarily a representative sample.

The only cure for this problem is to use a larger sample. This issue is more broadly addressed
in Sections 4.1 and 4.3.

Check Your Understanding Answers

1.

b3,1/3(0) =
8

27
, b3,1/3(1) =

12
27

, b3,1/3(2) =
6
27

, b3,1/3(3) =
1

27
.
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Problems

3.4.1. Tomato plants, like pea plants, have a number of traits determined by a small number
of genes. These include the height (tall or dwarf) and leaf shape (potato leaf or cut leaf). A
genetics experiment in 1931 was done with tall potato-leaf plants and dwarf cut-leaf plants.
The second generation consisted of 926 tall cut-leaf plants, 293 dwarf cut-leaf plants, 288 tall
potato-leaf plants, and 104 dwarf potato-leaf plants [10]. Determine the probabilities for each
of these phenotypes. Based on the principles of Mendelian genetics, determine a genetic model
that can account for these results. Support your choice by computing theoretical expected values
for the probabilities.

3.4.2. Suppose the probability that a bird nest will be raided by a predator in any given day is
0.1. Assume that the fledglings survive if a nest is kept safe for 20 days. Determine the proba-
bility that the fledglings survive. Express this probability in terms of the binomial distribution.

3.4.3.* Suppose a predator succeeds in 30 % of its attacks on prey. How likely is it that it will
need at least three tries to achieve its first success? What about five or more tries? State the
probability of needing y or more tries in terms of the binomial distribution.

3.4.4. Suppose pairs of birds have a 25 % chance of a successful nest. Given 10 pairs of birds,
find the complete set of probabilities for the number of successful nests. Prepare a histogram
and find the mean and standard deviation.

3.4.5. According to human genetics professor Daniel Geschwind, “Six out of the past 12
presidents [being left-handed] is statistically significant, and probably means something”
[6, 11, 13].29 Suppose the probability of left-handedness is 0.15.30 Find the probability distri-
bution for the number of left-handed people in a group of 12 randomly chosen people. Prepare
a histogram and find the mean and standard deviation. How many standard deviations away
from the mean is the outcome X = 6? To what extent do you think these calculations support
Geschwind’s view?31

(This problem is continued in Problem 4.4.8.)

3.4.6. The chi-square test in statistics was developed by Karl Pearson using data obtained by
his colleague Walter Frank Raphael Weldon, who reported the results from 26,306 runs of an
experiment consisting of rolls of a set of 12 dice [12].32 The data is reproduced in Table 3.4.2.

(a) Determine the probability distribution for the number of successes in 12 die rolls, with
“5” and “6” counted as successes. Prepare histograms of this distribution and Weldon’s
corresponding data. Do the dice appear to be fair?

29 For a more scholarly discussion, see [9].
30 This estimate is probably a little high, but not much. It is hard to know how many people are naturally
left-handed, since some natural left-handers, such as the author’s sister, were “trained” in school to be right-
handed. Irrational prejudice against left-handers dates back many centuries; for example, the Latin word for
“left-handed” is the original source of the English word “sinister.”
31 Even if 6 of 12 is highly unusual, it does not mean that the result is significant. While any one coincidence
discovered in a group of 12 people is unusual, there was no particular reason to look for the specific coincidence
of left-handedness. The number of possible coincidences that could be discovered is probably quite large, so
perhaps there is nothing unusual in discovering one.
32 Why the dice were rolled 26,306 times, rather than some larger or smaller number, is lost to posterity. Accord-
ing to Weldon, 7,006 rolls were done by a clerk deemed “reliable and accurate,” but Weldon did the other 19,300
rolls himself. There is no evidence that Weldon’s experiments inspired the invention of the game “Yahtzee.”
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(b) Use a stopwatch to estimate how long it takes to do 10 runs of the experiment (rolling 12
dice and recording the results as a list of tick marks). Estimate the time Weldon personally
spent doing 19,300 experiment runs. Can you imagine a professional scientist rolling a set
of dice 19,300 times for a scientific experiment?33

(This problem is continued in Example 4.4.3.)

Table 3.4.2 The frequency of N successes in 26,306 rolls of 12 dice, where a success means a roll of “5” or “6”

N 0 1 2 3 4 5 6 7 8 9 10 11 12

X 185 1,149 3,265 5,475 6,114 5,194 3,067 1,331 403 105 14 4 0

3.4.7. The geometric distribution is used for experiments in which Bernoulli trials with success
probability p are performed until the first success, with X being the number of failures prior to
that first success.

(a) Use the binomial distribution formula and the sequence rule to determine the probability
distribution function for the geometric distribution.

(b) Determine the probability distribution function for the number of codons in a strand of non-
coding DNA before the first stop codon. [Use the result of Problem 3.2.4 as the probability
that one randomly selected codon is a stop codon.]

3.4.8. A predator must capture 10 prey to grow large enough to reproduce. The probability of
capturing prey on a given day is 0.1.

(a) Find a formula for the probability that it takes n days for the predator to reproduce. [Hint:
Think of this scenario as a sequence of two experiments, in which the second experiment is
a success on the nth day. What is the first experiment in the sequence?]

(b) Write a computer program to calculate the probabilities for n from 10 to 300. Note that you
may not be able to calculate factorials of large numbers; however, a ratio of factorials is
equivalent to a product of consecutive numbers, which is easier for a computer to calculate.
Test your program by having it compute the sum of all the probabilities. Note that this sum
should be the probability that the predator finds 10 meals in 300 or fewer days.

(c) Based on straightforward reasoning, what should the mean be?
(d) Use your program to calculate the mean and standard deviation for the distribution. Note

that your list of probability values does not go beyond n = 300. For the purpose of expected
value calculations, assume that the full probability for n > 300 is actually for n = 301. With
this adjustment, the mean should be very close to your result for part (c).

3.5 Continuous Probability Distributions

After studying this section, you should be able to:

• Discuss the concept of a continuous probability distribution, including the probability den-
sity function.

• Use a cumulative distribution function to compute the probability for a continuous random
variable to fall in a given interval.

33 Nowadays, a professional scientist would have his/her graduate student roll the dice 19,300 times.
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• Compute means and standard deviations for continuous probability distributions.

In Section 3.3, we defined discrete probability distributions using a probability distribution
function f , defined by

f (x) = P [X = x] .

We would like to define continuous probability distributions in the same way, but there is a
problem.

Example 3.5.1. The probability of obtaining exactly 200 heads in 400 tosses of a fair coin can
be computed using the binomial distribution:

b400,0.5(200) =
400!

(200!)2

(
1
2

)200(1
2

)200

=
(400)!

4200(200!)2 ≈ 0.040.

Similarly, the probability of obtaining exactly 800 heads in 1,600 tosses is 0.020. In general,
it can be shown that the probability of getting heads in exactly one-half of a large number of
Bernoulli trials is approximately

b2m, 0.5(m)≈ 1√
mπ

,

where m is the number of heads and 2m is the number of trials. Thus, the probability of exactly
50 % heads approaches 0 as the number of trials increases. ��

Example 3.5.1 illustrates the general principle that as the number of possible outcomes in-
creases, even the most common of them becomes very unlikely. When that number becomes
infinite, we lose the ability to calculate the probability of an individual outcome altogether.

Example 3.5.2. A dozen large eggs in the United States must weigh a minimum of 24 oz. As-
suming that a dozen large eggs always weighs between 24 and 24.2 oz, what is the probability
that a dozen large eggs weighs exactly 24.1 oz?

The answer is that the probability is 0. One argument for this is to note that the sample space
that consists of the interval 24≤ x ≤ 24.2 contains infinitely many values, of which 24.1 is only
one. With equally probable outcomes, the probability of the outcome 24.1 would be 1/∞ = 0.
Even if 24.1 is the most likely outcome, it remains only one outcome out of infinitely many, and
the probability is still 0. ��

Example 3.5.2 points out the fundamental difficulty of continuous probability distributions.

It is not possible to define a continuous probability distribution with an algebraic formula
that prescribes the probabilities of the individual outcomes.

Nevertheless, we can define and work with continuous probability distributions by shifting our
focus from a probability distribution function to a cumulative probability distribution function.

3.5.1 Cumulative Distribution Functions

In our study of discrete probability distributions, we had two alternative ways to define a prob-
ability distribution: probability distribution functions, which prescribe probabilities of specific
outcomes, and cumulative distribution functions, which prescribe probabilities that a random
variable does not exceed a specific outcome. Only the latter works for continuous probability
distributions.
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Example 3.5.3. Table 3.5.1 shows data for the length of petals in a species of iris.34 Fig-
ure 3.5.1b shows the relative frequencies of the data as a histogram. For comparison, Fig-
ure 3.5.1a shows the relative frequencies of the same data, but with bins of width 0.2 cm. These
relative frequencies correspond to experimental probabilities of obtaining a particular measure-
ment from a randomly chosen flower. The corresponding cumulative probabilities are shown in
Figure 3.5.1c,d. In the relative frequency plots, the total probability (always exactly 1) is the
sum of the bar heights. With twice as many bars in Figure 3.5.1b as compared to Figure 3.5.1a,
the bar heights are only half as large. Thus, the scales on the vertical axes are different. This
difference does not occur for the cumulative frequency plots because each bar height represents
the total probability up to that point, which is independent of the way in which outcomes are
grouped into bins. ��

Table 3.5.1 Frequencies of petal length in centimeters of Iris versicolor flowers

Length 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

Frequency 1 0 0 2 0 2 1 1 1 3 5

Length 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1

Frequency 3 4 2 4 7 3 5 2 2 1 1
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Fig. 3.5.1 Relative frequencies and cumulative relative frequencies for the petal length in centimeters of Iris
versicolor flowers (a) and (b): frequencies with bin widths of 0.2 cm and 0.1 cm; (c) and (d): cumulative
frequencies with bin widths as in (a) and (b)

34 This data is part of a larger set in a classic paper by Ronald A. Fisher [3].
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Check Your Understanding 3.5.1:
Use the data in Table 3.5.1 to make a table of relative frequencies and cumulative frequen-
cies with bin widths of 0.2 cm. Remember to round half of the frequency for an odd value
up to the nearest 0.2 and half down to the nearest 0.2. Check your table by comparing it
to Figure 3.5.1a,c.

The data in Table 3.5.1 is given to the nearest millimeter, which makes it essentially dis-
crete. In principle, however, petal lengths could be reported to any desired degree of precision,
which would allow us to plot histograms with progressively narrower bins. As Figure 3.5.1a,b
shows, the relative frequencies of each bin become smaller as the bins narrow. However, Fig-
ure 3.5.1c,d shows that the cumulative frequencies do not become smaller as the bins narrow.
In principle, we could make the bins arbitrarily narrow, and the cumulative frequencies would
remain meaningful.

Example 3.5.3 and the subsequent discussion show that cumulative probability distribution
functions make sense for a continuous probability distribution; the challenge is to find a suitable
definition. The definition used for discrete probability distributions (Equation (3.3.2)) does not
work because it relies on the probability distribution function. The key is to understand three
basic properties of cumulative probability. The cumulative probability for any numerical value
in a data set, such as that of Table 3.5.1, is the sum of the height of its corresponding bar in the
relative frequency histogram and all the bars to the left. Thus:

1. The probability of obtaining an outcome less than the smallest possible outcome must be 0.
2. The probability of obtaining an outcome less than or equal to the largest possible outcome

(the sum of all the probabilities) must be 1.
3. As x increases, the cumulative probability of outcomes less than or equal to x increases.

These three properties motivate the definition of a continuous probability distribution.

Continuous probability distribution: the interval (−∞,∞) of real outcomes along with
a cumulative distribution function

F(x) = P [X ≤ x]

that satisfies the requirements

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1,
dF
dx

≥ 0.

Three points in this definition require additional explanation.

1. It is customary to define the cumulative distribution function to represent the probability of
X ≤ x rather than X < x. This is a distinction without a difference. As we saw in Exam-
ple 3.5.2, the probability of an individual outcome in continuous probability is always 0.
Hence, the probabilities of X ≤ x and X < x must always be the same.

2. The derivative of the cumulative distribution function is the rate at which probability is
accumulated as the interval widens. Normally this will be strictly positive, but it could be 0
for an interval of impossible outcomes. For example, if the distribution represents the amount
of time that elapses before some event occurs, then F(0) = 0 and dF/dx is 0 on the interval
(−∞,0).
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3. For the sake of generality, the definition assumes that all real numbers are possible out-
comes, but the definition could be revised for smaller intervals. For example, if outcomes are
restricted to the interval (0,∞), then the property F(−∞) = 0 can be replaced by F(0) = 0.

A cumulative distribution function can be used to calculate the probability for any interval.

Example 3.5.4. Consider the continuous probability distribution defined by the outcomes (0,∞)
and the cumulative distribution function F(x) = 1− e−x, as seen in Figure 3.5.2. Note that this
function has the required properties F(0) = 0, limx→∞ F = 1, and F ′ = e−x ≥ 0. We can easily
use F to calculate probabilities of intervals starting at 0:

P [0 ≤ X ≤ 1] = F(1) = 1− e−1 ≈ 0.63, P [0 ≤ X ≤ 2] = F(2) = 1− e−2 ≈ 0.86.

If we want to calculate the probability for an interval that does not start at 0, we can look at the
difference between two intervals that do start at 0. For example, the interval 1 < X ≤ 2 includes
all of those outcomes that are in the interval 0 ≤ X ≤ 2 but not in the interval 0 ≤ X ≤ 1. Using
the complement rule (Equation (3.2.3)), the probabilities of 0 ≤ X ≤ 1 and 1 < X ≤ 2 must add
up to the probability of 0 ≤ X ≤ 2. Thus,

P [1 < X ≤ 2] = F(2)−F(1)≈ 0.23.

As in the first note in the discussion of the definition, the exclusion of 1 and the inclusion of 2
from the interval 1 < X ≤ 2 is a matter of custom and has no practical significance. ��

Check Your Understanding 3.5.2:
Calculate P [2 < X ≤ 3] for the distribution of Example 3.5.4.

3.5.2 Probability Density Functions

A discrete distribution can always be obtained from continuous data by partitioning the contin-
uous interval of outcomes into a discrete collection of subintervals, just as in Example 3.5.1.
By examining a sequence of discrete approximations with more and more subintervals, we can
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Fig. 3.5.2 The cumulative distribution function F(x) = 1− e−x with outcomes (0,∞)



184 3 Probability Distributions

discover another approach to continuous probability. First, however, we need to make an im-
portant modification to our histogram plots. The numerical values on the vertical axes of the
histograms in Figure 3.5.1a,b represent the frequencies of ranges of outcomes. Thus, cutting
the interval width in half cuts the probabilities approximately in half as well, which means that
the range of values used for the vertical axis changes. This property is what prevents us from
generalizing the probability distribution function to continuous distributions.

The fundamental insight needed to proceed is this: since both the probability and the width
are cut in half, the ratio of probability to width stays the same. This observation suggests that
we could get a better comparison of histograms if we changed the definition of the vertical
coordinate; instead of using the probability for the given bin, we could divide the probability by
the interval width. This change would not alter the appearance of the histogram plot, because
the relative heights are unaffected in division by a fixed number. However, it would keep the
numbers marked on the vertical axis from decreasing.

Example 3.5.5. Figure 3.5.3a,b,c shows histograms for the probability distribution with out-
comes (0,∞) and the cumulative distribution function F(x) = 1− e−x. The heights of the first
three bars in Figure 3.5.3a were calculated in Example 3.5.4 and Check Your Understanding
1, and the others are obtained by similar calculations. The three plots of Figure 3.5.3a,b,c have
interval widths of 1, 0.5, and 0.125 respectively, with corresponding y coordinates of 1, 2, and
8 times the frequency. With this change, the scales on the y axis are the same for all three plots.

��
As a consequence of the change to plotting frequency divided by bin width on the vertical

axis, the probability is no longer represented by the height of the bars. Nevertheless, we can still
visualize it in the histogram because we get frequency if we multiply the vertical coordinate
(frequency/width) by the horizontal coordinate (width). This means that the probability for a
given interval of outcomes is represented by the area under the curve within that interval. This
association of probability with area means that the areas, rather than the heights, add up to 1.
Each bar in Figure 3.5.3a corresponds to two bars in Figure 3.5.3b, each of roughly the same
height and half the width of the original. Thus, the area corresponding to a particular interval
of outcomes is preserved as the bins in the histogram are narrowed. The same statements can
be made to compare Figure 3.5.3b,c, but with a factor of 4 rather than 2. If we continue the
refinement process, the plots eventually approach a smooth curve, as shown in Figure 3.5.3d.
The area under this curve is 1, and the probability of an outcome within any particular interval
is the area encompassed by that interval. The curve is called a probability density function.

Because probability is the area under a probability density function f , we can use the integral
formula

P [a < X ≤ b] =
∫ b

a
f (x)dx (3.5.1)

to compute probabilities. Probability density functions are therefore an alternative to cumulative
distribution functions for defining a continuous probability distribution. In general, the proba-
bility density function f and cumulative distribution function F are related by the equation

∫ x

−∞
f (x̄)dx̄ = P [X ≤ b] = F(x). (3.5.2)

Differentiating (3.5.2) reveals the relationship between the probability density function and the
cumulative distribution function:

F ′(x) = f (x). (3.5.3)
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Fig. 3.5.3 Histograms for the cumulative distribution function F(x) = 1− e−x with (a) Δx = 1, (b) Δx = 0.5,
(c) Δx = 0.125, with heights computed as frequency divided by width, and (d) the probability density function
f (x) = e−x, showing the area corresponding to P [1 < X ≤ 2]

Hence, we can recast the properties of cumulative distribution functions as corresponding prop-
erties of probability density functions:

f (x) ≥ 0,
∫ ∞

−∞
f (x)dx = 1. (3.5.4)

Example 3.5.6. Let F(x) be the cumulative distribution function F(x) = 1− e−x. From (3.5.3),
the probability density function is

f (x) = F ′(x) = e−x.

We can calculate probabilities by integrating this probability density function; for example,

P [1 < X ≤ 2] =
∫ 2

1
e−x dx.

��

3.5.3 Expected Value, Mean, and Variance

In our study of discrete probability distributions, we used the concept of expected value to
define the mean (Equation (3.3.5)) and variance (Equation (3.3.6)) of a distribution as

μ = EX , σ2 = EX2 − (EX)2. (3.5.5)
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These definitions for mean and variance carry over to continuous distributions once we have a
continuous analog of the formula for the expected value for the discrete case (Equation (3.3.4)).

The expected value of a function g of a continuous random variable X is given by

Eg(X) =
∫ ∞

−∞
g(x) f (x)dx, (3.5.6)

where f is the probability density function for the distribution.

Note that the integral in the expected value formula is improper, so it may not converge.
While this is mathematically possible, it will not occur for g= x or g = x2 (the functions needed
to find mean and variance) and any useful probability density function f .

Example 3.5.7.

Q) Find the mean and variance for the distribution given by F(x) = 1− e−x.
A) Given the probability density function f (x) = e−x, we have

EX =

∫ ∞

0
xe−x dx, EX2 =

∫ ∞

0
x2e−x dx.

We could compute these integrals using integration by parts, a method commonly taught in
the second semester of calculus. However, we can avoid these calculations by making use
of the well-known integral formula

∫ ∞

0
xne−x dx = n!, n = 0,1, . . . .

Thus,
μ = EX = 1, σ2 = EX2 − (EX)2 = 2− 1 = 1.

The mean, the variance, and the standard deviation (the square root of the variance) are all 1.

��

Check Your Understanding Answers

2. 0.086

Problems

The data sets for Problems 3.5.2–3.5.6 are from [5] and can be found in both csv and xlsx form
at http://www.math.unl.edu/∼gledder1/MLS/, http://www.springer.com/978-1-4614-7275-9.

3.5.1.* A fair coin is flipped 2n times.

(a) What is the probability that there have been exactly n heads?
(b) What is the probability of exactly 10 heads in 20 coin flips?
(c) What is the probability of exactly 50 heads in 100 coin flips?

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
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(d) Conclude that it is rare for an experimental probability to be exactly equal to the theoretical
probability. We will revisit this issue when we study the probability distributions of sample
means.

3.5.2.* The file SOLDIERS.* contains measurements of the chest circumferences of 5,732 Scot-
tish soldiers, to the nearest inch.35

(a) Prepare a table of relative frequencies for chest size rounded to the nearest 2 in. Round half
of the frequency for each odd inch up and half down.

(b) Plot histograms of the original relative frequencies and the relative frequencies from (a).
Note the values on the vertical axes.

(c) Plot histograms for the cumulative relative frequencies. Again note the values on the vertical
axes.

(d) Plot the histograms of the relative frequencies again, but this time divide the frequencies by
the bin width. Again note the values on the vertical axes.

(This problem is continued in Problem 3.6.6.)

3.5.3.* The file CUCKOOS.* contains measurements of the lengths, to the nearest 0.5 mm, of
the eggs of a species of cuckoo.

(a) Prepare a table of relative frequencies for the egg length rounded to the nearest millimeter.
Round half of the frequency for each odd half-millimeter up and half down.

(b) Plot histograms of the original relative frequencies and the relative frequencies from (a).
Note the values on the vertical axes.

(c) Plot histograms for the cumulative relative frequencies. Again note the values on the vertical
axes.

(d) Plot the histograms of the relative frequencies again, but this time divide the frequencies by
the bin width. Again note the values on the vertical axes.

(This problem is continued in Problem 3.6.7.)

3.5.4. The file BUTTER.* contains measurements of the butterfat content of the milk from
several breeds of cows, measured in hundredths of a percent.

(a) Prepare a table of relative frequencies for the butterfat content of all breeds, rounded to the
nearest 0.2.

(b) Repeat part (a) but with rounding to the nearest 0.1.
(c) Repeat part (a) but with rounding to the nearest 0.05.
(d) Plot histograms of the relative frequencies in (a), (b), and (c). Note the values on the vertical

axes.
(e) Plot histograms for the cumulative relative frequencies. Again note the values on the vertical

axes.
(f) Plot the histograms of the relative frequencies again, but this time divide the frequencies by

the bin width. Again note the values on the vertical axes.

(This problem is continued in Problems 3.6.12 and 3.6.13.)

35 This data set was originally published in the Edinburgh Medical and Surgical Journal in 1817. Since then,
it has been used as an example for the development of statistical methods. The full history of the data set is
recounted in [17].
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3.5.5. The file IRISES.* contains measurements of the lengths and widths of petals and sepals
of iris flowers of three different species.

(a) Prepare a table of relative frequencies for the sepal length of Iris setosa.
(b) Prepare a table of relative frequencies for the sepal lengths rounded to the nearest 0.2 mm.

Round half of the frequency for each odd half-millimeter up and half down.
(c) Plot histograms of the relative frequencies in (a) and (b). Note the values on the vertical

axes.
(d) Plot histograms for the cumulative relative frequencies. Again note the values on the vertical

axes.
(e) Plot the histograms of the relative frequencies again, but this time divide the frequencies by

the bin width. Again note the values on the vertical axes.

(This problem is continued in Problem 3.6.10.)

3.5.6. Repeat Problem 3.5.5 using the data for the sepal length of Iris virginica.
(This problem is continued in Problem 3.6.11.)

3.5.7. Let F(x) = 1− e−0.2x for x ≥ 0 and F(x) = 0 for x < 0.

(a) Verify that F satisfies the requirements for a cumulative distribution function.
(b) Find the corresponding probability density function.
(c) Find the probability P [4 ≤ X ≤ 6].
(d) Plot the probability density function along with lines and shading to mark the probability in

part (c).
(e) Find the mean and standard deviation of this distribution, using the integral formula

∫ ∞

0
xne−x dx = n!, n = 0,1, . . .

along with substitution in the definite integral.
(f) Find the probability P [X ≤ μ ].
(g) Find the probabilities P [μ −σ ≤ X ≤ μ ] and P [μ ≤ X ≤ μ +σ ].
(h) Prepare histograms similar to those of Figure 3.5.3a–c, using bin widths of 4, 2, 1, and 0.5.

3.6 The Normal Distribution

After studying this section, you should be able to:

• Identify contexts in which a normal distribution might be appropriate.
• Use a probability density function and cumulative distribution function for calculations.
• Discuss the significance of the parameters in a normal distribution.

If you measure the masses of 100 seeds from a seed packet, group them into appropriately
chosen intervals, and prepare a histogram of the data, you will almost certainly see a “bell-
shaped curve.” This sort of curve is characteristic of what is called the normal distribution. In
addition to fitting many data sets, the normal distribution has some mathematical properties that
make it relatively easy to interpret, as will be seen in the following discussion. We begin with
the mathematical definition.36

36 Note the use of x̄ inside the definite integral rather than x. The symbol for the integration variable must be
distinct from that for the independent variable. Any symbol other than x can be chosen; the advantage of x̄ is
that it serves as a reminder that we are integrating over values of x.
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Normal distribution: the continuous probability distribution with outcomes −∞ < x <∞
and probability density function

N′
μ,σ (x) =

1√
2πσ2

exp

(
− (x− μ)2

2σ2

)
, (3.6.1)

where μ is any real number and σ > 0. The cumulative distribution function is then given
by

Nμ,σ (x) = P [X ≤ x] =
∫ x

−∞
N′

μ,σ (x̄)dx̄. (3.6.2)

The normal distribution definition raises several questions, including these.

1. How do we calculate normal distribution probabilities without a simple formula for the cu-
mulative distribution function N?

2. Is it just a coincidence that the parameters in the normal distribution formula have the sym-
bols we have been using for the mean and standard deviation?

3. The normal distribution has sample space (−∞,∞). Does this mean we cannot use it for
random variables that must always be positive?

Question 1 has two fully satisfactory answers. In the pre-computer era, people referenced tables
of normal distribution values. These were readily available and not difficult to use. Now, any
good mathematical software has a built-in function for their calculation, as do any handheld
calculators designed for scientific use.37 Questions 2 and 3 are more easily addressed after an
intuition-building example.

Example 3.6.1. In Section 3.5, we examined a data set consisting of the petal lengths of iris
flowers. The data has mean μ = 4.26 and standard deviation σ = 0.47. Could this data fit a
normal distribution? Figure 3.6.1 shows a histogram of the data set along with a plot of the
probability density function N′

4.26,0.47. The data does not seem to fit the distribution very well,
but this could be because the sample size is so small. If the correct distribution is normal, it
appears plausible that the mean and standard deviation of the distribution are the same as that
for the data.38 ��

3.6.1 The Standard Normal Distribution

Complete answers to Questions 2 and 3 are easier to give after we have examined the standard
normal distribution.

37 In essence, we now calculate normal distribution values the same way we calculate values for exponential and
trigonometric functions.
38 The question of whether a data set is approximately normal is addressed in Section 4.2.
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Fig. 3.6.1 A histogram of the data from Table 3.5.1 with the probability density function N′
4.26,0.47

Standard normal distribution: the continuous probability distribution with outcomes
−∞ < z < ∞, probability density function

N′(z) =
1√
2π

exp

(
− z2

2

)
, (3.6.3)

and cumulative distribution function

N(z) = P [Z ≤ z] =
∫ z

−∞
N′(z̄)dz̄. (3.6.4)

Note that the standard normal distribution is just the normal distribution with μ = 0 and σ =
1. These values can be omitted from the notation because of the standard practice of using the
random variable Z and outcomes z for the standard normal distribution rather than the symbols
X and x used for a general normal distribution.

We noted in the answer to Question 1 above that normal distribution values have been cal-
culated from tables. One would expect difficulties in creating tables for distributions with two
continuous parameters. This is generally true, but normal distributions have an amazing math-
ematical property (see Problem 3.6.1):

Theorem 3.6.1 (Relationship of Normally Distributed Random Variables). Let X be
a normally distributed random variable with parameters μ and σ . Then the random vari-
able

Z =
X − μ

σ
(3.6.5)

is normally distributed with mean 0 and standard deviation 1.

Theorem 3.6.1 explains why it is possible to calculate values for a normal distribution using
tables. Only one table—that for the standard normal distribution—is necessary.

Example 3.6.2. Suppose we want to calculate the probability that a random variable from the
distribution N10,2 is less than 8. There are two ways we can do this using mathematical software.
First, we can use the specific cumulative distribution function:

P [X < 8] = N10,2(8)≈ 0.1587.
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Second, we can rewrite the statement X < 8 in terms of the standard normal random variable Z.
Using z = (x− μ)/σ = (8− 10)/2=−1, we have

P [X < 8] = P [Z <−1] = N(−1)≈ 0.1587.

These probabilities are represented as areas in Figure 3.6.2. Note that the areas are the same
because the scale on the horizontal axis in Figure 3.6.2a is twice as large as that in Figure 3.6.2b,
while the scale on the vertical axis is only half as large. ��
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Fig. 3.6.2 The probabilities (a) N10,2(8) and (b) N(−1)

We are now ready to address Question 2 from the beginning of the section. From Section 3.5,
the mean of a continuous probability distribution F is

EX =

∫ ∞

−∞
xF ′(x)dx;

hence, the mean of the standard normal distribution is

EZ =

∫ ∞

−∞

z√
2π

exp

(
− z2

2

)
dz.

We can evaluate this integral without actually integrating it if we notice that the integrand is an
odd function; that is, it satisfies the property f (−z) =− f (z). Every contribution to the integral
from a point z > 0 is exactly balanced by a negative contribution from the corresponding point
−z < 0. Thus, the mean of the random variable Z is 0. From (3.6.5), this means that the mean
of any random variable X from a normal distribution with parameter μ is the parameter μ .
Hence, it is not coincidental that the symbol for the first parameter in the normal distribution
is the same as the symbol used for the mean of a distribution. Similarly, the parameter σ is the
standard deviation, although the computation of the fact EZ2 = 1 is beyond the scope of our
presentation. The results are summarized in Theorem 3.6.2.

Theorem 3.6.2 (Mean and Standard Deviation of the Normal Distribution). The nor-
mal distribution Nμ,σ has mean μ and standard deviation σ .

Question 3 from the beginning of the section can now be addressed in terms of the standard
normal distribution. Again, we first consider a motivating example.
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Example 3.6.3.

Q) What is the probability that a normally distributed random variable X is more than n stan-
dard deviations less than or greater than the mean?

A) By Theorem 3.6.1, the answer to this question is independent of the numerical values of
μ and σ ; hence, it is sufficient to consider only the standard normal distribution. We have
P [Z <−n] = N(−n). The results are shown in Table 3.6.1. Out of a population of one
million values drawn from the standard normal distribution, the expected number of values
less than −5 is about 1/3.39 As a general rule, values more than 5 standard deviations away
from the mean of a normal distribution are extremely rare. Even 4 standard deviations away
from the mean is highly unlikely; on the average, only about three values out of 100,000 are
that far from the mean. By symmetry, P[Z > z] = P[Z <−z].

��

Table 3.6.1 Probabilities of outcomes more than n standard deviations below the mean for a normally distributed
random variable

z −1 −2 −3 −4 −5 −6
P [Z < z] 0.1587 0.0228 0.0013 0.00003 3×10−7 10−9

Example 3.6.3 helps us understand when we can use the normal distribution for data that
can only be positive, such as measurements of iris petal lengths. The problem is that the normal
distribution, regardless of the mean and standard deviation, will have a nonzero probability of
values less than 0. As always, we must remember that we are using distributions as models
for data sets rather than as descriptions of data sets. In cases where the standard deviation is
less than 20 % of the mean, the outcome x = 0 lies 5 or more standard deviations away from
the mean. As shown in Example 3.6.3, the probability of a value corresponding to a negative
measurement, which would be at least 5 standard deviations from the mean, is extremely small;
hence, we should not shy away from the normal distribution in such cases. When the standard
deviation is a larger percentage of the mean, we should be more cautious. Certainly the normal
distribution should not be used if the standard deviation is more than one-third of the mean.

Since the probabilities in the normal distribution are given in terms of the number of stan-
dard deviations away from the mean, we can do a general calculation of the probabilities for a
collection of intervals delimited by multiples of the standard deviation. Figure 3.6.3 illustrates
the probabilities for intervals whose width is one-half of the standard deviation.
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Fig. 3.6.3 The probability distribution function for the standard normal distribution, showing the probabilities
associated with adjacent multiples of σ = 0.5

39 Think of drawing a value from the normal distribution as a Bernoulli trial. For one million Bernoulli trials,
each with probability 3×10−7, the expected number of successes is the product 0.3.
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3.6.2 Standard Probability Intervals

The strong connection between the standard deviation and probability values allows us to define
intervals corresponding to specific probabilities.40

Example 3.6.4.

Q) Find the probability that a normally distributed random variable lies within 1.96 standard
deviations of the mean.

A) We do not need to work with the random variable X to answer this question because the z
value of 1.96 is given. By the complement rule and the symmetry of the normal distribution,

P [−1.96 < Z ≤ 1.96] = 1−P [Z <−1.96]−P [Z > 1.96] = 1− 2P[Z <−1.96]

= 1− 2N(−1.96) = 0.9500.

��

Check Your Understanding 3.6.1:
Find the probability that a normally distributed random variable lies within 2.58 standard
deviations of the mean.

Example 3.6.4 shows that 95 % of measurements for a normally distributed random variable
are within 1.96 standard deviations of the mean; that is, in the interval (μ −1.96σ ,μ+1.96σ).
Similarly, 99 % of measurements lie within 2.58 standard deviations of the mean. The proba-
bilities 0.99 and 0.95 are an accepted part of statistics practice, although the specific choices of
95 % and 99 % are arbitrary. One could just as easily focus on 96 % or 98 %.41

Problems

The data sets for Problems 3.6.6–3.6.13 are from [5] and can be found in both csv and xlsx form
at http://www.math.unl.edu/∼gledder1/MLS/, http://www.springer.com/978-1-4614-7275-9.

3.6.1. Derive Theorem 3.6.1.

3.6.2.* Suppose X is normally distributed with mean 10 and standard deviation 2.

(a) Find the probability P [X > 13].
(b) Find the probability P [11 < X ≤ 13].

3.6.3. Suppose X is normally distributed with mean 7.1 and standard deviation 1.6. Find
P [X > 9].

3.6.4. Suppose X is normally distributed with mean 4.7 and standard deviation 0.5. Find
P [4 < X ≤ 5].

3.6.5. Suppose lnX is normally distributed with mean −1 and standard deviation 1.

40 These are not confidence intervals, which are discussed in Section 4.3.
41 In general, statistics can be described as “probability augmented by arbitrary standards.” The advantage of
such standards is that they provide a unified language to use in comparing results, but the disadvantage is that
the standards can acquire a perceived significance out of proportion to their actual value.

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
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(a) Find the probability P [X < 1]. [Change the statement to a statement about lnX and then use
the normal distribution.]

(b) Find the probability P [X > 0.5].
(c) Find the symmetric interval corresponding to 95 % of measurements for lnX .
(d) Find the corresponding 95 % interval for X . [In other words, find the range of X values that

correspond to the 95 % interval for lnX . This interval is not symmetric.]

3.6.6.* (Continued from Problem 3.5.2.)
Prepare a histogram of the chest measurements of Scottish soldiers in the file SOLDIERS.*.
Superimpose the probability density function for the corresponding normal distribution with
μ = x̄ and σ = s. Does the normal distribution seem to be a reasonable model for this data set?

3.6.7. (Continued from Problem 3.5.3.)
Repeat Problem 3.6.6 with the lengths of cuckoo eggs in the file CUCKOOS.*.

3.6.8. Repeat Problem 3.6.6 with the litter size of pigs in the file PIGS.*.

3.6.9. (Continued from Problem 3.1.7.)

(a) Repeat Problem 3.6.6 with the pulse rates of native Peruvians in the file PULSE.*.
(b) Based on part (a), what do you think is the “normal” range of resting pulse rates in this

population?
(c) Do an Internet search for information about how normal ranges of physiological parameters

are defined and report what you learn.

(This problem is continued in Problem 4.2.5.)

3.6.10. (Continued from Problem 3.5.5.)
Repeat Problem 3.6.6 with the sepal lengths of Iris setosa in the file IRISES.*.
(This problem is continued in Problem 4.2.7.)

3.6.11. (Continued from Problem 3.5.6.)
Repeat Problem 3.6.6 with the sepal lengths of Iris virginica in the file IRISES.*.
(This problem is continued in Problem 4.2.7.)

3.6.12. (Continued from Problem 3.5.4.)
The file BUTTER.* contains data for the amount of butterfat in the milk of several breeds of
cows.

(a) Prepare three relative frequency tables, with bin width 0.2: (1) Jersey cows, (2) Ayrshire
cows, (3) Jersey and Ayrshire cows.

(b) Prepare histograms for the three relative frequency tables.
(c) On a single graph, plot the normal probability density functions using (1) the mean and stan-

dard deviation for the Jersey data and (2) the mean and standard deviation for the Ayrshire
data.

(d) On a single graph, plot (1) the normal probability density function using the mean and
standard deviation of the combined Jersey and Ayrshire data and (2) the probability density
function obtained by averaging the probability density functions from part (c).

(e) Discuss the differences in the two functions in the plot from part (d), referring to the part
(c) graphs.
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(f) Compare the graphs in part (d) with the histograms in part (b). Discuss the issue of whether
it appears more reasonable to combine the data for these two breeds or to keep them distinct.

(This problem is continued in Problem 4.2.4.)

3.6.13. (Continued from Problem 3.5.4.)
Repeat Problem 3.6.12, but with the Guernsey data instead of the Ayrshire data.
(This problem is continued in Problem 4.2.4.)

3.6.14. Suppose two theoretical populations of normally distributed data are combined into
a single data set, as considered in Problems 3.6.12 and 3.6.13. In this problem, we explore
the relationship between the shape of the resulting distribution and the number of standard
deviations by which the means differ. To keep things from getting too complicated, we consider
only the case where both populations have the same standard deviation.

(a) Plot the probability density function f for a random variable consisting of an equal mix of
data from the distributions N9,2 and N11,2. Use the viewing window 2 ≤ x ≤ 18, 0 ≤ f ≤
0.2 to facilitate comparison with the probability density function for N10,2 that appears in
Figure 3.6.2.

(b) Repeat part (a) for a random variable consisting of an equal mix of data from the distribu-
tions N8,2 and N12,2;

(c) Repeat part (a) for a random variable consisting of an equal mix of data from the distribu-
tions N7,2 and N13,2;

(d) Repeat part (a) for a random variable consisting of an equal mix of data from the distribu-
tions N6,2 and N14,2.

(e) How does the shape of a distribution consisting of a sum of two normal distributions depend
on the relationship between the standard deviation and the difference between the means?

(f) Until now, we have been assuming that a data set drawn from two different distributions has
a probability density function that is the average of that for the two individual distributions.
To test this assumption, use computer software to create a data set consisting of 10,000
values chosen from each of N6,2 and N14,2. Prepare a histogram and compare it with the
probability density function from part (d).

(This problem is continued in Problem 4.2.10.)

3.7 The Poisson and Exponential Distributions

After studying this section, you should be able to:

• Identify the contexts in which the Poisson and exponential distributions are appropriate.
• Use the probability distribution function for Poisson distribution calculations.
• Use the cumulative distribution function for exponential distribution calculations.
• Use the formulas for mean, variance, and standard deviation for the Poisson and exponential

distributions.
• Discuss the significance of the parameters in the Poisson and exponential distributions.

Consider an event that recurs at random intervals, such as radioactive decay in a sample of
uranium or the consumption of flies by a hungry frog. We might want to know the probability
that k events happen in a given amount of time, or we might want to know the probability
that the next event happens before time t. There are probability distributions for each of these
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cases; the simplest are the Poisson distribution, which models the probabilities for the number
of events occurring in a fixed amount of time, and the exponential distribution, which models
probabilities for the amount of time before the next occurrence of an event.

3.7.1 The Poisson Distribution

Example 3.7.1. Suppose you put a frog and some flies in a cage and set a video camera to record
the scene. In 10 h, you record the frog eating 120 flies. This means that the average rate of fly
consumption by the frog is 12 flies per hour. Now suppose you repeat the experiment again
the next day with the same frog. We might reasonably ask, “What is the probability that the
frog will eat exactly 6 flies in the first half-hour?” Because of demographic stochasticity, we
know that an average of 12 per hour is not the same thing as exactly 12 in every hour. We need
a probability distribution that can address questions about numbers of events over a period of
time. ��

We cannot use the binomial distribution for Example 3.6.1, because it is meant specifically
for settings with a specified number of Bernoulli trials. Although Example 3.6.1 is about the
probability of a given number of successes, those successes are distributed over continuous
time rather than accumulated through a sequence of individual trials. Example 3.6.1 calls for a
Poisson42 distribution.

Poisson distribution: the discrete probability distribution for a random variable consist-
ing of the number of occurrences of an event in a time interval of duration t, given that
the events occur with mean rate λ .

Both the binomial and Poisson distributions compute the probability of a given number of
successes. In the binomial distribution, the k successes occur over n discrete trials. In the Pois-
son distribution, the k successes occur over a continuous time interval of duration t. For the
binomial distribution, we need a parameter p to indicate the success probability for each dis-
crete trial; for the Poisson distribution, we need a parameter λ to indicate the expected rate of
successes per unit time.

Example 3.7.2. In basketball, each player plays some number of minutes while the clock is
running and takes some number of free throws with the clock stopped. The free throws are
Bernoulli trials because each is an experiment with outcomes of success or failure. Based on
past performance, we can calculate each player’s success rate in successes per attempt.43 Given
a success rate p, we can calculate the probability of k successes in a given number of attempts
by using a binomial distribution. However, a binomial distribution cannot be used to determine
the probability of a player scoring k points or making k baskets in t minutes of playing time,
because (1) each minute of playing time could have a variable number of points/baskets, and
(2) minutes of playing time are not single experiments. To calculate the probability of a player
scoring k points in t minutes, we need a Poisson distribution44. The mean rate λ needed for the
distribution should be the player’s total points divided by the total number of minutes played. ��

42 For those of us who don’t speak French, an acceptable pronunciation in English is “pwa-SOHN.”
43 Basketball statisticians report this as a percentage rather than a probability.
44 Technically, we should only consider the distribution of baskets as suitable for a Poisson distribution. Since
points can come in two or threes, they are not technically Bernoulli trials.
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Check Your Understanding 3.7.1:
Suppose we are interested in the probability distribution for the number of points scored
by a given player per game. Is this a binomial distribution, a Poisson distribution, or
neither?

Here is the Poisson distribution formula, which we present without proof.

Theorem 3.7.1 (The Poisson Distribution Formula and Properties). The probability
of k events occurring in time t, given an average rate of λ events per unit time, is given
by the Poisson distribution formula

fμ(k) =
μk

k!
e−μ , where μ = λ t. (3.7.1)

The quantity μ is the variance of the Poisson distribution as well as the mean.

Example 3.7.3. We can use (3.7.1) to answer the question posed in Example 3.7.1. We want the
probabilities for each number of successes for one half-hour with a mean rate of 12 per hour.
Thus, the mean is μ = 6 and the distribution is

f6(k) =
6k

k!
e−6.

Specifically, the probability of 6 successes is

f6(6) =
66e−6

6!
≈ 0.16.

A portion of this probability distribution is given in Table 3.7.1 and displayed in Figure 3.7.1a.
��

Some interesting properties can be observed in the data of Table 3.7.1.

1. It may come as a surprise that the probability of 5 successes for f6 is as high as the probability
of 6 successes. Shouldn’t the probability of hitting the mean be higher than the probability
for being one less than the mean? To understand the result, note that the average success
rate corresponds to one success every 5 min. Suppose there have been 5 successes in the
first 25 min. With a mean rate of one every 5 min, it seems reasonable that the probability
of getting the next success in the next 5 min should be about 1/2. This suggests that the
probabilities for 5 successes and for 6 successes should be about the same, as it turns out
they are.

2. A comparison of the results in Table 3.7.1 with those in Table 3.4.1 for the binomial distri-
bution with the same mean suggests that the Poisson distribution has more variability than
the binomial distribution. Indeed, this is the case. The mean and variance of the Poisson dis-
tribution are the same, while the variance of the binomial distribution is always less than the
mean. The number of successes in a time interval is less predictable than the number of suc-
cesses in a given number of trials. This makes sense in the basketball example. We should
expect more variation in points per minute than in points per free throw attempt because
there is variability in both the number of attempts per minute and the number of baskets per
attempt.
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Table 3.7.1 Probabilities for the number of flies captured in one half-hour given a mean rate of 12 per hour

k 0 1 2 3 4 5 6

f6(k) 0.0025 0.0149 0.0446 0.0892 0.1339 0.1606 0.1606

k 7 8 9 10 11 12 13

f6(k) 0.1377 0.1033 0.0688 0.0413 0.0225 0.0113 0.0052
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Fig. 3.7.1 (a) The probability distribution function f6 and (b) the cumulative distribution F6 from Example 3.7.1

As with the binomial distribution, the formula for the mean of the Poisson distribution agrees
with our intuition. If events occur at a rate of exactly λ events per unit time, then λ t is the num-
ber of events that will occur in time t (provided λ t is an integer). If the events occur randomly
with average rate λ , we should still expect to see λ t events in time t, on the average.

A curious property of the Poisson distribution is that the mathematical formula requires only
the mean. The specific rate and time do not matter.

Example 3.7.4. Consider three different scenarios:

1. An experiment with a mean success rate of 0.5 per hour runs for 6 h.
2. An experiment with a mean success rate of 1 per hour runs for 3 h.
3. An experiment with a mean success rate of 2 per hour runs for 1.5 h.

All three of these scenarios have the same Poisson distribution, f3. For example, in each case,
the probability of at least 3 successes is

P [X ≥ 3] = 1−P[X ≤ 2]=1−P [0]−P [1]−P [2] = 1−
(

30

0!
+

31

1!
+

32

2!

)
e−3

= 1− 17
2

e−3 = 0.577.

��

3.7.2 The Exponential Distribution

Like the Poisson distribution, the exponential distribution deals with events that occur ran-
domly in time. Both assume that the individual events are independent of each other, such
as in radioactive decay. Whereas the number of events in a given amount of time follows a
Poisson distribution, the times between events are exponentially distributed. As the exponen-
tial distribution is continuous, we begin with a brief summary of the principles of continuous
distributions.45

45 See Section 3.5.
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1. Continuous probability distributions can be defined by a cumulative distribution function

F(x) = P [X ≤ x] . (3.7.2)

2. The probability density function is the derivative F ′.
3. The probability of an outcome falling in a particular interval46 can be determined using

either the cumulative distribution function or the probability density function.

P [a < X ≤ b] = F(b)−F(a) =
∫ b

a
F ′(x)dx, (3.7.3)

4. The expected value of any function g(X) is determined by integrating the product of g with
the probability density function:

Eg(X) =

∫ ∞

−∞
g(x)F ′(x)dx. (3.7.4)

5. The mean, variance, and standard deviation are determined using the same expected value
formulas as for discrete probability distributions:

μ = EX , σ2 = EX2 − (EX)2. (3.7.5)

The exponential distribution is conveniently defined by a cumulative distribution function.

Exponential distribution: the continuous probability distribution with outcomes 0 < t <
∞ and defined by the cumulative distribution function

Eλ (t) = 1− e−λ t, (3.7.6)

where λ is the mean rate per unit time at which the events occur.

Example 3.7.5.

Q) Suppose a mosquito trap collects an average of 2 mosquitoes per minute. Find the probabil-
ity that the first capture occurs after 1 min.

A) This question could be answered with either the exponential or the Poisson distribution,
which shows the connection between them. Assuming that the individual capture events are
independent, the times are exponentially distributed with mean rate λ = 2. This distribution
of event times is illustrated in Figure 3.7.2. If T is the time of the next capture, then the
probability that the first capture occurs after the first minute has passed is

P [T > 1] = 1−P[T ≤ 1] = 1−E2(1) = 1−(1−e−2) = e−2 ≈ 0.135.

Alternatively, if X is the number of captures in 1 min, then we can use the Poisson distribu-
tion to calculate the probability that no captures occur in the first minute, which is

P [X = 0] = f2(0) =
20

0!
e−2 = e−2 ≈ 0.135.

46 We use < at the lower bound of the interval and ≤ at the upper bound because this is the custom. In practice,
it is a distinction without a difference, since P [X = x] =

∫ x
x f (s)ds = 0.
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These results are clearly the same, as the statement that the first capture occurs after the first
minute is equivalent to the statement that no captures occur in the first minute.

��
We can obtain the basic properties of the exponential distribution from the formulas provided

in the summary. The probability density function is the derivative E ′ = λ e−λ t . Then we have

ET=
∫ ∞

0
λ×te−λ t dt, ET 2 =

∫ ∞

0
λ t2e−λ t dt.
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Fig. 3.7.2 (a) The cumulative distribution E2 and (b) the probability distribution function E ′
2 from Exam-

ple 3.7.5, both showing the probability that the first event occurs in the first time unit

These integrals can be computed using integration by parts or by the method of undetermined
coefficients.47 The results are summarized here.

Theorem 3.7.2 (Exponential Distribution Properties). The exponential distribution
has probability density function

E ′
λ (t) = λ e−λ t , (3.7.7)

and its mean, variance, and standard deviation are given by

μ =
1
λ
, σ2 =

1
λ 2 , σ =

1
λ
. (3.7.8)

3.7.3 Memory in Probability Distributions

Our human intuition suggests that events distributed over time become more likely as we wait
longer for them to occur. While true under some specialized circumstances, this is not gener-
ally the case. As an example, consider the radioactive decay of uranium atoms, which occurs
spontaneously without any preparation. We can show by calculation that the probability that a
particular atom decays in a period of time equal to one half-life is exactly 0.5, no matter how
long the atom has existed prior to the start of the experiment.

47 See Problem 3.7.14.
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Example 3.7.6.

Q) Suppose a radioactive element has a half-life of 50,000 s (about 14 h). Consider a (hypothet-
ical) scientific experiment in which we count out 1,000 atoms of this element and then start
a clock. What is the probability that the first decay in the sample occurs in the first 100 s?

A) We expect 500 of the atoms to decay in 50,000 s, so the mean rate of decay is λ =
500/50,000= 0.01. The decay times are exponentially distributed, so we have

P [T ≤ 100] = E0.01(100) = 1− e−1 = 0.632.

This may be counterintuitive. On average, we expect one decay every 100 s (1/λ ), but the
probability that the first decay occurs in less than 100 s is more than 0.5.

Q) Suppose there is no decay in the first 100 s. What is the probability that the first decay occurs
in the next 100 s?

A) At the end of 100 s, we still have 1,000 atoms. The mean rate is still 0.01, so we still have
the distribution E0.01. The clock is started again for the second 100 s. Hence, the answer is
the same as for the first 100 s: 0.632.

��
In Example 3.7.6, having already “waited” for 100 s without a decay makes no difference to

the probability of its happening in the next 100 s. Specifically, the probability of the first decay
occurring within 100 s of “right now” is always 0.632, no matter what time is on the clock. The
probability of the next decay occurring within 100 s will not change until the first decay occurs,
and then only because reducing the sample size by one changes the mean rate.48

Example 3.7.6 illustrates that the exponential distribution is memoryless. We will approach
this point in another way with the discussion of conditional probability in Section 4.6. It is a dif-
ficult property to understand, because the world of our everyday experience is mostly occupied
with events whose timing depends on historical information. For example, the probability that
you will complete your purchase at the grocery store depends on how long ago you got in line.
You might finish in the next 10 seconds if the clerk started your order some time ago, but you
cannot finish in the next 10 seconds if the clerk is just starting your order now. Similarly, the
probability that you will recover from a cold in the next 5 minutes depends on when you first
got sick. You can’t recover in 1 hour if you only began experiencing symptoms a few minutes
ago. Situations where memory is irrelevant, such as radioactive decay, are more common in
nature than in our everyday experience.

The exponential distribution is much easier to work with than other distributions of interevent
times; hence, it is common to use it even in cases where memory ought to matter. This is
sometimes bad modeling practice, but not always.

Example 3.7.7. Many models in ecology assume lifespans are exponentially distributed, but
this is often a significant modeling error. With the assumption of exponentially distributed
lifespans, probability and optimization models predict a probability of reaching maturity on
the order of 1/8, whereas for most species the probability of reaching maturity is far less than
1/1,000 [8]. ��
Example 3.7.8. Epidemic models often assume that the time required to recover from a disease
is exponentially distributed, even though time to recovery is often highly dependent on the
amount of time since becoming sick. This sounds like a serious error, but in many cases it
makes little difference. At any given moment, there are individuals with various durations of
illness. As long as the distribution of illness durations stays roughly the same over time, there
is no harm in assuming that recovery times are exponentially distributed. ��
48 In most cases, the sample size is so large that individual decays do not measurably change the mean rate.
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Problems

The data sets for Problems 3.7.12–3.7.17 are from [5] and can be found in both csv and xlsx

3.7.1. Consider a population of parasitoids and hosts.49 Suppose parasitoids oviposit an average
of once per day and each host is vulnerable for a period of 6 days, and assume that the parasitoid
population is 1/3 the size of the host population.

(a) Find the probability that a given host avoids attack.
(b) Find the probability that a given host is attacked exactly once.

3.7.2.* (a) Suppose an event occurs an average of once per hour. Find the probability that the
event occurs once in a 1-h period.

(b) Suppose an event occurs an average of twice per hour. Find the probability that the event
occurs twice in a 1-h period.

(c) Suppose an event occurs an average of n times per hour. Find the probability that the event
occurs n times in a 1-h period for the values n = 3,4,5.

(d) Is there a pattern in the results? Note that the case n = 6 was done in Example 3.7.3.

3.7.3.* Suppose X is exponentially distributed with mean rate λ = 4. Find the probability that
the next occurrence of the event occurs within 1 time unit.

3.7.4. Suppose X is exponentially distributed with mean rate λ .

(a) What is the probability that the value of X is greater than the mean of the distribution?
(b) What is the probability that the value of X is more than one standard deviation greater than

the mean?
(c) What is the probability that the value of X is more than one standard deviation less than the

mean?

3.7.5. Use computer software to generate 1,000 data points from the Poisson distribution F10.
Find the mean and variance of the data and plot a histogram.

3.7.6. Table 3.7.2 presents data for the counts of malaria parasites in erythrocytes. These data
were collected to test the hypothesis that malaria parasites attack certain cells preferentially
[20]. If the infection rate is the same for infected and uninfected erythrocytes, then the distribu-
tion should be of Poisson type.

(a) Determine the mean and variance for the data.
(b) Plot the data as a histogram of relative frequencies.
(c) Plot the probability distribution function for the Poisson distribution corresponding to the

mean of the data.
(d) To what extent do your results appear to support the claim that malaria parasites prefer

either uninfected cells or previously infected cells?

(This problem is continued in Problem 4.5.9.)

3.7.7.* Table 3.7.3 presents the frequencies of spiders found under boards [7].

(a) Determine the mean and variance for the data.
(b) Plot the data as a histogram of relative frequencies.
(c) Plot the probability distribution function for the Poisson distribution corresponding to the

mean of the data.
(d) Does the Poisson distribution seem to be a reasonable model for this data set?

(This problem is continued in Problem 4.5.10.)

49 Parasitoids are animals that lay their eggs inside a living organism. The parasitoid larvae feed on the host.

form at http://www.math.unl.edu/∼gledder1/MLS/ http://www.springer.com/978-1-4614-7275-9, .

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
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Table 3.7.2 Numbers of malaria parasites in erythrocytes

Number 0 1 2 3 4

Frequency 40,000 8,621 1,259 99 21

Table 3.7.3 Frequencies of a given number of spiders found under boards.

Number 0 1 2 3

Frequency 159 64 13 4

3.7.8. Table 3.7.4 presents the frequencies of weevil eggs on beans.

(a) Determine the mean and variance for the data.
(b) Plot the data as a histogram of relative frequencies.
(c) Plot the probability distribution function for the Poisson distribution corresponding to the

mean of the data.
(d) Assuming that spatial distributions are usually of Poisson type, suggest a biological reason

why the distribution of weevil eggs on beans should be so different. [Hint: Think about
why a deviation from a strictly random distribution would be advantageous, and therefore
subject to natural selection.]

Table 3.7.4 Frequencies of a given number of weevil eggs found on beans [7]

Number 0 1 2 3

Frequency 5 68 88 32

3.7.9. Table 3.7.5 contains data for the numbers of insects in the order Hemiptera in 33 traps
[4].

(a) Determine the mean and variance for the numbers of Hemiptera.
(b) Plot the data as a relative frequency histogram.
(c) Plot the probability distribution function for the Poisson distribution corresponding to the

mean of the data.
(d) Does the Poisson distribution seem to be a reasonable model for this data set?

Table 3.7.5 Numbers of insects in the order Hemiptera found in 33 traps

Number 0 1 2 3 4

Frequency 6 8 12 4 3

3.7.10. Table 3.7.6 contains data for the numbers of insects in the family Staphylinidae in 33
traps. Repeat Problem 3.7.9 using this data set.
(This problem is continued in Problem 3.7.16.)

3.7.11. Table 3.7.7 contains data for the numbers of plants found in portions of a field site.
Repeat Problem 3.7.9 using this data set.



204 3 Probability Distributions

Table 3.7.6 Numbers of insects in the family Staphylinidae found in 33 traps [4]

Number 0 1 2 3 4 5 6

Frequency X 10 9 5 5 1 2 1

Table 3.7.7 Numbers of Eryngium maritimum plants per quadrat square [1]

Number 0 1 2 3 4 5 6 7

Frequency X 16 41 49 20 14 5 1 1

3.7.12. The file YEAST.* contains data collected for the numbers of yeast cells detected on a
microscope slide by William Sealy Gosset [18].

(a) Repeat Problem 3.7.9 for subset (A), using an appropriate bin size for the histogram.
(b) Repeat Problem 3.7.9 for subset (B), using an appropriate bin size for the histogram.
(c) Repeat Problem 3.7.9 for subset (C), using an appropriate bin size for the histogram.
(d) Repeat Problem 3.7.9 for subset (D), using an appropriate bin size for the histogram.
(e) Does the Poisson distribution seem to be a reasonable model for these data sets?

3.7.13.(a) Prepare a histogram of the relative frequencies of data for the waiting times between
firings of motor cortex neurons of an unstimulated monkey, recorded in the file WAITING.*.
[Note that there are no headings in this file.] Superimpose the probability density function
for the corresponding exponential distribution. Is the exponential distribution a reasonable
model for this data set? What about the normal distribution?

(b) Repeat part (a) with the data for time intervals between successive pulses along a nerve
fiber, recorded in the file NERVE.*.

(This problem is continued in Problem 4.2.8.)

3.7.14. Use the definition of expected value to calculate the mean and standard deviation for an
exponential distribution with parameter λ .

3.7.15. The Poisson distribution can be used to approximate the binomial distribution when the
success probability for each Bernoulli trial is small and the number of trials is large.50 The
error in using the Poisson distribution fnp to approximate the binomial distribution bn,p is given
approximately by51

bn,p(k)− fnp(k)≈ k− (k− np)2

2n
,

max(|bn,p − f np|)≈ P
2

f np(km)

where km is the integer part of μ + 2/3. To test this claim, consider a family of binomial distri-
butions having np = 3.

(a) Compute f3(k) for 0 ≤ k ≤ 10. These probabilities are the approximation for all binomial
distributions in the family.

(b) Compute b30,0.1 for 0 ≤ k ≤ 10. Find the maximum error in the approximation and compare
with the estimate 0.05 f3(3).

50 This was a very important technique in the period before modern computers. It is still used in software
implementations of the binomial distribution for extreme cases such as that of part (d).
51 See PoissonApproximation.pdf at http://www.math.unl.edu/∼gledder1/MLS for details.

http://www.math.unl.edu/~gledder1/MLS
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(c) Repeat part (b) with n = 100 and the appropriate value of p.
(d) There are approximately 6×109 base pairs in the human genome, and it has been estimated

that the genome duplication process, which occurs in cell division, has an error probability
of about 1.1× 10−8 per base pair [14]. Estimate the maximum error in using the result of
part (a) to estimate the probabilities of k errors in a genome duplication process.

The negative binomial distribution is sometimes used for data collected in a scenario that
seems to call for a Poisson distribution, but for which the data shows much more variability
than a Poisson distribution. The probability distribution function for the negative binomial dis-
tribution with mean μ and variance σ2 is given by

fμ,r(k) =
Γ (k+ r)
k!Γ (r)

(
r

μ + r

)r( μ
μ + r

)k

,

where the dispersion parameter r > 0 is taken to be

r =
μ2

σ2 − μ
> 0

and Γ is the gamma function, one of the standard special functions available in mathematical
computer software. Note that r → ∞ as σ2 → μ . In fact, the limiting case fμ,∞ is the Poisson
distribution.

3.7.16.(a) Find the appropriate value of r for the data of Table 3.7.6.
(b) Compute the probability values for outcomes k = 0,1, . . .6 using the appropriate negative

binomial distribution function.
(c) Compare the negative binomial probabilities with the measured relative frequencies. Is the

negative binomial distribution a reasonable model for this data set?

3.7.17. The file TICKS.* contains data for the number of ticks found on each individual in a
flock of 82 sheep.

(a) Determine the mean and variance for the data.
(b) Plot the data as a histogram of relative frequencies using an appropriate bin size.
(c) Plot the probability density function for the negative binomial distribution corresponding to

the mean and variance of the data.
(d) To what extent do your results support the claim that the number of ticks found fits a nega-

tive binomial distribution?
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Chapter 4
Working with Probability

We now build on our background knowledge of probability distributions by examining other
topics in probability. Three practical problems motivate the seven sections of this chapter.

Do people who take a particular medication have lower cholesterol than those who don’t?
Are coffee drinkers more or less likely than others to have some particular medical condition?
These are the sorts of questions that are addressed by inferential statistics. This subject is in-
troduced in Section 4.1 with a simple example and developed in detail in Section 4.3, where
we consider probability distributions of random variables that represent sample means, and
Section 4.4, which presents the key results for assessing inferences. Section 4.2 introduces the
issue of how to know if a distribution is approximately normal. This material appears ahead
of the section on probability distributions of samples so that it can serve as an extra tool for
understanding the central limit theorem.

Probability distributions always involve one or more parameters. So far, we have assumed
these parameters to be known. But how do we obtain those parameter values experimentally?
We consider the mathematical issues associated with determining unknown parameter values in
Section 4.5. Two examples are given to illustrate the ideas: the problems of finding the success
probability for a binomial distribution and estimating the unknown size of a finite population.

Sometimes one is interested in knowing how the probability of some event changes when
additional information is provided. This is the subject of conditional probability. We develop
the principal ideas of conditional probability in Section 4.6 and then apply these ideas to the
interpretation of medical tests in Section 4.7.

A table showing connections among problems in this chapter and Chapter 3 can be found in
the introduction to Part II.

4.1 An Introduction to Statistical Inference

After studying this section, you should be able to:

• Explore the use of data to search for systematic differences between a subpopulation and a
population.

• Understand that we must look at all values less than or equal to a value x to judge whether
that value is unusually small.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 4,
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208 4 Working with Probability

• Understand that random samples are not necessarily representative, but larger samples are
more likely to be so.

This section is the first of three that deal with the use of probability to assess inferences from
data, a subject with a well-deserved reputation for being hard to understand. To address this
difficulty, we begin with a simple example couched in a narrative that builds on the reader’s
everyday experience rather than biological knowledge. The key ideas are introduced in this
informal setting before their detailed development in Section 4.3 on distributions of samples
and Section 4.4 on probability of inferences.

