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Part I

Money and Equilibrium in the Long Run



1Long Run Growth: The Basic Framework

1.1 Exercises

1.1.1 Short Review Questions

(a) Consider in an endowment, cashless economy a representative agent lives for
two periods, t = 1, 2. She receives a flow of perishable endowment Yt in each
period t . Besides consuming Ct , she has the opportunity to save St which pays
her a net return rt in t + 1.
1. Specify her resource constraints in each period.
2. Her life-time utility from the consumption flow (C1, C2) isU (C1)+βU (C2)

in which U (·) is the standard neoclassical utility function with U ′ (·) > 0,
U ′′ (·) < 0, and 0 < β < 1 is the discount rate. If she is a utility maximizer,
compute her optimal consumption flow, denote it as

(
C∗
1 , C

∗
2

)
.

3. Compute her marginal rate of substitution (MRS). Interpret it.
4. Under what condition C∗

1 > C∗
2 ? Interpret the condition. What is the natural

rate of interest?
(b) Following the last exercise, now suppose the government is actually the saving

agency. It takes the savings for public expenditure, and repays the agents via
taxing the agents.
1. Specify a representative agent’s resource constraints in each period.
2. What is Ricardian equivalence? Under what condition(s) it holds?
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1.1.2 Dynamic Optimization in Infinite Horizon1

Consider an infinitely lived representative consumer receiving an endowment flow
Yt in each period t = 0, 1, . . . ,+∞. She may consume Ct in each period and buy
or sell bonds Bt at interest rate r . She maximizes her life-time utility

u =
+∞∑

t=0

1

(1 + ρ)t
U(Ct )

with U(·) being the neoclassical utility function, subject to the per period budget
constraint Bt+1 − Bt = Yt + rBt − Ct with B0 and {Yt }+∞

t=0 given.

(a) Derive the first-order conditions and characterize the optimal consumption path.
(b) Using the No-Ponzi-Game condition, formulate the consumer’s intertemporal

wealth constraint. Discuss the relation between the No-Ponzi-Game condition
and the transversality condition.

1.1.3 Application of Dynamic Optimization in Economic Growth:
Ramsey Model

An infinitely lived representative agent has the neoclassical life-time utility function

u =
+∞∑

t=0

1

(1 + ρ)t
U(Ct ) with U(Ct) = C1−σ

t

1 − σ
.

The aggregate production function is Y = KαN1−α (0 < α < 1), in which K is
capital input and N is labor input. Across the periods, the growth rate of labor force
is n, the rate depreciation of capital is δ. Both rates are constant over time. Economic
agents own the capital stock, and work to produce. In each period, a representative
agent provides unit labor in production, receives the output from the production.
Using the output, she can consume, and change the depreciated capital stock.

(a) What does σ mean for this type of preference? How is it related to the rate
of risk aversion (RRA)? Show that U(Ct ) = lnCt when σ → 0. Show that
the production function has constant returns to scale and formulate output per
capita (suppose that everyone in this economy provides a unit of labor force) as
a function of capital intensity (capital per capita).

(b) Derive the transition equation for capital intensity.
(c) Derive first-order conditions of the agents optimization problem.

1A brief introduction to solving dynamic optimization problems is provided in the Appendix.
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(d) Derive the Euler equation for per capita consumption.
(e) Calculate capital intensity and per capita consumption of the steady state.
(f) Explain the optimal growth path from an arbitrary starting value of capital

intensity.
(g) How should the economy respond to a unforeseeable change in the growth rate

of labor force? To put it clear, suppose the economy is already in the steady
state at t0 with a constant growth rate of labor force n0, and then for whatever
reason from t1 in the future the growth rate of labor force will be n1 > n0,
∀t ∈ [t1,+∞). Characterize the response of the economy from t1 on.

(h) What happens if the shock in question (g) is foreseeable, i.e., at t0 people expect
in the future the growth rate of labor force will be n1 > n0, ∀t ∈ [t1,+∞) due
to immigration? Characterize the response of the economy from t0 on.

(i) The same dynamic optimization problem can be also explored in continuous
time, such that the life-time utility function becomesU0 = ∫ +∞

0 e−ρt (c(t))β dt ,
0 < β < 1. Re-do questions (a)–(g). Are results different, compared with those
in discrete time?

1.1.4 Dynamic Optimization in Continuous Time

Dynamic optimization problems can be alternatively explored in continuous time.
Suppose an individual receives a steady stream of income over time y(t). She
maximizes her discounted utility from consumption. Her intertemporal utility
function is given by

∫ +∞

0
e−ρtU(t)dt with U(t) = 1

α
c(t)α

The consumer has access to a perfect capital market at which she can lend or
borrow at an interest rate r .

(a) Give an interpretation of the parameter ρ. Calculate the elasticity of substitution
between consumption of two points in time and the rate of relative risk aversion.

(b) What is the transition equation for consumer’s wealth?
(c) Formulate the dynamic optimization problem and derive the first-order condi-

tions.
(d) Derive the Euler equation and show how consumption changes over time.

Distinguish two cases: a rate of time preference being lower/exceeding the rate
of interest.

(e) Let r = 0.1 and ρ = 0.2. Determine the optimal consumption path, if the
present value of the income stream is y0 = 100. Discuss the relation between
the transversality condition and the household’s intertemporal budget constraint.
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1.1.5 Stochastic Optimization: Asset Pricing

Consider a household with expected utility function

E[U ] = U(ct ) + 1

1 + ρ

∑

s

psU(c2,s),

where ps is the probability of state s. Income is y1 in the first period and y2,s in state
s of period 2. There is one asset traded in period 1 that pays an interest rate of r in
each state of period 2.

(a) Write down budget constraints and derive the first-order condition. Show that
for optimal savings the asset’s return equals the expected marginal rate of
substitution between present and future consumption.
Assume a constant rate of risk aversion (CRRA) utility function U(c) = cα

α
and

assume that the stochastic income in period 2 is such that with optimal savings
the MRS has log-normal distribution, i.e. ln(MRS) ∼ N(μ, σ 2).

(b) Show that the difference between interest rate and time preference rate rises with
increasing variance.
Consider now an asset with stochastic return 1 + rs .

(c) Write down budget constraints and derive the first-order condition. Show how
the asset price depends on the covariance between rs and y2,s .

1.1.6 Stochastic Optimization: Permanent Income Hypothesis

Consider a consumer maximizing expected utility in discrete time under uncertainty
subject to a budget constraint. The interest rate r is constant, as is the rate of time
preference ρ. The consumer has an initial stock of assets A and earns income an
Yt that is uncertain in the future. In each period, the consumer solves the following
problem:

max
{Ct }+∞

t=0

Et

[+∞∑

t=0

1

(1 + ρ)t
U(Ct ) + λ

(

A −
+∞∑

t=0

1

(1 + r)t
(Ct − Yt )

)]

,

in which λ is the Lagrange multiplier.

(a) Using the first-order conditions, show that marginal utility is a random process
of the formXt+1 = kXt+εt+1, whereX denotes marginal utility, k is a constant,
and ε is a random term with mean zero.

(b) Show that for quadratic utility, U(C) = − (b−C)2

2 , consumption is a stochastic
process of the form Ct+1 = kCt + δ + εt+1, where k and δ are constants, and
ε is a random term with mean zero. What happens to the consumption path if
k = 1? Does consumption path respond to a temporary income shock that only
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lasts for a few periods? Does consumption path respond to a permanent income
shock that lasts for life time?

1.1.7 Asset Pricing: The Lucas Tree

Lucas (1978) suppose that the only assets in the economy are some infinitely living
trees. Output equals the fruits of the trees (suppose the productivities of the trees are
perfectly correlated, i.e. all the trees produce exactly the same amount of fruits in a
given period), which is exogenously given positive random variable and cannot be
stored—therefore ct = yt for each t in which yt is the exogenously determined per
capita output (to make it simple, one can assume that the number of trees is equal
to the population, i.e. yt is also the productivity of the trees in period t) and ct is
the per capita consumption. Assume that in the beginning each one in this economy
owns the same number of trees. Since all the agents are assumed to be the same, in
equilibrium the behavior of the price of the trees should be such that in each period
the representative agent is not willing to either increase or decrease her holdings of
the trees.

Let Pt denote the price of a tree in period t , and assume that if the tree is sold the
sale occurs after the existing owner receives that period’s output. Finally, assume
that the representative agent maximizes

E0

[+∞∑

t=0

1

(1 + ρ)t

c1−σ
t

1 − σ

]

.

(a) Suppose that the representative agent reduces her consumption is period t by
an infinitesimal amount, uses the resulting saving to increase her holdings of
trees and then sells these additional trees in period t + 1. Find the condition that
ct and expectations involving yt+1, Pt+1, and ct+1 must satisfy for this change
not to affect expected utility. Solve this condition for Pt in terms of yt and
expectations involving yt+1, Pt+1, and ct+1. (Hint: The representative agent’s
resource constraint can be written as ct + Ptet+1 = (yt + Pt) et , in which et

denotes how many trees she owns in period t .)

(b) Suppose that σ → 1 and lims→+∞ Et

[
1

(1+ρ)s
Pt+s

yt+s

]
= 0. Iterate the result in (a)

forward to solve for Pt .
(c) Give some intuition why in (b) an increase in expectations of future dividends

does not affect the price of the asset.
(d) Does consumption follow a random walk in this model?

1.1.8 The Equity Premium Puzzle

Mehra and Prescott (1985) continue with the settings in Exercise 7 (a). Now except
the ownership of the tree, we introduce another asset—a riskless asset bt with price
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qt . We call such riskless asset bond, and the risky assets (the ownership of the trees)
equity or stock.

(a) Define the representative agent’s optimization problem, and derive the first-
order conditions. Note that in addition to the agent’s flow budget constraint
that you specified in Exercise 7, in each period t the agent now has to decide
how much bt+1 she has to invest for the next period at current price qt . (Hint:
The representative agent’s resource constraint can be written as ct + Ptet+1 +
qtbt+1 = (yt + Pt ) et + bt .)

(b) Express Pt and qt in terms of yt and expectations involving yt+1, Pt+1, and ct+1.
Show how Pt depends on the covariance between Pt+1 and ct+1, and define Pt

as the sum of the riskless return and the risk premium.
(c) Define the implicit return of the riskless asset, the bond, as

Rb = 1

qt

,

and the implicit return of the risky assets, the stock, as

Rs = Pt+1 + yt+1

Pt

.

Rewrite the expressions in (b) with Rb and Rs .
Now assume that the consumption growth rate is

ct+1

ct

= yt+1

yt

= γ exp

(

εyt − σ 2
y

2

)

,

in which γ is a positive constant and εyt is a normally distributed i.i.d. shock,

εyt ∼ N
(
0, σ 2

y

)
.

And assume that Rs fluctuates around Rs as

Rs = Rs exp

(
εst − σ 2

s

2

)
,

in which εst is a normally distributed i.i.d. shock, εst ∼ N
(
0, σ 2

s

)
.

Find the equity premium Rs − Rb in terms of σ , εyt , and εst .
(d) Estimated from the US financial market (1890–2003), Rb = 1.01, Rs = 1.07,

and cov
(
εst , εyt

) = 0.002. Compute σ using the result of (c). What does σ

mean in economics? Why do people call this result a puzzle?
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1.1.9 Dixit–Stiglitz Indices for Continuous Commodity Space

Dixit and Stiglitz (1977) Consider a one-person economy. Mr. Rubinson Crusoe is
the only agent in this economy, consuming a continuum of commodities i ∈ [0, 1].
Suppose that the consumption index C of him is defined as

C =
[∫ 1

0
Z

1
η

i C
η−1
η

i di

] η
η−1

in which Ci is the consumption of good i and Zi is the taste shock for good
i. Suppose that Crusoe has an amount of endowment Y to spend on goods with
exogenously given price tags. Therefore the budget constraint is

∫ 1

0
PiCidi = Y.

(a) Find the first-order condition for the problem of maximizing C subject to the
budget constraint. Solve for Ci in terms of Zi , Pi , and the Lagrange multiplier
on the budget constraint.

(b) Use the budget constraint to find Ci in terms of Zi , Pi , and Y .
(c) Insert the result of (b) into the expression for C and show that C = Y

P
, in which

P =
(∫ 1

0
ZiP

1−η
i di

) 1
1−η

.

(d) Use the results in (b) and (c) to show that

Ci = Zi

(
Pi

P

)−η (
Y

P

)
.

Interpret this result.

1.1.10 Menu Cost and Nominal Price Rigidity

A representative monopolistically competitive firm sells its output for a nominal
price Pi . It faces the demand function

Yi =
(

Pi

P

)−ε

D with ε > 1

in which P is the general price level of the economy and D is an aggregate demand
parameter (both of them are exogenous to the firm). There is only one productive
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input, labor Li , which is used according to the production function

Yi = L
1
β

i with β > 1.

The firm pays workers an exogenous nominal wage w.

(a) Explain the parameter β. What is the economic interpretation of the condition
β > 1?

(b) Draw a diagram with the demand function, the marginal revenue function, and
the marginal cost function of the firm. Determine the firm’s optimal price and
quantity.

(c) Use your diagram to demonstrate the response of the optimal relative price to a
fall in D.

(d) Explain that a small menu cost of changing prices is able to prevent the firm from
adjusting price freely. Which factors determine the degree of such rigidity? You
may want to come back to this question after you read Chap. 4

1.2 Solutions for Selected Exercises

1.2.1 Dynamic Optimization in Discrete Time

Consider an infinitely lived representative consumer receiving an endowment flow
Yt in each period t = 0, 1, . . . ,+∞. She may consume Ct in each period and buy
or sell bonds Bt at interest rate r . She maximizes her life-time utility

u =
+∞∑

t=0

U(Ct )
1

(1 + ρ)t

with U(·) being the neoclassical utility function, subject to the per period budget
constraint Bt+1 − Bt = Yt + rBt − Ct with B0 and {Yt }+∞

t=0 given.

(a) Derive the first-order conditions and characterize the optimal consumption
paths.

Present value Hamiltonian

Ht = 1

(1 + ρ)t
U(Ct ) + λt (Yt + rBt − Ct),

with first-order conditions

∂Ht

∂Ct

= 1

(1 + ρ)t
U ′(Ct ) − λt = 0, (1.1)
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∂Ht

∂Bt

= rλt = λt−1 − λt , (1.2)

as well as transversality condition

lim
t→+∞ λt (Bt+1 − Bt+1) = 0

with complementary slackness such that if Bt+1 < Bt+1 then λt = 0; if λt = 0 then
Bt+1 = Bt+1.

Rearranging (1.1) and (1.2) gives

U ′(Ct−1)

U ′(Ct )
= 1 + r

1 + ρ
,

as well as corresponding optimal consumption paths

Ct = (U ′)−1
[(

1 + ρ

1 + r

)t

U ′(C0)

]
.

(b) Using the No-Ponzi-Game condition, formulate the consumer’s intertemporal
wealth constraint. Discuss the relation between the No-Ponzi-Game condition
and the transversality condition.

Solve the difference equation given by the flow budget constraint Bt+1 − Bt =
Yt + rBt − Ct . Rearrange to get

Bt = 1

1 + r
Bt+1 − 1

1 + r
(Yt − Ct ) ,

B0 = lim
T →+∞

1

(1 + r)T
BT −

+∞∑

t=0

1

(1 + r)t+1 (Yt − Ct ) .

No-Ponzi-Game condition requires that2

lim
T →+∞

1

(1 + r)T
BT ≥ 0,

and the transversality condition requires that

lim
T →+∞

1

(1 + r)T
BT = 0.

2Please note that throughout the problem we take B as the stock of assets.
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No-Ponzi-Game condition rules out the economically non-plausible path, and the
transversality condition makes it binding.

1.2.2 Application of Dynamic Optimization in Growth Theory:
Ramsey Model

An infinitely lived representative agent has the neoclassical life-time utility function
in continuous time

U0 =
∫ +∞

0
e−ρt (c(t))β dt, 0 < β < 1.

The aggregate production function is Y = KαN1−α (0 < α < 1), in which K

is capital input and N is labor input. Across the periods, the growth rate of labor
force is n, the rate depreciation of capital is δ. Both rates are constant over time.
Economic agents own the capital stock, and work to produce. In each period, a
representative agent provides unit labor in production, receives the output from the
production. Using the output, she can consume, and change the depreciated capital
stock.

(a) What does σ mean for this type of preference? How is it related to the rate
of risk aversion (RRA)? Show that U(Ct) = lnCt when σ → 0. Show that
the production function has constant returns to scale and formulate output per
capita (suppose that everyone in this economy provides a unit of labor force) as
a function of capital intensity (capital per capita).

Note that optimization problems in continuous time generate the same patterns
of balanced growth path as in discrete time, we solve this exercise in continuous
time.

It’s straightforward that

Y (λK, λN) = λY (K,N).

And then

y = Y

N
=
(

K

N

)α

= kα.

(b) Derive the transition equation for capital intensity.

From law of motion

K̇ = Y − δK − cN
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divide both sides by N and get

K̇

N
= y − δk − c.

By definition

k = K

N

it’s directly seen that

k̇

k
= K̇

K
− Ṅ

N
,

that is

k̇ = K̇

N
− nk.

Then

k̇ = kα − (δ + n)k − c.

(c) Derive first-order conditions of the agents optimization problem.

Present value Hamiltonian

H = e−ρt cβ + μ
[
kα − (δ + n)k − c

]
.

First-order conditions:

∂H
∂c

= e−ρtβcβ−1 − μ = 0, (1.3)

∂H
∂k

= μ[αkα−1 − (δ + n)] = −μ̇, (1.4)

as well as transversality condition

lim
t→+∞ μ(t)k(t) = 0,

lim
t→+∞ μ(0) exp

[
−
∫ t

s=0

(
αk(s)α−1 − (δ + n)

)
ds

]
k(t) = 0,

lim
t→+∞ αk(t)α−1 − (δ + n) > 0,

i.e., in steady state y ′∗ = αk∗α−1 > δ + n.
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(d) Derive the Euler equation for per capita consumption.

Combine (1.3) and (1.4) and simplify, then

ċ

c
= αkα−1 − δ − ρ − n

1 − β
.

(e) Calculate capital intensity and per capita consumption of the steady state.

Taking ċ∗ = 0 and k̇∗ = 0, solve to get

k∗ =
(

δ + ρ + n

α

) 1
α−1

,

c∗ =
(

δ + ρ + n

α

) α
α−1 − (δ + n)

(
δ + ρ + n

α

) 1
α−1

.

(f) Explain the optimal growth path from an arbitrary starting value of capital
intensity.

See the phase diagram Fig. 1.1 (black curves).

(g) How should the economy respond to a foreseeable change in the growth rate of
labor force? To put it clear, suppose the economy is already in the steady state

c

k
0k *k

0c

*c
E

0k

0c

*k

*c
E

0c

0k

Fig. 1.1 Economic dynamics in phase diagram
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at t0 with a constant growth rate of labor force n0, and then for whatever reason
it becomes public information at t0 that from t1 in the future the growth rate of
labor force will be n1 > n0, ∀t ∈ [t1,+∞). Using phase diagram characterize
the response of the economy from t0 on.

See Fig. 1.1 (red and blue curves).

1.2.3 Dynamic Optimization in Continuous Time

An individual receives a steady stream of income over time y(t). She maximizes her
discounted utility from consumption. Her intertemporal utility function is given by

∫ +∞

0
e−ρtU(t)dt with U(t) = 1

α
c(t)α

The consumer has access to a perfect capital market at which she can lend or
borrow at an interest rate r.

(a) Give an interpretation of the parameter ρ. Calculate the elasticity of substitution
between consumption of two points in time and the rate of relative risk aversion.

ρ is the agent’s discount rate; the greater is ρ, the less she values future
consumption relative to current consumption.

The elasticity of substitution between consumption of two points in time, t and
s, is given by

σ(c(t), c(s)) := −
U ′(c(s))
U ′(c(t))

c(s)
c(t)

d
(

c(s)
c(t)

)

d
[

U ′(c(s))
U ′(c(t))

] .

Take t as a reference point and s → t , then the instantaneous elasticity of
substitution at t is

σ(c(t)) = lim
s→t

−
U ′(c(s))
U ′(c(t))

c(s)
c(t)

d
(

c(s)
c(t)

)

d
[

U ′(c(s))
U ′(c(t))

] = − U ′(c(t))
U ′′(c(t))c(t)

.

Apply U(t) = 1
α
c(t)α to get

σ(c(t)) = 1

1 − α
.



16 1 Long Run Growth: The Basic Framework

Arrow–Pratt measure (see Mas-Colell et al. 1995, Chapter 6 for detail) for the
rate of relative risk aversion is defined as

R := −U ′′(c(t))c(t)
U ′(c(t))

.

Apply U(t) = 1
α
c(t)α to get

R = 1

σ
= 1 − α.

(b) What is the transition equation for consumer’s wealth?

ḃ(t) = y(t) + rb(t) − c(t).

(c) Formulate the Hamiltonian of this problem and derive first-order conditions.

Present value Hamiltonian:

H = e−ρt

[
1

α
c(t)α

]
+ μ(t) [y(t) + rb(t) − c(t)] .

First-order conditions3:

∂H
∂c

= e−ρt cα−1 − μ = 0, (1.5)

∂H
∂b

= rμ = −μ̇, (1.6)

as well as transversality condition

lim
t→+∞ μ(t)b(t) = 0,

lim
t→+∞ μ(0)e−rtb(t) = 0.

(d) Derive the Euler equation and show how consumption changes over time.
Distinguish two cases: a rate of time preference being lower/exceeding the rate
of interest.

Log-linearize and differentiate (1.5) to get

μ̇

μ
= −ρ + (α − 1)

ċ

c
,

3Time variable t is sometimes dropped when there is no confusion.
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and insert it into (1.6) to get

ċ

c
= r − ρ

1 − α
.

Solve for c(t), and this gives

c(t) = exp

[
r − ρ

1 − α
t + constant

]
= c(0) exp

[
r − ρ

1 − α
t

]
.

• r > ρ, consumption path with a constant positive growth rate;
• r < ρ, consumption path with a constant negative growth rate.

In the end, the transversality condition determines optimal growth path.

(e) Let r = 0.1 and ρ = 0.2. Determine the optimal consumption path, if the
present value of the income stream is y0 = 100.Discuss the relation between the
transversality condition and the household’s intertemporal budget constraint.

Solve the flow budget constraint ḃ(t) = y(t) + rb(t) − c(t) and get

b(0) = lim
T →+∞ e−rT b(T ) −

∫ +∞

0
e−rt [y(t) − c(t)] dt.

Because the agent starts from zero assets and the transversality condition makes

lim
T →+∞ e−rT b(T ) = 0,

therefore one can see that

∫ +∞

0
e−rt c(t)dt =

∫ +∞

0
e−rt y(t)dt,

∫ +∞

0
c(0) exp

[(
r − ρ

1 − α
− r

)
t

]
dt = y0,

− 1 − α

αr − ρ
c(0) = y0.

Given that r = 0.1, ρ = 0.2, and y0 = 100, solve to get

c(0) = 20 − 10α

1 − α
.
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1.2.4 Stochastic Optimization: Asset Pricing

Consider a household with expected utility function

E[U ] = U(ct ) + 1

1 + ρ

∑

s

psU(c2,s),

where ps is the probability of state s. Income is y1 in the first period and y2,s in
state s of period 2. There is one asset traded in period 1 that pays an interest rate of
r in each state of period 2.

(a) Write down budget constraints and derive the first-order condition. Show that
for optimal savings the asset’s return equals the expected marginal rate of
substitution between present and future consumption.

The budget constraint is

c1 + d ≤ y1,

c2,s − (1 + r)d ≤ y2,s

in which d is period 1 saving.
The first-order condition gives

U ′(c1) − 1 + r

1 + ρ
E[U ′(c2,s)] = 0,

1 + r = (1 + ρ)E

[
U ′(c1)
U ′(c2,s)

]
,

1 + ρ = (1 + r)E[MRS].

Assume a constant rate of risk aversion (CRRA) utility function U(c) = cα

α
and

assume that the stochastic income in period 2 is such that with optimal savings the
MRS has log-normal distribution, i.e. ln(MRS) ∼ N(μ, σ 2).