Three hundred out of the 6,000 students at Lincoln College (5 %) are members of the
Alpha Beta Epsilon (ABE) honorary fraternity. ABE leaders claim with pride that their
members are active in all campus activities. One such activity is the weekly foreign art
film screening, which is held in a room that seats only 50 students. Different films appeal
to different students, but there are always enough to fill the room. While watching the
film one week, freshman Shelly Sharp notices that there is only one ABE member in
attendance. Shelly is a reporter for the college newspaper, and this gives her an idea.
Only one ABE member out of 50 students is only 2 %. Should she write an exposé about
ABE not living up to its image? She does not want to risk embarrassing herself, so she
needs to be sure she understands the significance of the data before writing the article.

The first step in analyzing Shelly’s data is to identify it as a random variable for a probability
experiment. The actual experiment here consists in selecting 50 individuals from a collection
of 6,000; the random variable X is the number of those individuals who are ABE members. We
do not know whether ABE members are more or less likely to attend the film screenings than
other students. For the purpose of probability calculations, we assume that there is no significant
difference between ABE students and the larger population,1 but we hope that our analysis will
either confirm or reject this hypothesis.

Before doing the actual calculation for Shelly’s data, let’s consider a simpler experiment.
Suppose we select just two students. Our selection could include zero, one, or two ABE mem-
bers; if one, it could be either the first or second person chosen. To calculate the probability
that we select one ABE member, we start with the fact that the probability of getting an ABE
member with the first selection is 300/6,000, or 0.05. Assuming this happens, the first indi-
vidual is now at the film screening and cannot be selected again. The remaining population of
5,999 contains only 299 ABE members, so the probability that the second individual is an ABE
member is 299/5,999, or 0.04984. Of course the probability that the second individual is not an
ABE member is then 5,700/5,999, or 0.95016. By the sequence rule, the probability of selecting
an ABE member followed by a non-member is the product of these individual probabilities, or
0.04751. Now suppose the first individual is not an ABE member, which has probability 0.95.
The probability that the second individual is an ABE member is then 300/5,999 = 0.05001,
which is different from that for the second individual in the previous case. The probability of
selecting a member after a non-member is 0.95 times 0.05001, which is 0.04751. This is the
same as the probability of selecting one member before one non-member, which makes sense—
once we know which two people are selected, it is equally likely for either to have been selected
first. Taken together, the probability of getting one member and one non-member is 0.09502.

1 Of course there has to be some difference between ABE members and other students, or else we wouldn’t be
able to count them. Until proven otherwise, the difference is assumed to be some distinctive but meaningless
marking.
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This calculation for the actual experiment of selecting two individuals from a population
of 6,000 is rather complicated because selected individuals are removed from the population.
However, the change in the population caused by this removal is rather small because the
population is large. The calculation would be much easier if we used a model of an infinite
population. Then each selection of a student is a Bernoulli trial with a success rate of 0.05.
Using the binomial distribution, we can calculate the probability of one success in two tries
as b2,0.05(1) = 0.095. The error made in modeling the population as infinite is 0.00002 out of
approximately 0.1, which is about 0.02 %. Such a small error is trivial, given that calculations
in statistics are done with experimental data.

Returning to our actual example, using a model of an infinite population makes the calcu-
lation of probabilities for a sample of 50 much easier. The error in the approximation will be
larger, so we should take some care to justify the approximation. To do so, consider that replace-
ment only affects the sample if it results in selecting the same person twice, and we can calculate
the probability that this does not happen. The probability of getting 50 distinct individuals is
easily calculated by thinking of a sequence of 50 experiments of choosing one individual.2 The
probability that the first individual was not previously chosen is 1. The probability that the sec-
ond individual was not previously chosen is then 5,999/6,000. The probability that the third
individual is also distinct is 5,998/6,000. The pattern continues, with the probability that the
fiftieth is distinct being 5,951/6,000. All of these events must happen to achieve a fully distinct
set of 50, so the sequence rule applies, with the result that samples of 50 individuals from a
population of 6,000 will contain 50 distinct individuals 81.5 % of the time. Most samples of 50
individuals selected with replacement will not contain any repeats, and will therefore be equiv-
alent to the same sample selected without replacement. Nearly all of the other 19 % will contain
only one repeat, which will have very little impact on the overall probabilities for the samples.
This calculation serves as an adequate validation for using the model of an infinite population
to analyze Shelly’s data.

Check Your Understanding 4.1.1:
Verify the calculation that the probability of 50 distinct individuals is 0.815.

We are now ready to do the statistical analysis. The probability of getting k ABE members
in a sample of 50 individuals, given a 5 % chance of any individual being an ABE member, is
b50,0.05(k), which can be calculated using the binomial distribution formula3

bn,p(k) =
n!

k!(n− k)!

(
p
q

)k

qn , q = 1− p . (4.1.1)

The results for k from 0 to 6 are given in Table 4.1.1, along with the cumulative probabilities
B50,0.05(k), which represent the probability of getting k or fewer successes.

Table 4.1.1 Probabilities for the number of ABE members in a sample of 50

k 0 1 2 3 4 5 6
b50,0.05(k) 0.0769 0.2025 0.2611 0.2199 0.1360 0.0658 0.0260
B50,0.05(k) 0.0769 0.2794 0.5405 0.7604 0.8964 0.9622 0.9882

2 See Problem 3.2.6.
3 See Section 3.4.
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Check Your Understanding 4.1.2:
Verify the results in Table 4.1.1.

The obvious (but incorrect) answer to Shelly’s question about whether having only 1 ABE
member is unusual is that there will be only 1 ABE member about 20 % of the time. This
statement is correct, but misleading. The probability of having 2 ABE members is only 26 %,
which is not much different from the probability of having 1, yet Shelly would not have thought
it unusual if there had been 2. The probability of having 2 or fewer ABE members is 54 %, and
this number is more helpful in judging whether 2 is unusual than the probability of having
exactly 2. We’ll see a more striking example of this later. The important conclusion for Shelly
to draw is this: if ABE members are no more or less likely to attend than anyone else, we should
expect to see 1 or fewer 28 % of the time. This is small enough to arouse suspicion, but it is
certainly not small enough to be considered unusual.

Check Your Understanding 4.1.3:
Use the data of Table 4.1.1 to determine how unusual it would be to find 5 ABE members
at the screening.

The analysis of Shelly’s problem offers an important lesson about interpreting statistical
data.

The standard for a result to be considered unusual is much stricter than the standard
needed to arouse suspicion that a result is unusual.

Just how unlikely an event must be to classify it as unusual is a matter of judgment, but it
certainly should be less than 28 % likely.

While the data clearly do not justify the claim that ABE is a fraud, there is ample justification
for doing a more thorough experiment. We therefore consider an updated problem.

Shelly returns to the film screening for 3 more weeks. She counts 2 ABE members in the
second week, 2 in the third, and 0 in the fourth. Does this data provide stronger evidence
that ABE members are less interested in the film screenings than the college average? If
so, is the evidence strong enough to warrant a newspaper article about ABE not living up
to its image?

There are two different ways to look at Shelly’s new data. We could consider her weekly
counts as separate data points for something.4 For now, we choose the alternative, which is to
consider the 200 individuals as one collection of Bernoulli trials. The problem is then to find
the probability that there will be 5 or fewer successes in 200 Bernoulli trials with a success
probability of 0.05 for each. We have

B200,0.05(5) = b200,0.05(0)+ b200,0.05(1)+ b200,0.05(2)+ b200,0.05(3)

+b200,0.05(4)+ b200,0.05(5)≈ 0.062.

Table 4.1.2 shows the results for k from 0 to 10.

4 See Example 4.3.3.
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Table 4.1.2 Probabilities for the number of ABE members in a sample of 200

k 0 1 2 3 4 5
b200,0.05(k) 0.000035 0.00037 0.00193 0.00671 0.01740 0.03590
B200,0.05(k) 0.000035 0.00040 0.00233 0.00905 0.02645 0.06234

k 6 7 8 9 10
b200,0.05(k) 0.06140 0.08956 0.11372 0.12769 0.12836
B200,0.05(k) 0.12374 0.21330 0.32702 0.45471 0.58307

Check Your Understanding 4.1.4:
Verify the results in Table 4.1.2.

In the first problem, Shelly found an average of 2 % instead of the expected 5 %, and we
concluded that a random average will be this low 28 % of the time. With a sample of 200 rather
than 50, an average of 2.5 % is expected to happen only 6 % of the time. Even the probability
of 7 or fewer out of 200, corresponding to an average of 3.5 %, is noticeably less than the
probability of having 2 % or less in a sample of 50. This calculation offers another important
lesson about statistical data.

Larger samples are more likely than smaller ones to match the population from which the
sample was collected.

Larger samples also provide stronger evidence of the need to judge whether a low count is
unusual by considering the probability of getting that count or less. For a sample of 200, we
expect to have 9 ABE members about 13 % of the time. Although that is less likely than having
1 ABE member out of 50, it is clearly far from unusual, as an average of 4.5 % is very close to
the expected average. On the other hand, the probability of a result of 9 or less is 45 %, which
clearly indicates that a result of 9 is not unusual.

If ABE members were as likely to attend the film screenings as the average student, there
would only be a 6 % chance of getting a result of 5 or less. Shelly now has much stronger
evidence that ABE members are underrepresented at the film screenings. Whether the new evi-
dence is strong enough is a matter of opinion. As Shelly’s editor, I would say that the evidence
is already strong enough to publish the story. As a scientist, I would say that 6 % is still not
quite unusual enough to be conclusive. It is common in biology to consider 5 % to be a standard
cutoff for judging a result to be significant enough to count as unusual, but in some research
areas the standard cutoff for significance is taken to be 1 %, and in a few it is even less. For
example, I would not want to convict someone of a crime on the basis of data that could be
obtained randomly in 1 % of experiments; this would imply an acceptance of false convictions
in as many as 1 % of cases.5 The important thing to keep in mind is that results that deviate
significantly from those expected can and do occur simply by chance. Suppose we were able
to choose a group of Lincoln College students that is truly average in attendance at the film
screenings. We can expect to have a total of 5 or fewer attendees from this group over 4 con-
secutive screenings about 6 % of the time. If we continue to count group members at screenings
for a full year, we will have done the 4-week experiment 13 times, and it is quite likely that
there will be at least one count that is 5 or less.6 This will likely happen in spite of the fact that

5 Standard cutoff values are arbitrary. There is no particular reason why the cutoff used in most fields should be
5 % rather than 4 %, and yet most papers on statistical analysis make definitive judgments based on this arbitrary
choice. In a sense, statistics is a way of codifying judgments based on probability; in many cases it is better
scientific practice to base these judgments on context rather than fixed arbitrary rules.
6 See Problem 4.1.2.
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our group of 300 does not differ from the full population in film attendance, simply because
random processes occasionally produce results that are far from average.

Check Your Understanding Answers

3. The probability of X ≥ 5 is 1−P [X ≤ 4] = 0.1036.

Problems

4.1.1. (a) Write a computer program that randomly selects N numbers from the bn,0.05 distri-
bution and determines the probabilities that the selected number is 0, 1, and so on up to
10. Test your program with n = 50 and N = 100. Theoretically, the probabilities should be
those of Table 4.1.1. Do not worry about whether your probabilities match those in the table.
Instead, repeat the test several times. Your results for each k should be higher than the table
sometimes and lower other times.

(b) Check your program more thoroughly by running it once with N = 1,000,000. This time
your results should be very close to the theoretical results.

4.1.2. This problem uses the computer simulation from Problem 4.1.1 with n = 200.

(a) Suppose you were to visit the film screening at Lincoln College for 4 weeks and count the
total number of ABE members in attendance. Assuming that ABE members are as likely
to attend as anyone else, this experiment is equivalent to that of drawing a value randomly
from the b200,0.05 distribution. Run your program once with N = 13. How many times is the
result equal to 5 or less?

(b) Repeat part (a) several times to see how much variation there is in the answer. The text
asserts that this seemingly unusual result is likely to occur at least once in 13 trials. Does
this seem to be the case?

(c) Can we really be sure that Shelly’s observation is due to the characteristics of ABE members
and not mere chance? In more general terms, are random samples always representative?

4.1.3. This problem uses the computer simulation from Problem 4.1.1.

(a) Suppose you were to visit the film screening at Lincoln College for a full year and that
ABE members are as likely to attend as anyone else. Your experiment is equivalent to that
of drawing 52 values randomly from the b50,0.05 distribution. Run your program once with
N = 52. How many times is the result equal to 1 or less? This represents the number of
times that you would have thought ABE members to be underrepresented.

(b) Repeat part (a) several times to see how much variation there is in the answer. In 10 runs,
representing 10 years of data, record the largest and smallest values for the number of
weeks in which there are 1 or fewer ABE members present along with the average number
of weeks.

(c) Repeat part (a) again, but this time do 10 runs of 208 values each.
(d) If possible, compare your results for parts (b) and (c) with classmates.
(e) Discuss the effect of sample size on the extent to which observations are likely to match

theoretical probabilities.

4.1.4. With a success probability of 0.05 for each Bernoulli trial, we determined in the text
that the probability of getting 5 or fewer successes out of 200, which represents 2.5 % (half
the expected value), is 0.0623, which is too large to meet the 5 % standard for a result to be
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considered unusual. How does the probability of getting 2.5 % or less given an expected value
of 5 % depend on the size of the sample? To address this question, determine the probability of
getting k or fewer successes out of 40k trials, with individual success probability p = 0.05, for
1 ≤ k ≤ 10. How large a sample is needed to reduce the probability to the usual 5 % standard
for biology? How large a sample is needed to reduce it to the 1 % standard that is used in some
disciplines? What does this say about the difficulty of drawing conclusions from small random
samples?

4.1.5. With a healthy amount of scientific skepticism, we might wonder if the theoretical re-
sults for the binomial distribution, which we are using to model something that is not really
a collection of Bernoulli trials, actually give a good approximation of reality. We addressed
this question theoretically in the text, and will do so in more detail in Problem 4.1.6. Here we
address it using a simulation.

(a) Write a computer simulation that represents the process of selecting the students for the
film screening and counting the number who are ABE members:

1. Set up a vector of 6,000 components, each initially 0.
2. Repeat until the sum of values in the vector is 50:

a. Randomly choose an integer Y from 1 to 6,000.
b. Set element Y of the vector to 1.

3. The random variable X is the sum of entries in the first 300 components of the vector.

(b) Explain how the program makes sure that exactly 50 students are selected.
(c) Run the simulation 100 times. The results should be roughly similar to Table 4.1.1.
(d) Run the simulation 10,000 times and use the results to estimate the probabilities of having

k ABE members at a film screening. Compare the results to Table 4.1.1.

4.1.6.* The results in Table 4.1.1 used a binomial model to approximate the actual scenario
of randomly choosing 50 individuals out of a population of 6,000. We can check some of the
entries in the table by calculating the actual probabilities. Each of these should be very close to
the binomial approximation.

(a) Calculate the actual probability that there are no ABE members in a collection of 50 indi-
viduals from a population of 6,000. Compare with the binomial approximation. [Think of
the selection as being a sequence of 50 individual selection events, each of which must yield
a non-member. For the first selection, there are 5,700 non-members out of a total population
of 6,000, so the probability is 5,700/6,000. With one person already chosen, the probability
that the second individual is a non-member is 5,699/5,999. The same pattern continues for
all 50 selections.]

(b) Repeat part (a) for the probability of 1 ABE member. [Think of the selection as consisting of
several selection events. First, we select 49 non-members using the same calculations as in
part (a). Second, we select 1 ABE member from the entire population of 5,951 individuals
not yet chosen. This yields the probability of choosing 49 non-members and one member
with the member being the last one chosen. It would have been equally likely that the
member could have been chosen in any other position, so we must multiply the result of
the sequence calculation by 50. Note that it is not necessary to do the entire multiplication.
Compared to the calculation of part (a), we have merely replaced a numerator of 5,651 by
a numerator of 300 in the last factor and multiplied by 50.]

(c) Repeat part (b) for the probability of 2 ABE members. [This time we start by selecting
48 non-members from the original population, then we select 2 ABE members from the
remaining population, and then we multiply by the number of possible placings. This latter
is a bit tricky. There are 50 places where we could put the first member and 49 places for the
second; however, this will count each of the possible pairs twice, so the number of possible
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placings is 50×49/2. Again, the calculation is less work if we consider only changes from
the part (b) calculation.]

(d) Repeat part (c) for the probability of 3 ABE members. [Follow the same pattern. When
calculating the number of possible placings, be careful determining how many times each
triplet will have been counted.]

4.2 Tests on Probability Distributions

After studying this section, you should be able to:

• Understand the empirical distribution function.
• Understand the graphical approach to testing normality.
• Use the Cramer–von Mises statistic to assess the likelihood that a data set is from a normal

distribution.
• Understand the issues involved in rejecting or retaining outliers.

In Section 4.3, we will need to judge how well a normal distribution fits a data set. The
purpose of this section is to develop some tools for addressing that question. In addition, we
also examine the issue of whether an anomalous value should be rejected from a data set.

4.2.1 A Graphical Test for Distribution Type

Most tests for distribution type make use of a construction called the empirical distribution
function (EDF), which is calculated for a given data set and then compared to what would be
expected for a given distribution.7

Empirical distribution function for a set of observations X1 < X2 < · · ·<Xn: the piece-
wise constant distribution given by

Fn(x) =

{
(i− 0.5)/n x ∈ {Xi}

J(x)/n otherwise
, (4.2.1)

where J(x) is the number of observations less than x. Note that 0 ≤ Fn(x)≤ 1. Note also
that the observations must be sorted in increasing order.

Example 4.2.1. Consider the sleep data from Section 3.1, reproduced in ascending order as
Table 4.2.1. The connection between data and individual patients is lost with this change, but

Table 4.2.1 Hours of sleep gained on D. and L. hyoscine hydrobromide

Number 1 2 3 4 5 6 7 8 9 10
D. hyoscine hydrobromide, X −1.6 −1.2 −1.0 −0.2 0.0 0.7 0.8 2.0 3.4 3.7
L. hyoscine hydrobromide, X −0.1 0.1 0.8 1.1 1.6 1.9 3.4 4.4 4.6 5.5

7 Most authors use the formula J(x)/n for all x and change the definition of J from “less than” to “less than or
equal to.” This has the drawback of requiring an explanation for why the formula involving i is the one that is
actually used in statistical calculations. The distinction between the definitions is otherwise meaningless.
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we are considering only the nonpsychotic patients and need to have the data in ascending order.
The EDF for L-hyoscine hydrobromide has the value 0 for all x <−0.1, 0.05 for x =−0.1, 0.1
for −0.1 < x < 0.1, 0.15 for x = 0.1, and so on, ending with 0.95 for x = 5.5 and 1 for x > 5.5.

��
Now suppose the data points come from some distribution with cumulative distribution func-

tion F(x). Then the probability of a randomly chosen value being less than or equal to Xi is

P [X ≤ Xi] = F(Xi).

This means that the empirical distribution function Fn ought to approximate F ; indeed, it can be
shown that Fn → F in the limit n → ∞. Eventually, this idea will be used to devise a statistical
measure of how well the data set fits the given distribution type, but for now we just consider
its graphical rendering.

Suppose we plot a graph of the points (Fn(Xi),F(Xi)). A perfect fit to the given distribution
would result in all the points being on the line y = x. If the fit is terrible, the points will lie far
from the line.

Example 4.2.2. To test whether the L-hyoscine hydrobromide data is normally distributed, we
first need to choose parameters for the distribution. From the data, we have mean x̄ = 2.33 and
standard deviation s = 2.00; hence our best guess is μ = 2.33 and σ = 2.00. With these values,
we can calculate each value of the theoretical distribution by

Zi =
Xi − 2.33

2.00
, F(Xi) = N(Zi) ,

where N is the standard normal distribution. Table 4.2.2 presents the results of these calculations
and Figure 4.2.1 shows the corresponding plot. The points don’t appear to be very close to the
line. The large jump between the sixth and seventh points is the gap between the F values of
0.415 and 0.703, which corresponds to the gap between 1.9 and 3.4 in the original data. ��

Table 4.2.2 Values of F and Fn for Example 4.2.2

i 1 2 3 4 5 6 7 8 9 10
Fn(i) 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
F(i) 0.112 0.133 0.222 0.270 0.358 0.415 0.703 0.849 0.872 0.943

0 0.5 1
0

0.5

1

Fn

F

Fig. 4.2.1 EDF plot for the fit of the L-hyoscine hydrobromide data to a normal distribution, with parameters
taken from the data
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Check Your Understanding 4.2.1:
Prepare a plot similar to that of Figure 4.2.1 for the D-hyoscine hydrobromide data.

4.2.2 The Cramer–von Mises Test

In Section 2.3, we measured the quality of fit for a model to a data set by calculating the sum
of square discrepancies. This idea makes sense as a method of quantifying the discrepancies
in an EDF plot as well, but there are some subtleties that lead to modifications in the formula.
Let Fi = F(Xi) and Fn,i = (i− 0.5)/n for data values X1 ≤ X2 ≤ ·· · ≤ Xn. The residual sum of
squares is then

RSS = ∑(Fi −Fn,i)
2 ,

where the sum is taken over all points. This is a good starting point, but there are two mod-
ifications needed to correct for cases where the number of data points is small. For historical
reasons, these modifications are applied with two different formulas:

W 2 = ∑(Fi −Fn,i)
2 +

1
12n

, Ŵ 2 =

(
1+

1
2n

)
W 2. (4.2.2)

The quantity Ŵ 2 is called the Cramer–von Mises8 statistic.9

Example 4.2.3. Using the values from Table 4.2.2, we obtain a residual sum of squares of
0.0514, resulting in W 2 = 0.0598 and Ŵ 2 = 0.0628. ��

Check Your Understanding 4.2.2:
Compute Ŵ 2 for the D-hyoscine hydrobromide data.

Values of the Cramer–von Mises statistic are generally less than 0.1 for data that looks
anything like the predicted distribution. The corrections to the residual sum of squares have
increased the value by about 0.01 in this case, with n = 10. With n ≥ 100, the correction is
generally no larger than 0.001, which is negligible. Experiments with simulated data show that
values of Ŵ 2 for small subsets of a large data set are consistent with the value for the whole
set. This is a significant fact. If we had 100 values in the L-hyoscine hydrobromide data set, the
residual sum of squares would be about the same. With 10 times as many points, the individual
square discrepancies would be only about one-tenth as large. Hence, the actual discrepancies
we see on the graph would be about one-third as large.10 This makes interpretation of an EDF
plot difficult. The points appear to be farther from the line for a small data set, but this does not

8 Pronounced “MY-zees.”
9 There is a dizzying number of tests for goodness of fit to a distribution type. The most commonly used is proba-
bly the Anderson–Darling test, which is similar to the Cramer–von Mises test except that it weights discrepancies
in the tails of the distributions higher than discrepancies near the mean. Most experts consider Anderson–Darling
to be slightly better, but the difference seems too small to compensate for the extra complexity, given that sta-
tistical tests merely produce numerical values that must be interpreted in context. From a modeler’s point of
view, there is an inherent advantage to using methods that are easy to understand. See [11] for a more complete
treatment of normality testing.
10 This is roughly the square root of one-tenth.



4.2 Tests on Probability Distributions 217

mean that the normal distribution is a poor fit for the smaller data set. This is why a quantitative
test based on EDF is better than a visual test.

It remains for us to decide what a particular value of Ŵ 2 means. Like other questions involv-
ing interpretations of statistics, there is no definitive answer. The best we can do is to associate
confidence levels with the statistic; these are given in Table 4.2.3 [1, 10, 11]. The interpretation
of the values in the table is similar to that for a table of normal distribution values themselves.
For example, only 5 % of samples drawn from a theoretical normal distribution yield a Ŵ 2 value
of 0.126 or greater. Values larger than 0.2 for an actual data set are a near-certain indication that
the underlying distribution is not normal.

Table 4.2.3 Values of the Cramer-von Mises test statistic Ŵ 2 for confidence levels corresponding to rejection
of the hypothesized distribution type

Confidence level 0.75 0.80 0.85 0.90 0.95 0.974 0.99
Ŵ 2 for rejection 0.074 0.081 0.091 0.104 0.126 0.148 0.179

Normality tests cannot confirm a distribution type; they can either provide strong evidence
that a distribution is not the tested type or weak evidence that the tested type cannot be ruled out.
The Ŵ 2 value for the L-hyoscine hydrobromide data set falls in the range where no conclusion
can be drawn. Given the mathematical advantages of the normal distribution,11 it is reasonable
to assume that data is normally distributed unless the test calls for rejection of the hypothesis
of normality.

Smaller values of Ŵ 2 indicate greater consistency with a normal distribution, but only up to
a point. Real data is a random sample, so Fn should not be a perfect match for F . Values of the
test statistic that are less than 0.02 are suspicious. Such values will only rarely be seen with real
data.

4.2.3 Outliers

Suppose a scientific experiment yields data that appears to be normally distributed, but with one
point that is not close to the others. Such a point is referred to as an outlier. The scientist has to
decide which is more likely, that the outlier represents an error, in which case the value should
be discarded, or that the outlier is simply part of a random sample and should be retained.
Like other statistical issues, this one is hard to resolve. We saw in Table 3.6.1 that results more
than three standard deviations from the mean of a normal distribution are quite rare. Yet such
results are bound to occur if the sample is large enough. Statisticians have proposed a variety
of criteria for use in judging whether an outlier should be retained or discarded.12 We present
here the simplest method, which is to reject any points identified as outliers by Chauvenet’s13

criterion.14

11 See Section 4.4.
12 See [12] for a treatment that uses the best methods and distinguishes a variety of subcases.
13 Pronounced “show-veh-NAY.”
14 Whereas the Cramer–von Mises test is at least arguably as good as any other test for distribution type, Chau-
venet’s test is no longer used. Our purpose here is to explore the issue of outliers; in this context, simplicity is
better than correctness. Most statisticians favor the Grubbs test, which appears in Problems 4.2.12–4.2.14.
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Chauvenet outlier: any data value Z from a normal distribution for which

N(−|Z|)< 1
2n

,

where n is the number of data points in the sample

Example 4.2.4. The data for the petal lengths of 50 iris flowers in Table 3.5.1 has mean 4.26,
standard deviation 0.47, smallest value 3.0, and largest value 5.1. Of the two extreme values,
3.0 is further from the mean, with Z = (3.0− 4.26)/0.47 = −2.68. The probability of a result
this far from the mean is

N(−|Z|) = N(−2.68) = 0.0037 .

With 50 measurements, the critical value is 1/100 = 0.01. For this data set, the value 3.0 is a
Chauvenet outlier. By trial and error, we can find the critical Z value for a Chauvenet outlier for
this data set from the equation

N(−|Z|) = 0.01 .

The result is |Z| = 2.33, which corresponds to X values of μ ± Zσ = 4.26± 1.10. Thus, any
measurement smaller than 3.16 or larger than 5.36 is a Chauvenet outlier. ��

Should the length 3.0 be rejected from the iris data set? There is no clear answer to this
question. If it happened by chance that one of the flowers was unusually small, then the value
should be retained. If the flower is in some sense abnormal, then the value should be rejected.
The numerical value of Z =−2.68 does not indicate the cause of the anomaly. Chauvenet’s cri-
terion says that the value should be rejected, but the criterion is an arbitrary rule of thumb. Other
criteria may yield a different qualitative answer. Most scientists believe that outliers should be
retained unless there is a clear scientific reason for their exclusion. Based on a glance at the
frequency table, I would retain the measurement.

Check Your Understanding Answers

1. See Figure 4.2.2.
2. Ŵ 2 = 0.0501.

Problems

The data sets for Problems 4.2.1–4.2.8 and 4.2.12–4.2.13 are from [2] and can be found in
both csv and xlsx form at http://www.math.unl.edu/∼gledder1/MLS/, http://www.springer.com/
978-1-4614-7275-9.

4.2.1.* (Continued from Problem 3.1.3.)

(a) Prepare an EDF plot for the dopamine data for nonpsychotic patients from the file
DOPAMINE.*.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) Repeat parts (a) and (b) for the psychotic patients.
(d) What conclusions can we draw from parts (a) to (c)?

(This problem is continued in Problems 4.4.2 and 4.5.1.)

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
http://www.springer.com/978-1-4614-7275-9
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Fig. 4.2.2 EDF plot for the fit of the D-hyoscine hydrobromide data to a normal distribution, with parameters
taken from the data

4.2.2. (Continued from Problem 3.1.4.)

(a) Prepare an EDF plot for the fecundity of the control group of fruit flies from the file FRUIT-
FLY.*.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) Repeat parts (a) and (b) for the fruit flies bred for DDT resistance.
(d) Repeat parts (a) and (b) for the fruit flies bred for DDT susceptibility.
(e) What conclusions can we draw from parts (a) to (d)?

(This problem is continued in Problems 4.4.3 and 4.5.2.)

4.2.3. (Continued from Problem 3.1.5.)

(a) Prepare an EDF plot for the weight gain of rats fed a low-protein beef diet from the file
WEIGHT.*.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) Repeat parts (a) and (b) for the rats fed a high-protein beef diet.
(d) Repeat parts (a) and (b) for the rats fed a low-protein cereal diet.
(e) What conclusions can we draw from parts (a) to (d)?
(f) Repeat parts (a) and (b) for the combined beef diet data. Can we say whether we should

consider this data to be from a single normal distribution rather than two?

(This problem is continued in Problems 4.4.4 and 4.5.3.)

4.2.4. (Continued from Problems 3.6.12 and 3.6.13.)

(a) Prepare an EDF plot for the butterfat content of milk from Jersey cows in the file BUT-
TER.*.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) Repeat parts (a) and (b) for the Guernsey cows.
(d) Repeat parts (a) and (b) for the Ayrshire cows.
(e) What conclusions can we draw from parts (a) to (d)?
(f) Repeat parts (a) and (b) for the combined Jersey and Guernsey data. Can we say whether

we should consider this data to be from a single normal distribution rather than two?
(g) Repeat part (f) for the combined Jersey and Ayrshire data.

(This problem is continued in Problems 4.4.5 and 4.5.4.)
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4.2.5. (Continued from Problem 3.6.9.)

(a) Prepare an EDF plot for the resting pulse rates of native Peruvians from the file PULSE.*.
(b) What is unusual about this data?
(c) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(d) What conclusions can we draw from parts (a) and (c)?

4.2.6. (a) Prepare an EDF plot for the petal lengths of Iris versicolor from the file IRISES.*.
Note that a histogram of this data was plotted in Figure 3.5.1.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) What conclusions can we draw from parts (a) and (b)?

4.2.7. (Continued from Problems 3.6.10 and 3.6.11.)

(a) Prepare an EDF plot for the sepal lengths of Iris setosa from the file IRISES.*.
(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) Repeat parts (a) and (b) for the sepal lengths of Iris virginica.
(d) What conclusions can we draw from parts (a) to (c)?

(This problem is continued in Problem 4.5.5.)

4.2.8. (Continued from Problem 3.7.13.)

(a) Prepare an EDF plot for the waiting times between firings of motor cortex neurons of an
unstimulated monkey from the file WAITING.*.

(b) Compute the modified Cramer–von Mises statistic Ŵ 2 for the data of part (a).
(c) What conclusions can we draw from parts (a) and (b)?

The best way to build intuition about matters of statistics is to do a lot of computer ex-
periments with simulated data. Problems 4.2.9–4.2.11 experiment with the Cramer–von Mises
normality test.

4.2.9.* A lot of data sets that don’t look like they are normally distributed produce low enough
Ŵ 2 values that we cannot reject the hypothesis of normality. What about data that clearly fits a
different distribution? Here we consider data from a uniform distribution.

(a) The data set consisting of the integers from 1 to 25 is uniformly spread, although it is not
random. Prepare an EDF plot and compute the modified Cramer–von Mises statistic for this
data.

(b) Repeat part (a) for the integers 1–50 and for the integers 1–100. What features do you see
in the plots? What seems to be happening to Ŵ 2?

(c) Use a computer program to generate a set of 50 numbers from a uniform distribution. Find
the average value of the modified Cramer–von Mises statistic for this data over five trials.
How does the result compare to that obtained with the integers 1–50?

(d) Run one trial for a set of 100 numbers from a uniform distribution. How does the result
compare to part (c) and to the integers from 1 to 100?

(e) Compare EDF plots for single runs of 50 consecutive integers and 100 consecutive integers.
Is the result consistent with parts (b)–(d)?

4.2.10. (Continued from Problem 3.6.14.)
In Problem 3.6.14, we created bimodal data sets by combining two normal distributions. We saw
that the resulting distribution resembles a normal distribution if the means of the components
are close enough, but not when the means are far apart. This suggests a computer experiment
for the Cramer–von Mises test.
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(a) Write a computer program to generate a data set that contains 50 numbers from each of two
normal distributions, one with μ = 7 and σ = 2, and the other with μ = 13 and σ = 2. Use
the program to create an EDF plot.

(b) Embed the program in a loop that saves the calculations for Ŵ 2 for 100 runs and then
computes the average. [Do not put the plot command inside the loop!]

(c) What conclusions can you draw from parts (a) and (b) in conjunction with Problem 3.6.14c?
(d) Repeat parts (a) and (b) with μ = 8 and μ = 12.
(e) What conclusions can you draw from part (e) in conjunction with Problem 3.6.14b?

4.2.11. In this problem, we consider the effect of contaminated data. For each part of the prob-
lem, create a data set with 100 numbers drawn from the standard normal distribution and 20
numbers drawn from the given contaminating distribution. Prepare one EDF plot. Also do a run
of 100 trials (without the plot) and obtain an average and standard deviation for Ŵ 2.

(a) The contaminating distribution is N0,0.1.
(b) The contaminating distribution is N1,0.1.
(c) Plot a theoretical probability density function for each of parts (a) and (b) by taking a

weighted average of the pdfs for the component distributions.
(d) Both cases have the same amount of the contaminating distribution and the standard devi-

ations of the contaminant are small, but the contaminant is near the mean in one case and
away from the mean in the other. Describe the effects these contaminants have on the EDF
plot and the Cramer–von Mises test statistic.

Most statistics references recommend the Grubbs test for outliers, provided the data appears
to be normally distributed. For this test, we calculate G, defined as the maximum value of |Z|
for the data set. The corresponding data value is considered to be an outlier if G is greater than
a critical value that depends on the number of measurements. The critical value also depends
on one’s arbitrary choice of significance level. Table 4.2.4 lists the critical values for the 95 %
and 99 % significance levels. As with Chauvenet’s test, we should consider the Grubbs test to
be just one piece of information used to make the final decision, along with information about
the population and the sampling method.

Table 4.2.4 Critical values for the maximum |Z| in Grubbs’ test, given n data points, and either 95% significance
or 99% significance

n α = .05 α = .01 n α = .05 α = .01 n α = .05 α = .01
10 2.29 2.48 30 2.91 3.24 120 3.45 3.82
12 2.41 2.64 40 3.04 3.38 160 3.54 3.91
14 2.51 2.76 50 3.13 3.48 200 3.61 3.98
16 2.59 2.85 60 3.20 3.56 300 3.72 4.09
18 2.65 2.93 70 3.26 3.62 400 3.80 4.17
20 2.71 3.00 80 3.31 3.67 500 3.86 4.23
25 2.82 3.14 100 3.38 3.75 600 3.91 4.27

4.2.12. Use the Grubbs test with α = 0.05 to identify (approximately) the largest and smallest
measurements that would not be considered as outliers for the specified data sets.

(a) Iris versicolor petal length, from Table 3.5.1.
(b) Iris versicolor sepal length, from IRISES.* (See Problem 3.5.5.)
(c) Resting pulse rate of native Peruvians, from PULSE.* (See Problem 3.6.9.)
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4.2.13. (a) Compute the value of Z for each measurement in the data file BUTTER.*. Note that
each column has its own mean and standard deviation.

(b) Which of the measurements are Chauvenet outliers?
(c) Which of the measurements would be rejected by the Grubbs test at the 95 % level?

4.2.14. (a) Suppose you randomly generate ten values from a normal distribution. What is the
probability that at least one of these values would be rejected by the Grubbs test with
α = 0.05?

(b) Repeat part (a) for a sample of 100 values.
(c) Repeat parts (a) and (b) using Chauvenet’s test.

4.3 Probability Distributions of Samples

After studying this section, you should be able to:

• Determine the theoretical mean and standard deviation for distributions of sample means.
• Prepare histograms for distributions of means of samples of size n from a given underlying

distribution.
• Discuss the properties of distributions of sample means as a function of sample size.

In many scientific experiments, we want to determine the characteristics of some population
but are unable to study all the individuals. We want to know how tall adult Americans are,
but we cannot measure all American adults. We want to determine how many people have
HIV, but we can get records only for people who have volunteered to be tested. We want to
determine how much oxygen a particular Olympic swimmer uses in 200- m training swims, but
our equipment is only available at one pool. 15

In practice, we must determine the mean x̄ and standard deviation s for a sample and then
approximate the mean μ and standard deviation σ of the population by

μ ≈ x̄, σ ≈ s.

However, conclusions drawn from samples only apply to the full population if the sample is
representative, which means that its characteristics match the population to a desired degree of
accuracy. This poses a difficulty, because no procedure can guarantee that a sample is represen-
tative. As an alternative, scientists try to collect a random sample, in which each member of the
population has an equal chance of being selected. There are two issues that must be faced when
doing this. First, a truly random sample is not necessarily representative. We saw in Section 4.1
that random samples can sometimes be noticeably different from the underlying population.
This issue is explored in more detail in this section. Second, it is not always possible to ob-
tain a sample that is truly random. Medical tests, for example, are conducted by institutions
using subjects who are from a specific geographic region. This poses a difficulty: Can a random
sample drawn from a subpopulation be representative of the population at large?16

4.3.1 Sums and Means of Two Random Variables

Suppose X1 and X2 are random variables drawn from probability distributions with means μ1

and μ2 and standard deviations σ1 and σ2. Let Y and X be the sum and mean of X1 and X2,

15 The “population” in this case consists of the different 200- m swims for the single athlete.
16 This issue is addressed in Section 4.4.
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respectively; thus, Y = X1 +X2 and X = Y/2. Because they depend on random variables, both
Y and X are also random variables. As such, there are probability distributions for Y and X
whose characteristics depend on those of the distributions for the components X1 and X2. The
characteristics of the distributions for the sum and mean can be easily computed, with the results
summarized here.17

Theorem 4.3.1 (Mean and Variance for a Sum and Mean of Two Random Variables).
Suppose X1 and X2 are independent random variables drawn from distributions with
means μ1 and μ2 and variances σ2

1 and σ2
2 . Then the random variable Y = X1 +X2 has

mean μ1 +μ2 and variance σ2
1 +σ2

2 . Furthermore, the distribution of the mean X =Y/2
has a mean and standard deviation that are one-half of those of the sum Y.

This theorem provides the basic tool needed to characterize the probability distribution of sam-
ple means.

4.3.2 General Characteristics of Samples

Suppose we have a population that is large enough to model with a probability distribution. This
means that removing individuals to create a sample does not affect the distribution of individuals
remaining in the population. Hence, a sample of size n from the population corresponds to a set
of n independent identically distributed random variables X1,X2, . . . ,Xn. We can aggregate the
results by computing a sum Y and a mean X , defined by

Y =
n

∑
i=1

Xi , X =
Y
n
. (4.3.1)

These aggregate quantities are random variables as well; our primary interest is in determining
the shapes, means, and standard deviations of their probability distributions. We begin our study
with a motivating example.

Example 4.3.1. Single die rolls have a uniform distribution. However, a roll of two dice is much
more likely to produce a mean of 3.5 (a sum of 7) than a mean of 1 (a sum of 2). In fact, we can
calculate these means without much difficulty. A mean of 1 requires a 1 on both dice. This is a
sequence of two experiments, each with probability 1/6; hence, the probability of a mean of 1
is 1/36. In contrast, a mean of 3.5 is equivalent to a sum of 7. No matter what the number on the
first die, there is always one roll of the second die that makes the sum 7; hence, the probability
of a mean of 3.5 is 1/6. Clearly the distribution of sample means is not uniform. Figure 4.3.1
illustrates the distribution of means for samples of two die rolls and samples of four die rolls. ��

Observe that the possible values for the means of two die rolls are 1,1.5,2, . . . ,6, while
the possible means of four die rolls are 1,1.25,1.5, . . . ,6. Means for samples from a discrete
distribution are always discrete, but the number of discrete outcomes increases as the sample
size increases. Given that probability is based on models, there is no harm in thinking of the
means of large samples as having a continuous distribution rather than a discrete one. One
important characteristic of distributions of sample means is their shape; we will see that they are
always approximately normal for large sample sizes. For example, the underlying distribution
in Example 4.3.1 is uniform, but the histogram in Figure 4.3.1b shows that a sample size of 4
is enough for the distribution of sample means to look approximately normal.

17 See Problem 4.3.1.
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Fig. 4.3.1 Histograms for means of samples of (a) two and (b) four die rolls

4.3.3 Means and Standard Deviations of Sample Sums and Means

Repeated application of Theorem 4.3.1 gives us simple formulas for the mean μY and variance
σ2

Y of the sum, and we can calculate the standard deviation from the latter:

μY =
n

∑
i=1

μ = nμ , σ2
Y =

n

∑
i=1

σ2 = nσ2, σY =
√

σ2
Y =

√
nσ . (4.3.2)

The mean X is merely Y/n, so its mean and standard deviation can be computed immediately
from those for Y , simply by dividing by n. This result is sufficiently important to be given as a
separate theorem.

Theorem 4.3.2 (Mean and Standard Deviation for a Distribution of Sample Means).
Let X be the mean of n independent random variables, each drawn from a distribution
having mean μ and standard deviation σ . Then the mean μX and standard deviation σX

for the random variable X are given by

μX = μ , σX =
σ√

n
. (4.3.3)

Theorem 4.3.2 allows us to calculate theoretical means and standard deviations for sample
means, given only that we know the mean and standard deviation for the population from which
the samples are drawn.

Example 4.3.2.

Q) Suppose we draw a sample of four individuals from the Poisson distribution having mean
μ = 4 and define X to be the mean of the sample. What are the mean and standard deviation
for the random variable X?

A) From Theorem 3.7.1, we know that σ2 = μ for the Poisson distribution; hence, the standard
deviation is σ =

√μ = 2. The random variable X , which is the mean of a sample of four
individuals, therefore has mean and standard deviation

μX = μ = 4 , σX =
σ√

4
=

2
2
= 1 .

Note that the distribution of sample means cannot be a Poisson distribution because
σ2

X 
=μ4X . ��
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Because sampling is such a common occurrence, it is important to be clear about the
conceptual framework for discussing samples. A total of n individual measurements are drawn
from a base population having some distribution type with mean μ and standard deviation σ .
The sample mean is a random variable X , which has its own distribution with mean and standard
deviation given by Theorem 4.3.2 and a shape that is different from the underlying distribution.

4.3.4 Distributions of Sample Means

We cannot make a general statement about the shape of distributions of sample means. However,
in the case of the binomial distribution, we can express the distribution of sample means in terms
of the binomial distribution with all the Bernoulli trials combined, as we did in Section 4.1.

Example 4.3.3. The scenario of Section 4.1 involved individual experiments consisting of a
count of marked individuals in a sample of 50. Since 5 % of the population consisted of marked
individuals, we used the binomial distribution b50, 0.05 to model the probability; that is, we
used b50, 0.05(k) as the probability of obtaining k marked individuals in the experiment. Then
we considered four successive counts as equivalent to a single experiment with a sample of
200 and obtained the probability distribution b200, 0.05. Instead, suppose we think of this new
experiment as having two layers. The lower layer is the original experiment consisting of 50
Bernoulli trials, which we use four times to obtain random variables X1, X2, X3, and X4. The
upper layer is the combination of these four random variables into a sample, and we can think
of it as generating a random sum Y and a random average X . Because Y = X1+X2+X3+X4, its
distribution is b200, 0.05. The distribution for the mean X is then 0.25b200, 0.05. The underlying
distribution b50, 0.05 has mean μ = np = 2.5 and standard deviation σ =

√
np(1− p) = 1.541.

By Theorem 4.3.2, the distribution for the sample mean X has mean μX = 2.5 and standard
deviation σX = 1.541/

√
4 = 0.77. Although the distribution of sample means is still binomial,

the shapes of the distributions b50, 0.05 and 0.25b200, 0.05 are different. We can quantify the
difference in these distribution shapes by calculating values of the modified Cramer–von Mises
statistic. Samples of 100 values from b50, 0.05 have an average of Ŵ 2 ≈ 0.45, while samples of
the same size from 0.25b200, 0.05 average Ŵ 2 ≈ 0.16. ��

Check Your Understanding 4.3.1:
Identify the distribution for the mean X of random variables X1, · · · ,X10, each drawn from
b50,0.05. Compute the mean and standard deviation of X . Write a program to determine
Ŵ 2 for a sample of 50 values of the distribution for X . Run enough experiments to see
convincing evidence that the distribution of means of ten numbers from b50,0.05 has a
smaller value of Ŵ 2 than the distribution of means of four numbers from the same under-
lying distribution.

A detailed look at histograms of sample means is particularly revealing if the underlying
distribution is highly skewed. The exponential distribution works well in this role.

Example 4.3.4. Suppose we draw four individuals from the exponential distribution E0.5.18 The
underlying distribution has mean μ = 2 and standard deviation σ = 2. If we draw samples of
size 4, 16, and 64, each will have a distribution with mean μX = 2, while the standard devia-
tions will gradually decrease, with σX = 1, σX = 0.5, and σX = 0.25. To visualize these sample

18 See Section 3.7.
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distributions numerically, we can use a random number generator to draw a sample of size n
and compute the mean, which will be X for the sampling experiment. We can embed this cal-
culation in a loop that runs the same experiment 10,000 times, which is enough for a good
approximation of the distribution of sample means. We can then sort the 10,000 sample means
into bins and produce a histogram. The result is Figure 4.3.2. Figure 4.3.2a shows the highly
skewed underlying distribution, in which very small values are more common than larger val-
ues. Figure 4.3.2b shows the distribution of means of samples of size 4. Very small values are
no longer common. They still arise in the underlying distribution, but most often in conjunction
with three other values that are not very small. The first bin, with means less than 0.25, occurs
only when the sum of the four underlying values is less than 1, and this is rare. The distribu-
tion is still skewed; for example, a sample mean of 1.8 is much more common than a sample
mean of 2.2, even though both are 0.2 standard deviation away from the distribution mean of
2.0. Proceeding through the figures, we see that larger samples produce distributions that are
progressively less skewed and also narrower. ��
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Fig. 4.3.2 Histograms for (a) the underlying distribution E0.5 and the distributions of the means of samples of
size (b) 4, (c) 16, and (d) 64

Figure 4.3.3 shows the histogram for the distribution of the means of samples of size 64
along with the normal distribution having the same mean and standard deviation. The figure
clearly shows the similarity of the distribution of sample means to the corresponding normal
distribution. We can also document the progression toward a normal distribution by examining
values of the Cramer–von Mises statistic for the four distributions in Example 4.3.4, which are
approximately 0.84 for E0.5, 0.24 for samples of size 4, 0.10 for samples of size 16, and 0.07 for
samples of size 64. Data drawn from a normal distribution by a random number generator yields
an average Cramer–von Mises statistic of 0.06, so samples of size 64 from E0.5 are effectively
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normal. The value of 0.10 is small enough to justify using the normal distribution for samples
of size 16 as well.

The evidence from Example 4.3.4, as seen in the results of the Cramer–von Mises normality
test and Figure 4.3.3, suggests that means of large samples are normally distributed. This is
confirmed by a key theorem of probability, which we state here without proof.

Theorem 4.3.3 (Central Limit Theorem). Suppose X is a random variable obtained as
a mean of n independent identically distributed random variables. In the limit as n →
∞, the distribution of X approaches a normal distribution with mean μ and standard
deviation σ/

√
n, where μ and σ are the mean and standard deviation of the distribution

from which the independent random variables are drawn.

The central limit theorem is a valuable tool to use for drawing inferences about populations,
as we will see in Section 4.4.
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Fig. 4.3.3 A comparison of histograms: (a) the distribution of means of samples of size 64 and (b) the normal
distribution having the same mean and standard deviation

Check Your Understanding Answers

1. The distribution is 0.1b500, 0.05. It has mean 2.5 and standard deviation 0.49. A typical value
for Ŵ 2 for a sample of 100 values from this distribution is 0.10.

Problems

4.3.1. Prove Theorem 4.3.1. You may assume without proof that E(X1X2) = E(X1)E(X2).

4.3.2. Suppose we draw a sample of 100 individuals from the probability distribution indicated
below. Determine the mean and standard deviation of the means for each of these samples.

(a) The probability distribution for the number of successful attacks out of 5 tries given a suc-
cess probability of 0.3 for each attack.

(b) The probability distribution for the number of successful predator attacks in a 2-h period,
given a mean attack rate of 3 per hour.
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4.3.3.* Consider samples drawn from an underlying binomial distribution b20,0.1 and let X be
the mean of a sample of size n.

(a) Determine the means and standard deviations of the random variable X for the cases where
n = 4, n = 16, n = 64.

(b) Draw 10,000 values of X for each of the three cases and plot histograms. Compare with the
underlying distribution and with the corresponding normal distributions.

(c) Compute the average Cramer–von Mises statistic over 10,000 sets of 100 values of X for
each of the three cases.

(d) Summarize the results of these experiments.

4.3.4. Repeat Problem 4.3.3 using the Poisson distribution f1 as the underlying distribution.

4.3.5. Repeat Problem 4.3.3 using the exponential distribution E0.2 as the underlying distribu-
tion. Also compare with Example 4.3.4.

4.3.6. Repeat Problem 4.3.3 using the geometric distribution gp, which is the distribution for
the experiment in which X is the number of Bernoulli trials taken to obtain a success, given
a success probability of p for each trial. For example, suppose X is the number of rolls taken
to roll a 1 on a four-sided die. The distribution of X is given by g0.25. The probabilities of
this distribution are not difficult to calculate. The probability of X = 1 is 1/4 because X = 1
corresponds to a success on the first roll. To obtain X = 2, it is necessary to roll a number other
than 1 on the first roll before rolling a 1 on the second roll. By the sequence rule, the probability
is P [X = 2] = (3/4)(1/4) = 3/16. Similarly, the outcome X = 3 requires two rolls without a
1 followed by a roll of 1; hence, P [X = 3] = (3/4)2(1/4) = 32/43. It can be shown that the
distribution gp has mean 1/p and standard deviation

√
1− p/p; hence, the distribution g0.25

has mean μ = 4 and standard deviation σ =
√

0.75/0.25 = 2
√

3 ≈ 3.464.

4.3.7. (Continued from Problem 3.3.1.)
Assume the distribution of babies for a successful pregnancy is given by p(1) = 0.9851, p(2) =
0.0138, and p(3) = 0.0011. Repeat Problem 4.3.3 with this distribution, but with samples of
size 100, 400, 2,500, and 10,000.

4.3.8. In a news story on climate change that ran on National Public Radio’s “All Things Con-
sidered” on August 6, 2012, the reporter said, “One standard deviation is like rolling snake eyes
three times in a row.”19

(a) Determine the mean and standard deviation for a single die roll and use it to determine the
mean and standard deviation of a sum of six rolls.

(b) How many standard deviations below the mean is a total score of 6?
(c) What total score comes closest to being one standard deviation below the mean?
(d) If the distribution of the sum of six dice were actually normal, what would be the probability

of rolling a sum less than 6? What would be the probability of a sum of 5 or less? What is
the relationship between these two probabilities in the actual experiment of rolling six dice?

(e) Repeat part (d) to compare the probability of a sum less than 21 with a sum of 20 or less,
using a normal distribution model.

(f) Use an experiment similar to that of Problem 4.3.3c to assess how close the distribution of
the sum of six die rolls is to being normal.

19 The reporter did not identify the source of this claim. It certainly was not in the research paper that inspired
the climate change news story.
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4.4 Inferences About Populations

After studying this section, you should be able to:

• Determine the probability that a specific sample mean could be obtained from a general
population of quantitative data.

• Determine the probability that a specific number of successes could be obtained in Bernoulli
trials with a general population.

In Section 4.3, we raised the question of whether a sample drawn randomly from a sub-
population can be representative of the full population. We identified two issues—whether
random samples are necessarily representative and whether a subpopulation can represent a
full population—and addressed the first of these. The answer to the second issue depends on
whether there are systematic differences between the subpopulation and the full population.

Example 4.4.1. In chemistry, we take a sample of pure hydrochloric acid by pouring some out
of a single bottle. If we mix the contents before pouring, we are getting a random sample from
the subpopulation of all molecules of hydrochloric acid that happen to be in that one bottle.
Nevertheless, the sample is representative of all molecules of hydrochloric acid, because there
is no systematic difference among bottles of pure hydrochloric acid. ��
In contrast with the usual situation in chemistry, a truly random sampling procedure in biology
is often impossible.

Example 4.4.2. If we are studying bison, we might have to restrict our sample to the subpopu-
lation of bison living in Custer State Park in South Dakota. We need to employ a well-designed
procedure to obtain a random sample of the subpopulation, and then we need to be concerned
about the possibility of systematic differences between bison who live in Custer State Park and
those who live elsewhere. ��

Whether the difference between two data sets is “significant” is one of the central questions
of data analysis. This question is only partly mathematical, because the answer depends on what
we mean by a significant difference. This issue belongs to the subject of statistics, which we
can think of as “drawing conclusions from probability calculations.” Here, we are concerned
only with the probability calculations themselves. We consider two scenarios, one in which
the experiment yields quantitative results and one in which the experiment yields a result of
“positive” or “negative.”20

4.4.1 Inferences About Sample Means

Assume that we have a set of n measurements X1,X2, . . . ,Xn, each drawn randomly from a large
population of mean μ and standard deviation σ . If X is the mean of the individual measure-
ments, then it is also a random variable, but it comes from the distribution of means of samples
of size n. While the distribution of sample means is different from the underlying distribution,
we do know a lot about it. From Theorem 4.3.2, we know that the mean is μ and the standard
deviation is σ/

√
n. If the sample size is large enough, we know from the central limit theorem

that the distribution of sample means is approximately normal.21

20 For example, does an individual have a heart attack in a given period or not?
21 See Theorem 4.3.3.
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Problem 3.1.3 uses a set of data for dopamine concentration in people identified as either
psychotic or not psychotic. The mean concentration for the psychotic subjects is higher, but is
it higher enough to justify the conclusion that high dopamine concentration and psychosis are
correlated?22 This is a very common type of question in biology. A biologist collects data for a
general population or control group and also for a test population that differs from the general
population in some way. Invariably, the means will be at least a little bit different. If they seem
noticeably different, we want to know if that difference could arise simply by chance. If not,
then we can conclude that the characteristic that identifies the test population is correlated with
the characteristic being measured.23

To answer questions about the consistency of data with an assumed population, we measure
a single sample of size n from the test population. Let x̄ be the mean obtained for the specific
sample. If the test population is representative of the full population, then the distribution of
means for test population samples is the same as that of the full population. In particular, the
expected value for test population means is μ , the mean of the underlying distribution for the
full population. But suppose x̄ is noticeably less than (or greater than) μ . This provides evidence
that the test population and the full population are significantly different. To determine the
strength of this evidence, we need to know how unusual the value of x̄ would be if it actually
came from the full population. So the mathematical question is:

What is the probability that the mean (X) of a random sample of size n from the full
population is at least as far24 below (above) the expected value (μ) as the measured
mean (x̄) of the test sample?

In mathematical notation, the problem is to determine P [X ≤ x̄]. For large enough n, we
know that the distribution for X is approximately normal, with mean μ and standard deviation
σX = σ/

√
n.25 Thus,26

P [X ≤ x̄] = Nμ,σX (x̄) = N(z) , z =
x̄− μ

σX
, σX =

σ√
n
,

22 See Problem 4.4.2.
23 It is a common fallacy to interpret a correlation in terms of causation; for example, we might think that
a correlation between high dopamine levels and psychosis means that too much dopamine makes a person
psychotic. This may be true, but demonstrating a correlation is not enough to support the claim. It is also
possible that being psychotic raises dopamine levels, or that some other condition is responsible for both the
psychosis and the high level of dopamine. A good rule of thumb is that causation should not be inferred from
correlation unless only one of the possibilities of “A causes B” and “B causes A” is plausible. For example, if
people who eat carrots have better night vision than people who don’t, we can safely conclude that something
in the carrots is responsible for the improved vision, as it seems clearly implausible that being able to see well
at night makes a person hungry for carrots.
24 See Section 4.1 for a discussion of why this detail is necessary.
25 See Theorem 4.3.2.
26 See Theorem 3.6.1.
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where N is the cumulative distribution function for the standard normal distribution. If the
sample mean is unusually large, then the corresponding result is

P [X ≥ x̄] = 1−Nμ,σX (x̄) = 1−N(z) = N(−z) , z =
x̄− μ

σX
, σX =

σ√
n
.

These formulas can be combined with the observation that the argument of N in both cases is
negative, given z < 0 for values less than the mean and z > 0 for values greater than the mean.
Hence, we can summarize the key result in one statement:

Theorem 4.4.1 (Probability of Obtaining a Given Mean from Large Samples of a
Given Population). Let x̄ be the mean of a sample of size n drawn from an underlying
distribution with mean μ and standard deviation σ . In the limit as n → ∞, the probability
of obtaining a mean at least as far from μ as x̄ is N(z), where

z =
−|x̄− μ |

σX
, σX =

σ√
n
. (4.4.1)

Note that Theorem 4.4.1 provides a theoretical result. In practice, n is finite, so the use of the
normal distribution does not yield an exact answer. As we saw in Section 4.3, the convergence
of the distribution of sample means to the normal distribution is fast; for all but the most skewed
underlying distribution, a sample of size 50 is large enough for the distribution of sample means
to be effectively normal.

Example 4.4.3.

Q) Karl Pearson’s landmark paper introducing the chi-square test used a data set consisting
of frequencies for the number of successes, defined as rolls of “5” or “6,” in rolls of 12 dice
[7].27 The data is reproduced in Table 4.4.1. Were the dice fair?

A) Of course we cannot answer the question as posed. What we can do is look at the distribu-
tion of sample means for rolls of fair dice and determine the probability that the data could
have come from that distribution. The individual experiments consisted of 12 Bernoulli trials,
each with success probability 1/3; hence, the underlying distribution is b12,1/3. This distribu-
tion has mean μ = 4 and standard deviation σ = 1.633.28 The sample mean x̄ is the expected
value determined from the frequency table, which is x̄ = 4.052. The distribution of sam-
ple means is normal, with mean μX = 4 and standard deviation σX = σ/

√
26306 = 0.010.

From (4.4.1), we obtain z = −5.2, which corresponds to a probability of N(−5.2) = 10−7.
Thus, the probability of a mean of 4.052 or larger for fair dice is vanishingly small. There
are two possible conclusions: either the dice were not fair or the data is inaccurate.29 ��

Check Your Understanding 4.4.1:
Verify the calculations in Example 4.4.3.

27 See Problem 3.4.6 for background and commentary.
28 See Theorem 3.4.1.
29 Pearson drew the same conclusion using his more sophisticated chi-square test. He also suggested an expla-
nation: large numbers were more likely than small numbers because the pips on the dice reduced the weight
of each face; hence, the faces with larger numbers were lighter than those with smaller numbers. See [3] for a
further discussion.
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Table 4.4.1 The frequency of N successes in 26306 rolls of 12 dice, where a success means a roll of ‘5’ or ‘6’

N 0 1 2 3 4 5 6 7 8 9 10 11 12
X 185 1149 3265 5475 6114 5194 3067 1331 403 105 14 4 0

4.4.2 Inferences About Sample Proportions

A lot of biological data, such as height cholesterol levels, and numbers of offspring, is quanti-
tative. However, other important data is qualitative in nature, such as whether or not a person
has had a heart attack. Suppose the fraction of heart attack patients in some group appears to be
significantly less than the overall heart attack rate for the population at large. We want to know
the probability that the measured heart attack rate for the small group could occur in a represen-
tative sample drawn from the larger population. This is a question of drawing inferences about
proportions rather than means.

Think of each measurement as a Bernoulli trial. A given patient has either had a heart attack
(outcome Xj = 1) or not (outcome Xj = 0). The total number of heart attacks in a collection
of n individuals is governed by a binomial distribution with probability distribution function
bn, p. We assume that the probability p for success in each Bernoulli trial is known for the
general population. Then we can compute bn,p(k), which is the probability of k “successes” in
n Bernoulli trials, each of which has probability p of success. If there are k̄ heart attacks in the
sample of size n, we want to know the probability that X is less than or equal to k̄. However,
this can be a problem for very large samples, owing to the lack of a simple formula for the
cumulative distribution function Bn,p(k̄).

An alternative is provided by the central limit theorem,30 which says that the distribution of
sample means is approximately normal for large samples. Thus, we can approximate Bn,p(k̄) by
an appropriate normal distribution Nμ,σ . The relevant facts about the binomial distribution are
given in Theorem 3.4.1: the mean is μ = np and the variance is σ2 = np(1− p). The key result
is almost identical to Theorem 4.4.1, using μ = np and σX =

√
np(1− p); however, a small

correction is needed to convert the discrete data of the experiment to a continuous distribution.
We state the result without proof.

Theorem 4.4.2 (Probability of Obtaining a Given Number of Successes from a Large
Number of Bernoulli Trials). Let k̄ be the number of successful Bernoulli trials out of
a total of n, each with success probability p. In the limit as n → ∞, the probability of
obtaining a success total at least as far from np as k̄ is approximately N(z), where

z =
−|k̄− np|+ 1

2√
np(1− p)

. (4.4.2)

As with Theorem 4.4.1, the result in Theorem 4.4.2 is exactly correct only for the theoretical
case where n is infinite and is approximate for finite n. The accuracy of the approximations
depends on n being large enough, and also on p being neither too close to 0 nor too close to
1. In practice, statisticians use the rule of thumb that both np and n(1− p) should be greater
than 5.31

30 Theorem 4.3.3.
31 The real situation is far more complicated than this simplified narrative suggests and serves as a lesson on
the dangers of using a result for a real case that is true only in some limit. The example that follows hints at the
problem, which is explored in more detail in Problem 4.4.10.
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Example 4.4.4. Suppose the incidence of heart attacks in the general population is about 1 in
1,000. A subgroup of 10,000 people has a total of 5 heart attacks. Is this significantly less
than what would be expected from a random sample? Observe first that p = 0.001, which is
quite small. However, the sample is large enough that np = 10, so it is reasonable to use a
normal approximation. The appropriate normal distribution has mean np = 10 and variance
np(1− p) = 9.99. This data yields a z value of

z =
−|k̄− np|+ 1

2√
np(1− p)

=
−|5− 10|+ 1

2√
9.99

=−1.424 .

Thus,
P [X ≤ 5]≈ P [Z ≤−1.424] = N(−1.424) = 0.0773 .

Of course, we obtained this answer using Theorem 4.4.2, which is only approximate. The
correct answer is

P [X ≤ 5] = B10000,0.001(5) = 0.0670.

For a representative sample of size 10,000, there is almost a 7 % chance that there will be 5
or fewer heart attacks. While the actual incidence is suspiciously low, it is not so low that we
can reach a scientific conclusion of significance. The approximation is off by about 13% even
though the rule of thumb np > 5 holds. ��

Note that Theorem 4.4.2 overestimates the probability in Example 4.4.4 by about 15 %. Had
we not computed the exact answer, we would have drawn a weaker conclusion than is actually
supported by the data. This is not troubling, as science should be conservative about drawing
conclusions. However, we should be concerned about the possibility that the approximation in
the theorem will lead us to draw conclusions that are stronger than the data can support. A
clue for what happened lies in the relatively small value of np = 10. This means that there is a
significant granularity to the distribution.32 The next example is typical of cases where a much
larger value of np indicates that granularity is minimal.

Example 4.4.5. Suppose you flip a coin 100 times and get heads 60 times. Is the coin fair?
Of course, we can’t actually answer this question as posed. Instead we answer a related

question: What is the probability of getting 60 or more heads on 100 flips of a fair coin? The-
orem 4.4.2 provides an approximate answer to this latter question. The z value is −1.9, corre-
sponding to a probability of 0.0287. Alternatively, we can calculate the exact probability of 60
or more heads with 100 tosses of a fair coin:

P [X ≥ 60] = 1−P[X ≤ 59] = 1−B100,0.5(59) = 0.0284.

While this is a low probability, it means that if we had 10,000 fair coins and flipped each of
them 100 times, we should expect about 284 of them (almost 3 %) to yield 60 or more heads. It
seems likely that the coin is unfair, but not certain. More to the point of our mathematical study,
the approximation is very accurate. ��

Check Your Understanding 4.4.2:
Verify the calculations of Example 4.4.5.

32 See Problems 4.3.8 and 4.4.10.
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Problems

The data sets for Problems 4.4.2–4.4.5 are from [2] and can be found in both csv and xlsx form
at http://www.math.unl.edu/∼gledder1/MLS/, http://www.springer.com/978-1-4614-7275-9.

4.4.1. (a) A test group of 400 patients is given a new cholesterol-lowering medication for 2
months. The reduction of the patients’ cholesterol level has a mean of 16 with a standard
deviation of 60. Meanwhile, a control group is given a placebo. For this group, there is a
reduction in cholesterol of 8 with a standard deviation of 40. Assuming that the control
group is representative of the general population, determine the probability that the given
improvement in the test subjects could have been measured in a random sample of 400
patients who did not get the medication.

(b) Repeat part (a) for a group of 10,000 patients given a different medication with resulting
cholesterol reduction of mean 10 and standard deviation 40.

(c) Repeat part (a) for a group of 25 patients given a third medication with resulting cholesterol
reduction of mean 24 and standard deviation 10.

(d) Which of the three medications would you say is most effective?
(e) In determining the effectiveness of a medication, what questions should be asked in addition

to that about the probability of a significant difference between the test population and the
general population?

4.4.2.* (Continued from Problems 3.1.3 and 4.2.1.)

(a) Are we justified in assuming the data in the file DOPAMINE.* to be normally distributed?
(b) If so, use it to investigate the question of whether dopamine concentrations for psychotic

people are different from those for nonpsychotic people.

4.4.3. (Continued from Problems 3.1.4 and 4.2.2.)

(a) Are we justified in assuming the data in the file FRUITFLY.* to be normally distributed?
(b) If so, use it to investigate the question of whether selective breeding of fruit flies for DDT

resistance decreases their fecundity.
(c) Repeat part (b) for selective breeding for susceptibility to DDT.
(d) Given the difference between the means of the control group and the resistant group, deter-

mine how large a sample is necessary to confirm that the resistant group is different at the
1 % significance level.

4.4.4. (Continued from Problems 3.1.5 and 4.2.3.) The file WEIGHT.* contains data on the
weight gain of rats fed different diets. Assume that the standard diet is the low-protein cereal
diet; hence, this column represents the general population.

(a) Determine the probability that the data for the low-protein beef diet represents a significant
difference from the standard diet. What conclusion should we draw?

(b) Repeat part (a) for the high-protein beef diet.

4.4.5. (Continued from Problems 3.6.12, 3.6.13, and 4.2.4.)

(a) The file BUTTER.* contains measurements of butterfat content of the milk from several
breeds of cows. Suppose we want to test the hypothesis that there is no significant difference
between Jersey and Guernsey cows. It doesn’t matter which of the sample means we take
as μ and which as x̄; however, we need to decide how to choose a value to represent the
standard deviation of the general population. The most sensible choice is to use the average
of the standard deviations of the two data sets. With this choice, determine the probability
that the data from one of the two breeds could have come from cows of the other breed.

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
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(b) There seems to be a contradiction between the result of part (a) and that of Problem 3.6.13.
Discuss these results and draw appropriate conclusions about the use of the Cramer–von
Mises test.

4.4.6. (Continued from Problem 3.1.6.)
The file BLOOD.* lists the systolic and diastolic blood pressures for 15 patients, both before
and after treatment with the drug captopril.

(a) The data in the file is not sufficient for us to assess the effectiveness of the drug, because
there is no data given for a control group on a placebo. For now, assume there is no change
in the systolic blood pressure for patients on a placebo and use the standard deviation for
the blood pressure change as an estimate of the standard deviation of the control group.
With these assumptions, determine the probability that the systolic blood pressure data for
the patients in the study could have been generated by a random sample of the general
population.

(b) Repeat part (a) for the change in the diastolic blood pressure.
(c) Repeat part (a) for the average blood pressure change. Note that each patient now counts as

two trials, one for each measurement.
(d) How much improvement might there be in the control group data if the conclusion of sig-

nificance at the 1 % level is to be maintained? To answer this question, determine the z value
corresponding to P [Z ≤ z] = 0.01. Then use the standard deviation and mean from part (c)
to compute the corresponding value of μ for the control group.

(e) Write a careful verbal statement of the methods and results of parts (a)–(d).

4.4.7. (a) In Example 4.4.4, suppose the study found 70 heart attacks in a test group of 100,000
people. Assuming that Theorem 4.4.2 applies, is this result significant? Note that this larger
group shows a smaller difference than the group in the example, yet the probability of this
occurring by chance is smaller. Larger samples allow for stronger conclusions.

(b) Suppose a study of n patients has a heart attack rate of 0.0007. Determine how large n must
be for the result to be significant at the 5 % level, according to Theorem 4.4.2.

(c) Repeat part (b) for the 1 % level.

4.4.8.* (Continued from Problem 3.4.5.)
Six of the 12 US presidents from Franklin Roosevelt to Barack Obama were left-handed. Is this
significant?

(a) Use Theorem 4.4.2 to determine the probability that six or more of 12 presidents are left-
handed, assuming that the overall rate of left-handedness is 15 %.

(b) Use the binomial distribution to answer the same question as part (a).
(c) Why do the answers to parts (b) and (c) differ by a factor of 3? Which one is correct?
(d) The question in parts (a)–(c) is not the correct one. In searching for evidence that left-

handers are more likely to become president, we will naturally choose a sequence of pres-
idents that begins and ends with a left-hander. Thus, the left-handedness of Roosevelt and
Obama are built into the scenario, not part of the random data. Repeat parts (a) and (b) to
determine the probability that four of ten consecutive presidents are left-handed simply by
chance.33

4.4.9. Turner’s syndrome is a rare chromosomal disorder in which girls have only one X chro-
mosome. About one of 2,000 girls in the United States has Turner’s syndrome.

33 Mark Twain said, “There are three kinds of lies: white lies, damn lies, and statistics.” This appears to be an
example of Twain’s dictum. The apparent coincidence is not entirely random, because the person looking for a
coincidence has deliberately chosen the consecutive string of presidents that makes the strongest statistical case.
Add to that the general principle that left-handedness is merely one of many possible coincidences in the list of
presidents, and it should not be surprising that some coincidence can be found.
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(a) Suppose a group of 4,000 girls is tested, and four of these are found to have Turner’s syn-
drome. Investigate the question of whether this group is unusual.

(b) Given a test group of size n with a frequency of 0.001 for the disease, how large must n
be for significance at the 5 % level? What about the 1% level? Obtain approximate answers
using Theorem 4.4.2.

(c) Consider a general setting in which the observed number of successes is twice the expected
number. Assuming that p is very small (so that 1− p ≈ 1) and n is large enough for Theo-
rem 4.4.2 to apply, determine the value for the product np that is necessary for significance
at the 1 % level.

4.4.10. Consider the scenario of Example 4.4.4, in which there are k successes in 10,000 trials.
Assume that the general population has success probability 0.001 and that 2 ≤ k ≤ 8.

(a) For each of the values of k, determine

a. The actual probability from the binomial distribution.
b. The approximate probability from Theorem 4.4.2.
c. The approximate probability without the extra 1/2 in Theorem 4.4.2.

(b) Assuming the results from part (a) are typical of instances in which np is not much larger
than 5, what can we say about the relationship between the approximate probability and
the exact probability? When is the approximation an underestimate? When is it reasonably
accurate? When is the approximate probability more accurate without the extra 1/2?

4.5 Estimating Parameters for Distributions

After studying this section, you should be able to:

• Find 95 % confidence intervals for normal distribution means.
• Define a likelihood function for parameter estimation.
• Use experimental data to determine the maximum likelihood estimate and 95 % confidence

interval for success probability.
• Use mark-and-recapture data to determine the maximum likelihood estimate and 95 % con-

fidence interval for population size.

In Chapter 3, we computed probabilities using probability distributions. Then in Section 4.4,
we used probability distributions to make inferences about the relationship between a sample
and a population. For both of these applications, we have to know the values of the parameters
that characterize the probability distribution. This raises the question of how these parameter
values are determined.

4.5.1 Confidence Intervals

Suppose we measure the mean of a sample we believe to be drawn from a normally distributed
population. The sample mean x̄ is the best estimate we can give for the population mean μ , but
it is only an estimate—a different sample would produce a different result. Because we cannot
be certain our measured value represents the population, it is important to quantify the degree
of confidence we have in the estimate. The standard deviation makes this a simple matter.
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In Section 3.6, we determined that 95 % of measurements made on a normally distributed
population of mean μ and standard deviation σ lie within 1.96 standard deviations of the mean.
The same calculation applies to the problem of inferring μ from sample data, with some im-
portant differences. In this latter setting, we have the sample mean x̄ and standard deviation s.
These parameters refer to the underlying population, not the distribution of sample means, but
it is the latter that we are using to estimate μ . Hence, our best estimates for the population are
μ ≈ x̄ and σ ≈ s, but the standard deviation we use to compute confidence intervals is that for
the sample mean, which is σ/

√
n. We summarize the result here.

If the data for a sample of size n is normally distributed with mean x̄ and standard devia-
tion s, then the probability is 0.95 that the true population mean lies in the interval

x̄− 1.960
s√
n
< μ < x̄+ 1.960

s√
n
. (4.5.1)

Similarly, the probability is 0.99 that the true population mean lies in the interval

x̄− 2.576
s√
n
< μ < x̄+ 2.576

s√
n
. (4.5.2)

Example 4.5.1. In Section 3.1, we examined a data set for the number of hours of sleep gained
by patients taking the drug L-hyoscine hydrobromide. A sample of size 10 had mean 2.33 and
standard deviation 2.00. The 95 % confidence interval for the true mean number of hours of
sleep gain is

2.33− 1.96
2.00√

10
< μ < 2.33+ 1.96

2.00√
10

,

or
1.09 < μ < 3.57 .

With such a large 95 % confidence interval, we can have but little confidence in the measured
mean of 2.33. The only cure for this problem is to use a much larger data set. With 1,000 patients
instead of 10, the width of a confidence interval would drop by a factor of 10, from 2.48 to 0.25
for the 95 % case. It was the development of modern statistical methods that made scientists
appreciate the need to collect more data. ��

Check Your Understanding 4.5.1:
Find the 99 % confidence interval for the number of hours of sleep gain induced by L-
hyoscine hydrobromide using the data in Example 4.5.1.

4.5.2 Estimating Success Probability with a Likelihood Function

Suppose we flip a coin 100 times and get heads on 60 of the flips. We saw in Example 4.4.3
that the probability of getting as many as 60 heads out of 100 for a fair coin is 0.0287. This is
such a low probability that we should abandon the assumption that the coin is fair. How do we
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determine the actual probability of heads? Our first guess is that we should use the experiment
result: the probability of heads is most likely 0.6. This is the single best answer we can give,
but we can also provide additional information.

Example 4.5.2.

Q) Suppose we consider two possibilities for the coin that yields 60 heads on 100 flips. One
possibility is that the coin is fair, with a probability of p = 0.5 of getting heads. The other
possibility is that the result of 60 out of 100 actually represents a success probability of
p = 0.6. For each of these two assumptions, what is the probability that we actually get 60
heads out of 100?

A) This is a direct application of the binomial distribution. The probability of k successes in n
Bernoulli trials with success probability p is34

bn,p(k) =

(
n
k

)
pkqn−k , q = 1− p ,

(
n
k

)
=

n!
k!(n− k)!

. (4.5.3)

Given the known result k = 60 with n = 100, we have

b100,p(60) =

(
100
60

)
p60(1− p)40 ≈ (1.375× 1028)p60(1− p)40 .

(4.5.4)

In particular,

b100, 0.6(60)≈ 0.0812, b100, 0.5(60)≈ 0.0108.

While there is a 1 % chance of getting 60 heads with a fair coin, there is an 8 % chance of
getting 60 heads with a coin that hits heads 60 % of the time. ��
Observe that the quantity b100,p(60) is a function of p. Clearly, the value of p that maximizes

this function is the one that is most probable. However, the function does not tell us the proba-
bility that the maximizing value is actually correct. In the example, the specific value of 0.0812
for the probability of getting exactly 60 % heads, given p = 0.6, depends on the number of trials
as well as the choice of the p value. Hence, the actual probability value is not important; what
is important is the way the probability changes if we assume a different value of p. This idea is
used in the definition of the likelihood function.

Likelihood function: the function L(p) = fp(k)/ fp∗(k), where fp is a probability distri-
bution function with unknown parameter p, k is a known experiment result, and p∗ is the
value of p that gives the maximum of fp(k).

34 See Theorem 3.4.1.
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Example 4.5.3. Equation (4.5.4) defines a likelihood function:

L(p) =
b100,p(60)

b100,0.6(60)
=

(
100
60

)
p60(1− p)40

(
100
60

)
0.6600.440

=
( p

0.6

)60
(

1− p
0.4

)40

.

This function appears in Figure 4.5.1. ��

0 0.2 0.4 0.6 0.8 1
0

0.5

1

p

L(p)

Fig. 4.5.1 The likelihood function for Example 4.5.3

In Example 4.5.3, we found p∗ = k/n. This is a general result for binomial distributions.
We don’t need a likelihood function for the purpose of finding the most likely parame-

ter value, since that is simply the approximation determined by the experiment. However,
likelihood functions can be used to identify confidence intervals.35 We report the principal
result here without proof36.

For distributions that are roughly normal, such as the binomial distribution with np > 5
and n(1− p) > 5, the 95 % confidence interval is approximately given by the range of
values for which the likelihood is at least 0.15.

Example 4.5.4. Figure 4.5.2 shows the likelihood function for Example 4.5.3, along with lines
marking likelihood values of 0.15 and the corresponding p values. The 95 % confidence inter-
val is approximately (0.503,0.692). Note that this is not quite centered about the maximum
likelihood estimator because the function is not symmetric around that point. ��

While we have focused on the success probability for the binomial distribution, we could
define a likelihood function for any parameter in any probability distribution by similar
methods.

35 See Section 3.6.
36 See [9], for example.
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Fig. 4.5.2 The likelihood function for Examples 4.5.3 and 4.5.4, along with the 95 % confidence interval

4.5.3 Estimating Population Size by Mark and Recapture

A biologist wants to determine N, the population of turtles in a pond. She cannot capture all of
the turtles, nor can she drain the pond in order to count them all. The standard approach to this
problem is to use the mark-and-recapture method, which comprises the following procedure:

1. Capture and mark m individuals.
2. Return the marked individuals and wait for them to mix in with the rest of the population.
3. Capture n individuals and let k be the number of marked individuals in the collection.

To analyze a mark-and-recapture experiment, note that k/n is the fraction of marked indi-
viduals in the second capture group; the expected value for this fraction is m/N, where N is
unknown. If the actual fraction matches the expected value, we have k/n = m/N; hence, the
best estimate N� is mn/k. The qualification on this statement is that mn/k is probably not an
integer. If it isn’t, then there are two possibilities. Let N+ and N− be the integers that satisfy

N− <
mn
k

< N+ , N+−N− = 1 . (4.5.5)

One of these values is the best estimate N�, but we need the likelihood function to determine
which it is. We first need information about the correct probability distribution for mark-and-
recapture experiments, which we give here without proof.

The probability of observing k marked individuals in a group of n, given a total of m
marked individuals in a population of N, is given by the hypergeometric distribution,
which is defined by

hn,N,m(k) =

(
m
k

)(
N −m
n− k

)
(

N
n

) ,

(
m
k

)
≡ m!

k!(m− k)!
. (4.5.6)

The quantities n, N, and m are parameters for the distribution, while k is the experiment
outcome. However, in a likelihood context the outcome k is known and the parameter N is not.
The maximum likelihood estimate is whichever of N+ and N− yields the larger value of h.
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Example 4.5.5. Suppose we tag and release 25 animals and then get 8 tagged animals out of a
subsequent sample of 30. Then m = 25, k = 8, and n = 30, so mn/k = 93.75; thus, N− = 93 and
N+ = 94. From (4.5.6),

h30,93,25(8) =

(
25
8

)(
68
22

)
(

93
30

) ≈ 0.1972 ,

and

h30,94,25(8) =

(
25
8

)(
69
22

)
(

94
30

) ≈ 0.1971 .

Getting 8 tagged animals is slightly more likely from a population of 93 than from a population
of 94, so we take N� = 93. ��

Once we know N�, we can define a likelihood function and use it to obtain confidence inter-
vals. The likelihood function is

L(N) =
hn,N,m(k)
hn,N�,m(k)

=

(
N −m
n− k

)(
N0

n

)
(

N�−m
n− k

)(
N
n

) .

(4.5.7)

Example 4.5.6. In the mark-and-recapture experiment of Example 4.5.5, we have m= 25, k = 8,
n = 30, and N� = 93. Thus, the likelihood function is

L(N) =

(
N − 25

22

)(
93
30

)
(

68
22

)(
N
30

) ≈ 5.486× 106 ×

(
N − 25

22

)
(

N
30

) .

The 95 % confidence interval, which we take to be given by the inequality L(N) > 0.15, is
64 ≤ N ≤ 171. The likelihood function is plotted in Figure 4.5.3, along with lines marking the
95 % confidence interval. ��

4.5.4 A Final Observation

The 95 % confidence interval for Example 4.5.6 is much broader than that of Example 4.5.4.
Our best estimate of the population size is 93, but we cannot rule out a population size almost
twice as large with 95% confidence! This is typical in parameter estimation. Confidence inter-
vals tend to be large. They can be reduced by significantly increasing the sample size, but this
is not always practical. They also depend in a fundamental way on the nature of the parameter
in question. Population size parameters tend to have a much higher degree of uncertainty than
success probabilities because the probability of a given outcome generally depends much more
on success probability than on population size. A given percentage error in population size gen-
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Fig. 4.5.3 The likelihood function for Example 4.5.5, along with the 95 % confidence interval

erally has less overall effect than the same error in success probability; this translates to a larger
range of population size parameters that yield a probability within 15 % of the maximum.

Check Your Understanding Answers

1. 0.90 < μ < 3.96

Problems

The data sets for Problems 4.5.1–4.5.5 are from [2] and can be found in both csv and xlsx form
at http://www.math.unl.edu/∼gledder1/MLS/, http://www.springer.com/978-1-4614-7275-9.

4.5.1.* (Continued from Problem 4.2.1.)
Find the 95 % and 99 % confidence intervals for the mean dopamine level for nonpsychotic
patients from the file DOPAMINE.*.

4.5.2. (Continued from Problem 4.2.2.)
Repeat Problem 4.5.1 for the mean fecundity of the control group of fruit flies from the file
FRUITFLY.*.

4.5.3. (Continued from Problem 4.2.3.)
Repeat Problem 4.5.1 for the mean weight gain of rats fed a low-protein cereal diet from the
file WEIGHT.*.

4.5.4. (Continued from Problem 4.2.4.)
Repeat Problem 4.5.1 for the mean butterfat content of milk from Guernsey cows in the file
BUTTER.*.

4.5.5. (Continued from Problem 4.2.7.)
Repeat Problem 4.5.1 for the mean sepal lengths of Iris virginica from the file IRISES.*.

http://www.math.unl.edu/~gledder1/MLS/
http://www.springer.com/978-1-4614-7275-9
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4.5.6.* In Example 4.4.3 we examined a famous data set consisting of frequencies of die rolls.

(a) Use the data to estimate the probability p of rolling a “5” or a “6.”
(b) Define the likelihood function for the estimation of p from the data.
(c) Plot the likelihood function from part (b) and find the approximate 95 % confidence interval

as in Example 4.5.4. [The large exponents involved in the calculation make this tricky, as
you will get computational errors for p values that are not very close to p�.] You will have
to experiment to find a reasonable range of p values for the calculations—the goal is to
choose a range of p values large enough to see the part of the graph where L > 0.05.

(d) The connection between L = 0.15 and the 95 % confidence level was given in the text as a
rule of thumb without justification. We can test the rule in this case, because the number of
trials is so large that the binomial distribution can be approximated as a normal distribution.
Find the 95 % confidence interval for the appropriate normal distribution and show that it is
the same as that obtained in part (c).

(e) We can also find the value of L corresponding to the 95 % confidence interval theoretically
by using the fact that the likelihood function for a normal distribution is simply the prob-
ability density function, suitably scaled. Use this idea to confirm the 15 % estimate. [You
should find that 15 % is a little high.]

(f) Use the same argument as in part (e) to find the value of L that corresponds to the 99 %
confidence interval for a normal distribution.

4.5.7. (a) Count the number of rolls of “5” or “6” in 25 rolls of a single six-sided die.
(b) Define the likelihood function for the estimation of p from the data.
(c) Plot the likelihood function from part (b) and find the approximate 95 % confidence interval

as in Example 4.5.4.
(d) Repeat parts (a)–(c), but with 100 data points, using 25 rolls of 4 apparently identical dice.

[In other words, count the number of successes independently of how they are distributed
among the dice. This will take less time than rolling one die 100 times. The assumption that
the dice are identical would need further testing.]

(e) Describe the effect of the larger sample size of part (d) on the likelihood function.

4.5.8. Choose an activity other than flipping coins or rolling dice that can be modeled with
Bernoulli trials and doesn’t take very long to perform, such as shooting free throws in basketball
or flipping playing cards at a wastebasket. Repeat Problem 4.5.6 using this activity.

4.5.9. (Continued from Problem 3.7.6.)
The definition of a likelihood function requires an experiment that measures some quantitative
outcome to be modeled by a known distribution with an unknown parameter value. In the case
of a binomial distribution, the known result k is just np, where n is the number of trials and p is
the unknown success rate. For other distributions, the measured mean can be used as the known
result.

(a) Use the data from Table 3.7.2 to determine the sample mean x̄ for the number of malaria
parasites in erythrocytes. Use this result to estimate the parameter μ in the definition of the
Poisson distribution.

(b) Determine the likelihood function for the estimation of the parameter μ , using the sample
mean x̄ as the known experiment result.

(c) Plot the likelihood function and find the values of μ corresponding to a likelihood of 0.15.
(d) Can we interpret the values where the likelihood is 0.15 as constituting a 95 % interval?

Why or why not?
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4.5.10. (Continued from Problem 3.7.7.)

(a) Repeat Problem 4.5.9 for the mean number of spiders found under boards in the experiment
reported in Table 3.7.3.

4.5.11. Table 4.5.1 shows the data for a simulated mark-and-recapture experiment conducted in
five stages [5]. The experiment began with ten individuals marked and returned to the popula-
tion. In each of the four recapture rounds that followed, any previously unmarked individuals
were returned to the population. Each of the rounds can be analyzed separately, and we should
expect both the accuracy and precision of the population estimate to increase with each round.

(a) Determine the best estimate of the population based on the data for round 1.
(b) Repeat part (a) for the other rounds.
(c) Plot the likelihood function using the round 1 data. Use the range max(m,n) ≤ N ≤ 200.

Why is it important to choose max(m,n) for the minimum value of N?
(d) Add the likelihood function for the round 2 data to the plot.
(e) Repeat part (d) using the round 3 data.
(f) Repeat part (d) using the round 4 data.
(g) What effect do additional rounds have on the precision of the results? Note that we cannot

know the accuracy without a count of the actual population.

Table 4.5.1 Mark-recapture data for Problem 4.5.11

Round # m n k
1 10 13 1
2 22 18 5
3 35 16 8
4 43 20 14

4.5.12. (a) Repeat the investigation of Problem 4.5.11 using data that you collect in your own
experiment using a 1-lb bag of dry white beans.

1. Separate out a small pile of beans that contains roughly 1/6 of the total. Do this visually,
with 1/6 as a rough guideline rather than a strict requirement.

2. Count the smaller pile and mark those beans. Mix all of the beans in a paper bag. Make
sure the marked beans are distributed throughout the population.

3. For each of four rounds:
a. Remove a handful of beans that is roughly the same size as the pile that you marked

in the first step. Do not count out a set number. Just grab a handful of roughly the
right size.

b. Count n and k for the new sample of beans.
c. Mark any previously unmarked beans in the sample, return all of the beans to the

bag, and mix the beans in preparation for the next round.

(b) Based on your experience conducting the experiment, what must be assumed about a popu-
lation of animals if the mark-and-recapture method is to work?

4.6 Conditional Probability

After studying this section, you should be able to:

• Correctly identify a desired probability in terms of conditional probabilities.
• Calculate conditional probability from counts or probabilities of the component events.
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• Explain the partition rule using concepts of probability.
• Use the partition rule to calculate probabilities.

So far, our study of probability has been restricted to cases of single random variables or
collections of independent random variables.

A set of random variables is independent if the value each takes has no effect on the
values of the others.

Experiments that can be thought of as sequences of independent random variables can be
studied with the sequence rule.37 Samples, which are collections of independent, identically
distributed random variables, are studied with distributions of sample means.38

In this section and the next we turn to collections of random variables that are not indepen-
dent. An example from the author’s personal experience serves to illustrate a typical setting.

Example 4.6.1. Multiple sclerosis is a medical condition that is difficult to diagnose. Consider
the following history of symptoms and medical tests.

1. A patient begins to experience strange symptoms that include loss of feeling in the legs, loss
of balance, and difficulty in urination.

2. A neurologist examines the patient’s medical history, performs a neurological exam, and
orders MRI scans of the head and neck. The doctor makes a tentative diagnosis of multiple
sclerosis (MS).

3. A second neurologist orders an MRI scan of the patient’s middle back. These tests indicate
a herniated thoracic disc.

4. A neurosurgeon repairs the herniated disc, and the patient’s MS-like symptoms disappear.
5. Over the next 5 years, the patient has no recurrence of the MS symptoms.

Given that there is no definitive test, doctors can only collect information that helps them deter-
mine the likelihood that a patient has multiple sclerosis. Each bit of information changes that
probability. The question “What is the probability that this patient has multiple sclerosis?” is
not well defined without including a list of known information. At step 1, we can ask, “What is
the probability of multiple sclerosis, given the patient’s list of symptoms?” The existence of the
symptoms significantly increases the probability as compared to the general population. The
probability increases again after step 2, because the initial examination and tests rule out some
other explanations. The information from step 3 significantly decreases the probability by sug-
gesting an alternative explanation that can account for all of the facts. The probability remains
slightly higher than for the general population, because we cannot rule out the possibility of
two distinct conditions combining to create the symptoms. However, the additional knowledge
in the final two steps reduces the probability to a final value near zero. ��

Let’s apply the language of probability theory to the thoracic MRI of step 3. Obviously the
medical test counts as an experiment for these purposes. There are two possible outcomes: “has
a herniated disc” and “does not have a herniated disc.” If we are talking about the probability
of MS, we must also imagine an experiment with two possible outcomes: “has MS” and “does
not have MS.” This experiment is imaginary, in that it cannot be conducted on a live patient,
but it is a valid experiment for probability theory. We want to use the results of the medical test
to improve our estimate of the probability that the patient has the condition of interest.

37 See Section 3.2.
38 See Sections 4.3 and 4.4.
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4.6.1 The Concept of Conditional Probability

The concept of conditional probability is necessary to provide a setting in which to talk about
the effects of additional information on the probability of an outcome or event.39

Conditional probability of B, given A, denoted P [B|A]: the probability of an event B
in a population consisting of those individuals that comprise an event A from a prior
experiment.

Example 4.6.2. Let A be the outcome that an adult’s height is 6 ft or greater, and let B be the
outcome that a given person is female. Suppose 1 % of adult women are 6 ft tall or taller and
97 % of people as tall as 6 ft are men. Then

P [A|B] = 0.01, P [B|A] = 0.03 .

Note the distinction between these two conditional probabilities. Like P [A], P [A|B] is the proba-
bility of being tall, except that the latter is limited to the population of adult women. In contrast,
P [B|A] is the probability that a person chosen randomly from the population of 6-footers hap-
pens to be female. ��

In the notation B|A, the event B is the one whose probability is of interest, and the event
A restricts the population for which the probability of B is sought.

Example 4.6.3. In the situation of Example 4.6.1, let A be the event “has MS,” let B be the event
“loss of feelings in legs, loss of balance, and difficulty in urination,” let C be the event “condition
other than MS detected in initial screening,” let D be the event “has a herniated thoracic disc,”
and let E be the event “symptoms disappear after surgery.” At each stage in the diagnosis, we
want to know the probability of A, but with different amounts of prior information. After step
1, the desired probability is P [A|B]; after step 2, it is P [A|(B∩Cc)],40 and so on. ��

Check Your Understanding 4.6.1:
What is the desired conditional probability after step 3 in the situation of Example 4.6.1?

4.6.2 Formulas for Conditional Probability

Our definition gives meaning to the notation of conditional probability, but it does not tell us
how to calculate it. An example will help us determine how to do this.

Example 4.6.4. Suppose we want to determine P [A|B] in Example 4.6.3, assuming that we have
a definitive procedure for diagnosing the disease. Starting with the full population, we proceed
in two steps. Since we want P [A|B] and not P [A], we first dismiss all people who do not have
the given list of symptoms (the group Bc). In the second step, we determine the fraction of
symptomatic people (the group B) who have the disease; this fraction is P [A|B].
39 Because an event can have only one outcome, we can use the single term “event” to represent a single outcome
as well as an event consisting of multiple outcomes.
40 Recall that the event Cc is the set of outcomes not in C.
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We can describe another procedure that yields the same result, again assuming that we have
a definitive test. This time, we do the experiments of testing for the disease and testing for
the symptoms simultaneously. While doing this, we count the number of individuals who are in
both A and B and compare it with the total number of individuals who are in B. The ratio of these
two counts is the probability that someone in B is also in A, which is the desired probability.
Denoting the whole population as P, we have41

P [A|B] = |A∩B|
|B| =

|A∩B|
|P|

|P|
|B| =

P [A∩B]
P [B]

.

��
If we want to determine conditional probabilities for infinite populations, we cannot use the

procedure of Example 4.6.4, which relies on counting the size of sets. However, only a small
modification is needed. To calculate P [B|A], for example, we must consider only cases in which
A occurs. Of these cases, successes require B to occur as well as A. Thus,

P [B|A] = P [A∩B]
P [A]

. (4.6.1)

Other conditional probability formulas can be reasoned out in a similar manner.

Check Your Understanding 4.6.2:
Find a formula for P [Ac|B].

We can also derive the formula (4.6.1) by considering the problem of calculating the proba-
bility of an intersection of events. Suppose we have a sequence of experiments, one that yields
A or Ac followed by one that yields B or Bc. The probability of A∩B is the probability of getting
A and then B in successive experiments. The probability of getting A in the first experiment is
just P [A], because no additional information that could affect the probability is available. The
probability of getting B in the second experiment is the probability of getting B, given that the
first experiment yielded A. This is P [B|A], not P [B]. By the sequence rule,42 the probability of
the combined experiments is the product of the individual probabilities. Thus,

P [A∩B] = P [A]P [B|A] .

By doing the experiments in the reverse order, we obtain a similar result:

P [A∩B] = P [B]P [A|B] .

Taken together these formulas comprise the multiplication rule:

Multiplication Rule

P [A∩B] = P [B]P [A|B] = P [A]P [B|A] . (4.6.2)

Equation (4.6.2) generalizes (4.6.1).

41 Recall that |S| is the number of elements in the set S.
42 See Section 3.2.
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4.6.3 The Partition Rule

Conditional probabilities are related by another useful formula called the partition rule. This
result is obtained by combining the multiplication rule with the extended complement rule,43

P [A∩B]+P [Ac ∩B] = P [B] :

Partition Rule Given any events A and B,

P [B] = P [A]P [B|A]+P [Ac]P [B|Ac] . (4.6.3)

Formally, we can derive the partition rule simply by substituting P [A∩B] = P [A]P [B|A]
and P [Ac ∩B] = P [Ac]P [B|Ac] into the extended complement rule. Conceptually, it is more
useful to think of the partition rule as following from the fundamental principles of probability.
Suppose two experiments are performed sequentially. The first experiment determines either the
event A or the event Ac. The second experiment then determines B or Bc and yields probability
P [B|A] in the case of A and P [B|Ac] in the case of Ac. Now consider all of those experiments
in which B occurs. Some of these followed the event A, and the probability of first A and then
B is P [A]P [B|A]. The others followed the event Ac, and the probability of this sequence is
P [Ac]P [B|Ac]. Since these two sequences are disjoint and comprise all sequences that include
the event B, the equality follows.

Example 4.6.5. Suppose it is known that 1/3 of men and 1 % of women are at least 6 ft tall and
that the general population is evenly divided between men and women. What is the fraction of
adults who are at least 6 ft tall?

Let A be the event that an adult’s height is 6 ft or greater and let B be the event that a given
person is female. The probability of being tall if male is P [A|Bc] = 1/3, the probability of being
tall if female is P [A|B] = 1/100, and the probability of being female is P [B] = 1/2, from which
we also have P [Bc] = 1/2. We can compute P [A] from the partition rule (reversing the symbols
A and B):

P [A] = P [B]P [A|B]+P [Bc]P [A|Bc] =
1
2

1
3
+

1
2

1
100

=
103
600

. ��

Check Your Understanding Answers

1. P [A|(B∩Cc ∩D)]

2. P [Ac|B] = P [Ac ∩B]
P [B]

43 See Equation (3.2.3).
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Problems

4.6.1.* Suppose A, B, and C are the events of reaching ages 50, 55, and 60, respectively, with
corresponding probabilities 0.91, 0.88, and 0.75. Find the conditional probabilities indicated
below or explain why that probability does not make sense.

(a) P [B|A].
(b) P [C|B].
(c) P [C|A].
(d) P [B|C].
4.6.2. Table 4.6.1 shows data correlating heart disease with frequency of snoring [6].

(a) Find the conditional probabilities of heart disease for each of the three groups of snorers.
(b) What is the probability that a person in the study is a frequent snorer?
(c) Suppose a person has heart disease. From the data table, what is the probability that the

person is a frequent snorer?

Table 4.6.1 Snoring and heart disease

Heart Disease Non-snorers Occasional Frequent
Yes 24 35 51
No 1355 603 416

4.6.3.* Suppose 5 % of a population are diabetics and 1 % of diabetics are blind. Assume
that the overall incidence of blindness in the population is 36 out of 10,000. Use conditional
probability calculations to determine:

(a) The fraction of blind people who are diabetic.
(b) The fraction of non-diabetics who are blind.

4.6.4. For each of the following, indicate the correct notation using the events S, Sc, L, and Lc

and use Table 4.6.2 to determine the given quantity.

(a) The probability of success, independent of size of stone.
(b) The probability that a randomly chosen patient had a large stone.
(c) The probability of success in treating a large stone.
(d) The probability that a successfully treated patient had a large stone.
(e) The probability that a randomly selected patient had a successful treatment of a large stone.
(f) The probability of failure in treating a small stone.
(g) The probability that a randomly selected patient had a successful treatment of a small stone.

Table 4.6.2 Outcomes of 700 kidney stone treatments grouped by size of stone

Outcomes
Size Success (S) Failure Total
small 315 42 357
large (L) 247 96 343
total 562 138 700

4.6.5. (a) Use the results of parts (a)–(e) of Problem 4.6.4 to verify the multiplication rule.
(b) Use the results of parts (e) and (g) of Problem 4.6.4 to determine the overall probability of

success and compare the answer to Problem 4.6.4a.
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4.6.6. Nine of 20 rats in a cage are infected with a disease. Suppose 7 infected rats and 4
uninfected rats are males. One rat is randomly selected from the cage.

(a) If the selected rat is infected, what is the probability that it is also male?
(b) If the selected rat is male, what is the probability that it is also infected?
(c) Are the events of being male and being infected independent?
(d) Suppose I of the 20 rats are infected and that A infected rats and B uninfected rats are males.

What relationship must A, B, and I satisfy for the events of being male and being infected
to be independent?

4.6.7. Suppose events A and B are mutually exclusive and B and C are independent. Suppose
further that P [A] = 0.3, P [B] = 0.2, P [C] = 0.6, and P [A∩C] = 0.2.

(a) Find P [A∩B∩C] and P [A∩B∩Cc].
(b) Find P [A∩Bc ∩C].
(c) Find P [A∩Bc ∩Cc].
(d) Find P [Ac ∩B∩C].
(e) Find P [Ac ∩B∩Cc].
(f) Find P [Ac ∩Bc ∩C]. [Hint: Start by calculating P [Ac ∩Bc].]
(g) Find P [Ac ∩Bc ∩Cc].
(h) Use the results from earlier parts to calculate P [B|C]. The result should be consistent with

the assumptions.
(i) Repeat part (h) for P [C|B].

4.7 Conditional Probability Applied to Diagnostic Tests

After studying this section, you should be able to:

• Explain the meaning of false positives and false negatives in medical diagnosis.
• Compute the probabilities of false positives and false negatives from medical test data and

the estimated prevalence of the condition.

Medical tests are seldom definitive. Most commonly, the test involves the measurement of
some quantity, with a positive or negative result being assigned according to its value. This
is not an exact science. Because of demographic stochasticity, what is normal for one person
might be abnormal for another. It is also possible for tests to be affected by minor factors; for
example, you may test positive for opiates after eating a lot of poppy seeds. Thus, we usually
have to consider having a condition and testing positive for a condition as the results of two
different experiments. There is some probability of a false positive, where the test is positive
but the condition is absent, or a false negative, which is the opposite. Imperfect medical tests
can be useful, but it is important to understand their limitations. One of the most important
limitations is a consequence of the basic mathematics of conditional probability and can be
significant even for highly accurate tests. We explore this issue in this section, using a test for
lead poisoning as a motivating example.

Example 4.7.1. The definitive test for lead in the blood requires blood from a vein. In 1992, a
group of researchers from the Yale School of Medicine wanted to determine if this test could
be replaced by a similar test using a single drop of blood from a fingerstick [8]. The researchers
had doctors in four private practices44 routinely test all of their patients aged 6 months to

44 Nearly all the subjects were white and middle class, so it is not clear that the sample of subjects was repre-
sentative of the population as a whole.
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5 years using the fingerstick test. Those who tested positive were tested again using venous
blood to determine if they actually had elevated lead in their systems.45 The data allowed the
researchers to estimate the probability of a positive fingerstick test, as well as the probability
of a positive venous test given a positive fingerstick test. What we actually want to know is the
probability of false positive and false negative results from the fingerstick test; these will have
to be calculated. ��

Let C be the event “positive for lead poisoning,” which we assume is equivalent to a positive
test on venous blood. Let T be the event “positive fingerstick test.” Ideally, the events C and T
are identical. When they differ, the fingerstick test is assumed to be the one that is wrong. These
errors are important, because they lead to a misdiagnosis. In actual medical practice, screening
tests such as the fingerstick test for lead are performed first, and we may or may not be able
to detect the condition by some subsequent test. The physician must recommend a course of
treatment or further testing based only on the screening test. Any patient who tests positive
and does not actually have the condition will have endured unnecessary testing or potentially
harmful treatment. Any patient who tests negative despite having the condition misses out on a
potentially valuable treatment. In terms of the events C and T , we want to find:

1. P [Cc|T ], which is the probability of a false positive, also called a Type I error.
2. P [C|T c], which is the probability of a false negative, also called a Type II error.

These are the probabilities of interest to medical practitioners, who know the test result but not
whether the condition is present. In analyzing experimental data from medical studies, it may
be necessary to determine the probabilities of T and T c, given knowledge of C.

Example 4.7.2. The study of Shonfeld et al. mentioned in Example 4.7.1 reported:

1. 35 positive fingerstick tests out of 1,085 subjects.
2. 30 % of subjects with positive fingerstick tests were confirmed to have lead poisoning.

Q) What are the probabilities that can be calculated directly from the given data, in terms of T
and C? What are the probabilities of false positives and false negatives? What is P [Cc ∩T ]
and what does it represent?

A) a. The first item is the test result, not segregated by the condition. The second item is the
incidence of the condition among the group who tested positive. Thus,

P [T ] =
35

1085
= 0.032, P [C|T ] = 0.3 .

b. From the second item and the extended complement rule, we can calculate the probability
of a false positive as P [Cc|T ] = 0.7, or 70 %. We do not have enough information to
calculate the probability of a false negative.

c. By the multiplication rule,

P [Cc ∩T ] = P [T ] P [Cc|T ] = 0.022 .

This is the fraction of test subjects who tested positive that do not have the condition. ��
The fingerstick test has a false positive rate of 70 %, which means that 70 % of subjects who

tested positive by fingerstick were incorrectly diagnosed. However, these errors represent only
a little more than 2 % of the subjects (P [Cc ∩T ]) because only 3 % of all subjects test positive.
It is easy to be confused about the terminology:

45 Full analysis of the test would have required all of the subjects to be tested using venous blood. The value of
the study is somewhat limited by this not having been done. On the other hand, it would have been difficult to
get parents to agree to the additional test.



252 4 Working with Probability

• P [Cc|T ] is the probability of a false positive among those who test positive.
• P [Cc ∩T ] is the probability of a false positive among all subjects.
• The official definition of false positive is P [Cc|T ].

Ideally, a test should make very few false positives or false negatives. In practice, tests can
often be adjusted to decrease one of these errors, but only at the cost of increasing the other. In
the lead poisoning case, the fingerstick test is taken to be positive if the lead content exceeds
15 μg/dL.46 If we want to decrease the false negatives, we could lower the positive threshold
to 13 μg/dL. Anyone who tests between 13 and 15 will then be judged as positive, rather than
negative. Given that some of the subjects in this group actually have lead poisoning (C) and
others do not (Cc), this change decreases the number of false negatives while increasing the
number of false positives.

Which way we want to adjust the relative number of errors depends on which kind of error
is more problematic. If the condition of interest is easily treated at low cost and with few side
effects, then we are probably more worried about false negatives. If treatment is expensive and
has significant side effects, or if the disease is not life-threatening or debilitating, we might be
more worried about false positives. If T is the presence of the defendant’s DNA in physical
evidence from a crime scene, then we are certainly much more worried about false positives
(assuming we accept the principle that a person should be considered innocent unless shown to
be guilty beyond a reasonable doubt).

The medical test literature does not generally report the probability of false positives relative
to the total of positives. Instead, it reports sensitivity and specificity, defined by

Sensitivity = P [T |C] , Specificity = P [T c|Cc] . (4.7.1)

The probabilities of false positives and false negatives must be calculated from these quantities
along with some additional estimates.

4.7.1 The Standard Test Interpretation Problem

The predictive value of a test must be determined by a medical study. The study begins with
patients who are known to have the condition and patients who are known not to have the con-
dition. The patients in each group are tested, and the study then yields estimates of P [T |C]
and P [T |Cc]. (Note that these are different from the probabilities of false positives and false
negatives.) The designer of the test measures its accuracy for patients whose condition is al-
ready known, while the diagnostician needs to assess the likelihood of having the disease for
patients who test positive. Our goal is to use the probabilities determined in the medical study
to calculate the probabilities of false positives and false negatives.

Data from a medical study is not sufficient for the task at hand. Information about how
C affects P [T ] does not by itself give information about how T affects P [C]. The additional
information needed to bridge the gap is the overall probability of C in the general population.
In practice, we may have only a crude estimate for this probability; if it were easy to determine
who has the condition and who doesn’t, then we would not need to develop the medical test.
Public health data can tell us the number of patients believed to have the condition, but this
overestimates the correct answer for every incorrectly diagnosed patient and underestimates the
number for every patient who is asymptomatic or undiagnosed. Nevertheless, in the model used
to calculate the probabilities of false test results, we must assume that P [C] is a known quantity.

46 “dL” is a deciliter, equal to 100 cubic centimeters.
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In general, we consider the following problem:

Given P [T |C], P [T |Cc], and P [C], find P [Cc|T ] and P [C|T c].

In words, we know the overall prevalence of the condition and we know the probability of
positive test results when the condition is present or absent, and our goals are to determine the
probabilities of false positives and false negatives.

The solution of this test interpretation problem is provided by Bayes’ formula, which can
be found in most books on probability. However, it is more instructive to describe a general
procedure for solving the problem.

There are eight different events associated with the combination of the condition experiment
and the testing experiment.47 These events are those for the individual experiments—C, Cc, T ,
T c—and those for the various combinations of their results—T ∩C, T ∩Cc, T c∩C, and T c∩Cc.
The four compound probabilities are of particular interest because we can determine all other
probabilities easily in terms of them.48 Figure 4.7.1 shows the four compound probabilities
arranged in a 2×2 grid, with rows corresponding to T and T c and columns corresponding to C
and Cc. By the extended complement rule, we have

P [T ∩C]+P [T ∩Cc] = P [T ] ,

and we write the latter to the right of the corresponding row. Each of the two rows and each of
the two columns can be summed in similar fashion to obtain the four single-event probabilities.
The total row and total column probabilities must both add up to 1. Once we have filled in the
diagram, we can calculate any conditional probabilities using (4.6.1).

We will solve the standard test interpretation problem in two steps:

1. Use the given data to fill in the diagram.
2. Use the data shown in the diagram to determine the desired conditional probabilities.

Example 4.7.3 illustrates the procedure for filling in the diagram.

T c

T

C Cc

P[T∩C] P[T∩C c]

P[T c∩C] P[T c∩C c]

P[T]

P[T c]

P[C] P[C c]

Fig. 4.7.1 A diagram indicating the compound events for the test and condition, with sums for each row and
column

Example 4.7.3. Suppose a medical test has a sensitivity of 0.9 and a specificity of 0.95. Using
the definitions (4.7.1), this means P [T |C] = 0.90 and P [T c|Cc] = 0.05. Suppose the prevalence
of the condition is 20 %; that is, P [C] = 0.20. These results give us the data needed to fill in the

47 Remember to use the probabilistic definitions of these terms rather than the meanings associated with normal
language use. An experiment is any observation of an outcome, so we have an experiment consisting of the
observation of the condition and an experiment consisting of the observation of the test result. The “condition
experiment” is a hypothetical experiment that results in knowledge of the presence or absence of the condition.
48 Minimally, any three of them will suffice. The four events are mutually exclusive and all-encompassing;
hence, their sum is 1 and any one of them is easily calculated from the other three.
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four boxes in the diagram, after which the row and column sums can be added. The given data
allows us to use the multiplication rule to calculate

P [T ∩C] = P [C]×P [T |C] = 0.18 .

By the complement rule, we know P [Cc] = 0.80, from which the multiplication rule yields

P
[
T∩Cc]= P [Cc]×P [T c|Cc] = 0.76 .

Figure 4.7.2 shows the diagram at this point.
The remaining intersection probabilities can be determined by making the column sums

match the totals for each column. For example, P [T c ∩C] must be 0.02 so that the first column
correctly sums to P [C]. Once the probabilities of the combined events are known, the probabil-
ities of T and T c are computed by summing the rows. The result is shown in Figure 4.7.3.

��

Tc

T

C Cc

0.20 0.80

0.18 0.04

Fig. 4.7.2 The probability diagram for Example 4.7.3 after the initial calculations

Tc

T

C Cc

0.78

0.22

0.20 0.80

0.02

0.18

0.76

0.04

Fig. 4.7.3 The full probability diagram for Example 4.7.3

Once the probability diagram is complete, any conditional probabilities can be calculated by
the multiplication rule.

Example 4.7.4. From Figure 4.7.3,

P [Cc|T ] = P [T ∩Cc]

P [T ]
=

0.04
0.22

≈ 0.18 , P [C|T c] =
P [T c ∩C]

P [T c]
=

0.02
0.78

≈ 0.026 .

About 18 % of positive tests are false, and about 2.6 % of negative tests are false. ��
Example 4.7.4 shows a much higher rate of false positives than false negatives. Note that

this was not because of the characteristics of the test itself. Because 5 % of those without the
condition test positive as compared to 10 % of those with the condition who test negative, the
test is, if anything, biased toward producing more false negatives. The reason for the higher
rate of false positives is that the population consists mostly of people who do not have the
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condition; hence, both true positives and false negatives are rare. The number of false positives
is based primarily on the accuracy of the test. For a very good test, this number can be quite
small. However, the number of true positives depends on the prevalence of the condition. For
an extremely rare condition, the number of true positives may well be small compared to the
number of false positives.

Example 4.7.5. Tay-Sachs disease is a very rare chromosomal disorder that is initially asymp-
tomatic. It is estimated that approximately one out of 10,000 individuals has the disease. Now
consider a study to determine the effectiveness of a hypothetical diagnostic test. Suppose ex-
periments show a sensitivity of 99.9 % and a specificity of 99 %. Calculations show that the
probability of false positives is 0.9999.49 ��

Example 4.7.5 points out the great difficulty associated with testing for rare conditions. Al-
though the test in the example is 99 % accurate in correctly identifying people who do not have
the disease, the overall population consists almost exclusively of this group, and 1 % of them
test positive. The number of false positives is small because of the accuracy of the test, but the
number of true positives is even smaller because of the rarity of the condition. Thus, a positive
test result is usually nothing more than a failure to strongly indicate the absence of the disease.

The data used in the example is hypothetical, but even with considerably more accuracy, the
probability of a false positive is large. In practice, the Tay-Sachs test is only used with people
who are believed to be descended from a population (eastern European Jews) that has a high
incidence of the disease. The risk of a false positive is much lower when the test is applied to a
population in which the disease is not extremely rare.

Problems

4.7.1. Determine the probability of false positives for a Tay-Sachs test, assuming the data from
Example 4.7.4.

4.7.2.* A school district has two high schools with 2,000 and 1,500 students. Assume that the
obesity rates are 20 % at the smaller school and 30 % at the larger.

(a) Let A be the event of belonging to the smaller school and B be the event of being obese.
Label each of the two given conditional probabilities in terms of A and B.

(b) Find P [A] and P [B].
(c) Determine the probability that a randomly selected obese student is from the larger school.

Label this probability as a conditional probability in terms of A and B.

4.7.3.* In a given region, 20 % of the adult population are smokers, 1 % are smokers with
emphysema, and 0.2 % are nonsmokers with emphysema.

(a) What is the probability that a randomly selected person has emphysema?
(b) If we select one smoker, what is the probability that this person has emphysema?
(c) If we select one nonsmoker, what is the probability that this person has emphysema?

4.7.4. One of the tests for multiple sclerosis consists of extracting cerebrospinal fluid from the
spinal cord and looking for oligoclonal banding. This test has estimated sensitivity 0.914 and
specificity 0.941 [4].

49 See Problem 4.7.1.



256 4 Working with Probability

(a) Determine the conditional probabilities of false positives and false negatives, given an esti-
mated prevalence of 90 people per 100,000.

(b) Among patients who have one clinically diagnosed bout of optic neuritis with a negative
MRI scan, the estimated prevalence of MS is 25 %. Repeat part (a) for this case.

(c) Suppose the prevalence of MS in a group with a particular clinical presentation is 10 %.
Repeat part (a) for this case.

(d) Given the results of part (b), is the title of the article [4] fully warranted?
(e) In particular, what is likely to happen if liability concerns cause doctors to order medical

tests in instances where there is a positive clinical finding that corresponds to a prevalence
that is noticeably higher than the population at large but nevertheless fairly unlikely?

4.7.5. Suppose a medical test has sensitivity 95 % and specificity 90 %, which are typical values
for a large number of tests.

(a) Determine the disease prevalence necessary for the conditional probability of false positives
to be 50 %.

(b) Determine a general formula that expresses the conditional probability of false positives in
terms of the prevalence.

(c) Plot the function obtained in part (b).
(d) Discuss the results.

4.7.6. A screening test is positive in 95 % of cases where a certain disease is present and in
10 % of cases where it is not. A second test can be performed, with results independent of the
results of the first test. Assume that 2 % of a population have the disease.

(a) Determine the probabilities of false positives and false negatives if the test is applied once.
(b) Suppose the test is applied twice and both must be positive for a positive diagnosis. Deter-

mine the probabilities of false positives and false negatives for this case. [Hint: Because the
test results are independent, think of the “test” as a sequence of two individual tests. Can
you find the probabilities of a positive result for this double test?]
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Chapters 5–7 provide a treatment of dynamical systems, beginning with one-variable
discrete and continuous equations in Chapter 5, progressing to discrete linear systems in
Chapter 6, and concluding with nonlinear continuous systems in Chapter 7. It is easy to see
how to interpret discrete systems and use them for simulations. Their advantages end there; the
remaining advantages lie with continuous models. Continuous systems have superior graphical
methods and simpler mathematical properties. These advantages, which will become apparent
in Chapter 5, more than offset the initial advantages of discrete models. In general, one should
only use discrete models when synchronicity of events dictates discrete time.

The importance of good nondimensionalization of models is a recurring theme. This is one
additional advantage of continuous models, which allow for nondimensionalization of time. At
minimum, nondimensionalization reduces the number of parameters requiring estimated values
for simulation or study in analysis. Beyond that, it can sometimes be used to reduce the number
of essential components in a model. As will be seen in Chapter 7 in particular, analysis of mod-
els becomes more difficult as the number of components increases, and graphical methods are
generally limited to one-component discrete models and two-component continuous models.
Any reader who has skipped Section 2.6 so as to get to this point sooner is strongly urged to go
back and study that section in detail before continuing.

The reader should have noticed that there is no mention of discrete nonlinear models in
the description of the chapters in this part. I have not omitted these models entirely, but have
relegated them to an appendix. This choice makes the material accessible to those who need it,
while de-emphasizing it according to the author’s professional judgment.

The accompanying sketch shows the interdependencies of the sections in Part III and con-
nections to prerequisite topics.
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Chapter 5
Dynamics of Single Populations

A state wildlife management agency wants to create a sport fishery in a particular lake. After
draining the lake and dredging the bottom, they will introduce desirable plants and create an
ideal habitat for the chosen species of fish. They will then fill the lake with water and intro-
duce a small population of fish. Fishing will be prohibited until the population has reached an
acceptable level. Now suppose our job is to model the growth of the population of fish in this
hypothetical lake. Our goal is to construct a mathematical model to predict how the fish popu-
lation will change. The model will be useful in designing a strategy for managing the fishery.

Consider another example. An economic development program is planning to bring dairy
cattle to small villages in developing countries. The cattle will be fed primarily on local grasses.
Suppose our job is to decide how many cattle should be kept in a particular area so as to make
full use of the local resources without overgrazing. As in the fishery scenario, we will need a
mathematical model to predict the effect of the cattle on the grass resource.

In this chapter, we use the fishery and grazing scenarios as settings in which to develop and
study a number of models for the change of populations with time. We restrict ourselves for
now to models that require careful monitoring of only one population, the fish in the first case
and the grass in the second. There are two main categories of population models, discrete and
continuous, differing in the assumption made about how to mark time. Discrete dynamic mod-
els assume that time can be broken up into distinct uniform intervals. The length of the interval
depends on the life history of the organism being modeled. Salmon have yearly spawning pe-
riods, so a time interval of 1 year is chosen for a discrete salmon model. Flour beetles have a
complicated life cycle that can be approximated as a 2-week larval stage, a 2-week pupal stage,
and an adult stage of variable length. Discrete models for flour beetles use a time interval of 2
weeks. Continuous dynamic models assume that time flows continuously from one moment to
the next. The assumption of continuity in time is relative to the overall duration of the popu-
lation. For example, it is common to ignore the diurnal-nocturnal variation of temperature and
sunlight in a model that tracks a population of plants over a complete growing season.

A continuous dynamic model consists of a mathematical formula that describes the rate at
which a population changes at any particular time and population level. While discrete mod-
els can also be based on rates of change, it is more common to prescribe the population at a
given time in terms of the population at a previous time. This choice of form exaggerates the
differences between the types of models. They are incorporated into a single chapter here to
emphasize the similarities.

The primary goal of this chapter is to empower the reader with tools for the analysis of
both discrete and continuous models. A secondary goal is to help the reader understand how
to interpret discrete and continuous models and how to judge which kind of model is more
suitable for a given biological setting. Generally, discrete models are preferred when similar
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events happen simultaneously, such as in populations that have a specific season for births.
Continuous models are generally preferable when similar events are spread over time and occur
simultaneously with other events. In most disease situations, for example, some members of
the population are just getting sick while others are recovering, and the sick individuals are
at different stages of the disease. A continuous model is likely to be more appropriate than
a discrete model in this case. Similarly, the flour beetle scenario described earlier should be
modeled in continuous time because life history events are not synchronized.

Sections 5.1 and 5.3 serve as introductions to discrete models and continuous models, re-
spectively. Each of these sections is followed by a section that presents the principal graphical
method for that type: cobweb analysis for discrete models in Section 5.2 and phase line anal-
ysis for continuous models in Section 5.4. Section 5.5 presents linearized stability analysis,
a particularly useful application of the derivative that works for both discrete and continuous
models, although in different ways.

There are several sets of related problems:

Section 5.1 5.2 5.3 5.4 5.5
Beverton–Holt model 5.1.2 5.2.1 5.5.1
Ricker model 5.1.3 5.2.3 5.5.2
Hassell model 5.1.4 5.2.4 5.5.3
Pest control 5.1.5 5.2.5 5.5.4
Discrete logistic equation 5.1.6 5.2.2 5.5.5
Harvesting 5.3.2 5.4.2 5.5.7
Holling II resource model 5.3.10 5.4.3 5.5.8
Lake eutrophication 5.3.12 5.4.4 5.5.9
Allee effect 5.4.1 5.5.6

5.1 Discrete Population Models

After studying this section, you should be able to:

• Build a discrete population model from a set of assumptions about processes that contribute
to each year’s population.

• Run simulations with discrete population models.
• Find fixed points of discrete population models.

Suppose we want to model the growth of a fish population introduced in a newly renovated
lake. How do we construct such a model? The model cannot be very complicated because we
have only a limited knowledge of the relevant facts. Presumably we have estimates of the vital
rates of the population—birth, survival, and growth—but only limited knowledge of details. We
need a conceptual model that incorporates the essential biological processes, such as survival
of adults from year to year, birth and survival to the following year, and perhaps also processes
that change the population from outside, such as natural migration, stocking, accidental release,
or fishing, but we also want to ignore relatively minor effects.

Population models are created by careful accounting. We need to posit a population census
that occurs at a particular point in the yearly cycle. With this yearly cycle in mind, we need
mathematical formulas to predict the contribution of each relevant biological process to the year
t + 1 population. Even in the absence of a real yearly census, the model could have qualitative
value; however, it will be most useful if the census can actually be conducted to check on the
model predictions. Most likely, the census will need to rely on statistical methods, such as the
mark-and-recapture method discussed in Section 4.5.
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Consider a case in which there is no gain or loss from outside and suppose the census is
taken early in the season, before the fish reproduce. Many of the fish counted in the year t + 1
census were already adults in the year t census. The number of such fish is the product of the
total population Nt and the fraction S of adult fish that survive from 1 year to the next.1

Survival from the previous year cannot account for the entire fish population; since S < 1,
the number of survivors from a given cohort decreases from each year to the next. Of course
the year t + 1 census also includes fish that hatched from eggs laid after the year t census. This
group includes only a small fraction of the newborn fish because of the high mortality rate.2 To
account for the size of the cohort of new adults, we need to look separately at the processes of
reproduction and subsequent survival of the newborns. If the adults in year t lay an average of
b eggs, then the total number of eggs is bNt . The subsequent birth and survival of these eggs
depends on the amount of competition among the newborns and with the adults. Hence, we
assume that the probability that an egg laid in year t becomes an adult in year t+1 is given by a
function p(Nt) to be specified later. Combining the number of eggs with the probability of birth
and survival, we obtain the formula bp(Nt)Nt for the number of new adults in year t + 1.

Having constructed models for each of the processes that contributes to the year t +1 popu-
lation, we can now construct a model that predicts the change in population from 1 year to the
next. In words,

next year’s population = survivors from this year’s population

+ recruitment from this year’s eggs.

Substituting the formulas for the two processes, we have the model

Nt+1 = [bp(Nt)+ S]Nt , (5.1.1)

where

0 < S < 1, b > 0, 0 < p(Nt)< 1, p′ ≤ 0.

The unspecified function p(Nt) represents a probability; hence, it must satisfy the range re-
striction 0 < p < 1. The additional requirement p′ ≤ 0 reflects the biological expectation that a
larger population of adults decreases the survival probability for the newborn fish. This fishery
model yields different variants depending on the choice of the function p.

5.1.1 Discrete Exponential Growth

For a first approximation, we assume that p is constant, with a value determined primarily by
predation by other species of animals. In practice, competition for resources and cannibalism by
adult fish make the survival probability a decreasing function of population size. Only when the
overall population is low is it reasonable to assume a constant p; hence, we should not expect
the model results to remain meaningful as the population grows.

For reasons that will only become clear in hindsight, it is often better to think of the model
as a formula for the change in the population rather than the population itself. The model in this
form is

1 This is why it is important to know where the census comes in the yearly cycle. Only adult fish are counted
in the year t census because the census occurs before reproduction. We could have posited a post-reproduction
census instead; the resulting model would have been equivalent, but different.
2 The combination of birth and survival to the next census is called recruitment.
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Nt+1 −Nt = (bp+ S− 1)Nt.

For convenience, let R = bp+ S− 1. We then arrive at the simplest mathematical model for
population growth,

Nt+1 = (1+R)Nt , R ≥−1. (5.1.2)

The reader should be wondering what makes the introduction of the parameter R “con-
venient.” We could instead have defined a parameter k = bP + S, and obtained the model
Nt+1 = kNt . This is a matter of taste. The argument for (5.1.2) is that the condition for the
population to be growing is then R > 0. Thus, the parameter R is the net relative growth rate of
the population.

Some additional insight into the model follows from rewriting the condition R > 0 as bp >
1−S. In this inequality, bp is the number of recruits per the previous year’s adults, and 1−S is
the fraction of the previous year’s adults that die. The condition R > 0 means that the number
of recruits exceeds the number of deaths in the adult population.

If the initial population N0 and the net relative growth rate R are known, we can use (5.1.2)
to determine each year’s population from the previous year’s. This equation is simple enough
that we can also obtain an explicit solution formula for the population in year t. Given N0, we
have N1 = (1+R)N0, N2 = (1+R)N1 = (1+R)2N0, N3 = · · · = (1+R)3N0, and so on. The
pattern suggests the general formula

Nt = (1+R)tN0, (5.1.3)

a conjecture that is easily confirmed. Since the explicit solution is an exponential function of
the independent variable t, the model is called the discrete exponential growth model.