(b) Show that the difference between interest rate and time preference rate rises
with increasing variance.

Since ln(MRS) ∼ N(μ, σ 2), E[MRS] = exp
(
μ + 1

2σ
2
)
. Therefore ρ − r =

μ + 1
2σ

2, increasing with variance.
Consider now an asset with stochastic return 1 + rs .

(c) Write down budget constraints and derive the first-order condition. Show how
the asset price depends on the covariance between rs and y2,s .
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The budget constraint is now

c1 + P1d ≤ y1,

c2,s − (1 + rs)d ≤ y2,s.

The first-order condition gives

U ′(c1) − 1

1 + ρ
E

[
1 + rs

P1
U ′(c2,s)

]
= 0,

(1 + ρ)E

[
P1U

′(c1)
U ′(c2,s)(1 + rs)

]
= 1.

Arrange to get

P1 = 1

1 + ρ
E

[
(1 + rs)

U ′(c2,s)
U ′(c1)

]

= 1

1 + ρ

{
E [1 + rs]E

[
U ′(c2,s)
U ′(c1)

]
+ cov

(
1 + rs ,

U ′(c2,s)
U ′(c1)

)}
.

1.2.5 Stochastic Optimization: Permanent Income Hypothesis

Consider a consumer maximizing expected utility in discrete time under uncertainty
subject to a budget constraint. The interest rate r is constant, as is the rate of time
preference ρ. The consumer has an initial stock of assets A and earns income an
Yt that is uncertain in the future. In each period, the consumer solves the following
problem:

max
{Ct }+∞

t=0

Et

[+∞∑

t=0

1

(1 + ρ)t
U(Ct ) + λ

(

A −
+∞∑

t=0

1

(1 + r)t
(Ct − Yt )

)]

.

(a) Using the first-order conditions, show that marginal utility is a random process
of the form Xt+1 = kXt +εt+1, where X denotes marginal utility, k is a constant,
and ε is a random term with mean zero.

For any t first-order condition gives

1

(1 + ρ)t
E
[
U ′(Ct )

]− λ
1

(1 + r)t
= 0,
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and it also holds for one period forward

1

(1 + ρ)t+1E
[
U ′(Ct+1)

]− λ
1

(1 + r)t+1 = 0.

Divide these two equations and get

E
[
U ′(Ct+1)

]

E [U ′(Ct )]
= 1 + ρ

1 + r
.

This is equivalent to the random process Xt+1 = kXt + εt+1.

(b) Show that for quadratic utility, U(C) = − (b−C)2

2 , consumption is a stochastic
process of the form Ct+1 = kCt + δ + εt+1, where k and δ are constants, and
ε is a random term with mean zero. What happens to the consumption path if
k = 1? Does consumption path respond to a temporary income shock that only
lasts for a few periods? Does consumption path respond to a permanent income
shock that lasts for life time?

Apply U(C) = − (b−C)2

2 and the result is directly seen.

1.2.6 Asset Pricing: The Lucas Tree

Lucas (1978) suppose that the only assets in the economy are some infinitely living
trees. Output equals the fruits of the trees (suppose the productivities of the trees are
perfectly correlated, i.e. all the trees produce exactly the same amount of fruits in a
given period), which is exogenously given positive random variable and cannot be
stored—therefore ct = yt for each t in which yt is the exogenously determined per
capita output and ct is the per capita consumption. Assume that in the beginning
each one in this economy owns the same number of trees. Since all the agents are
assumed to be the same, in equilibrium the behavior of the price of the trees should
be such that in each period the representative agent is not willing to either increase
or decrease her holdings of the trees.

Let Pt denote the price of a tree in period t , and assume that if the tree is sold the
sale occurs after the existing owner receives that period’s output. Finally, assume
that the representative agent maximizes

E0

[+∞∑

t=0

1

(1 + ρ)t

c1−σ
t

1 − σ

]

.

(a) Suppose that the representative agent reduces her consumption is period t by
an infinitesimal amount, uses the resulting saving to increase her holdings of
trees and then sells these additional trees in period t + 1. Find the condition



1.2 Solutions for Selected Exercises 21

that ct and expectations involving yt+1, Pt+1, and ct+1 must satisfy for this
change not to affect expected utility. Solve this condition for Pt in terms of yt

and expectations involving yt+1, Pt+1, and ct+1.

The representative agent’s problem is

max
{ct }+∞

t=0

E0

[+∞∑

t=0

1

(1 + ρ)t

c1−σ
t

1 − σ

]

,

s.t. ct + Ptet+1 = (yt + Pt ) et .

Set up the Bellman equation

V (e, y) = max
e′ E

[
c1−σ

1 − σ
+ 1

1 + ρ
V (e′, y ′)

]
,

s.t. c + Pe′ = (y + P) e.

The first-order condition gives

− c−σ P + 1

1 + ρ

∂V (e′, y ′)
∂e′ = 0, (1.7)

and the envelope condition gives

∂V (e, y)

∂e
= c−σ (y + P). (1.8)

One period update for Eq. (1.8) gives

∂V (e′, y ′)
∂e′ = E

[
c′−σ (y ′ + P ′)

]
. (1.9)

Combine (1.7) and (1.9) and we get

P = E

[
1

1 + ρ

cσ

c′σ (y ′ + P ′)
]

.

Add the time parameters to the variables,

Pt = Et

[
1

1 + ρ

cσ
t

cσ
t+1

(yt+1 + Pt+1)

]

. (1.10)

(b) Suppose that σ → 1 and lims→+∞ Et

[
1

(1+ρ)s
Pt+s

yt+s

]
= 0. Iterate the result in

(a) forward to solve for Pt .
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Insert σ = 1 and ct = yt into Eq. (1.10)

Pt = Et

[
1

1 + ρ

yt

yt+1
(yt+1 + Pt+1)

]

= yt

1 + ρ
+ yt

1 + ρ
Et

[
Pt+1

yt+1

]
.

Iterate this equation and one can see that

Pt = yt

1 + ρ
+ yt

(1 + ρ)2
+ . . . + yt

(1 + ρ)s
+ yt

(1 + ρ)s
Et

[
Pt+s

yt+s

]
,

therefore

lim
s→+∞ Pt = lim

s→+∞

{
yt

1 + ρ
+ yt

(1 + ρ)2
+ . . . + yt

(1 + ρ)s
+ yt

(1 + ρ)s
Et

[
Pt+s

yt+s

]}

=
1

1+ρ

1 − 1
1+ρ

yt

= yt

ρ
.

(c) Give some intuition why in (b) an increase in expectations of future dividends
does not affect the price of the asset.

An increase in expectations of future dividends increases expectations of future
consumption flow, motivating people to buy more trees today—this tends to
raise today’s price (income effect). However, high level of future consumption
flow implies low marginal utility, i.e. people have abundant dividends when their
marginal utility is low—this tends to lower today’s price (substitution effect). The
instantaneous utility becomes logarithmic utility when σ → 1, in which these two
effects offset each other.

(d) Does consumption follow a random walk in this model?

The consumption follows a random walk only if the output does so, because
ct = yt , ∀t in this model.

1.2.7 The Equity Premium Puzzle

Mehra and Prescott (1985) continue with the settings in Exercise 7 (a). Now except
the ownership of the tree, we introduce another asset—a riskless asset bt with price
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qt . We call such riskless asset bond, and the risky assets (the ownership of the trees)
equity or stock.

(a) Define the representative agent’s optimization problem, and derive the first-
order conditions. Note that in addition to the agent’s flow budget constraint
that you specified in Exercise 7, in each period t the agent now has to decide
how much bt+1 she has to invest for the next period at current price qt .

The representative agent’s problem is

max
{ct }+∞

t=0

E0

[+∞∑

t=0

1

(1 + ρ)t

c1−σ
t

1 − σ

]

,

s.t. ct + Ptet+1 + qtbt+1 = (yt + Pt) et + bt .

Set up the Lagrangian

L = E0

{+∞∑

t=0

1

(1 + ρ)t

c1−σ
t

1 − σ
+ λt [(yt + Pt ) et + bt − ct − Ptet+1 − qtbt+1]

}

,

∀t ∈ {0, 1, . . . ,+∞} the first-order conditions are
∂L

∂ct

= 1

(1 + ρ)t
c−σ
t − λt , (1.11)

∂L

∂et+1
= −λtPt + Et [λt+1 (yt+1 + Pt+1)] = 0, (1.12)

∂L

∂bt+1
= −λtqt + Et [λt+1] = 0. (1.13)

Insert (1.11) into (1.12) and (1.13)

1

(1 + ρ)t
c−σ
t Pt = Et

[
1

(1 + ρ)t+1 c−σ
t+1 (yt+1 + Pt+1)

]
, (1.14)

1

(1 + ρ)t
c−σ
t qt = Et

[
1

(1 + ρ)t+1 c−σ
t+1

]
. (1.15)

Rearrange to get

Pt = 1

1 + ρ
Et

[(
ct

ct+1

)σ

(yt+1 + Pt+1)

]
, (1.16)

qt = 1

1 + ρ
Et

[(
ct

ct+1

)σ]
. (1.17)
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(b) Express Pt and qt in terms of yt and expectations involving yt+1, Pt+1, and
ct+1. Show how Pt depends on the covariance between Pt+1 and ct+1, and
define Pt as the sum of the riskless return and the risk premium.

Equations (1.16) and (1.17) are the expressions for Pt and qt . Further manipula-
tion on (1.16)

Pt = 1

1 + ρ
Et

[(
ct

ct+1

)σ ]
Et

(
yt+1 + Pt+1

)+ 1

1 + ρ
cov

[
yt+1 + Pt+1,

(
ct

ct+1

)σ ]

= qtEt

(
yt+1 + Pt+1

)

︸ ︷︷ ︸
(A)

+ 1

1 + ρ
cov

[
yt+1 + Pt+1,

(
ct

ct+1

)σ ]

︸ ︷︷ ︸
(B)

.

Part (A) of the right-hand side captures the riskless return, and part (B) the risk
premium.

(c) Define the implicit return of the riskless asset, the bond, as

Rb = 1

qt

,

and the implicit return of the risky assets, the stock, as

Rs = Pt+1 + yt+1

Pt

.

Rewrite the expressions in (b) with Rb and Rs .

Manipulate the Eqs. (1.16) and (1.17)

1 = 1

1 + ρ
Et

[(
ct

ct+1

)σ
yt+1 + Pt+1

Pt

]
= 1

1 + ρ
Et

[(
ct

ct+1

)σ

Rs

]
, (1.18)

1 = 1

qt

1

1 + ρ
Et

[(
ct

ct+1

)σ]
= 1

1 + ρ
RbEt

[(
ct

ct+1

)σ]
. (1.19)

Now assume that the consumption growth rate is

ct+1

ct

= yt+1

yt

= γ exp

(

εyt − σ 2
y

2

)

,

in which γ is a positive constant and εyt is a normally distributed i.i.d. shock, εyt ∼
N
(
0, σ 2

y

)
.
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And assume that Rs fluctuates around Rs as

Rs = Rs exp

(
εst − σ 2

s

2

)
,

in which εst is a normally distributed i.i.d. shock, εst ∼ N
(
0, σ 2

s

)
.

Find the equity premium Rs − Rb in terms of σ , εyt , and εst .
Insert the growth rate of consumption, Eq. (1.19) becomes

1 = 1

1 + ρ
RbEt

{

γ −σ exp

[

−σ

(

εyt − σ 2
y

2

)]}

, (1.20)

and Eq. (1.18) becomes

1 = 1

1 + ρ
Et

{

γ −σ exp

[

−σ

(

εyt − σ 2
y

2

)]

Rs

}

. (1.21)

Further manipulation on (1.20)

1 = 1

1 + ρ
Rbγ

−σ Et

{

exp

[

−σεyt + σσ 2
y

2

]}

= 1

1 + ρ
Rbγ

−σ Et

{

exp

[

−σεyt − σ 2σ 2
y

2
+ σ 2σ 2

y

2
+ σσ 2

y

2

]}

= 1

1 + ρ
Rbγ

−σ exp

[

σ(1 + σ)
σ 2

y

2

]

Et

{

exp

[

−σεyt − σ 2σ 2
y

2

]}

.

Define a new random variable

κ = exp

[

−σεyt − σ 2σ 2
y

2

]

,

then take logarithm on κ

ln κ = −σεyt − σ 2σ 2
y

2
.

Since εyt ∼ N
(
0, σ 2

y

)
, it’s easy to see that

ln κ ∼ N

(

−σ 2σ 2
y

2
, σ 2σ 2

y

)

,
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i.e., κ follows a log-normal distribution. Therefore

Et [κ] = exp

(

−σ 2σ 2
y

2
+ σ 2σ 2

y

2

)

= 1.

Then Eq. (1.20) is simplified as

1 = 1

1 + ρ
Rbγ

−σ exp

[

σ(1 + σ)
σ 2

y

2

]

. (1.22)

Further manipulation on (1.21) by inserting the expression of Rs

1 = 1

1 + ρ
Et

{

γ −σ exp

[

−σ

(

εyt − σ 2
y

2

)]

Rs exp

(
εst − σ 2

s

2

)}

= 1

1 + ρ
Rsγ

−σ Et

{

exp

[

εst − σ 2
s

2
− σ

(

εyt − σ 2
y

2

)]}

.

Again define a new random variable

ζ = exp

[

εst − σ 2
s

2
− σ

(

εyt − σ 2
y

2

)]

,

then take logarithm on ζ

ln ζ = εst − σ 2
s

2
− σ

(

εyt − σ 2
y

2

)

.

Since ln ζ is just a linear combination of two normally distributed variables, it should
be also normally distributed, i.e. ζ follows a log-normal distribution. And

Et [ln ζ ] = Et

[

εst − σ 2
s

2
− σ

(

εyt − σ 2
y

2

)]

= −σ 2
s

2
+ σσ 2

y

2
,

as well as

var[ln ζ ] = Et [(ln ζ )2] − (Et [ln ζ ])2

= Et

[
(εst − σεyt )

2
]

= σ 2
s − 2σcov

(
εst , εyt

)+ σ 2σ 2
y .
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Then Eq. (1.21) is simplified as

1 = 1

1 + ρ
Rsγ

−σ exp

{
Et [ln ζ ] + var[ln ζ ]

2

}

= 1

1 + ρ
Rsγ

−σ exp

{

−σ 2
s

2
+ σσ 2

y

2
+ σ 2

s − 2σcov
(
εst , εyt

)+ σ 2σ 2
y

2

}

= 1

1 + ρ
Rsγ

−σ exp

[

σ(1 + σ)
σ 2

y

2
− σcov

(
εst , εyt

)
]

.

Divide this equation by (1.22)

Rs

Rb

= exp
[
σcov

(
εst , εyt

)]
.

Take logarithm on both sides and get

lnRs − lnRb = σcov
(
εst , εyt

)
.

Since Rs and Rb are not too different from 1, the equation can be approximately
written as

Rs − Rb ≈ σcov
(
εst , εyt

)
. (1.23)

(d) Estimated from the US financial market, Rb = 1.01, Rs = 1.07, and
cov

(
εst , εyt

) = 0.002. Compute σ using the result of (c). What does σ mean in
economics? Why do people call this result a puzzle?

Apply the numbers into (1.23) and compute σ = 30. σ is Arrow–Pratt measure of
relative risk aversion in this problem, whose normal value seldom exceeds 6—risk
premium is too high!

1.2.8 Dixit–Stiglitz Indices for Continuous Commodity Space

Consider a one-person economy. Mr. Rubinson Crusoe is the only agent in this
economy, consuming a continuum of commodities i ∈ [0, 1]. Suppose that the
consumption index C of him is defined as

C =
[∫ 1

0
Z

1
η

i C
η−1
η

i di

] η
η−1
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in which Ci is the consumption of good i and Zi is the taste shock for good i. Suppose
that Crusoe has an amount of endowment Y to spend on goods. Therefore the budget
constraint is

∫ 1

0
PiCidi = Y.

(a) Find the first-order condition for the problem of maximizing C subject to the
budget constraint. Solve for Ci in terms of Zi , Pi , and the Lagrange multiplier
on the budget constraint.

The agent’s problem is to

max
Ci

C =
[∫ 1

0
Z

1
η

i C

η−1
η

i di

] η
η−1

,

s.t.

∫ 1

0
PiCidi = Y.

Set up the Lagrangian for this problem

L =
[∫ 1

0
Z

1
η

i C

η−1
η

i di

] η
η−1

+ λ

(
Y −

∫ 1

0
PiCidi

)
,

∀i ∈ [0, 1] the first-order condition is

∂L

∂Ci

= η

η − 1

[∫ 1

0
Z

1
η

i C
η−1
η

i di

] η
η−1−1

η − 1

η
Z

1
η

i C
η−1
η −1

i − λPi = 0.

Rearrange to get

C
− 1

η

i = λPi

[∫ 1
0 Z

1
η

i C
η−1
η

i di

] 1
η−1

Z
1
η

i

,

Ci =

[
∫ 1
0 Z

1
η

i C

η−1
η

i di

] η
η−1

Zi

(λPi)
η .

(b) Use the budget constraint to find Ci in terms of Zi , Pi and Y .
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First one has to eliminate the Lagrange multiplier. Notice that the expression Ci

holds for any good j ∈ [0, 1], j �= i, i.e.

Ci = CZi

(λPi)
η ,

Cj = CZj(
λPj

)η .

Divide Ci by Cj to eliminate λ

Ci

Cj

= Zi

Zj

(
Pj

Pi

)η

.

Insert it into the budget constraint

∫ 1

0
PiCidi =

∫ 1

0
Pi

Zi

Zj

(
Pj

Pi

)η

Cjdi = CjP
η
j

Zj

∫ 1

0
ZiP

1−η
i di = Y,

solve to get

Cj = YZj

P
η
j

∫ 1
0 ZiP

1−η
i di

.

Since i and j are arbitrarily taken, replace j with i and get

Ci = YZi

P
η
i

∫ 1
0 ZiP

1−η
i di

.

(c) Insert the result of (b) into the expression for C and show that C = Y
P

, in which

P =
(∫ 1

0
ZiP

1−η
i di

) 1
1−η

.

Insert the result of (b) into the expression for C

C =
⎡

⎣
∫ 1

0
Z

1
η

i

(
YZi

P
η
i

∫ 1
0 ZiP

1−η
i di

) η−1
η

di

⎤

⎦

η
η−1

=

⎡

⎢
⎢
⎣

∫ 1

0
Z

1
η

i

Y
η−1
η Z

η−1
η

i

P
η−1
i

(∫ 1
0 ZiP

1−η
i di

) η−1
η

di

⎤

⎥
⎥
⎦

η
η−1
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=

⎡

⎢
⎢
⎣

∫ 1

0
ZiP

1−η
i di

Y
η−1
η

(∫ 1
0 ZiP

1−η
i di

) η−1
η

⎤

⎥
⎥
⎦

η
η−1

= Y

[∫ 1

0
ZiP

1−η
i di

] η
η−1−1

= Y

[∫ 1

0
ZiP

1−η
i di

] 1
η−1

= Y

P
.

(d) Use the results in (b) and (c) to show that

Ci = Zi

(
Pi

P

)−η (
Y

P

)
.

Interpret this result.

Manipulate the result of (b) using the definition of P

Ci = YZi

P
η
i P 1−η

= Zi

(
Pi

P

)−η (
Y

P

)
. (1.24)

This gives the demand function of good i in terms of the taste shock, relative price
and the agent’s income.

(Addendum) The motivation of adding Zi in designing this exercise is to access
some recent research, i.e. Ravn et al. (2006, 2007) on deep habit. Suppose that Zi

follows a random process such that

Zi,t = θZi,t−1 + εt ,

in which εt ∼ N
(
μ, σ 2

)
. Then in a dynamic context at time t Eq. (1.24) can be

rewritten as

Ci,t = (
θZi,t−1 + εt

)
(

Pi,t

P

)−η (
Y

P

)

= θ
(
Zi,t−1 + εt−1

)
(

Pi,t

P

)−η (
Y

P

)
+ (εt − θεt−1)

(
Pi,t

P

)−η (
Y

P

)

= θCi,t + (εt − θεt−1)

(
Pi,t

P

)−η (
Y

P

)
,
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which shows the deep habit in individual goods, rather than the conventional
superficial habit in an aggregate level, in consumption.

When habits are formed at the level of individual goods, firms take into account
that the demand they will face in the future depends on their current sales. This
is because higher consumption of a particular good in the current period makes
consumers, all other things equal, more willing to buy that good in the future through
the force of habit. Thus, when habits are deeply rooted, the optimal pricing problem
of the firm becomes dynamic.

To see this, notice that the demand function ofCi,t is composed of two terms. The
second term displays a price elasticity of η, and the first originates exclusively from
habitual consumption of good i . Therefore, the first term is perfectly price inelastic.
Therefore the price elasticity of the demand for good i is a weighted average of the
elasticities of the two terms just described, namely η and 0. The weight on η is given
by the share of the price-elastic term in total demand.When aggregate demand rises,
the weight of the price-elastic term in total demand increases, and as a result the
price elasticity increases. We refer to this effect as the price-elasticity effect of deep
habits. Because the mark-up is inversely related to the price elasticity of demand, it
follows that under deep habits, an expansion in aggregate demand induces a decline
in mark-ups.

In addition to the price-elasticity effect, deep habits influence the equilibrium
dynamics of mark-ups through an intertemporal effect. This effect arises because
firms take into account that current price decisions affect future demand conditions
via the formation of habits. According to the intertemporal effect, when the present
value of future per-unit profits are expected to be high, firms have an incentive to
invest in customer base today. They do so by building up the current stock of habit.
In turn, this increase in habits is brought about by inducing higher current sales via
a decline in current mark-ups.

Seemingly similar as its counterparts in industrial organization, the deep-habit
differs from the switching cost/customer-market formulations such that in the deep-
habit model there is gradual substitution between differentiated goods rather than
discrete switches among suppliers. One advantage of this implication of the deep-
habit model, from the point of view of analytical tractability, is that under the deep-
habit formulation one does not face an aggregation problem. In equilibrium, buyers
can distribute their purchases identically, and still suppliers face a gradual loss of
customers if they raise their relative prices. The deep-habit-formation model can
therefore be viewed as a natural vehicle for incorporating switching cost / customer-
market models into a dynamic general equilibrium framework.

1.2.9 Menu Cost and Nominal Price Rigidity

Instead of solving the exercise, we briefly explain, in a more general set-up, how
menu cost with monopolistic competition generates price rigidities.

Consider an economy of monopolistically competitive firms facing downward
sloping demand curves and being initially at the equilibrium level such that the
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Fig. 1.2 The incentive for price adjustment

marginal revenue equals the marginal cost for each firm. Figure 1.2 shows the
optimal price level of a representative firm: Given the demand curve D and the
corresponding marginal revenue curve MR the optimal output q is achieved where
MR and the marginal cost curve, MC, cross each other, and the optimal price is set
by p = D−1(q) as point A shows.

Then suppose now there is an unexpected fall in aggregate demand Yt ; this
implies a proportional drop in the representative firm’s demandwhich shiftsD curve
inward to D′ and MR curve to MR′, therefore the new optimal strategy for the firm
becomes (p′, q ′) as point C in the figure.

Now the question is, how high the incentive it is for the firm to adjust its price
level from p to p′? The motivation behind this question is that if the incentive is
small enough, even a minor exogenous cost associated with such price adjustment
may deter the setting of the new price.

Suppose that firm simply keeps the old pricep, then the new output is determined
by the new demand curve, as point B shows. Notice that the profit for the firm is
just the area between MR and MC curves, the loss from keeping the old price, or
the incentive to adjust the price, is the red triangle area (denoted by ��(z)1 for
simplicity)—It is indeed very small. And the area would be even smaller, if the
demand elasticity becomes higher, i.e., when the firm faces a flatter D curve.