We now have two equations for the discrete exponential growth model. The original
model (5.1.2) defines the sequence recursively, meaning that Nt+1 is given in terms of Nt

rather than in terms of t directly. Mathematicians use the term difference equation for this type
of definition to emphasize that it is a problem to be solved rather than a solution formula. The
sequence of populations is defined explicitly by the solution (Equation (5.1.3)) of the differ-
ence equation. The ready determination of an explicit formula for a discrete model is a luxury
reserved only for a few of the simplest models. Most of the models worth studying are ones
for which we have only the original recursive definition, so we will need methods for studying
such equations without a solution formula.

The solution formula reveals an unrealistic property of the discrete exponential growth
model, which follows from the unrealistic assumption that the survival probability of newborns
is independent of population size. Observe that

lim
t→∞

Nt = ∞.

Eventually, there will be so many fish that the model lake will have no room for water, but the
model population will still be growing rapidly. Real populations do not behave this way, and
we certainly prefer models that don’t do so either. The discrete exponential model can be used
successfully for a short time only—during the period of growth when space and resources are
plentiful. Eventually, the growth of the population leads to crowding and limitation of resources.
A better model should include a mechanism for slowing the net relative growth rate for larger
populations.

Before we turn to more realistic models, we note one other insight that can be gained from
manipulating the appearance of the model. If we rearrange the original model to isolate R, we
obtain the form

Nt+1 −Nt

Nt
= R. (5.1.4)
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The quantity Nt+1 −Nt is the change in population from time t to time t+1. Since one time unit
has elapsed, we can also think of Nt+1 −Nt as the rate of change of population per unit time.
Dividing by Nt yields the relative rate of change of the population, which is the constant R. It is
often helpful to think of a discrete population model as a statement about the relative rate of
change of the population rather than as a formula for computing the new population from the
current population. For the discrete exponential growth model, the resulting equation (5.1.4)
provides a clear interpretation of the model, which is that the relative rate of change of the
population is constant. Given R > 0, the model predicts that the population growth rate will
be unabated as the population grows. While this conclusion is confirmed by the solution for-
mula (5.1.3), the point is that we could have obtained the same conclusion without actually
knowing the formula.

5.1.2 The Discrete Logistic Model

Mathematical models in physics and chemistry are almost always derived from first principles.
However, it is seldom possible to derive ecological models from first principles, leading us to
settle for heuristic models instead. A heuristic model is one in which the specific details of the
formulas that appear in the model are chosen because they have the right qualitative behavior.
We can develop a heuristic fishery model that improves on the discrete exponential growth
model by modifying (5.1.4). We want the relative rate of growth to fall to 0 at some large value
that represents the capacity of the environment. The easiest way to do that is to make the relative
rate of growth linear with a negative slope. Using the parameters specified in Figure 5.1.1, we
obtain the discrete logistic model,

Nt+1 −Nt

Nt
= R

(
1− Nt

K

)
. (5.1.5)

The relative rate of change in the logistic model is the same as in the exponential model

K

R

Nt

Nt+1−Nt

Nt

Fig. 5.1.1 The relative rate of change for the discrete logistic model

for Nt ≈ 0, but it decreases as the population grows. Eventually, the relative rate of change
becomes 0 when Nt = K. The discrete logistic model is the simplest population model that can
account for the effect of a finite amount of space and resources. More realistic models include
the Beverton–Holt model and the Ricker model, which appear in the problems. Both of these
models can be derived from first principles.

For the purpose of simulations, we can rewrite the discrete logistic model as a formula for
Nt+1 in terms of Nt :

Nt+1 = Nt +RNt

(
1− Nt

K

)
. (5.1.6)
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5.1.3 Simulations

If the parameters in a model are assigned values, we can run simulations by choosing different
starting populations and calculating the results.

Example 5.1.1. Consider the model

Nt+1 = Nt + 0.2Nt

(
1− Nt

1,000

)
, N0 = 100.

This is the discrete logistic model with R = 0.2 and K = 1,000 and an initial population of
100, which might be realistic for our fishery scenario. From (5.1.5), we find the initial relative
growth rate to be 0.2(1− 100/1,000) = 0.18, which is only slightly different from the initial
growth rate in the discrete exponential model. As the population increases, this relative growth
rate decreases, so it must be recalculated at each step. Nevertheless, it is a simple matter to use
the model to project the population to any future time. For example,

N1 = 100+ 20(1− 100/1,000)= 118,

N2 = 118+ 23.6(1− 118/1,000)= 138.8152.

The solution is illustrated in Figure 5.1.2 along with the populations obtained with initial values
of 0, 10, 500, and 1,000. Note that the model generally yields fractional values. This may seem
to be a problem, but it really isn’t. At best, the results of a mathematical model only approximate
reality. Most models include errors that are far more significant than that of allowing fractional
fish. ��

Check Your Understanding 5.1.1:
Find N1, N2, and N3 for the model of Example 5.1.1, given N0 = 500.

0 10 20

0

500

1000

t

Nt

Fig. 5.1.2 Population results for Example 5.1.1
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5.1.4 Fixed Points

Example 5.1.2. Consider the model

Nt+1 = Nt + 0.2Nt

(
1− Nt

1,000

)
, N0 = 1,000.

Using the model to determine population values for times greater than 0, we begin with N1 =
1,000+ 200(1− 1,000/1,000) = 1,000. Thus, N1 = N0. Similarly, we have Nt+1 = Nt for all t;
that is, the population in the model will be 1,000 in all subsequent years. This is just what we
should have expected, since we set the initial population N0 to be the same as the environmental
capacity K. We also have N1 =N0 and Nt+1 =Nt for N0 = 0. Since there is no migration process,
there is no mechanism to start population growth if there is no initial population. ��

A value of N for which Nt+1 = Nt is called a fixed point. Fixed points play a special role
in the study of discrete dynamic models; hence, determination of fixed points is a key part
of the analysis of any discrete dynamic model. In general, fixed points can be determined by
simple algebra. Suppose Nt = N, where N is a fixed point. Then by definition, Nt+1 = N also.
The substitutions Nt+1 = Nt = N into the discrete logistic model (5.1.6) yield the equation

N = N +RN

(
1− N

K

)
.

This equation defines fixed points in terms of the model parameters R and K. After simplifying,
we obtain

N

(
1− N

K

)
= 0.

There are two fixed points, N = K and N = 0. You can quickly check that these are fixed points
by computing N1 = 0 from N0 = 0 and N1 = K from N0 = K.

Example 5.1.3. Consider the model

Nt+1 =
RN2

t

1+N2
t
,

where R is a positive constant. To find the fixed points of this model, we set Nt+1 = N and
Nt = N and obtain the equation

N =
RN2

1+N2 .

As with most population models, N = 0 is a fixed point.3 If N 
= 0, the equation becomes

1 =
RN

1+N2 ,

which we can rewrite as
1+N2 = RN.

3 This is always true if there is no migration from outside.
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This is a quadratic equation for N. Applying the quadratic formula to the form N2−RN+1= 0,
we obtain

N =
R±√

R2 − 4
2

.

These fixed points exist only if R > 2. It can be shown4 that R < 2 means that the population at
time t+1 is always less than the population at time t; hence, R> 2 is a requirement for viability.
Assuming this requirement is met, the model then has three fixed points5:

N = 0, N =
R−√

R2 − 4
2

, N =
R+

√
R2 − 4
2

.

��
Fixed points are of two different types, both of which are illustrated in Figure 5.1.2. The

fixed point N = 0 is said to be unstable because sequences that start near it move away from it.
The fixed point N = K in the logistic growth model is said to be asymptotically stable because
sequences that start near it move toward it.6 When parameters in a discrete dynamic model
are left unspecified, it is a simple matter to find the fixed points, but it is more difficult to
determine if a fixed point is stable or unstable. This issue will be addressed in Sections 5.2
and 5.5. Discrete models do not necessarily converge to a fixed value, as will be seen in the
problems. Nevertheless, those models that do so must converge to a stable fixed point; hence,
the determination of stable fixed points is always a key component of model analysis.

Check Your Understanding Answers

1. N1 = 550, N2 = 599.5, N3 = 647.52.

Problems

5.1.1.* For the model

Nt+1 =
RN2

t

1+N2
t

of Example 5.1.3:

(a) Find the formulas for the fixed points if R > 2.
(b) Show that the population is necessarily decreasing if R < 2.

5.1.2.* One specific fishery model is the Beverton–Holt model, which can be written in dimen-
sionless form as

Nt+1 =

(
S+

A
1+Nt

)
Nt , A > 0 ; 0 ≤ S < 1.

4 See Problem 5.1.1a.
5 Only nonnegative fixed points have biological meaning. Given R > 2, all three fixed points are nonnegative, as
is shown in Problem 5.1.1b.
6 Graphs of N versus t have horizontal asymptotes at asymptotically stable fixed points.



5.1 Discrete Population Models 269

(a) Find the relative rate of change for the model.
(b) What is the biological significance of the assumption S = 0?
(c) Find a general formula for the fixed points of the model. Note that some fixed points may

only exist for certain ranges of parameter values.
(d) Plot (on one set of axes) graphs of the fixed points in the SN plane, given A= 0.5 and A = 2.
(e) Run a simulation with the model using A = 0.8, S = 0, and N(0) = 0.2. Discuss the simula-

tion results, emphasizing the connection to the results of part (c).
(f) Repeat part (e), but with A = 2.
(g) Repeat part (e), but with S = 0.5.

(This problem is continued in Problem 5.2.1.)

5.1.3. Another fishery model is the Ricker model, which can be written in dimensionless form as

Nt+1 = [S+Ae−Nt ]Nt .

(a) Find the relative rate of change for the model.
(b) What is the biological significance of the assumption S = 0?
(c) Find a general formula for the fixed points of the model. Note that some fixed points may

only exist for certain ranges of parameter values.
(d) Plot (on one set of axes) graphs of the fixed points in the SN plane, given A= 0.5 and A = 2.
(e) Run a simulation with the model using S = 0, A = 2, and N(0) = 0.2. Discuss the simulation

results, emphasizing the connection to the results of part (c).
(f) Repeat part (e), but with A = 8.
(g) Repeat part (e), but with A = 14.

(This problem is continued in Problem 5.2.3.)

5.1.4. The Hassell model, which is sometimes used for population dynamics of insect pests,
can be written in dimensionless form as

Nn+1 =

(
A

1+Nn

)b

Nn, A,b > 0.

(a) Find a general formula for the fixed points of the model. Note that some fixed points may
only exist for certain ranges of parameter values.

(b) Run a simulation with the model using b = 0.5, A = 10, typical values for field populations
of many insect species. Discuss the simulation results, emphasizing the connection to the
results of part (a).

(c) Repeat part (b) using b = 2, A = 6, which roughly matches a laboratory population of a
species of weevils.

(d) Repeat part (b) using b = 3, A = 4, which roughly matches a field population of Colorado
potato beetles.7

(This problem is continued in Problem 5.2.4.)

5.1.5. One method for controlling insect pests is to release a population of sterile males into a
field population. The method results in a reduced population, because females that mate with
sterile males do not contribute to the next generation.

(a) Suppose a field population of insects consists of Nn females, all normal, and Nn + S males,
S of which are sterile. [Note: We are interpreting the quantity N in the Hassell model to

7 Parts (b)–(d) use parameter values adapted from [1].
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include only females and assuming that the population of males is the same as that of
females.] Obtain a simple population model that incorporates the sterile population into
the Hassell model for the specific case b = 1. [Hint: Assume that the new population of fe-
males predicted by the Hassell model must be multiplied by the probability that a female’s
randomly chosen mate is not sterile.]

(b) The model of part (a) has two parameters, A and S. Plot a graph showing how the fixed
points of the model vary with S when A = 4. [Hint: The equation for the fixed points is
more easily solved for S than for N. You can still graph the result in the SN plane.]

(c) Run a simulation of the model with A = 4 and S = 2/3. For N0, use the fixed point corre-
sponding to A = 4 and S = 0. Discuss the simulation results, emphasizing the connection to
the results of part (b).

(d) Repeat part (c) with S = 1.2 and N0 = 1.

(This problem is continued in Problem 5.2.5.)

5.1.6. The discrete logistic model has some interesting mathematical properties. Among these
is the possibility of periodic solutions. To explore this possibility algebraically, we consider a
dimensionless version of the model, given as

xt+1 = xt + xt(R− xt).

(a) Use the model to derive the formula

xt+2 = xt + xt(R− xt)+ xt(1+R− xt)(R− xt)(1− xt).

(b) Suppose X is a number for which xt = X implies xt+2 = X , but xt+1 
= X . Thus, X represents
points that repeat in alternate time steps, but are not true fixed points. Use the formula from
part (a) and the fixed points of the model to derive the equation

0 = 1+(1−X)(1+R−X).

Rearrange this equation to obtain the simpler form

X2 −BX +B = 0, B = R+ 2.

(c) Determine approximate values of X for the particular cases R = 2.2 and R = 2.5.
(d) Run a simulation with R = 2.2 and x0 = 1.
(e) Run a simulation with R = 2.2 and x0 = 1.8.
(f) Run a simulation with R = 2.5 and x0 = 1.8.
(g) Run a simulation with R = 2.7 and x0 = 1.8.
(h) Discuss the simulation results, emphasizing the connection to the theoretical results.

(This problem is continued in Problem 5.2.2.)

5.2 Cobweb Analysis

After studying this section, you should be able to:

• Construct cobweb diagrams.
• Use cobweb diagrams to run simulations.
• Use cobweb diagrams to find fixed points and determine their stability.
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Cobweb diagrams are graphical representations of discrete dynamic models. These diagrams
are used to draw conclusions regarding the long-term behavior of a one-component discrete
model. The model must meet two requirements:

1. The formula that determines the population in the next time step from that of the previous
time step must not refer directly to the time.8 This requirement rules out models that account
for yearly changes in the environment.9

2. The formula that prescribes the model dynamics must be of first order. This means that the
formula for the population at time t + 1 can only refer to the population at time t and not to
earlier population data. This requirement rules out models for organisms with a life history
that involves stages of comparable duration, as is common among insect species. Suppose it
takes two time units for an individual to become an adult. Individuals that survive the first
period are juveniles for the second period. In this scenario, the adult population at time t +1
depends on the juvenile population at time t, which in turn depends on the adult population
at time t − 1. This is an example of a second-order model. We defer consideration of higher
order models to Chapter 6.

Fortunately, there are a lot of useful models that are both autonomous and first order. In par-
ticular, the Beverton–Holt and Ricker models introduced in the Section 5.1 problems are au-
tonomous first-order models.

5.2.1 Cobweb Diagrams

Figure 5.2.1 shows a cobweb diagram for the discrete exponential growth model

Nt+1 = 1.5Nt .

At first glance, cobweb diagrams seem to be a jumble of lines going in different directions.
Interpreting them is a skill that takes practice. We focus first on the construction of the diagram
and then fill in details to help with the interpretation.
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↑

N1 →

N1
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N2 →
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↑
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0 1 2 3
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2
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6

t

N

Fig. 5.2.1 (a) Cobweb diagram and (b) time history for Nt+1 = 1.5Nt

8 Processes that depend only on the state of a system, and not directly on the time, are called autonomous. Much
of the analysis we can do with population models only works for autonomous models.
9 This does not mean that we cannot study the effects of global climate change. We can use analysis to study its
effects on fixed points and stability. If we want to study the short-term effects of climate change, however, we
need to run simulations.
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Any autonomous first-order discrete model can be written in the form

Nt+1 = g(Nt), (5.2.1)

where the function g specifies the particular model. For example, the diagram in Figure 5.2.1 is
for the model defined by g(N) = 1.5N. The basis of a cobweb diagram is a graph that displays
y = g(N) and y = N on the same set of axes.10

To minimize confusion, I label the horizontal axis as N, and in Figure 5.2.1a, the heavy line
is y = g(N) = 1.5N and the medium line is y = N. The light lines with a stair-step shape are a
graphical rendition of a simulation. The procedure for creating these lines on a plot that already
contains y = g(N) and y = N is specified in Algorithm 5.2.1.

Algorithm 5.2.1 Cobweb diagram for Nt+1 = g(Nt)

1. Mark the point on the horizontal axis corresponding to a chosen initial population N0.
(The diagram in Figure 5.2.1a was constructed using N0 = 1.6.)

2. Draw a vertical line segment from the point marked in step 1 to the curve y = g(N).
Mark the intersection point.

3. Draw a horizontal line segment from the point marked in step 2 to the line y = N.
Note that this line segment could go either to the left or to the right, depending on
the relative locations of the curve y = g(N) and the line y = N. Mark the intersection
point.

4. Continue extending the diagram by alternating vertical and horizontal line segments,
always moving up or down to y = g(N) and left or right to y = N.

5. Emphasize the intersection points on the curve y = g(N) that end the vertical line
segments. (These are the points marked with diamonds in Figure 5.2.1a.)

6. For a time history plot, as in Figure 5.2.1b, extend the horizontal lines from the cobweb
diagram to another set of axes. Mark a point on each of these horizontal lines by
choosing consecutive time values, starting with t = 1 for the first horizontal line. Also
mark the initial condition at time t = 0. (These are the points marked with “x” in
Figure 5.2.1b.)

Just as in a simulation by calculation, all of the parameters must be chosen before constructing
the cobweb diagram, including the initial value N0. Once the parameters are chosen, the process
of constructing the cobweb diagram is mechanical. Just plot the two functions and draw the
line segments in the prescribed manner. Think of the construction and interpretation as separate
steps, and the construction is easy.

We begin the interpretation of the cobweb diagram with the points marked by diamond
symbols. These points are the endpoints of the vertical line segments. The coordinates of the
three marked points in Figure 5.2.1a are (N0,N1), (N1,N2), and (N2,N3). Because the heavy
curve is the equation y = g(N) and the model is Nt+1 = g(Nt), it follows that any point on
the curve that has horizontal coordinate Nt for some t must have vertical coordinate Nt+1. The
purpose of the vertical line segments is to compute new values of the population. The dotted
horizontal lines connecting Figure 5.2.1a to b are used to transfer the y coordinates of the points
on the y = g(N) curve to the corresponding points (t,Nt) on the time history plot.

At this point, the reader should be asking a key question: “How do we know that the hor-
izontal coordinates of the marked points are N0, N1, and N2?” We chose the value N0 before

10 It is not clear how the vertical axis should be labeled, since g(N) and N represent different things. Eventually
we will identify values of N on this axis; however, for the purpose of constructing the cobweb diagram, it seems
best to think of the vertical axis as a generic “y” coordinate.
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we began the process, but the other points must be determined by the process itself. This is
where the horizontal line segments come in. The first marked point has coordinates (N0,N1),
so the first horizontal line segment marks the line y = N1. The segment ends on the line y = N.
The intersection of the lines y = N1 and y = N is at N = N1, and this is precisely the N value
that we need to use to be able to draw a vertical line segment to the point (N1,N2). Thus, we
can see the sequence of N values by looking at either the vertical or the horizontal coordinates
of the marked points. The vertical coordinates are N1, N2, . . ., and the horizontal coordinates
are N0, N1, . . .. You should now pause to review what has been said. Once you understand the
reason for the alternating vertical and horizontal lines, the cobweb diagram loses its mystery
and becomes a simple tool.

5.2.2 Stability Analysis

Up to this point, we have focused on explaining the process of the cobweb diagram and its inter-
pretation as a simulation. Now we turn to the use of the diagram for analysis. What information
does it contain that is not found in the corresponding time history?

In a time history, we can only see the current point and past points. In a cobweb diagram,
we can see the future as well; that is, we can predict the trend of future populations from the
relative positions of the graphs of y = g(N) and y = N. For the model of Figure 5.2.1, the future
is that the sequence will continue to increase as the diagram is extended to larger values of N
and y. Every horizontal line segment will go to the right, so each value of N will be larger than
the preceding value.

Figure 5.2.2 shows a cobweb diagram for

Nt+1 =
2.5N2

t

1+N2
t
.

This diagram tells a different story. The graphs of y = g(N) and y = N cross at the fixed point
N = 2, and the cobweb diagram indicates that the marked points will simply get closer to the
fixed point. Thus, the cobweb diagram shows that the equilibrium solution N = 2 is asymptoti-
cally stable.
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Fig. 5.2.2 Cobweb diagram and time history for Nt+1 =
2.5N2

t
1+N2

t
with 0.5 < N0 < 2

Note that not all starting values give the same long-term behavior. Starting values greater
than 0.5 result in a cobweb diagram with the same general features as Figure 5.2.2, where the
corresponding sequence of population values approaches 2 as t → ∞. However, initial values
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less than 0.5 lead to a qualitatively different picture, as shown in Figure 5.2.3. This time, the
horizontal line segments all move to the left, so the marked points approach the fixed point
N = 0. Thus, N = 0 is a second asymptotically stable fixed point. The unstable fixed point
N = 0.5 serves as a dividing point between solutions that go to 0 and solutions that go to 2.
This is typical behavior for dynamic models with one constituent; the stable fixed points serve
as sequence limits for ranges of initial values delimited by the unstable fixed points.
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Fig. 5.2.3 Cobweb diagram and time history for Nt+1 =
2.5N2
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with 0 < N0 < 0.5

Problems

5.2.1. (Continued from Problem 5.1.2.)
Plot cobweb diagrams for the Beverton–Holt model

Nt+1 =

(
S+

A
1+Nt

)
Nt , A > 0, 0 ≤ S < 1,

with N0 = 0.2, using

(a) A = 0.8, S = 0.
(b) A = 2, S = 0.
(c)* A = 0.8, S = 0.5.
(d) Discuss the results with reference to those of Problem 5.1.2.

(This problem is continued in Problem 5.5.1.)

5.2.2. (Continued from Problem 5.1.6.)
Plot a cobweb diagram for the discrete logistic model

xt+1 = xt + xt(2.2− xt)

using x0 = 1.8. Discuss the results with reference to those of Problem 5.1.6.

(This problem is continued in Problem 5.5.5.)

5.2.3. (Continued from Problem 5.1.3.)
Plot cobweb diagrams for the Ricker model

Nt+1 = ANte
−Nt

with N0 = 0.2, using
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(a) A = 2.
(b) A = 8.
(c) A = 14.
(d) Discuss the results with reference to those of Problem 5.1.3.

(This problem is continued in Problem 5.5.2.)

5.2.4. (Continued from Problem 5.1.4.)
Plot cobweb diagrams for the Hassell model

Nn+1 =

(
A

1+Nn

)b

Nn, A,b > 0,

with N0 = 0.2, using

(a) b = 0.5, A = 10.
(b) b = 2, A = 6.
(c) b = 3, A = 4.
(d) Discuss the results with reference to those of Problem 5.1.4.

(This problem is continued in Problem 5.5.3.)

5.2.5. (Continued from Problem 5.1.5.)
Plot cobweb diagrams for the pest control model

Nn+1 =
4N2

n

(1+Nn)(Nn + S)
, S > 0,

using

(a) S = 2/3, N0 = 0.5.
(b) S = 2/3, N0 = 0.2.
(c) S = 1.2, N0 = 1.
(d) Discuss the results with reference to those of Problem 5.1.5.

(This problem is continued in Problem 5.5.4.)

5.3 Continuous Population Models

After studying this section, you should be able to:

• Build continuous dynamic models from assumptions about rates of change.
• Use computer simulations to study continuous dynamic models.
• Find equilibria of continuous dynamic models.

Suppose we want to build a model for the growth of a plant population. We could use the
number of individuals as a measure of the population, but there are some obvious difficulties.
Two small plants make the same contribution to the overall size as a single plant that is twice
as large. In many settings, it makes more sense to measure a plant population in terms of its
biomass rather than the number of individuals. Biomass changes on a continuous basis, so
it makes sense to use a model that is continuous in time rather than the discrete models we
have been studying. In this section and the next, we examine some basic techniques for the
development and analysis of continuous models.



276 5 Dynamics of Single Populations

5.3.1 Exponential Growth

The simplest discrete model is the exponential growth model, which is characterized by a con-
stant relative growth rate. The continuous case also has an exponential growth model, character-
ized by a constant relative growth rate. To derive this model, we note that the derivative dN/dt
of a function N(t) of continuous time is the absolute rate of change. The relative rate of change
is the ratio of the absolute rate of change to the magnitude |N|; since N > 0, a constant relative
rate of change corresponds to the equation

1
N

dN
dt

= r. (5.3.1)

We can rewrite the equation in the standard form as

dN
dt

= rN. (5.3.2)

Some insight into the relationship between the discrete and continuous exponential models
comes from comparing the different forms in which the models can be written. The relative
growth form (5.3.1) corresponds nicely with the relative growth form of the discrete model
(Nt+1 −Nt )/Nt = R. The more common form (5.3.2) also appears to compare closely to the
common discrete form Nt+1 = kNt ; however, this apparent similarity is misleading. While both
calculate some quantity as being proportional to the current population, the continuous quantity
rN is a rate of change while the discrete quantity kNt is an updated population value. I have
specifically chosen the constants r and R to represent the two relative rates of change to facil-
itate the appropriate comparison between the models, without giving the impression that the
relative growth rate parameter should have the same value for the two cases. Instead, there is a
mathematical relationship we can use to compute either value from the other.

Although solution methods for differential equations are beyond the scope of this
book, (5.3.2) can be solved by inspection. We are looking for a function whose derivative
is a constant times the function. A quick review of a table of derivatives11 reveals that the
exponential function has this property; specifically, the function N(t) = N0ert has the required
property and also satisfies the initial condition N(0) = N0. As in the discrete case, the exponen-
tial model is only useful while resources are abundant. The unbounded solution of the equation
makes the model unsuitable for any situations in which growth should be restricted.

Check Your Understanding 5.3.1:
Determine an appropriate mathematical relationship between the discrete and continuous
relative growth rates R and r by comparing the solution of the continuous model (5.3.2)
with that of the corresponding discrete model Nt+1 −Nt = RNt .

5.3.2 Logistic Growth

A more realistic model is the logistic growth model, which we can define in a manner analogous
to the discrete logistic model of Section 5.1. We again assume a relative rate of population

11 See Table 1.3.1.
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change that is given by a linear relationship, as previously depicted in Figure 5.1.1. Using the
continuous definition of the relative rate of change yields the equation

1
N

dN
dt

= r

(
1− N

K

)
,

which we can rewrite as dN
dt

= rN

(
1− N

K

)
. (5.3.3)

Unlike the discrete logistic equation, the continuous logistic equation can be solved explicitly.
However, it is not particularly advantageous to do so. All important analytical results can be
obtained directly from the differential equation, as we shall see in the remainder of this chapter.
Simulations can be conducted with any degree of accuracy by numerical methods, which work
by computing the solutions to discrete approximations of the differential equation.

Example 5.3.1. Analogous to Example 5.1.1, consider the model

dN
dt

= 0.2N

(
1− N

1,000

)
, N(0) = 100.

We can choose a sequence of time values t j for which we seek corresponding approximate
population values Nj. With t0 = 0, we obtain a starting value of N0 = 100. Numerical methods
work by using a discrete approximation to the differential equation to calculate each successive
function value. The simplest of these methods is Euler’s method, which is based on the forward
difference approximation

dN
dt

(t j)≈ Nj+1 −Nj

t j+1 − t j
. (5.3.4)

Substituting this approximation into the differential equation yields the discrete dynamic
model

Nj+1 = Nj + 0.2hNj

(
1− Nj

1,000

)
, N0 = 100,

where we have assumed time intervals of equal length t j+1 − t j = h. It can be shown that any
desired degree of accuracy can be achieved by choosing small enough time steps, although
the amount of calculation required increases as well. Euler’s method is only first order, which
means that the error is cut approximately by a factor of 2 when the time step is halved. Much
more sophisticated methods are available; the most popular method is fourth order,12 which
means that the error is cut approximately by a factor of 24 = 16 when the time step is halved.
Sophisticated methods of this type can easily be programmed by hand, and are also built into
computer algebra systems such as Maple and mathematical software such as Matlab. While
they are not part of R’s core package, numerical methods for R are readily available as add-
on packages. With a sufficiently accurate method, graphs of the simulation result, as shown in
Figure 5.3.1, are indistinguishable from the exact solution. As we might expect, the behavior
of the continuous logistic model is similar to that of the corresponding discrete model seen in
Figure 5.1.2. ��

12 See Appendix C.
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Fig. 5.3.1 Population results for Example 5.3.1

5.3.3 Equilibrium Solutions

Analogous to the fixed points of discrete models are equilibrium solutions of continuous mod-
els, which are values of N for which dN/dt = 0. Finding equilibrium solutions is a simple
algebraic problem.

Example 5.3.2. Setting dN/dt = 0 in the logistic model (5.3.3) yields the algebraic equation

rN

(
1− N

K

)
= 0 ;

the solutions N = 0 and N = K are the equilibrium solutions for the logistic equation, the same
as the fixed points for the discrete logistic model. ��

5.3.4 A Renewable Resource Model

So far, we have considered general models for growth in a continuous setting. With some mod-
ifications to the logistic equation, we can create a renewable resource model capable of repro-
ducing behavior seen in populations of endangered species and helping us predict the outcomes
of conservation efforts. The key feature that must be added to turn an ordinary continuous
growth model into a renewable resource model is the consumption of the resource by a fixed
population. In general, the simplest models follow from the assumptions that the number of
consumers is constant and that the amount of resource consumption by each individual does
not depend on the total number of consumers. These assumptions yield the generic model

dV
dT

= RV

(
1− V

K

)
−Cq(V), (5.3.5)

where V (T ) is the biomass of the resource,13 C is the number of consumers, K is the carrying
capacity, and q(V ) is the rate of consumption per consumer. One specific scenario for which

13 The choice of symbols is seldom significant; I have used V because vegetation is the resource in the motivating
scenario. Of course, the model can be used for animal populations as well. Also, the usual lowercase t has been
replaced by the uppercase T to allow for systematic use of upper and lower cases in nondimensionalization.
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the assumptions are well justified is a grassland used to graze cattle. The model is appropriate
for this scenario because the rancher can directly control the size of the cattle population. If the
consumer population size depends on the availability of the resource, then (5.3.5) needs to be
augmented by a differential equation that models those dynamics. Such systems are considered
in Chapter 7.

A variety of choices are possible for the consumption function q(V ). The simplest is the
linear model q = QV . Another possibility is the Holling type II model from Section 2.5. For
cattle grazing on grass, a more realistic model is

q(V ) =
QV 2

A2 +V 2 , Q,A > 0, (5.3.6)

which is known as the Holling type III model.14 Figure 5.3.2 shows a plot of the model in
dimensionless form. The graph of the Holling type III model is similar but not identical to that
of the Holling type II model (Figure 2.5.1a). The most important difference is the behavior for
small resource levels. In the Holling type III model, the consumption curve at low resource
levels has a small slope, which is appropriate in cases where the consumer has an alternate
food supply. As a simple example, consider the behavior of bears. Bears eat a variety of foods
found in different places. If there are very few fish available, they will spend more of their
time looking for other sources of food; consequently, an increase in the supply of fish will not
make as much difference as it would if the bears had no alternatives. In the case of cattle on
a grassland, there are often relatively low quality plants that the cattle can eat if their primary
food is in short supply.
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Fig. 5.3.2 The consumption rate function q = QV 2/(A2 +V 2)

With the Holling type III model for q, we have the renewable resource model

dV
dT

= RV

(
1− V

K

)
−C

QV 2

A2 +V 2 . (5.3.7)

This form of the model has five parameters, which is too many for a systematic analysis. The
number can be reduced significantly by nondimensionalization. There are always choices in
nondimensionalization, although they are not always obvious. Here, there are no obvious al-
ternatives to 1/R for defining a dimensionless time. However, the dependent variable V could

14 The properties of this model are explored in Problem 5.3.1.
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be made dimensionless by dividing by either A or K. Which we choose depends on what we
think is the primary process that limits the resource population. If there is only a small amount
of consumption, then the population of the resource will be only slightly less than the car-
rying capacity, so we should choose K as the representative value for nondimensionalization.
Alternatively, we should choose A if we expect consumption to be the primary mechanism that
limits the amount of the resource. This seems more likely for a model whose purpose is to un-
derstand the effect of consumption on the resource population. Using these choices, we define
the dimensionless quantities

v =
V
A
, t = RT

and systematically replace all of the variables in the model using the substitutions

V → Av,
d

dT
→ dt

dT
d
dt

= R
d
dt
.

After simplification,15 we obtain the dimensionless form

v′ = v
(

1− v
k

)
− cv2

1+ v2 v, k =
K
A
, c =

CQ
RA

. (5.3.8)

Once dimensionless variables are substituted into a dimensional model, the remaining pa-
rameters sort themselves into dimensionless combinations. Usually it is best to think of these
combinations as scaled versions of key original parameters, and it is good modeling practice
to label them accordingly. The parameter k is the dimensionless carrying capacity relative to
the reference population value A. The parameter c is a dimensionless measure of the number of
consumers. This choice of parameters is particularly convenient if we are studying the model
for the purpose of exploring the effects of conservation policies on the resource. Of the two
dimensionless parameters, k is strictly a property of the biological system, whereas c is, at least
in theory, completely subject to control. The natural question to ask is, “Given some objective
criterion and a specific value of k, what is the optimal choice of c?” This is a much simpler and
simultaneously more general question than any we could address using the dimensional form
of the model.16

5.3.5 Equilibria of the Renewable Resource Model

Analysis of the renewable resource model (5.3.8) will be a recurring theme of this chapter. For
now, we consider the problem of finding the equilibrium solutions. Setting v′ = 0, we obtain the
equation

0 = v
(

1− v
k

)
− cv2

1+ v2 = v

(
1− v

k
− cv

1+ v2

)
.

Clearly, v = 0 is an equilibrium value regardless of k and c. This makes biological sense, as
our model has no mechanism for starting a new population. Other equilibrium values of v are
solutions of the equation

1− v
k
− cv

1+ v2 = 0, (5.3.9)

and these solutions will depend on the parameter values.

15 See Problem 5.3.3.
16 See Problem 5.3.9.
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We have several choices for finding the solutions of (5.3.9). With specific values of k and
c, we can use a numerical method to obtain approximate equilibria; however, we get more
information from the model if we leave the parameter values unspecified. Alternatively, we
could use a computer algebra system to solve the equation. While this sounds like the logical
strategy, it is actually not the best plan for a number of reasons. The resulting formula, if one is
given, will be complicated and difficult to interpret. The solution formula generated by Maple
9.5 takes up most of a page. Complicated solution formulas can lead to subsequent errors, such
as documenting “results” that do not exist for any set of parameter values.17

When working with messy algebraic equations, it is helpful to recognize that the equation
can take a number of different forms, and some of these may suggest strategies that do not work
for the others. One possibility for (5.3.9) is to multiply by all of the denominators to obtain a
polynomial equation:

v3 − kv2 +(1+ ck)v− k = 0. (5.3.10)

This equation is an improvement on the original, but it is still not very manageable. There is a
general formula for the solution of an arbitrary cubic polynomial equation, but that gives the
same unwieldy result as the original equation, which is why you did not learn that formula along
with the quadratic formula in school. One conclusion we can draw from a cubic polynomial is
that there can be no more than three solutions for any given pair of k and c values.

5.3.6 A Graphical Method

Solutions of algebraic equations can be found by graphing. If we have specific values for k and
c, we can graph the cubic polynomial of (5.3.10) and look for places where the graph crosses
the v axis; however, this is problematic without given values for the parameters. Alternatively
suppose we put the complicated third term in (5.3.9) by itself on one side of the equation and
divide by c. These manipulations change the equation to the form

1
c

(
1− v

k

)
=

v
1+ v2 . (5.3.11)

What is so great about this version? Note first that any equation can be solved by graphing the
functions on both sides of the equation together on one graph and looking for the intersections.
In (5.3.11), we have one function that is complicated but parameter-free, and another function
that has both parameters but is especially simple. We only need to graph the complicated func-
tion once because it has no parameters. The simple function is a straight line, which means that
it is easy to see how the parameters affect the graph. To clarify this notion, let f (v) represent
the function

f (v) =
1
c

(
1− v

k

)
.

Setting f (v) = 0 yields the result v = k, which means that k is the v intercept of the straight line.
Similarly, setting v = 0 shows that 1/c is the vertical intercept. Given any pair of parameter val-
ues, we can mark k on the horizontal axis and 1/c on the vertical axis and connect those points
with a straight line. Where that line intersects the graph of v/(1+ v2), we have an equilibrium
value of v.

Figure 5.3.3 shows the curve v/(1+ v2) and the straight lines with k = 10 and c = 1, 2, and
3. These values of c show the different possibilities for equilibria. Note that there will be at
least one positive solution no matter what points (k,0) and (0,1/c) are used to define the line.
For the k = 10, c = 2 line, there are three positive solutions, while there is only one positive

17 I’ve seen a published research paper in which this occurred.
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solution for each of the other values of c with k = 10. In general, there will usually be either one
or three positive solutions. Exactly two positive solutions can occur, but this requires that the
line be tangent to the curve at one point. As for the magnitude of the solutions, the most striking
feature of the graph is the great difference between the very small solution we get when c is
large and the relatively large solution we get when c is small. The implications of this feature
will be discussed in subsequent analysis.
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Fig. 5.3.3 Graphs of v/(1+ v2) and f (v), with k = 10

Check Your Understanding Answers

1. 1+R = er

Problems

5.3.1. Consider the Holling type III predation/ consumption model,

q(V ) =
QV 2

A2 +V 2 .

(a) Explain the graphical significance of the parameter Q.
(b) Determine the dimension of A, given that V is biomass per unit area.
(c) Explain the graphical significance of the parameter A. [Hint: Use the answer to part (b).]
(d) Compute the derivative q′(V ).
(e) Explain the significance of the result for q′(0) in terms of the feeding habits of the consumer.

5.3.2. The Schaefer equation,

dX
dT

= RX

(
1− X

K

)
−QX , R,K,Q > 0,

is often used to model the impact of harvesting on a fish population, where X is either the
number of fish or the biomass of fish.

(a) Compare the Schaefer model with the resource consumption model (5.3.7). Describe the key
difference between the models in biological terms. In other words, explain the differences
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between the conceptual models underlying the two mathematical models. [Hint: Ignore
superficial differences, such as the identities of the resources and the consumers. Look at
the assumptions about the biological processes.]

(b) Derive the dimensionless form of the Schaefer model,

x′ = x(1− x)−Ex,

by using x = X/K and t = RT for the dimensionless population and time and using an
appropriate definition for E . The symbol E is commonly used in this context to suggest that
it represents the harvesting “effort.”

(c) Determine the critical points for the dimensionless model. In particular, what restriction is
there for E if there is to be a positive equilibrium population level?

(d) The term Ex in the differential equation represents the yield rate of the fishery. If the fishery
is managed, the goal might be to maximize the sustained yield y = Ex∗(E), where x∗(E) is
the equilibrium population for any particular level of effort. Use the differential equation of
part (b) to obtain a formula for y that depends only on x∗.

(e) Find the equilibrium value x∗ that maximizes the yield; then find the effort E∗ that achieves
the maximum yield.

(This problem is continued in Problem 5.4.2.)

5.3.3. Obtain the dimensionless renewable resource model (5.3.8) from the original model
(5.3.7) by using the substitutions V = Av and T = t/R. Note that the chain rule of differentiation
implies

dy
dT

=
dy
dt

dt
dT

for any quantity y that is a function of time.

Problems 5.3.4–5.3.9 refer to the dimensionless resource consumption model

v′ = v
(

1− v
k

)
− cv2

1+ v2 , k,c > 0.

5.3.4.* Find the equilibrium solutions for the following cases:

(a) k = 10, c = 1
(b) k = 10, c = 2
(c) k = 10, c = 3

5.3.5. Run computer simulations for the following cases:

(a) k = 10, c = 1, v(0) = 0.9
(b) k = 10, c = 2, v(0) = 0.9
(c) k = 10, c = 3, v(0) = 0.9
(d) k = 10, c = 2, v(0) = 0.5
(e) k = 10, c = 2, v(0) = 0.1
(f) Describe the behaviors that can be seen in the model, using these simulations as examples.

5.3.6. Suppose k = 20. Determine (approximately) all equilibrium solutions for the cases c =
1.5, c = 3.5, and c = 5.5.

5.3.7.(a) Let k = 4. Equilibrium values of v can be anything in the interval (0,4), with the
actual value(s) depending on c. Rearrange the equilibrium equation so that it takes the form
c= g(v). Note that g calculates the value of c necessary for any particular equilibrium value.
Plot the function g and observe that it is always decreasing. Explain why this property means
that there is always one unique positive equilibrium when k = 4.
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(b) Repeat the calculations of part (a) with k = 10, drawing the appropriate conclusion for
this case.

5.3.8. Problem 5.3.7 indicates a way to determine the range of k values for which multiple
positive equilibria are possible. Use calculus to determine the largest value of k for which there
is always a unique positive equilibrium.

5.3.9.* A reasonable goal in managing the renewable grass resource is to maximize the grass
consumption.

(a) Explain why increasing the number of cows does not necessarily increase the grass
consumption.

(b) What part of the (dimensionless) model represents the rate of grass consumption by the
cows?

(c) Assume that the vegetation biomass reaches a stable equilibrium solution. Use the equa-
tion for the equilibria to determine a function of v that represents the total rate of grass
consumption at equilibrium, but does not include the parameter c.

(d) Determine the level of vegetation that maximizes the grass consumption rate.
(e) Explain why the result seems reasonable.
(f) Determine (in terms of k) the value of c that is needed to achieve the maximum consumption

rate.
(g) Use the definition of c in (5.3.8) to obtain a formula for the optimum number of cows.

5.3.10.(a) Derive the dimensionless Holling type II resource consumption model

v′ = v
(

1− v
k

)
− cv

1+ v
, k,c > 0,

by writing down the appropriate dimensional model and nondimensionalizing as in Problem
5.3.8.

(b) Sketch a graph that shows the equilibrium solutions v∗ as a function of c for the case k = 2.
For what range of c values are there two positive solutions? For what range are there no
positive solutions? [Hint: Solving the equation for v∗ is possible, unlike in the Holling type
III case, but it is still very messy. It is easier to solve the equilibrium equation for c, graph c
versus v∗, and then switch the axes.]

(c) For arbitrary k, find the level of vegetation v∗ and the corresponding consumer population c
that maximizes the renewable yield y = cv∗/(1+ v∗). [Hint: See Problem 5.3.9.]

(This problem is continued in Problem 5.4.3.)

5.3.11. Problems 5.3.2, 5.3.9, and 5.3.10 are concerned with harvesting in which the goal is to
produce the maximum sustainable yield. In some cases, it is more realistic to use a bioeconomic
approach. Suppose there is a cost C(E) associated with the harvesting effort that appears in the
Schaefer model of Problem 5.3.2. It is reasonable to assume that the optimal effort will be
the one that maximizes the revenue, which we can think of as the sustained yield Ex∗ minus
the cost. It is possible to obtain some general results for realistic cost functions (in particular,
C′ > 0 and C′′ < 0); however, it is more useful for our purposes to consider a specific example,
C(E) = A

√
E .

(a) The goal is to maximize revenue R(E) = Ex∗(E)−C(E), where x∗(E) is the equilibrium
solution of the Schaefer equation. Use this information to eliminate x∗ from the formula
for R.
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(b) Obtain an equation for the critical points of R(E). Ideally, we would like to solve this equa-
tion for the optimal effort as a function of the parameter A. Instead, solve the equation for
A and plot the result in the EA plane. You may use a computer to assist in the graphing, but
you should use hand computations to identify the E intercepts and the coordinates (Ē, Ā) of
the local maximum.

(c) Use the formula for R′ to determine the optimal effort for the case A > Ā.
(d) If A < Ā, then there are two critical points, and it becomes necessary to identify which of

them yields maximum R. The easiest approach in this case is to show that one is a local
maximum and the other is a local minimum. Do this by plotting the curve R′′ = 0 on the
graph from part (b). [Note: We are talking about local extrema of the function R(E), not the
local extremum of the graph in the EA plane. The graph of R′′ = 0 passes through the point
(Ē, Ā). This means that one of the two E values on the graph of R′ = 0 is a local maximum
and the other is not.]

(e) Summarize the results by plotting the optimal E versus A. [The graph will be discontinuous
because of the different results of parts (c) and (d).]

5.3.12. If you visit a lot of lakes of different sizes in different parts of the world, you will see
that there are two common physical states. Some lakes are relatively clean and fresh-smelling—
these are called oligotrophic. In contrast, eutrophic lakes are overgrown with algae and have a
rank smell. Eutrophic lakes have a phosphorus content that is many times higher than that of
oligotrophic lakes. Biologists have long known that there does not appear to be a gradation
of intermediate states; indeed, rapid eutrophication of formerly oligotrophic lakes is an envi-
ronmental problem that can be caused by runoff of fertilizer from farms. Why there are no
intermediate states, how eutrophication occurs, and the possibility of restoring a eutrophic lake
are all questions that can be explored with a simple mathematical model due to a 1999 paper by
Carpenter et al. [2]:

dP
dT

= B− SP+R
Pq

Mq +Pq , B,S,R,M > 0, q ≥ 2.

This model incorporates three mechanisms for change in phosphorus content in a lake. The
first term represents the influx of phosphorus from the environment; this can include artificial
sources such as farm runoff as well as natural sources such as decomposition of plants.18 The
second term represents the combined processes of sedimentation, outflow, and absorption by
plants, all of which remove phosphorus from the water. The last term represents the recycling
of phosphorus from sediments. This term plays a significant role in the physical system, because
the large values typical of q (from 2 for a cold deep lake to as much as 20 for a warm shallow
lake) mean that the recycling rate is roughly R when P > M and very small when P < M.
Thus, eutrophic lakes, which are high in phosphorus, have large recycling rates that keep the
phosphorus concentration high; oligotrophic lakes, in contrast, have very little recycling of
sedimentary phosphorus.

(a) Obtain a dimensionless form of the model in terms of the variables p = P/M and t = ST
and the parameters b = B/SM and r = R/SM in addition to q. We will generally consider q,
r, and a minimum value b = b0 to be fixed by environmental factors. Nondimensionaliza-
tion reduces the number of parameters by two, making it easier to analyze the model and
reducing the number of uncertain parameters that must be estimated for simulations.

18 The standard use of phosphates in laundry and dishwashing detergents was linked to lake eutrophication in the
late 1960s and spawned one of the early conflicts between the environmental movement and industry. Phosphates
are still used in some detergents, but smaller amounts and better treatment of wastewater have significantly
reduced their contribution to eutrophication.
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(b) Arrange the equilibrium equation so that it takes the form

pq

1+ pq = f (p),

where the function on the right is a linear function with a slope that depends on r and a p
intercept that depends on b.

(c) Plot the nonlinear function in part (b) using q = 8 and the linear function using r = 5
along with the b values 0.25 and 0.75. Use the graph to determine approximate values for
the equilibrium points. [These parameter values illustrate typical model behavior and are
plausible for a variety of lakes.]19

(d) Another approach to understanding the equilibria of the model is to fix values of q and r
and then plot the equilibria as a function of b. Do this for q = 8 and r = 5, for the interval
0 ≤ b ≤ 1. [Hint: The desired plot should be in the bp plane, but points on the plot can still
be found by calculating b values from selected p values. The plot from part (c) is helpful
for determining a suitable range of p to try. Restrict the plot to realistic values of b.]

(e) Discuss the pattern of equilibrium solutions. We will determine the stability of these so-
lutions in Section 5.4; for now, simply note the presence or absence of large, small, and
intermediate values of p at equilibrium for the given values of b.

(f) The results of part (e) raise an additional question: For what combinations of r and b values
is there only one (large p) equilibrium? These combinations of parameters can only result
in a eutrophic lake. To address the question, consider that we are interested in specific
cases where the two plots in part (c) are tangent. The requirement for equilibrium and the
requirement for tangency comprise two algebraic equations relating p∗, r, and b. Eliminate
r from these equations to obtain the formula

b = p− p(1+ pq)

q
.

Given q = 8, use calculus to find the maximum value of b that can be obtained from this
relationship. A larger value of b means that equilibria with small p are impossible.

(This problem is continued in Problem 5.4.4.)

5.4 Phase Line Analysis

After studying this section, you should be able to:

• Plot a phase line for a continuous dynamic model and use it to determine stability of equi-
libria.

The phase line is a very simple graphical representation that permits easy determination
of the long-term behavior of a one-component continuous dynamic model. As with cobweb
diagrams for discrete models, the phase line method has two basic requirements:

1. The formula that prescribes the rate of change of the population must not refer directly
to the time. This requirement rules out models that account for seasonal changes in the
environment.

19 Carpenter, Ludwig, and Brock estimate q = 7.8 and r = 8 for Lake Mendota, which is adjacent to the campus
of the University of Wisconsin at Madison and is probably the most thoroughly studied lake in the world.
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2. The differential equation must be of first order, meaning that it contains a first derivative,
but no higher order derivatives.

The logistic model and renewable resource models of Section 5.3 are autonomous first-order
continuous models; hence, the phase line can be used for both.

5.4.1 The Phase Line

Figure 5.4.1 shows a graph of the function f (N) = N(1−N) along with the phase line repre-
sentation of the logistic equation

dN
dt

= N(1−N).

The phase line representation consists of a number line with some points and arrows that
show the direction of change in terms of the current state. A simple procedure is all that is
needed for this powerful tool.

Algorithm 5.4.1 Phase line representation for dN/dt = f (N)

1. Find the equilibrium solutions ( f (N) = 0) and mark these points on the phase line.
2. The equilibrium solutions partition the interval [0,∞) into regions.20 Each of these

regions needs an arrow. The arrowhead points to the right for regions in which f (N)>
0 and to the left in regions where f (N) < 0.

0 0.5 1 1.5 2
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−1.5

−1

−0.5
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f(N)

0 1 N

Fig. 5.4.1 The function f (N) = N(1−N) and the phase line for N′ = N(1−N)

In spite of its simplicity, the phase line is a powerful tool. The arrows in each segment indicate
the direction of change of the dynamic variable; for example, the phase line representation of
Figure 5.4.1 indicates that N increases when less than one and decreases when greater than one.
These arrows point toward N = 1 from both sides, marking N = 1 as stable. Similarly, N = 0 is
seen to be unstable. The phase line representation has a generality that the cobweb diagram of

20 This assumes that the dependent variable cannot be negative in the model, as is the case when the dependent
variable represents a population. If the model makes sense for negative values of the dependent variable, then
use the interval (−∞,∞).
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Section 5.2 lacks. Initial conditions need not be specified, as the phase line shows the behavior
for all possible cases. Parameters can often be left unspecified as well, since the method requires
only a rough sketch of the graph of f .

Example 5.4.1. Figure 5.4.2 shows the phase line for the general logistic model

dN
dt

= rN

(
1− N

K

)
.

The model predicts that K is a stable equilibrium value and that all populations that are initially
positive approach K in time. ��

5.4.2 The Phase Line for the Holling Type III Renewable Resource Model

We return now to the renewable resource model of Section 5.3, given in dimensionless form as

v′ = v

(
1− v

k
− cv

1+ v2

)
. (5.4.1)

0 0.5K K 1.5K 2K
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N

f(N)

0 K N

Fig. 5.4.2 The function f (N) = rN(1−N/K) and the phase line for N′ = f (N)

We found several cases differing in the number and position of the equilibria. The phase line is
just the tool needed to completely determine stability for each case. While we could use (5.4.1)
to determine arrow directions directly, it is easier to first rewrite the equation in a different form.

Example 5.4.2. In Section 5.3, we manipulated the equation for equilibria of the renewable
resource model into the form

1
c

(
1− v

k

)
=

v
1+ v2 . (5.4.2)

To best determine the phase line arrows for (5.4.1), we first rearrange it to reveal a direct com-
parison of the quantities in (5.4.2). This requires that we remove a factor of c, yielding the
equation

v′ = cv

[
1
c

(
1− v

k

)
− v

1+ v2

]
. (5.4.3)

The point of this manipulation is to give us a direct connection between the relative positions
of the curve and the line in the equilibrium plot of Figure 5.3.3 and the direction of arrows in
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the phase line. Specifically, (5.4.3) says that v is increasing whenever the value of the linear
function f (v) = (1/c)(1− v/k) exceeds the value of the nonlinear function v/(1+ v2). The
phase line arrows point to the right for just those regions where the line is above the curve and
to the left when the curve is above the line.

The equilibrium plots for three sets of parameter values are illustrated in Figure 5.4.3 along
with the corresponding phase line plots. A comparison of the three cases shows the range of
possible behaviors that can be exhibited by the Holling type III resource utilization model.
There is one large equilibrium solution for the small c case and one small equilibrium solution
for the large c case; both of these equilibria are stable and represent the only possible long-term
behavior. In contrast, there are three equilibria for medium values of c. The largest and smallest
are stable and match the corresponding equilibria for small and large values of c. The middle
equilibrium is unstable. This scenario has two possible long-term behaviors: the resource level
evolves to one or the other of the two stable states, as determined by the initial amount. ��
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Fig. 5.4.3 Phase line representations for the renewable resource model (Equation (5.4.1)), with k = 10 and
several values of c

5.4.3 Comparison of Graphical Methods

In this section and in Section 5.2, we have seen the principal graphical methods for analysis of
single-component dynamic models: the cobweb diagram for discrete models and the phase line
for continuous models. A review of the similarities and differences of these methods reveals
some important general differences between discrete and continuous models.

Cobweb diagrams display a simulation graphically, allowing us to determine the stability of
fixed points and explore the long-term behaviors for all possible starting values. They do not
give any information about the general case, but they do give complete information about the
model for any fixed set of parameter values. In contrast, phase line representations focus directly
on stability and long-term behavior without reference to a simulation. Hence, they do not require
specification of parameter values, and the results they provide are completely general. We will
see in the following chapters that the phase line can be extended to two dimensions for the
analysis of systems consisting of two dynamic variables, while the cobweb diagram cannot.

These comparisons between corresponding discrete and continuous models and methods
are typical. Discrete models seem simpler than continuous ones because they can be defined
without calculus and are easily used for simulations; however, the mathematical properties
of continuous models are generally simpler than those of the corresponding discrete models.
The take-home message is that one should avoid using discrete models for continuous biological
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processes, as doing so can introduce mathematical complications that do not appear in the cor-
responding biological systems.

Problems

5.4.1.* Use phase line analysis to determine the stability of the equilibria for the model

dN
dt

=−N

(
1− N

T

)(
1− N

K

)
, 0 < T < K.

The parameter K has the same biological meaning that it has in the logistic model. Assuming
that N is a population, explain the biological meaning of T .

(This problem is continued in Problem 5.5.6.)

5.4.2. (Continued from Problem 5.3.2.)
Use phase line analysis to determine the stability of the equilibria for the Schaefer model

x′ = x(1− x)−Ex.

You will need to consider two cases.

(This problem is continued in Problem 5.5.7.)

5.4.3. (Continued from Problem 5.3.10.)
Consider the Holling type II resource consumption model

v′ = v

(
1− v

k
− c

1+ v

)
.

(a) Plot the phase line for the case k = 2, c = 2.
(b) Given k = 2, determine the stability of the equilibria for all c > 0. Note: These equilibria

were plotted in Problem 5.3.10b. There are three possible phase line sketches, each valid
for some range of c.

(c) Suppose there is initially a small number of cattle and a large amount of vegetation. Explain
what the model predicts will happen during the following sequence of events (assume that
the vegetation does not fully disappear):

1. The number of cattle is increased to the intermediate of the three ranges found in
part (b).

2. The number of cattle is further increased to the larger of the three ranges.
3. The number of cattle is decreased back to the intermediate range.

(d) Use the results of part (c) to discuss the inherent difficulty in restoring resource stocks that
have been depleted by overconsumption.

(This problem is continued in Problem 5.5.8.)

5.4.4. (Continued from Problem 5.3.12.)

(a) Use phase line analysis to determine the stability of the critical points for the lake eutroph-
ication model

p′ = b− p+
5p8

1+ p8 ,

where p is the phosphorus content of the water, with b = 0.75.
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(b) Repeat part (a) with b = 0.25.
(c) Explain the model predictions for a lake that experiences the following sequence of events,

assuming that the lake is initially at equilibrium with b = 0.25 and a small amount of phos-
phorus.

1. Runoff of fertilizer from farms raises b to 0.75, where it remains for a long period of
time.

2. Environmental restrictions reduce b back down to 0.25, where it remains for a long
period of time.

(This problem is continued in Problem 5.5.9.)

5.5 Linearized Stability Analysis

After studying this section, you should be able to:

• Use the derivative to determine the stability of fixed points of discrete dynamic models and
equilibria of continuous dynamic models.

In Sections 5.2 and 5.4, we learned how to analyze first-order autonomous population models
graphically, with cobweb diagrams for discrete models Nt+1 = g(Nt) and phase line analysis
for continuous models N′(t) = f (N). Now we consider a method that is based on calculations.
Asymptotic stability is a local property, which means that it depends only on the properties of
the model very close to the point of interest. Local properties can be analyzed using calculus.

5.5.1 Stability Analysis for Discrete Models: A Motivating Example

We begin with an example.

Example 5.5.1. Note that N = 2 is a fixed point for the model

Nt+1 =
2.5N2

t

1+N2
t
.

To analyze the stability of this fixed point, we need to know the local behavior of the function

g(N) =
2.5N2

1+N2

at the point N = 2. We have

g′(N) =
(5N)(1+N2)− (2.5N2)(2N)

(1+N2)2 =
5N

(1+N2)2 .
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Specifically, g′(2) = 0.4, so the linear approximation21 to g at N = 2 is

g(N)≈ g(2)+ g′(2)(N − 2) = 2+ 0.4(N− 2).

In the vicinity of N = 2, the original model is therefore approximated by the linear model

Nt+1 = 2+ 0.4(Nt − 2).

We can simplify this model by defining the population perturbation x = N − 2. Systematically
replacing N by 2+ x yields the linearized model

xt+1 = 0.4xt .

This is the exponential model,22 whose solution we can write as

xt = 0.4tx0.

From this result, we can determine the long-time behavior of the model:

lim
t→∞

xt = 0.

Since xt is the approximate difference between Nt and 2, we also have

lim
t→∞

Nt = 2,

which marks the fixed point N = 2 as asymptotically stable. ��
To see why the method of Example 5.5.1 works, consider the stability question using a

cobweb diagram. Figure 5.5.1 shows the basic elements of the cobweb diagram, including both
the actual curve y = g(N) and the linear approximation y = 2+ g′(2)(N − 2). As we zoom in
on the fixed point, the curve and the line come closer together, so the simulation lines in the
cobweb diagrams for the linear and nonlinear models will be indistinguishable, provided we
choose an initial value close enough to the fixed point. The advantage of using the linearized
model is that we don’t need to analyze it with the cobweb diagram, because it can be solved
explicitly. In general, this is how analytical stability methods work. Instead of using a graphical
method for the original nonlinear model, we replace the model with a linear approximation that
can be analyzed with simple calculations.

Linearized stability analysis is much quicker than graphical analysis and works without
the need to specify parameter values. The only drawback is that the conclusions are a little
weaker. With cobweb analysis, we can determine the entire range of initial conditions that con-
verge on a particular fixed point in the long term. With linearized analysis, we can only conclude
that sequences converge to the stable fixed point if they start “close enough” to it. The mathe-
matics of linearization eliminates the possibility of a definite interval of initial conditions. This
is not surprising, as we should not expect to be able to answer global questions by using local
analysis.

21 See Section 1.4.
22 See Section 5.1.
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5.5.2 Stability Analysis for Discrete Models: The General Case

The power of mathematics is in its ability to obtain general results from motivating examples.
In Example 5.5.1, the conclusion of asymptotic stability for N = 2 derived from the solution
formula xt = 0.4tx0, which has a limit of 0 because |0.4|< 1. The number 0.4 originally came
from the calculation of g′(2), which is the slope of the linear approximation of g(N) at 2. If we
change the problem, the details will be different, but the general result will be the same. Given
a fixed point N� for the equation Nt+1 = g(Nt), the linearized model at that fixed point is

xt+1 = g′(N�)xt , x = N −N�.

Thus, the difference between N and N� is approximately

xt = [g′(N�)]t x0.

This quantity vanishes as t → ∞ if |g′(N�)| < 1, which serves as a sufficient condition for
asymptotic stability. Every example will work the same way, with only superficial differences
owing to different g functions. Instead of repeating the full calculation every time, we can
summarize the result in a theorem.

Theorem 5.5.1 (Stability of Discrete Dynamic Variables). Let N� be a fixed point for
the sequence defined by Nt+1 = g(Nt), where g is a differentiable function. Let xt = Nt −
N� be a small perturbation from the fixed point. Then the linearized model near N = N�

is
xt+1 = g′(N�)xt ;

furthermore,

• The fixed point N� is asymptotically stable if |g′(N�)|< 1 and unstable if |g′(N�)|> 1;
• xt alternates in sign whenever g′(N�) < 0 and retains a uniform sign whenever

g′(N�)> 0.

Theorem 5.5.1 allows for a very efficient determination of stability, as long as g′(N�) 
= ±1.
With a combination of linearized stability analysis and cobweb diagrams, we can often obtain
a complete picture of long-term behavior for a discrete model with an arbitrary initial point.

Example 5.5.2. Consider again the model
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Nt+1 =
2.5N2

t

1+N2
t
.

The fixed points23 are the solutions of

N =
2.5N2

1+N2 ;

hence, either N = 0 or 1 = 2.5N/(1+N2). The latter simplifies to the quadratic equation N2 −
2.5N + 1 = 0, which yields the solutions N = 0.5 and N = 2. The fixed points are thus N� = 0,
N� = 0.5, and N� = 2. To determine the stability of each fixed point, we first need to determine
g′. From

g(N) =
2.5N2

1+N2 ,

we have

g′(N) =
(5N)(1+N2)− (2.5N2)(2N)

(1+N2)2 =
5N

(1+N2)2 .

Specifically, g′(0) = 0, g′(0.5) = 1.6, and g′(2) = 0.4. By Theorem 5.5.1, 0 and 2 are asymp-
totically stable and 0.5 is unstable. Combined with the cobweb diagram of Figure 5.2.2, we can
conclude that the population approaches 2 if N0 > 0.5 and approaches 0 if N0 < 0.5. This is an
example of a model in which extinction can occur when the population is below some threshold
value, a phenomenon sometimes called the Allee effect. ��

So far, we have used the linearization technique only for a model with fixed parameters. It
can also be applied without fixing the values of parameters.

Example 5.5.3. Consider the discrete logistic model

Nt+1 = Nt +RNt

(
1− Nt

K

)
, R >−1.

We found the fixed points to be N = 0 and N = K in Section 5.1. For the stability analysis,
we have

g(N) = N +RN − RN2

K
;

thus,

g′(N) = 1+R− 2RN
K

.

At the fixed points, we have g′(0) = 1+R and g′(K) = 1−R. The stability requirement for
0 is −1 < 1+R < 1, from which we have that 0 is asymptotically stable if R satisfies both
inequalities R > −2 and R < 0. The first of these is satisfied automatically for biologically
meaningful values of R. The stability requirement for K is −1 < 1−R < 1, which reduces to
the inequalities R < 2 and R > 0. Our conclusions are as follows:

• For −1 < R < 0, 0 is asymptotically stable and K is unstable. The population will approach
0 from any starting value.

23 See also Example 5.1.3.
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• For 0 < R < 2, 0 is unstable and K is asymptotically stable. The population will approach K
from any positive starting value. More specifically, we can determine whether the population
will oscillate by checking the sign of the derivative g′(K) = 1− R. It will oscillate as it
approaches K if 1 < R < 2, but not if 0 < R < 1.

• For R > 2, both 0 and K are asymptotically unstable. The long-term behavior is not clear
from this analysis. There are a number of possibilities, including periodic behavior and
chaotic behavior.24 ��

5.5.3 Stability Analysis for Continuous Models

Stability analysis for continuous models is also based on examination of a linearized model.
The idea is exactly the same as for discrete models, but the result is different.

Let N� be an equilibrium solution for the problem dN/dt = f (N). As with the discrete case,
we can replace f near N = N� by a linear approximation f (N) ≈ f (N�)+ f ′(N�)(N −N�) =
f ′(N�)(N −N�), where we have used the fact that f (N�) = 0 because N� is an equilibrium
solution. Thus, we have

dN
dt

≈ f ′(N�)(N −N�).

With x(t) = N(t)−N�, we have the linearized model

dx
dt

= f ′(N�)x.

This is the exponential growth equation, and it has the solution

x = x(0)e f ′(N�)t .

Thus, x → 0 whenever f ′(N�)< 0. This gives us a theorem analogous to Theorem 5.5.1.

Theorem 5.5.2 (Stability of Continuous Dynamic Variables). Let N� be an equilibrium
solution for the differential equation N′ = f (N), where f is a differentiable function. Let
x = N −N� be a small perturbation from the fixed point. Then the linearized system near
N = N� is

x′ = f ′(N�)x.

Furthermore:

• The equilibrium solution N� is asymptotically stable if f ′(N�) < 0 and unstable if
f ′(N�)> 0.

Example 5.5.4. The model

N′ = f (N) = rN

(
1− N

K

)

24 See Problem 5.5.5.
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has equilibrium solutions N� = 0 and N� = K. We have

f ′ = r

(
1− N

K

)
+ rN

(
− 1

K

)
= r

(
1− 2N

K

)
.

Specifically, f ′(0) = 1 > 0 and f ′(K) =−1 < 0. By Theorem 5.5.2, 0 is unstable and K is
asymptotically stable. ��

5.5.4 Similarities and Differences

The standard forms for discrete and continuous models are Nt+1 = g(Nt) and N′ = f (N). The
functions g and f do not represent corresponding quantities; one is the new population, while
the other is the rate of change. This means that discrete results stated in terms of g and con-
tinuous results stated in terms of f look considerably different. If we want to understand the
similarities and differences of discrete and continuous models, we must first rewrite the stan-
dard form for discrete models to focus on the rate of change. As discussed earlier,25 the rate
of change in a discrete model is the same as the difference between consecutive values; this
corresponds to a general form

Nt+1 −Nt = F(Nt), (5.5.4)

for some function F . This is equivalent to the standard form version

Nt+1 = Nt +F(Nt).

Thus, the function F that represents the relative rate of change in a discrete model is related to
the function g that represents the new population value by the equation

g(N) = N +F(N).

This identification allows us to recast Theorem 5.5.1 in terms of the rate of change. (The deriva-
tion of this result is left as Problem 5.5.11.)

Theorem 5.5.3 (Stability of Discrete Dynamic Variables). The fixed point N� for the
discrete model Nt+1 −Nt = F(Nt), with F continuous, is asymptotically stable if and only
if F ′(N�)< 0 and F ′(N�)>−2.

Compare Theorems 5.5.2 for the continuous case and 5.5.3 for the discrete case. The re-
quirements f ′(N�) < 0 and F ′(N�) < 0 both say that the derivative of the rate of change must
be negative at the point N�. This is enough in the continuous case, but there is an extra require-
ment in the discrete case. While N� is stable in the continuous case no matter how negative
f ′(N�) is, stability is lost in the discrete case if F ′(N�) is too negative. The additional stability
requirement for the discrete case has an important biological consequence: populations whose
dynamics are governed by synchronous processes, such as fish that reproduce in one short pe-
riod out of the year, are more likely to be unstable than those whose dynamics are governed by
asynchronous processes.

25 See Section 5.1.
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The additional stability requirement also has an important mathematical consequence. Nu-
merical simulations for continuous models are actually done on a discretized version of the
model.26 The extra stability requirement makes it possible for the discretized version used for
simulation to be unstable even though the original continuous model is stable. Thus, simula-
tions for continuous models can show instability that is an artifact of the simulation method
rather than an actual property of the system. Fortunately, this problem can be dealt with effec-
tively, provided one is aware of it. Numerical analysts use the term stiff to describe a differential
equation or a system of differential equations that is prone to loss of stability when discretized.
If you suspect that the problem you are working on is stiff, you can use special numerical
methods designed to prevent the loss of stability. In practice, stiffness is seldom encountered
in one-component models, but it is rather common in multicomponent models in biology and
chemistry.

Problems

5.5.1.* (Continued from Problems 5.1.2 and 5.2.1.)

(a) Determine the stability of the fixed points for the Beverton–Holt model

Nt+1 =

(
S+

A
1+Nt

)
Nt , A > 0; 0 ≤ S < 1.

(b) Discuss the results with reference to Problems 5.1.2 and 5.2.1.

5.5.2. (Continued from Problems 5.1.3 and 5.2.3.)

(a) Determine the stability of the fixed points for the Ricker model

Nt+1 =
[
S+Ae−Nt

]
Nt .

(b) Discuss the results with reference to Problems 5.1.3 and 5.2.3.

5.5.3. (Continued from Problems 5.1.4 and 5.2.4.)

(a) Determine the stability of the fixed points for the Hassell model

Nn+1 =

(
A

1+Nn

)b

Nn, A,b > 0,

for the cases b ≤ 1, b = 2, and b = 3.
(b) Determine whether the stable solutions found in part (a) oscillate.
(c) Discuss the results with reference to Problems 5.1.4 and 5.2.4.

5.5.4. (Continued from Problems 5.1.5 and 5.2.5.)

(a) Determine the stability of the fixed points for the pest control model

Nn+1 =
4N2

n

(1+Nn)(Nn + S)
, S > 0.

26 As in Example 5.3.1.
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Three cases must be considered; these correspond to the two portions of the parabola and
the straight line in the plot of Problem 5.1.5b. Assume that you can use the three fixed points
for S = 2/3 to indicate stability on their respective curves in the SN plane.27

(b) Discuss the results with reference to Problems 5.1.5 and 5.2.5.

5.5.5.* (Continued from Problems 5.1.6 and 5.2.2.)

Two steps of the discrete logistic model xt+1 = xt + xt(R− xt) yield the formula

xt+2 = xt + xt(R− xt)(x
2
t −Bxt +B), B = R+ 2.

While this formula is far more complicated than the original, it makes it possible for us to study
solutions in which fixed x values repeat over cycles of two time steps.

(a) Use the function
f (x) = x+(Rx− x2)(x2 −Bx+B)

to obtain a formula for f ′(X) at a cycle point X (that is, a point that satisfies
x2 −Bx+B= 0). [Hint: If you apply the product rule to the second term of f , one of
the resulting terms is immediately 0.]

(b) Find the cycle points X and the derivatives f ′(X) for R = 2.2. Use the results to determine
the stability of the 2-cycle.

(c) Repeat part (b) for R = 2.5 and R = 2.7.
(d) Show that the critical value for stability of the 2-cycle is R =

√
6.

(e) Discuss the results with reference to Problems 5.1.6 and 5.2.2.

5.5.6. *(Continued from Problem 5.4.1.)
Use Theorem 5.5.2 to determine the stability of the equilibria for the model

dN
dt

=−N

(
1− N

T

)(
1− N

K

)
, 0 < T < K.

Discuss the results with reference to Problem 5.4.1.

5.5.7. (Continued from Problems 5.3.2 and 5.4.2.)
Determine the stability of all equilibria for the Schaefer model

x′ = x(1− x)−Ex, E > 0.

Discuss the results with reference to Problems 5.3.2 and 5.4.2.

5.5.8. (Continued from Problems 5.3.10 and 5.4.3.)
Determine the stability of all equilibria for the Holling type II resource consumption model

v′ = v

(
1− v

k
− c

1+ v

)
, k = 2, c > 0.

[Hint: For the positive equilibria, use the equilibrium relation v′ = 0 to eliminate c from the
formula for f ′(v∗). Then solve f ′(v∗) = 0 for v∗. Argue that f ′(v∗) < 0 when v∗ is above this
critical value. This will mark one portion of the parabola in the cv plane as stable and the other
as unstable.] Discuss the results with reference to Problems 5.3.10 and 5.4.3.

27 Technically, we should have to determine stability with arbitrary S, but the algebra in this case is rather messy.
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5.5.9. (Continued from Problems 5.3.12 and 5.4.4.)
Use stability analysis to confirm the results of Problem 5.4.4, parts (a) and (b).

5.5.10.(a) Use Theorem 5.5.2 to show that a positive equilibrium of the renewable resource
model (5.3.7) is stable if

v
k
+ cv

1− v2

(1+ v2)2 > 0.

(b) Use the equation for equilibria to eliminate c from the condition of part (a) and rearrange
the result to get the form

1+ v2
(

2v
k
− 1

)
> 0.

(c) Use the result from part (c) to show that any equilibrium that satisfies v ≥ 0.5k must be
asymptotically stable.28

5.5.11. Derive the result of Theorem 5.5.3 by defining the appropriate function g for the model
Nt+1 −Nt = F(Nt) and applying Theorem 5.5.1.

5.5.12. Consider a model for a fish population that runs over a 2-year cycle:

Yt+1 = g(At), At+1 = f (Yt ),

where

f (0) = g(0) = 0, f ′,g′ > 0, f ′′,g′′ < 0, f (Y )< Y, g(A)< gm.

(a) Sketch graphs of f and g.
(b) Derive a model that tracks adults only with a 2-year census interval.
(c) Determine the restriction necessary on the functions f and g for the population to persist

(in other words, for the fixed point A∗ = 0 to be unstable).
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Chapter 6
Discrete Dynamical Systems

In Chapter 5, we considered the dynamics of single quantities changing in either discrete or
continuous time. Here we consider the dynamics of systems of several related quantities chang-
ing in discrete time. These arise in a variety of settings and can exhibit quite complicated behav-
ior. This chapter deals exclusively with linear systems, which are used to represent dynamics
of structured populations divided into classes by age, size, or stage. Discrete linear systems
are a major tool in conservation biology modeling, where the primary goal is to determine the
effects of parameters on the growth rate of a population. Discrete nonlinear systems appear in
Appendix A.1 and require some background from Chapter 7.

We begin in Section 6.1 with a simulation-driven introduction to the dynamics of structured
populations. The models we obtain are analogous to exponential growth models for single quan-
tities, except that the possibility of various distributions of population among the classes makes
the exponential growth rate difficult to determine. However, we can demonstrate for any exam-
ple that the model does eventually tend toward exponential growth; for problems with a limited
number of classes, we can prescribe an intuitive method for determining both the eventual
growth rate and the stable distribution of the population.

It is often true that problems that can be solved by intuition are more easily solved by a
formal mathematical procedure based on prior conceptual development. The analysis of discrete
linear dynamical systems is an outstanding example of this phenomenon. In Section 6.2, we
develop some of the basic mathematical theory of matrix algebra, and then we apply this theory
in Section 6.3 to the problem of determining the eventual growth rate and stable population
distribution for structured models.

The matrix algebra theory of Sections 6.2 and 6.3 is essential background for the analysis of
continuous systems in Chapter 7. Indeed, this material is essential for much of the mathematical
analysis performed in biology, and the reader is advised to aim for mastery.

6.1 Discrete Linear Systems

After studying this section, you should be able to:

• Construct a structured discrete linear population model from a narrative description.
• Identify a narrative description from a structured discrete linear population model.
• Describe the general behavior of two-component discrete linear population models in terms

of the growth rate and stable population ratios.
• Determine the long-term growth rate and stable population ratios for two-component discrete

linear population models.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 6,
© Springer Science+Business Media, LLC 2013
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In this section, we extend the basic ideas of the single-component linear model to analogous
models of populations with structure. We begin with a brief summary of the earlier model,
adapted from material in Chapter 5. The most basic form of this model is

Nt+1 = λ Nt , (6.1.1)

which can be rearranged into the form

λ =
Nt+1

Nt
. (6.1.2)

This version reveals that λ is the constant factor by which the population is augmented at each
time step.

The model (6.1.1) has the explicit solution

Nt = λ tN0 , (6.1.3)

which indicates that the population grows without bound if λ > 1, stays constant if λ = 1, and
shrinks toward 0 if λ < 1. Thus, the unique fixed point N = 0 is asymptotically stable if λ < 1,
neutrally stable if λ = 1, and unstable if λ > 1.

It is helpful to keep these basic facts about single-component models in mind, as multicom-
ponent models exhibit behaviors that are similar, albeit more complicated.

6.1.1 Simple Structured Models

Simple models of single (unstructured) populations track only the total population size. For
reasons that will become clear through the examples, such models can sometimes fail to capture
important aspects of population behavior. Better models may be obtained by adding structure
to a population model.

Structured population model: a population model in which individuals are categorized
according to some discrete or continuous property.

We restrict consideration to models in which individuals are divided into discrete classes.

Example 6.1.1. A population consists of juveniles and adults and changes from year to year
through survival and reproduction:

• Ten percent of the juveniles survive to become adults.
• All adults die after 1 year.
• Adults produce an average of 20 juveniles in their single season of life, through reproduction.
• Juveniles also reproduce, with an average of one juvenile offspring each.

For simplicity, we assume the population has only one sex. Our model requires equations that
compute Jt+1 and At+1 in terms of the populations of both at time t. All juveniles at time t + 1
result from reproduction, but we must include both those produced by adult parents and those
produced by juvenile parents. All adults at time t +1 result from survival of the previous year’s
juveniles. Thus, we have the model

Jt+1 = Jt + 20At , At+1 = 0.1Jt . (6.1.4)

��
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As with one-component dynamic models, we can study the model (6.1.4) with simulations,
provided we prescribe initial population values at time 0.

Example 6.1.2. Suppose we have an initial population of 200 juveniles and 10 adults that
changes in accordance with (6.1.4). The prescribed initial populations are

J0 = 200 , A0 = 10 .

The populations at time 1 are then found using t = 0:

J1 = J0 + 20A0 = 400 , A1 = 0.1J0 = 20 .

Similarly, we find
J2 = J1 + 20A1 = 800 , A2 = 0.1J1 = 40 .

In this simulation, the populations of both classes double at each time step. In other words,

Jt+1

Jt
= 2 ,

At+1

At
= 2 .

Alternatively, we may write an exact solution as

Jt = 2t J0 , At = 2tA0 . ��

In Example 6.1.2, the structured model (6.1.4) displays exactly the same behavior as the
unstructured model (6.1.1). However, we should be careful not to draw too strong a conclusion
from this. The simulation results may be more complicated if we start with different initial
populations.

Example 6.1.3. Consider the model (6.1.4) with an initial population of 100 juveniles and 10
adults. Table 6.1.1 shows the population growth over several time steps. The population does
not double at each time step, which would require Jt+1/Jt = 2 and At+1/At = 2 for each t.
However, the ratios of successive populations do approach 2 gradually as time increases. ��

Table 6.1.1 Populations for (6.1.4) with J0 = 100, A0 = 10

Time 0 1 2 3 4 5
J 100 300 500 1,100 2,100 4,300
A 10 10 30 50 110 210

Jt+1/Jt 3 1.67 2.2 1.91 2.05
At+1/At 1 3 1.67 2.2 1.91

J/A 10 30 16.7 22 19.1 20.5

Check Your Understanding 6.1.1:
Verify the data in Table 6.1.1.

The comparison between Examples 6.1.2 and 6.1.3 is instructive. In both cases, the model
predicts a growth rate of 2; however, the simulation produces a growth rate of exactly 2 in
the first instance and only approaches 2 gradually in the second. We can gain crucial insight
into the behavior of structured models by examining the ratio of J to A. In Example 6.1.2,
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this ratio is initially 20:1; because both population classes double at each time step, the ratio
of 20:1 is maintained. However, in Example 6.1.3, the ratio of J to A is initially 10:1. Over
the course of the simulation, the ratio changes, because the growth rates of the two component
populations are not exactly the same. However, the ratio appears to approach 20:1 as the growth
rate approaches 2.

Examples 6.1.2 and 6.1.3 illustrate the basic behavior of discrete linear structured models.
There is a special ratio of initial populations, 20 to 1 in this case, for which the model shows
growth at a constant rate λ > 0.1 If a simulation starts with a different ratio of initial popula-
tions, then the model populations will only gradually settle into a pattern with the characteristic
growth rate and proportions.

6.1.2 Finding the Growth Rate and Stable Distribution

The model of Examples 6.1.2 and 6.1.3 seems to have a characteristic growth rate and pop-
ulation ratio that solutions approach regardless of the initial population values. Is there some
method that can be used to find these characteristic features without having to resort to simu-
lations? The answer is “yes,” but some theory of matrix algebra is needed before the method
can be fully developed; this is addressed in the next two sections. Meanwhile, it is instructive to
solve the problem for small models, such as that of the example, using basic principles rather
than a sophisticated mathematical technique.

Example 6.1.4. To find the characteristic growth rate and population ratios for the model (6.1.4),
we begin by assuming that the initial populations are J0 = j and A0 = a, and that their ratio
produces a growth rate of λ that is correct at each time step. We may freely take a = 1, which
will leave us with two unknowns, λ and j. We know from our simulations that the results
are λ = 2 and j = 20, but our current goal is to determine these values without recourse to
simulations. The key idea is that we can calculate J1 and A1 in two different ways by utilizing
all of the information that is given.

• The model equations allow us to compute J1 and A1 for any initial values, including J0 = j
and A0 = 1. Thus,

J1 = J0 + 20A0 = j+ 20 , A1 = 0.1J0 = 0.1 j .

• If we choose j correctly, then both component populations will change by a factor of λ in
each time step; hence,

J1 = λ J0 = λ j , A1 = λ A0 = λ .

These two calculations must yield the same answers, which gives us two equations, one for
each of the component populations J1 and A1:

j+ 20 = λ j , 0.1 j = λ .

1 Of course there could be “growth” at a rate less than 1 for some models.
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For reasons that will become clearer later, the best way to proceed is to solve one of the equa-
tions for j and substitute into the other to obtain an equation for λ . The second equation gives
us j = 10λ , and then the first becomes

10λ + 20 = 10λ 2 ,

or
0 = 10λ 2 − 10λ − 20 = 10(λ − 2)(λ + 1) .

Curiously, we get more than one answer for λ . We know which one is correct from our simula-
tion: λ = 2 with its corresponding value j = 10λ = 20. ��

6.1.3 General Properties of Discrete Linear Structured Models

Example 6.1.4 suggests two important mathematical questions.

1. In general, what sort of equation do we get for λ and how many solutions does it have? If
there is more than one solution for λ , how do we know which one is correct?

These issues will be explored in more depth in the next two sections; in short, here is what we
will discover:

Discrete linear structured population models with n components always have a long-term
growth rate λ , which is the largest positive root of a polynomial of degree n.

0 1 2
−100

0

100

200

300

400

λ

f

Fig. 6.1.1 The polynomial f (λ ) for Example 6.1.5

Example 6.1.5. A population consists of larvae, young adults, and older adults. One percent of
larvae grow into young adults each year, and 30% of young adults survive to become older
adults. Young adults have an average of 104 offspring each year, while older adults have an
average of 160 offspring. Find the long-term growth rate and population ratio.

From the description, we obtain the model
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Lt+1 = 104Yt + 160At, (6.1.5)

Yt+1 = 0.01Lt , (6.1.6)

At+1 = 0.3Yt . (6.1.7)

Now suppose the initial populations are l, y, and 1, and the long-term growth rate is λ . Using
the model, we obtain

L1 = 104y+ 160 , Y1 = 0.01l , A1 = 0.3y .

The assumption that l:y:1 is the ratio of populations corresponding to growth at rate λ yields

L1 = λ l , Y1 = λ y , A1 = λ .

Combining these two sets of equations yields three equations for λ , l, and y:

104y+ 160 = λ l,

0.01l = λ y,

0.3y = λ .

We have

y =
1

0.3
λ

from the third equation and

l = 100λ y =
100
0.3

λ 2

from the second. The first equation then becomes

104
0.3

λ + 160 =
100
0.3

λ 3 ,

or
104λ + 48 = 100λ 3 .

Hence, we need to find the largest positive root of the third degree polynomial equation

f (λ ) = 100λ 3 − 104λ − 48 = 0 . (6.1.8)

There is no convenient solution formula for third degree polynomial equations. Sometimes
one can guess a root and then factor the equation, but this is unlikely unless the parameters
have been chosen for arithmetical convenience. Nevertheless, there is no difficulty in getting an
approximate solution by graphing. From the graph of f in Figure 6.1.1, we see that the largest
positive solution is approximately λ = 1.2. In fact, this value solves the equation exactly.

Once λ is known, we can quickly recover the other variables:

l =
100
0.3

λ 2 = 480 , y =
1

0.3
λ = 4 .

The stable age distribution has 480 larvae and 4 young adults for every adult. We can also
compute the fractions of the adults in the population as 1/485≈ 0.002 older adults and 4/485≈
0.008 younger adults. Figure 6.1.2 shows the populations and the relative growth rates for a
simulation beginning with 1,000 larvae, 50 young adults, and 5 older adults. Figure 6.1.2a
shows the actual populations and Figure 6.1.2b shows the ratios of successive populations. ��
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Fig. 6.1.2 (a) Populations and (b) population ratios for Example 6.1.5

Note that plots of populations show the trend of accelerating growth, while plots of population
ratios give more detailed information about the manner of growth.

Problems

6.1.1.* Consider a population with the same life history as that of Example 6.1.1, but with only
5% survival of juveniles and average reproduction rates of 11 per year for adults and 0.6 per
year for juveniles.

(a) Run a computer simulation for 10 time steps, assuming an initial population of 10 adults.
(b) Plot the ratios Jt/Jt−1, and At/At−1 together on a common set of axes, starting at t = 1.
(c) Plot the ratio Jt/At .
(d) Based on the plots of parts (b) and (c), describe the long-term behavior that the model

predicts.
(e) Use the method of Example 6.1.5 to determine the long-term growth rate and population

ratios.
(f) Discuss the question of whether the long-term behavior described by the model is biologi-

cally realistic. Could it be realistic in the short term?

6.1.2. Repeat Problem 6.1.1, but with adult reproduction at 5.4 rather than 11.

6.1.3. Consider a population of juveniles and adults for which 5% of juveniles survive to be-
come adults, 60% of adults survive in any given year, and adults have an average of 11 offspring
per year.

(a) Write down the equations for the model based on the given assumptions.
(b) Run a computer simulation for 10 time steps, assuming an initial population of 10 adults.
(c) Plot the ratios Jt/Jt−1 and At/At−1 together on a common set of axes, starting at t = 1.
(d) Plot the ratio Jt/At .
(e) Based on the plots of parts (c) and (d), describe the long-term behavior that the model

predicts.
(f) Use the method of Example 6.1.5 to determine the long-term growth rate and population

ratios.
(g) Discuss the question of whether the long-term behavior described by the model is biologi-

cally realistic. Could it be realistic in the short term?

6.1.4. Consider a population with the same life history as that of Example 6.1.5, but with 4%
survival of larvae, 60% survival of young adults, and average reproduction rates of 11 per year
for young adults and 50 per year for older adults.
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(a) Run a computer simulation for 10 time steps, assuming an initial population of 10 for each
group.

(b) Plot the ratios Lt/Lt−1, Yt/Yt−1, and At/At−1 together on a common set of axes, starting at
t = 1.

(c) Plot the ratios Lt/At and Yt/At together on a common set of axes.
(d) Based on the plots of parts (b) and (c), describe the long-term behavior that the model

predicts.
(e) Use the method of Example 6.1.5 to determine the long-term growth rate and population

ratios.
(f) Discuss the question of whether the long-term behavior described by the model is biologi-

cally realistic. Could it be realistic in the short term?

6.1.5.* Consider a population with the same life history as that of Example 6.1.1, but with r for
the survival probability of juveniles and average reproduction rates of f per year for adults and
s per year for juveniles. Determine the relationship that the parameters must satisfy to achieve
a long-term growth rate of exactly 1.

6.1.6. Consider a population with the same life history as that of Problem 6.1.3, but with r for
the survival probability of juveniles, b for the survival probability of adults, and an average
reproduction rate of f per year for adults.

(a) Determine the relationship that the parameters must satisfy to achieve a long-term growth
rate greater than 1.

(b) Suggest a biological interpretation of the requirement in part (a). [Hint: Write the require-
ment in the form g(b,r, f ) ≥ 1 and determine the biological meanings of the terms in the
function g.]

(This problem is continued in Problem 6.2.5.)

6.1.7. Consider a population with the same life history as that of Problem 6.1.4, but with r
for the survival probability of juveniles, p for the survival probability of young adults, and
reproduction rates of f1 per year for younger adults and f2 per year for older adults.

(a) Determine the relationship that the parameters must satisfy to achieve a long-term growth
rate greater than 1.

(b) Suggest a biological interpretation of the requirement in part (a). [Hint: Write the require-
ment in the form g(p,r, f1, f2) ≥ 1 and determine the biological meanings of the terms in
the function g.]

6.1.8.* Let Rt be the number of red blood cells in circulation on day t and let Mt be the number
produced by the bone marrow on day t. Assume that a fraction f of red blood cells are removed
from the circulation by the spleen each day and that all red blood cells produced by the marrow
become part of the circulation on the following day. Also assume that the number produced by
the marrow on a given day is γ times the number that were removed from circulation on the
previous day [5].

(a) Write down the equations for the model based on the given assumptions.
(b) Suppose the number of red blood cells is approximately constant over long periods of time.

Determine the value of γ necessary for this result.

(This problem is continued in Problem 6.2.6.)

6.1.9. Peregrine falcons (Falco peregrinus anatum) were placed on the endangered species list
in 1970 due to a combination of poisoning from the pesticide DDT, habitat loss, and hunting.
The population recovered because of bans on DDT and hunting along with fostering of baby
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falcons to improve survival rates. By 1999, there were more than 2,000 breeding pairs in the
United States, which was deemed sufficient to remove peregrine falcons from the endangered
list. In 2001, the U.S. Fish and Wildlife Service established a regulation permitting the har-
vesting of up to 5% of newborn peregrine falcons for use by falconers.2 Several environmental
groups objected to the harvesting permits and unsuccessfully appealed the regulation in 2005.
Shortly thereafter, the issue was taken up by a group of undergraduate mathematics students and
their mentors at the University of Nebraska-Lincoln, who constructed a mathematical model to
assess the viability of the falcon population with and without harvesting [4].3 The falcon pop-
ulation model considers the population to consist of three classes: fledglings (B), juveniles (J),
and adults (A), with only females considered. These populations are governed by the equations

Bt+1 = s2 f At ,

Jt+1 = s0 Bt ,

At+1 = s1 Jt + s2 At .

Parameter value estimates (without harvesting) from a population in Colorado are f = 0.830,
s0 = 0.544, s1 = 0.670, and s2 = 0.800.

(a) Describe the life history assumptions of the model. In particular, explain what each of
the parameters represents and how populations of the different classes are connected to
populations in the previous year. Note that the incorporation of s2 into the fledgling equation
says something about the timing of the census.

(b) Run a computer simulation for 15 time steps, assuming an initial population consisting of
2,000 adults, 500 fledglings, and 300 juveniles. The real starting populations of fledglings
and juveniles in 2001 would have been higher than this, so (assuming the parameters are
reliable) this simulation should underestimate falcon populations in 2016 in the absence of
harvesting. Describe the model’s prediction for population growth.

(c) Repeat part (b), but with f reduced by 5% to account for harvesting at the maximum allow-
able rate.

(d) Plot the ratios Bt+1/Bt , Jt+1/Jt , and At+1/At for the data from (c) together on a common
set of axes.

(e) Plot the ratios Bt/At and Jt/At for the data from (c) together on a common set of axes.
(f) Based on the plots of parts (d) and (e), describe the long-term behavior that the model

predicts.
(g) Use the method of Example 6.1.5 to determine the long-term growth rate and population

ratios for the case without harvesting.
(h) Repeat part (g) for the case with harvesting. What percentage change in the population

growth rate results from 5% harvesting?
(i) Determine the relationship that the parameters must satisfy to achieve a long-term growth

rate greater than 1. It is convenient at this point to describe a single recruitment parameter
r = s0s1 f . The viability condition is then a simple inequality involving s2 and r.

(j) Assuming base values for all parameters, what percentage of harvesting would produce a
steady population size?

2 In fact, much of the fostering and general population increase was due to the efforts of falconers, who then felt
that their investment of time and money should be rewarded by being permitted to harvest baby falcons for their
sport. This case serves as an example of the difficult issues involved in trying to create conservation policies that
satisfy diverse interests.
3 The work presented in the paper focuses on the reliability of population projections when parameter values
are uncertain, which is beyond the scope of what we can do here. Nevertheless, our methods allow us to obtain
population growth rate predictions for a variety of circumstances and to determine critical parameter values for
population viability.
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(k) Parameter values are only estimates, and the adult survival probability s2 is particularly
important. Assuming 5% harvesting, how large must s2 be to correspond to a steady popu-
lation?

(This problem is continued in Problem 6.2.7.)

6.1.10. BUGBOX-population [6] is a virtual biology laboratory that gives students experience
in observing biological systems, formulating mathematical models, and collecting data to de-
termine model parameters. The BUGBOX is populated by organisms called “boxbugs,” which
have a life history that makes them more suited to population dynamics experiments than any
real insects.4 All boxbugs are female. The three life stages—larvae, pupae, and adults—are
distinct in appearance. All stages are immobile; the fact that they neither move nor even rotate
makes it easy to identify an individual as it moves through its life. There are four species, each
with a more complicated life history than the previous one. Each can be modeled by a system of
equations that predict the populations of the three stages at time t+1 in terms of the populations
at time t. The details of these equations must be determined by observation.

(a) Run experiments to determine the correct model for Species 1. The equations are very
simple, with only one parameter. Use the letter f to represent this parameter.

(b) Determine the correct models for Species 2, 3, and 4, using r, b, and s to represent the new
parameters in turn.

(c) Complete the model for Species 4 by estimating the values of the parameters.
(d) Run a computer simulation for Species 4 for 20 time steps, assuming an initial population

of 10 adults.
(e) Plot the ratios Lt+1/Lt , Pt+1/Pt , and At+1/At together on a common set of axes, starting at

t = 2.
(f) Plot the ratios Lt/At and Pt/At together on a common set of axes.
(g) Based on the plots of parts (e) and (f), describe the long-term behavior that the model

predicts.
(h) Use the method of Example 6.1.5 to determine the long-term growth rate and population

ratios.
(i) Run several virtual experiments for 20 time steps. Is the model reasonably accurate for

small numbers of time steps? How about large numbers?
(j) What biological feature of the “real” boxbug population is not built into the model?

(This problem is continued in Problem 6.2.8.)

6.2 A Matrix Algebra Primer

After studying this section, you should be able to:

• Multiply matrices and vectors.
• Write discrete linear systems in matrix-vector form.
• Compute determinants of 2× 2 and 3× 3 matrices.
• Determine whether an equation Ax = 0 has nonzero solutions for a given nonzero matrix A.
• Compute nonzero solutions of an equation Ax = 0 when they exist.

4 This software was written when the author was co-teaching an interdisciplinary research course. The research
involved population dynamics of aphids and coccinellids (ladybird beetles). Boxbug biology combines the biol-
ogy of these two real insect types.
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A working knowledge of stage-structured models in biology requires some understanding of
topics in matrix algebra. We begin with the mathematical definitions needed so that discrete
linear structured models can be written in matrix-vector form. We then study what for us is the
central problem of matrix algebra: given a nonzero matrix A, find (if possible) a nonzero vector
x such that Ax = 0.

6.2.1 Matrices and Vectors

In section 6.1, we considered models that had two or more related dynamic quantities, each
with a separate symbol and each computed by its own formula. These quantities can be ad-
vantageously combined into a single multicomponent quantity called a vector, in which the
individual (or scalar) quantities are arranged in a column.5

Example 6.2.1. In Example 6.1.3, we considered a model of a population with classes J and A
and initial populations J0 = 100 and A0 = 10. We can define a two-dimensional vector x whose
components are J and A. Thus,

x =

(
J
A

)
, x0 =

(
J0

A0

)
=

(
100
10

)
. ��

A system of linear equations involving the components of a vector contains several coef-
ficients in addition to the variables. These are grouped together into matrices, which are two-
dimensional arrays of scalar quantities, with one row for each equation and one column for each
variable. Matrices have a dimension m× n, where m is the number of rows and n the number
of columns. In a population biology context, we always have equal numbers of equations and
variables; n× n matrices are said to be square.

Example 6.2.2. The model of Example 6.1.3 consists of two scalar equations, which we can
write as

Jt+1 = 1Jt + 20At ,

At+1 = 0.1Jt + 0At

to emphasize that there is a coefficient for each possible term in the linear functions on the right
sides of the equations. The four coefficients can be arranged as a 2× 2 matrix:

M =

(
1 20

0.1 0

)
. ��

In Example 6.2.2, we constructed the matrix M by systematically putting the coefficient of
variable j from equation i into the matrix in row i and column j. This allows us to use matrices
to represent the corresponding systems of equations. Before we can do so, we need a few more
definitions. In general, we use the notation mi j to refer to the entry in row i and column j of the

5 The advantage of the formalism of vectors will only become apparent after we have defined arithmetic opera-
tions that allow for vector calculations to faithfully reproduce the corresponding scalar calculations.
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matrix M. We use the term main diagonal to refer to the set of matrix entries whose row and
column numbers are the same; that is, entries of the form mkk. This allows us to define the n×n
identity matrix to be the matrix of appropriate size in which all entries on the main diagonal are
1 and all other entries are 0; for example, the 3× 3 identity matrix is

I =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

The identity matrix is particularly helpful when we want to subtract a common value λ from
each entry on the main diagonal of a matrix M.6

Example 6.2.3. Let M be the matrix in Example 6.2.2. Let λ be an unknown number. Define a
matrix A by A = M−λ I. Then

A =

(
1 20

0.1 0

)
−λ
(

1 0
0 1

)
=

(
1 20

0.1 0

)
−
(

λ 0
0 λ

)
=

(
1−λ 20
0.1 −λ

)
.

Notice that A is actually a family of matrices, with λ as the parameter. ��
So far, our matrices and vectors have merely served to combine quantities into a data struc-

ture. The power of these structures becomes apparent only after we have endowed them with
mathematical operations. The addition operation is defined for pairs of vectors or matrices of
the same size. We compute a vector u+ v by adding the corresponding components of the in-
dividual vectors, and matrix addition works the same way. Multiplication is somewhat more
complicated. For the moment, we consider only multiplication of a vector of size n by a matrix
of size n× n, with the matrix on the left.

Matrix product of an n× n square matrix A and an n-vector x: the vector

Ax =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

an1x1 + an2x2 + · · ·+ annxn

⎞
⎟⎟⎟⎠. (6.2.1)

Example 6.2.4. Let M be the matrix of Examples 6.2.2 and 6.2.3 and let x0 be as in Example
6.2.1. We can multiply x0 on the left by M:

Mx0 =

(
1 20

0.1 0

)(
100
10

)
=

(
(1)(100)+ (20)(10)
(0.1)(100)+ (0)(10)

)
=

(
300
10

)
.

��
Keep in mind that the product Ax of a square matrix A and a vector x is defined only when
the matrix is on the left and both matrix and vector have the same size n. The product is also a
vector of size n.

6 The reason for wanting to do this will become clear in Section 6.3.
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6.2.2 Population Models in Matrix Notation

The alert reader may have noticed the correspondence between the preceding examples and
Example 6.1.3. Using the matrix M and vector x, we observe the relationship

Mxt =

(
1 20

0.1 0

)(
Jt

At

)
=

(
Jt + 20At

0.1Jt

)
=

(
Jt+1

At+1

)
= xt+1 .

Hence, the structured population model can be written in a very simple form using matrix-vector
notation.

All discrete linear population models can be written in the form xt+1 = Mxt . The matrix
M is called a population projection matrix.

Example 6.2.5. In Example 6.1.5, we encountered the model

Lt+1 = 104Yt + 160At,

Yt+1 = 0.01Lt ,

At+1 = 0.3Yt .

This model takes the form xt+1 = Mxt , with

x =

⎛
⎝ L

Y
A

⎞
⎠ , M =

⎛
⎝ 0 104 160

0.01 0 0
0 0.3 0

⎞
⎠.

If we start with 1,000 larvae, 50 young adults, and 5 old adults, we can compute the populations
at time 1 by matrix multiplication:

⎛
⎝ L1

Y1

A1

⎞
⎠=

⎛
⎝ 0 104 160

0.01 0 0
0 0.3 0

⎞
⎠
⎛
⎝1,000

50
5

⎞
⎠=

⎛
⎝6,000

10
15

⎞
⎠ .

��

6.2.3 The Central Problem of Matrix Algebra

Let A be an n×n matrix with at least one nonzero entry and let 0 be the n-vector whose entries
are all 0. For any given matrix A, we are interested7 in finding nonzero solutions x for the
equation

Ax = 0 .

It is instructive to examine the corresponding scalar problem. If the equation is ax = 0 and
a 
= 0, then of course the only solution is x = 0. This is not necessarily the case for the matrix
equation.

7 The reason for this interest will become clear in Section 6.3.
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Example 6.2.6. Let A and x be given by

A =

(
0 1
0 0

)
, x =

(
1
0

)
.

Then
Ax = 0 ,

which demonstrates that there are nonzero solutions for this particular matrix. ��
Example 6.2.7. Are there any nonzero solutions to Ix = 0, where I is the identity matrix?

Suppose

x =

(
x1

x2

)
,

with x1 and x2 to be determined. Then

Ix =

(
1 0
0 1

)(
x1

x2

)
=

(
x1

x2

)
.

The equation Ix = 0 corresponds to the equation pair x1 = 0, x2 = 0. Clearly, these equations
have no nonzero solutions. ��

Examples 6.2.6 and 6.2.7 demonstrate that nonzero solutions exist for some matrices, but not
for others. Is there some way to predict whether a given matrix has nonzero solutions without
trying to find them first? Before we can answer this crucial question, we need to develop the
computational tool called the determinant.

6.2.4 The Determinant

The determinant of a matrix is a number that is calculated using the value of its entries using
a complicated formula. Here we consider only the determinants of 2× 2 and 3× 3 matrices,
which are relatively simple.

Determinant of a 2× 2 matrix A: the quantity

det(A) = ad− bc ,

given

A =

(
a b
c d

)
.

The determinant of a 3× 3 matrix A: the quantity

det(A) =(aei+ b f g+ cdh)− (ceg+bdi+a f h) ,

given

A =

⎛
⎝ a b c

d e f
g h i

⎞
⎠.
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These formulas may seem almost random at first, but there is a pattern. Each of the positive
terms is a product of elements aligned diagonally from top left to bottom right,8 and each of the
negative terms is a product of elements aligned diagonally from top right to bottom left.9

Example 6.2.8. Let

A =

⎛
⎝−1.2 104 160

0.01−1.2 0
0 0.3 −1.2

⎞
⎠ .

Then

det(A) = (−1.2)(−1.2)(−1.2)+(104)(0)(0)+(160)(0.01)(0.3)−(160)(−1.2)(0)

−(104)(0.01)(−1.2)−(−1.2)(0)(0.3)=−1.728+0.48+1.248=0.

��

6.2.5 The Equation Ax = 0

The determinant is an efficient way to identify matrices for which Ax= 0 has nonzero solutions.
We state the principal result without proof.

Theorem 6.2.1 (Singular Matrices). The equation Ax = 0 has nonzero solutions for x if
and only if det(A) = 0. Such a matrix is said to be singular.

In some settings, we merely want to know if a matrix is singular; in other settings we want to be
able to calculate the solutions. We illustrate one procedure for solving Ax = 0 when det(A) = 0
with an example.

Example 6.2.9. Let A be the matrix from Example 6.2.8. This matrix is singular, so we know
the equation Ax = 0 has nonzero solutions. Suppose x1, x2, and x3 are the components of a
solution. Then Ax = 0 is equivalent to the scalar equations

− 1.2x1 + 104x2+ 160x3 = 0, 0.01x1 − 1.2x2 = 0, 0.3x2 − 1.2x3 = 0 .

In general, it is difficult to solve systems of equations with lots of variables. However, we can
simplify the task by looking specifically for a solution with x3 = 1. This seems like a wild guess,
but in this case it works. With x3 = 1, the third equation yields x2 = 4. The second equation then
yields x1 = 480. We have apparently found a solution

x =

⎛
⎝480

4
1

⎞
⎠ .

Note that we never used the first of the three equations. This equation is available as a check.
Substituting the results into the first equation yields

8 Lightly copying the first two columns of the 3×3 determinant to the right of the matrix, giving the appearance
of a 3×5 matrix, will help you to see this.
9 These patterns do NOT hold in higher dimensional determinants. The reader who wants to work with higher
dimensional matrices should consult a linear algebra book for a complete definition of the determinant.
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(−1.2)(480)+ (104)(4)+ (160)(1)= 0 ,

which confirms that our solution is indeed correct.10 ��
Was the choice of x3 = 1 special? No, it was convenient, but not necessary. We could have

chosen any nonzero value for any of the three variables. We would have obtained a different
answer, but all the solutions of Ax = 0 are simple multiples of each other. For example, had we
started with x2 = 1, we would have found x3 = 0.25 and x1 = 120. The ratio x1:x2:x3 is 480:4:1
in all cases.

In general, the procedure of Example 6.2.9 could have failed only if the correct solutions
required x3 = 0. Had that been the case, we would simply have tried again with x3 = 0 rather
than x3 = 1.

A Warning

By setting one of the components of the solution vector in Example 6.2.9 to an arbitrary value,
we obtained a solution that was otherwise unique. This does not happen with all matrices, but it
is guaranteed for matrices that arise in population models. A full development of matrix algebra
is beyond the scope of our treatment.

Problems

In Problems 6.2.1–6.2.4, compute the determinant of the indicated matrix.

6.2.1.*

⎛
⎝ 1 2 3

0 1 2
3 0 1

⎞
⎠

6.2.2.

⎛
⎝ 2 3 −1

0 5 3
−4 −6 2

⎞
⎠

6.2.3.

⎛
⎝ a b 0

0 a b
a 0 b

⎞
⎠

6.2.4.

⎛
⎝ a 0 2a

0 b 3b
3c c 2c

⎞
⎠

6.2.5.* (Continued from Problem 6.1.6.)
Write the model of Problem 6.1.6 in matrix-vector form. Then find the determinant of the
matrix.
(This problem is continued in Problem 6.3.5.)

6.2.6. (Continued from Problem 6.1.8.)
Write the model of Problem 6.1.8 in matrix-vector form. Then find the determinant of the
matrix.
(This problem is continued in Problem 6.3.6.)

10 Note that what we have done is essentially equivalent to the part of Example 6.1.5 that followed the calculation
of λ . The whole procedure will be made systematic in Section 6.3.
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6.2.7. (Continued from Problem 6.1.9.)
Write the model of Problem 6.1.9 in matrix-vector form. Then find the determinant of the
matrix.

(This problem is continued in Problem 6.3.7.)

6.2.8. (Continued from Problem 6.1.10.)
Write the species 4 boxbug model (see Problem 6.1.10) in matrix-vector form.

(This problem is continued in Problem 6.3.8.)

6.2.9.* Let A =

( −λ 1
3 2−λ

)
.

(a) Find all values of λ for which the equation Ax = 0 has nonzero solutions.
(b) Find one nonzero solution for each λ in part (a).

6.2.10. Let A =

(
3−λ 2

1 2−λ

)
.

(a) Find all values of λ for which the equation Ax = 0 has nonzero solutions.
(b) Find one nonzero solution for each λ in part (a).

6.2.11. Let A =

⎛
⎝ 2 0 c

0 1 2
2 0 1

⎞
⎠.

(a) Find all values of c for which the equation Ax = 0 has nonzero solutions.
(b) Find one nonzero solution for each c in part (a).

6.2.12. Let A =

⎛
⎝ 0 1 2

c 1 0
1 3 2

⎞
⎠.

(a) Find all values of c for which the equation Ax = 0 has nonzero solutions.
(b) Find one nonzero solution for each c in part (a).

6.3 Long-Term Behavior of Linear Models

After studying this section, you should be able to:

• Explain the biological significance of eigenvalues and eigenvectors.
• Compute (real-valued) eigenvalues and their associated eigenvectors.
• Determine the dominant eigenvalue of a matrix.
• Describe the long-term behavior of discrete linear models.

Population models were introduced in Section 6.1 with scalar notation and ad hoc methods.
Both of our examples exhibited the same behavior: gradual approach to exponential growth
and fixed ratios of component populations. Section 6.2 developed the basic theory of matrix
algebra, with two important results. First, discrete linear population models can be written as
xt+1 = Mxt , where x is a vector of n component populations and M is an n×n matrix. Second,
the equation Ax = 0, where A is a nonzero n× n matrix, has nonzero solutions if and only if
det(A) = 0. In this section, we combine these two results to develop an efficient mathematical
procedure for determining the long-term behavior of discrete linear systems.
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6.3.1 Eigenvalues and Eigenvectors

As we saw in Section 6.1, discrete linear population models exhibit growth at a uniform constant
rate when the initial conditions are just right. We obtained a set of equations for the growth
rate and population ratios by analyzing what happens in the first time step when the initial
conditions have the right proportions. This same method can be applied to models written in
matrix notation. Suppose we have a discrete linear model xt+1 = Mxt and an initial condition
x0 = v for which growth occurs at a constant rate λ . Then we can calculate x1 in two ways.
From the mathematical model, we get

x1 = Mx0 = Mv .

The exponential growth property, given the assumptions that the initial proportions are just
right, gives us

x1 = λ x0 = λ v .

Combining these equations yields a matrix algebra equation,

Mv = λ v , (6.3.1)

in which both the scalar λ and the vector v are unknown. This is the eigenvalue11 problem of
matrix algebra:

Eigenvalue problem for a nonzero n× n matrix M: the problem of finding solutions to
Mv = λ v with v 
= 0.

Eigenvalue (of a nonzero n×n matrix M): a value of λ for which Mv = λ v has nonzero
solutions.

Eigenvector (of matrix M and corresponding to a particular eigenvalue λ ): a vector
v that solves the problem Mv = λ v.

To solve (6.3.1), we must recast it in a more convenient form. Using the identity matrix I,12

we have v = Iv, and this allows us to rewrite Mv = λ v as

Mv = λ v = λ Iv ,

or
Mv−λ Iv = 0 .

This change allows us to use the distributive property of matrix multiplication (factoring out
the v) to get the equivalent equation

(M−λ I)v = 0 . (6.3.2)

11 The pronunciation is “eye-gen-value,” with a hard g as in “get.”
12 See Section 6.2.
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The key to solving (6.3.2) is to see that it is of the form Ax = 0 By Theorem 6.2.1, the
equation has a solution if and only if

det(M−λ I) = 0 . (6.3.3)

This equation works out to finding the roots of a polynomial of degree n, called the character-
istic polynomial of the matrix M.

Example 6.3.1. Let M be the matrix from Example 6.2.2. We have

M−λ I=
(

1 20
0.1 0

)
−λ
(

1 0
0 1

)
=

(
1−λ 20
0.1 −λ

)
.

Thus,

0 = det

(
1−λ 20
0.1 −λ

)
= (1−λ )(−λ )− (20)(0.1)= λ 2 −λ − 2 = (λ − 2)(λ + 1) .

The matrix M has eigenvalues 2 and −1. ��
Once the eigenvalues are known, we can determine eigenvectors from (6.3.2). This is best done
by rewriting the equation in scalar form and applying the procedure of Example 6.2.9.

Example 6.3.2. With M from Example 6.3.1 and λ = 2, we have

M−λ I =
( −1 20

0.1 −2

)
.

The system (M−λ I)v = 0 is equivalent to the scalar equations

−J+ 20A = 0, 0.1J− 2A = 0 .

These equations are redundant, so any solution of one is a solution of the other. Arbitrarily
taking A= 1, the first equation yields J = 20, and this solution also satisfies the second equation.
Thus, any vector of the form

v = c1

(
20
1

)

is an eigenvector corresponding to λ = 2. ��

Check Your Understanding 6.3.1:
Find a formula for all of the eigenvectors of the matrix M from Example 6.3.2
corresponding to the eigenvalue λ =−1.

Example 6.3.3. Let

M =

⎛
⎝ 0 104 160

0.01 0 0
0 0.3 0

⎞
⎠,

as in Example 6.2.5. We have

0 = det

⎛
⎝ −λ 104 160

0.01 −λ 0
0 0.3 −λ

⎞
⎠= [−λ 3 +(160)(0.01)(0.3)]− [−(104)(0.1)(λ )]

=−λ 3 + 10.4λ + 0.48 .
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We derived this equation using scalar methods in Example 6.1.5, where we found the root
λ = 1.2. To find the corresponding eigenvectors, we note that the equation (M− 1.2I)v = 0 is
equivalent to the scalar equations

−1.2J+ 104Y + 160A = 0 , 0.01J− 1.2Y = 0 , 0.3Y − 1.2A = 0 .

Taking A= 1, the third and second equations yield Y = 4 and J = 480, respectively. Substituting
these values into the first equation confirms that the answers are correct.

��
Algorithm 6.3.1 summarizes the procedure for finding eigenvalues and eigenvectors.

Algorithm 6.3.1 Finding eigenvalues and eigenvectors.

Eigenvalues and eigenvectors of a matrix M are the scalars λ and vectors v 
= 0 that
solve the equation

Mv = λ v .

To find eigenvalues and eigenvectors,

1. Find the characteristic polynomial defined by

p(λ ) = det(M−λ I) .

2. The eigenvalues are the roots of the characteristic polynomial.
3. Substitute an eigenvalue λ into the equation

(M−λ I)v = 0 ,

then rewrite this equation as a set of scalar equations.
4. Set one of the scalar unknowns to 1 and solve for the remaining unknowns.13 This

leaves one unused scalar equation to check the solutions.
5. If the last scalar equation does not check, there is an error; most likely the value of λ

that you used is not actually an eigenvalue.

6.3.2 Solutions of xt+1 = Mxt

The eigenvalues and eigenvectors of a matrix M can be used to determine the set of all solutions
to the matrix model xt+1 = Mxt, according to the following theorem.

13 This won’t work if you choose a scalar unknown whose value needs to be 0, but you can try again with that
scalar unknown set to 0 instead. This never happens in stage-structured population models, because the stable
structure of a viable population must have positive numbers for each stage. The corresponding mathematical
property is guaranteed by the Perron-Frobenius theorem.
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Theorem 6.3.1 (Solutions of Discrete Linear Systems). If λ1, . . . ,λn are distinct eigen-
values of an n×n matrix M with associated eigenvectors x(1), . . . ,x(n), then all solutions
of the equation

xt+1 = Mxt

have the form
xt = c1λ t

1x(1) + · · ·+ cnλ t
nx(n) ,

where c1, . . . ,cn are constants.

Example 6.3.4. Continuing with Example 6.3.2, we have the solution

xt = c12t
(

20
1

)
+ c2(−1)t

(
10
−1

)
.

The values of c1 and c2 are determined by the initial data, which is J(0) = 100 and A(0) = 10.
Thus, (

100
10

)
= x0 = c1

(
20
1

)
+ c2

(
10
−1

)
.

This vector equation corresponds to the scalar equations

20c1 + 10c2 = 100, c1 − c2 = 10 .

We can solve these equations by adding 10 times the second to the first, with the result 30c1 =
200; hence, c1 = 20/3 and then c2 =−10/3. Thus,

xt =
20
3

2t
(

20
1

)
− 10

3
(−1)t

(
10
−1

)
.

��

6.3.3 Long-Term Behavior

In ecological modeling, we are usually concerned with the general characteristics of models
rather than the detailed results of specific simulations. The important thing to note about the
solution in Example 6.3.4 is not the solution formula itself; rather, it is that 2t dominates (−1)t

as t increases. Regardless of the values of c1 and c2 (as long as c1 
= 0), the solution of the
model ultimately approaches

xt = c12t
(

20
1

)
.

For this reason, the eigenvalue that matters to the long-term behavior is the one with the largest
magnitude. The value of c1, as long as it isn’t 0, is not very important because the models are
too crude to be used for quantitative prediction. The goal is to predict the qualitative behavior,
and for this it is the dominant eigenvalue and its associated eigenvector that matter. The results
are summarized in a theorem.
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Theorem 6.3.2 (Long-Term Behavior of Discrete Linear Population Models). Sup-
pose λ1 has a larger magnitude than the other eigenvalues of a matrix M and x1 is an
eigenvector corresponding to λ1. Then almost all solutions of xt+1 = Mxt eventually ap-
proach

xt = c1λ t
1x(1) .

Thus, the eigenvalue of largest magnitude determines the long-term growth rate and the
corresponding eigenvector determines the long-term solution ratios.

Example 6.3.5. Let

M =

⎛
⎝ 0 104 160

0.01 0 0
0 0.3 0

⎞
⎠ .

The dominant eigenvalue λ = 1.2 and the corresponding eigenvector were found in
Example 6.3.3. From Theorem 6.3.2, we have the qualitative result: the long-term behav-
ior of the model is growth at a rate of 20 % with the stable age distribution of 480:4:1. ��

Check Your Understanding Answers

1. v = c2

(−10
1

)
. This is not the only possible answer. Any 2-vector for which the first com-

ponent is −10 times the second component works equally well.

Problems

Find the eigenvalue of largest magnitude and a corresponding eigenvector for each of the ma-
trices in Problems 6.3.1–6.3.4.

6.3.1.*

M =

(
2 3
2 1

)

6.3.2.

M =

(
1 1
2 0

)

6.3.3.

M =

⎛
⎝ 0 9 12

1/3 0 0
0 1/2 0

⎞
⎠

6.3.4.

M =

⎛
⎝ 1 3 2

2 0 0
2 2 0

⎞
⎠

6.3.5.* (Continued from Problem 6.2.5.)
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(a) Derive the polynomial equation for the eigenvalues of the matrix model of Problem 6.2.5.
(b) Determine the inequality that the parameters must satisfy for a growth rate of at least 1.

6.3.6. (Continued from Problem 6.2.6.)

(a) Derive the polynomial equation for the eigenvalues of the matrix model of Problem 6.2.6.
(b) Determine the inequality that the parameters must satisfy for a growth rate of at least 1.

6.3.7. (Continued from Problem 6.2.7.)

(a) Derive the polynomial equation for the eigenvalues of the matrix model of Problem 6.2.7.
(b) Determine the inequality that the parameters must satisfy for a growth rate of at least 1.

6.3.8. (Continued from Problem 6.2.8.)

(a) Derive the polynomial equation for the eigenvalues of the matrix model of Problem 6.2.8.
(b) Determine the inequality that the parameters must satisfy for a growth rate of at least 1.

6.3.9. The teasel plant (Dipsacus sylvestris) has a complicated life cycle consisting of dormant
seeds, rosettes (which are vegetative but do not flower), and flowering plants. Rosettes have been
subclassified as small, medium, and large by field biologists,14 and the germination probability
of dormant seeds decreases with age. Thus, it makes sense to consider a stage-structured model
with two classes of dormant seeds, three classes of rosettes, and one class of flowering plants
[1]. Using data obtained by Werner and Caswell [9], the matrix representing teasel populations
has been reported as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 322
0.966 0 0 0 0 0
0.013 0.010 0.125 0 0 3.45
0.007 0 0.125 0.238 0 30.2
0.008 0 0 0.245 0.167 0.862

0 0 0 0.023 0.750 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This model serves as a good example of how careful examination of data and results can yield
useful biological information.

(a) Describe the various components of the life history of the teasel plant, as indicated by the
pattern of nonzero entries in the matrix. [Hint: Draw a life history graph with a row of
nodes for D1, R1, R2, R3, and F and a node for D2 below this row and between D1 and
R1. Then draw arrows to represent each possible transition. It is (barely) possible to locate
these arrows in such a way that none of them cross. You can then describe the life history
in terms of the graph.]

(b) Determine the long-term stable growth rate and the associated ratios of each group pop-
ulation to the adult population. [For a large matrix such as this one, you will want to use
mathematical software.]

(c) Note that second-year dormant seeds have a very low probability of germinating and are
only capable of producing small rosettes. Suppose their germination probability is changed
to 0. How does that change the long-term growth rate?

(d) Based on the result of part (c), it is clear that second-year dormant seeds make no measur-
able contribution to the teasel population. Reformulate the matrix to omit this group. Note
that the new matrix will be 5× 5.

14 These distinctions are largely arbitrary. Since size is a continuous variable, we could just as easily use two
or four classes of rosettes. There are integral projection models that deal with continuous size structure and
discrete time, but these models are far beyond the scope of this book. They are also impractical, unless there is
an enormous amount of data on the effect of rosette size on the future of the plant.
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(e) One of the other stages of the teasel plant makes almost no difference to the population
dynamics. Try to determine which one this is without doing any calculations. Then check
your guess by systematically removing one group at a time. As in part (d), removing one
group corresponds to removing one row and one column from the matrix.

(f) Having removed two of the six stages in the model without appreciably affecting the results,
we now have a 4×4 matrix. Determine the contribution that the dormant seeds make to the
population growth by setting the rate of dormant seed production to 0. You should find that
dormant seeds make a noticeable difference but not a major contribution.

(g) As in part (f), determine the contribution to the population growth made by medium rosettes
returning the next year as medium rosettes by setting the appropriate matrix entry to 0. [First
undo the change in part (f) so that you determine only the contribution from maintenance
of medium rosettes.]

(h) Determine the importance of new seeds becoming large rosettes rather than medium
rosettes. Note that it is not correct to merely set the appropriate matrix entry to 0; it is
better to assume that those seeds become medium rosettes instead of large ones.

(i) Repeat part (a), but include only those stages and transitions that significantly impact the
teasel population dynamics. Distinguish between primary and secondary life history ele-
ments.

6.3.10. The pea aphid Acyrthosiphon pisum exhibits rapid population growth because of its
unusual life history.15 Asexual females hatch from eggs in the spring and find an annual host
plant on which to found new colonies. For the remainder of the growing season, the colony
consists of wingless asexual females that reproduce by cloning and are born live.16 Sexual
morphs are produced at the end of the growing season; they fly to trees, where they mate and
lay eggs for the next year’s fundatrices. Experiments conducted by teams of undergraduates
at the University of Nebraska-Lincoln measured the vital rates of aphids and aphid population
growth [7].

(a) A stage-based model for aphid population dynamics needs six stages: first-, second-, third-,
and fourth-instar nymphs, young adults, and mature adults. Aphids progress through each
of the first five stages in 1–3 days. Under ideal conditions, experiments have obtained daily
survival probabilities of 0.974, 0.952, 0.961, 0.930, 0.955, and 0.903 for the six stages,
respectively. The probabilities of surviving and advancing to the next stage in 1 day are
0.421, 0.714, 0.538, 0.379, and 0.455 for the immature stages. There is also a small proba-
bility of 0.034 for fourth-instar aphids to become mature adults in 1 day. Young adults have
an average of 2.106 offspring per day, and mature adults average 3.630 offspring per day.
Use this data to construct a matrix for the aphid population model. Note that the survival
probabilities include individuals who stay in the same stage for the whole day as well as
individuals who move to the next stage.

(b) Use computer software to determine the long-term growth rate predicted by the model and
the fraction of each stage in a population growing at that long-term rate. In particular, what
fraction of the population are first-instar nymphs and what fraction are adults?

(c) Use the matrix model to run a simulation of aphid population growth, given a starting
population of one reproductive adult and running for 15 days. What is the total population
after 15 days?

(d) Use the 15-day total and the long-term growth rate to determine how long it will take for
the population to reach 1,000.

(e) Plot Nt+1/Nt versus time (starting at t = 1), where Nt is the total population at time t.

15 This life history is common among aphid species.
16 Pea aphids are born pregnant, so the amount of time required for a newborn aphid to become a reproductive
adult can be as little as 8 days.
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(f) Offer a biological explanation for the shape of the curve in part (c). In particular, explain
why the growth rate oscillates and why the amplitude of the oscillation decreases over time,
and connect the behavior of the graph at the end of the 2 weeks with the result of part (b).17

6.3.11. Matrix population projection models have been used to study the extinction risk and
possible conservation strategies for the endangered Serengeti cheetah (Acinonyx jubatus) pop-
ulation [2, 8]. The model used for these studies divides cheetah populations into age classes
0–6, 6–12, 12–18, 18–24, 24–30, 30–36, 36–42, and 42+ (months). Here we consider a slightly
simplified version in which all of the reproductive age groups (2 years and up) are combined
together. In this simplified model, only the oldest of the groups reproduces, with a fertility of
1.277 female offspring per adult female per 6-month period. The survival probabilities for the
five age groups in the model are s1, 0.771, 0.771, 0.920, and 0.888, respectively. (We leave s1

unspecified to allow for a variety of scenarios.) Note that surviving individuals in the first four
groups are in the next group in the following 6-month period, but survivors in the oldest group
remain in that group.

(a) Write down the matrix M that represents the model.
(b) Use computer software to determine the largest eigenvalue for the case s1 = 0.081, which

is the value estimated in [2]. What does this result suggest about the survival chances of the
population?

(c) Write the matrix equation that the eigenvector v must satisfy if the largest eigenvalue is 1,
representing the case where the population is just barely viable. Rewrite the equation as a
set of scalar equations. Assuming that the adult population is 1, the system can be solved to
determine the other populations and the value of s1 necessary for viability. Determine this
value of s1.

(d) Use computer software to plot the largest eigenvalue for 0.08 ≤ s1 ≤ 0.2.
(e) Discuss the outlook for the Serengeti cheetah in the wild, based on the results of your

investigation of this model.

6.3.12. One of the best known examples of the use of matrix population projection models in
conservation biology is that of Larry Crowder and colleagues’ study of loggerhead sea turtles
(Caretta caretta) [3]. The model is stage-based with five stages: hatchlings, small juveniles,
large juveniles, subadults, and adults. The hatchling stage lasts just 1 year, the next three stages
last approximately 7 years each, and adult turtles live approximately 32 additional years. This
gives adults a long time for population growth to compensate for the low overall survival rate to
adulthood. As of 1994, estimates of vital rates of loggerhead turtles in South Carolina yielded
the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 0 0 4.665 61.896
0.675 0.703 0 0 0

0 0.047 0.657 0 0
0 0 0.019 0.682 0
0 0 0 0.061 0.809

⎞
⎟⎟⎟⎟⎠ .