Given that the firm’s incentive for price adjustment in response to an aggregate
demand shock is small, and smaller when the consumers are more sensitive to the
price change (under a flatter D curve), now we assume that there is a menu cost
cMENU associated with the price change (such cost may be as small as printing a
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new version of your menu with the new prices). Then if the gain from any price
change is no higher than the menu cost, ��(z)1 ≤ cMENU , such price adjustment
would be deterred.
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2Money and Long Run Growth

2.1 Exercises

2.1.1 Short Review Questions

(a) What are the roles of money in the economy?What are the roles of money in the
banking sector? What determine(s) the value of money in a closed economy?

(b) What determine(s) the price level in a closed economy? Under which condi-
tion(s) an explosive growth path, or, the path of hyperinflation, cannot be ruled
out? What determine(s) the demand for money?

(c) For the long run equilibrium of monetary policy, what are the differences
between price level targeting and inflation targeting?

(d) What is seignorage? What does seignorage imply for optimal inflation?
(e) How is the demand for money motivated in different modelling frameworks:

(1) money-in-the-utility, (2) cash-in-advance, (3) shopping time? Is optimal
monetary policy different across these frameworks?

(f) What is Friedman Rule? Why, in reality, is positive inflation desired?

2.1.2 Seigniorage and Inflation

Seignorage, which is the real revenue the government obtains from printing new
currency, and exchanging it for real goods, is defined à la Cagan (1956),

S = Mt − Mt−1

Pt
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where Mt is the money supply at t and Pt the price level at t . Assume that the
demand for real money balances is given by

Mt

Pt

=
(

Pt+1

Pt

)−η

with η > 0.

(a) Give some interpretation to the money demand function.
(b) Assume the government controls the growth rate of money supply Mt

Mt−1
= 1 +

μ. Show that, correspondingly, inflation will be constant μ all the time. If the
government tries to maximize its revenue, what is the optimal μ? Provide some
interpretation to your solution.

(c) Compute the loss in consumer surplus and the deadweight loss arising with this
optimal μ.

2.1.3 Money in the Utility: The Steady State

Consider an infinitely lived agent with utility function

∫ +∞

0
[c(t) + V (m(t))] e−ρtdt,

where c is the consumption,m are real money holdings, and V is an increasing and
concave function. Money is the only asset, yielding a nominal interest rate flow i(t).
Income is exogenously given by y(t).

(a) Formulate the transition equation in real balances (money holdings).
(b) Formulate the Hamiltonian and first-order conditions.
(c) The growth rate of nominal money supply is given by μ. Derive a differential

equation describing the optimal real balances.
(d) Discuss potential steady state equilibria and their stability. Characterize condi-

tions that rule out hyperinflationary bubbles.
(e) Discuss the special case of V (m) = mα.

2.1.4 Money in the Utility: The Dual Form

Consider a discrete version of Sidrauski’s money in the utility approach: An
infinitely lived representative agent maximizes discounted life-time utility

+∞∑

t=0

βtU(ct ,mt )
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with β ∈ (0, 1) as discount rate, ct consumption, and mt = Mt

Pt
as real money

balances. Each period, the agent is endowed with yt . yt can be used for private or
government consumption: yt = ct +gt . Initially, the agent owns the money stockM0
and one period nominal government bonds B0. Period t bonds Bt yield a return it .
The government finances gt via taxes τt , seigniorage or government bonds. To make
it easier, assume that there is no nominal return for holding money, i.e. im,t = 0;
also the endowment economy implies that there’s no other investment opportunity
except holding government bonds.

(a) Formulate the period budget constraint of both the agent and the government
and derive the present value budget constraint. To make the computation easier,
you may define an auxiliary state variable, beginning of period t wealth of either
party, as Wt = (1 + it−1)Bt−1 + Mt−1.

(b) Characterize the first-order conditions for the agent’s optimal path.
(c) Show that with additive separable preferences U(ct ,mt ) = u(ct ) + v(mt ), the

real rate of interest depends only on the time path of the real resources available
for consumption.

(d) Assume thatU(ct ,mt ) = cα
t +mα

t . Derive the money demand functionm(ct , it )

and characterize elasticity with respect to ct and it . Show why the price level
may not be determinate if the central bank pegs the interest rate to a fixed level
it = i.

(e) Assume that both endowment and government spending are constant: yt = y;
gt = g. Characterize conditions for steady state. Show that the Friedman rule
maximizes per period utility. Discuss reasons why this rule may not be optimal
in a more general setting.

2.1.5 Cash-in-AdvanceModels of Money Demand

Consider a representative household that receives an exogenous income Yt each
period and gains utility only from consumption Ct . Specifically, its utility function
is given by

U0 =
∞∑

t=0

βtu(Ct ).

At the beginning of each period t , the household needs to make two decisions about
his period income. On the one hand, the household decides how much to consume
in period t and how much to save for the future. On the other hand, the household
needs to decide on how to allocate its savings across one-period bonds Bt which
yield a nominal interest rate of it and money balances Mt which do not pay interest.
However, money balances are necessary to cover all consumption purchases the
household makes in period t at price Pt .
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(a) Write down and interpret the household’s cash-in-advance constraint and the
period budget constraint.

(b) Derive the Euler equation and the optimal money demand of the household
under the additional assumption that it > 0. Discuss intuitively the economics
underlying the optimal money demand.

(c) Describe the effects of expansionary monetary policy and illustrate them
graphically in an Pt − it diagram.

(d) How does the analysis change once you take the zero lower bound on nominal
interest rates into account, i.e., if it = 0?

2.1.6 Cost of Inflation and Optimal Monetary Policy

Based on Lucas (2000) the canonical theory of monetary policy assumes that
inflation is costly for society. In the following we explore a justification for that
assumption, using Sidrauski’s money-in-the-utility function.

Consider an economy with a representative infinitely lived consumer whose
preference is given by

+∞∑

t=0

βt [u(ct ) + v(mt )] (2.1)

in which u(·) and v(·) are increasing and strictly concave utility functions, ct is the
consumption at date t , mt is the real money balance at the end of period t , and
β ∈ (0, 1) is the discount factor.

Let bt be real bond holdings at the end of period t that pay a nominal interest rate
it+1 at the beginning of the next period,Mt = Ptmt be nominal money balances, Pt

be the price level, and y be the time-invariant and exogenous real income received
by the consumer each period. The consumer also receives real net transfers from the
government, τt . Then, to ease your computation, the nominal budget constraint of
the consumer is given by

Pt−1bt−1(1 + it ) + Pty + Ptτt = Ptct + Mt − Mt−1 + Ptbt .

(a) Let rt be the real interest rate and πt be the inflation rate, such that

1 + it = (1 + rt )(1 + πt). (2.2)

Show that consumption can be written as

ct = bt−1(1 + rt ) + y + τt − mt + mt−1

1 + πt

− bt . (2.3)
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(b) Using (2.1) and (2.3), show that the following efficiency conditions hold:

− u′(ct ) + β
u′(ct+1)

1 + πt+1
+ v′(mt) = 0, (2.4)

−u′(ct ) + βu′(ct+1)(1 + rt+1) = 0. (2.5)

Provide some intuitions for Eqs. (2.4) and (2.5), and show that (2.4) and (2.5)
define a money demand function

v′(mt) = it+1

1 + it+1
u′(ct ). (2.6)

What is the relationship between money demand and nominal interest rates for
a given level of consumption? What is the relationship between money demand
and consumption for a given nominal interest rate?

(c) Assume, for the rest of the problem, that there is no government expenditure
and no public debt, so that government prints money only to make net transfers
to the consumer, i.e.

Mt − Mt−1 = Ptτt .

Since there is only one consumer and the government does not issue public debt,
equilibrium requires bt = 0. What is ct in equilibrium? Using your expression
for ct and Eq. (2.5), derive the expression for the real interest rate.

(d) Assume, in addition, that the government follows a constant nominal money
growth rule

Mt = (1 + μ)Mt−1. (2.7)

Define a steady state in this model as a situation in which real variables do not
change. In particular, in the steady state mt = m . Given (2.7) and the fact that
mt = Mt

Pt
, find the steady-state level of inflation in this model, call it π .

(e) Using Eq. (2.6) evaluated in steady state, find an expression for m in terms of π .
What is the steady state effect of π on m? What is the effect of π on steady-state
consumption? What is the welfare effect of increasing π? What is the optimal
level of steady-state inflation?

2.1.7 Overlapping Generations withMoney

Samuelson (1958) alternatively, macro economy can be modelled in an infinite
horizonwith finitely-lived agents. Suppose, as in the Diamond (1965)model, thatNt

2-period-lived individuals are born in period t and that generations are growing with
rate n. The utility function of a representative individual is Ut = ln c1,t + ln c2,t+1.
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Each individual is born with an endowment ofA units of the economy’s single good.
The good can either be consumed or stored. Each unit stored yields x > 0 units next
period.

In period 0, there are N0 young individuals and 1
1+n

N0 old individuals endowed
with some amount Z of the good. Their utility is simply c2,0.

(a) Describe the decentralized equilibrium of this economy. (Hint: Will members of
any generation trade with members of another generation?)

(b) Consider paths where the fraction of agents’ endowment that is stored, st , is
constant over time. What is per capita consumption (weighted average from
young and old) on such a path as a function of s?

(c) If x < 1 + n, which value of s ∈ [0, 1] is maximizing per capita consumption?
(d) Is the decentralized equilibrium Pareto-efficient? If not, how could a social

planner raise welfare?
Suppose now that old individuals in period 0 are also endowed with M units

of a storable, divisible commodity, which we call money. Money is not a source
of utility. Assume x < 1 + n.

(e) Suppose the price of the good in units of money in periods t and t + 1 is given
by Pt and Pt+1, respectively. Derive the demand functions of an individual born
in t .

(f) Describe the set of equilibria.
(g) Explain why there is an equilibrium with Pt → +∞. Explain why this must be

the case if the economy ends at some date T that is common knowledge among
all generations.

2.2 Solutions for Selected Exercises

2.2.1 Seigniorage and Inflation

Seignorage, which is the real revenue the government obtains from printing new
currency, and exchanging it for real goods, is defined à la Cagan (1956),

S = Mt − Mt−1

Pt

where Mt is the money supply at t and Pt the price level at t. Assume that the demand
for real money balances is given by

Mt

Pt

=
(

Pt+1

Pt

)−η

with η > 0.
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(a) Give some interpretation to the money demand function.

The general form of the money demand is given by

Mt

Pt

= L (it+1, Yt )

where L(·) stands for Keynes’ “Liquidity Preference” theory. This form of the
money demand comes both from Baumol–Tobin-type models of inventories and
from microfounded dynamic models with money-in-the-utility (such as Sidrauski
model).

Log-linearizing the equation above (and denoting the logs by the small letters)
yields

mt − pt = φyt − ηit+1,

where φ and η are the income and interest rate elasticities of the money demand,
respectively.

Cagan made the following assumptions in his model: yt and rt (real interest
rate) are given exogenously and constant. It is a normal long-run assumption for
the analysis of the monetary policy (i.e., it implies money neutrality). It turns out
to be a reasonable assumption for the economies in hyperinflation because in this
situation prices are essentially fully flexible. Then we can rewrite the money demand
in log form as

mt − pt = const − ηπe
t+1,

since by the Fisher identity it+1 = rt+1+πe
t+1. Omitting the constant and assuming

a deterministic equilibrium path for prices (i.e., πe
t+1 = πt+1 in the case of no

uncertainty) yields exactly the same money demand function in the problem set.
Intuitively, money demand should depend negatively on the expected inflation

which is an important cost of holding money balances.

(b) Assume the government controls the growth rate of money supply Mt

Mt−1
= 1 +

μ. Show that, correspondingly, inflation will be constant μ all the time. If the
government tries to maximize its revenue, what is the optimal μ? Provide some
interpretation to your solution.

To show that inflation is equal to the growth rate of money we solve forward the
following difference equation (money demand):

mt − pt = −ηπt+1 = −η (pt+1 − pt) ,
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then solve for pt

pt = 1

1 + η

+∞∑

j=0

(
η

1 + η

)j

mt+j ,

therefore

πt+1 = pt+1 − pt = 1

1 + η

+∞∑

j=0

(
η

1 + η

)j

�mt+j+1

= 1

1 + η

+∞∑

j=0

(
η

1 + η

)j

μ

= μ.

The government seigniorage revenue is given by

S = Mt − Mt−1

Pt

= Mt − Mt−1

Mt

Mt

Pt

= Mt−1

Mt

Mt − Mt−1

Mt−1

(
Pt+1

Pt

)−η

= μ(1 + μ)−η−1.

It is maximized when the first-order condition holds,

∂S

∂μ
= (1 + μ)−η−1 + μ(−η − 1)(1 + μ)−η−2 = 0,

1 + μ + μ(−η − 1) = 0,

μ∗ = 1

η
.

All we have solved was a simple monopoly problem. The government is a
monopolist supplier of currency, with a zero marginal cost of currency creation. The
“price” of currency is the inflation rate or the rate of money creation. Since it faces
a well-defined demand and cares about maximizing revenue, then the solution is a
standard monopoly solution: set the price, μ, to be inversely related to the elasticity
of demand.
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(c) Compute the loss in consumer surplus and the deadweight loss arising with this
optimal μ.

The loss in consumer surplus is given by the area under the demand for money,

∫ 1
η

0

(
Pt+1

Pt

)−η

dπ =
∫ 1

η

0
(1 + π)−η dπ =

(
1+η
η

)1−η − 1

1 − η
.

The deadweight loss is the difference between the loss of consumer surplus and the
seigniorage revenue of the government

(
1+η
η

)1−η − 1

1 − η
− S∗ =

(
1+η
η

)1−η − 1

1 − η
− 1

η

(
1 + η

η

)−1−η

=
(
1 + η

η

)−η

> 0.

2.2.2 Money in the Utility: The Steady State

Consider an infinitely lived agent with utility function

∫ +∞

0
[c(t) + V (m(t))] e−ρtdt,

where c is the consumption, m are real money holdings, and V is an increasing and
concave function. Money is the only asset. Income is exogenously given by y(t).

(a) Formulate the transition equation in real balances (money holdings).

The dynamic of the nominal money holding can be expressed as

Ṁ(t) = P(t)y(t) − P(t)c(t) + i(t)M(t).

Therefore the transition equation in real balances can be written as

ṁ(t) = Ṁ(t)

M(t)
m(t) − Ṗ (t)

P (t)
m(t)

= Ṁ(t)

P (t)
− π(t)m(t)

= y(t) − c(t) + (i(t) − π(t))m(t).

in which the change in real money balance ṁ(t) is determined by the increment in
wealth adjusted by the loss because of inflation.
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(b) Formulate the Hamiltonian and first-order conditions.

The present value Hamiltonian can be written as

H(t) = [c(t) + V (m(t))] e−ρt + λ(t) [y(t) − c(t) + (i(t) − π(t))m(t)] .

The first-order conditions are given by

∂H
∂c

= e−ρt − λ = 0, (2.8)

∂H
∂m

= e−ρtV ′ + (i − π)λ = −λ̇ (2.9)

as well as the transversality condition

lim
T →+∞ λ(T )m(T ) = 0. (2.10)

Equation (2.8) gives

λ̇

λ
= −ρ, (2.11)

λ(t) = λ(0)e−ρt (2.12)

and Eq. (2.9) gives

λ̇

λ
= −V ′ − i + π. (2.13)

Combine (2.11) and (2.13) to get the Euler equation

V ′ = ρ + π − i. (2.14)

Insert (2.12) into the transversality condition (2.13) and get

lim
T →+∞ λ(0)e−ρT m(T ) = 0,

and it holds when limT →+∞ m(T ) < +∞.

(c) The growth rate of nominal money supply is given by μ. Derive a differential
equation describing the optimal real balances.
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By the definition of real money balances m(t) = M(t)
P (t)

, using log-linearization
and get

ṁ(t)

m(t)
= Ṁ(t)

M(t)
− Ṗ (t)

P (t)
,

ṁ(t) = μm(t) − π(t)m(t)

= (μ − π(t))m(t)

= (μ + ρ − i − V ′)m(t)

describing the optimal real balances.

(d) Discuss potential steady state equilibria and their stability. Characterize condi-
tions that rule out hyperinflationary bubbles.

The solution to the problem ṁ(t) = (μ + ρ − i − V ′)m(t) = 0 gives the steady
state equilibria. There are several possible cases as following:

• Function V (m) is linear in m. Then
– If V ′ = μ+ρ−i > 0, then the steady state equilibria are all them ∈ [0,+∞);
– If V ′ �= μ + ρ − i > 0, then the only steady state equilibrium is m = 0;

• Function V (m) is strictly concave in m. Then
– If 0 < V ′(0) ≤ μ + ρ − i, then the only steady state equilibrium is m = 0;
– If μ + ρ − i < V ′(0) and limm→0 V ′(m)m = 0, then there are two steady

state equilibria, m∗
1 = 0 and m∗

2 = (V ′)−1(μ + ρ − i);
– If limm→0 V ′(m)m �= 0, then there is a unique steady state equilibrium m∗ =

(V ′)−1(μ + ρ − i) > 0.

Now one can see that the condition to rule out hyperinflationary bubbles is
limm→0 V ′(m)m �= 0.

(e) Discuss the special case of V (m) = mα.

Because V (m) is increasing and concave in m, then α ∈ (0, 1]. For α = 1, one
only has to compare μ + ρ − i with 1:

• If μ + ρ − i = 1, then the steady state equilibria are all the m ∈ [0,+∞);
• Otherwise the only steady state equilibrium is m = 0.

For α ∈ (0, 1),μ+ρ−i < V ′(0) = +∞ but limm→0 V ′(m)m = limm→0 αmα = 0.

Then there are two steady state equilibria, m∗
1 = 0 and m∗

2 =
(

μ+ρ−i
α

) 1
α−1

.
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2.2.3 Money in the Utility: The Dual Form

Consider a discrete version of Sidrauski’s money in the utility approach: An
infinitely lived representative agent maximizes discounted life-time utility

+∞∑

t=0

βtU(ct ,mt )

with β ∈ (0, 1) as discount rate, ct consumption, and mt = Mt

Pt
as real money

balances. Each period, the agent is endowed with yt . yt can be used for private or
government consumption: yt = ct + gt . Initially, the agent owns the money stock
M0 and one period nominal government bonds B0 . Period t bonds Bt yield a return
it . The government finances gt via taxes τt , seigniorage or government bonds.

(a) Formulate the period budget constraint of both the agent and the government
and derive the present value budget constraint.

For the representative agent, the flow budget constraint can be written as

Ptct + Ptτt + Mt + Bt = Ptyt + Wt, (2.15)

in which her wealth at t , Wt , consists of

Wt = (1 + it−1)Bt−1 + Mt−1. (2.16)

Combine (2.15) and (2.16) to get the reduced form

Ptct + Ptτt + it

1 + it
Mt + 1

1 + it
Wt+1 = Ptyt + Wt .

Rearrange to get the present value constraint

Wt = 1

1 + it
Wt+1 + Ptct + Pt τt + it

1 + it
Mt − Ptyt

= 1

1 + it

(
1

1 + it+1
Wt+2 + Pt+1ct+1 + Pt+1τt+1 + it+1

1 + it+1
Mt+1 − Pt+1yt+1

)

+Ptct + Pt τt + it

1 + it
Mt − Ptyt

= . . . . . .

=
⎛

⎝
s∏

j=0

1

1 + it+j

⎞

⎠Wt+j+1

+
s∑

j=0

⎡

⎣
j∏

k=1

1

1 + it+k

(
Pt+j ct+j + Pt+j τt+j + it+j

1 + it+j
Mt+j − Pt+j yt+j

)
⎤

⎦
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in which one can simplify the expression by defining

Qt,t+s =
s∏

j=1

1

1 + it+j−1
with Qt,t = 1.

Then the expression of W0 can be written as

W0 = lim
T →+∞ Q0,T WT +

+∞∑

t=0

Q0,t

(
Ptct + Ptτt + it

1 + it
Mt − Ptyt

)
.

No-Ponzi-Game constraint requires that

lim
T →+∞ Q0,T WT = 0,

so the present value budget constraint for the agent is

W0 =
+∞∑

t=0

Q0,t

(
Ptct + Ptτt + it

1 + it
Mt − Ptyt

)
, (2.17)

in which W0 = M0 + B0.
For the government, the flow budget constraint can be written as

Ptgt + it−1Bt−1 = Ptτt + Bt − Bt−1 + Mt − Mt−1, (2.18)

adding the government’s wealth at t , Wg
t

W
g
t = (1 + it−1)Bt−1 + Mt−1, (2.19)

one can get the reduced form by combining (2.18) and (2.19)

Ptgt + W
g
t = Ptτt + 1

1 + it
W

g

t+1 + it

1 + it
Mt .

By the similar approach the expression of W
g
0 can be written as

W
g

0 = lim
T →+∞ Q0,T W

g
T +

+∞∑

t=0

Q0,t

(
Ptτt + it

1 + it
Mt − Ptgt

)
.

No-Ponzi-Game constraint requires that

lim
T →+∞ Q0,T W

g
T = 0,



48 2 Money and Long Run Growth

so the present value budget constraint for the government is

W
g
0 =

+∞∑

t=0

Q0,t

(
Ptτt + it

1 + it
Mt − Ptgt

)
, (2.20)

in which W
g

0 = M0 + B0.

(b) Characterize the first-order conditions for the agent’s optimal path.

The agent’s problem is an optimization problem with equality constraint

max
{ct ,mt }+∞

t=0

+∞∑

t=0

βtU(ct ,mt )

s.t. M0 + B0 =
+∞∑

t=0

Q0,t

(
Ptct + Ptτt + it

1 + it
Mt − Ptyt

)
.

Set up Lagrangian for this problem

L =
+∞∑

t=0

βtU(ct ,mt ) + λ

⎡

⎣M0 + B0 −
+∞∑

t=0

Q0,t

(
Ptct + Pt τt + it

1 + it
Mt − Ptyt

)
⎤

⎦

=
+∞∑

t=0

βtU(ct ,mt ) + λ

⎡

⎣M0 + B0 −
+∞∑

t=0

Q0,t

(
Ptct + Pt τt + it

1 + it
Ptmt − Ptyt

)
⎤

⎦

and derive the first-order conditions

∂L

∂ct

= βt ∂U(ct ,mt )

∂ct

− λQ0,tPt = 0,

∂L

∂mt

= βt ∂U(ct ,mt )

∂mt

− λQ0,tPt
it

1 + it
= 0.

Therefore the marginal rate of substitution for intertemporal consumption is

∂U(ct ,mt )
∂ct

∂U(ct ,mt )
∂ct+1

= β
Q0,t

Q0,t+1

Pt

Pt+1
= β

1 + it+1

1 + πt+1
= 1 + rt+1

1 + ρ
, (2.21)

by Fisher equation. The intratemporal marginal rate of substitution between con-
sumption and money holding is

∂U(ct ,mt )
∂ct

∂U(ct ,mt )
∂mt

= 1 + it

it
, (2.22)
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and the marginal rate of substitution for intertemporal money holding is

∂U(ct ,mt )
∂mt

∂U(ct ,mt )
∂mt+1

= β
Q0,t

Q0,t+1

Pt

Pt+1

it

1 + it

1 + it+1

it+1
= β

1 + it+1

1 + πt+1

it

1 + it

1 + it+1

it+1
. (2.23)

The equation above equals to 1+rt+1
1+ρ

in the steady state.

(c) Show that with additive separable preferences U(ct ,mt ) = u(ct ) + v(mt ), the
real rate of interest depends only on the time path of the real resources available
for consumption.

From (2.21) apply U(ct ,mt ) = u(ct ) + v(mt ) and one can see that

u′(ct )

u′(ct+1)
= 1 + rt+1

1 + ρ
,

meaning that the real rate of interest depends only on the time path of the real
resources available for consumption.

(d) Assume that U(ct ,mt ) = cα
t +mα

t . Derive the money demand function m(ct , it )

and characterize elasticity with respect to ct and it . Show why the price level
may not be determinate if the central bank pegs the interest rate to a fixed level
it = i.

From (2.22) apply U(ct ,mt ) = cα
t + mα

t and one can see that

αcα−1
t

αmα−1
t

= 1 + it

it
,

mt =
(

it

1 + it

) 1
α−1

ct .

Take logarithm on both sides

lnmt = 1

α − 1
ln

(
it

1 + it

)
+ ln ct

≈ 1

α − 1
ln it + ln ct .

The elasticity of money demand with respect to it is 1
α−1 , and 1 with respect to ct .

(e) Assume that both endowment and government spending are constant: yt = y;
gt = g. Characterize conditions for steady state. Show that the Friedman rule
maximizes per period utility. Discuss reasons why this rule may not be optimal
in a more general setting.
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In steady state the consumption level is constant, i.e. ct = ct+1 = c∗. The value
of c∗ is determined by (2.17) and (2.20), c∗ = y − g = constant.

Apply this fact in the first-order conditions, by (2.21) one can see that ρ = r .
By (2.23) money supply is also constant in the steady state, i.e. mt = mt+1 = m∗.

In steady state from the intratemporal marginal rate of substitution (2.22) the
marginal utility from holding money is

v′(m∗) = u′(c∗)
i

1 + i
.

Since c∗ is constant, normalize u′(c∗) = 1 and get v′(m∗) = i
1+i

.
On the other hand, since v(m) is strictly concave in m the marginal utility of

holding money v′(m∗) is a downward sloping curve. The intersection of these two
v′(m∗) curves determines the equilibrium level of money holding m∗. See Fig. 2.1.

However consider a central planner’s problem of optimal money supply

max
ct ,mt

L =
+∞∑

t=0

βtU(ct ,mt ) + λt (y − g − ct − κmt)

in which κ denotes the marginal cost of money supply. Then the first-order condition
gives

∂L

∂ct

= βtu′(ct ) − λt = 0,

∂L

∂mt

= βtv′(mt) − λtκ = 0.

0

Dead-weight Loss 

Fig. 2.1 Money holding in equilibrium
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Combine these two equations and get v′(m∗) = κ by normalizing u′(c∗) = 1.
Usually the marginal cost of money supply is so low that one can simply set κ = 0.
Therefore for any i

1+i
�= 0 the decentralized equilibrium is inefficient and Friedman

rule (setting i = 0) maximizes per period utility.
However Friedman rule implies that π = i − r = −r < 0, and this may not be

optimal in more general settings. One can think about the following arguments:

• People actually prefer π > 0, because one is able to adjust the relative prices—
e.g., to reduce real wage by setting the increasing rate of the wage lower than
π—a strictly positive inflation “greases the wheel”;

• Inflation as a tax on money holding;
• Stabilizing economy (think about liquidity traps?);
• . . .

2.2.4 Cash-in-AdvanceModels of Money Demand

Consider a representative household that receives an exogenous income Yt each
period and gains utility only from consumption Ct . Specifically, its utility function
is given by

U0 =
∞∑

t=0

βtu(Ct ).

At the beginning of each period t, the household needs to make two decisions about
his period income. On the one hand, the household decides how much to consume
in period t and how much to save for the future. On the other hand, the household
needs to decide on how to allocate its savings across one-period bonds Bt which
yield a nominal interest rate of it and money balances Mt which do not pay interest.
However, money balances are necessary to cover all consumption purchases the
household makes in period t at price Pt .

(a) Write down and interpret the household’s cash-in-advance constraint and the
period budget constraint.

Timing of events in each period t is as follows:

• Beginning of period t: Household decides on consumption Ct , bonds Bt , and
money holdings Mt ;

• End of period t: Repayment of bonds with interest (1 + it )Bt is part of initial
wealth in period t + 1;

• End of period t : MoneyMt is either spent on consumption (CIA) or used as store
of wealth with iM = 0.
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Cash-in-advance constraint implies that money is needed to finance consumption
purchases, i.e., Mt ≥ PtCt . Therefore, period budget constraint requires that the
household consumes and invests his savings in bonds, all financed by income and
interest plus principal on bonds, i.e., PtCt + Bt = PtYt + (1 + it−1)Bt−1.

(b) Derive the Euler equation and the optimal money demand of the household
under the additional assumption that it > 0. Discuss intuitively the economics
underlying the optimal money demand.

Suppose it > 0, CIA constraint is binding (because of opportunity cost of
money), Mt = PtCt . This is optimal money demand and reflects transactions view
of money demand.

Euler equation is derived from the following optimization problem:

max
Ct ,Bt

U0 =
∞∑

t=0

βtu(Ct ),

s.t. PtCt + Bt = PtYt + (1 + it−1)Bt−1.

Using Lagrangian,

L =
∞∑

t=0

βtu(Ct ) +
∞∑

t=0

λt [PtYt + (1 + it−1)Bt−1 − PtCt − Bt ] ,

the first-order conditions give

∂L

∂Ct

= βtu′(Ct ) − λtPt = 0,

∂L

∂Ct+1
= βt+1u′(Ct+1) − λt+1Pt+1 = 0,

∂L

∂Bt
= λt+1(1 + it ) − λt = 0.

Combining the first two equations and using the third one to substitute for the
Lagrange parameter yields the Euler equation

u′(Ct )

βu′(Ct+1)
= λtPt

λt+1Pt+1
= 1 + it

1 + πt+1
= 1 + rt .

In equilibrium (of an endowment economy), Ct = Yt , ∀t , the Euler equation
becomes u′(Yt )

u′(Yt+1)
= β(1 + rt ), and money demand is Mt = PtYt .
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(c) Describe the effects of expansionary monetary policy and illustrate them
graphically in an Pt − it diagram.

Expansionary monetary policy increases current prices and lowers the interest
rate

• Mt increases: Pt increases as Yt is fixed (CIA constraint);
• rt decreases for given Pt+1 (Fisher Equation);
• Households want to consume less in the current period, yet this is not possible

because of endowment economy;
• it needs to decrease to encourage savings.

(d) How does the analysis change once you take the zero lower bound on nominal
interest rates into account, i.e., if it = 0?

Expansionary monetary policy has no effect on prices or interest rates

• Once it = 0, CIA constraint ceases to bind;
• Individuals are indifferent between money and bonds since both yield zero

interest rate;
• Money holdings are no longer constrained by opportunity costs of money: Excess

money holdings.

2.2.5 Cost of Inflation and Optimal Monetary Policy

Based on Lucas (2000) The canonical theory of monetary policy assumes that
inflation is costly for society. In the following we explore a justification for that
assumption, using Sidrauski’s money-in-the-utility function.

Consider an economy with a representative infinitely lived consumer whose
preference is given by

+∞∑

t=0

βt [u(ct ) + v(mt )]

in which u(·) and v(·) are increasing and strictly concave utility functions, ct is the
consumption at date t , mt is the real money balance at the end of period t , and
β ∈ (0, 1) is the discount factor.

Let bt be real bond holdings at the end of period t that pay a nominal interest rate
it+1 at the beginning of the next period, Mt = Ptmt be nominal money balances, Pt

be the price level, and y be the time-invariant and exogenous real income received
by the consumer each period. The consumer also receives real net transfers from
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the government, τt . Then, to ease your computation, the nominal budget constraint
of the consumer is given by

Pt−1bt−1(1 + it ) + Pty + Ptτt = Ptct + Mt − Mt−1 + Ptbt .

(a) Let rt be the real interest rate and πt be the inflation rate, such that

1 + it = (1 + rt )(1 + πt).

Show that consumption can be written as

ct = bt−1(1 + rt ) + y + τt − mt + mt−1

1 + πt

− bt .

Divide both sides of the nominal budget constraint by Pt and use (2.2), then the
result is immediately seen.

(b) Using (2.1) and (2.3), show that the following efficiency conditions hold:

−u′(ct ) + β
u′(ct+1)

1 + πt+1
+ v′(mt) = 0,

−u′(ct ) + βu′(ct+1)(1 + rt+1) = 0.

Provide some intuitions for Eqs. (2.4) and (2.5), and show that (2.4) and (2.5)
define a money demand function

v′(mt) = it+1

1 + it+1
u′(ct ).

What is the relationship between money demand and nominal interest rates for
a given level of consumption? What is the relationship between money demand
and consumption for a given nominal interest rate?

The first-order conditions of the dynamic optimization problem directly
yield (2.4) and (2.5). Then combine them to see (2.6).

Intuition of (2.4): Suppose that we are already in the optimal path with (c∗,m∗).
Consider the following scheme: Take one real euro (i.e., Pt paper euro) out of my
consumption today and transfer it into consumption tomorrow via money holding.

Then my loss today is u′(ct ), and my gain in present value is β
u′(ct+1)
1+πt+1

+ v′(mt). If
I was already in my optimal path, the loss and gain should cancel out.

Intuition of (2.5): Similar as above, take one euro out of my consumption today
and transfer it into consumption tomorrow via bonds holding.
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Relationship between money demand and nominal interest rates for a given level
of consumption: Using implicit function theorem, differentiate (2.6) with respect to
it+1

∂mt

∂it+1
= 1

(1 + it+1)2

u′(ct )

v′′(mt)
< 0.

Relationship between money demand and consumption for a given nominal
interest rate: Using implicit function theorem, differentiate (2.6) with respect to ct

∂mt

∂ct

= it+1

1 + it+1

u′′(ct )

v′′(mt )
> 0.

Hence money demand decreases with the nominal interest rate, which represents the
opportunity cost of holding money; and it increases with consumption.

(c) Assume, for the rest of the problem, that there is no government expenditure and
no public debt, so that government prints money only to make net transfers to
the consumer, i.e.

Mt − Mt−1 = Ptτt .

Since there is only one consumer and the government does not issue public debt,
equilibrium requires bt = 0. What is ct in equilibrium? Using your expression
for ct and Eq. (2.5), derive the expression for the real interest rate.

Apply all these facts in the nominal budget constraint and get ct = y. Insert this
into Eq. (2.5) and derive the expression for the real interest rate, r = 1−β

β
.

(d) Assume, in addition, that the government follows a constant nominal money
growth rule

Mt = (1 + μ)Mt−1.

Define a steady state in this model as a situation in which real variables do not
change. In particular, in the steady state mt = m . Given (2.7) and the fact that
mt = Mt

Pt
, find the steady-state level of inflation in this model, call it π .

In the steady state m = Mt−1
Pt−1

= Mt

Pt
, therefore π = Mt

Mt−1
− 1 = μ.

(e) Using Eq. (2.6) evaluated in steady state, find an expression for m in terms of π .
What is the steady state effect of π on m? What is the effect of π on steady-state
consumption? What is the welfare effect of increasing π? What is the optimal
level of steady-state inflation?
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Using Eq. (2.6) evaluated in steady state

v′(m) =
(
1 − 1

1 + i

)
u′(y)

=
(
1 − β

1 + π

)
u′(y).

The steady state effect of π on m can therefore be explored by the implicit function
theorem

∂m

∂π
= β

(1 + π)2

u′(y)

v′′(m)
< 0,

which means that higher steady state inflation (money growth) reduces steady-state
real money balances. Since steady state consumption is unaffected by nominal
variables, and since real money balances enter directly the utility function, this
implies that an increase in inflation reduces welfare. This also implies that the
optimal level of steady state inflation is the lowest possible given the constraint
that nominal interest rates be non-negative, i.e.

1 + i = (1 + r) (1 + π)

= 1

β
(1 + π)

= 1

– Friedman Rule shows up again. The optimal level of steady-state inflation is
therefore given by π = β − 1 < 0, i.e. a deflationary economy as Friedman
argues.

2.2.6 Overlapping Generations withMoney

Samuelson (1958) alternatively, macro economy can be modelled in an infinite
horizon with finitely-lived agents. Suppose, as in the Diamond (1965) model, that
Nt 2-period-lived individuals are born in period t and that generations are growing
with rate n. The utility function of a representative individual is Ut = ln c1,t +
ln c2,t+1. Each individual is born with an endowment of A units of the economy’s
single good. The good can either be consumed or stored. Each unit stored yields
x > 0 units next period.

In period 0, there are N0 young individuals and 1
1+n

N0 old individuals endowed
with some amount Z of the good. Their utility is simply c2,0.

(a) Describe the decentralized equilibrium of this economy. (Hint: Will members of
any generation trade with members of another generation?)
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For any generation t > 0 the intertemporal optimization problem is

max
c1,t ,c2,t+1

Ut = ln c1,t + ln c2,t+1

s.t. c1,t + St ≤ A

c2,t+1 ≤ xSt ,

noting that members of any generation will not trade with members of another
generation because the older generation dies in the next period and cannot pay or
get paid.

Solve by first-order condition and get c∗
1,t = A

2 , and c∗
2,t = xA

2 . For generation

t = 0, c∗
1,0 = Z

2 , and c∗
2,0 = xZ

2 . For generation t = −1, c∗
2,−1 = Z.

Briefly speaking, when young, each individual consumes half of her endowment
and stores the other half. This allows her to consume the savings when old. Note
that the utility function is logarithmic, the fraction of her endowment that she stores
doesn’t depend on the return to storage.

(b) Consider paths where the fraction of agents’ endowment that is stored, st , is
constant over time. What is per capita consumption (weighted average from
young and old) on such a path as a function of s?

In any period t , the consumption for generation t is (1 − st )ANt and the
consumption for generation t − 1 is xstANt−1. Therefore per capita consumption is

ct = (1 − st )ANt + xstANt−1

Nt + Nt−1
= (1 − st )A(1 + n) + xstA

2 + n

noting that Nt = (1 + n)Nt−1.

(c) If x < 1 + n, which value of s ∈ [0, 1] is maximizing per capita consumption?

It’s directly seen that st = 0 maximizes ct for x < 1 + n.

(d) Is the decentralized equilibrium Pareto-efficient? If not, how could a social
planner raise welfare?

No (except when x = 1 + n) (why do the welfare theorems break down here?).
Redistribute the wealth according to the value of x.

The intrinsic reason is that the decentralized equilibrium, with saving rate being
one half, is not Pareto efficient. Since intergenerational trade is not possible,
individuals are forced into storage because this is the only way they can save and
consume in old age. They must do this even if the return on storage, x, is poor.
However, at any point in time, a social planner could take one unit from each of the
young generation and give the each of the old 1 + n units since there are fewer of
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them. With x < 1 + n, this gives a better return than storage. Therefore, the social
planner could raise the social welfare by taking the half of the young generation’s
endowment that it was going to be stored and instead give it to the old. The planner
could do this in each period, which allows the individuals to consume A

2 units when
young—the same as in the decentralized equilibrium—but now they get to consume
(1+n)A

2 when old. This is greater than xA
2 in the decentralized equilibrium and Pareto

improving.
Suppose now that old individuals in period 0 are also endowed with M units of a

storable, divisible commodity, which we call money. Money is not a source of utility.
Assume x < 1 + n.

(e) Suppose the price of the good in units of money in periods t and t +1 is given by
Pt and Pt+1, respectively. Derive the demand functions of an individual born in
t.

For any generation t > 0 the intertemporal optimization problem becomes

max
c1,t ,c2,t+1

Ut = ln c1,t + ln c2,t+1

s.t. Pt c1,t + Pt st + Md
t ≤ PtA

Pt+1c2,t+1 ≤ Pt+1xst + Md
t .

Now the individual has two decisions to make when she is young. The first is
on how much of her endowment to consume and how much to save. The second is
by which way to save, i.e. through the storage technology, holding money, or both.
With log utility we can separate the two decisions since the rate of return on saving
will not affect the fraction of the first period endowment that is saved, i.e. she will
still consume half of her endowment in the first period, c1,t = A

2 .
Next, for her decision on saving technology, it depends on the gross rate of return

on storage, x, relative to that on holding money, Pt

Pt+1
. There are three cases:

Case 1 Pt

Pt+1
> x The storage technology is dominated by holding money. She

will consume half of her endowment and then sell the rest for money when she is
young,

c1,t = A

2
,

st = 0,

Md
t = PtA

2
,

c2,t = Pt

Pt+1

A

2
.
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Case 2 Pt

Pt+1
< x The storage technology dominates holding money. Then she

will consume half of her endowment and then save the rest instead of holding money
when she is young,

c1,t = A

2
,

st = A

2
,

Md
t = 0,

c2,t = xA

2
.

Case 3 Pt

Pt+1
= x The storage technology works as good as holding money. Then

she will consume half of her endowment and then be indifferent between saving the
rest and holding money when she is young. Suppose that a share αt ∈ [0, 1] of the
rest is invested for money, then

c1,t = A

2
,

st = (1 − αt )A

2
,

Md
t = PtαtA

2
,

c2,t = xA

2
.

(f) Describe the set of equilibria.

Equilibrium requires that the aggregate money demand equal the aggregate
money supply. And we analyze the equilibrium for each of the cases.

Case 1: Pt

Pt+1
> x The aggregate money demand is LtM

d
t = Lt

PtA
2 ; and the

aggregate money supply is M = Lt
PtA
2 . Since this holds for all periods, then we

update it one period forward and get M = Lt+1
Pt+1A

2 , therefore

Lt

PtA

2
= Lt+1

Pt+1A

2
,

Lt

PtA

2
= (1 + n)Lt

Pt+1A

2
,

Pt

Pt+1
= 1 + n.
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This shows that if money is introduced into a dynamically inefficient economy,
storage will not be used. The monetary equilibrium will thus result in achieving
the golden-rule level of storage.

Case 2: Pt

Pt+1
< x In this case holding money gives one lower return than the

storage technology. Therefore there is no positive demand for money, or, the price
level is Pt = +∞ for all the periods.

Case 3: Pt

Pt+1
= x The aggregate money demand is LtM

d
t = Lt

PtαtA
2 ; and the

aggregate money supply is M = Lt
PtαtA

2 . Since this holds for all periods, then we

update it one period forward and get M = Lt+1
Pt+1αt+1A

2 , therefore

Lt
PtαtA

2
= Lt+1

Pt+1αt+1A

2
,

Lt
PtαtA

2
= (1 + n)Lt

Pt+1αt+1A

2
,

Pt

Pt+1
= αt+1

αt

(1 + n),

x = αt+1

αt

(1 + n).

(g) Explain why there is an equilibrium with Pt → +∞. Explain why this must be
the case if the economy ends at some date T that is common knowledge among
all generations.

The equilibrium with Pt → +∞ is just included in Case 2. Other situations in
which the equilibrium is Pt → +∞ are

• When the young generation at t = 0 doesn’t believe that money will be valued
in the next period and thus that the generation one will also not accept money
for goods. In that case, in period 0, the young simply consume half of their
endowment and store the rest, and the old have some useless paper to go with

their endowment. This is an equilibrium with real money demand md
t = Md

t

Pt

equal to 0 at Pt → +∞ and real money supply equal to 0 as well. If no one
believes that the next generation will accept money for goods, this equilibrium
continues for all future periods;

• When t is finite and ends at some date T . Then Pt → +∞ is the unique
equilibrium for this economy. The young at T will not sell any of their
endowment for money, instead they will maximize their utility of their one-period
life by consuming all of their endowment in T . Therefore if the old at T hold any
money, they would be stuck with it and it would be useless to them. Knowing
that the money will be of no use when old, when they are young in T − 1 they
would not sell any of their endowment for money. Thus if the old at T − 1 hold
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any money they would be stuck with it and it would be useless to them—the old
at T − 1 will not want any money when they are young and so on. By backward
induction, no one would ever want to sell goods for money and money would not
be valued at all.
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3Interaction BetweenMonetary and Fiscal
Policy: Active and Passive Monetary Regimes

3.1 Exercises

3.1.1 Short Review Questions

(a) Suppose, in a closed economy, the government funds public expenditure through
seignorage. Briefly explain how the seignorage is generated through inflation.
Under which condition(s) government’s incentive in generating seignorage leads
to hyperinflation? How realistic is seignorage-generating inflation today?

(b) Suppose that the government is able to fund its public expenditure through both
taxation and seignorage. Discuss government’s incentive in taking debts. Under
which condition(s) are public debts sustainable?

(c) Explain how price level in an economy is determined by the fiscal regime.
(d) Explain how fiscal policy and monetary policy anchor the macro economy,

respectively. How should fiscal policy and monetary policy coordinate in
reality?

3.1.2 Public Sector Budget and Seignorage

Assume that the public sector comprises a government and a central bank. The
government finances its expenditure through taxes Tt , new issuance of debt (BT

t+1 −
BT

t ) and profits made by the central bank S̃t . Government expenditure consists of
payments Gt and interest payment on the stock of debt itB

T
t . The central bank

finances its net purchases of government debt (BCB
t+1 − BCB

t ) and its profits which
are being paid to the government by printing money �Mt+1 = Mt+1 − Mt and
through its interest income from holding government bonds.
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(a) Write down the period budget constraint of the government and the central bank
and give an interpretation.

(b) Derive the consolidated public sector budget constraint. What are the different
sources of finance for the public sector?

(c) Current seignorage income as a share of GDP is given by SM,t = Mt+1−Mt

PtYt
.

Discuss why SM,t is often referred to as inflation tax.
(d) Discuss how the concept of seignorage S = ik with k = M

PY
differs from that

of the inflation tax, i.e. from SM .
(e) Assume demand for real balances depends on the nominal interest rate. Derive

that level of the nominal interest rate that maximizes steady-state seignorage
revenues S. Discuss your result.

3.1.3 Sustainability of Government Debt in a Monetary Economy

Suppose that the consolidated government debt in an economy evolves as follows:

Bt = Gt − Tt − �Mt + (1 + it )Bt−1

in which Bt is nominal government debt held by the private sector, Gt − Tt is the
primary deficit, Mt is the money supply, and it is the nominal rate of interest.

(a) Derive a difference equation for the debt to GDP ratio.
(b) Solve this equation for the steady-state debt ratio. What does the steady-state

debt ratio depend on? Interpret.
(c) Now use a continuous time analogue to the obtained difference equation and

solve it. Discuss the four different adjustment mechanisms if a shock was
to temporarily increase the current debt level above its sustainable long-run
equilibrium level.

(d) The total government deficit—which includes interest payments on government
debt—as a share of GDP is now given as dt = gt − τt − μk + itbt . Derive an
expression for the steady-state deficit-to-GDP ratio.

3.1.4 Sustainability of Debt in a Small Open Economy

Consider a small open economy with an infinitely lived representative consumer
with CES utility, the instantaneous elasticity of substitution being σ and discount
rate ρ. The economy’s GDP growth rate is Ẏ

Y
= y, the growth rate of population is

a constant n, and the interest rate is a constant r . Initial asset positions are zero.

(a) Derive the present value budget constraint. Assume that the representative
consumer is a Ramsey consumer, i.e., her optimal consumption path follows that
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in Ramsey model, derived from Exercise 3 of Chap. 1. Under which conditions
is this optimal consumption path well defined?

(b) Compute the interest rate in autarky.
(c) Suppose that the country is initially running a current account deficit. How are

current account and debt/GDP-ratio evolving over time?

3.1.5 Sustainability of Government Debt

Consider an economy with constant GDP growth rate y and interest rate r > y. The
government finances its expenditureG through tax income T and debt B.

(a) Suppose that the government’s primary deficit rate dp = G−T
Y

is given
exogenously and constant over time. Show how the debt/GDP ratio (suppose
that the initial value of this ratio is b0) evolves over time. Which restrictions
are needed to ensure long-run stability of the debt/GDP ratio? How does your
answer change, if r < y?

(b) Suppose that the government’s total deficit rate dt = G−T +rB
Y

is given
exogenously and constant over time. Show how the debt/GDP ratio evolves over
time. Which restrictions are needed to ensure long-run stability of the debt/GDP
ratio? How does your answer depend on the interest rate?

(c) What are the long-run implications of a constant total deficit rate for the primary
deficit?

(d) Suppose now that r is the nominal interest rate and y is the growth rate of
nominal output. How would a rise in the rate of inflation affect the long-run
primary deficit if the total deficit rate is held constant?

(e) Discuss the relation of your results with the Maastricht criteria.

3.2 Solutions for Selected Exercises

3.2.1 Public Sector Budget and Seignorage

Assume that the public sector comprises a government and a central bank. The
government finances its expenditure through taxes Tt , new issuance of debt (BT

t+1 −
BT

t ) and profits made by the central bank S̃t . Government expenditure consists of
payments Gt and interest payment on the stock of debt itB

T
t . The central bank

finances its net purchases of government debt (BCB
t+1 − BCB

t ) and its profits which
are being paid to the government by printing money �Mt+1 = Mt+1 − Mt and
through its interest income from holding government bonds.