(a) Use computer software to determine the long-term growth rate for this matrix.
(b) Determine the overall survival rate for turtles at each stage, including both those that move

to the next stage and those that don’t.
(c) Crowder and colleagues provided evidence that approximately half of the mortality of

the large juvenile, subadult, and adult stages (as of 1994) was due to incidental capture
and drowning in shrimp trawls [3]. The authors revised the matrix under the assumption
that two-thirds of this trawling mortality could be reduced by regulations requiring shrimp
trawlers to use turtle-excluder devices. Make these changes to the matrix. [Note that this

17 Experiments corresponding to this scenario consistently show the behavior predicted by the model.
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must be done carefully for the large juvenile and subadult stages, since more than one ma-
trix entry is needed to determine the net gain in survivorship.]

(d)* Determine the long-term growth rate for the scenario studied by the authors.
(e) Repeat the process used in parts (c) and (d) to determine the percent mortality reduction (to

the nearest 1%) needed for the model to predict long-term viability of the turtle population.
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Chapter 7
Continuous Dynamical Systems

In Chapter 5, we studied the dynamics of a single variable in continuous time. Now we look at
the dynamics of systems of variables in continuous time. The methods available to us are analo-
gous to the methods we used for single variable dynamics. The phase line for one variable scales
up to the phase plane for two variables. The analytical method for determining stability with the
derivative also scales up to higher dimensions, but with technical complications that rapidly in-
crease as the number of variables increases. When possible, we can greatly simplify the analysis
of a model by using an appropriate approximation to reduce the number of dynamic equations.

We begin by introducing two dynamical system models: a pharmacokinetics model in Sec-
tion 7.1 and an enzyme kinetics model in Section 7.2. Both of these models are very general,
and we introduce them at the beginning of the chapter to provide rich examples of manage-
able linear and nonlinear systems, respectively. Computer simulations give us an idea of the
properties of both models.

In Section 7.3, we introduce phase planes and nullcline analysis and use the latter to study
the enzyme kinetics model. Nullcline analysis is a powerful tool for understanding systems of
two dynamic variables in continuous time.

We develop an analytical (symbolic) method for determining stability of equilibria in dy-
namical systems in Sections 7.4 and 7.5. In the first of these sections, we restrict our attention
to linear systems such as the pharmacokinetics example. In Section 7.5, we extend the method
to nonlinear systems such as that for enzyme kinetics.

We bring the chapter to a close in Section 7.6 with a case study of the simplest useful model
for HIV immunology. The original model is a nonlinear system of three dynamic variables.
However, a preliminary analysis uses nondimensionalization to reduce the model to two dy-
namic variables with only minimal loss of accuracy. We complete the analysis of the model
using the nullcline technique of Section 7.3 and the linearized stability analysis technique of
Sections 7.4 and 7.5.

There are several sets of related problems:

Section 7.1 7.2 7.3 7.5
SIR disease, no births/deaths 7.1.3 7.3.3
SIR disease, constant population 7.1.4 7.3.4 7.5.1
SIS disease, constant recruitment 7.1.5 7.3.6 7.5.2
SIS disease with population change 7.1.6 7.3.7 7.5.3 7.5.4
Plankton 7.2.5 7.3.8 7.5.5
Self-limiting population 7.2.6 7.3.2
Chemostat 7.2.7 7.3.9 7.5.6
Predator-prey type I 7.2.9 7.3.5 7.5.7
Predator-prey type II 7.3.10 7.3.11 7.5.8

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6 7,
© Springer Science+Business Media, LLC 2013
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7.1 Pharmacokinetics and Compartment Models

After studying this section, you should be able to:

• Sketch compartment diagrams from verbal assumptions.
• Write down systems of differential equations from compartment diagrams.
• Run computer simulations of dynamical systems and interpret the results.
• Nondimensionalize a dynamical system, given a specific set of dimensionless variables.

Pharmacokinetics is the study of the rates of drug interactions in living organisms.1 While
elementary models, such as those in Section 1.1, track a single quantity, it is usually necessary
to consider the amounts of the drug stored in distinct components of the organism. Since the
various rates at which the drug moves between components or exits the system depend on the
amounts of the drug that are present in those different components, pharmacokinetic models
appear as systems of differential equations.

7.1.1 Compartment Models

Models for pharmacokinetics usually ignore the chemical reactions of the drug, but focus in-
stead on its movement between different components of the organism. If a chemical reaction
occurs in one component, it enters the model by changing the rate at which the drug can move
out of that component. As an example, we consider a model for lead poisoning.

When lead is ingested, it is first absorbed by the digestive system into the bloodstream. It
is then filtered out of the blood by the kidneys and discarded in the urine. Unfortunately, lead
is also absorbed into the body’s tissues, to eventually be excreted into the hair or sweat, and
it tends to bind with bone. Simple models for lead poisoning can ignore the digestion, which
happens very quickly, but they must track the amounts of lead in the blood, bones, and other
tissues, and account for the various processes by which it moves among these three areas.

Y (T)
tissues

X(T)
blood

Z(T)
bones k2Y

k1X

r2Y
sweat,hair,etc.

r1X
urine

R

k4Z

k3X

Fig. 7.1.1 Lead transport in a vertebrate body

Example 7.1.1. Figure 7.1.1 is a schematic diagram that depicts the bones, blood, and tissues
as three compartments containing quantities Z(T ), X(T ), and Y (T ) of lead, respectively.2

1 We use the word drug to mean any biochemically reactive substance introduced into an organism from external
sources.
2 There is no common pattern in the choice of symbols used in nondimensionalization. I prefer to make sure that
all of the original variables have the same case and give the dimensionless variables the opposite case. Since I am
using capital letters for the dimensional concentrations, I use T for dimensional time. The one minor advantage
of using capitals for the original model is that most of the work will then be done on the lowercase version.
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The arrows indicate rates at which lead enters the body, leaves the body, or moves from one
compartment to another. Each of these rates includes a parameter. For example, lead enters
the blood compartment from outside the system at the constant rate R and from the Y and Z
compartments at the rates k2Y and k4Z, respectively. Lead leaves the blood compartment by
three different processes, with the combined rate (k1 + k3 + r1)X . Each compartment has a cor-
responding differential equation, which we construct in the form “overall rate of change is the
sum of all rates of increase minus the sum of all rates of decrease.” The blood compartment
gives us the differential equation

dX
dT

= R− (k1 + k3 + r1)X + k2Y + k4Z. (7.1.1)

Similarly, the differential equations for the other two compartments are

dY
dT

= k1X − (k2 + r2)Y, (7.1.2)

dZ
dT

= k3X − k4Z. (7.1.3)

The differential equations based on the compartment diagram must be supplemented by initial
conditions. Two scenarios are of primary interest:

1. Development of lead poisoning, with R > 0, X(0) = Y (0) = Z(0) = 0.
2. Clearance of lead from the body, with R = 0 and X(0), Y (0), and Z(0) determined by the

outcome of the first scenario.

Estimates of the parameters are supplied by Rabinowitz et al. [4], who collected the following
data from a controlled study of an otherwise-healthy volunteer, with R in micrograms/day and
the various rate constants in days−1:

R = 49.3 , r1 = 0.0211 , r2 = 0.0162 , (7.1.4)

k1 = 0.0111 , k2 = 0.0124 , k3 = 0.0039 , k4 = 0.000035 . (7.1.5)

��
The compartment model of Example 7.1.1 can be used for simulations, which can be

conducted through programs built into scientific computing software such as computer alge-
bra systems (Sage, Maple, Mathematica, etc.) or programming environments (Matlab, R, etc.).
Such simulations must specify the initial conditions as well as the parameters in the differential
equations.

Example 7.1.2.

Q) Suppose a person ingests 49.3 μg of lead per day for 2 years and then stops ingesting any
more lead. What does the model of Example 7.1.1 predict for those 2 years and the following
4 years?

A) Figure 7.1.2 displays the results obtained with the ode23t function in Matlab. Other soft-
ware implementations should yield similar results. Observe what happens each time the
lead dose changes. The lead amount in the blood changes very rapidly and approaches a
constant value. The amount in the tissues behaves similarly, although the rate of change is
not as rapid. The bones accumulate lead at a rate comparable to the tissues during the inges-
tion phase, but their capacity for storing lead is apparently much larger than that of the blood
and tissues. When the lead ingestion ends, the bones yield their store of lead very slowly. ��
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7.1.2 A Simplified Model

Sometimes the purpose of a model is to create simulations that are as accurate as can be
managed. Other times, the goal is to better understand the scientific principles in the sce-
nario being modeled. In this latter case, it can be beneficial to search for a simplified model
that still captures the important features of the setting. The simulation result for the three-
compartment lead poisoning model suggests a possible simplification. Note that the graphs of
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Fig. 7.1.2 The lead poisoning model, with steady doses for 2 years, followed for an additional 4 years

the lead amounts in the blood (X) and the tissues (Y ) are very similar. Except for the first few
days after a change in the external input rate R, the amount in the tissues seems to be merely
a constant multiple of the amount in the blood. If we make the assumption Y = cX , where c is
a positive parameter, then we can use this simple algebraic equation to replace the differential
equation for Y . After algebraic simplification to eliminate Y from the original model, we would
have a system that corresponds to the simplified compartment diagram of Figure 7.1.3. The
parameters R, k3, and k4 are unchanged, but the new parameter r must somehow incorporate
both r1 and the parameters previously associated with the tissue compartment (k1, k2, and r2).
The calculation of r is addressed in Problem 7.1.1.

X(T)
blood

Z(T)
bones

rX
urine,etc

R

k4Z

k3X

Fig. 7.1.3 A two-compartment model for lead transport in a vertebrate body

Example 7.1.3.

Q) Construct a model corresponding to Figure 7.1.3 and run a simulation using r = 0.0277.
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A) Following the same procedure as in Example 7.1.1, we have the differential equations

dX
dT

= R− (k3 + r)X + k4Z , (7.1.6)

dZ
dT

= k3X − k4Z . (7.1.7)

Figure 7.1.4 displays the results of the same scenario as Figure 7.1.2. The graphs for X and Z
are indistinguishable from those of Figure 7.1.2. ��
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Fig. 7.1.4 The two-compartment lead poisoning model, with steady doses for 2 years, followed for an additional
4 years

Example 7.1.3 illustrates a key principle of mathematical modeling, which we first saw in
Chapter 2:

A simpler model can be preferable to a more complex model if the more complex model
is only slightly more accurate.

The two-compartment model has three rate parameters (k3, k4, and r), compared to six rate
parameters in the three-compartment model. If real data were available, we could use the Akaike
information criterion3 to determine which model has greater statistical support. The greater
accuracy of the three-compartment model is beneficial only if the parameter values are known
to a high degree of accuracy. In this case, as is generally true in biology, they are not well known.
The researchers measured the parameters for a single subject, and we have no way to predict
the extent to which they might vary from one individual to another. Given the uncertainty in
parameters and the tiny difference between the results of the two models, the simpler model is
probably the better choice.

3 See Section 2.7.
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7.1.3 The Dimensionless Model

If we want to determine the general behavior of the model over a range of possible parameter
values, we can obtain further simplification by nondimensionalization.

Example 7.1.4.

Q) Derive the dimensionless two-compartment lead poisoning model using 1/k3 as the refer-
ence time and R/r as the reference lead mass.4 This model is specifically intended for the
first scenario, in which lead is being ingested; it will need to be modified slightly for the
scenario in which lead is initially present but is not still being ingested.

A) The dimensionless variables are introduced by the substitutions

T =
1
k3

t , X =
R
r

x , Z =
R
r

z (7.1.8)

into (7.1.6) and (7.1.7). The resulting equations are

k3R
r

dx
dt

= R−R

(
k3 + r

r

)
x+

k4R
r

z ,
k3R

r
dz
dt

=
k3R

r
x− k4R

r
z ,

which we can rewrite as

dx
dt

=
r
k3
−
(

k3 + r
k3

)
x+

k4

k3
z,

dz
dt

=x−k4

k3
z.

There are apparently two dimensionless parameters, whose values we can estimate
from (7.1.4) and (7.1.5):

q =
r
k3

≈ 7.1 , ε =
k4

k3
≈ 0.0090 . (7.1.9)

5 In terms of these quantities, the model becomes

dx
dt

= q−(1+q)x+εz , (7.1.10)

dz
dt

= x− εz . (7.1.11)

The initial term q in (7.1.10) is correct for the stage in which lead is accumulating, but
should be removed for the stage in which it is no longer being ingested. ��

We will return to the lead poisoning model in Section 7.4, at which point we will see that
the presence of the small parameter ε allows us to make predictions about the behavior of the
model without even running any simulations.

4 These choices are not obvious. The quantity R/r is the amount of lead that will be in the blood after a long
period of ingestion at the rate R. The time 1/k3 can be shown to be the expected amount of time that a molecule
of lead spends in the blood compartment before being absorbed into the bones.
5 The Greek letter ε is commonly used in mathematical modeling to represent a dimensionless parameter whose
value is typically much less than 1.
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Problems

7.1.1. The combined parameter r in the two-component lead poisoning model can be calculated
from the data used for the three-component model. The idea is that the approximation that Y
reaches equilibrium quickly corresponds to replacing the Y equation in the original model with
the algebraic equation

k1X − (k2 + r2)Y = 0 .

Derive the two-component model by solving this equation for Y and substituting the result into
the original X equation

dX
dT

= R− (k1 + k3 + r1)X + k2Y + k4Z

to obtain a new X equation. This new equation reduces to the form

dX
dT

= R− (k3 + r)X + k4Z ,

where the quantity inside the parentheses appears as a sum of k3 and several other terms. Re-
define r to be the sum of these other terms and confirm that r = 0.0277 is consistent with the
given data.

Problems 7.1.2–7.1.6 are concerned with models for SIS (Susceptible-Infective-Susceptible)
and SIR (Susceptible-Infective-Recovered) diseases.6 SIS diseases do not confer immunity and
can therefore be modeled with two compartments, labeled S and I, whereas SIR diseases require
an additional R compartment. In cases where the total population N is constant, one of the
compartments can be omitted from the model. Where the total population can vary, through
disease mortality or through long-term population demographics, it is often easier to replace
one of the original equations with an equation for the total population.

There are a number of different SIS and SIR models, distinguished by subtle differences.
One such difference is in the assumption of how the population size affects the encounter rate
of individuals. If the encounter rate per unit time for each person is a constant B, then the rate
of encounter with an infective is B I

N , since I/N is the probability that a given encounter will be
with an infective. If the encounter rate per unit time is proportional to the population size, say
CN, then the rate at which one person encounters infectives is CN I

N =CI. The choice should be
addressed explicitly in models where the population size is not constant, but is irrelevant for a
population of constant size. (The former expression is slightly more convenient for the constant
population case because it simplifies the nondimensionalization.) SIS and SIR models also vary
according to whether they consider a time horizon long enough for population demographics
to be necessary and whether the disease can be fatal. One feature that appears in many of these
models is a dimensionless parameter R0 called the basic reproductive number. This parame-
ter represents the expected number of secondary infections caused by one infective, given a
population comprised of susceptibles.

In all of the SIS and SIR models, we use T for time so that lowercase letters can be used as
dimensionless counterparts of the corresponding capital letters. We assume that all parameters
are positive; any additional restrictions on parameter values appear in the description of the
model.

6 Some problems in Section 2.5 concern SIR models.
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7.1.2. Consider an SIS model with no disease-related mortality and population demographics
with equal birth and death rates. Such a model is given by the equations

dS
dT

= bN − pB
I
N

S+ γI− bS ,

dI
dT

= pB
I
N

S− γI− bI ,

where p < 1.

(a) Show that the total population N = S+ I must be constant.
(b) Given that B I

N is the rate per person of encounters with infectives, explain what p represents
and why the corresponding term has an additional factor of S.

(c) Discuss the assumptions implied by the form γI for the disease recovery rate.
(d) The parameters γ and b are rate constants for the processes of disease recovery and natural

death. Which of these should be larger? Should these parameters be approximately equal,
or should the larger be considerably larger than the smaller?

(e) Use the algebraic equation S+ I = N to eliminate S from the I equation.
(f) Nondimensionalize the new I equation using the dimensionless variables i = I/N and t =

(γ + b)T and the dimensionless parameter R0 = pB/(γ + b). [The variable i represents the
fraction of the total population that is infective at time t. The time scale is chosen to match
the mean period of infectiousness, taking the small amount of non-disease-related mortality
into account for algebraic convenience.]

(g) Use the algebraic form of the definition of R0 to justify interpreting it as the expected num-
ber of secondary infections caused by one infective given a population in which S = N.

(h) Determine the equilibrium solutions for the model, noting any restrictions on R0 for their
existence.

(i) Use the phase line (Section 5.4) and linearized stability analysis (Section 5.5) to determine
the stability of the equilibria.

7.1.3. Consider an SIR model without population demographics; that is, the demographic pro-
cesses of birth and death are ignored. (The model is designed to be used for time periods corre-
sponding to a brief epidemic.) Assuming a contact rate that is independent of population size,
the model can be written as

dS
dT

=−pB
I
N

S ,

dI
dT

= pB
I
N

S− γI ,

dR
dT

= γI ,

where p < 1. The model does not explicitly include disease-based mortality; however, this is no
loss of generality. With no possibility of reinfection and no contribution to the birth rate, there is
no need to distinguish those who recover from those who die. The model permits disease-based
mortality as long as we think of R as representing a “removed” class rather than a “recovered”
class.

(a) Justify neglecting the R equation by showing that the total population N = S+ I +R must
be constant.

(b) Nondimensionalize the model using the dimensionless variables s = S/N, i = I/N, and
t = γT and the dimensionless parameter R0 = pB/γ .
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(c) Use the algebraic form of the definition of R0 to justify the claim that it is the expected
number of secondary infections caused by one infective given a population in which S = N.

(d) Without solving any equations, use the model to determine the time at which the susceptible
population is at its maximum.

(e) Use the answer to part (d) to determine the minimum value of s(0) that allows the disease
to invade the population, assuming R0 > 1.

(f) Explain what happens if R0 < 1 or if s(0) is less than the critical value found in part (e).

(This problem is continued in Problem 7.3.3.)

7.1.4.* Consider an SIR model with population demographics. For simplicity, we assume that
there is no disease-related mortality and that population birth and death rates are equal, so that
the population stays constant. Given these assumptions, the S and I equations can be written as

dS
dT

= bN − pB
I
N

S− bS ,

dI
dT

= pB
I
N

S− γI− bI ,

where p < 1.

(a) Use the fact that the population is constant to determine the differential equation for the
recovered class.

(b) What assumption does the model make about the status of newborns?
(c) Nondimensionalize the model using the dimensionless variables s = S/N, i = I/N, and

t = (γ + b)T and the dimensionless parameters R0 = pB/(γ + b) and ε = b/(γ + b).
(d) Explain why ε is expected to be a small parameter.

(This problem is continued in Problem 7.3.4.)

7.1.5. Consider an SIS model in which the population demographics is determined by natural
and disease-related mortality along with recruitment at a constant rate. (This kind of model
might be suitable for a population of laboratory mice.) With the additional assumption that the
contact rate depends on the population size, we have the model

dS
dT

= R− pCSI+(1− μ)γI−DS ,

dI
dT

= pCSI− γI−DI ,

where p,μ < 1.

(a) Obtain a differential equation for the total population N = S+ I.
(b) Explain the biological meaning of the parameter μ .
(c) Nondimensionalize the I and N equations using the dimensionless variables n = DN/R, i =

DI/R, and t =(γ +D)T and the dimensionless parameters R0 = pCR/D(γ+D), m= μγ/D,
and ε = D/(γ +D).

(d) Explain the significance of the choice R/D of reference quantity for population sizes.
(e) Explain why ε is expected to be a small parameter.
(f) Explain the biological significance of the parameter m. [Hint: Think of the rates represented

by the quantities μγ and D in the definition of m.]

(This problem is continued in Problem 7.3.6.)
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7.1.6. Consider an SIS model in which population demographics is determined by a natural
carrying capacity along with disease-related mortality. With the additional assumption that the
contact rate is independent of the population size (appropriate for a population that expands or
contracts its range to maintain constant density), we have the model

dN
dT

= rN

(
1− N

K

)
− μγI ,

dI
dT

= pB
I
N

S− γI−DI ,

where p,μ < 1. Note that, when using a natural carrying capacity, it is easier to write the equa-
tion for N directly than to compute it from separate equations for S and I. The only disturbance
to the standard logistic model is caused by disease-related deaths.

(a) Nondimensionalize the I and N equations using the dimensionless variables n = N/K, i =
I/K, and t = (γ +D)T and the dimensionless parameters R0 = pB/(γ +D), m = μγ/r, and
ε = r/(γ +D). Note that you must replace S in terms of N and I.

(b) Explain why ε is expected to be a small parameter.
(c) Explain the biological significance of the parameter m. [Hint: Think of the rates represented

by the quantities μγ and r in the definition of m.]

(This problem is continued in Problem 7.3.7.)

7.2 Enzyme Kinetics

After studying this section, you should be able to:

• Explain the basic model of enzyme kinetics.
• Explain the Briggs–Haldane approximation for the initial reaction velocity.

Many important biochemical reactions have the generic form

S+E �C → P+E , (7.2.1)

where S is a chemical to be decomposed (often called the substrate), E is an enzyme that
facilitates the reaction of S without being consumed in the reaction, C is an unstable activated
complex formed from the union of S and E, and P represents whatever products result from the
reaction. The overall reaction is S → P, but the mechanism consists of three separate steps, as
indicated in the chemical equation:

1. A forward reaction in which the substrate and enzyme produce the complex.
2. A backward reaction in which the complex decomposes into substrate and enzyme.
3. A completion reaction in which the complex decomposes into products and enzyme.

Reactions of this generic form are called Michaelis–Menten reactions.7

A mathematical model for the Michaelis–Menten reaction should be based on mechanistic
rules that determine the rate of change of each chemical species in terms of the concentrations
of all the species. Let S be the concentration of substrate, Y the concentration of enzyme, Z the
concentration of complex, and P the concentration of product. We need to determine the rates
of the three reactions in terms of these variables.

7 Michaelis is pronounced “mi-KAY-lis.”
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The backward and completion steps occur spontaneously because of the instability of the
complex; thus, it is reasonable to assume that the rates of these reactions are simply proportional
to the amount of complex present. Specifically, we assume rates k2Z for the backward reaction
and k3Z for the completion reaction. The forward reaction requires molecules of substrate and
enzyme to encounter each other in the solution. Assuming that the molecules move randomly,
the rate is proportional to the concentrations of both8; thus, we write the rate of the forward
reaction as k1SY .

Armed with expressions for the reaction rates, we can write down differential equations for
the rates of change of each of the quantities in the reaction. Observe that each unit of the forward
reaction decreases the concentration of substrate by one unit, while each unit of the backward
reaction increases the substrate concentration by one unit. Since the rate of the forward reaction
is k1SY , the rate of increase of substrate via the forward reaction is also k1SY ; similarly, the
rate of decrease of substrate via the backward reaction is the same as the reaction rate k2Z.
The overall rate of change of substrate is the sum of the changes caused by the two reactions;
therefore, we have

dS
dT

=−k1SY + k2Z . (7.2.2)

We can apply similar reasoning to obtain the differential equations for the enzyme, complex,
and product:

dY
dT

=−k1SY + k2Z + k3Z , (7.2.3)

dZ
dT

= k1SY − k2Z − k3Z , (7.2.4)

dP
dT

= k3Z . (7.2.5)

Because the right-hand sides of the equations for Y and Z are identical except for the sign,
we can add them together to obtain the simple equation

d(Y +Z)
dT

= 0 ,

which means that the sum of enzyme and complex concentrations is invariant. At any given
moment, each enzyme molecule is either free, in which case it counts toward Y , or bound, in
which case it counts toward Z. Assuming that the initial amounts of these chemicals are Y0

and 0, we have

Y +Z = Y0 .

We can discard (7.2.3) and substitute Y = Y0 −Z into (7.2.2) and (7.2.4), obtaining the system

dS
dT

=−k1S(Y0 −Z)+ k2Z , S(0) = S0 , (7.2.6)

dZ
dT

= k1S(Y0 −Z)− k2Z − k3Z , Z(0) = 0 . (7.2.7)

dP
dT

=V = k3Z , P(0) = 0 . (7.2.8)

8 This is the law of mass action.
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Technically, we don’t need the extra equation for P either, because the quantity S+Z+P is also
invariant; however, we retain this equation because P is the quantity most commonly measured.
The rate of change of P is generally called the reaction velocity, but it is really the rate of
product formation. In keeping with standard notation, we label this quantity V .

7.2.1 Nondimensionalization

To reduce the number of parameters in the model, we can convert it to dimensionless form. We
choose reference quantities S0 for S and P, Y0 for Z, k1S0Y0 for V , and 1/(k1Y0) for T . Given
that the original variables are all uppercase, we use the corresponding lowercase letters for the
dimensionless variables. Thus, we apply the substitution formulas

S = S0s , Z = Y0z , P = S0 p , V = k1S0Y0v , T =
1

k1Y0
t . (7.2.9)

The reference quantities k1S0Y0 for reaction velocity and 1/k1Y0 for time are not obvious and
should not greatly concern the reader.9

With the substitutions of (7.2.9), (7.2.6) becomes

k1Y0S0
ds
dt

=−k1S0s(Y0 −Y0z)+ k2Y0z .

We can remove the common factor of Y0, yielding

k1S0
ds
dt

=−k1S0s(1− z)+ k2z .

We now have an equation with dimensionless variables, but we still need to arrange the equation
to obtain dimensionless parameters. Dividing by k1S0 yields

ds
dt

=−s(1− z)+
k2

k1S0
z .

This equation is dimensionless, and for convenience we introduce the dimensionless parameter
h defined by h = k2/(k1S0).

9 The choice for reaction velocity is based on the insight that the forward reaction is the one that drives the
overall reaction, and its initial rate is k1S0Y0. We can approximate the amount of time that corresponds to a unit
change of substrate by substituting ΔS ≈−S0 in the equation

ΔS
ΔT

≈−k1S0Y0

and solving for ΔT , with the result ΔT ≈ 1/k1Y0. Note that we had other choices. Using the same procedure,
we could have found the amounts of time corresponding to a unit change of complex from the forward reaction,
a unit change of either substrate or complex from the backward reaction, or a unit change of complex from the
completion reaction. Intuitively, the given choice is best, because the substrate is the principal reactant and the
forward reaction is the one that uses up substrate.
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Treating equations (7.2.7) and (7.2.8) similarly, we eventually obtain the dimensionless model

ds
dt

=−s(1− z)+ hz , s(0) = 1 , (7.2.10)

ε
dz
dt

= s(1− z)− hz− rz , z(0) = 0 , (7.2.11)

d p
dt

= v = rz , p(0) = 0 , (7.2.12)

where

h =
k2

k1S0
, r =

k3

k1S0
, ε =

Y0

S0
� 1 . (7.2.13)

The final model has dependent variables s, z, and v, which represent the concentration of
substrate, concentration of complex, and rate of product formation, respectively. There are three
dimensionless parameters: h, r, and ε . There was some flexibility in defining the dimensionless
parameters, but there are some advantages to the form used here. The parameter h represents
the strength of the backward reaction relative to the forward reaction. Larger values of h should
make the overall reaction slower because molecules of the complex will tend to decompose
more quickly than they are formed. Similarly, the parameter r represents the strength of the
completion reaction relative to the forward reaction. Larger values of r relative to h mean that
the complex is more likely to produce product than to decompose into reactants.

The parameter ε plays a special role in the analysis, because it appears only as a factor on
the left side of a differential equation. While h and r represent the relative strengths of the
component reactions, ε represents the relative magnitude of the rates of change determined by
the set of component reactions. The notation ε � 1 means that we expect ε to be very small,10

which follows from the assumption that the enzyme is usually in short supply relative to the
substrate. Insights such as this can simplify the analysis of a model, as we will see later.

7.2.2 Simulation

Our principal question for this model is “How does the reaction velocity v(t) depend on the pa-
rameters h, r, and ε?” This question requires analysis because it assumes that these parameters
are allowed to vary. Nevertheless, we can obtain some insights by considering simulations with
fixed parameter values.

There are no methods that can be used to determine the functions s(t) and z(t) from the
differential equations (7.2.10) and (7.2.11). However, numerical methods can be used for satis-
factory simulations. A detailed understanding of numerical methods for differential equations
is beyond the scope of this presentation. What is important for the reader to understand is
that numerical methods involve approximating differential equations with difference equations,
thereby turning a continuous model into a discrete model. As we saw in Section 5.5, discrete
models sometimes exhibit instabilities that do not occur in the corresponding continuous model.
We must recognize that unstable behavior in the simulation for a continuous dynamic system
could either be inherent in the system or it could have been introduced by the numerical method
used to create the simulation. If the latter, one should seek out numerical methods that are de-
signed to eliminate the danger of introduced instability. Systems such as ours, in which the rates
of change of variables are greatly different in magnitude, are said to be stiff ; these systems are
prone to introduced instability. For this reason, we will avoid taking extremely small values of

10 In oral communications, this symbol is generally read as “much less than.”
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ε in our simulations. If necessary, special methods can be employed for the simulation of stiff
problems.

Figure 7.2.1 shows the results of a simulation using the system (7.2.10)–(7.2.12), with pa-
rameters h = 1, r = 2, and ε = 0.2. The curves show a striking feature of Michaelis–Menten

0 1 2 3 4
0

0.5

1

t

s

z

p

v

Fig. 7.2.1 The Michaelis–Menten system ((7.2.10)–(7.2.12)), with h = 1, r = 2, ε = 0.2

reactions: the concentration of the complex (and the reaction velocity) changes rapidly from
an initial value of 0 to a maximum value, after which it gradually decreases. Biochemists are
particularly interested in the maximum value of the reaction velocity, which we will be able to
determine from analysis of the model.

7.2.3 The Briggs–Haldane Approximation

The key to understanding the behavior observed in the graph is the factor of ε in (7.2.11). We
can rewrite this equation as

dz
dt

=
s− (s+ h+ r)z

ε
.

At the beginning of the reaction, s = 1 and z = 0, so dz/dt = 1/ε � 1. Thus, dz/dt is initially
large because ε is small. The complex increases rapidly, but only for a short interval. There can
be only one way for the graph of z to flatten out, and that is for the quantity s− (s+ h+ r)z to
be very small. This occurs at approximately t = 0.1 in this example. From this time on, dz/dt
is never large, so we must have s ≈ (s+ h+ r)z. Solving for z, we have

z ≈ s
s+ h+ r

. (7.2.14)

If we are willing to ignore the initial transient, we can use the equilibrium equation (7.2.14)
in place of the differential equation (7.2.11). Substituting this approximation into (7.2.10)
and (7.2.12) yields the simplified equations11

ds
dt

=− rs
s+ h+ r

, v =
rs

s+ h+ r
. (7.2.15)

11 See Problem 7.2.2.



7.2 Enzyme Kinetics 341

We could at this point have a computer plot the solution of the differential equation for s and
use it to obtain a graph of v vs t; however, we already have such a graph from the original
model. Instead, the approximate system (7.2.15) is used primarily to estimate the maximum of
the reaction velocity curve. This is determined by substituting the maximum value of s12 into
the v equation to get

v0 =
r

1+ h+ r
,

where v0 is the initial rate of product formation, with “initial” understood to mean “after the
brief transient period during which the concentration of the complex reaches equilibrium with
the substrate.”

Replacing the dimensionless quantities v0, r, and h in the maximum reaction rate equation
with the corresponding dimensional quantities, we obtain13

V0 =
VmaxS0

S0 +Km
, (7.2.16)

where

Vmax = k3Y0 , Km =
k2 + k3

k1
. (7.2.17)

Equation (7.2.16) is the well-known Briggs–Haldane approximation for Michaelis–Menten ki-
netics.14 The parameters Vmax and Km are usually fit from data for V0 versus S0, without at-
tempting to evaluate the ki or Y0 independently. However, note that changes in the enzyme
concentration lead to a corresponding change in the parameter Vmax.

Problems

Note: All parameters in these problems are positive.

7.2.1. Nondimensionalize the Michaelis–Menten model using the same definitions of s, z, p,
and v as in the text, but using t = k1S0T for the time. Use the same parameters as in the text.
What is the difference in the resulting model? This is another example of equivalent forms of
models.15

7.2.2. Derive (7.2.15).

7.2.3. Derive (7.2.16).

7.2.4.(a) Use a computer simulation to study the effect of the backward rate constant h on the
Michaelis–Menten model. Hold r = 2 and ε = 0.2, and plot the simulation results for two
values of h larger than 1 and two values of h smaller than 1. Choose values that adequately
illustrate the effect of h.

(b) Explain the effect of h in words by reference to the Michaelis–Menten reaction: (1) What
does h quantify in the reaction? (2) Given the meaning of h, how should the reaction

12 s = 1.
13 See Problem 7.2.3.
14 Note that it is the same function, albeit with different notation, as the feeding rate function we derived in
Section 2.5.
15 See Section 2.6.
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progress change as h increases? Keep in mind that the graph of z, while interesting, is
not important to biochemists. The purpose of the reaction is either to produce product or to
break down the substrate.

(c) Use a computer simulation to study the effect of ε on the Michaelis–Menten model. Hold
r = 2 and h = 1 and try ε = 0.1,0.2,0.4,0.8. Plot the simulation results and explain the
effect of ε . [Hint: You may need to try different time horizons.]

7.2.5. In the enzyme kinetics problem of this section, we were able to make use of the require-
ment that each molecule of enzyme had to appear either as unattached enzyme or as part of an
activated complex. The same feature appears in a model that connects plankton populations to
dissolved nitrogen [1]. The model contains three dynamic quantities: free nitrogen N, phyto-
plankton (microscopic plants) P, and zooplankton (microscopic animals) Z. The quantities of
plankton could be expressed in various units, but we choose to express them in terms of their
nitrogen content. In this way, each unit of nitrogen taken up by phytoplankton and eventually
consumed by zooplankton counts as one unit of either N, P, or Z.

(a) Suppose the following mechanisms account for nitrogen transfers:

1. Phytoplankton die, returning their nitrogen to the water, at a rate proportional to the pop-
ulation size, with rate constant a.

2. Zooplankton also die and return their nitrogen to the water at a rate proportional to the
population size, this time with rate constant b.

3. Free nitrogen is consumed by phytoplankton at a rate proportional to both the nitrogen
concentration and the phytoplankton population, with rate constant c.

4. Phytoplankton are consumed by zooplankton at a rate proportional to both populations,
with rate constant d.

Write down the appropriate differential equations for the functions N(T ), P(T ), and Z(T ),
using T for time.

(b) Show that N +P+Z is constant.
(c) Using A for the constant nitrogen total, eliminate N from the differential equation for P.
(d) Nondimensionalize the P and Z equations using the dimensionless variables p = P/A, z =

(c + d)Z/cA, and t = cAT .16 Choose dimensionless parameters α , β , and δ so that the
resulting dimensionless model is

p′ = p(1−α − p− z) ,

z′ = δ z(p−β ) .

(e) Explain the biological significance of the parameters α and β . [Hint: Think of cA as repre-
senting the quantity cN.]

(This problem is continued in Problem 7.3.8.)

7.2.6. Many populations are self-limiting in the sense that their waste products decrease the
population directly or decrease the capacity of the environment to support them. An example
of such a model is [3]

16 The choice of reference quantity for Z is somewhat unusual. Given that the total nitrogen amount is A, it is
natural to scale Z as well as P by A. The extra factors of c and c+d make the dimensionless model simpler by
having only two parameters that determine the equilibria rather than three. The drawback of this choice is that
one unit of zooplankton no longer corresponds to one unit of phytoplankton.
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dW
dT

= AP ,

dP
dT

= RP

(
1− P

K

)
−BPW.

(a) Explain the assumptions implicit in the differential equations.
(b) Nondimensionalize the model using dimensionless variables p = P/K, w = BW/R, t = RT ,

and parameter a = ABK/R2.
(c) Explain the significance of the reference value R/B for W .
(d) Define a new variable z = p +w. Obtain a differential equation for z that has the form

z′ = p f (z).
(e) The equation for z in part (d) contains the unknown population p(t); however, it can still be

studied with phase line analysis. Explain why this statement is true.
(f) Use phase line analysis to conclude determine a value that the sum p+w cannot exceed.
(g) Note that w must increase as long as p > 0. Explain the consequence of this fact in conjunc-

tion with the result of the phase line analysis.
(h) The simple conclusion of this study is only as good as the model from which it was obtained.

It serves to explain what happens to yeast in the rising of dough or the brewing of beer, but it
obviously does not apply to fish in a pond. What important feature of the pond environment
would need to be added to the model to make it realistic for fish?

(This problem is continued in Problem 7.3.2.)

7.2.7. A chemostat is a device consisting of a container filled with water, bacteria, and nutrients,
set up so that water and nutrients enter the container at some rate and contents are drained from
the container at the same rate, thereby maintaining a constant volume. A simple model for a
chemostat is

dR
dT

= Q(R0 −R)− SRC
A+R

,

dC
dT

=
ESRC
A+R

−QC ,

where R(T ) and C(T ) are the amounts of resource and consumer in the container, Q is the flow
rate in container volumes per unit time, R0 is the concentration of the resource in the input
stream, measured in resource units per container volume, and E is the amount of consumer
biomass that is added through consumption of one unit of resource.

(a) Explain the assumptions implicit in the differential equations. [Hint: Look at the pollution
model of Section 2.5 and the resource utilization models of Chapter 5.]

(b) Use the dimensionless variables r = R/A, c = SC/QR0, and t = EST to obtain the dimen-
sionless form

r′ = qr0

(
1− r

r0
− rc

1+ r

)
,

c′ = c

(
r

1+ r
− q

)
.

You will need to find the appropriate definitions for the dimensionless parameters q and r0.
(c) Explain why QR0/S is a good choice of reference quantity for the consumer biomass. [Hint:

Use the resource equation to interpret the quantities QR0 and SC.]
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(d) Explain the biological meaning of the parameters q and r0. Note that these parameters are
largely under control of the experimenter.

(This problem is continued in Problem 7.3.9.)

Problems 7.2.8 and 7.2.9 concern Rosenzweig–MacArthur population models, which have
the general form

dV
dT

= RV

(
1− V

K

)
−C f (V ) ,

dC
dT

= EC f (V )−MC ,

where f has the properties
f (0) = 0 , f ′ > 0 , f ′′ ≤ 0 .

These models can be used for consumer–resource systems, where V is the biomass of resource
and C the biomass of consumer, or for predator–prey systems, where V and C are biomasses
of prey species and predator species, respectively. Note that the V equation is the type that we
considered in Chapter 5 with fixed C as resource utilization models. In a consumer–resource
or predator–prey context, the consumer/predator population is a dynamic variable rather than a
fixed parameter.

7.2.8. Explain the assumptions inherent in the general Rosenzweig–MacArthur model.

7.2.9. The simplest Rosenzweig–MacArthur model has a linear predation term, f (V ) = SV .

(a) Nondimensionalize the model using the dimensionless variables v = V/K, c = SC/R, and
t = RT , with parameters m = M/R and h = ESK/M.

(b) What is the biological significance of the reference value R/S for the consumer population?

(This problem is continued in Problem 7.3.5.)

7.3 Phase Plane Analysis

After studying this section, you should be able to:

• Plot solution curves in the phase plane using data from simulations.
• Interpret phase portraits of two-dimensional dynamical systems.
• Sketch nullclines for two-dimensional dynamical systems.
• Use nullclines to draw conclusions about the stability of equilibrium points.

Systems of differential equations of the form

dx1

dt
= f1(x1,x2, . . . ,xn)

dx2

dt
= f2(x1,x2, . . . ,xn)

...
...

dxn

dt
= fn(x1,x2, . . . ,xn)
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are said to be autonomous because the rates of change of the dynamic variables depend only on
the state of the system (the values of those dependent variables) and not explicitly on the time.
This situation generally occurs when there are no factors external to the mathematical system,
such as temperature, that vary in time. It is often helpful to think of the dependent variables as
forming an n-dimensional space, called the state space.

In this section, we generalize the phase line method for single equations17 to the phase plane
method for systems of two equations.

7.3.1 Equilibrium Solutions

We introduced the concept of an equilibrium solution for a single autonomous differential equa-
tion in Section 5.3. This concept can also be generalized to autonomous systems of differential
equations.

Equilibrium solution for a system of differential equations: a constant solution, cor-
responding to a point in the state space for which all variables have zero rate of change.

Example 7.3.1.

Q) Find the equilibrium solutions for the dimensionless Michaelis–Menten model18

s′ =−s(1− z)+ hz , s(0) = 1 , (7.3.1)

εz′ = s(1− z)− hz− rz , z(0) = 0 , (7.3.2)

where h, r, and ε are all positive and the prime represents the time derivative.
A) Equilibrium solutions for this system must satisfy two equations:

− s(1− z)+ hz= 0 , s(1−z)−hz− rz = 0 . (7.3.3)

Adding these equations together gives us

−rz = 0 ,

from which we conclude that z = 0 for any equilibrium solution. Given this conclusion, both
of the equilibrium equations reduce to s = 0. Hence, the only equilibrium solution is the
point s = 0, z = 0. ��

7.3.2 Solution Curves in the Phase Plane

In Section 7.2, we plotted the solution of the Michaelis–Menten model with specific parameter
values h = 1, r = 2, and ε = 0.2. An alternative depiction of the solution is obtained by plotting
the points in the sz plane. This plane is called the phase plane, and a plot showing solutions
in the phase plane is called a phase portrait. The time series plot and phase portrait for this
example appear together in Figure 7.3.1. Each point in the phase portrait corresponds to the

17 See Section 5.4.
18 See Section 7.2.
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values of the state variables at some time; in this way, the plot indicates progression in time,
even though the time variable does not appear as a coordinate. The direction of forward time
is not apparent in Figure 7.3.1(right), but it is clear from the context, as the time history graph
indicates that s is always decreasing. Arrows can be added to a phase portrait to show the
direction of time if desired.
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Fig. 7.3.1 The Michaelis–Menten system ((7.3.1)–(7.3.2)), with h = 1, r = 2, and ε = 0.2, showing (a) the time
series and (b) the phase portrait

Check Your Understanding 7.3.1:
Identify the time in Figure 7.3.1a that corresponds to the peak of the phase portrait. Does
the solution move along the curve in Figure 7.3.1b at constant speed?

7.3.3 Nullclines

In Figure 7.3.1, we obtained a phase portrait by plotting a solution curve. The disadvantage
of this method is that we have to select a specific set of parameter values for the simulation.
Fortunately, it is also possible to get information about solutions by using graphical techniques
that work in the general case. The technique is based on curves called nullclines.

Nullcline for a two-dimensional system: a curve in the phase plane composed of points
at which one of the variables is not changing.

A variable is not changing at just those moments when its derivative is 0; hence, the equations
of the nullclines are the same as the equilibrium equations. Whereas equilibrium analysis uses
all the equilibrium equations together without concern for which is which, the equilibrium
equations must be examined separately in nullcline analysis. It is critical to keep track of which
of the variables is constant on each particular nullcline.

Example 7.3.2. The first of the equilibrium equations19 came from setting ds/dt equal to 0;
hence, this equation represents an s nullcline. Solving for z puts this equation into the form

z =
s

s+ h
, (7.3.4)

19 Equation (7.3.3).
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which we can graph in the meaningful portion of the sz plane (s ≥ 0, z ≥ 0) for a given choice
of h. This nullcline partitions the phase plane into regions where s is either increasing or
decreasing, as determined by the differential equation for s. For example, (7.3.1) indicates that
ds/dt > 0 when z > s/(s+ h). Hence, s′ > 0 in the region above the s nullcline and s′ < 0 in
the region below. Figure 7.3.2a shows the s nullcline with h = 1 and includes labels to identify
the regions where s is increasing and decreasing. Similarly, the second equilibrium equation
determines a z nullcline, which we can write as

z =
s

s+ h+ r
(7.3.5)

and graph in the phase plane. A similar analysis of the z differential equation results in the plot
of Figure 7.3.2b. ��

7.3.4 Nullcline Analysis

While individual nullclines are helpful, the real power of nullclines comes from combining
them. The first step is to sketch them on a common set of axes. The nullclines divide the phase
plane into regions in which the direction of change of each variable is known, and this informa-
tion restricts the possible directions for the solution curves to one quadrant of the compass.
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a b

Fig. 7.3.2 (a) The s nullcline and (b) the z nullcline for the Michaelis–Menten model (using h = 1 and r = 2),
showing the regions where s′ and z′ are either positive or negative

Example 7.3.3. Figure 7.3.3 shows the full set of nullclines for the Michaelis–Menten system,
along with direction arrows. The arrows are created from information recorded in the individual
nullcline plots of Figure 7.3.2.

Suppose we begin with the region in the lower right of the plot. We know from Figure 7.3.2
that s′ < 0 and z′ > 0 in this region. This means that s is decreasing and z is increasing. Con-
sequently, solution curves in this region must be moving to the left rather than the right and up
rather than down. They are thus restricted to directions corresponding to the second quadrant
(“northwest”). This restriction is indicated in the figure by the pair of arrows joined at the tail.

Similarly, we can infer from the information in Figure 7.3.2 that solution curves in the middle
region must be aimed toward the third quadrant of the compass and curves in the leftmost region
must be aimed toward the fourth quadrant. ��

We’ve seen that the direction of a solution curve is restricted to one quadrant of the compass
in each region marked out by nullclines. We can draw much stronger conclusions about the
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Fig. 7.3.3 The nullcline plot for the Michaelis–Menten model (using h = 1 and r = 2)

direction of solution curves on the nullclines themselves because one of the rates of change is
known to be 0.

Example 7.3.4. The upper left curve in Figure 7.3.3 is an s nullcline, which means that s is
not changing at points on it. Hence, only z can be changing, which restricts solution curves
to only two possible directions: up and down. Which of these is correct is easily determined
from the adjoining regions. Both of these regions feature arrows that point down rather than up,
so the arrows on the nullcline must point down. Similarly, the arrows on the z nullcline must
be horizontal and pointing to the left. The arrows on the nullclines can be determined directly
from the information in Figure 7.3.2, but it is much easier to do the regions first and then use
the requirement of consistency between a region and its boundaries to determine the directions
on the nullclines.

One can also use the consistency requirement to work across the plot from a starting point
of just one region. Suppose we have done only the rightmost region. The boundary at its left is
a z nullcline; hence the arrows must be horizontal. Consistency demands that they be pointing
to the left, which in turn requires that the horizontal arrow in the middle region be pointing to
the left rather than to the right. The vertical arrow in the middle region must point downward,
because the z nullcline separates two regions with opposite signs for z′. Hence the middle region
arrows point down and to the left. These arrows in turn lead to the conclusion that the arrows on
the s nullcline and the vertical arrows on the region to its left both point down. The horizontal
direction switches in moving across an s nullcline, so the horizontal arrow in the leftmost region
points to the right. ��

Having arrows on the nullclines themselves allows us to identify possible progressions of
solution curves from one region to another.

Example 7.3.5. In the nullcline plot of Figure 7.3.3, the arrows on both nullclines point toward
the center region. Consider a solution curve that begins at the biologically relevant initial point
(1,0). The compass quadrants show that the curve must move up and to the left. Because of
the shape of the nullcline itself, this solution curve must eventually cross the boundary into the
center region. Moreover, all of the arrows on the boundaries of the center region point inward,
so the continuation of the curve must stay in the same region. Because of the shape of the
boundaries, this solution curve must inevitably enter the origin. Note that the same argument
must hold for any other initial point in the rightmost region. ��

Check Your Understanding 7.3.2:
Describe the behavior of solution curves that begin in the leftmost region of Figure 7.3.3.
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Nullcline analysis of the Michaelis–Menten system leads to the conclusion that solution
curves near the equilibrium point at the origin must move in its direction; hence, the origin is
a locally asymptotically stable equilibrium point. Moreover, solution curves that start far from
the origin must ultimately enter it; this identifies the origin as globally asymptotically stable.
We will see in Sections 7.4 and 7.5 that analytical methods can usually determine the local
stability of equilibrium solutions, but not the global stability.20 Thus, we have obtained a very
strong conclusion with no calculation other than what was needed to plot the nullclines!

Nullcline analysis does not always yield conclusions about global stability, or even local sta-
bility. It all depends on the information in the nullcline plot. In the Michaelis–Menten model, the
central region has the special property that all arrows on the boundaries point inward; such a re-
gion is called a no-egress region. The no-egress boundaries combine with the compass quadrant
in the region to significantly constrain the behavior of solution curves. Strong stability conclu-
sions are only possible when the nullcline plot features at least one no-egress region. Even in
the absence of such a region, however, nullcline analysis still provides useful information with
minimal calculation and without requiring specific values for parameters.

7.3.5 Using Small Parameters

Sometimes the conclusions we can draw from nullclines are strengthened by making use of
small parameters in a system of differential equations.

Example 7.3.6. The parameter ε in the dimensionless Michaelis–Menten system represents the
ratio of the initial enzyme concentration to the initial substrate concentration, and hence it is
always small.21 Because this parameter multiplies dz/dt, it marks z as a “fast” variable. In Sec-
tion 7.2, we used this observation to argue that z quickly approaches a point in the phase plane
where the right side of the equation is small. In graphical terms, this means that solution curves
quickly approach a z nullcline. If the compass quadrant restrictions permit, the solution curves
will subsequently follow closely to the nullcline of the fast equation. This information can be
used to predict the shape of a solution curve in the Michaelis–Menten system to a considerable
degree of detail.

Consider the curve that begins at the point (1,0). This point is not near a z nullcline, so the
right side of the z equation is not near 0. Hence, z′ must be large. Meanwhile, the s equation is
not fast, so s′ is never large. The inescapable conclusion is that the solution curve must move
almost vertically in the phase plane until it gets close to the z nullcline, at which point the right
side of the z equation becomes small and z′ stops being large.

Once near the z nullcline, the solution curve must cross to the other side, because the arrows
on that nullcline point to the left. The solution curve is subsequently constrained to follow the
compass quadrant of the middle region, which means it must move down and to the left. While
doing so, it must stay near the z nullcline; otherwise, z must change rapidly. In the middle region,
this rapid change in z would be downward, bringing the solution curve back to the nullcline.

The path of the solution curve is now clear. It is in a no-egress region, so it must stay in the
middle portion of the plot. As it moves down and to the left, it stays close to the z nullcline.
Eventually it must enter the origin. Figure 7.3.4 shows a sample solution curve, with ε = 0.2,
along with the nullclines. Our conclusions are clearly confirmed. With a more realistic (smaller)
value of ε , the solution will stay even closer to the z nullcline. ��

20 There are analytical methods that can sometimes be used to prove global stability, but they are far more
sophisticated than anything in this book.
21 See Section 7.2.
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Fig. 7.3.4 The nullcline plot for the Michaelis–Menten model (using h = 1 and r = 2), along with the solution
curve (heavy) obtained with ε = 0.2

7.3.6 Nullcline Analysis in General

The principal goal for the analysis of a dynamical system is to understand the phase portrait for
the various ranges of parameter values. Nullcline analysis is a graphical tool for addressing this
goal. Although the conclusions depend on the details of the system, the procedure is always as
presented in the Michaelis–Menten example.

Algorithm 7.3.1 Nullcline analysis for a dynamical system of variables x and y in con-
tinuous time

1. Set x′ = 0 to obtain an equation for the set of points where x is not changing. Plot the
curve or curves for this equation and identify each of the regions marked out by the
graph as a region where x is either increasing or decreasing.

2. Repeat step 1 using the y equation.
3. Plot the x and y nullclines together. For each region created by these graphs, use

the information from steps 1 and 2 to identify the appropriate compass quadrant for
solution curves.

4. Use the compass quadrants to determine the direction of solution curves on each null-
cline. Generally the direction reverses as the nullcline moves through an equilibrium
point.

5. Identify any no-egress regions, if possible.
6. Use the compass quadrants and no-egress regions to determine the possible paths

of solution curves in the phase plane. If either x or y is a fast variable, indicated
by a small parameter in front of the derivative term in the dimensionless model, this
means that solution curves move in the direction of the fast variable to a corresponding
nullcline and remain near that nullcline, as long as doing so does not contradict the
compass quadrant in the region.

The Michaelis–Menten model is a nice first example, but it is important to recognize that
some of its features make it easier to analyze than the typical model.

• The nullclines in the Michaelis–Menten model do not cross in the open first quadrant. This
means that there are no equilibria with both variables positive. In general, there can be pos-
itive equilibria, and these might exist for certain ranges of parameter values and not for
others.



7.3 Phase Plane Analysis 351

• Not all systems have one fast and one slow variable. This means that we can’t always find
solution curves that follow a nullcline closely.

• For systems that do have a fast and a slow variable, it is not always possible for solutions to
follow the fast nullcline. In our system, the nullcline sloped down and to the left, a direction
consistent with the arrows in the middle region. When the nullcline slope is not compatible
with the direction arrows, the phase portrait becomes complicated.22

• Not all systems exhibit no-egress regions. Without such a region, the ultimate fate of solution
curves can be unclear from the nullcline plot alone.

Example 7.3.7. Figure 7.3.5 shows the nullcline plot for the system

ds
dt

= 1− s− 2vs , s ≥ 0 ,

dv
dt

= 2vs− v , v ≥ 0 .
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Fig. 7.3.5 The nullcline plot for Example 7.3.7

This nullcline plot lacks no-egress regions, so the analysis is more complicated than in the
Michaelis–Menten model. Consider a solution curve that begins just above the point (1,0) in
region A. The curve must move up and to the left, and it eventually reaches region B. From
there, it must move on to region C and then to region D and finally region A again. In general,
rotation like this can spiral either inward or outward, or it can form a closed loop, so we cannot
determine the stability of the equilibrium at (0.5,0.5) by the nullcline method. ��

Check Your Understanding Answers

1. The peak is where z reaches its maximum, which occurs at a very small positive time. Thus,
the solution moves from the initial point (1,0) to the peak very quickly; it then moves at a
progressively slower pace along the curve from the peak toward the point (0,0). We know
that the pace is slowing, because the time history graph for s gets flatter as time increases.

2. These solution curves must move down and to the right, cross the boundary into the center
region, and continue to the origin.

22 See the problems.
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Problems

Note: All parameters in these problems are positive.

7.3.1. This problem demonstrates the limitations of nullcline diagrams.

(a) Sketch the nullcline diagram for the family of systems

x′ = x− 1.2y ,

y′ = k(1.5x− y) ,

where x and y are not required to be nonnegative. [Note that the nullcline plot is the same
for all values of k.]

(b) Use computer simulations to plot some solution curves using the value k = 0.8. Is the origin
stable or unstable?

(c) Repeat part (b) with k = 1.2.
(d) Can we conclude anything from the nullcline diagram alone?

(This problem is continued in Problem 7.4.1.)

7.3.2. (Continued from Problem 7.2.6.)
Sketch the nullcline diagram for the self-limiting population model

w′ = ap ,

p′ = p(1− p−w)

with a = 0.5. Add in solution curves for p(0) = p0 and w(0) = 0, with several values of p0

satisfying 0 < p0 ≤ 1. The solution curves must be consistent with the restriction on p+w
obtained in Problem 7.2.6. Note that the stable equilibrium value for p+w cannot be reached
if p becomes 0, but in no case can it be exceeded.

7.3.3. (Continued from Problem 7.1.3.)

(a) Determine the equilibria for the SIR model with no demographics,

s′ =−R0si ,

i′ = R0si− i ,

being careful to indicate any restrictions on existence.
(b) Sketch the nullcline diagram in the si plane for the case R0 > 1.
(c) Add solution curves that begin with very small positive i(0) and various s(0) to the phase

plane plot from part (b).
(d) Calculus can be used to find the terminal point of the solution curves. We note first that the

paths i(s) in the phase plane must have slope di/ds = i′/s′. Use this fact to write a formula
for the derivative di/ds.

(e) Integrate the derivative di/ds to obtain a solution formula that contains the parameter R0

and an integration parameter.
(f) We are interested in solution curves that begin with s(0) = s0 and i(0)≈ 0. Use these values

to calculate the integration parameter in the solution for i(s).
(g) Identify the value of i at the end of each solution curve. [Hint: Solution curves end at equi-

libria.] Substitute this value into the equation for i(s) and replace s with s∞ to indicate that
the resulting equation is to determine the final value of s on a solution curve.
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(h) Suppose the initial population is fully susceptible (s(0) = 1). Solve the equation from part
(g) for R0 and use the result to plot s∞ as a function of R0.

(i) The value of R0 for smallpox is estimated to be at least 4. Given this fact, roughly what
fraction of a Native American population newly exposed to smallpox will make it through
the epidemic without getting sick?

Problems 7.3.4–7.3.9 call for nullcline plots, but parameters are given only in terms of inequal-
ity restrictions. Choose small simple values that meet the requirements. The inequalities that
arise in the existence restrictions for equilibria also identify all cases for the nullcline plots in
these models. In general, stability analysis23 is required to fully identify cases. The model in
Problems 7.3.10 and 7.3.11 is an example where equilibrium analysis is not sufficient for this
purpose.

7.3.4.* (Continued from Problem 7.1.4.)

(a) Determine the equilibria for the SIR model with constant population size,

s′ = ε(1− s)−R0si ,

i′ = R0si− i ,

being careful to indicate any restrictions on existence.
(b) Sketch the nullcline diagram in the si plane for the case 0 < R0 < 1.
(c) Repeat part (b) for the case R0 > 1.
(d) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.1.)

7.3.5. (Continued from Problem 7.2.9.)

(a) Determine the equilibria for the dimensionless Rosenzweig–MacArthur model with Holling
type I predator response,

v′ = v(1− v− c) ,

c′ = mc(hv− 1) ,

being careful to indicate any restrictions on existence.
(b) Sketch the nullcline diagram in the vc plane with h < 1.
(c) Repeat part (b) for the case h > 1.
(d) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.7.)

7.3.6. (Continued from Problem 7.1.5.)

(a) Determine the equilibrium points for the SIS model with constant recruitment,

n′ = ε(1− n−mi) ,

i′ = R0i(n− i)− i ,

noting any restrictions on R0 for their existence.
(b) Verify that the equilibrium value of n is decreased by the long-term presence of the disease.
(c) Sketch the nullcline diagram in the ni plane for the case 0 < R0 < 1.

23 See Sections 7.4 and 7.5.
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(d) Repeat part (c) for the case R0 > 1.
(e) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.2.)

7.3.7. (Continued from Problem 7.1.6.)

(a) Determine the equilibrium points for the SIS model with logistic growth,

n′ = ε[n(1− n)−mi] ,

i′ = R0i

(
1− i

n

)
− i ,

noting any restrictions on R0 and m for their existence. You may find it convenient to replace
R0 with the parameter α = 1−R−1

0 .
(b) Sketch the nullcline diagram in the ni plane for the case 0 < R0 < 1.
(c) Repeat part (b) for the case R0 > 1, αm > 1.
(d) Repeat part (b) for the case R0 > 1, αm < 1.
(e) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problems 7.5.3 and 7.5.4.)

7.3.8. (Continued from Problem 7.2.5.)

(a) Determine the equilibria for the plankton population model,

p′ = p(1−α − p− z) ,

z′ = δ z(p−β ) ,

being careful to indicate any restrictions on existence.
(b) Sketch the nullcline diagram in the pz plane for the case α > 1.
(c) Repeat part (b) for the case α < 1 < α +β .
(d) Repeat part (b) for the case α +β > 1.
(e) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.5.)

7.3.9. (Continued from Problem 7.2.7.)

(a) Determine the equilibria for the dimensionless chemostat model,

r′ = qr0

(
1− r

r0
− rc

1+ r

)
,

c′ = c

(
r

1+ r
− q

)
.

Also show that the equilibrium with c > 0 exists if and only if

q <
r0

1+ r0
.

(b) Sketch the nullcline diagram in the rc plane for the case

r0

1+ r0
< q < 1 .
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(c) Repeat part (b) for the case

q <
r0

1+ r0
.

(d) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.6.)

Problems 7.3.10–7.3.12 concern Rosenzweig–MacArthur models, which have the form24

dV
dT

= RV

(
1− V

K

)
−C f (V ) ,

dC
dT

= EC f (V )−MC ,

where
f (0) = 0 , f ′ > 0 , f ′′ ≤ 0 .

7.3.10.(a) Determine the equilibria for the dimensionless Rosenzweig–MacArthur model with
Holling type II predator response,

v′ = v

(
1− v

k
− c

1+ v

)
,

c′ = εc

(
hv

1+ v
− 1

)
,

being careful to indicate any restrictions on h for existence.
(b) Sketch the nullcline diagram in the vc plane with k = 2 and h= 1.4. Sketch in some solution

curves.
(c) Repeat part (b) for the case k = 2, h = 2.
(d) Determine any conclusions that can be drawn from the nullcline plots.

(This problem is continued in Problem 7.5.8.)

7.3.11. The Rosenzweig–MacArthur model with Holling type II predator response,

v′ = v

(
1− v

k
− c

1+ v

)
,

c′ = εc

(
hv

1+ v
− 1

)
,

is capable of predicting a type of dynamics called a limit cycle, in which solution curves seem
to approach a closed curve rather than a single point.

(a) Run a simulation with k = 2, h = 5, ε = 0.05, v(0) = 1, and c(0) = 0.1. Use a time interval
of 0 ≤ t ≤ 100. Plot the results as separate curves v(t) and c(t) on common axes. Note that
the solutions settle into an oscillatory pattern.

(b) Plot the solution from part (a) in the vc plane.
(c) Add nullclines to the plot of part (b).

24 Also see Problems 7.2.8 and 7.2.9.
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(d) The solution curve appears to follow a cycle of four phases:

1. It moves to the right, almost on a horizontal line, until it just crosses the v nullcline.
2. It moves up and to the left just above the v nullcline.
3. It moves sharply to the left almost to the c axis.
4. It moves down and a little to the right before beginning the cycle anew.

Use the system of differential equations to explain why the curve moves as it does. In
particular, you will need to use the facts that ε is small and that solutions in the region to
the right of the c nullcline and above the v nullcline cannot move in a downward direction.

(e) Sketch the nullcline diagram for the case k = 2, h = 2. Explain why the limit cycle does not
occur in this case.

(This problem is continued in Problem 7.5.8.)

7.3.12. One of the best known data sets in ecology consists of counts of hare and lynx pelts
collected by the Hudson Bay Company from 1845 to 1935. These data appear to indicate a limit
cycle; however, the cycle appears to be moving in the wrong direction. Predator populations
should be decreasing when the prey population is small, but the Hudson Bay Company data
shows the number of lynx pelts to be increasing when the hare population is small, as though
the hares were eating the lynx. Unfortunately, many biologists have inferred from this failure of
the Rosenzweig–MacArthur model that mathematical modeling in biology has little value. The
real problem, as is always the case when a good model doesn’t work, is that the model does not
fit the scenario. Bo Deng has developed a better model based on the insight that the pelt data
is not a substitute for actual population data unless the number of trappers collecting the data
is constant [2]. A proper explanation of the Hudson Bay Company data requires a model that
includes the number of trappers as a third dynamic variable. We explore how this can happen
with a simplified version of Deng’s model. This version is not fit to the actual data, but it does
illustrate the resolution of the paradox.

(a) Use biological arguments to explain why the predator population should be decreasing when
the prey population is small.

(b) Use mathematical arguments based on the terms in the Rosenzweig–MacArthur model to
explain the same fact as in part (a).