(a) Write down the period budget constraint of the government and the central bank
and give an interpretation.
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Period budget constraints

• Government: Tt + BT
t+1 − BT

t + S̃t = Gt + itB
T
t ;

• Central bank: BCB
t+1 − BCB

t + S̃t = Mt+1 − Mt + itB
CB
t .

Note that total government debt can be decomposed in debt held by the central bank
and debt held by the public: BT

t = Bt + BCB
t .

(b) Derive the consolidated public sector budget constraint. What are the different
sources of finance for the public sector?

To derive the consolidated budget constraint of the public sector, eliminate S̃t and
use the fact that BT

t = Bt + BCB
t

Gt + itB
T
t = Tt + BT

t+1 − BT
t + Mt+1 − Mt + itB

CB
t − BCB

t+1 + BCB
t ,

Gt + it (B
T
t − BCB

t ) = Tt + (BT
t+1 − BCB

t+1) − (BT
t − BCB

t ) + Mt+1 − Mt,

Gt + itBt = Tt + Bt+1 − Bt + Mt+1 − Mt.

Therefore, there are three sources of government finance:

• Taxation: Tt ;
• Issuance of new debt to households: Bt+1 − Bt ;
• Issuance of new money: Mt+1 − Mt .

(c) Current seignorage income as a share of GDP is given by SM,t = Mt+1−Mt

PtYt
.

Discuss why SM,t is often referred to as inflation tax.

Current seignorage income, or, real income from money creation as a share of
GDP

SM,t = Mt+1 − Mt

PtYt

= Mt+1 − Mt

Mt

· Mt

PtYt

= μt+1 · Mt

PtYt

= (πt + yt ) · Mt

PtYt

.

Note: The last equality follows directly from the Quantity Equation assuming that
the velocity of money is stable:

μt = πt + yt .

Assume that real economic growth is determined by real factors and thus unaffected
by monetary policy. For simplicity, assume yt = y. It follows directly that:

SM,t = (πt+1 + y) · Mt

PtYt

= πt+1 · kt + C.
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Therefore, current seignorage income resembles a tax with tax rate π and tax base
k (apart from some lump-sum revenue C). It is referred to as inflation tax.

(d) Discuss how the concept of seignorage S = ik with k = M
PY

differs from that of
the inflation tax, i.e. from SM .

Now look at total seignorage income (in steady state)

S = i · M

PY
= (r + π + y − y) · k = (π + y) · k + (r − y) · k = SM + (r − y) · k

where the Fisher Equation (it = rt + πe
t+1) is used to transform the equation.

How to differentiate SM and S?

• Total seignorage S: All revenues the government obtains due to its monopoly
over the provision of money (cf. monopolistic rents);

• Current seignorage income SM : Real resources the government obtains via the
issuance of money.

In more detail: S captures the opportunity costs of issuing money since the
government saves interest payments by making private agents hold money instead
of interest-rate bearing bonds.

(e) Assume demand for real balances depends on the nominal interest rate. Derive
that level of the nominal interest rate that maximizes steady-state seignorage
revenues S. Discuss your result.

Steady state seignorage is given by S(i) = i · k(i) where k(i) is money demand
that depends negatively on the nominal interest rate. Condition for maximum is
given by:

∂S(i)

∂i
= k(i) + i · ∂k(i)

∂i
= 0,

ηk = ∂k(i)

∂i
· i

k
= −1.

3.2.2 Sustainability of Government Debt in a Monetary Economy

Suppose that the consolidated government debt in an economy evolves as follows:

Bt = Gt − Tt − �Mt + (1 + it )Bt−1

in which Bt is nominal government debt held by the private sector, Gt − Tt is the
primary deficit, Mt is the money supply, and it is the nominal rate of interest.
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(a) Derive a difference equation for the debt to GDP ratio.

Difference equation for debt-to-GDP ratio is given by

Bt = Gt − Tt − �Mt + (1 + it )Bt−1,

Bt

PtYt

= Gt

PtYt

− Tt

PtYt

− �Mt

PtYt

+ (1 + it )
Bt−1

PtYt

,

bt = gt − τt − �Mt

Mt

· Mt

PtYt

+ (1 + it )
Bt−1

Pt−1Yt−1
· Pt−1Yt−1

PtYt

= gt − τt − μt · kt + bt−1 · (1 + it )

(1 + yt )(1 + πt )

= gt − τt − μt · kt + bt−1 · (1 + rt − yt ),

bt − bt−1 = gt − τt − μt · kt + (rt − yt ) · bt−1.

(b) Solve this equation for the steady-state debt ratio. What does the steady-state
debt ratio depend on? Interpret.

In the steady state, bt = bt−1 = b, then

(r − y) · b = τ − g + μ · k,

b = τ − g + μ · k
r − y

.

(c) Now use a continuous time analogue to the obtained difference equation and
solve it. Discuss the four different adjustment mechanisms if a shock was
to temporarily increase the current debt level above its sustainable long-run
equilibrium level.

Starting from the differential equation

ḃ(t) = g(t) − τ (t) − μ(t)k(t) + (r(t) − y(t))b(t),

ḃ(t) − (r(t) − y(t))b(t) = g(t) − τ (t) − μ(t)k(t).

Use product rule to find function λ(t) such that:

λ(t)ḃ(t) − λ(t)(r(t) − y(t))b(t) = ˙[λ(t)b(t)].
This function can be recovered from

˙λ(t) = −λ(t)(r(t) − y(t)),

˙λ(t)

λ(t)
≡ ˙λ(t) = −(r(t) − y(t)),
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λ(t) = c0 · e− ∫ t
0 (r(s)−y(s))ds.

Use this function to solve the differential equation:

˙[λ(t)b(t)] = λ(t)[g(t) − τ (t) − μ(t)k(t)],

λ(T )b(T ) + c1 =
∫ T

0
λ(t)[g(t) − τ (t) − μ(t)k(t)]dt,

b(T ) = λ(T )−1
(∫ T

0
λ(t)[g(t) − τ (t) − μ(t)k(t)]dt + c2

)
.

Using the expression for λ(t) derived above

b(T ) = e
∫ T
0 (r(s)−y(s))ds

(∫ T

0
e− ∫ t

0 (r(s)−y(s))ds [g(t) − τ (t) − μ(t)k(t)]dt + c−1
0 c2

)

= Ae
∫ T
0 (r(s)−y(s))ds +

∫ T

0
e
∫ T
0 (r(s)−y(s))ds−∫ t

0 (r(s)−y(s))ds · [g(t) − τ (t) − μ(t)k(t)]dt

= Ae
∫ T
0 (r(s)−y(s))ds +

∫ T

0
e
∫ T
t (r(s)−y(s))ds [g(t) − τ (t) − μ(t)k(t)]dt.

Solve for A by setting looking at initial (time T = 0) debt level b(0)

b(0) = Ae
∫ 0
0 (r(s)−y(s))ds +

∫ T

0
e
∫ 0
t (r(s)−y(s))ds[g(t) − τ (t) − μ(t)k(t)]dt = A.

Therefore, the following expression solves the differential equation for initial
debt to GDP ratio b(0)

b(T ) = b(0)e
∫ T
0 (r(s)−y(s))ds +

∫ T

0
[g(t) − τ (t) − μ(t)k(t)]e

∫ T
t (r(s)−y(s))dsdt.

Equivalently, the current value of the debt to GDP ratio is given by

b(0) = b(T )e− ∫ T
0 (r(s)−y(s))ds +

∫ T

0
[τ (t) − g(t) + μ(t)k(t)]e− ∫ t

0 (r(s)−y(s))dsdt .

Now, let’s look at a simplified version. Suppose that the real interest rate and the
real growth rate are constant as well as τ , g and μk

b(T ) = b(0)e
∫ T
0 (r−y)ds +

∫ T

0
[g − τ − μk]e

∫ T
t (r−y)dsdt

= b(0)e(r−y)T + [g − τ − μk]
∫ T

0
e(r−y)(T−t )dt
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= b(0)e(r−y)T + [g − τ − μk]e(r−y)T

∫ T

0
e−(r−y)tdt

= b(0)e(r−y)T + g − τ − μk

r − y
e(r−y)T

(
1 − e−(r−y)T

)

=
(

b(0) + g − τ − μk

r − y

)
e(r−y)T − g − τ − μk

r − y
.

Now, back to the general form but keep r and y constant. When talking about
debt sustainability, we look at T → ∞ and impose the transversality condition. This
yields

b(0) ≡ B(0)

P (0)Y (0)
=
∫ ∞

0
[τ (t) − g(t) + μ(t)k(t)]e−(r−y)tdt.

Idea: The current debt to GDP ratio equals the present value of future primary
surpluses and seignorage income discounted by the effective real interest rate r − y.

Adjustment in case of shocks:

• Fiscal consolidation: Cut spending and increase taxes τ (t) − g(t) → monetary
dominance;

• Printing press: Increase seignorage revenues μ(t)k(t) → fiscal dominance;
• (Partial) default on debt;
• Fiscal theory of the price level: Budget constraint as a valuation equation (cf.

stock market). Current real value depends on discounted sum of expected budget
surpluses. Adjustment of P(0).

(d) The total government deficit—which includes interest payments on government
debt—as a share of GDP is now given as dt = gt − τt − μk + itbt . Derive an
expression for the steady-state deficit-to-GDP ratio.

The total government deficit is given by dt = gt − τt − μk + itbt .
Evolution of government debt is given by bt−bt−1 = gt−τt−μtkt+(rt−yt )bt−1.
Taken together and using the Fisher Equation with rt = it − πt , this yields

bt − bt−1 = dt − (πt + yt )bt−1.

In steady state, b∗ = d∗

π∗ + y∗ .

3.2.3 Sustainability of Debt in a Small Open Economy

Consider a small open economy with an infinitely lived representative consumer
with CES utility and time preference parameter ρ. The economy’s growth rate is y.
Initial asset positions are zero.
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(a) Derive the present value budget constraint. Assume that the representative
consumer is a Ramsey consumer, i.e., her optimal consumption path follows that
in Ramsey model, derived from Exercise 3 of Chap. 1. Under which conditions
is this optimal consumption path well defined?

The present value aggregate budget constraint is given by

∫ +∞

0
e−rtC(t)dt =

∫ +∞

0
e−rtY (t)dt + B(0).

As a result of Ramsey–Cass–Koopmans model, the consumption path is given as

ċ(t)

c(t)
= σ(r − n − ρ),

given c(0) it is equivalent to

c(t) = c(0) exp [σ(r − n − ρ)t] .

The population at time t is L(t) = L(0)ent , therefore in the aggregate level the
consumption path can be represented as

c(t)L(t) = c(0)L(0) exp (nt) exp [σ(r − n − ρ)t] ,

C(t) = C(0) exp [(σ (r − n − ρ) + n) t] .

Insert it into the budget constraint, one can get

∫ +∞

0
C(0) exp [(σ (r − n − ρ) + n − r) t] dt =

∫ +∞

0
e−rtY (t)dt + B(0),

1

r − σ(r − n − ρ) − n
C(0) = 1

r − y
Y (0) + B(0).

This is only feasible when r − σ(r − n − ρ) − n > 0, r > y.

(b) What is the interest rate in autarky?

In autarky C(t) = Y (t),∀t ∈ [0,+∞). Therefore

r − σ(r − n − ρ) − n = r − y,

r = n + ρ + y − n

σ
.

(c) Suppose that the country is initially running a current account deficit. How are
current account and debt/GDP-ratio evolving over time?
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The definition of current account gives

CA(t) = Ḃ(t) = Y (t) − C(t) + rB(t).

Solve this linear differential equation with propagator, one can get

B(0) = lim
T →+∞ e−rT B(T ) +

∫ +∞

0
e−rt [Y (t) − C(t)] dt.

The transversality condition requires that the first term of the right-hand side is equal
to 0, and this implies that

−∞ < B(0) =
∫ +∞

0
e−rt [Y (t) − C(t)] dt < 0.

The boundary condition B(0) = Y (0) − C(0) < 0 plus the fact that Y (t) and C(t)

are exponential functions imply that

lim
T →+∞

C(T )

Y (T )
= 0,

otherwise
∫ +∞
0 e−rt [Y (t) − C(t)] dt = −∞.

Debt/GDP-ratio is defined as b(t) = B(t)
Y (t)

, by log-linearization one can see that

ḃ(t)

b(t)
= Ḃ(t)

B(t)
− Ẏ (t)

Y (t)
,

ḃ(t) = Ḃ(t)

Y (t)
− yb(t)

= 1 − C(t)

Y (t)
+ (r − y)b(t).

The steady state is obtained by

lim
t→+∞ ḃ(t) = lim

t→+∞ 1 − C(t)

Y (t)
+ (r − y)b(t) = 0,

therefore the steady state level of debt/GDP-ratio is

b∗ = − 1

r − y
.
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3.2.4 Sustainability of Government Debt

Consider an economy with constant growth rate y and interest rate r > y.

(a) Suppose that the government’s primary deficit rate dp = G−T
Y

is given
exogenously and constant over time. Show how the debt ratio evolves over time.
Which restrictions are needed to ensure long-run stability of the debt ratio. How
does your answer change, if r < y?

Define Bt as the government’s debt at time t , then

Ḃt = Gt − Tt + rBt ,

ḃt = Ḃt

Yt

− ybt

= Gt − Tt

Yt

+ (r − y)bt

= dp + (r − y)bt .

Solve the linear ordinary differential equation of bt with propagator. First solve the
differential equation

ḃt = (r − y)bt

and get the solution

bt = C exp[(r − y)t].

Now add the effect of propagator

bt = C(t) exp[(r − y)t]

and take derivation with respect to t

ḃt = Ċ(t) exp[(r − y)t] + (r − y)C(t) exp[(r − y)t]
= Ċ(t) exp[(r − y)t] + (r − y)bt .

Compare with the original problem

ḃt = dp + (r − y)bt

one can see that

Ċ(t) exp[(r − y)t] = dp.
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Solve this equation for C(t)

C(t) =
∫

dp exp[−(r − y)t]dt + c

= − dp

r − y
exp[−(r − y)t] + c,

then plug it into the expression of bt

bt =
(

− dp

r − y
exp[−(r − y)t] + c

)
exp[(r − y)t].

Now consider the problem for t ∈ [0,+∞) with b0 at t = 0

b0 = − dp

r − y
+ c,

c = b0 + dp

r − y
.

Substitute for c and get bt

bt =
(

b0 + dp

r − y

)
exp[(r − y)t] − dp

r − y
.

Given r > y long-run stability of the debt ratio can only be ensured when

b0 = − dp

r − y
,

because limt→+∞ exp[(r − y)t] = +∞.
If r < y, then the long-run stability of the debt ratio is always ensured because

limt→+∞) exp[(r − y)t] = 0.

(b) Suppose that the government’s total deficit rate dt = G−T +rB
Y

is given
exogenously and constant over time. Show how the debt ratio evolves over time.
Which restrictions are needed to ensure long-run stability of the debt ratio. How
does your answer depend on the interest rate?

By the definitions of dt and dp, one can see that

dt = G − T + rB

Y
= dp + rb.
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Replace dp by dt in the ordinary differential equation

ḃt = dp + (r − y)bt

= dt − ybt .

Solve this linear ordinary differential equation and get

bt =
(

b0 − dt

y

)
exp(−yt) + dt

y
.

The long-run stability of the debt ratio is ensured whenever y > 0. The answer
doesn’t depend on the interest rate.

(c) What are the long-run implications of a constant total deficit rate for the primary
deficit?

From the result of (b) one can see that

lim
t→+∞ dp = dt − rbt = dt

(
1 − r

y

)
.

Then dp depends on the ratio of r and y:

• If r > y, then dp < 0, i.e. the government has surplus;
• If r < y, then dp > 0, i.e. the government has deficit.

(d) Suppose that r is the nominal interest rate and y is the growth rate of nominal
output. How would a rise in the rate of inflation affect the long-run primary
deficit if the total deficit rate is held constant?

Now r = π + r∗ and y = π + y∗ in which variables with ∗ are real terms. Then

lim
t→+∞ dp = dt

(
1 − r∗ + π

y∗ + π

)
= g(π).

It’s easy to see that

dg

dπ
= − y∗ − r∗

(y∗ + π)2
.

Then the effect of a rise in π on the long-run primary deficit is:

• The long-run primary deficit decreases if y∗ > r∗;
• The long-run primary deficit increases if y∗ < r∗;
• The long-run primary deficit is independent of π if y∗ = r∗.

(e) Discuss the relation of your results with the Maastricht criteria.
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Maastricht criteria:

• Debt ratio bt ≤ 60%;
• Total deficit ratio dt ≤ 3%.

The result of (b) implies that

lim
t→+∞ bt = lim

t→+∞

(
b0 − dt

y

)
exp(−yt) + dt

y
= dt

y
.

Apply empirical data y∗ = 3% and π = 2%, y = y∗ + π = 5%. Insert into the
equation above, one can see that the steady state bt = 60%.



Part II

Monetary Policy in the Short Run



4NewKeynesianMacroeconomics

4.1 Exercises

4.1.1 Short Review Questions

(a) Explain how monopolistic competition leads to the price mark-up. What does
this imply for the natural rate of output in an economy?

(b) Explain, in Blanchard–Kiyotaki model, how aggregate demand externalities
prevent the price from being adjusted freely. What does price stickiness imply
for the natural rate of output in an economy?

(c) Name a few other sources of price stickiness and explain how they prevent firms
from adjusting their prices freely.

(d) What does sticky price imply for aggregate demand and supply in the short-run
equilibrium? What are optimal monetary policy under (1) demand shocks, (2)
supply shocks, and (3) mark-up shocks?

4.1.2 Sticky Price Models: The Policy Implication

Consider the models with sticky prices, such that some firms don’t make immediate
responses to the changes in the price level (such as Calvo 1983 and Yun 1996).

(a) Explain the difference between ex ante and ex post mark-up.
(b) Explain how monetary policy affects the real economy.
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4.1.3 Staggered Price Setting: The Driving Forces

Consider the models with staggered price setting such as Calvo (1983) and Yun
(1996).

(a) Show that increases in output have a positive impact on inflation.
(b) Explain why the resulting aggregate supply curve is forward looking.
(c) Explain how the economy is distorted by monopolistic competition and stag-

gered price setting. Provide some intuitions on how economic policies may
restore the efficiency of equilibrium allocations.

(d) Show that stabilizing output and stabilizing inflation are no conflicting goals.

4.1.4 Price Setting with Differentiated Goods

Consider a representative agent with utility function

U =
(

m∑

i=1

C
γ

i

) α
γ (

M

P

)1−α

− Nβ, with 0 < γ < 1, 0 < α < 1, β > 1.

Assume that firm’s profits are distributed to consumers, but a single consumer’s
decision has no impact on these profits. Thus, profit income is taken as exogenous
by consumers.

(a) Derive the demand functions for commodities Ci and for money M and
the supply for labor N . To ease your calculations, use aggregate indices for
consumption and prices:

C =
(

m∑

i=1

C
γ
i

) 1
γ

, P =
(

m∑

i=1

P
− γ

1−γ

i

)− 1−γ
γ

.

(b) Assume that firms produce goods with production function Ci = θNi , where
Ni is the labor input of firm i. Labor is homogeneous and the labor market
is competitive. Firms are setting prices Pi in order to maximize profits. Show
that equilibrium prices are above marginal costs (assume that firms are small
to the extent that a single firm’s decisions has no impact on average income of
households).

(c) Show that equilibrium levels of production and employment are below the
efficient levels.

(d) Following Blanchard and Kiyotaki (1987), explain how menu costs can prevent
price adjustments to monetary expansion and how this influences overall
efficiency.
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4.1.5 Monopolistic Competition, Catalogue Cost, andMonetary
Policy

Consider an economy of yeomen farmers, which has the following features:

• The economy is populated by a continuum of farmers, each of whom is indexed
by i ∈ [0, 1], i.e., the population is normalized to be 1;

• Each farmer, say, farmer i, is the unique producer of a monopolistically
competitive good i whose price Pi is set by herself;

• Farmers don’t produce their goods by themselves. Instead, each farmer goes to a
competitive labor market (which means that each individual employer takes the
nominal wage rate,W , as given) where she sells her labor to the other farmers and
hires the other farmers as the labor input for her production. In equilibrium, the
labor supply of farmer i, Li , should be equal to the labor input in her production
(although she doesn’t work for herself).

All the farmers have the same technology which transforms one unit of labor into
on unit of product (denoted by Y ), i.e., for farmer i

Yi = Li.

The representative farmer i’s utility comes from consuming all the varieties of
goods, Cj (∀j ∈ [0, 1]), and displeasure from providing labor,

Ui = C − L
β
i

β
, with β > 1 (4.1)

in which C is the Dixit–Stiglitz index for her consumption. By market clearing, C
is equal to per capita GDP as well. Further, using Dixit–Stiglitz aggregation implies
that, for her consumption bundle,

∫ 1

0
PjCjdj = PC,

in which P is the Dixit–Stiglitz index for the price level. Therefore, her budget
constraint is

PC = (Pi − W)Yi + WLi. (4.2)

Under monopolistic competition, it is known that

Yi = C

(
Pi

P

)−η

, with η > 1, (4.3)
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therefore, the budget constraint becomes

PC = (Pi − W)C

(
Pi

P

)−η

+ WLi. (4.4)

The left-hand side is her total expenditure on consumption, and the right-hand side
is her total income made by the profit from selling good i plus her wage from selling
labor.

Thus farmer i’s decision problem is choosing the optimal Pi and Li to maximize
her utility function (4.1), subject to her budget constraint (4.4).

(a) Give some interpretation to Eq. (4.3).
(b) Show that the optimal price Pi is set as

Pi

P
= η

η − 1

W

P
, (4.5)

and the optimal labor supply is given by

Li =
(

W

P

) 1
β−1

. (4.6)

Show analytically that equilibrium levels of production and employment are
below the efficient levels (Hint: Equilibrium implies symmetry in price setting
and labor supply).

Suppose that in this economy, all the payments are required to be done
with fiat money, i.e., the prices of both goods and labor are paid with money.
Regarding the representative consumer’s budget constraint, Pi and W on the
right-hand side of (4.2) are paid with money. The aggregate money supply is
under the control of the central bank. Per capita money supply is M , therefore,
Eq. (4.2) can be equivalently written as PC = M .

(c) Show analytically that in equilibrium money is neutral in this economy, i.e.,
changing money supply doesn’t have any impact on real resource allocation, as
long as the prices are flexible.

Now suppose that in this economy, all the prices of the goods are listed on
a catalogue. One farmer can only adjust the price of her product if she pays a
fixed cost for the publisher in order to publish a new edition of the catalogue.
Then the central bank starts an expansionary monetary policy.

(d) Explain verbally under which condition(s) the farmers’ price adjustments are
prevented.

(e) Show analytically that in equilibriummoney is no longer neutral and the overall
efficiency can be improved by the expansionary monetary policy (assume that
the expansion in money supply is small enough so that the farmers’ price
adjustments are totally prevented by the catalogue cost).
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4.1.6 Monopolistic Competition, Aggregate Demand Externalities,
and Sticky Price

Consider a representative household that lives for two periods with utility function

V (C1, C2, N1, N2) = U(C1) − V (N1) + 1

1 + ρ
E1 [U(C2) − V (N2)]

in which N is the labor supply and C is a consumption index given by

Ct ≡
(∫ 1

0
Ct(i)

θ−1
θ di

) θ
θ−1

with Ct(i) representing the quantity of good i consumed in period t at price Pt(i).
Assume that the period utility function is given by

U(Ct ) = C
1− 1

σ
t

1 − 1
σ

,

V (Nt ) = N
1+ϕ
t

1 + ϕ
.

The household saves by buying one-period risk-free bonds Bt at price Qt . His
budget constraint is given by

(1 + τC
t )

∫ 1

0
Pt (i)Ct (i)di + QtBt = Bt−1 + (1 − τN

t )WtNt + Tt

in which Tt are lump-sum components of income including firms’ profits, and τC
t

and τN
t represent taxes on consumption and wages. In addition, there is a continuum

of producers with measure 1 each of which produces one of these varieties under
monopolistic competition with the linear production technology

Yt (i) = AtNt(i).