(c) Run a simulation for the dimensionless model

H ′ = H

(
1−H− 3L

1+ 3H
− 0.5T

1+ 2H+ 36L

)
, H(0) = 0.1 ,

L′ = L

(
3H

1+ 3H
− 0.42− 3T

1+ 2H+ 36L

)
, L(0) = 0.2 ,

T ′ = T

(
24L

1+ 2H+ 36L
− 0.56

)
, T (0) = 0.3 ,

using the time interval 0 < t < 50. Plot the solutions together on a common graph and
confirm that the lynx population decreases when the hare population is small. Note that the
trapper population fluctuates also, with a minimum that is only about 60 % of the maximum.

(d) The functions

HT=
0.5HT

1+ 2H+ 36L
, LT=

3LT
1+ 2H+ 36L

,

represent the terms in the hare and lynx equations corresponding to the rate of population
loss from trapping. These quantities, rather than the populations H and L, are the ones
given in the Hudson Bay Company data. Calculate these for the simulation data and plot the
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results together on a common graph. Confirm that the lynx pelt data for the model increases
during the period when the number of hare pelts is low.

(e) Explain why the trapper population oscillates, including a discussion of the mechanisms for
increase and decrease of the number of trappers.

7.4 Stability in Linear Systems

After studying this section, you should be able to:

• Use eigenvalues to determine the stability of two-component linear continuous dynamical
systems.

• Use the Routh–Hurwitz conditions to determine the stability of two-component linear con-
tinuous dynamical systems.

• Use the Routh–Hurwitz conditions to determine the stability of three-component linear con-
tinuous dynamical systems.

In Section 5.5, we obtained the solution formula

x = x0ekx

for the scalar linear differential equation

dx
dt

= kx , k 
= 0 ,

which models either exponential growth or exponential decay, depending on the sign of k.
From this formula, it is clear that the ultimate fate of the dynamic variable x(t) depends on the
algebraic sign of k:

• If k < 0, then limt→∞ x = 0.
• If k > 0, then limt→∞ x = ∞.

Alternatively, we can say that the equilibrium point x = 0 is asymptotically stable if k < 0 and
unstable if k > 0.

Although this analysis scales up to continuous dynamical systems with more than one com-
ponent, there is one difficulty: we must find an analog for the constant k for higher dimensional
systems.

7.4.1 Linear Systems

As noted in Section 7.3, autonomous systems of differential equations have the general form

dx1

dt
= f1(x1,x2, . . . ,xn)

dx2

dt
= f2(x1,x2, . . . ,xn)

...
...

dxn

dt
= fn(x1,x2, . . . ,xn) .
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Eventually, we will want to analyze autonomous systems with nonlinear functions fi; however,
in this section we limit our consideration to linear autonomous systems, which have a highly
structured form.

Linear autonomous system of differential equations: a system of n differential equa-
tions of the form

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn + b1

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn + b2

...
...

dxn

dt
= an1x1 + an2x2 + · · ·+ annxn + bn ,

where the ai j and b j are all constants.

Example 7.4.1. The dimensionless two-component lead poisoning model25

x′ = q− (1+ q)x+ εz , (7.4.1)

z′ = x− εz , (7.4.2)

where q,ε > 0, is an autonomous two-dimensional system of linear differential equations. If we
identify x as x1 and z as x2, then

a11 =−(1+ q), a12 = ε, a21 = 1, a22 =−ε, b1 = q, b2 = 0 .

��
Autonomous linear systems are conveniently written in the matrix form

x′ = Ax+b (7.4.3)

by defining the vectors x and b and matrix A as

x =

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ . (7.4.4)

Example 7.4.2. The lead poisoning model of Example 7.4.1 has the form (7.4.3), with

x=
(

x
z

)
, A =

(−(1+ q) ε
1 −ε

)
, b =

(
q
0

)
,

��

25 See Section 7.1.
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7.4.2 Eigenvalues and Stability

As long as det(A) 
= 0, there is always a single equilibrium point,26 which is the unique solution
of

Ax+b = 0 , (7.4.5)

and the stability of that equilibrium point can be determined from the eigenvalues of A.
If, for example, the 2× 2 matrix A has two real eigenvalues λ1 and λ2, then solutions of the

linear equation
x′ = Ax+b

have the form
x = x�+ c1v1eλ1t + c2v2eλ2t ,

where x� is the solution of (7.4.5) and vk is an eigenvector corresponding to the eigenvalue
λk.27 Because asymptotic stability requires

lim
t→∞

x = x�

for all solutions, it only occurs when both eigenvalues are negative. The situation is more com-
plicated than the scalar case, however. The eigenvalue equation is quadratic, so instead of a pair
of unique real roots there could either be repeated real roots or a pair of complex roots. These
cases make the solution formulas more complicated, but do not affect stability. All real roots,
repeated or distinct, yield solutions with the factor eλ t .28 Complex roots of the form λ =α ± iβ
yield solutions with the factor eαt , where α is the real part of λ .29 This gives us the following
general result.

Theorem 7.4.1 (Stability of Equilibria for Autonomous Linear Systems). The equi-
librium solution x = x� for the equation x′ = Ax+b, where det(A) 
= 0 and Ax�+b = 0,
is asymptotically stable if and only if all real eigenvalues are negative and all complex
eigenvalues have a negative real part.

Example 7.4.3. For the model of Example 7.4.1, the equilibrium must satisfy

q− (1+ q)x+ εz= 0 , x− εz = 0 .

Adding these equations together produces an equation with only the x variable:

q− qx = 0 .

Since q > 0, we have x = 1 for all sets of parameter values. The second equilibrium equation
then gives the result z = 1/ε . In the context of lead poisoning,30 the dimensionless variables

26 See Section 5.3.
27 See Problem 7.4.5.
28 Repeated roots have to contribute multiple solutions. If the eigenvalue equation has a factor λ 2, then obviously
one solution is eλ t . It can be shown that the other solution is teλ t . This is important if we need solution formulas,
but it is irrelevant to the question of stability.
29 Complex pairs of roots have to contribute two solutions. The eigenvalue pair α ± iβ corresponds to solutions
eαt cosβ t and eαt sinβ t . These solutions oscillate, with the rate of oscillation controlled by β ; however, only the
exponential factor matters toward stability.
30 See Section 7.1.
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x and z represent the amounts of lead in the blood and the bones. With ε small and z∗ = 1/ε ,
the model predicts an equilibrium state with a large amount of lead in the bones. This is why
the solutions we saw in Section 7.1 reached equilibrium quickly for X but did not appear to
reach equilibrium for Z at all. In order to reach a z value of approximately 1/ε , it is necessary
to wait for about 1/ε times however long it takes to reach an x value of approximately 1. In
Figure 7.1.2, X appears to reach equilibrium in about 100 days. With ε ≈ 0.01, it would take
about 10,000 days (around 30 years!) for Z to reach equilibrium.

Equilibria play different roles in the behavior of a system, depending on their stability. Only
stable equilibria can serve as the long-term behavior of a system. To determine the stability of
the lead poisoning equilibrium, we need only find the eigenvalues of the matrix

A =

( −(1+ q) ε
1 −ε

)
.

We have

0 = det(A−λ I) =

∣∣∣∣ −1− q−λ ε
1 −ε −λ

∣∣∣∣= (−1− q−λ )(−ε−λ )− ε

= λ 2 +(1+ q+ ε)λ + εq .

Because all eigenvalues have to be negative, we need only consider the root with the positive
sign in front of the square root. From the quadratic formula, this root is

λ1 =
−(1+ q+ ε)+

√
(1+ q+ ε)2− 4εq
2

. (7.4.6)

Is this root real or complex? If real, is it positive or negative? With the values q= 7.1, ε = 0.009,
we have

λ1 =
−8.1009+

√
(8.1009)2− 0.2556

2
≈−0.0079 < 0 .

By Theorem 7.4.1, the equilibrium is asymptotically stable with these parameter values. ��
It is more difficult to determine the asymptotic stability without having specific values for

the parameters.31 Fortunately, there is an easier way to determine stability for the general case.

7.4.3 The Routh–Hurwitz Conditions

So far, the general plan for analyzing a two-dimensional system like that of (7.4.1) and (7.4.2)
involves two basic computational steps:

1. Rewrite the equation det(A−λ I) = 0 as a polynomial equation for λ , which is called the
characteristic equation of the matrix A.

2. Determine the most positive eigenvalue and check to see if it has a negative real part.

31 See Problem 7.4.6.
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We can simplify the computation by making use of the relationship between the coefficients
of the polynomial in step 1 and the sign of the eigenvalues in step 2. The following theorem
supplies the key fact32:

Theorem 7.4.2 (Roots of Quadratic Polynomials). Both roots of the polynomial equa-
tion

x2 + bx+ c = 0

have negative real parts if and only if

b,c > 0 .

Theorem 7.4.2 allows us to determine stability without having to solve the characteristic
equation.

Example 7.4.4. The equilibrium solution for the system of (7.4.1) and (7.4.2) is always asymp-
totically stable because the coefficients of the polynomial equation

λ 2 +(1+ q+ ε)λ + εq = 0

are always positive when q,ε > 0. ��
Theorem 7.4.2 is a nice improvement on the basic method, but we can do even better by

connecting the entries of a matrix and the coefficients of the polynomial that determines the
eigenvalues. Using this connection results in the Routh–Hurwitz33 conditions, which provide
stability criteria in terms of properties of the matrix, thereby eliminating the need to actually
compute det(A−λ I).

Theorem 7.4.3 (Routh–Hurwitz Conditions for a System of Two Components). Let

A =

(
a b
c d

)
.

The equilibrium solution x = x� for the equation

dx
dt

= Ax+b

is asymptotically stable if
detA > 0, trA < 0 ,

where detA = ad− bc and the trace of the matrix is trA = a+ d .
The equilibrium solution is unstable if detA < 0 or trA > 0.

32 See Problem 7.4.7.
33 Pronounce Routh to rhyme with “mouth.”
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Example 7.4.5. Given q,ε > 0, the matrix

A =

( −(1+ q) ε
1 −ε

)

has
detA = εq > 0 , trA =−(1+ q+ ε)< 0 ;

therefore, the equilibrium solution for the system

dx
dt

= Ax+b

is asymptotically stable for any positive values of q and ε . ��

7.4.4 The Routh–Hurwitz Conditions for a Three-Dimensional System

There are sets of Routh–Hurwitz conditions for systems of any size, but they get more compli-
cated as the size increases. Here we present the Routh–Hurwitz conditions for 3× 3 matrices.

Theorem 7.4.4 (Routh–Hurwitz Conditions for a System of Three Components). Let
A be a 3× 3 matrix. Let Ak be the 2× 2 matrix obtained from A by deleting row k and
column k. Define c1, c2, and c3 by

c1=− trA , c2=
3

∑
k=1

detAk , c3=− detA ,

where trA is the sum of the diagonal elements of A. Then the equilibrium solution of the
system

dx
dt

= Ax+b

is asymptotically stable if all three coefficients are positive and c1c2 > c3. The equilibrium
solution is unstable if any of the coefficients is negative or c1c2 < c3.

Example 7.4.6. The matrix A for the three-compartment lead poisoning model (Equa-
tions (7.1.1)–(7.1.3)) is

A =

⎛
⎝ −(k1 + k3 + r1) k2 k4

k1 −(k2 + r2) 0
k3 0 −k4

⎞
⎠ .

(7.4.7)

Using the notation of Theorem 7.4.4, we have

c1 = (k1 + k3 + r1)+ (k2 + r2)+ k4 > 0 ,

c2 = [k4(k2 + r2)]+ [k4(k1 + k3 + r1)− k3k4]+ [(k2 + r2)(k1 + k3 + r1)− k1k2]

= k4(k2 + r2)+ k4(k1 + r1)+ k2(k3 + r1)+ r2(k1 + k3 + r1)> 0 ,
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c3 = −[−k4(k2 + r2)(k1 + k3 + r1)+ k1k2k4 + k3k4(k2 + r2)]

= k4(k2 + r2)(k1 + r1)− k1k2k4 = k4(k2r1 + k1r2 + r1r2)> 0 .

Finally, c1 > k4 and c2 > (k2r1 + k1r2 + r1r2) combine to make c1c2 > c3. The Routh–Hurwitz
conditions are satisfied, and the equilibrium solution is asymptotically stable for any parameter
values. ��

If your eyes glass over when you see the calculations of Example 7.4.6, there are several
points to keep in mind. First, it is much easier to apply the Routh–Hurwitz conditions when
at least some of the parameter values are known. Second, the calculations would have been
less tedious if we had nondimensionalized the model before doing the stability calculations.34

The dimensionless three-component model has a Jacobian with three parameters rather than
six. Even more importantly, identification of dimensionless parameters as small makes it much
easier to check the Routh–Hurwitz conditions.35 The most important point of all is that iden-
tification of small parameters in a system can allow us to reduce the number of variables in
the system. Example 7.4.6 is included here to make a valuable point, but it is entirely unnec-
essary in the study of lead poisoning once we have shown that the two-component model is an
adequate approximation to the full model.

Problems

Note: All parameters in these problems are positive.

7.4.1.* (Continued from Problem 7.3.1.)

(a) Determine the stability of the origin for the system

x′ = x− 1.2y ,

y′ = k(1.5x− y) .

Note that the answer depends on k.
(b) Compare the results of part (a) with Problem 7.3.1.

7.4.2. Use the Routh–Hurwitz conditions to determine the stability of the equilibrium solution
of the three-component lead poisoning model (7.1.1)–(7.1.3) using the parameter values given
in (7.1.4) and (7.1.5).

7.4.3.* Had we nondimensionalized the three-component lead poisoning model before doing
the calculations of Example 7.4.6, we would have obtained the matrix

A =

⎛
⎝ −(1+ a1+ b1) a2 ε

a1 −(a2 + b2) 0
1 0 −ε

⎞
⎠ ,

where a1 = k1/k3, a2 = k2/k3, b1 = r1/k3, b2 = r2/k3, ε = k4/k3, and ε is expected to be small.

(a) Approximate the parameter c2 for the Routh–Hurwitz conditions by omitting any terms with
the factor ε . Show with minimal calculation that c2 > 0.

34 See Problem 7.4.3.
35 Compare Problem 7.4.3 with Problem 7.4.2.
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(b) Show that all terms in c3 have a common factor of ε . Explain why it is unnecessary in this
case to show that c1c2 > c3 if the other conditions are satisfied.36

7.4.4. Figure 7.4.1 shows a very simple two-compartment model for a drug that is absorbed
in the digestive tract and then circulated in the blood compartment (including the liver and
kidneys).

(a) Write down the appropriate differential equations for the model. Note that the equations
must be supplemented by initial conditions W (0) =W0 and X(0) = X0.

(b) Notice that the equations are decoupled, meaning that the W equation does not contain X .
This means that we can solve the W equation simply by finding a function that makes it
true. No solution technique is needed. From the table of integrals in Section 1.8, we can see
that any function Aekt has derivative equal to k times the function. This fact allows you to
identify an appropriate family of solutions for W . Note that the parameter A must be chosen
so that W (0) =W0.

(c) The X equation can be simplified with a clever trick. Let Y (T ) = erT X(T ). Use the prod-
uct rule to obtain Y ′ and then substitute from the differential equation for X to derive the
resulting equation

Y ′ = kerTW (T ) .

(d) Use the result for W and integration (Section 1.8) to obtain a one-parameter family of func-
tions for Y .

(e) Use the definition of Y to obtain a family of functions for X . Use the initial condition
X(0) = X0 to complete the solution for X . In writing your solution, it is advantageous to
replace r− k− b by −(k+ b− r); under most circumstances, k > r.

(f) To study the effect of k, set b = 0, X0 = 0, r = 1, and W0 = 1 and obtain a simplified formula
for X . Now plot X(T ) on a single graph using k = 4, k = 3, and k = 2. Discuss the effect of
k on the functioning of the drug.

(g) Plot the function X from part (f) with k = 0.5. What happens when drug absorption is very
slow?

(h) Suppose drug manufacturers can control the value of k without changing the efficacy of the
drug. What would be the relative advantages of a larger k and a smaller k?

X (T)
blood

rX
urine, etc.

kW

W (T)
GItract

bW
feces

Fig. 7.4.1 A compartment diagram for drug absorption

7.4.5. Let A be a 2×2 matrix having eigenvectors v1 and v2 with corresponding eigenvalues λ1

and λ2. Let b be a two-dimensional vector and let x� be the solution of the algebraic equation
Ax =−b. Show that the function

x(t) = x�+ c1v1eλ1t + c2v2eλ2t

36 Calculation of c3 is still messy, but the two hardest parts of the stability demonstration are considerably
simplified by the assumption that ε is small.
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solves the differential equation
x′ = Ax+b .

7.4.6. Show that the eigenvalues of the two-compartment lead poisoning model,

λ =
−(1+ q+ ε)±√(1+ q+ ε)2− 4εq

2
,

are either both real and negative or both complex with negative real parts for any q,ε > 0.

7.4.7. For the polynomial equation x2+bx+c= 0, determine the regions in the bc plane where:

(a) The roots are real,
(b) The roots are real and differ in sign,
(c) The roots are real and positive,
(d) The roots are real and negative,
(e) The roots are complex and have negative real parts,
(f) The roots are complex and have positive real parts.
(g) Sketch a graph in the bc plane showing the regions indicated in parts (b)–(f)

7.5 Stability in Nonlinear Systems

After studying this section, you should be able to:

• Compute the Jacobian to represent a nonlinear system near an equilibrium point.
• Use the Jacobian and the Routh–Hurwitz criteria to determine stability of equilibria for non-

linear dynamical systems.

In Section 7.4, we learned that linear autonomous systems have a single equilibrium solution
and that the stability of that solution can be determined by examining the matrix A that repre-
sents the system. For nonlinear systems, there may be any number of equilibria, with different
behavior near each. However, we can find a linear approximation for the system near each equi-
librium point. The matrices that represent these approximate systems can usually be used to
determine the stability of the corresponding equilibrium solution.

7.5.1 Approximating a Nonlinear System at an Equilibrium Point

Suppose we have a two-dimensional nonlinear system of the form

x1
′ = f1(x1,x2) , (7.5.1)

x2
′ = f2(x1,x2) . (7.5.2)

In general, the linear approximation of a function f (x1,x2) near a point (x�1,x
�
2) is given by37

f (x1,x2)≈ f (x�1,x
�
2)+

∂ f
∂x1

(x�1,x
�
2)(x1 − x�1)+

∂ f
∂x2

(x�1,x
�
2)(x2 − x�2) .

37 Linear approximation for functions of more than one variable requires one term for each independent variable,
using partial derivatives rather than ordinary derivatives. See Section 1.3 for partial derivatives and Section 1.4
for linear approximation.
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However, we are specifically interested in the case where (x�1,x
�
2) is an equilibrium solution.

Then
f1(x

�
1,x

�
2) = 0 , f2(x

�
1,x

�
2) = 0 ,

which simplifies the linear approximation formula for the functions f1 and f2 to

f j(x1,x2)≈ ∂ f j

∂x1
(x�1,x

�
2)(x1 − x�1)+

∂ f j

∂x2
(x�1,x

�
2)(x2 − x�2) .

Thus, replacing the functions f1 and f2 with their linear approximations yields the system

x1
′ ≈ ∂ f1

∂x1
(x�1,x

�
2)(x1 − x�1)+

∂ f1

∂x2
(x�1,x

�
2)(x2 − x�2) , (7.5.3)

x2
′ ≈ ∂ f2

∂x1
(x�1,x

�
2)(x1 − x�1)+

∂ f2

∂x2
(x�1,x

�
2)(x2 − x�2) , (7.5.4)

Now, to simplify the system, we define new variables ui in place of xi:

ui = xi − x�i . (7.5.5)

Note that dui/dt = dxi/dt because x�i is a constant. Thus, we can rewrite (7.5.3) and (7.5.4) as

u1
′ =

∂ f1

∂x1
(x�1,x

�
2)u1 +

∂ f1

∂x2
(x�1,x

�
2)u2 ,

u2
′ =

∂ f2

∂x1
(x�1,x

�
2)u1 +

∂ f2

∂x2
(x�1,x

�
2)u2 .

In matrix-vector form, we have the system

u′ = J(x�1,x
�
2)u , J =

⎛
⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

⎞
⎟⎠ . (7.5.6)

The matrix J is called the Jacobian of the system.

Jacobian of an n-dimensional system of differential equations: the n× n matrix for
which the entry in row i and column j is the derivative of the ith function with respect to
the jth variable.

Example 7.5.1. Find the approximate linear system(s) for the dimensionless Michaelis–Menten
model

ds
dt

=−s(1− z)+ hz , (7.5.7)

ε
dz
dt

= s(1− z)− hz− rz , (7.5.8)

where h and r are positive constants.
As we saw in our earlier analysis, the only equilibrium point is the point (0,0). In the notation

of (7.5.1) and (7.5.2), we have

f1(s,z) =−s+ sz+ hz, f2(s,z) = ε−1(s− sz− hz− rz),
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so

∂ f1

∂ s
=−1+ z ,

∂ f1

∂ z
= s+ h ,

∂ f2

∂ s
= ε−1(1− z),

∂ f2

∂ z
= ε−1(−s− h− r) .

These derivatives combine to define the Jacobian matrix as

J(s,z) =
( −1+ z s+ h

ε−1(1− z) ε−1(−s− h− r)

)
.

At the equilibrium point,

J(0,0) =
( −1 h

ε−1 −ε−1(h+ r)

)
. (7.5.9)

Equation (7.5.9) defines the matrix for the linear approximation of the system near the equilib-
rium point (0,0). ��

7.5.2 The Jacobian and Stability

Suppose (x�1,x
�
2) is an equilibrium point for a system of the form given in (7.5.1) and (7.5.2).

If we zoom in on the equilibrium point in the phase plane, we approach the system (7.5.6),
where the equilibrium (u1,u2) = (0,0) corresponds to the original equilibrium (x�1,x

�
2). We can

certainly determine the stability of the linearized system using Theorem 7.4.3. But does this
result also apply to the corresponding equilibrium point for the nonlinear system? Because the
behavior of solutions near an equilibrium point in the phase space doesn’t change as we zoom
in, it seems reasonable to expect that the nonlinear system and its linear approximation should
have the same stability properties. This is generally true, although there are exceptions. The
important result is summarized in the following theorem:

Theorem 7.5.1 (Stability for Nonlinear Systems of Two Dynamic Variables). Let
(x�1,x

�
2) be an equilibrium point for the system

dx1

dt
= f1(x1,x2),

dx2

dt
= f2(x1,x2) .

If Theorem 7.4.3 applies to the linearized system having matrix J(x�1,x
�
2), then the con-

clusion from that theorem applies to the corresponding equilibrium (x�1,x
�
2).

Example 7.5.2. The matrix

A = J(0,0) =
( −1 h

ε−1 −ε−1(h+ r)

)

from Example 7.5.1 has

detA = (−1)(−ε−1(h+ r))− (h)(ε−1) = ε−1r > 0, trA =−1− ε−1(h+ r)< 0.
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By Theorem 7.4.3, the origin is asymptotically stable for the linear system u′ = Au. By Theo-
rem 7.5.1, this result extends to the equilibrium (s,z) = (0,0) for the nonlinear system of (7.5.7)
and (7.5.8). ��

Note that Theorem 7.4.3 does not apply in certain cases, such as when detA> 0 and trA= 0.
This is not very common, but it is important to keep in mind that linearization does not always
work.

Example 7.5.3.

Q) Apply linearization to the system

dw
dt

= ap,
d p
dt

= p(1− p−w), k > 0,

which models the dynamics of a population (p) that is gradually poisoned by its own
waste (w).

A) The first equilibrium equation requires p= 0, which automatically satisfies the second equa-
tion as well. Thus, all points of the form (w,0) are equilibria. The Jacobian is

J(w, p) =

(
0 a
−p 1− 2p−w

)
,

so

J(w,0) =
(

0 a
0 1−w

)
, detJ(w,0) = 0 , trJ(w,0) = 1−w .

If w < 1, then the trace of the Jacobian is positive. In this case, Theorem 7.4.3 indicates that
the equilibrium is unstable, and this result carries over to the nonlinear system. However,
the theorem does not apply if w > 1; we cannot draw a stability conclusion from the lin-
earization in this case.38 ��

We’ve now seen how the Jacobian provides the matrix needed to determine stability in two-
dimensional systems. It works equally well for higher dimensional systems. Theorem 7.5.2
gives the result for three-dimensional systems:

Theorem 7.5.2 (Stability for Nonlinear Systems of Three Components). Let
(x�1,x

�
2,x

�
3) be an equilibrium point for the system

x1
′ = f1(x1,x2,x3), x2

′ = f2(x1,x2,x3), x3
′ = f3(x1,x2,x3) .

If Theorem 7.4.4 applies to the linearized system having matrix J(x�1,x
�
2,x

�
3), then the con-

clusion from that theorem applies to the equilibrium (x�1,x
�
2,x

�
3) for the original system.

Example 7.5.4. Consider the one-parameter family of models with one predator and two prey
that is given by the system

x′ = x(1− x)− xz, y′ = ry(1− y)− yz, z′ = z(2x+ 2y− 1), r > 0.

38 See Problem 7.3.2 for a conclusive analysis.
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The Jacobian for this system is

J(x,y,z) =

⎛
⎝ 1−2x− z 0 −x

0 r−2ry− z −y
2z 2z 2x+2y−1

⎞
⎠ .

Note that the point (x,y,z) = (0,1,0) is an equilibrium, with Jacobian

J(0,1,0) =

⎛
⎝ 1 0 0

0 −r −1
0 0 1

⎞
⎠ .

Using the notation of Theorem 7.4.4, we have

c1 = r− 2 , c2 = 1− 2r , c3 = r > 0 .

We have c1 > 0 if r > 2 and c2 > 0 if r < 1/2. These cannot both happen, so the Routh–
Hurwitz conditions indicate instability. Thus, the equilibrium (0,1,0) for the original system is
unstable.39 ��

Problems

Note: All parameters in these problems are positive.

7.5.1.* (Continued from Problem 7.3.4.)

(a) Determine the stability of the equilibria for the SIR model with constant population size

s′ = ε(1− s)−R0si , ε > 0 ,

i′ = R0si− i , R0 > 0 .

Note that the results could depend on the parameter values.
(b) Discuss the results with reference to Problems 7.1.4 and 7.3.4.

7.5.2. (Continued from Problem 7.3.6.)

(a) Determine the stability of the equilibria for the SIS model with constant recruitment

n′ = ε(1− n−mi) , m,ε > 0 ,

i′ = R0i(n− i)− i , R0 > 0 .

Note that the results could depend on the parameter values.
(b) Discuss the results with reference to Problems 7.1.5 and 7.3.6.

7.5.3. (Continued from Problem 7.3.7.)

(a) Determine the stability of the equilibrium (1,0) for the SIS model with logistic growth

n′ = ε[n(1− n)−mi] , m,ε > 0 ,

i′ = R0i

(
1−R−1

0 − i
n

)
, R0 > 0 ,

39 Other equilibria are considered in Problem 7.5.9.
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(b) Repeat part (a) in the limit ε → 0 for the equilibrium (1−αm,α(1−αm)), where α =
1−R−1

0 . Keep in mind that there are restrictions on the parameter values for this equilibrium
to exist.

(c) Discuss the results with reference to Problems 7.1.6 and 7.3.7.

7.5.4. (Continued from Problem 7.3.7.)
The equations

n′ = ε[n(1− n)−mi] , m,ε > 0 ,

i′ = R0i

(
1−R−1

0 − i
n

)
, R0 > 0 ,

for the SIS model with logistic growth are not in a suitable form to determine the stability of
the extinction equilibrium (0,0), because the Jacobian is not defined at this point. To get around
this problem, we must rewrite the model. For simplicity, assume R0 > 1. (It is intuitively clear
that the population will not go extinct if the epidemic cannot get started.)

(a) Let x = i/n. Apply the product rule to the equation i(t) = x(t)n(t) and substitute from the n′
and i′ equations to obtain an equation for x′. With the assumption that ε is very small, this
equation reduces to a simple logistic equation for x that does not contain either i or n.

(b) Determine the stable equilibrium solution of the simplified x equation.
(c) Evaluate the Jacobian for the original system, using the stable equilibrium value from part

(b) where i/n is needed.
(d) Determine the stability of the extinction equilibrium for the case R0 > 1.
(e) Discuss the results with reference to Problems 7.1.6 and 7.3.7.

7.5.5. (Continued from Problem 7.3.8.)

(a) Determine the stability of the equilibria for the plankton population model

p′ = p(1−α − p− z) ,

z′ = δ z(p−β ) .

Keep in mind that some equilibria exist only for certain ranges of parameter values.
(b) Discuss the results with reference to Problem 7.3.8.
(c) Explain the prediction the model makes for the effect of alpha and beta on the behavior of

the system

7.5.6. (Continued from Problem 7.3.9.)

(a) Determine the stability of the c = 0 equilibrium for the chemostat model,

r′ = qr0

(
1− r

r0
− rc

1+ r

)
,

c′ = c

(
r

1+ r
− q

)
.

(b) Show that the following pair of conditions guarantees stability for an equilibrium solution
in a two-component model:

1. One of the entries in the main diagonal of the Jacobian is negative and the other is 0.
2. The off-diagonal entries of the Jacobian are opposite in sign.

(c) Use the result of part (b) to determine the stability of the c > 0 equilibrium solution.
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(d) Sketch the region in the r0q parameter space for which the consumer population has a stable
positive value.

(e) Discuss the results with reference to Problem 7.3.9.

7.5.7.* (Continued from Problem 7.3.5.)

(a) Determine the stability of the equilibria having c = 0 for the dimensionless Rosenzweig–
MacArthur model with Holling type I predator response,

v′ = v(1− v− c) ,

c′ = mc(hv− 1) .

(b) Let (v�,c�) be the equilibrium in which neither v nor c are 0. Use the equations that these
quantities must satisfy to reduce the Jacobian to

J(v�,c�) =

( −v� −v�

mhc� 0

)

and use this result to determine the stability of the equilibrium.
(c) Discuss the results with reference to Problems 7.2.9 and 7.3.5.
(d) Explain the prediction the model makes for the affect of h on the behavior of the system.

7.5.8. (Continued from Problems 7.3.10 and 7.3.11.)

(a) Determine the stability of the predator extinction equilibrium v = k, c = 0 for the dimen-
sionless Rosenzweig–MacArthur model with Holling type II predator response,

v′ = v

(
1− v

k
− c

1+ v

)
,

c′ = mc

(
hv

1+ v
− 1

)
,

with k = 2 and arbitrary h.
(b) Find the Jacobian for the non-extinction equilibrium (v�,c�) determined by the equations

(
1− v

k
− c

1+ v

)
= 0 ,

(
hv

1+ v
− 1

)
= 0 .

Note that the determinant of this Jacobian must be positive; hence, the stability is deter-
mined entirely by the sign of the term in row 1 and column 1.

(c) Set k = 2 to simplify the algebra. Then show that the condition that the trace be negative
reduces to the requirement v� > 1/2.

(d) Determine the range of h values, given k = 2, for which the stability condition v� > 1/2 is
satisfied.

(e) Discuss the results with reference to Problems 7.3.10 and 7.3.11.
(f) Explain the prediction the model makes for the affect of h on the behavior of the system.

7.5.9. The one-parameter family of models

x′ = x(1− x)− xz , y′ = ry(1− y)− yz, z′ = z(2x+ 2y− 1) ,
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with r > 0 was considered briefly in Example 7.5.4, where the Jacobian was found to be

J(x,y,z)=

⎛
⎝ 1− 2x− z 0 −x

0 r− 2ry− z −y
2z 2z 2x+ 2y− 1

⎞
⎠ .

(a) Show that the equilibrium in which all populations are 0 is always unstable.
(b) Show that the equilibrium (1,0,0) is always unstable, and similarly, that the equilibrium

(0,1,0) is always unstable.
(c) Find the equilibrium in which only z is 0 and show that it is always unstable.
(d) Find the equilibrium in which only y is 0 and determine the range of r for which it is stable.
(e) Repeat part (d) for the case where only x is 0.
(f) Repeat part (d) for the case where none of the variables is 0. [Hint: Leave x, y, and z as

factors in all entries in the first, second, and third rows, respectively. The result is a simple
matrix with easy calculations to show c j > 0. The final requirement is a little tricky, but
much easier if you don’t substitute in the formulas for the variables.]

(g) Note that r represents the relative growth rate advantage of the species y as compared to x.
Explain why the results of parts (d)–(f) make sense biologically.

7.6 Primary HIV Infection

The simplest model for viral infections of the immune system appears in an article by A.S.
Perelson and colleagues that appeared in the year 2000 [6]. We present this model with a minor
modification.

T cells are a type of white blood cell. The body produces these cells and uses them to fight
infections. Like all cells, T cells do not live forever, so they must be produced continuously to
maintain a healthy concentration in the blood.

The HIV virus targets T cells. When a virus particle infects a T cell, it takes over the ma-
chinery of the cell to produce more virus particles. The infected cell will continue to produce
virus particles until it dies. Infected cells can be expected to die sooner than uninfected cells
because of the additional stress put on the cell by the virus.

Consider a dynamical system consisting of three interacting components. There are healthy
T cells, infected T cells, and free virus particles, all moving through the bloodstream. We use S
(susceptible) for the concentration of healthy T cells, I for the concentration of infected T cells,
V for the concentration of free virus particles, and T for time. The three populations interact
through several processes, not all of which need appear in our conceptual model. Here are the
processes that we do include:

1. Healthy cells are produced by the body at a constant rate R.
2. T cells of both kinds are lost through natural death at a rate proportional to the number of

cells: DS for the healthy cells and DI for the infected cells.
3. Infected T cells die as a result of virus infection, with overall rate MI.
4. Healthy cells become infected through encounters with free virus particles. Since this is a

chemical reaction, we assume that the rate is given by the law of mass action, which predicts
that the rate is proportional to both S and V . Thus, healthy cells are reduced at the rate BVS
and infected cells increase at the same rate.

5. Infected cells produce free virus particles at a constant rate, so the overall production rate of
virus particles is proportional to the number of infected cells: PI.

6. The body removes free virus particles at a rate proportional to the concentration of such
particles: CV .
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Combining these assumptions results in the model

dS
dT

= R−DS−BVS , (7.6.1)

dI
dT

= BVS−DI−MI , (7.6.2)

dV
dT

= PI −CV . (7.6.3)

7.6.1 Nondimensionalization

As with the Michaelis–Menten model, we can decrease the number of parameters by nondi-
mensionalization. Specifically, we define dimensionless variables40 by

s=
DS
R

, i=
(M +D)I

R
, v=

C(M+D)V
PR

, t=DT. (7.6.4)

Substituting S = Rs/D, I = Ri/(M+D), V = PRv/C(M+D), and d
dT = D d

dt , and defining
the dimensionless parameters

b =
BRP

CD(M +D)
, θ =

M+D
C

, ε =
D

M+D
, (7.6.5)

we have the dimensionless system

ds
dt

= 1− s− bvs , (7.6.6)

ε
di
dt

= bvs− i , (7.6.7)

θε
dv
dt

= i− v . (7.6.8)

As in the Michaelis–Menten model, we can consider the parameters to be of two types. The
parameters ε and θ are ratios of reference times, with ε the lifetime of an infected cell relative
to a healthy cell and θ the lifetime of a virus particle relative to that of an infected cell. The
parameter b measures the relative strength of the infection process. The factors in the numerator
represent the processes that increase the infectivity (B), increase the production of virus (P),
and increase the production of target cells (R). The factors in the denominator represent the
death rates of virus particles, healthy cells, and infected cells, respectively. We will see in the

40 The reference quantity for healthy cells is chosen by observing that, in the absence of the virus, the equilibrium
has S = R/D. The reference quantity for infected cells is taken to be R/(M+D) rather than R/D. The former is
roughly the number of infected cells lost in one time unit, which will be an advantageous choice. The drawback
is that the number of T cells in the dimensionless model will not be s+ i on account of the difference in reference
quantities; this turns out to be insignificant because there is no important reason why we should want to know the
total number of T cells. The reference quantity for the virus is chosen so that the virus equation will yield v = i
at equilibrium; in other words, the reference quantity is the number of virus particles that can be maintained by
a population of R/(M +D) infected cells. The expected lifetimes of healthy T cells, infected T cells, and virus
particles are 1/D, 1/(M +D), and 1/C, respectively. Any one of these could be taken as the reference time for
nondimensionalization. Generally it is best to choose longer times over shorter times, and on the view that the
model is mostly about T cells, we choose 1/D.
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subsequent analysis that the model exhibits two qualitatively different behaviors, one for b
relatively large and one for b relatively small. A key part of the analysis is to determine the
critical value of b where the transition occurs.

7.6.2 Reduction to Two Variables

Experiments have yielded expected lifetimes of approximately 100 days for healthy T cells, 2.5
days for infected T cells, and 1/4 day for virus particles.41 Thus, the time scale parameters are

ε ≈ 0.025 , θ ≈ 0.1 .

The assumption that both ε and θ are small allows us to simplify the model for the purpose
of analysis, using the same method we used in the Briggs–Haldane approximation. Because
both ε and θ are small, the fastest variable in the dynamical system is v. Initially, we should
have i = 0 and v small. We should expect the v equation to quickly reach equilibrium at v = i.
Thus, we predict that the virus concentration should very quickly drop to meet the infected
cell concentration, while the infected cell concentration begins its increase from 0. This has
two consequences: (1) the initial amount of virus is not going to make a big difference in
the behavior of the model, since any excess will disappear quickly, and (2) we can ignore the
extremely short transient in which v 
= i.

This is borne out in Figure 7.6.1, which shows the early history of the infection. Note that
the time scale is 100 days, so the plots on the left show approximately the first year of the
dynamics and the plots on the right show barely a month. The initial virus load affects the
peak of viral concentration, with a smaller load requiring an incubation period. Meanwhile,
differences between v and i are barely visible on the shorter time scale. In the lower plot,
corresponding to a very large initial load v(0) = 2, the virus concentration and infected cell
concentration equalize at about t ≈ 0.01, which corresponds to a real time of about 1 day. With
a more realistic initial load, the reduction of v to match i is not even visible on the graph.

Our HIV model shows the great power of nondimensionalization when there are small pa-
rameters. The model gives us a considerable amount of detail about the dynamics without any
need for nullclines or stability analysis. Most importantly, the combination of analysis and sim-
ulation suggests that by approximating the v equation by the relation v = i, we can reduce the
model to two dimensions with only minimal loss of information. We can then replace v by i in
the remaining equations, reducing the model to

ds
dt

= 1− s− bis , b > 0 , (7.6.9)

ε
di
dt

= i(bs− 1) , 0 < ε � 1 , (7.6.10)

v = i . (7.6.11)

41 Of course, these values differ significantly for different patients; however, we may take them to be good
at least to a factor of 10. This may not seem like a useful degree of accuracy, but it is enough to support the
mathematical arguments in this section.
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7.6.3 Equilibria and Stability

Equilibrium solutions for both the two-dimensional and three-dimensional systems must satisfy
the equations:

1− s− bis = 0 , i(bs− 1) = 0 , i = v .

The second equation is satisfied either by i = 0 (the infection-free equilibrium) or s = 1/b
(the disease equilibrium). In the first case, we get s = 1 and v = 0; in the second case, we get
i = v = 1− 1/b, which only has biological meaning if b > 1.
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Fig. 7.6.1 HIV dynamics, from (7.6.6) to (7.6.8), with b = 2, ε = 0.025, θ = 0.1; the upper plots have v(0) =
0.01, the lower plots have v(0) = 2, and in both cases i is dotted, although not necessarily visible. The plots on
the right cover the first 10 % of the time interval shown on the left

Using the two-dimensional model, the Jacobian is

J(s, i) =
( −1− bi −bs

bi bs− 1

)
.

Thus,

J(1,0)=
( −1 −b

0 b− 1

)
, J(b−1,1− b−1)=

( −b −1
b− 1 0

)
.

We have

detJ(1,0) = 1− b , trJ(1,0) = b− 2 ,

detJ(b−1,1− b−1) = b− 1 , trJ(b−1,1− b−1) =−b .



376 7 Continuous Dynamical Systems

Note that the two determinants are negatives of each other, so there is no scenario in which both
equilibria are stable. The infection-free equilibrium (1,0) is asymptotically stable whenever
b < 1, as both the trace and determinant requirements are satisfied. The disease equilibrium is
asymptotically stable whenever b > 1. To summarize:

• If 0 < b < 1, the asymptotically stable equilibrium (1,0) is the only equilibrium.
• If b > 1, the infection-free equilibrium (1,0) is unstable and the disease equilibrium

(b−1,1− b−1) is asymptotically stable.

The three-dimensional model yields the same stability results.42

7.6.4 Phase Plane Analysis

Equation (7.6.9) indicates that the s nullcline is bis = 1− s, which we can rewrite as

i =
1− s

bs
. (7.6.12)

From (7.6.10) we find two i nullclines:

i = 0 , s =
1
b
. (7.6.13)

We saw that the set of equilibrium points is different for the cases 0 < b < 1 and b > 1. The
value b = 1 marks the boundary between two qualitatively different model behaviors. Such
a value is called a bifurcation value. When there is a bifurcation, we need distinct nullcline
sketches for each of the cases. Figure 7.6.2 illustrates the two cases, using b values of 0.8 and 2.
In the b = 0.8 case, we show two hypothetical solution curves (dotted). Although these curves
illustrate the behavior expected of solution curves, the initial conditions are unrealistic. The
actual solution starts near the stable equilibrium point at (1,0) and moves quickly to that point.
In the b = 2 case, the solution curve that begins near the (1,0) equilibrium exhibits oscillatory
behavior, as shown in the corresponding time series graphs of Figure 7.6.1.

Problems

7.6.1. Determine the stability of the equilibria for the dimensionless three-component HIV
model.

The immune system utilizes a variety of different components to combat infections, foreign
bodies, and other dangers to the organism. A complete model of the immune system would be
very complicated; however, there are a number of simple models that deal with specific aspects
of the immune system. We consider one of these models here43:

42 See Problem 7.6.1.
43 These are adapted from [5].
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Fig. 7.6.2 Nullcline sketches for the HIV model, with b= 0.8 (left) and b= 2 (right), along with solution curves
obtained with ε = 0.025, θ = 0.1

dP
dT

= RP

(
1− P

K

)
−QMP− SNP ,

dM
dT

= L−DM−AMP ,

dN
dT

=
CP

H +P
−BN ,

where P is the pathogen and M and N are two different kinds of macrophages (white blood
cells), one non-specific and the other a cell that is “trained” to recognize and attack a specific
invader, and all other quantities are positive parameters. The model can be written in dimen-
sionless form as

p′ = p(1− p− qm− sn) ,

m′ = a[δ (1−m)−mp] ,

n′ = b

(
p

h+ p
− n

)
.

7.6.2.(a) Explain the three terms in the (dimensional) pathogen equation. In particular, what
assumptions does the model make about pathogen population growth and about interaction
with macrophages?

(b) Explain the three terms in the non-specific macrophage (M) equation. In particular, what
are the processes by which the body maintains a population of these cells in the absence of
infection, and what is the outcome on these cells of interaction with the pathogen?

(c) The first term in the specific macrophage (N) equation is simplified from a model that
involves the training of cells from a reservoir of untrained cells. While it does not show
all the features of that model, it does indicate how the rate at which these trained cells are
created depends on the pathogen population. Explain this dependence.

(d) Explain the biological process that removes trained cells from the body. In particular, what
significant advantage is conferred by these cells as compared to the non-specific cells?

(e) The parameter δ is always small. What is the biological meaning of this fact?

7.6.3. In some circumstances, the non-specific macrophages are sufficient to clear an infec-
tion, in which case we can ignore the N equation. For a specific example, assume q = 1.5 and
δ = 0.2.44

44 The value given for q is realistic, while the value for δ is about 10–20 times larger than what usually occurs.
This larger value has been chosen because it makes the nullcline diagram easier to interpret, without changing
the qualitative features of the system appreciably.



378 7 Continuous Dynamical Systems

(a) Plot the nullcline diagram for the pm subsystem with the given parameter values. Determine
the number and stability of the equilibria.

(b) Run a simulation with the given parameter values and also a = 0.5, m(0) = 1, and p(0) = 1,
with a total time of 100 units. [Experiment with the number of time steps. What happens if
you don’t make the time intervals short enough?]

(c) Repeat part (b) with p(0) = 0.9.
(d) Repeat part (b) with p(0) = 0.2.
(e) Add the data from parts (b)–(d) to the nullcline plot.
(f) Discuss the results. What should we expect a realistic value of p(0) to be, given that p = 1

would be the maximum capacity for the pathogen in a person without a functioning immune
system?

(g) Explain why the assumption that N can be omitted from the model is reasonable with small
p(0) and the other parameters as given above.

7.6.4.(a) Show that the pm subsystem always has exactly one chronic infection equilibrium
state when q < 1 and determine the range of possible p values. [Keep in mind that δ is
small, so it is certainly less than 1.]

(b) Determine the Jacobian for the chronic infection state. To keep the result as simple as pos-
sible, do not try to substitute in the formulas for p� and m�. Instead, use the equilibrium
equations to eliminate m� from the top row and p� from the bottom row.

(c) Use the Routh–Hurwitz conditions to show that the chronic infection equilibrium is stable
if and only if qm∗2 is less than some critical value.

(d) Use the equilibrium equations to eliminate first q and then m� from the stability criterion of
part (c). Then show that the resulting stability criterion, which includes only p� and δ , is
always met when q < 1.45

7.6.5. In this problem, we explore the predictions the model makes about the effect of the
pathogen-specific macrophages.

(a) Determine the stability of the disease-free equilibrium for the pm subsystem in terms of the
parameters q, δ , and a. When the stability condition is not met, the pathogen is guaranteed
to persist over time.

(b) Determine the stability of the disease-free equilibrium for the full system in terms of the
parameters. [Hint: In this case, it is easier to compute the eigenvalues than to apply the
Routh–Hurwitz conditions.]

(c) Suppose q = 0.5 and δ = 0.2 in the pm subsystem. Determine the equilibrium value of p
for this case. (The stability of this equilibrium is confirmed in Problem 7.6.4.)

(d) Take s = 1 and h = 0.06 with the same values for q and δ as in part (a). Determine the
equilibrium value of p for the full system.

(e) Use the Routh–Hurwitz conditions to confirm the stability of the equilibrium of part (d).
(f) Run (separate) simulations for the pm subsystem and the full system using p(0) = 0.2,

m(0) = 1, n(0) = 0, b = 0.1, and other parameter values as given in parts (c) and (d). Plot
the results on a common graph. [Choose an appropriate total time to make a meaningful
plot.]

(g) Explain the model’s prediction for the benefit of having pathogen-specific macrophages.

45 This problem is yet another example of the general principle that computer algebra systems are no substitute
for human algebra capability. It would be possible to get a CAS to do the manipulations to obtain the results of
this problem, but only by anticipating the manipulations needed. There is no CAS command for “Use human
ingenuity to simplify this formula so as to obtain a result with a simple biological interpretation.”
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(h) What qualitative prediction of this model is not realistic?46 [Hint: Think about what it means
to have an equilibrium with p > 0 and what advantages the pathogen-specific macrophages
ought to add to the functioning of the immune system.]

7.6.6.(a) Show that the full system always has exactly one positive equilibrium value for p
under the assumption that δ is arbitrarily small (in other words, take δ = 0).

(b) Use the Routh–Hurwitz conditions to show that the chronic disease equilibrium of the full
system with parameters

q = 0.5 , δ = 0.2 , s = 1 , h = 0.06 , a = 0.4 , b = 0.1

is stable (see Problem 7.6.5d).47
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Appendix A
Additional Topics in Discrete Dynamical Systems

This appendix contains three topics that are thematically related to Chapter 6. Discrete nonlinear
systems (Section A.1) are analogous to the continuous nonlinear systems of Chapter 7, but are
more complicated. These models are overused in practice. Discrete models are indicated when
life history events are synchronous, such as for many plants and fish that reproduce once per
year; continuous models should be used in other cases. Markov chains (Section A.2) are dynam-
ical systems in which the variables are probabilities rather than populations. The development
focuses on the problem of measuring the extent to which two different species are genetically re-
lated. Boolean algebra models (Section A.3) provide a simplified setting for dynamical systems
that is useful for analyzing complicated systems, such as those in gene regulatory networks.

A.1 Discrete Nonlinear Systems

After studying this section, you should be able to:

• Run simulations for discrete nonlinear systems.
• Analyze the stability of fixed points for discrete nonlinear systems.

On conceptual grounds, it would have made sense to present discrete nonlinear systems
alongside their linear counterparts in Chapter 6. There are two reasons why this topic appears
in a separate appendix instead. First, the analysis of discrete nonlinear systems is easier to un-
derstand after studying continuous nonlinear systems.1 Second, one should only use discrete
nonlinear systems when absolutely mandated by the synchrony of life events. There are several
reasons for this. As we saw in Chapter 5, discrete models have some mathematical complica-
tions that are absent from continuous models. Here again, we will see complications arising in a
model with only weak nonlinearities in Example A.1.4. A further problem with discrete models
is the weakness of graphical techniques, which are much more complicated and far less gen-
eral than those for continuous models. In our study of single dynamic models in Chapter 5, we
ran simulations and used linearization techniques to determine stability for both discrete and
continuous models. These techniques generalize to higher order systems in both cases.2 The
very powerful phase line method for continuous equations3 generalizes to phase plane methods

1 See Section 7.5.
2 See Chapter 7 for continuous systems.
3 Section 5.4.
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for continuous systems.4 In contrast, the graphical technique of cobweb analysis for discrete
equations,5 which is less powerful than the phase line method, does not generalize to multi-
component discrete systems, with the exception of a limited class of discrete systems that can
be recast as single-component models. We begin our study with this limited class for which
Chapter 5 methods are applicable.

Suppose a population is divided between two age classes, young (Y ) and adults (A), with the
additional requirements that all surviving young become adults in the next year and all adults
die after reproducing. With these restrictive assumptions, the populations can be modeled by
equations of the form

Yn+1 = f (An),

An+1 = g(Yn).

Because generations do not overlap, we can combine the two equations into a single one that
spans a discrete interval of 2 years; for example,

Yn+2 = f (An+1) = f (g(Yn)).

We can then define the composite function h(Y ) = f (g(Y )) and rewrite the system as

Yn+2 = h(Yn).

This is a single discrete dynamic equation, albeit with a time interval of 2 years rather than 1,
and we can apply all of the methods for dealing with such equations from Chapter 5.

Example A.1.1. Suppose the adults of a population occupy an ecological niche that allows for
density-independent reproduction, while the young occupy a niche in which resources are lim-
ited. If we assume that the survival/recruitment of the young follows the saturation curve used
for Holling type II dynamics, we have the model

Yn+1 = f An, f > 0,

An+1 =
Yn

b+Yn
, b > 0.

These combine to make a 2-year discrete model

Yn+2 =
fYn

b+Yn
≡ h(Yn).

Fixed points satisfy Yn+2 = Yn = Y , resulting in the equation

Y = h(Y ) =
fY

b+Y
.

Thus, Y = 0 is a fixed point, and a second fixed point Y = f −b exists if f > b. The fixed point
Y � is stable if and only if |h′(Y �)|< 1. We have

h′(Y ) =
f b

(b+Y)2 ;

4 See Section 7.3.
5 See Section 5.2.
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thus,

h′(0) =
f
b
, h′( f − b) =

b
f
.

The fixed point Y = 0 is stable if f < b, while the fixed point Y = f − b is stable whenever it
exists. Cobweb analysis confirms these conclusions and also demonstrates that the long-term
behavior of the population always converges to the stable fixed point.6 ��

A.1.1 Linearization for Discrete Nonlinear Systems

In Chapter 6, we saw that the quantity λ in the discrete model Nt+1 = λ Nt generalizes to the
eigenvalues for a discrete linear system. We also saw in Chapter 7 that the stability of an equilib-
rium solution of a continuous nonlinear system is determined by the eigenvalues of the Jacobian
matrix at the corresponding equilibrium point.7 The same connections hold for discrete non-
linear systems. Near a fixed point, a discrete nonlinear system can be approximated by a linear
system represented by the Jacobian matrix.8 The eigenvalues of the Jacobian determine the be-
havior near the corresponding fixed point, with |λ |< 1 for all λ required for stability. It is often
more convenient to use the equivalent criterion |λ |2 < 1 for all λ ; this generalizes to the case of
complex eigenvalues, with the magnitude of a complex number defined by |a+ ib|2 = a2 + b2.

Example A.1.2. The Jacobian for the system of Example A.1.1 is

J =

(
0 f
b

(b+Y)2 0

)
.

Thus, the eigenvalues are given by

0 = det

(
−λ f

b
(b+Y)2 −λ

)
= λ 2 − f b

(b+Y)2 .

The stability requirement λ 2 < 1 yields the inequality

f b
(b+Y)2 < 1.

This is the same requirement that we obtained in Example A.1.1 using the method for single
discrete equations. ��

Usually it requires significant algebraic calculation to compute eigenvalues for a model with
arbitrary parameters. Some of this calculation can be avoided by making use of the Jury condi-
tions for stability, which are a set of inequalities written in terms of quantities calculated directly
from the Jacobian matrix.9

6 See Problem A.1.1.
7 See Section 7.5.
8 See Problem A.1.2.
9 These correspond to the Routh–Hurwitz conditions for continuous systems.
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Theorem A.1.1 (Jury Conditions for a System of Two Components). Let J be the Ja-
cobian matrix that represents a nonlinear system of two components near a fixed point
x�. The fixed point is asymptotically stable if

|trJ|< 1+ detJ < 2,

where trJ is the sum of the main diagonal entries of the Jacobian. The fixed point is
unstable if any one of the inequalities

trJ > 1+ detJ, trJ <−1− detJ, detJ > 1

is true.

Example A.1.3. For the model of Examples A.1.1 and A.1.2, we have

trJ = 0, detJ =− f b
(b+Y�)2 .

The first of these results reduces the Jury conditions to −1 < detJ < 1, and the second of
this latter pair is automatically satisfied because the determinant is negative. The remaining
condition, detJ >−1, reduces to (b+Y �)2 > f b, which is equivalent to the condition f b/(b+
Y �)2 < 1 that we derived in Example A.1.2. ��

As with the Routh–Hurwitz conditions for continuous systems, there are Jury conditions
for any size, but they get more complicated as the size increases. Here we present the Jury
conditions for 3× 3 matrices.

Theorem A.1.2 (Jury Conditions for a System of Three Components). Let A be the
Jacobian matrix for a three-component discrete system at a fixed point. Let Ak be the
2× 2 matrix obtained from A by deleting row k and column k. Define c1, c2, and c3 by

c1 =−trA, c2 =
3

∑
k=1

detAk, c3 =−detA,

where trA is the sum of the diagonal elements of A. Then the fixed point of the original
system is asymptotically stable if

1. 1+ c1+ c2 + c3 > 0,
2. 1− c1+ c2 − c3 > 0, and
3. |c2 − c1c3|< 1− c2

3.

The fixed point is unstable if any of the inequalities is reversed.

A.1.2 A Structured Population Model with One Nonlinearity

In Chapter 7, we examined three-component continuous models in which each equation is
nonlinear. Here we consider a three-component discrete model with only one nonlinear equa-
tion. This is enough to produce some very complicated behavior.
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Example A.1.4. Consider a species whose life history encompasses three yearly stages, with
the two older stages occupying the same ecological niche, but only the oldest stage reproduc-
ing. With linear recruitment for the two older classes and Beverton–Holt10 recruitment for the
youngest class, we have the model

Lt+1 =
f An

b+Yn +An
,

Yn+1 = s1Ln,

An+1 = s2Yn,

where f ,b > 0 and 0 < s1,s2 < 1. Figure A.1.1 shows plots of Y and A for three simulations
using common values f = 10,000, b = 15, s1 = 0.03, along with different values for s2. These
plots show some of the behaviors that the system can exhibit. ��
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Fig. A.1.1 Y values for the model of Example A.1.4, using f = 10,000, b = 15, s1 = 0.03, with (a) s2 = 0.595,
(b) s2 = 0.600, (c) s2 = 0.605, (d) s2 = 0.610

How were the parameter sets for the plots of Figure A.1.1 chosen so as to illustrate different
behaviors for nearly identical parameter values? Not by trial and error. The only realistic way
to identify cases such as these is to do a thorough analysis of the model.11

10 See Section 5.1.
11 Stumbling across a good set of parameter values by chance is like throwing a dart at a fog-obscured board and
managing to hit the bullseye. After the analysis, finding good parameter values is like walking up to the board
and stabbing the bullseye with the dart.
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Example A.1.5. Consider the model of Example A.1.4. The Jacobian has the form

J =

⎛
⎝ 0 J12 J13

s1 0 0
0 s2 0

⎞
⎠ ,

where

J12 =
− f A

(b+Y +A)2 , J13 =
f (b+Y )

(b+Y +A)2 .

With c1, c2, c3 defined as in Theorem A.1.2, we have

c1 = 0 , c2 =−s1J12 =
s1 f A

(b+Y +A)2 ≥ 0 , c3 =−s1s2J13 =
−s1s2 f (b+Y )
(b+Y +A)2 < 0. (A.1.1)

For convenience, we define

k3 =−c3 =
s1s2 f (b+Y )
(b+Y +A)2 > 0 , (A.1.2)

whereupon the Jury conditions become

1. 1+ c2− k3 > 0,
2. 1+ c2+ k3 > 0, and
3. c2 < 1− k2

3.

The second of these conditions is automatically satisfied, given c2,k3 > 0. The third requires
k3 < 1, which guarantees that the first condition is satisfied as well. Hence, the stability hinges
on the third condition. The subsequent analysis has to be done for each fixed point.

1. There is an obvious fixed point in which all components are 0. For this point,

c2 = 0, k3 =
s1s2 f

b
.

Thus, the extinction point is stable if s1s2 f < b. The quantity s1s2 f/b has a clear biological
interpretation. If we start with L0 individuals in year 0, this cohort yields Y1 = s1L0, A2 =
s1s2L0, and L3 = s1s2 f L0/(b+A2). In the limit of a small population, we have L3/L0 =
s1s2 f/b. Thus, s1s2 f/b represents the maximum possible population growth rate, and of
course the population dies out if this quantity is less than 1.

2. Now assume b < s1s2 f .

a. Any non-extinction fixed points must satisfy

Y � = s1L� =
s1 f A�

b+Y�+A�
=

s1s2 fY �

b+Y�+A�
.

With Y � > 0, this equation reduces to

b+Y�+A� = s1s2 f . (A.1.3)

Given A� = s2Y �, this equation reduces to

b+(1+ s2)Y
� = s1s2 f ,
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from which we see that there is one fixed point with Y � > 0 , given by

Y � =
s1s2 f − b

1+ s2
, A� =

s2(s1s2 f − b)
1+ s2

. (A.1.4)

Note that this fixed point exists under the condition for which the extinction fixed point
is unstable.

b. Analysis of this fixed point requires some messy algebra. We can make it a little less
messy by defining a new parameter

β =
b

s1 f
< s2. (A.1.5)

In terms of this parameter, we have

Y � =
s1 f (s2 −β )

1+ s2
. (A.1.6)

From here, some careful algebra yields12

c2 =
Y �

s1s2 f
, 1− k3 =

Y �

s1 f
, 1+ k3 = 2− (1− k3) = 2− Y �

s1 f
. (A.1.7)

By rewriting the stability requirement (the third Jury condition) as

c2 < 1− k2
3 = (1− k3)(1+ k3),

and substituting from (A.1.7), we get one factor of Y � to cancel, leaving the inequality

1
s2

< 2− Y
s1 f

.

Substituting the formula for Y � and doing more algebra13 eventually results in the
inequality

s2
2 +(1+β )s2− 1 > 0. (A.1.8)

See Problem A.1.5 for a complete analysis of this condition; here we simply note that the
condition is obviously not satisfied if s2 is too small, given the additional restriction β < s2.
This is an interesting result. The model is similar to the one-component Beverton–Holt model
discussed in the Sections 5.1, 5.2, and 5.5 problem sets; however, there is a wide range of
parameter values for which the three-component model has no stable fixed points.14 As is fre-
quently the case with discrete models, the behavior can be very complicated even when the
model is fairly simple. ��

12 See Problem A.1.3a.
13 See Problem A.1.3b.
14 See Problem A.1.4 for more simulations of model behavior.
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Problems

A.1.1. Plot cobweb diagrams for the cases f < b and f > b for the model

Yn+2 =
fYn

b+Yn

and use them to confirm the conclusions of Example A.1.1.

A.1.2. Suppose (X�,Y �) is a fixed point for a system

Xn+1 = f (Xn,Yn), Yn+1 = g(Xn,Yn).

Near the fixed point, we can replace X and Y by

X = X�+ εx,Y = Y �+ εy.

Use the method of Section 7.5 to linearize the system near the fixed point. Conclude that the
system is approximately

zn+1 = J(X�,Y �)zn,

where z is the vector whose components are x and y and J(X�,Y �) is the Jacobian matrix
evaluated at the fixed point.

A.1.3.(a) Derive Equation (A.1.7).
(b) Derive Equation (A.1.8).

A.1.4.*

(a) Run numerical simulations for the model

Lt+1 =
f An

b+Yn+An
,

Yn+1 = s1Ln,

An+1 = s2Yn,

with parameter values f = 10,000, b = 15, s1 = 0.03, and s2 = 0.604 and initial conditions
L0 = 3,482, Y0 = 106, and A0 = 61. Plot graphs of Y for 1,000 time steps and for 10,000
time steps. [Do not connect the points!] Is there a stable fixed point?

(b) Repeat part (a) with s2 = 0.605.
(c) Repeat part (b) with b = 210 and just 100 time steps.
(d) Do the results of these simulations agree with the analysis of Example A.1.5?

A.1.5. This problem completes the general analysis begun in Example A.1.5. Suppose
0 < β < s2.

(a) Use the case β = 0 to find a value s+2 big enough so that the inequality

s2
2 +(1+β )s2− 1 > 0

is satisfied for any β values.
(b) Use the case β = s2 to find a value s−2 small enough so that the inequality from part (a) is

not satisfied for any β values.
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(c) Plot the triangle formed by the lines β = 0, β = s2, and s2 = 1 in the s2β plane. Solve the
equation

s2
2 +(1+β )s2− 1 > 0

for β on the interval s−2 < s2 < s+2 and add this curve to the plot.
(d) The region inside the triangle in the graph of part (c) represents the permissible sets of

parameter values, and the curve divides this region into two portions. Explain the system
behavior that results from points (s2,β ) in each portion of the plot.

Parasitoids15 are animals whose life history combines a free-living stage and a parasitic
stage. Many wasps and flies, for example, lay eggs in a caterpillar or other insect host. When
the eggs hatch, the wasp larvae consume the host from the inside. These animals are of signif-
icant interest in ecology because they are common in nature and because they can be useful
as bio-control agents. In many cases, parasitoids have a synchronized life cycle, with one gen-
eration per year; in these cases, a discrete nonlinear model is most appropriate. Models for
host-parasitoid systems are explored in Problems A.1.6–A.1.8.

A.1.6. In this problem, we develop a general model for host-parasitoid systems. Assume that
the host population dynamics is given by Hn+1 = R0Hn in the absence of parasitoids, where
R0 > 1. Let f be the fraction of hosts not parasitized, so that we have Hn+1 = R0 f Hn.

(a) Assume that each parasitized host results in c parasitoids in the next generation. Write down
the equation for the parasitoid population dynamics.