Assume that firms do not face any additional frictions in setting their prices so
that prices are perfectly flexible.

(a) Derive the optimal allocation of consumption expenditures among different
goods for the household and the demand function for good i.

(b) Give an interpretation of θ and plot the demand function for good i.
(c) Derive the optimal labor supply and consumption decision of the household in

log-linear form.
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(d) Derive the optimal price setting rule for the monopolistic producer of good
i under the assumption of perfectly flexible prices. What is the effect of
monopolistic competition relative to the competitive case?

(e) What is the natural level of output Yt,n in this economy. Discuss its properties
by comparing it to the output level that would result under perfect competition.

(f) Assume that agents expect the economy to be at its natural level before the
realization of shocks, i.e. ye

2 = ye
1 = yn and pe

2 = pe = p∗. Derive the AD

curve under this set-up.
(g) Now assume that there are price rigidities so that in period 1 only a fraction of

firms 1− α can adjust their prices whereas the remaining fraction α is unable to
do so. Prices are perfectly flexible in period 2. Derive the optimal price setting
rule in this case and the AS curve.

4.2 Solutions for Selected Exercises

4.2.1 Sticky Price Models: The Policy Implication

Consider the models with sticky prices, such that some firms don’t make immediate
responses to the changes in the price level (such as Calvo 1983 and Yun 1996).

(a) Explain the difference between ex ante and ex post mark-up.

Ex ante mark-up is the mark-up the firm desires at the time when it sets its price,
which could be expressed as

Et [Ps(z)] = Et [(1 + μs)PsMCs ]

in which s > t . Ex post mark-up is the mark-up when the uncertainties are resolved,
which could be expressed as

Pt (z) = (1 + μ′
s)PsMCs

in which s > t , and Pt(z) is the firm’s price at time s which was already fixed
at time t . Suppose that there is an unexpected increase in aggregate demand, and
therefore an increase in the demand of labor which drives up MCs . Since the firm’s
price was already fixed, then its ex post mark-up goes down. So with sticky prices
in assumption, we have the counter-cyclical mark-ups.

(b) Explain how monetary policy affects the real economy.

Now money matters because of sticky price settings. For any change in price
level, due to monetary policy, the firms’ ex post mark-ups differ from each other.
Therefore, the firms differ from each other on their relative prices, and this leads to
a dispersion in the consumption of differentiated goods.
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4.2.2 Staggered Price Setting: The Driving Forces

Consider the models with staggered price setting such as Calvo (1983) and Yun
(1996).

(a) Show that increases in output have a positive impact on inflation.

The aggregate supply relation in Calvo–Yun model is captured in the new
Keynesian Phillips curve, which could be expressed as following:

πt = κm̂ct + βEtπt+1. (4.7)

The increase in output reflects the excess demand, which in turn causes scarcity of
output and running capital at high intensity. This results in higher marginal cost,
hence higher prices and greater inflation.

(b) Explain why the resulting aggregate supply curve is forward looking.

Because the price is sticky such that the firms set prices in advance. Since the
firms have market power, so if the price is flexible the price that maximizes one
firm’s profit is a constant mark-up over marginal cost. But when the price is sticky,
the firm’s mark-up would be affected when there are any changes in the price level,
during the periods when the firm is not able to adjust its price. Therefore, whenever
the firm has the chance to set its price, it has to take into account both current real
marginal cost and expected future real marginal cost—so that the resulting aggregate
supply curve is forward looking.

(c) Explain how the economy is distorted by monopolistic competition and stag-
gered price setting. Provide some intuitions on how economic policies may
restore the efficiency of equilibrium allocations.

First, we examine the distortion related to monopolistic competition.
Monopolistic competition distorts factor prices, hence the agent’s intratemporal

decisions on consumption and labor,

−
∂ut

∂Nt

∂ut

∂Ct

= Wt

Pt

= 1

1 + μ

∂Y (z)

∂N(z)
.

This suggests that it would be optimal to subsidize the employment cost. Suppose
that at the rate τ the employment is subsidized, then

−
∂ut

∂Nt

∂ut

∂Ct

= (1 + τ )
Wt

Pt

= 1 + τ

1 + μ

∂Y (z)

∂N(z)

and the optimality would be restored if the social planner sets τ = μ;
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Second, we examine the distortion related to staggered price setting.
It is known that the output level of a monopolistically competitive firm, Yt (z), is

determined by the aggregate output Yt and the relative price
Pt (z)
Pt

in a way that

Yt (z) =
[
Pt (z)

Pt

]−ε

Yt .

Apply this expression to calculate the aggregate output Y z
t

Y z
t =

∫ 1

0
Yt (z)dz

=
∫ 1

0

[
Pt (z)

Pt

]−ε

Yt dz

= Yt

∫ 1

0

[
Pt (z)

Pt

]−ε

dz,

AtN
α
t K1−α

t−1 = Yt

∫ 1

0

[
Pt (z)

Pt

]−ε

dz,

and the last step uses the fact that the production function is constant return to scale.
Now let’s define a new variable to finish the aggregation of production

st =
∫ 1

0

[
Pt (z)

Pt

]−ε

dz,

which measures the gap between aggregate output of intermediate goods and final
goods, i.e.

Y z
t = AtN

α
t K1−α

t−1 = stYt .

Obviously st = 1 if there is no price dispersion, which is caused by fluctuations in

price level. Define ζt =
[

Pt (z)
Pt

]1−ε

, and obviously st = ∫ 1
0 ζ

ε
ε−1
t dz. Notice that

(∫ 1

0
ζtdz

) ε
ε−1

=
{∫ 1

0

[
Pt(z)

Pt

]1−ε

dz

} ε
ε−1

= Pε
t

⎧
⎨

⎩

[∫ 1

0
Pt (z)

1−εdz

] 1
1−ε

⎫
⎬

⎭

−ε

= 1
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using the definition of price index for the last step, one can see that

1 =
(∫ 1

0
ζtdz

) ε
ε−1

≤
∫ 1

0
ζ

ε
ε−1
t dz = st

by Jensen’s inequality because ε > 1 and ε
ε−1 > 1, and the equality holds only for ζt

being constant, i.e. Pt (z) = Pt , ∀z ∈ [0, 1]—when there exists no price dispersion.
Since st is bounded below by 1, the output level, i.e. the production of the final

goods, is distorted by the factor of st due to the existence of price dispersion. Since
the prices are adjusted in a staggering manner in our economy, the only way to wipe
out such inefficient price dispersion is to keep the price level constant, such that the
firms don’t have to adjust their prices at all. Therefore, it is a desirable policy to
stabilize the price level, i.e. to eliminate inflation, in this economy.

(d) Show that stabilizing output and stabilizing inflation are no conflicting goals.

There is no conflict between a policy designed to maintain inflation at zero and
a policy designed to keep the output gap equal to zero. Rewrite (4.7) in terms of
output gap

πt = κ (γ + γn) xt + βEtπt+1, (4.8)

then when output is stabilized such that xt+i = 0 for all i > 0, then πt+i = 0, and
the same argument holds when inflation is maintained at zero. Because firms adjust
prices in a staggered manner, inflation generates a costly dispersion of prices; the
central bank can eliminate this source of distortion by ensuring price stability. When
firms do not need to adjust their prices, the fact that prices are sticky is no longer
relevant, and the output is thus stabilized.

4.2.3 Price Setting with Differentiated Goods

Consider a representative agent with utility function

U =
(

m∑

i=1

C
γ

i

) α
γ (

M

P

)1−α

− Nβ, with 0 < γ < 1, 0 < α < 1, β > 1.

Assume that firm’s profits are distributed to consumers, but a single consumer’s
decision has no impact on these profits. Thus, profit income is taken as exogenous
by consumers.
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(a) Derive the demand functions for commodities Ci and for money M and the
supply for labor N. To ease your calculations, use aggregate indices for
consumption and prices:

C =
(

m∑

i=1

C
γ
i

) 1
γ

, P =
(

m∑

i=1

P
− γ

1−γ

i

)− 1−γ
γ

.

The representative agent’s problem is to maximize her utility

max
Ci,M,N

U =
(

m∑

i=1

C
γ

i

) α
γ (

M

P

)1−α

− Nβ

s.t.

m∑

i=1

PiCi + M ≤ wN + Y.

Set up the Lagrangian for this problem

L =
(

m∑

i=1

C
γ
i

) α
γ (

M

P

)1−α

− Nβ − λ

(
m∑

i=1

PiCi + M − wN − Y

)

and derive the first-order conditions

∂L

∂Ci
= α

γ

⎛

⎝
m∑

i=1

C
γ
i

⎞

⎠

α
γ −1 (

M

P

)1−α

γC
γ−1
i

− λPi = αCα−γ

(
M

P

)1−α

C
γ−1
i

− λPi = 0,

(4.9)

∂L

∂M
= Cα(1 − α)

(
M

P

)−α 1

P
− λ = 0, (4.10)

∂L

∂N
= −βNβ−1 + wλ = 0. (4.11)

Combine (4.9) and (4.10) to get

α

1 − α
C−γ MC

γ−1
i = Pi,

α

1 − α
C−γ P

−γ

i M = P
1−γ

i C
1−γ

i ,

PiCi =
(

α

1 − α
C−γ P

−γ

i M

) 1
1−γ

,
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m∑

i=1

PiCi =
(

α

1 − α
C−γ M

) 1
1−γ

m∑

i=1

P
− γ

1−γ

i ,

m∑

i=1

PiCi =
(

α

1 − α
M

) 1
1−γ

(PC)
− γ

1−γ .

And from the first line one can also solve for Ci

C
γ
i =

(
α

1 − α
C−γ M

Pi

) γ
1−γ

,

m∑

i=1

C
γ

i =
(

α

1 − α
C−γ M

) γ
1−γ

m∑

i=1

P
− γ

1−γ

i ,

Cγ =
(

α

1 − α
C−γ M

) γ
1−γ

P
− γ

1−γ ,

PC = α

1 − α
M,

giving the consumption index in the equilibrium

C = α

1 − α

M

P
. (4.12)

Insert this result into the expression of
∑m

i=1 PiCi , it’s easy to see that

m∑

i=1

PiCi = (PC)
1

1−γ (PC)
− γ

1−γ = PC.

Now the budget constraint can be manipulated by the relations between
∑m

i=1 PiCi ,
PC and M

α

1 − α
M + M = wN + Y,

M = (1 − α)(wN + Y )

as well as the aggregate consumption index

C = α(wN + Y )

P
.
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Apply the result above into the expression for Ci and get the demand function
for commodity i

Ci =
(

α

1 − α
C−γ M

Pi

) 1
1−γ

=
[

α

1 − α

(1 − α)(wN + Y )

Pi

(
α

wN + Y

P

)−γ
] 1

1−γ

= α(wN + Y )

(
Pγ

Pi

) 1
1−γ

.

Note that if Pi = P the demand function for commodity i reduces to

Ci = α(wN + Y )

P
.

Combine (4.10) and (4.11) to see the supply of labor N

Nβ−1 = wλ

β

= wCα(1 − α)
(

M
P

)−α 1
P

β

=
wCα(1 − α)

(
C(1−α)

α

)−α
1
P

β

= w(1 − α)1−ααα

βP
,

and we find the labor supply decision of the representative agent

N =
[
w(1 − α)1−ααα

βP

] 1
β−1

. (4.13)

(b) Assume that firms produce goods with production function Ci = θNi , where
Ni is the labor input of firm i. Labor is homogeneous and the labor market
is competitive. Firms are setting prices Pi in order to maximize profits. Show
that equilibrium prices are above marginal costs (assume that firms are small
to the extent that a single firm’s decision has no impact on average income of
households).
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A firm’s problem is to maximize its profit

max
Pi,Ni

�i = PiCi(Pi) − wNi

s.t. Ci(Pi) = θNi.

The equality constraint simply captures the firm’s demand for labor,

Ni = Ci(Pi)

θ
. (4.14)

Insert the equation above into the object function and the original problem becomes

max
Pi ,Ni

�i = PiCi(Pi) − w
Ci(Pi)

θ
.

The first-order condition gives

∂�i

∂Pi

= Ci(Pi) +
(
Pi − w

θ

) ∂Ci(Pi)

∂Pi

= 0 (4.15)

in which ∂Ci(Pi)
∂Pi

can be derived from the demand function for commodity i

Ci = α(wN + Y )

(
Pγ

Pi

) 1
1−γ

,

∂Ci

∂Pi

= − 1

1 − γ
α(wN + Y )

(
Pγ

Pi

) 1
1−γ 1

Pi

= − 1

1 − γ

Ci

Pi

.

Apply this result into the first-order condition (4.15)

Ci =
(
Pi − w

θ

) 1

1 − γ

Ci

Pi

, (4.16)

Pi = w

γ θ
. (4.17)

The marginal cost of production is w
θ
, therefore the price is above the marginal cost

for those γ ∈ (0, 1).

(c) Show that equilibrium levels of production and employment are below the
efficient levels.
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The efficient level of production achieves at the point where the marginal revenue
is equal to the marginal cost, i.e. Pe

i = w
θ
and θ = w

Pe
i
. And from the representative’s

decision on labor supply

N =
[
w(1 − α)1−ααα

βP

] 1
β−1

one can see that it only depends on the ratio w
P
. However in equilibrium w

P
= γ θ <

θ , therefore the employment is below the efficient level.
Also from the demand function for commodity i

Ci = α(wN + Y )

P

one can see that the equilibrium consumption level is also lower than the efficient
level since N < Ne, w

P
= γ θ < θ , and P > Pe. By market clearing condition this

simply means that the output level is also lower than the efficient level.

(d) Following Blanchard and Kiyotaki (1987), explain how menu costs can prevent
price adjustments to monetary expansion and how this influences overall
efficiency.

Suppose that money supply rises a little from M to M̃. Now given the fact that
all the firms still keep their prices at the equilibrium price level under M , then if a
single firm i deviates to a new price level P̃i she may face two possible situations:

• She makes a higher profit than before. But this would make all the other firms
deviate and they end up with a new price level under M̃;

• She makes no higher profit than before. Then all the firms would keep the old
price level.

To see which one is the true outcome, assume that all the firms still keep their
prices at the equilibrium price level under M . Then from (4.13) the labor supply of
the representative agent is

Ñs =
[

w̃(1 − α)1−ααα

βP

] 1
β−1

.

Note that w̃ and Ñs are achieved under the new money supply M̃ and old price level
P . Comparing with Ns under M one can easily see that

Ñs =
[
w̃

w

] 1
β−1

Ns.
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And from (4.14) the labor demand of the firms is

Ñd = C̃(P )

θ
= α

1 − α

M̃

θP

in which that C̃(P ) is achieved under the new money supply M̃ and old price level
P , and the second step is derived by using (4.12). Comparing with Nd under M one
can easily see that

Ñd = M̃

M
Nd.

Market clearing conditions require that Ñs = Ñd and Ns = Nd , and one can see
that

[
w̃

w

] 1
β−1 = M̃

M

w̃ = w

(
M̃

M

)β−1

.

Then if one firm i wants to deviate, her best response P̃i is featured by (4.17)

P̃i = w̃

γ θ

=
(

M̃

M

)β−1
w

γ θ

=
(

M̃

M

)β−1

P

> P.

Her profit from deviating is

�̃i =
(

P̃i − w̃

θ

)
C̃i (P̃i),

in comparison to her profit from not deviating

�i =
(

Pi − w̃

θ

)
Ci(Pi)
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the deviation makes sense only if �̃i > �i . Otherwise all the firms keep the old
price level.

4.2.4 Monopolistic Competition, Aggregate Demand Externalities,
and Sticky Price

Consider a representative household that lives for two periods with utility function

V (C1, C2, N1, N2) = U(C1) − V (N1) + 1

1 + ρ
E1 [U(C2) − V (N2)]

in which N is the labor supply and C is a consumption index given by

Ct ≡
(∫ 1

0
Ct(i)

θ−1
θ di

) θ
θ−1

with Ct (i) representing the quantity of good i consumed in period t at price Pt(i).
Assume that the period utility function is given by

U(Ct ) = C
1− 1

σ
t

1 − 1
σ

,

V (Nt ) = N
1+ϕ
t

1 + ϕ
.

The household saves by buying one-period risk-free bonds Bt at price Qt . His
budget constraint is given by

(1 + τC
t )

∫ 1

0
Pt (i)Ct (i)di + QtBt = Bt−1 + (1 − τN

t )WtNt + Tt

in which Tt are lump-sum components of income including firms’ profits, and τC
t and

τN
t represent taxes on consumption and wages. In addition, there is a continuum

of producers with measure 1 each of which produces one of these varieties under
monopolistic competition with the linear production technology

Yt (i) = AtNt(i).

Assume that firms do not face any additional frictions in setting their prices so
that prices are perfectly flexible.

(a) Derive the optimal allocation of consumption expenditures among different
goods for the household and the demand function for good i.



4.2 Solutions for Selected Exercises 95

Optimal allocation of expenditures: For given expenditures E, the household
maximizes its utility from consumption by choosing optimal quantities of each
variety

maxU(Ct ) = U

⎛

⎝
(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1

⎞

⎠ ,

s.t.

∫ 1

0
Pt (i)Ct (i)di ≤ E.

Using Lagrangian

L = U

⎛

⎝
(∫ 1

0
Ct(i)

θ−1
θ di

) θ
θ−1

⎞

⎠− λ

(∫ 1

0
Pt (i)Ct (i)di − E

)
,

first-order condition gives

∂L

∂Ct (k)
= ∂U

∂Ct

∂Ct

∂Ct (k)
− λ

∂
∫ 1
0 Pt (i)Ct (i)di

∂Ct (k)
= ∂U

∂Ct

∂Ct

∂Ct (k)
− λPt (k) = 0,

arrange to get

∂U

∂Ct

θ

θ − 1

(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1−1

θ − 1

θ
Ct(k)

θ−1
θ

−1 − λPt (k) = 0,

∂U

∂Ct

(∫ 1

0
Ct (i)

θ−1
θ di

) 1
θ−1

Ct (k)−
1
θ − λPt (k) = 0,

∂U

∂Ct

(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1

θ−1
θ

1
θ−1

Ct (k)−
1
θ − λPt (k) = 0,

∂U

∂Ct
C

1
θ
t Ct (k)−

1
θ − λPt (k) = 0.

How can we interpret the Lagrange parameter? λ measures the shadow price of a
marginal increase in nominal expendituresE in terms of utility. One additional unit
of E increases real consumption by P−1

t . Therefore

λ = ∂U

∂Ct

1

Pt

.
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Taken together, this yields

∂U

∂Ct

C
1
θ
t Ct (k)−

1
θ − ∂U

∂Ct

Pt (k)

Pt

= 0,

C
1
θ
t Ct (k)−

1
θ − Pt (k)

Pt

= 0.

Ct (k) = Ct

(
Pt

Pt (k)

)θ

.

Substitute this into the definition of the consumption index

Ct =
(∫ 1

0
Ct(k)

θ−1
θ dk

) θ
θ−1

=
⎛

⎝
∫ 1

0

(

Ct

(
Pt

Pt (k)

)θ
) θ−1

θ

dk

⎞

⎠

θ
θ−1

=
(∫ 1

0
C

θ−1
θ

t

(
Pt

Pt (k)

)θ−1

dk

) θ
θ−1

= CtP
θ
t

(∫ 1

0
Pt (k)1−θdk

) θ
θ−1

,

Pt =
(∫ 1

0
Pt(k)1−θdk

) 1
1−θ

.

Now solve for the relative demand for good k and good l. Note that the first-order
condition holds for all varieties

∂U

∂Ct

C
1
θ
t Ct (k)−

1
θ − λPt (k) = 0,

∂U

∂Ct

C
1
θ
t Ct (l)

− 1
θ − λPt (l) = 0,

Ct (k)−
1
θ − λPt (k) = Ct(l)

− 1
θ − λPt (l) = 0,

Ct (k)

Ct (l)
=
(

Pt (l)

Pt (k)

)θ

,

Ct (l) = Ct (k)

(
Pt(k)

Pt (l)

)θ

.
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Check for consistency. Solve for the demand function for good k by substituting
this expression in the definition of the consumption bundle:

Ct =
(∫ 1

0
Ct(l)

θ−1
θ dl

) θ
θ−1

=
⎛

⎝
∫ 1

0

(

Ct (k)

(
Pt (k)

Pt (l)

)θ
) θ−1

θ

dl

⎞

⎠

θ
θ−1

= Ct (k)

(∫ 1

0

(
Pt (k)

Pt (l)

)θ−1

dl

) θ
θ−1

= Ct (k)Pt (k)θ
(∫ 1

0
Pt(l)

1−θ dl

) 1
1−θ (1−θ) θ

θ−1

= Ct (k)Pt (k)θP
(1−θ) θ

θ−1
t = Ct(k)Pt (k)θP−θ

t ,

Ct (k) = Ct

(
Pt

Pt (k)

)θ

.

(b) Give an interpretation of θ and plot the demand function for good i.

θ measures the elasticity of substitution between varieties and thus gives a
measure of the elasticity of the demand for good k with respect to changes in its
price

θ = −∂Ct(k)

∂Pt (k)

Pt (k)

Ct (k)
.

The higher θ , the stronger the response of the demand for good k to changes in
its price. Thus, higher values of θ imply that varieties are better substitutable. In the
limit, for θ → ∞, goods are perfect substitutes which implies that there is perfect
competition between firms.

Graphically, the demand function for good k is a decreasing function of the price
of variety k and its slope is decreasing in θ .

(c) Derive the optimal labor supply and consumption decision of the household in
log-linear form.

Note that we can simplify the budget constraint as follows:

∫ 1

0
Pt (i)Ct (i)di =

∫ 1

0
Ct

(
Pt

Pt (i)

)θ

Pt (i)di = CtP
θ
t

∫ 1

0
Pt (i)

θ−1di,

∫ 1

0
Pt (i)Ct (i)di = CtP

θ
t

(∫ 1

0
Pt(i)

1−θdi

) 1−θ
1−θ

= CtP
θ
t P 1−θ

t = PtCt .
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Therefore, the household’s optimization problem reduces to

max V (C1, C2, N1, N2) = U(C1) − V (N1) + 1

1 + ρ
E1 [U(C2) − V (N2)] ,

s.t. (1 + τC
t )PtCt + QtBt = Bt−1 + (1 − τN

t )WtNt + Tt .

Using Lagrangian,

L = V (C1, C2, N1, N2) −
2∑

t=1

λt

[
(1 + τC

t )PtCt + QtBt − Bt−1 − (1 − τN
t )WtNt − Tt

]
,

the first-order conditions give

∂L

∂C1
= U ′(C1) − λ1(1 + τC

1 )P1 = 0,

∂L

∂C2
= 1

1 + ρ
U ′(C2) − λ2(1 + τC

2 )P2 = 0,

∂L

∂N1
= −V ′(N1) + λ1(1 − τN

1 )W1 = 0,

∂L

∂N2
= − 1

1 + ρ
V ′(N2) + λ2(1 − τN

2 )W2 = 0,

∂L

∂B1
= λ1Q1 − λ2 = 0.

Also remember that the bond price is related to the interest rate on the bond and
use the specific expressions for the utility functions

Qt = (1 + it )
−1,

U ′(Ct ) = C−σ−1

t ,

V ′(Nt ) = N
ϕ
t .

This yields the Euler equation

U ′(C1)

U ′(C2)
= 1

1 + ρ

1 + τC
1

1 + τC
2

P1

P2

1

Q1

= 1

1 + ρ

1 + τC
1

1 + τC
2

(1 + i1)P1

P2
,
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U ′(C1)

U ′(C2)
= 1 + r1

1 + ρ

1 + τC
1

1 + τC
2

,

C2

C1
=
(
1 + r1

1 + ρ

1 + τC
1

1 + τC
2

)σ

.

In addition, the optimal labor supply schedule is given by

V ′(N1)

U ′(C1)
= N

ϕ
1 Cσ−1

1 = (1 − τN
1 )W1

(1 + τC
1 )P1

,

V ′(N2)

U ′(C2)
= N

ϕ
2 Cσ−1

2 = (1 − τN
2 )W2

(1 + τC
2 )P2

Log-linearize these expressions with smaller case letters denoting natural loga-
rithms,

c2 − c1 = σ(r1 − ρ + τC
1 − τC

2 ),

c1 = c2 − σ(r1 − ρ) − σ(τC
1 − τC

2 ),

ϕn1 + 1

σ
c1 = w1 − p1 − τN

1 − τC
1 ,

n1 = 1

ϕ
(w1 − p1 − τN

1 − τC
1 ) − 1

σϕ
c1,

n2 = 1

ϕ
(w2 − p2 − τN

2 − τC
2 ) − 1

σϕ
c2.

(d) Derive the optimal price setting rule for the monopolistic producer of good
i under the assumption of perfectly flexible prices. What is the effect of
monopolistic competition relative to the competitive case?

The monopolistic producer of good i maximizes his profit taking into account
the effect of his price setting on the demand for good i

max�t(i) = Pt (i)Y
d
t (i) − WtN

d
t (i) = Pt(i)Y

d
t (i) − Wt

At

Y d
t (i)

= Pt (i)Yt

(
Pt

Pt (i)

)θ

− Wt

At
Yt

(
Pt

Pt (i)

)θ

=
(

Pt (i)
1−θ − Pt(i)

−θ Wt

At

)
YtP

θ
t .
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The first-order condition gives

∂�t(i)

∂Pt (i)
= (1 − θ)Pt (i)

−θ + θPt (i)
−θ−1Wt

At

= 0,

θPt (i)
−1Wt

At

= θ − 1,

Pt (i) = θ

θ − 1

Wt

At

= (1 + μ)
Wt

At

≡ Pt → Wt

Pt

= 1

1 + μ
At < At,

pt = μ + wt − at .

Monopolistic competition results in a constant mark-up μ that depends on the
elasticity of substitution. The higher θ , the more elastic is demand in response to a
price change and thus the lower the mark-up. With perfect competition, μ → 0.

(e) What is the natural level of output Yt,n in this economy. Discuss its properties by
comparing it to the output level that would result under perfect competition.

Natural level of output means the output with flexible prices (but possibly
distorted because of monopolistic competition).

Efficient level of output is the first-best level of output with perfect competition
and without distortionary taxation.

Goods market equilibrium implies yt = ct + gt and yt = at + nt .
Start from labor market equilibrium and replace the real wage and consumption

ϕnt + 1

σ
ct = wt − pt − τN

t − τC
t ,

ϕ(yt − at ) + 1

σ
(yt − gt ) = at − μ − τN

1 − τC
1 ,

ϕyt + 1

σ
yt = (1 + ϕ)at + 1

σ
gt − μ − τN

1 − τC
1 ,

yt,n = 1

ϕ + σ−1

(
(1 + ϕ)at + 1

σ
gt − μ − τN

1 − τC
1

)
,

nt,n = 1

ϕ + σ−1

(
(1 − σ−1)at + 1

σ
gt − μ − τN

1 − τC
1

)
.

Solve for the natural rate of interest via the Euler equation

c2 − c1 = σ(r1 − ρ + τC
1 − τC

2 ),

y2 − g2 − y1 + g1 = σ(r1 − ρ + τC
1 − τC

2 ),

r1,n = ρ + 1

σ

[
(y2,n − y1,n) − (g2 − g1)

]− (τC
1 − τC

2 ).
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Notice the structural inefficiency

y∗
t − yt,n = 1

ϕ + σ−1

(
μ + τN

1 + τC
1

)
.

Also note that these natural values are independent of monetary policy shocks.

(f) Assume that agents expect the economy to be at its natural level before the
realization of shocks, i.e. ye

2 = ye
1 = yn and pe

2 = pe = p∗. Derive the AD
curve under this set-up.

Start from the Euler equation and use the goods market equilibrium to substitute
for consumption. Now, take expectations into account

ce
2 − c1 = σ(r1 − ρ + τC

1 − τC
2 ),

ct = yt − gt ,

ye
2 − y1 − ge

2 + g1 = σ(i1 − (pe
2 − p1) − ρ + τC

1 − τC
2 ),

y1 = yn − σ(i1 − (p∗ − p1) − ρ + τC
1 − τC

2 ) − (ge
2 − g1).

(g) Now assume that there are price rigidities so that in period 1 only a fraction of
firms 1−α can adjust their prices whereas the remaining fraction α is unable to
do so. Prices are perfectly flexible in period 2. Derive the optimal price setting
rule in this case and the AS curve.

Since prices are perfectly flexible in period 2, firms that can adjust the price in
period 1 will simply choose the optimal price in the flexible price set-up above

p1(i) = μ + w1 − a1.

Combine this with the labor market equilibrium to substitute for the wage and
goods market equilibrium to solve for c1 and n1

ϕn1 + 1

σ
c1 = w1 − p1 − τN

1 − τC
1 = p1(i) − μ + a1 − p1 − τN

1 − τC
1 ,

p1(i) − p1 = μ + τN
1 + τC

1 − a1 + ϕn1 + 1

σ
c1

= μ + τN
1 + τC

1 − a1 + ϕ(y1 − a1) + 1

σ
(y1 − g1)

= μ + τN
1 + τC

1 − (1 + ϕ)a1 + ϕy1 + 1

σ
y1 − 1

σ
g1.
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Note that this price is identical for all firms that can adjust, i.e., p1(i) = p̃1. Also
recall the definition of the natural level of output

y1,n = 1

ϕ + σ−1

(
(1 + ϕ)a1 + 1

σ
g1 − μ − τN

1 − τC
1

)
.

Combining these equations yields the price adjustment rule for those firms that
are able to adjust prices given the average price level in the economy

p̃1 − p1 =
(

ϕ + 1

σ

)
(y1 − y1,n).

In contrast, those firms that cannot adjust their prices in period 1 will set them
equal to the expected price level when the economy is at the expected natural level
of production

p
sticky

1 (i) = p
sticky

1 = pe
1 = E0(p1).

The aggregate price level in period 1 is a mix of fixed and flexible prices:

P 1−θ
1 = α

(
P

sticky
1

)1−θ + (1 − α)P̃ 1−θ
1 .

Use a first-order Taylor approximation around the steady state price level P to
linearize this equation

P 1−θ
1 = P 1−θ + (1 − θ)αP−θ (P

sticky

1 − P) + (1 − θ)(1 − α)P−θ (P̃1 − P),

P 1−θ
1 − P 1−θ

P 1−θ
= (1 − θ)α

P−θ (P
sticky

1 − P)

P 1−θ
+ (1 − θ)(1 − α)

P−θ (P̃1 − P)

P 1−θ
,

(
P1 − P

P

)1−θ

= (1 − θ)α
(P

sticky

1 − P)

P
+ (1 − θ)(1 − α)

(P̃1 − P)

P
.

Also use the first-order approximation

ln(xt ) − ln(x) = ln
(xt

x

)
= ln

(xt

x
− 1 + 1

)
≈ xt

x
− 1 = xt − x

x
.

Let small letters denominate logs. Then, this yields

(p1 − p)1−θ = (1 − θ)α(p
sticky
1 − p) + (1 − θ)(1 − α)(p̃1 − p),

(1 − θ)(p1 − p) = (1 − θ)αp
sticky
1 + (1 − θ)(1 − α)p̃1 − (1 − θ)p,

p1 = αp
sticky
1 + (1 − α)p̃1.
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Now, use the price setting behavior of sticky price firms

p1 = αp
sticky

1 + (1 − α)p̃1 = αpe
1 + (1 − α)p1 + (1 − α)

(
ϕ + σ−1

)
(y1 − y1,n),

αp1 = αpe
1 + (1 − α)

(
ϕ + σ−1

)
(y1 − y1,n),

p1 − pe
1 = (1 − α)ϕ + σ−1

α
(y1 − y1,n).

Therefore, the AS curve relates the output gap in period 1 to deviations of prices
from their expected values

p1 − pe
1 = κ(y1 − y1,n).
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5Optimal Monetary Policy

5.1 Exercises

5.1.1 Short Review Questions

(a) Briefly explain how sticky price leads to price dispersion, and why this implies
a loss in social welfare. What does this imply for optimal monetary policy?

(b) Briefly explain how conflicts of interests induce central bank to generate surprise
inflation, and how inflation sustains in such scenario.

(c) Following question (b), name a few solutions to the inflation problem. Explain
how they work.

(d) Explain the pros and cons of the following monetary policy rules: (1) price
level targeting, (2) inflation targeting, (3) GDP targeting, and (4) money growth
targeting.

(e) Grilli et al. (1991) defined an independence index of a central bank, which is
computed from the following factors: (1) Central bank governor not appointed
by the government; (2) Central bank governor’s tenure longer than 5 years;
(3) All the central bank’s Board not appointed by the government; (4) No
government approval of monetary policy formulation is required; (5) No
mandatory participation of government representative in the Board; (6) Legal
provisions that strengthen the central bank’s position in conflicts with the
government are present. Then the authors found that the higher one central
bank’s index is, the lower the country’s inflation. In the framework of Barro–
Gordon model, provide some intuitions why central bank independence may
help to fight against inflation.
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5.1.2 Barro–GordonModel

As Barro and Gordon (1983a,b), assume a social loss function depending on
employment l and prices p

L = (l − l∗)2 + β(p − p∗)2,

where l∗ is the efficient employment and p∗ is the price level consistent with optimal
inflation. All lowercase letters denote logarithmic terms. The short-run Phillips
curve is given by

l = l + c(p − pe + θ),

where c > 0 is a parameter and θ is a random shock.

(a) Assume that the central bank can control the price level and aims at minimiz-
ing social losses after observing productivity shock θ . Derive the first-order
condition for optimal monetary policy and solve the model for its rational
expectations equilibrium described by pe = E(p) and policy rule p(θ).

(b) Discuss the impact of exogenous parameters on the inflation bias pe − p∗ and
on the policy rule p(θ) obtained in (b).

(c) Assume now that the central bank commits to stabilize inflation in such a way
that p = p∗. Compare the resulting variance of employment, the inflation bias
and expected welfare loss with your solution from (b).

5.1.3 Solving Time-Inconsistency Problem: Delegation

Rogoff (1985) consider an Economy in which efficient employment and optimal
price level are both normalized to 1, L∗ = 1 > L, P ∗ = 1, and L is the natural
rate of employment. For simplicity, in the following we use log values of variables;
therefore, l∗ = lnL∗ = 0, p∗ = lnP ∗ = 0, and l = lnL, p = lnP are the
percentage deviations from their efficient levels.

Suppose the government wants to maximize the social welfare as given by

W = γ l − a
p2

2
,

and delegates monetary policy to a central banker who follows an objective function

W̃ = cγ l − a
p2

2
,
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in which γ is a random variable with mean γ and variance σ 2
γ . Suppose that the

short-run Phillips curve is given by

l = l + b
(
p − pe

)
.

Note that the expected price level pe is determined before γ is observed, and the
central banker chooses p after γ is known.

(a) Compute the central banker’s optimal solution for p, with pe, γ , and c being
given.

(b) Is the central banker able to resist the temptation to aim at efficient employment,
i.e. l∗ = 0? Compute pe.

(c) Compute the expected value of W .
(d) Compute c that maximizes W . Provide some intuitions on your result.

5.1.4 Optimal Monetary Policy: The New Keynesian Perspective

Based on Clarida et al. (1999) consider the “new Keynesian perspective” featured
by an IS curve

xt = −φ(it − Etπt+1) + Etxt+1 + gt ,

where xt is the output gap, and a Phillips curve

πt = λxt + βEtπt+1 + ut ,

gt and ut are shocks that obey gt = μgt−1 + ĝt and ut = ρut−1 + ût , where
μ ≥ 0, ρ ≤ 1 and ĝt , and ût are i.i.d. random variables with zero mean and constant
variances.

The policy objective is given by

minEt

[+∞∑

i=0

βi
(
αx2

t+i + π2
t+i

)
]

.

(a) Explain the “new” IS curve and the forward looking Phillips curve.
(b) Explain the policy objective. What are the differences from a Barro–Gordon

type policy objective?
(c) Derive the optimal discretionary policy for rational expectations and show that

there is a short-run trade-off between inflation and output variability.
(d) Using discretionary policy: How must the interest rate respond to a rise in

expected inflation?



108 5 Optimal Monetary Policy

5.1.5 Optimal Monetary Policy in a Small DSGEModel

Start from the same model of the economy as in Chap. 4, Exercise 6 with sticky
prices. The model features two periods, the short-run (t = 1) and the long-run
(t = 2), and is characterized by the following equations:

1. AD curve: y1 = ȳn − σ(i1 − (pe
2 − p1) − ρ) + η1;

2. AS curve: p1 − pe
1 = κ(y1 − y1,n);

3. Natural output: y1,n = ȳn + ε1 − u1;
4. Efficient output: y∗

1 = y1,n + � + u1 = ȳn + � + ε1.

The three shocks η, ε, and u have zero expected mean and their variances are
given by σ 2

η , σ
2
ε , and σ 2

u .
Assume that the central bank sets the interest rate to minimize the loss function

L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2.

(a) Discuss the effects of the three types of shocks on output and prices as well as
the associated transmission mechanisms.

(b) Welfare losses result in parts from price dispersion. Start from the labor market
equilibrium condition

Nt =
∫ 1

i=0
Nt(i)di

and show via a second-order approximation that the price dispersion index

Dt =
∫ 1

i=0

(
Pt (i)

Pt

)−θ

di

can be expressed in terms of the cross-sectional variance of prices. Show that
this variance is related to surprise inflation.

(c) Assume that the central bank follows an interest rate rule i1 = f (η1, ε1, u1).
The structure of the problem follows a three-stage process.

• Stage 1: Central bank announces a policy rule i1 = f (η1, ε1, u1);
• Stage 2: The share α of firms sets (fixed) prices based on rational expecta-

tions. Then shocks occur;
• Stage 3: Central bank reacts to the shocks by setting the actual interest rate

i1.

Obtain the optimal policy rule under the assumption that there is no structural
inefficiency (i.e. � = 0). Discuss how optimal monetary policy responds to the
different shocks.
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(d) Show that the loss function of the central bank can be derived from the
household’s period utility function V (C,N) = U(C) − V (N) via a second
order approximation.

5.1.6 Time Inconsistency Problem and Inflation Bias

Consider the same set-up as in the previous exercise but now assume that the
structural inefficiency is not corrected via paying subsidies to firms, i.e., there is
a wedge � > 0 between the first-best (efficient) level of output and the natural
level.

Assume that the central bank minimizes the loss function

L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2

under the constraints

• AD curve: y1 = ȳn − σ(i1 − (pe
2 − p1) − ρ) + η1;

• AS curve: p1 − pe
1 = κ(y1 − y1,n);

• Natural output: y1,n = ȳn + ε1 − u1;
• Efficient output: y∗

1 = y1,n + � + u1 = ȳn + � + ε1

in which the three shocks η, ε, and u have zero expected mean and their variances
are given by σ 2

η , σ
2
ε , and σ 2

u .
Agents have rational expectations. Assume that the central bank follows an

interest rate rule i1 = f (η1, ε1, u1). The structure of the problem follows a three-
stage process.

• Stage 1: Central bank announces a policy rule i1 = f (η1, ε1, u1);
• Stage 2: The share α of firms sets (fixed) prices based on rational expectations.

Then shocks occur;
• Stage 3: Central bank reacts to the shocks by setting the actual rate i1.

(a) First, assume that the central bank can credibly commit itself to the announced
price level in stage 1 so that pe = E(p1). Derive the commitment equilibrium
under these assumptions.

(b) Discuss why there is an incentive for surprise inflation and derive the equi-
librium if surprise inflation is possible, i.e. under the assumption that inflation
expectations are fixed at pe = p∗.

(c) Derive the equilibrium under discretion and the welfare loss L associated with
discretionary central bank policy.
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5.2 Solutions for Selected Exercises

5.2.1 Short Review Questions

(e) Grilli et al. (1991) defined an independence index of a central bank, which is
computed from the following factors: (1) Central bank governor not appointed
by the government; (2) Central bank governor’s tenure longer than 5 years; (3)
All the central bank’s Board not appointed by the government; (4) No govern-
ment approval of monetary policy formulation is required; (5) No mandatory
participation of government representative in the Board; (6) Legal provisions
that strengthen the central bank’s position in conflicts with the government are
present. Then the authors found that the higher one central bank’s index is,
the lower the country’s inflation. In the framework of Barro–Gordon model,
provide some intuitions why central bank independence may help to fight against
inflation.

The answer consists of the following points: First, where does inflation in
Barro–Gordon model come from? The Nash inflation comes from the fact that
the policy maker fails to resist the temptation of improving employment via
generating surprising inflations. Second, what does central bank independence
mean? Independence enables central banks to concentrate on monetary policy (e.g.,
factor (1), (3), and (4)) and not to yield upon government’s pressure of raising
employment (e.g., factor (5) and (6)). Third, why is inflation lower under a higher
degree of independence? Therefore in the loss function the central bank is able to
put a much higher weight on price stabilization, and the realized inflation becomes
lower. Furthermore, Longer tenure (factor (2)) of central bank governors makes
the game approximately infinitely repeated—imagine that the Fed adjusts its rates
every few weeks, but Alan Greenspan stayed in office for 20 years—which makes
cooperative solution more likely to arise.

5.2.2 Barro–GordonModel

Assume a social loss function depending on employment l and prices p

L = (l − l∗)2 + β(p − p∗)2,

where l∗ is the efficient employment and p∗ is the price level consistent with optimal
inflation. All lowercase letters denote logarithmic terms. The short-run Phillips
curve is given by

l = l + c(p − pe + θ),

where c > 0 is a parameter and θ is a random shock.
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(a) Assume that the central bank can control the price level and aims at minimiz-
ing social losses after observing productivity shock θ . Derive the first-order
condition for optimal monetary policy and solve the model for its rational
expectations equilibrium described by pe = E(p) and policy rule p(θ).

The central bank’s problem is to

min
p

L = (l − l∗)2 + β(p − p∗)2

s.t. l = l + c(p − pe + θ).

Insert the equality constraint into the object function and the original problem turns
out to be

min
p

L = [
l + c(p − pe + θ) − l∗

]2 + β(p − p∗)2.

The first-order condition gives

∂L

∂p
= 2

[
l + c(p − pe + θ) − l∗

]
c + 2β(p − p∗) = 0,

and rearrange to get the policy rule p(θ)

p(θ) = c(l∗ − l) + c2(pe − θ) + βp∗

c2 + β
. (5.1)

And in rational expectation equilibrium

pe = E[p] = E

[
c(l∗ − l) + c2(pe − θ) + βp∗

c2 + β

]

= c(l∗ − l) + c2pe + βp∗

c2 + β
,

solve and get pe

pe = c(l∗ − l)

β
+ p∗. (5.2)

(b) Discuss the impact of exogenous parameters on the inflation bias pe − p∗ and
on the policy rule p(θ) obtained in (a).

In the expression above the inflation bias is

pe − p∗ = c(l∗ − l)

β
.
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Fig. 5.1 Discretionary
monetary policy

β is the weight on inflation in the loss function, defining the shape of the ellipses;
and c measures the impact of unexpected inflation on the employment. Explain by
Fig. 5.1.

(c) Assume now that the central bank commits to stabilize inflation in such a way
that p = p∗. Compare the resulting variance of employment, the inflation bias
and expected welfare loss with your solution from (b).

Insert (5.2) into (5.1) to eliminate p∗

p = c(l∗ − l) + c2(pe − θ) + βpe − c(l∗ − l)

c2 + β

= pe − c2θ

c2 + β
.

Apply it into the short-run Phillips curve and one can get

l = l + cβ

c2 + β
θ,

as well as

var(l) =
(

β

c2 + β

)2

c2σ 2
θ .
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When the central bank commits to stabilize inflation in such a way that p = p∗,
then pe = p = p∗. Now the short-run Phillips curve becomes

l = l + cθ,

var(l) = c2σ 2
θ .

The variance now is larger than the case before.

5.2.3 Solving Time-Inconsistency Problem: Delegation

Rogoff (1985) consider an Economy in which efficient employment and optimal
price level are both normalized to 1, L∗ = 1 > L, P ∗ = 1 and L is the natural
rate of employment. For simplicity, in the following we use log values of variables;
therefore, l∗ = lnL∗ = 0, p∗ = lnP ∗ = 0, and l = lnL, p = lnP are the
percentage deviations from their efficient levels.

Suppose the government wants to maximize the expected welfare as given by

W = γ l − a
p2

2
,

and delegates monetary policy to a central banker who follows an objective function

W̃ = cγ l − a
p2

2
,

in which γ is a random variable with mean γ and variance σ 2
γ . Suppose that the

short-run Phillips curve is given by

l = l + b
(
p − pe

)
.

Note that pe is determined before γ is observed, and the central banker chooses p

after γ is known.

(a) Compute the central banker’s optimal solution for p, with pe , γ and c being
given.

The central banker’s problem is to

max
p

W̃ = cγ l − a
p2

2
,

s.t. l = l + b
(
p − pe

)
.
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The first-order condition gives

cγ b − ap = 0,

p = cγ b

a
.

(b) Is the central banker able to resist the temptation to aim at efficient employment,
i.e. l∗ = 0? Compute pe.

No—As soon as l < 0, the central banker does nothing different from the
government in this sense.

The public knows that the central banker would set inflation p = cγ b
a
, therefore

rational expectation requires that

pe = E

[
cγ b

a

]
= cγ b

a
.

(c) Compute the expected value of W .

Take expectation on W , then apply p and pe

E [W ] = E

[
γ l − a

p2

2

]

= E

{
γ
[
l + b

(
p − pe

)]− a
p2

2

}

= E

⎧
⎪⎨

⎪⎩
γ

[
l + b

(
cγ b

a
− cγ b

a

)]
− a

(
cγ b
a

)2

2

⎫
⎪⎬

⎪⎭

= lγ + cb2

a
σ 2

γ − c2b2

2a

(
σ 2

γ + γ 2
)

.

(d) Compute c that maximizes W . Give some intuitions on your result.

Find the optimal solution for c by the first-order condition

∂E [L]

∂c
= b2

a
σ 2

γ − cb2

a

(
σ 2

γ + γ 2
)

= 0,

rearrange to get c

c = σ 2
γ

σ 2
γ + γ 2 ≤ 1.
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Fig. 5.2 Lower inflation
under delegation

The lesson we learn here is that the government should delegate monetary policy
to a central banker who is more conservative than the government, i.e. a central
banker with a lower weight c on unemployment. By doing so, the average inflation
is kept lower since p = cγ b

a
≤ γ b

a
= pd , in which pd is the discretionary solution

achieved by the government itself, hence a higher social welfare level. However,
such a policy maker would not respondwell to the shocks, and c needs to be properly
chosen to reflect such trade off (Fig. 5.2).

The optimal value of c is decreasing in γ . If γ is higher, then the expected
inflation would also be higher for a given c, therefore it would be welfare improving
to offset this effect by choosing a central banker with a lower c and keep inflation
lower.

However, the optimal value of c is increasing in σ 2
γ . Because the central banker

acts after γ reveals, she can offset the deviation in γ from its expected value and
raise social welfare. Therefore, in order to achieve this, it would be better to have a
central banker who cares more about the shock’s effect, i.e. a central banker with a
higher c.

5.2.4 Optimal Monetary Policy: The New Keynesian Perspective

Based on Clarida et al. (1999) consider the “new Keynesian perspective” featured
by an IS curve

xt = −φ(it − Etπt+1) + Etxt+1 + gt ,
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where xt is the output gap, and a Phillips curve

πt = λxt + βEtπt+1 + ut ,

gt and ut are shocks that obey gt = μgt−1 + ĝt and ut = ρut−1 + ût , where μ ≥ 0,
ρ ≤ 1 and ĝt and ût are i.i.d. random variables with zero mean and constant
variances.