(b) Assume the generic form f (aP) for the fraction of hosts that are parasitized. Nondimen-
sionalize the resulting model by multiplying the H equation by ac and the P equation by a
and then using the substitutions p = aP, h = acH.

(c) Compute the Jacobian matrix for a fixed point (h, p) = (h�, p�) with both components pos-
itive.

(d) The H equation yields a simple equation for the parasitoid population at a fixed point in
terms of the function f . Use this equation to eliminate f from the Jacobian. Note that it still
contains f ′.

(e) Compute trJ and detJ. Use the assumption f ′ < 0 to show that trJ is positive and that
the first of the two conditions in Theorem A.1.1 is always satisfied. Hence, stability is
determined by the requirement detJ < 1.

(f) Use the other fixed point equation to eliminate h� from the formula for the determinant.
Conclude that the fixed point determined by f (p�) = 1/R0 is stable if and only if detJ < 1,
where

detJ =−p� f ′(p�)
R0

2

R0 − 1
> 0.

A.1.7.* The dimensionless Nicholson–Bailey host-parasitoid model is

hn+1 = R0h f (pn), R0 > 1,

pn+1 = hn[1− f (pn)],

with the host survival function f (p) = e−p (see [1]).

(a) Calculate the fixed point p� and the corresponding value of detJ.
(b) Show that this fixed point is unstable by putting the stability requirement into the form

g(R0)> 1 and using calculus to show g(R0)≤ 1.

15 This is pronounced PAR-uh-si-toid.
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(c) Run a simulation using R0 = 1.1, h0 = 1, p0 = 0.4, and a total of 120 years.
(d) Are the results consistent with part (a)? Are they biologically realistic?

A.1.8. The Nicholson–Bailey model corresponds to the assumption of a Poisson distribution
for the number of parasitoid attacks in a given amount of time. A different model is obtained
from the assumption of a different distribution, called the negative binomial distribution. This
model is

hn+1 = R0h f (pn), R0 > 1,

pn+1 = hn[1− f (pn)],

with the host survival function

f (p) =
(

1+
p
k

)−k
.

The parameter k > 0 measures the similarity to the Poisson distribution, with the latter achieved
in the limit k → ∞.

(a) Calculate the fixed point p� for k = 2 and determine the stability of the fixed point.
(b) Repeat part (a) for k = 0.5.
(c) Run a simulation for the model using k = 2, R0 = 1.1, h0 = 1, p0 = 0.4, and a total of 120

years.
(d) Repeat part (c) with k = 0.5.
(e) Are the results of the simulations consistent with the theoretical results?

The flour beetle Tribolium confusum is often used as a model insect species for both the-
ory and experiment. The best known model for this population is a discrete stage-structured
model with a time step of 2 weeks [2, 3]. Flour beetles are larvae for about 2 weeks; then they
go through three life stages (nonfeeding larvae, pupae, and callow adults) in approximately 2
weeks before becoming adults that can live for several years.16 The model assumes that adults
lay an average of b eggs, but these numbers lead to far fewer larvae because larvae and adults
eat eggs. A fraction s of larvae survive to become “pupae,” the pupae are either eaten by adults
or survive to become adults, and a fraction m of adults die in each 2-week period. The full
model is

Lt+1 = bAte
−αLt−β At ,

Pt+1 = sLt ,

At+1 = Pte
−γAt +(1−m)At.

Typical parameter values are given in Table A.1.1.17 The value of γ can be manipulated ex-
perimentally by removing additional pupae by hand at each census. The flour beetle model is
explored in Problems A.1.9–A.1.11.

16 It is common in practice to use discrete models for cases such as this, where the stage durations are approx-
imately comparable. My view is that discrete models should only be used when life history events are syn-
chronous, which is not the case for flour beetles. Discrete models impose synchronicity, which adds complexity
that is not part of the actual biological setting.
17 Note that large numbers of measurements allow for relatively small confidence intervals; for example, the
95 % confidence interval for γ for [3] is (0.004446,0.004792). However, these results are not reproducible, as
the value of γ for [2] indicates. One should not put too much faith in reported parameter values, and it does not
make sense to use values that appear to indicate a high degree of precision. Two significant digits is as much as
is ever warranted for ecological data.
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Table A.1.1 Reported parameter values for the Tribolium model

Reference b s m α β γ
Cushing et al. [2] 11.6772 0.4871 0.1108 0.0093 0.0110 0.0178
Dennis et al. [3] 10.45 0.8000 0.007629 0.01731 0.01310 0.004619

A.1.9. One of the interesting features of the discrete flour beetle model is that it can exhibit
chaotic solutions when there are no stable fixed points. In this problem, we show that cannibal-
ism of eggs by larvae is required for this to occur. To that end, we take α = 0 and show that
there is always a unique stable fixed point. The result is not quite general, but it can be obtained
with the reasonable restrictions 1 < bs < 10 and m < 1/8.

(a) Define additional parameters

k = ln
bs
m

, q = mk ,

which will turn out to be useful in the analysis. Show that q is an increasing function of
both bs and m, so that the maximum value of q occurs at bs = 10 and m = 1/8. Conclude
that q < 0.6. Note also that k > 0.

(b) Write down the system of three equations to determine the fixed points.
(c) Determine the Jacobian matrix for the general case. Simplify the last entry by using one of

the equations from part (a) to eliminate P in favor of A. The Jacobian should then include
all of the parameters as well as the unknown value A� for the fixed point.

(d) Show that the extinction fixed point is unstable with the assumed parameter value restric-
tions. Conclude that the population persists.

(e) Derive the formula

A� =
k

β + γ
for the unique positive fixed point. We will show that this fixed point is stable.

(f) Use the Jacobian matrix and the result for A� to obtain

c1 =
γ

β + γ
q+m− 1 , c2 = 0 , c3 =

β
β + γ

q−m ,

where the ci are those used in the Jury conditions.
(g) Compute c1 +c3 and show that the first two Jury conditions are satisfied, using the result of

part (a).
(h) Find the maximum values of |c1| and |c3| and show that

|c1c3|+ c2
3 < 1 .

Conclude that the third Jury condition is also satisfied.

A.1.10. Consider the discrete flour beetle model for the special case γ = 0, in which there is no
cannibalism of pupae by adults. Use average parameter values of b = 11, s = 0.64, m = 0.06,
α = 0.013, β = 0.012.

(a) Determine the Jacobian matrix for the extinction fixed point and use the Jury conditions to
show that it is unstable.

(b) Determine the Jacobian matrix for a fixed point with positive values. This matrix can be
simplified with some algebraic substitutions. Rewrite the entries in the top row in the form
kL, where k is whatever is left over after dividing the entry by L. The values of k do not
include any exponential functions if you substitute for L from the first fixed point equation.
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(c) Solve the fixed point equations to find the unique fixed point with positive population values.
(d) Determine the stability of the positive fixed point by computing the eigenvalues of the Ja-

cobian or by using the Jury conditions.
(e) Run a simulation showing the behavior of the system starting with a population that consists

of 10 adults and running for 2 years (each time step represents 2 weeks). What is the long-
term stable behavior of the system? Is this consistent with the stability analysis?

A.1.11. Consider the discrete flour beetle model with average parameter values b = 11, s =
0.64, m = 0.06, α = 0.013, β = 0.012, γ = 0.011.

(a) Determine the Jacobian matrix for a fixed point with positive values, simplifying it as in
part (b) of Problems A.1.9 and A.1.10.

(b) Eliminate the pupae from the three fixed point equations to obtain a pair of fixed point
equations for L and A.

(c) Solve one of the remaining fixed point equations for L in terms of A and substitute it into
the other to obtain a single nonlinear equation for A. Solve this equation numerically and
then determine the corresponding fixed point values for L and P.

(d) Use the Jury conditions or compute eigenvalues to determine the stability of the positive
fixed point.

(e) Run a simulation showing the behavior of the system starting with a population that consists
of 10 adults. What is the long-term stable behavior of the system? Is this consistent with the
stability analysis?

A.2 Markov Chains

After studying this section, you should be able to:

• Construct Markov chain models for stochastic processes in which the state at some future
time depends solely on the current state.

• Find steady-state probability distributions for Markov chains.

In Chapter 6, we used equations of the form

xt+1 = Mxt

to model changes in a set of dynamic variables that represent population sizes. The same
mathematical structure applies to models that track dynamic changes in probabilities. These
mathematical models have become useful tools in molecular biology, leading to important dis-
coveries about the development of species in evolutionary history. The full subject is very com-
plicated, but we can get a general sense of the possibilities by examining the simplest mathe-
matical model for genetic change.

In this section, we consider the problem of estimating the phylogenetic distance between
species, a concept that refers to the overall amount of genetic difference between genomes. Phy-
logenetic distance is important because it has caused significant changes in our understanding
of the evolutionary relationships of species. For example, scientists had long thought that chim-
panzees were more closely related to gorillas than to humans. We now know that the phyloge-
netic distance between the chimpanzee and human genomes is less than that between the chim-
panzee and gorilla genomes, and therefore chimpanzees are more closely related to humans.18

18 We are thinking specifically of the total amount of genetic difference in the genomes. One could still argue that
the smaller number of differences between chimpanzee and human are more important than the larger number
between chimpanzee and gorilla.
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A.2.1 Some Scientific Background

We’ve seen earlier that DNA carries information in the pattern of four types of nucleotides,
labeled A, G, C, and T.19 DNA containing these nucleotide sequences is arranged in long
molecules called chromosomes; taken together, these chromosomes constitute the genome of
the individual. We can think of the DNA in a genome as falling broadly into three categories:

1. Essential DNA is in the form of genes that are crucial to species survival, such as the genes
that determine the network of blood vessels or the function of organs. These genes are largely
resistant to change because such changes from the norm tend to be harmful. The correspond-
ing DNA may be different between species, but will likely be almost the same for individuals
in the same species.

2. Some DNA is in the form of genes that play at best a small role in species survival, such
as the genes that determine hair color. The corresponding DNA shows significant variation
within a population. This DNA is useful for identification of individuals in a species.

3. There is also non-essential DNA, which does not affect the characteristics of the organism
but is merely a residue of the evolutionary past. At one time it was thought that most DNA
is non-essential, but scientists now estimate that this category encompasses about 20 % of a
genome.

The genome of a species can be thought of as being defined by the combination of its es-
sential and non-essential DNA. Although these portions are largely inherited intact from one’s
parents, there are two important processes that cause them to change over time: natural selection
and mutation. Essential DNA is subject to natural selection. If there are individual variations in
a portion of this DNA, then some individuals will be more successful at survival and reproduc-
tion than others; over time, the population will be dominated by those individuals who have the
more successful variation. In contrast, non-essential DNA is not subject to natural selection.

Natural selection must, of course, have individual variation to work with. This variation re-
sults from genetic mutations that occur in the production of sperm and egg cells of organisms
that reproduce sexually. Mutations are rare events,20 and those that alter the individual’s fitness
are either removed by natural selection or replace earlier versions. Successful mutations and
mutations in non-essential DNA can accumulate over evolutionary time. This is what allows us
to associate the differences in similar regions of DNA between species with their phylogenetic
distance. While there is not a simple linear relationship between number of mutations and evo-
lutionary time, it seems reasonable that more evolutionary time should result in more mutations.
Thus, a larger difference between species A and B than between species B and C indicates a
more recent common ancestor for B and C. The challenge is to use mathematical models to
quantify the relationship between genome differences and phylogenetic distance.

The full story is actually much more complicated.

1. Substitutions appear to account for only 35–50 % of mutations [4]. There are a number of
other types of mutations, but the most common appear to be insertions and deletions, in
which a small bit of DNA is inserted between two formerly adjacent nucleotides, or a small
bit is lost from a section of DNA. These mutations are much harder to identify over long

19 See Section 3.2.
20 See Problem 3.7.15d.
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periods of evolutionary time and harder to quantify.21 Methods that consider only substitu-
tions can only be used on portions of a chromosome in which any insertions or deletions are
known.

2. Non-essential DNA is subject to mutation without natural selection, which raises the ques-
tion of how mutations in non-essential DNA could be identical for individuals of the same
species.

3. Natural selection occurs at the level of genome function, not genome structure. Changes
in individual nucleotides do not change the function in cases where both the new and old
codons make the same protein. A glance at the genetic code22 shows that there is a lot of
redundancy. For example, the third nucleotide is irrelevant in 8 of the 16 possibilities for the
first two codons.

4. Natural selection is based on preferential survival of some mutations over others. The accu-
mulation rate of a mutation depends on how much survival difference that mutation makes.
For example, HIV is particularly insidious because one mutation for resistance to a drug can
quickly become dominant in a population. We need a new vaccine for influenza every year,
but the chicken pox vaccine is the same now as it was when first created. Hence, the molec-
ular clock that connects mutations with time does not tick at a constant rate across species
or even within species. The molecular clock is close to constant for species that are closely
related and for genome portions that have the same or no function.

A.2.2 A Model for DNA Change

Suppose we leave the details of what portion of a genome to study to the molecular biologists.
Assume that there are J nucleotides in a strand that has had no insertions or deletions and let
N be the unknown number of generations that have passed between the ancestral strand and
the contemporary strand. For any position in the sequence, the nucleotide must be either A, G,
C, or T. By comparing the ancestral and contemporary strands, we can measure the fraction of
DNA sites that are different between the two. This value, commonly called β , is a measure of
the difference between genomes.

Now let α be the probability of a mutation in one site over one generation. Over N
generations, we expect the total number of mutations to be αN for each site, yielding a to-
tal of αNJ for the strand. The product d = αN is the number of mutations per site. This is
the phylogenetic distance, which we tentatively assume to be proportional to evolutionary time.
Our goal is to infer d from β .

At first thought, this sounds easy. The total number of differences between the strands is β J
and the total number of mutations is αNJ = dJ. These should be equal, so d = β . However,
this reasoning is flawed. If a site starts as A, mutates to G, and then mutates back to A, with no
further changes, then both of these mutations are counted toward dJ. However, the two strands
are identical because the second mutation reversed the first one, so neither of them contributes to
β J. Thus, d > β , because some mutations actually decrease the number of differences between
the strands. We need a nuanced mathematical model to connect the unknown phylogenetic
distance with the known fraction of sequence differences.

21 One extreme case similar to insertion and deletion can be seen in a comparison of the human and chimpanzee
genomes. Humans have 23 pairs of chromosomes, while chimpanzees have 24, which seems to refute the claim
that the two species are closely related. However, a careful study of human chromosome 2 shows that it ap-
pears to consist of two formerly distinct chromosomes that have been joined together, with the two portions
corresponding to two of the chimpanzee chromosomes.
22 See Table 3.2.1.
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Let pA(n), pG(n), pC(n), and pT (n) be the probabilities of having each given nucleotide at
a particular site in the nth generation. Mutations from one generation to the next change these
probabilities, and we must quantify these changes. The simplest assumption is that all possible
changes are equally likely. Since α is the probability of change, and each nucleotide has three
possible changes, the probability of any particular change is α/3. Of course the probability of
no change is 1−α . With these assumptions, the probability that a site will contain the nucleotide
A at time n+ 1 is the sum of the probabilities of starting with A and not changing plus the
probabilities of starting with one of the others and then changing to A:

pA(n+ 1) = (1−α)pA(n)+
α
3

pG(n)+
α
3

pC(n)+
α
3

pT (n). (A.2.1)

Similar equations can be written for the other probabilities in generation n+ 1, and the four
equations can be combined into a single matrix equation of the form

xn+1 = Mxn.
23 (A.2.2)

Each row in the matrix corresponds to the coefficients in one of the four equations. Since we
have arbitrarily chosen the order A, G, C, T, the coefficients of (A.2.1) are the first row of the
transition matrix M. The full probability vector x and the matrix M are given by

x =

⎛
⎜⎜⎝

pA

pG

pC

pT

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

1−α α/3 α/3 α/3
α/3 1−α α/3 α/3
α/3 α/3 1−α α/3
α/3 α/3 α/3 1−α

⎞
⎟⎟⎠. (A.2.3)

Any model consisting of a matrix equation that represents dynamic changes in vectors of
probabilities is called a Markov chain model. The specific model we are examining, defined
by the assumption that the transition probabilities are all the same, is called the Jukes–Cantor
model.24

A.2.3 Equilibrium Analysis of Markov Chain Models

There are some fundamental mathematical differences between the matrices obtained in struc-
tured population models and those obtained in Markov chain models. These differences lead to
different features for the corresponding dynamical systems.

1. Structured population models have matrices in which the i j entry represents the contribu-
tion of population component j at time n to population component i at time n+ 1. Thus,
none of the entries can be negative. Nonnegative matrices have three special properties: (1)
the eigenvalue of largest magnitude is always positive, (2) there is a one-parameter family

23 Given that we have always done matrix-vector multiplication with the matrix on the left and the vector on
the right, this is the natural way to proceed. Unfortunately, most of the literature on Markov chains makes the
opposite choice. In our matrix M, the entry in row i and column j represents the probability of a transition
from state j to state i. In the more common representation of Markov chains, the matrix is written so that the
entry in row i and column j represents the probability of a transition from state i to state j. This sounds more
natural, but it means that the probability vectors must be written as rows rather than columns and the matrix
multiplication must have the vector on the left. This necessitates changes in the definition of eigenvectors, which
is an unfortunate complication.
24 Other models make more sophisticated assumptions about the relative probabilities of specific substitutions.
The Jukes–Cantor model illustrates the important features of Markov chain models and phylogenetic distance
while keeping complications to a minimum.
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of eigenvectors corresponding to this dominant eigenvalue, and (3) the eigenvector corre-
sponding to the dominant eigenvalue is positive. These properties guarantee that solutions
will approach an asymptotic growth rate that corresponds to a stable distribution of compo-
nent populations.

2. Markov models have matrices in which the i j entry represents the probability of being in
state i at time n+ 1 after having been in state j at time n. Thus, each entry is between
0 and 1. Moreover, there is always exactly one state at the end of each time step, so the
total of the probabilities for any time step must be 1. This means that the sum of entries in
each column is 1. Most Markov matrices share the same properties as nonnegative matrices,
with the dominant eigenvalue λ = 1.25 This means that Markov models generally have an
equilibrium solution that represents the stable distribution of probabilities.

Example A.2.1. Let M be the matrix of (A.2.3). Finding eigenvalues of a matrix this size is
outside the scope of our presentation; however, we can start with the assumption that λ = 1 is
an eigenvalue. If x is an eigenvector corresponding to λ = 1, then it satisfies the equation

(M− I)x = 0, M− I =

⎛
⎜⎜⎝

−α α/3 α/3 α/3
α/3 −α α/3 α/3
α/3 α/3 −α α/3
α/3 α/3 α/3 −α

⎞
⎟⎟⎠.

The components of x must satisfy a system of four equations, each corresponding to a row
of M− I. Such a system would normally be difficult to solve, but here we can observe that the
entries in each row sum to 0. If all four components of the vector are the same, then the products
of coefficients and components will also sum to 0. The stable distribution of probabilities has
to be an eigenvector, and as a set of probabilities it also has to sum to 1, which means that each
probability is 1/4. This should not be surprising, as the symmetry in the rule that determines the
probability of each possible mutation represents a process in which none of the nucleotides is
favored over the others. ��

A.2.4 Analysis of the DNA Change Model

The initial goal of our analysis is to connect the measured value of β with the phylogenetic
distance d = αN.26 The equilibrium distribution discovered in Example A.2.1 is of no help
in accomplishing this goal; by definition, this is the distribution we expect to see as N → ∞.
Instead, we proceed by a method that follows the strategy of calculating some quantity in two
different ways, one involving β and the other involving α and N. The method requires us to
use another eigenvector in addition to the one for λ = 1. This calculation is beyond the scope
of our treatment, so we simply present the result.

25 There are some additional requirements that guarantee these properties; further discussion of this topic is
outside the scope of this presentation.
26 We used the same strategy in Section 6.1 to calculate eigenvalues.
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The vectors

v1 =

⎛
⎜⎜⎝

1/4
1/4
1/4
1/4

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

3/4
−1/4
−1/4
−1/4

⎞
⎟⎟⎠

are eigenvectors of the matrix M of (A.2.3) corresponding to the eigenvalues λ1 = 1 and
λ2 = 1− 4

3 α .

Check Your Understanding A.2.1:
Verify that the vector v2 is an eigenvector of M corresponding to the eigenvalue λ2(α) =
1− 4

3 α .

Define the vector u by
u = 3MN(v1 + v2).

27 (A.2.4)

We now proceed to calculate u by two different methods, taking advantage of two facts:

1. v1 and v2 are eigenvectors, which means that multiplication by M yields a simple result.
2. The sum v1 + v2 is also very simple.

Calculating u in Terms of N and α

The calculation of u is somewhat tedious, so we leave much of it as a problem. The essential
idea is that repeated use of the eigenvector equation Mv = λ v leads to a more general result,

MNv = λ Nv, (A.2.5)

with which we eventually obtain the answer

u =
3
4

⎛
⎜⎜⎝

1+ 3λ N
2

1−λ N
2

1−λ N
2

1−λ N
2

⎞
⎟⎟⎠ , λ2 = 1− 4

3
α. (A.2.6)

Estimating u in Terms of β

The matrix MN represents the overall transition probabilities for N successive generations. We
can’t calculate this matrix directly, but we can estimate it. Given that β is the measured fraction
of sites that have changed nucleotides over N generations, we can approximate MN by

27 There is no obvious reason why this should be helpful. It is always more satisfying when methods have
a clear conceptual motivation, but occasionally mathematicians must resort to methods that appear simply as
clever tricks.
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MN =

⎛
⎜⎜⎝

1−β β/3 β/3 β/3
β/3 1−β β/3 β/3
β/3 β/3 1−β β/3
β/3 β/3 β/3 1−β

⎞
⎟⎟⎠ . (A.2.7)

This is not entirely correct, as it assumes both that the fraction of changed sites is the same, no
matter what the original nucleotide, and that the changed sites are equally distributed among
the three possible nucleotides. These assumptions are no worse than the basic Jukes–Cantor
assumption about the structure of M, however. Combining (A.2.4) and (A.2.7) yields the result

u =

⎛
⎜⎜⎝

3(1−β )
β
β
β

⎞
⎟⎟⎠ . (A.2.8)

The Jukes–Cantor Distance

Equations (A.2.6) and (A.2.8) provide two different results for the same quantity. Comparing
them yields the equation

β =
3
4
− 3

4
λ N

2 =
3
4
− 3

4

(
1− 4

3
α
)N

, (A.2.9)

which predicts the fraction of sites with changes in terms of the mutation rate and the number
of generations. We can solve this equation for N, with the elegant result

N =
ln
(
1− 4

3 β
)

ln
(
1− 4

3 α
) , (A.2.10)

from which we have

d = α
ln
(
1− 4

3 β
)

ln
(
1− 4

3 α
) = α

ln
(
1− 4

3 α
) ln

(
1− 4

3
β
)
. (A.2.11)

This result still appears to depend on α , which is difficult to measure. In practice, this depen-
dence is meaningless. Given the realistic assumption that α is very small, we can approximate28

the Jukes–Cantor distance as

d =−3
4

ln

(
1− 4

3
β
)
. (A.2.12)

This simple result is a reasonable approximation of the amount of genetic change corresponding
to a particular net substitution probability β . The properties of this function match reasonable
expectations.29 It increases as β increases, with d ≈ β if β is small and d → ∞ as β → 3/4.30

28 See Problem A.2.1b.
29 See Problem A.2.2.
30 Note that β = 3/4 means that the system has reached equilibrium; theoretically this requires infinite time.
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Problems

A.2.1. (a) Derive (A.2.6).
(b) Verify that

β =
3
4
− 3

4

(
1− 4

3
α
)N

satisfies the equation ⎛
⎜⎜⎝

3(1−β )
β
β
β

⎞
⎟⎟⎠= u =

3
4

⎛
⎜⎜⎝

1+ 3λ N
2

1−λ N
2

1−λ N
2

1−λ N
2

⎞
⎟⎟⎠ ,

where

λ2 = 1− 4
3

α.

A.2.2. (a) Plot the Jukes–Cantor phylogenetic distance function

d =−3
4

ln

(
1− 4

3
β
)
.

Be careful to restrict β to values that make sense biologically.
(b) Use linear approximation to show that d ≈ β for small genome changes. Why does this

make sense?
(c) Compute lim

β→3/4
d . Explain the meaning of the result.

(d) Use linear approximation to derive (A.2.12) from (A.2.11).

A.2.3. Let M be a 2× 2 Markov chain matrix with entries a and b as shown below.

M =

(
a

b

)
.

(a)* Fill in the blanks to complete the matrix.

(b) Show that

(
1
1

)
is an eigenvector for λ = 1 if and only if the entries in each row of M sum

to 1. What must be true about a and b in this case?

A.2.4. The Kimura model of genetic change assumes that the rates for the AG, GA, CT, and TC
substitutions are faster than those for the other substitutions. (There is a biochemical basis for
why this should be the case.)

(a) Construct the matrix M for the Kimura model, using α for the faster rate and β for the
slower rate.

(b) Show that

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ is an eigenvector for the Kimura model for λ = 1 and conclude that all

nucleotides are equally likely.

A.2.5. The Felsenstein model of genetic change assumes that rates of change depend on the
nucleotide being changed to, but not the nucleotide being changed from.
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(a) Assume that other nucleotides change to A at rate a, G at rate g, and so on. Construct the
matrix M.

(b) Show that

⎛
⎜⎜⎝

a
g
c
t

⎞
⎟⎟⎠ is an eigenvector for the Felsenstein model for λ = 1.

A.3 Boolean Algebra Models

After studying this section, you should be able to:

• Compute Boolean functions.
• Find fixed points of Boolean networks.

Only a small fraction of an organism’s genes are active in any particular cell; genes for the
heart muscle, for example, are only expressed in heart cells. Even so, the number of chemical
compounds that could be present in a cell, including messenger RNA molecules, proteins, and
enzymes, is large. Each of these could be considered as a variable in a dynamical system that
represents the cell; at any given time, nearly all are at a concentration of 0. This suggests a
modeling strategy of focusing strictly on the distinction between zero and nonzero values, ig-
noring the specific amounts of those quantities that are not zero. A special type of mathematics,
called Boolean algebra,31 is ideal for this kind of modeling. In this section, we develop the
basic principles of Boolean algebra and briefly indicate how Boolean models can be used to
study the regulation of gene expression. For a more advanced introduction to gene regulation
networks and their Boolean models, the reader should consult the outstanding paper on this
topic by Martins et al. [5], from which this section draws heavily.

A.3.1 Boolean Algebra

A Boolean variable is a variable that can take on only two values, 0 and 1. These can be com-
bined into dynamical systems, called Boolean networks. As we saw in Chapters 5–7, dynamical
systems are defined by a set of formulas that calculate the new state of the system in terms of
the old state. For a Boolean network, this means that we need functions that define Boolean
dependent variables in terms of Boolean independent variables; in other words, we must first
develop the machinery of Boolean algebra.

Algebra with number systems is based on the arithmetic operations of addition and multipli-
cation. Algebra with Boolean variables is instead based on logic. Think of the Boolean variables
1 and 0 as representing the logical constants TRUE and FALSE. Suppose A is a species of an-
imal and B is a group of species that can be divided into mutually exclusive subgroups B1 and
B2. Consider the statements

1. A is a species of type B1.
2. A is a species of type B2.
3. A is a species of type B.

Suppose we use the Boolean variables X , Y , and Z to indicate the truth of these statements.
Given a particular A, we need assess the values of only two of them; the third can be calculated

31 Named for its creator, the nineteenth century English mathematician George Boole.
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by rules of logic. For example, statement 3 is TRUE when either of statements 1 or 2 is TRUE.
In terms of the variables, Z = 1 requires either X = 1 or Y = 1. We can define a Boolean
operation X OR Y that is TRUE if either X = 1 or Y = 1 and FALSE otherwise. Using the
notation ∨ for this operation,32 we can write

Z = X ∨Y.

Note that the definition of Z means Z = 1 in the event that X = 1 and Y = 1, although the setting
rules out this possibility.

Suppose we want to indicate how to calculate Y from knowledge of X and Z. This is a bit
tricky. Certainly Z = 1 is necessary for Y = 1. In addition, X = 1 precludes Y = 1. So two
separate conditions are necessary for Y = 1: we must have Z = 1 and X = 0. There is an AND
operation that is TRUE only when both of its operands are TRUE, but we want Y to be TRUE
when one operand is TRUE and the other FALSE. The solution is the negation operation; the
symbol ¬X (read “not X”) is TRUE when X is FALSE, and vice versa. Thus, we want to require
Z and ¬X to be TRUE. Using the symbol ∧ for the AND operation,33 the correct notation is

Y = Z∧¬X .

The OR, AND, and negation operations are sufficient to define all necessary logical construc-
tions in Boolean algebra, but there is an additional operation that we define for convenience.
Suppose we want to indicate that Z is TRUE whenever one of X and Y is TRUE, but not when
both are TRUE. The OR operation does not do this by itself. We can denote this with the EX-
CLUSIVE OR operation, written as

Z = X ⊕Y.

Table A.3.1 summarizes the binary operations of Boolean algebra.

Table A.3.1 Binary Boolean operations

AND 0∧0 = 0 0∧1 = 1∧0 = 0 1∧1 = 1
OR 0∨0 = 0 0∨1 = 1∨0 = 1 1∨1 = 1

EXCLUSIVE OR 0⊕0 = 0 0⊕1 = 1⊕0 = 1 1⊕1 = 0

As in the motivating example, the names of the operations describe how they work. Thus, a∧b
is TRUE only when both a and b are TRUE, a∨b is TRUE whenever either a or b is TRUE, and
a⊕ b is TRUE when one of a and b is TRUE, but not both. The EXCLUSIVE OR operation
could be omitted from the list, as it can be constructed from the other operations in several
different ways. However, these constructions are sufficiently complicated to justify thinking of
EXCLUSIVE OR as an independent operation.

Example A.3.1. To demonstrate the identity

x⊕ y = [x∧ (¬y)]∨ [(¬x)∧ y],

we calculate the complicated expression on the right side for each possible pair of x and y values
and check that the answer is the same as x⊕ y:

32 The symbol ∪, which represents the union of two sets, is probably more familiar to most readers. Think of
the OR operation as similar to a union of sets.
33 Think of the symbol as being similar to the symbol ∩ used for the intersection of sets.
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[0∧ (¬0)]∨ [(¬0)∧0] = [0∧1]∨ [1∧0] = 0∨0 = 0 = 0⊕ 0 ;

[0∧ (¬1)]∨ [(¬0)∧1] = [0∧0]∨ [1∧1] = 0∨1 = 1 = 0⊕ 1 ;

[1∧ (¬0)]∨ [(¬1)∧0] = [1∧1]∨ [0∧0] = 1∨0 = 1 = 1⊕ 0 ;

[1∧ (¬1)]∨ [(¬1)∧1] = [1∧0]∨ [0∧1] = 0∨0 = 0 = 1⊕ 1.

��

Check Your Understanding A.3.1:
Verify the identity x⊕ y = ¬[(x∧ y)∨ (¬x∧¬y)].

A.3.2 Boolean Functions and Boolean Networks

A Boolean function is a function f (x) that uses the values of the Boolean input vector x to
compute a Boolean variable output. For convenience, we often write the argument x as a list of
the scalar components.

Example A.3.2. Let x be a Boolean variable with three components, called X , Y , and Z. Define
the Boolean function

f (x) = f (X ,Y,Z) = X ∧Y.

Then, for example, f (1,1,0) = 1, while f (0,1,1) = 0. In this particular function, the state of Z
does not matter, but it may be convenient to include Z as an independent variable. ��

Check Your Understanding A.3.2:
Verify the results f (1,0,0) = 0 and f (1,1,1) = 1 for the Boolean function of Exam-
ple A.3.2.

Now suppose x is a vector of n Boolean variables and f is a vector of n Boolean functions
f1, f2, . . . , fn. Then we can use the function f to define a Boolean network using the dynamic
equation

xt+1 = f(xt). (A.3.1)

Example A.3.3. Suppose the Boolean function f of three variables has components defined by

f1(X ,Y,Z) = ¬Z, f2(X ,Y,Z) = X ∧Y, f3(X ,Y,Z) = X ⊕Y.

Suppose further that x0 = (1,1,1). Then

f1(1,1,1) = 0, f2(1,1,1) = 1, f3(1,1,1) = 0,

so x1 = (0,1,0). ��

Check Your Understanding A.3.3:
Verify that x2 = (1,0,1) and x3 = (0,0,1) for the Boolean sequence defined in Exam-
ple A.3.3.
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Boolean networks are autonomous, meaning that changes depend only on the state and not
on the time. For example, the result f(1,1,1) = (0,1,0), which we calculated for the Boolean
network in Example A.3.3 means that the state (1,1,1) is always followed by the state (0,1,0).
We could display this fact as a graph consisting of two nodes for the states (1,1,1) and (0,1,0)
along with an arrow that goes from the former to the latter. The network of Example A.3.3 has
only eight states, so it is not a difficult matter to construct the complete graph of the Boolean
network.

In the discrete models of Chapter 6, the index t had the specific meaning of time. This is
not strictly necessary with Boolean networks. The use of dynamical systems notation is often
merely an artifice used to identify the long-term behavior of a network from any given starting
point. It does not matter what length of time is needed for the system to move from one state to
another; all that matters is that states can be classified according to the way they appear in the
graph of the network. Many states are transient, which means that systems that start in these
states never return. Some states are fixed points, meaning that the system stops changing once
it reaches that state. In some networks, there are recurrent states that occur as part of a periodic
movement through two or more states.

Example A.3.4. Let f be the Boolean function defined in Example A.3.3. The dynamics of the
Boolean network defined by f is illustrated in Figure A.3.1. The state (1,1,0) is a fixed point
that cannot be attained unless the system is initially at that point. There is a cycle of four states,
and there are three transient states, each of which eventually reaches the cycle rather than the
fixed point. Note that graphs are defined by the pattern of nodes and arrows. The same graph
could be displayed with any number of different layouts. ��

(1,1,1) (0,1,0) (1,0,1) (0,0,1) (0,1,1)

(0,0,0)(1,0,0)

(1,1,0)

Fig. A.3.1 A graph of the Boolean network of Examples A.3.3 and A.3.4

One important difference between Boolean networks and dynamical systems based on dif-
ferential equations or difference equations is that the notion of stability does not apply in the
same way. In a dynamical system, it makes sense to consider what happens when the initial
state is arbitrarily close to a fixed point; in particular, it is possible for the system to evolve
away from the fixed point. In a Boolean network, variables can only be 0 or 1, so the system
cannot start arbitrarily close to a fixed point. In a sense, fixed points and cycles in a Boolean
network are always stable. This limits the kind of questions that can be addressed with Boolean
models.

A.3.3 Using a Boolean Network for a Consistency Check

The primary use of Boolean models is to serve as a consistency check on a proposed mecha-
nism. Before we consider using Boolean models for this purpose, it is helpful to consider an
alternative notation that streamlines the discovery of fixed points and cycles. The key idea is
that each variable in a Boolean network is either present or absent, and the state of the system
is determined by the set of variables that are present. We could therefore name states by the
list of variables whose value is 1. For example, if the Boolean variables are X , Y , and Z, then
the state XZ corresponds to the point (1,0,1), in which X and Z are both present while Y is
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absent. Similarly, the state (0,0,1) can be denoted as Z. The null state (0,0,0) can be denoted
by the symbol /0, which is used in set theory to indicate a set that has no elements. Figure A.3.2
reproduces the graph of the Boolean network of Examples A.3.3 and A.3.4 with this alterna-
tive labeling scheme. The advantage of this method is that each of the arrows is easy to check
with the definition of the function. One can see at a glance, for example, that X is present at
the tip of an arrow precisely when Z is not present at the tail, in keeping with the definition
f1(X ,Y,Z) = ¬Z.

XYZ Y XZ Z YZ

0/X

XY

Fig. A.3.2 A graph of the Boolean network of Examples A.3.3 and A.3.4 and defined by the function f(X ,Y,Z) =
(¬Z,X ∧Y,X ⊕Y )

Suppose the quantities X , Y , and Z represent chemicals that could be present in a cell and
interact according to the following rules:

1. X forms whenever Z is absent, but never when Z is present.
2. Y cannot be produced in the system, but it can be maintained if X is present.
3. Either X or Y is necessary to produce Z, but the combination of X and Y suppresses formation

of Z.

This set of rules corresponds exactly to the Boolean network of Examples A.3.3 and A.3.4.
Hence, the network analysis yields predictions about what the physical system will do. Specif-
ically, it predicts that two things can happen. The system could reach a state in which both X
and Y are always present and Z is always absent. Alternatively, the system could reach a state
in which Y is always absent and X and Z cycle between present and absent in such a way that
Z follows X , with some overlap, while X reappears only when Z is absent. These are very spe-
cific predictions about what states can be seen in the physical system. If the system exhibits
fixed states or cycles that are not in agreement with the network analysis, then the proposed
mechanism must be false.

Boolean networks cannot be used to discover mechanisms because for any particular set of
fixed points and/or cycles one can find a very large number of possible underlying mechanisms.
However, they do find wide employment in biochemistry in cases where some features of the
chemical mechanism are known and others are not. Many incorrect mechanisms can be rejected
because their Boolean networks do not have the right behavior. For systems with large numbers
of components, it is far easier to identify fixed points in Boolean networks than in dynamical
systems such as the ones examined in Chapters 6 and 7.

Problems

A.3.1.* Consider the Boolean network xt+1 = f(xt) defined by the functions

f1(X ,Y,Z) = Y ∨Z , f2(X ,Y,Z) = ¬(X ∨Z) , f3(X ,Y,Z) = ¬(X ∧Z).

(a) Determine the action of the function f on each of the eight possible states.
(b) Arrange the information from part (a) as a graph similar to that in Figure A.3.2.
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Problems A.3.2 and A.3.3 consider a situation in which the three components of a Boolean
network represent interacting chemical species in a cell.34

A.3.2. Suppose we know some elementary facts about the biochemistry:

1. The presence of Y inhibits formation of X , which is naturally present.
2. The presence of X is necessary for the formation of Y .
3. The presence of X promotes the formation of Z.
4. The presence of Y promotes the formation of Z.

(a) Determine the correct Boolean functions for the formations of X and Y at time t + 1 from
the Boolean state at time t. These are unambiguous.

(b) The list of facts is not sufficient to determine the correct function for the formation of Z. In
fact, three possibilities are consistent with the data:

1. It could be that both X and Y must be present together.
2. It could be that either X or Y is sufficient, regardless of the presence of the other.
3. It could be that formation of Z requires either X or Y , but not both.

Determine the correct Boolean function for Z in the first case. Use the complete set of
Boolean functions to determine the graph of states. Which states are persistent?

(c) Repeat part (b) for the second case.
(d) Repeat part (b) for the third case.

A.3.3. Repeat problem A.3.2 given the following set of facts.

1. The presence of Y promotes formation of X .
2. The presence of Z inhibits formation of X .
3. The presence of X inhibits the formation of Y .
4. The presence of Y promotes the formation of Z.
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Appendix B
The Definite Integral via Riemann Sums

To estimate the total amount of a quantity V that is produced in an interval a ≤ t ≤ b, given
a production rate Q(t), we can divide the interval [a,b] into n equal subintervals of duration
h = (b− a)/n. Let Q0 = Q(a), Q1 = Q(a+ h), Q2 = Q(a+ 2h), and so on, with Qn = Q(b) at
the end. For the first subinterval, a≤ t ≤ a+h, we can estimate the rate for the entire subinterval
using Q0 = Q(a). Similarly, we can use Q1 = Q(t + a) for the interval a+ h ≤ t ≤ a+ 2h. The
result is the left-hand sum

VL = Q0h+Q1h+ · · ·+Qn−1h =
n−1

∑
j=0

Q jh.

Similarly, we could use Q1 for the interval a ≤ t ≤ a+ h, and so on, and generate a right-hand
sum

VR = Q1h+ · · ·+Qnh =
n

∑
j=1

Q jh.

In general, we cannot say that either VL or VR is a maximum estimate or a minimum estimate,
since the function Q might not be always increasing or always decreasing. However, we can
always say that the difference between the two sums is

VR −VL = [Q(b)−Q(a)]h =
(b−a)[Q(b)−Q(a)]

n
,

so the difference between the two estimates approaches 0 in the limit as n → ∞. This means that
the left and right sums converge to the same result, which must be the exact answer. We may
summarize the result mathematically as follows:

V = lim
n→∞

n

∑
j=1

Q(t j)h, where a+( j− 1)h≤ t j ≤ a+ jh. (B.1)

Note that we need not specify a left-hand sum or a right-hand sum. The result is the same if
we alternate left endpoints and right endpoints, or if we use the midpoint of each subinterval
instead. All that matters is that we use some value of t in each subinterval to represent the rate
Q over the entire subinterval.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6,
© Springer Science+Business Media, LLC 2013

407



408 Appendix B The Definite Integral via Riemann Sums

The result of (B.1) motivates the formal definition of the definite integral, the second of the
two principle concepts of calculus.

Definite integral of a function Q(t) over an interval a ≤ t ≤ b: the quantity defined
by the formula ∫ b

a
Q(t)dt = lim

n→∞

n

∑
j=1

Q jh, (B.2)

where Q j =Q(t j) for any t j in the interval a+( j−1)h≤ t j ≤ a+ jh and h=(b−a)/n.

The other is, of course, the derivative.
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Appendix C
A Runge–Kutta Method for Numerical Solution of
Differential Equations

It is easy to program simulations for discrete dynamical systems because the equations of the
model are all that is needed. For continuous dynamical systems, we need a special numerical
method that uses a discrete approximation of the system of differential equations. The simplest
of these is Euler’s method, which we used in Example 5.3.1. More sophisticated methods work
far better. The simplest of these methods is the Runge–Kutta method of order 4.

Like Euler’s method, Runge–Kutta methods work by computing approximate values x j of

mations to a continuous equation. The most obvious way to discretize a differential equation
x′ = f (t,x) is to evaluate the differential equation at the point (t,x) using a forward difference
approximation for the derivative:

x j+1 − x j

h j
= f (t j ,x j), h j = t j+1 − t j,

which leads to the Euler approximation

x j+1 = x j + h j f (t j ,x j).

The drawback of Euler’s method is the use of the value f (t j ,x j) to represent dx/dt over the en-
tire interval [t j, t j+1]. As the actual solution curve moves through this interval, its slope changes
and the approximation becomes less accurate. A better approximation for the average rate of
change over the interval could in theory be obtained by averaging f (t j ,x j) and f (t j+1,x j+1),
the latter being the slope at the end of the interval. This does not work in practice because the
value x j+1 is not known. The idea of Runge–Kutta methods is to obtain several approximations
for slopes in the interval and average them together to obtain the slope to be used to compute
x j+1. The details of how best to do this are beyond the scope of this presentation, so we merely
present the algorithm.

This is pronounced Run-ga Kut-ta.

For convenience, we are assuming a single differential equation. Numerical methods for single differential
equations also work for systems.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6,
© Springer Science+Business Media, LLC 2013
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the dependent variable37 at a collection of times t j. Thus, they are based on discrete approxi-
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Algorithm C.1 Runge–Kutta order 4 for x′ = f (t,x).

Given (t j,x j) and h = t j+1 − t j, x j+1 is given by

k1 = h f (t j,x j) ,

k2 = h f (t j + 0.5h,x j + 0.5k1) ,

k3 = h f (t j + 0.5h,x j + 0.5k2) ,

k4 = h f (t j + h,x j + k3) ,

x j+1 = x j +
1
6
(k1 + 2k2 + 2k3 + k4) .



Hints and Answers to Selected Problems

Chapter 1

Section 1.1

1.1.1 t =
ln3
0.3

1.1.2 tz =
ln650− lnz

0.3

1.1.7 (a)

(
b
2
,−b2

4

)

1.1.12

(a) y = Ae−1.6

(b) y = 650+Ae−1.6

(c) A = 650
1−e−1.6 ≈ 814.4, ymin = Ae−1.6 ≈ 164.4

1.1.16

(a) y(t) = e−mt , s = e−m

(b) n =− lns
s− s2 . Since 0 < s < 1 , n > 0 .

Section 1.2

Interval 1960–1970 1970–1980 1980–1990 1990–2000 2000–2010
Average rate of change 0.877 1.300 1.548 1.524 2.038

1.2.1 There is a general increase.

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-7276-6,
© Springer Science+Business Media, LLC 2013
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1.2.5

(a) −156 on [0.5,1], −134 on [1,1.5], −145 on [0.5,1.5]
(b) −144.5
(c) The central difference approximation is clearly best.

1.2.8 We get 3.2, 10, 32, and 100. The slope appears to be infinite, and the tangent line is
vertical.

1.2.9 0.22, 0.125, and 0.08

Section 1.3

1.3.1 f ′(x) = 2x

1.3.3 f ′(x) = cosx

1.3.7 f ′(x) =−5e−5x+π cosπx

1.3.11 g′(x) = 2x lnx+ x

1.3.13 f ′(x) = sec2 x =
1

cos2 x

1.3.16 g′(t) =
ev(v− 1)
(ev + v)2 v′(t)

1.3.17 g′(t) =
2t − t4

(t3 + 1)2

1.3.22 g′(x) =
(

2e2x +
1
x

)
cos
(
e2x + lnx

)

1.3.25 f ′(x) = π cosxeπ sinx

1.3.27 g′(t) = +
2πt

(t2 + 1)2 sin

(
π

t2 + 1

)

1.3.33 The answer is 1. To get there, you must simplify the denominator, replace x with y=−x,
and factor the resulting limit using one factor that matches the appropriate formula in (1.3.3).

Section 1.4

1.4.6 0 is a local minimum.

1.4.8 0 is a local maximum, 2 and −2 are local minima.

1.4.10 −1 is a local minimum and 2 is not a local extremum.

1.4.14

(a) 0 is a local maximum.

(b) f ′ = 4x(x2 − 3x− b); the critical points x =
3±√

9+ 4b
2

require b >−9/4.
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(c) f ′′(x�) = 4x�(2x�− 3)
(d) The value x� is a local maximum if it is between 0 and 3/2, and a minimum if it is less than

0 or greater than 3/2.
(e) The larger point is a local minimum, while the smaller is a local maximum.

1.4.16 ±0.01x0

Section 1.5

1.5.1 r = 1/e

1.5.2 r = q

1.5.3 (d) v =
3
2

u

1.5.4

(a) w = 1
(b) F ′ > 0 for all p, so the global maximum is at p = 1.
(c) p = 1/(2−w)

(e) (1− p)2 =

(
1−w
2−w

)2

1.5.5

(a) t(x) = X − x+

√
x2 +Y2

s
(b) x� = Y

s√
1− s2

(c) x� < X
(f) cosφ� = s

1.5.9

(a) x = e−kt

(b) f + x is constant because resources lost to the patch are gained by the forager. Thus,
f (t) = 1−D− e−kt.

(d) D = 1− x�(1− lnx�)

Section 1.6

1.6.1 30πD mm2/day

1.6.6

(a)
dX
dT

= X − QX
1+X

(b) It will be easier to analyze a model that has one parameter than a model with three
parameters.



414 Hints and Answers to Selected Problems

Section 1.7

1.7.1

(a) yL = 5, yR = 14, Δy = 9
(b) yL = 6.875, yR = 11.375, Δy = 4.5
(c) Δy = 27/n
(d) 270
(e) yL = 8.95006, yR = 9.05006
(f) 9.00006
(g) 8.99997
(h) S3 = 9.0, S6 = 9.0

1.7.6
∫ 100

0
L f (x)dx

1.7.9

(a) 2,000
(b) 1.000850
(c) 1.000838
(d) ≈1.000834
(e) 0.000016 and 0.000004
(f) The midpoint approximation is generally much better than the left and right approxima-

tions; also, the midpoint approximation is more accurate when the function is close to
linear.

Section 1.8

1.8.1 −4/5

1.8.4 (e2 + 1)/2

1.8.7 1/
√

2+ 1/2

Section 1.9

1.9.1
2
3

(
23/2 − 1

)

1.9.2 1/8

1.9.7 0
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Chapter 2

Section 2.2

2.2.3

(a) q2, 2pq , p2

(b) 0.36, 0.41

2.2.7 (d) ne−ra
∫ 1

0
(1− x)

(
e5rx + e−5rx

)
dx = 1

Section 2.3

2.3.3 The slopes are m1 = 1− 0.4c and m2 = 1− 0.2c. Errors at the edges of the graph matter
more than errors near the middle.

2.3.5

(a) C =−15.6+ 4.22t
(b) There is a lot of scatter in the data, which limits our confidence in the choice of a linear

model.

Section 2.4

2.4.1 N = 6.01e0.400t

2.4.2 N = 6.18e0.390t

2.4.5 z = 1007e−0.0827t

Section 2.5

2.5.6

dS
dT

=−pBSI+QR,
dI
dT

= pBSI−KI,
dR
dT

= KI −QR.

Section 2.6

2.6.3 Y = e−T , where Y = y/y0 and T = kt

2.6.8
dc
dt

= 1− c− rc, r =
RV
F

.

The quantities F/V and R represent the rates for the two processes that eliminate pollutant from
the lake. Hence, r is the ratio of the magnitude of the decay process to the magnitude of the
flushing process.
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Section 2.7

2.7.2

(a) y =−0.11667x+ 0.04x2− 0.00083x3

(c) The cubic polynomial is too “curvy” for a good fit.

2.7.6

(a) B = b+mx̄+ ax̄2 − ȳ, M = m+ 2ax̄
(b) m = M− 2ax̄, b = B+ ȳ−mx̄− ax̄2

Chapter 3

Section 3.1

3.1.2 See Figure A.1.

Section 3.2

3.2.1 1/4

3.2.2

(a) 5/36
(b) The experiment is to roll two dice and add the results. The sample space is the set of integers

from 2 to 12.

3.2.3 0.15

103 106 109 112 115 118 121
0

1

2

3

4

5

6

7

Mandible Lengths

F
re

qu
en

cy

Fig. A.1 Problem 3.1.2
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Section 3.3

3.3.1 μ = 1.016 , σ = 0.1340

3.3.3 1/8

3.3.5

(a) P [X = 2] = 0.1 , P [X = 1] = 0.6 , P [X = 0] = 0.3
(b) μ = 0.8 , σ2 = 0.36 , σ = 0.6

Section 3.4

3.4.3 Needing at least three tries is equivalent to having two consecutive failures; thus, the
probability is b2, 0.3(0) = 0.49 .

Section 3.5

3.5.1

(a) b2n, 0.5(n) =
(2n)!
(2n n!)2

(b) 0.176
(c) 0.080

3.5.2

(a) See Table A.1
(b) See Figure A.2
(c) See Figure A.3
(d) See Figure A.4

Table A.1 Problem 3.5.2
Measurement 32 34 36 38 40 42 44 46 48

Frequency 1.5 61 434 1488.5 2080.5 1270 349.5 44.5 2.5
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Fig. A.2 Problem 3.5.2b
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Fig. A.3 Problem 3.5.2c

Section 3.6

3.6.2

(a) 0.0668
(b) 0.3795

3.6.6 See Figure A.5.
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Fig. A.4 Problem 3.5.2d
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Section 3.7

3.7.2

(a) f1(1) = e−1 ≈ 0.3679
(b) f2(2) = 2e−2 ≈ 0.2707

(c) fn(n) =
nn

n!
e−n, so f3(3) = 0.2240, f4(4) = 0.1954, f5(5) = 0.1755, f6(6) = 0.1606. The

probably of hitting the mean goes down as the mean increases.

3.7.3 E4(1) = 1− e−4 = 0.9817

3.7.7 (a) μ = 0.425 , σ2 = 0.453
(b), (c) See Figure A.6.
(d) σ2 ≈ μ and the shape looks right.
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Fig. A.6 Problem 3.7.7

Chapter 4

Section 4.1

4.1.4 B80,0.05(2) = 0.2306

4.1.6

(a) 0.0761

(b) 50× 300
5651

× 0.0761= 0.2020

(c) 0.2619
(d) 0.2209

Section 4.2

4.2.1

(a) See Figure A.7.
(b) 0.036
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(c) 0.028
(d) The fit to a normal distribution is unusually good, but not quite so good as to arouse suspi-

cion.

4.2.9

(a) 0.036
(b) 0.073 and 0.148 respectively. Larger samples score worse. This makes sense. Generally we

expect the residual sum of scores to increase with sample size, as it does here. It doesn’t
increase if the distribution is truly normal because the accuracy improves as the data is
sorted into increasing order.

(c) About 0.125 is typical. Note that it is larger than the value for consecutive integers.

0 0.5 1
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0.5

1

Fn

F

Fig. A.7 Problem 4.2.1

(d) About 0.2 is typical. This is not quite twice that of part (c). Apparently the difference
between consecutive and random stays roughly the same (about 0.05) as the sample size
increases.

(e) The average residual should be about the same, but there are twice as many points as in
part (b).

Section 4.3

4.3.3

(a) Means are all 2; standard deviations are 0.671, 0.335, and 0.168.
(c) 0.183, 0.090, 0.066

Section 4.4

4.4.2

(a) Yes. While we cannot know the distribution from which the data was drawn, the value of
the Cramer–von Mises statistic is well within the range of normally distributed data.



Hints and Answers to Selected Problems 421

(b) The probability of getting the psychotic data from a population of nonpsychotics is
6× 10−8, so we can safely conclude that psychotics have higher dopamine levels than
nonpsychotics. Given the large difference in the means, we can confidently claim biologi-
cal significance as well as statistical significance.

4.4.8

(a) 0.0014
(b) 0.0046
(c) The normal distribution is not a good model for such a small number of Bernoulli trials.

The binomial distribution probability is correct.
(d) 0.0384 and 0.0500. The handedness of presidents in the period between Roosevelt and

Obama, exclusive, is only 5 % likely in the population at large, which (barely) meets the
usual requirement for an interpretation of statistical significance. There are two possible
explanations. It could be that there is some significant characteristic difference between
left-handed and right-handed people that accounts for the difference, or it could merely be
an example of the high probability of unrestricted coincidences. Unless more data, such as
a high number of left-handed presidents prior to Roosevelt, can strengthen the case for a
real difference, the latter explanation seems to be the better tentative conclusion.

Section 4.5

4.5.1 0.0140 < μ < 0.0188 and 0.0133 < μ < 0.0195

4.5.6

(a) 0.3377

(b) L(p) =
( p

0.3377

)106602
(

1− p
0.6623

)209070

(c) See Figure A.8
(e) The correct value is L = 0.146 rather than L = 0.15
(f) L = 0.036
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0.15

0.4

0.7

1

p

L(p)

Fig. A.8 Problem 4.5.6
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Section 4.6

4.6.1

(a) 0.9670
(b) 0.8523
(c) 0.8242
(d) does not make sense

4.6.3

(a) 13.89 %
(b) 0.33 %

Section 4.7

4.7.2

(a) P [B|A] = 0.2, P [B|Ac] = 0.3
(b) P [A] = 3/7, P [B] = 9/35
(c) P [Ac|B] = 2/3

4.7.3

(a) P [E] = 0.012
(b) P [E|S] = 0.05
(c) P [E|Sc] = 0.0025

Chapter 5

Section 5.1

5.1.1

(a) N� =
R±√

R2 − 4
2

. Both roots are positive if R > 2.

(b) There are no real roots if R < 2. This means N2
t −RNt + 1 > 0, which in turn means that

Nt+1 −Nt < 0.

5.1.2

(a) S− 1+
A

1+Nt
(b) Adults do not survive.

(c) N� =
A− (1− S)

1− S
, provided A+ S > 1 .

(d) The plot viewing window should be 0 ≤ S ≤ 1 and 0 ≤ A ≤ Â , where Â is somewhere
around 3–5.

(e) N → 0 , consistent with predictions.
(f) N → 2 , consistent with predictions.
(g) N → 0.6 , consistent with predictions.
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Section 5.2

5.2.1 (c) See Figure A.9.
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Fig. A.9 Problem 5.2.1

Section 5.3

5.3.4

(a) 0 and 8.9
(b) 0, 0.7, 2.0, and 7.3
(c) 0 and 0.36

5.3.9

(b) The term
cv2

1+ v2

(c) Use the equilibrium equation to find an alternative that is equivalent to the answer of
part (a).

(d) k/2

(f)
1
k
+

k
4

Section 5.4

5.4.1 0 and K are stable and T is unstable.

Section 5.5

5.5.1

(a) 0 is stable if S+A < 1;
A− (1− S)

1− S
is stable if S+A > 1 .

(b) The results of different methods are fully consistent.
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5.5.5

(a) f ′ = 1− (2X −B)2

(b) X = 1.64 and X = 2.56 , with f ′ = 0.154; asymptotically stable 2-cycle.
(c) For R= 2.5: X = 1.5 and X = 3 , with f ′ =−1.25; unstable 2-cycle. For R = 2.7: X = 1.44

and X = 3.26 , with f ′ =−2.312; unstable 2-cycle.
(e) Results are in agreement to the extent possible. There is a stable 4-cycle with R = 2.5 and

no stable cycles for R = 2.7; the eigenvalue analysis did not extend to cycles longer than
two time steps.

5.5.6 The results of linearized stability analysis match those of the phase line.

Chapter 6

Section 6.1

6.1.1 (b), (c) See Figure A.10.
(d) Steady growth with a fixed population ratio.
(e) Growth rate 1.1, ratio 22:1
(f) The model predicts the population will grow without bound. This is alright in the short term.
In the long term, some mechanism must be present to limit population.

0 2 4 6 8 10
0

0.5

1

1.5

Xt/Xt−1

t

b

J
A

0 2 4 6 8 10
0

10

20

30

40

Jt/At

c

t

Fig. A.10 Problem 6.1.1

6.1.5 s+ r f = 1

6.1.8 (b) γ = 1

Section 6.2

6.2.1 4

6.2.5 xt+1 = Mxt , where x =

(
J
A

)
and M =

(
0 f
r b

)
. detM =−r f
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6.2.9

(a) λ = 3,−1
(b) The ratios of the components of the vectors must be 1:3 and −1:1, respectively.

Section 6.3

6.3.1 λ1 = 4 . The eigenvector has ratio 3:2.

6.3.5

(a) λ 2 − bλ − r f = 0
(b) r f + b = 1

6.3.12 (d) 1.024

Chapter 7

Section 7.1

7.1.4

(a)
dR
dT

= γI

(b) They are susceptible.

(c)
ds
dt

= ε(1− s)−R0si,
di
dt

= R0si− i.

(d) The parameter ε is the ratio of the time scale for the disease to the time scale for births.
These are on the order of days and years, respectively.

Section 7.3

7.3.4 (a) (1,0) is always an equilibrium point;

(
1

R0
,ε
(

1− 1
R0

))
is an equilibrium point

when R0 > 1 .
(b), (c) See Figure A.11.
(d) (1,0) is stable when R0 < 1 and unstable when R0 > 1. The stability of the other equilibrium
point cannot be determined from the nullcline plot.

Section 7.4

7.4.1

(a) The origin is stable for k > 1 and unstable for k < 1.
(b) The nullcline plot is unable to distinguish these cases.
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7.4.3

(a) c2 ≈ (1+ a1+ b1)(a2 + b2)− a1a2 = (1+ b1)a2 +(1+ a1+ b1)b2 > 0
(b) Under the assumption that ε is arbitrarily small, we have c3 → 0 while c1c2 > 0. Hence,

c1c2 > c3 for ε small enough.

Section 7.5

7.5.1

(a) The equilibrium (1,0) is stable when R0 < 1 . The equilibrium (R−1
0 ,ε(1−R−1

0 )) is stable
when it exists R− 0 > 1.

(b) The result for (1,0) is the same as in Problem 7.3.4. The stability of the other point could
not be determined from nullcline analysis. All results are consistent with the biological
setting. It makes sense that the disease-free state should be stable if R0 is below some
threshold and unstable if it is higher.

7.5.7

(a) (0,0) is unstable; (1,0) is stable if h < 1 .
(b) Stable when it exists (h > 1).
(c) Results are consistent. Nullcline analysis was unable to determine the stability of the equi-

librium with c > 0.
(d) Increasing h decreases the vegetation and increases the consumer population. Decreasing h

too much drives the consumer to extinction.

Appendix A

Section A.1

A.1.4

(a) There are no stable fixed points.
(b) There is a stable fixed point with positive values.
(c) The origin is stable.
(d) All results are consistent with the analysis.
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A.1.7

(a) p� = lnR0 , detJ =
R0 lnR0

R0 − 1
(b) g(R0) = R0(1− lnR0)

Section A.2

A.2.3

(a) There is only one way to complete the matrix that is consistent with the requirements for
Markov chain matrices.

Section A.3

A.3.1

(a)

f (0,0,0) = (0,1,1) , f (0,0,1) = (1,0,1) , f (0,1,0) = (1,1,1) , f (0,1,1) = (1,0,1) ,

f (1,0,0) = (0,0,1) , f (1,0,1) = (1,0,0), f (1,1,0) = (1,0,1) , f (1,1,1) = (1,0,0) .

(b) See Figure A.12

YZ XZ X XYZ Y

XY

Z

0/

Fig. A.12 Problem A.3.1
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Parasitoids, 202, 389
Partial derivatives, 31
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Pea aphids, 324
Pharmacokinetics, 328, 364
Phase line, 287–289
Phase plane, 345
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Phase portrait, 345
Phylogenetic distance, 392–398
Plankton, 342
Plant density, 203
Plant growth, 57, 66
Poisson approximation for the binomial distribution,

204
Poisson distribution, 196–198
Pollution in a lake, 123–124
Pollution in lakes, 285
Population growth, 17, 25, 63, 73
Potato beetles, 269
Precision, 95
Predation, 56
Predator-prey model, 356
Probability density function, 185, 183–185
Probability distribution, 161
Probability distribution function, 168
Probability distributions of sample means, 223–226
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Quotient rule, 29

Random variable, 160, 165
Rate of change

continuous, 19–21
discrete, 18–19

Reaction velocity, 338
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Recruitment, 263
Red blood cells, 308
Relative rate of change, 276
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Resource management, 284
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Riemann sums, 407–408
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Second derivative test, 37
Self-limiting population, 368
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Set theory notation, 159
Sickle cell disease, 43
Simulation

continuous, 277, 329, 339, 409–410
discrete, 266

SIR disease model, 126, 334
SIS disease model, 334, 335
Smallpox, 14
Specificity (of medical tests), 252
Spiders under boards, 202
Stability

continuous, 287, 295–296, 349
continuous linear systems, 359–363
continuous nonlinear systems, 367–369
discrete, 268, 273, 291–295
discrete nonlinear systems, 383–387

Standard deviation, 155, 171
Statistics, 193
Sterile insect model, 269
Structured population models, 302–307, 321–322
Student’s yeast data, 203
Substitution rule, 76
Sunflowers, 56
Survival probability, 168
Swimming speed of fish, 47, 134
Systems of linear algebraic equations, 311, 320

T cells, 372
Tangent line, 34, 34
Tangent slope, 22
Tay-Sachs disease, 255
Teasel, 323
Tomato plants, 178
Tribolium, 390

Uniform distribution
discrete, 161

Variance, 171, 185
Von Bertalanffy equation, 57, 80

Weevil eggs on beans, 202
Weightlifting, 15, 116
White lies, damn lies, and statistics, 235

Yahtzee, 178
Yeast, 203, 342, 368
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