The policy objective is given by

minEt

[+∞∑

i=0

βi
(
αx2

t+i + π2
t+i

)
]

.

(a) Explain the “new” IS curve and the forward looking Phillips curve.

These equations constitute the non-policy block of the basic new Keynesian
model. That block has a simple recursive structure: the newKeynesian Phillips curve
determines inflation given a path for the output gap, whereas the IS curve determines
the output gap given a path for the actual real rate. Solve xt and πt forward and get

xt = −φ(it − Etπt+1) + Etxt+1 + gt

= Et

[+∞∑

i=0

−φ(it+i − πt+1+i) + gt+i

]

,

– Note that rt = it − Etπt+1 is the expected real return on a one period bond (i.e.,
the real interest rate), it emphasizes the fact that the output gap is proportional to
the sum of current and anticipated real interest rate;

πt = λxt + βEtπt+1 + ut

= Et

[+∞∑

i=0

βi (λxt+i + ut+i )

]

,

– Inflation depends on current and expected output gap, hence marginal cost, as
explained in Exercise 2(b).

(b) Explain the policy objective. What are the differences from a Barro–Gordon type
policy objective?

The policy objective is to minimize the fluctuations in output and inflation, and
α determines the importance of output fluctuations relative to inflation fluctuations.

The policy objective looks a lot like the standard quadratic loss function used in
Barro–Gordon model. There are, however, two critical differences. First, the output
gap is measured relative to equilibriumoutput under flexible prices. In the traditional
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Barro–Gordonmodel, the output variable was more commonly interpreted as output
relative to trend or output relative to the natural rate of output. The natural rate
of output varies with productivity shocks, but it is not the same as the flexible-
price equilibrium level of output used to define the gap variable xt . A second
difference is the reason inflation variability enters the loss function. When prices are
sticky, inflation results in an inefficient dispersion of output among the individual
producers. The representative household’s utility depends on its consumption of
a composite good; faced with a dispersion of prices for the differentiated goods
produced in the economy, the household buys more of the relatively cheaper goods
and less of the relatively more expensive goods. Because of diminishing marginal
utility, the increase in utility derived from consuming more of some goods is less
than the loss in utility due to consuming less of the more expensive goods. Hence,
price dispersion reduces utility. Similarly, dispersion on the production side is costly.
The increased cost of producing more of some goods is greater than the cost saving
from reducing production of other goods. For these reasons, price dispersion reduces
utility, and, when each firm does not adjust its price every period, price dispersion
is caused by inflation.

However, in Barro–Gordon model, the efficiency distortion that leads to x∗ was
used to motivate the presence of an overly ambitious output target in the central
bank’s objective function. As a consequence, the presence of x∗ > x implies that a
central bank acting under discretion to maximize the policy objective would produce
an average inflation bias, which is the source of the Barro–Gordon inflation.

(c) Derive the optimal discretionary policy for rational expectations and show that
there is a short-run trade-off between inflation and output variability.

The optimal discretionary policy under rational expectations is derived in two
stages:

1. Choose xt and πt in order to maximize the policy objective, given the new
Keynesian Phillips curve;

2. Given these optimal values of inflation and output gap, determine the optimal
setting of the interest rate implied by the IS curve, i.e. the interest rate that will
support the inflation and output levels determined in the last step.

With discretionary policy the central bank cannot manipulate the beliefs, therefore
it takes the expectation of the private sector as given in solving the optimization
problem. (Surely, conditional on the central bank’s optimal rule, the private sector
forms the beliefs rationally.) As a consequence, policy decisions today do not affect
future expectations, which implies that the maximization problem can be written as

min Et

[+∞∑

i=0

βi
(
αx2

t+i + π2
t+i

)]

= αx2
t + π2

t + Ft ,

s.t. πt = λxt + βEtπt+1 + ut = λxt + ft ,
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in which

Ft = Et

[+∞∑

i=1

βi
(
αx2

t+i + π2
t+i

)
]

,

ft = βEtπt+1 + ut

are the terms taken as given in the optimization, capturing the ideas such that

• Future inflation and output are not affected by today’s actions;
• The central bank cannot directly manipulate expectations.

By the first-order conditions one can see that

xt = −λ

α
πt . (5.3)

Remember that the inflation target here is zero, so if inflation is positive, the
central bank needs to create a recession to reduce inflation, i.e. “leaning against
the wind” argument. To achieve this, whenever inflation is above target the central
bank contracts demand by raising the interest rate. How aggressive such action is
depends on

• The gain in reduced inflation per unit of output loss (positive effect);
• The weight on output fluctuation in preferences (negative effect)

– The short-run trade-off between inflation and output variability.

(d) Using discretionary policy: How must the interest rate respond to a rise in
expected inflation?

Now solve the nominal interest rate rule by applying the first-order condition in
the new Keynesian model. Insert (5.3) into new Keynesian Phillips curve

πt = λxt + βEtπt+1 + ut

= λ

(
−λ

α
πt

)
+ βEtπt+1 + ut ,

πt = αβ

α + λ2
Etπt+1 + α

α + λ2
ut .

Then in order to pin down Etπt+1, we impose the rational expectation condition of
the private sector, i.e. the expectations should be consistent with the predictions of
the model and the updated version of the equation above should still hold

πt+1 = αβ

α + λ2
Et+1πt+2 + α

α + λ2
ut+1.
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Take expectations on both sides and get

Etπt+1 = αβ

α + λ2
Et [Et+1πt+2] + α

α + λ2
Etut+1.

Recall that the supply shock follows ut = ρut−1 + ût , then

Etut+1 = ρut + Et ût+1 = ρut .

Therefore Etπt+1 can be computed

Etπt+1 = αβ

α + λ2
Et [πt+2] + αρ

α + λ2
ut ,

and substitute Etπt+1 in the expression for πt to get

πt = αβ

α + λ2

(
αβ

α + λ2
Et [πt+2] + αρ

α + λ2
ut

)
+ α

α + λ2
ut

=
(

αβ

α + λ2

)2

Et [πt+2] +
(

α

α + λ2

)2

βρut + α

α + λ2
ut

= α

α + λ2

1

1 − αβρ

α+λ2

ut ,

in which the last step is ensured by the transversality condition. Update πt one
period forward to get

Etπt+1 = Et

[
α

α + λ2

1

1 − αβρ

α+λ2

ut+1

]

= α

α + λ2

ρ

1 − αβρ

α+λ2

ut .

By Eq. (5.3) one can see that

xt = −λ

α
πt

= −λ

α

α

α + λ2

1

1 − αβρ

α+λ2

ut

= − λ

α + λ2

1

1 − αβρ

α+λ2

ut .

Update xt one period forward to get

Etxt+1 = − λ

α + λ2

ρ

1 − αβρ

α+λ2

ut .
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Fig. 5.3 Central bank’s response to a rise in expected inflation

Then insert everything into the IS curve

xt = −φ(it − Etπt+1) + Etxt+1 + gt ,

it = Etπt+1 − 1

φ
xt + 1

φ
Etxt+1 + 1

φ
gt

= Etπt+1 + 1

φ

λ

αρ
Etπt+1 − 1

φ

λ

α
Etπt+1 + 1

φ
gt

= Etπt+1

[
1 + λ(1 − ρ)

αφρ

]
+ 1

φ
gt ,

showing how the interest rate responds to a rise in expected inflation. The result is
that the central bank creates a recession to deter the inflation, as shown in Fig. 5.3.

5.2.5 Optimal Monetary Policy in a Small DSGEModel

Start from the same model of the economy as in Chap. 4, Exercise 6 with sticky
prices. The model features two periods, the short-run (t = 1) and the long-run
(t = 2), and is characterized by the following equations:

1. AD curve: y1 = ȳn − σ(i1 − (pe
2 − p1) − ρ) + η1;

2. AS curve: p1 − pe
1 = κ(y1 − y1,n);

3. Natural output: y1,n = ȳn + ε1 − u1;
4. Efficient output: y∗

1 = y1,n + � + u1 = ȳn + � + ε1.
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The three shocks η, ε, and u have zero expected mean and their variances are
given by σ 2

η , σ 2
ε , and σ 2

u .
Assume that the central bank sets the interest rate to minimize the loss function

L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2.

(a) Discuss the effects of the three types of shocks on output and prices as well as
the associated transmission mechanisms.

Recall from Chap. 4, Exercise 6

y∗
t − yt,n = 1

ϕ + σ−1

(
μ + τN

1 + τC
1

)
.

Demand shock η1 (see Fig. 5.4)

• η1 > 0 shifts AD curve upward and drives output above the natural level. This
induces firms to increase their prices;

• Optimal response: Increase in interest rate dampens current demand once real
interest rate increases. Perfect stabilization possible;

• Vice versa for η1 < 0.

Fig. 5.4 Effects of a demand shock
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Fig. 5.5 Effects of a supply shock

Supply shock ε1 (based on productivity at or willingness to work zt , see
Fig. 5.5)

• Shocks ε1 affect both natural and efficient output but the wedge � remains the
same (remember that this wedge only depends on the mark-up and distortionary
taxation);

• Divine coincidence: Stabilization of price level also stabilizes the welfare-
relevant output gap. No trade-off between output and inflation stabilization.

Cost-push shock u1 (based on mark-up μ or changes in distortionary taxes)

• Shocks u1 affect the gap between natural and efficient output since they only
affect the natural level of output;

• Trade-off between output and inflation stabilization.

(b) Welfare losses result in parts from price dispersion. Start from the labor market
equilibrium condition

Nt =
∫ 1

i=0
Nt(i)di

and show via a second-order approximation that the price dispersion index

Dt =
∫ 1

i=0

(
Pt (i)

Pt

)−θ

di

can be expressed in terms of the cross-sectional variance of prices. Show that this
variance is related to surprise inflation.
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Start from the labor market clearing condition (ignoring time subscripts)

N =
∫ 1

i=0
N(i)di =

∫ 1

i=0

Y (i)

A
di = Y

A

∫ 1

i=0

(
P(i)

P

)−θ

di = Y

A
D

in which D refers to a measure of price dispersion in the economy that creates
welfare losses. Now, consider the definition of the price index

P =
(∫ 1

i=0
P(i)1−θdi

)1−θ

→ 1 =
∫ 1

i=0

(
P(i)

P

)1−θ

di,

1 =
∫ 1

i=0
e
ln

[(
P(i)
P

)1−θ
]

di

=
∫ 1

i=0
e(1−θ)(p(i)−p)di

=
∫ 1

i=0

∞∑

k=0

[(1 − θ)(p(i) − p)]k

k! di,

1 ≈ 1 +
∫ 1

i=0
(1 − θ)(p(i) − p)di +

∫ 1

i=0

(1 − θ)2

2
(p(i) − p)2di,

p =
∫ 1

i=0
pidi + (1 − θ)

2

∫ 1

i=0
(p(i) − p)2di

= E[p(i)] + (1 − θ)

2

∫ 1

i=0
(p(i) − p)2di,

∫ 1

i=0
(pi − p)di = − (1 − θ)

2

∫ 1

i=0
(p(i) − p)2di

in which E[p(i)] ≡ ∫ 1
i=0 pidi denotes the cross-sectional mean of (log) prices.

Start from the definition of the price dispersion index and use the above result for
substitution

D =
∫ 1

i=0

(
P(i)

P

)−θ

di =
∫ 1

i=0
e−θ(p(i)−p)di =

∫ 1

i=0

∞∑

k=0

[−θ(p(i) − p)]k

k!

≈ 1 −
∫ 1

i=0
θ(p(i) − p)di +

∫ 1

i=0

θ2

2
(p(i) − p)2di

≈ 1 + θ
(1 − θ)

2

∫ 1

i=0
(p(i) − p)2di + θ2

2

∫ 1

i=0
(p(i) − p)2di

= 1 + θ

2

∫ 1

i=0
(p(i) − p)2di.
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Note that up to second order

∫ 1

i=0
(p(i) − p)2di ≈

∫ 1

i=0
(p(i) − E[p(i)])2di ≡ var[p(i)].

Therefore, the price dispersion term can be written in logs as

d = lnD ≈ θ

2
var[p(i)].

What about the term var[p(i)]? Recall that a fraction α of firms sets prices
according to P sticky = E−1P or psticky = pe. Taking this into account, the overall
price level is given by

P 1−θ = α(P sticky )1−θ + (1 − α)P̄ 1−θ .

The first-order approximation of this term has been derived in the last chapter and
is given by

p = αpsticky + (1 − α)p̄,

var[p(i)] = E[p(i)2] − E[p(i)]2
= α(psticky)2 + (1 − α)p̄2 − [αpsticky + (1 − α)p̄]2
= α(1 − α)(psticky)2 + (1 − α)αp̄2 − 2α(1 − α)p̄(psticky)2

= α(1 − α)[p̄ − psticky ]2
= α(1 − α)[p̄ − pe]2.

Note that π = p − p−1 so that surprise inflation is given by

π − E−1π = p − E−1p = αpe + (1 − α)p̄ − pe = (1 − α)(p̄ − pe).

Therefore

var[p(i)] = α

1 − α
[π − E−1π]2,

d ≈ θ

2

α

1 − α
[π − E−1π]2.

(c) Assume that the central bank follows an interest rate rule i1 = f (η1, ε1, u1).
The structure of the problem follows a three-stage process.

• Stage 1: Central bank announces a policy rule i1 = f (η1, ε1, u1);
• Stage 2: The share α of firms sets (fixed) prices based on rational expectations.

Then shocks occur;
• Stage 3: Central bank reacts to the shocks by setting the actual interest rate i1.
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Obtain the optimal policy rule under the assumption that there is no structural
inefficiency (i.e. � = 0). Discuss how optimal monetary policy responds to the
different shocks.

Following the three-stage game, the central bank needs to solve the following
problem

min L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2,

s.t. p1 − pe
1 = κ(y1 − y1,n) = κ(y1 − y∗

1 + u1),

rational expectations of agents.

Start from stage 3 after realizations of shocks (with no uncertainty) so that

� = 1

2
(y1 − y∗

1 )
2 + θ

2κ
(p1 − p∗)2 + λ(p1 − pe

1 − κ(y1 − y∗
1 + u1)),

the first-order conditions give

∂�

∂y1
= (y1 − y∗

1 ) − λκ = 0,

∂�

∂p1
= θ

κ
(p1 − p∗) + λ = 0,

∂�

∂λ
= p1 − pe

1 − κ(y1 − y∗
1 + u1) = 0.

Solving the second equation for λ and substituting into the first one yields the
optimal stabilization curve

y1 − y∗
1 = − θ

κ
κ(p1 − p∗),

p1 − p∗ = −1

θ
(y1 − y∗

1 ).

This curve is independent of η1 and u1 as neither affects efficient output y∗.
However, shocks ε1 shift y∗ and thus affect the optimal stabilization curve.

Combining the optimal stabilization curve with the AS curve yields the optimal
price level p1

p1 − p∗ = −1

θ
(y1 − y∗

1 ) = − 1

θκ
(p1 − pe

1) + 1

θ
u1,

p1 + 1

θκ
p1 = p∗ + 1

θκ
pe
1 + 1

θ
u1,
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1 + θκ

θκ
p1 =

(
1 + 1

θκ

)
p∗ + 1

θκ
(pe

1 − p∗) + 1

θ
u1,

p1 = p∗ + 1

1 + θκ
(pe

1 − p∗) + κ

1 + θκ
u1.

This is the central bank’s reaction function that characterizes the optimal response
of the central bank for any expected price level pe

1 after the realization of shocks.
At stage 2, firms set their prices using the best prediction of the price level under

anticipation of the central bank’s reaction. Their expectation of the price level in
stage 3 under rational expectations is given by

pe
1 = E(p1) = p∗ + 1

1 + θκ
(E(p1) − p∗) + κ

1 + θκ
E(u1),

(
1 − 1

1 + θκ

)
E(p1) =

(
1 − 1

1 + θκ

)
p∗,

pe
1 = E(p1) = p∗.

This is combined with the central bank’s reaction function to yield:

p1 = p∗ + 1

1 + θκ
(p∗ − p∗) + κ

1 + θκ
+ u1,

p1 = p∗ + κ

1 + θκ
u1,

p1 − p∗ = κ

1 + θκ
u1.

Thus, cost-push shocks are the only shocks that result in deviations of prices from
their target. All other shocks can be perfectly stabilized in the absence of structural
inefficiencies. Combining this results with the AS curve yields

p1 − pe
1 = p1 − p∗ = κ

1 + θκ
u1 = κ(y1 − y1,n),

y1 − y1,n = 1

1 + θκ
u1,

y1 − ȳ1,n = εt − u1 + 1

1 + θκ
u1 = εt − θκ

1 + θκ
u1,

y1 − y∗ = y1 − y1,n − u1 = − θκ

1 + θκ
u1.
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Use the AD curve to calculate the optimal interest rate rule

y1 − ȳn = −σ(i1 − (p∗ − p1) − ρ) + η1,

εt − θκ

1 + θκ
u1 = −σ(i1 + κ

1 + θκ
u1 − ρ) + η1,

i1 + κ

1 + θκ
u1 − ρ = 1

σ

(
θκ

1 + θκ
u1 − εt + η1

)
,

i1 = ρ + 1

σ

(
θκ

1 + θκ
u1 − εt + η1

)
− κ

1 + θκ
u1,

i1 = ρ + 1

σ

(
η1 − εt − (σ − θ)κ

1 + κθ
u1

)
.

(d) Show that the loss function of the central bank can be derived from the
household’s period utility function V (C,N) = U(C) − V (N) via a second
order approximation.

Start from second-order Taylor approximation of the utility function around the
natural levels of consumption and labor, and note that the cross-derivatives are zero
(i.e., VCN = UCN = 0)

V (C,N) = U(C) + V (N) = C
1− 1

σ
t

1 − 1
σ

+ N
1+ϕ
t

1 + ϕ

≈ V (Cn,Nn) + U ′(Cn)(C − Cn) + V ′(Nn)(N − Nn)

+1

2
U ′′(Cn)(C − Cn)2 + 1

2
V ′′(Nn)(N − Nn)2

= V (Cn,Nn) + U ′(Cn)Cn (C − Cn)

Cn
+ V ′(Nn)Nn (N − Nn)

Nn

+1

2
(Cn)2U ′′(Cn) ·

(
(C − Cn)

Cn

)2

+ 1

2
(Nn)2V ′′(Nn)

(
(N − Nn)2

Nn

)2

.

Note that

1

σ
= −U ′′(Cn)Cn

U ′(Cn)
,

ϕ = V ′′(Nn)Nn

V ′(Nn)
.
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In addition, note that

X − Xn

Xn
= e

ln
(

X
Xn

)

− 1

=
∞∑

k=0

(
ln
(

X
Xn

))k

k! − 1

= ln

(
X

Xn

)
+ 1

2

(
ln

(
X

Xn

))2

+ · · · ,

therefore, the second-order approximation yields

X − Xn

Xn
≈ x̂ + 1

2
x̂2.

Use these short-cuts in the derivation of the loss function

V (C,N) = V (Cn,Nn) + U ′(Cn)Cn (C − Cn)

Cn

[
1 + 1

2

CnU ′′(Cn)

U ′(Cn)

(
(C − Cn)

Cn

)]

+V ′(Nn)Nn (N − Nn)

Nn

[
1 + 1

2

NnV ′′(Nn)

V ′(Nn)

(
(N − Nn)2

Nn

)]

= V (Cn,Nn) + U ′(Cn)Cn

(
ĉ + 1

2
ĉ2
)[

1 − 1

2σ

(
ĉ + 1

2
ĉ2
)]

+V ′(Nn)Nn ·
(

n̂ + 1

2
n̂2
)[

1 + ϕ

2

(
n̂ + 1

2
n̂2
)]

= V (Cn,Nn) + U ′(Cn)Cn

[
ĉ +

(
1

2
− 1

2σ

)
ĉ2 − 1

2σ
ĉ3 − 1

8σ
ĉ4
]

+V ′(Nn) · Nn

[
n̂ +

(
1

2
+ ϕ

2

)
n̂2 + ϕ

2
n̂3 + ϕ

8
n̂4
]

.

Drop all terms of order 3 and higher in the second order approximation

V − V n = U ′(Cn)Cn

[
ĉ +

(
1

2
− 1

2σ

)
ĉ2
]

+ V ′(Nn)Nn

[
n̂ + 1 + ϕ

2
n̂2
]

.

Now, derive expressions to substitute for ĉ and n̂. Goods market clearing requires
Yt = Ct + Gt and thus ŷ = Cn

Yn ĉ + Gn

Yn ĝ. Let’s assume that there is no government,
so that ŷ = ĉ. In log terms, it holds that n = y − a + d whereas nn = yn − a.
Therefore, n̂ = n − nn = ŷ + d . Inserting this in our welfare measure yields

V − V n = U ′(Cn)Cn

[
ŷ +

(
1

2
− 1

2σ

)
ŷ2
]

+ V ′(Nn)Nn

[
ŷ + d + 1 + ϕ

2
(ŷ2 + d2)

]
.
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Use the results from the approximation of the price dispersion index. Since the
second-order approximation of d is proportional to the second moment of prices,
we can drop any terms of d with order higher than one

V − V n = U ′(Cn)Cn

[
ŷ +

(
1

2
− 1

2σ

)
ŷ2
]

+ V ′(Nn)Nn

[
ŷ + d + 1 + ϕ

2
ŷ2
]

= U ′(Cn)Cn

[
ŷ +

(
1

2
− 1

2σ

)
ŷ2
]

+ V ′(Nn)Nn

[
ŷ + θ

2
var[p(i)] + 1 + ϕ

2
ŷ2
]

.

Now, assume there is a subsidy in place such that the natural level of output
equals the efficient one. Then

−V ′(Nn)

U ′(Cn)
= W

P
= A = Yn

Nn
,

−V ′(Nn)Nn = U ′(Cn)Y n = U ′(Cn)Cn.

Using this in the welfare measure yields

V − V n = U ′(Cn)Cn

[
ŷ +

(
1

2
− 1

2σ

)
ŷ2
]

− U ′(Cn)Cn

[
ŷ + θ

2
var[p(i)] + 1 + ϕ

2
ŷ2
]

= U ′(Cn)Cn

[(
− 1

2σ
− ϕ

2

)
ŷ2 − θ

2
var[p(i)]

]

= −1

2
U ′(Cn)Cn

[(
1

σ
+ ϕ

)
ŷ2 + θvar[p(i)]

]
.

Finally, express the marginal utility of consumption as deviation from the steady
state

U ′(Cn)Cn ≈ U ′(C̄)C̄ + (
U ′′(C̄)C̄ + U ′(C̄)

)
(Cn − C̄)

≈ U ′(C̄)C̄ +
(

− 1

σ
U ′(C̄) + U ′(C̄)

)
C̄

(Cn − C̄)

C̄

≈ U ′(C̄)C̄ +
(
1 − 1

σ

)
U ′(C̄)C̄

(Cn − C̄)

C̄

≈ U ′(C̄)C̄ + tip

in which tip refers to terms independent of monetary policy which can be neglected
in the following since they do not matter for optimal monetary policy. This yields
the welfare measure

L ≡ V − V n

U ′(C̄)C̄
≈ −1

2

[(
1

σ
+ ϕ

)
ŷ2 + θvar[p(i)]

]
.
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Finally, substitute the expression for var[p(i)] derived above

L = −1

2

[(
1

σ
+ ϕ

)
ŷ2 + θ

α

1 − α
(π − E−1π)2

]
.

5.2.6 Time Inconsistency Problem and Inflation Bias

Consider the same set-up as in the previous exercise but now assume that the
structural inefficiency is not corrected via paying subsidies to firms, i.e., there is
a wedge � > 0 between the first-best (efficient) level of output and the natural
level.

Assume that the central bank minimizes the loss function

L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2

under the constraints

• AD curve: y1 = ȳn − σ(i1 − (pe
2 − p1) − ρ) + η1;

• AS curve: p1 − pe
1 = κ(y1 − y1,n);

• Natural output: y1,n = ȳn + ε1 − u1;
• Efficient output: y∗

1 = y1,n + � + u1 = ȳn + � + ε1

in which the three shocks η, ε, and u have zero expected mean and their variances
are given by σ 2

η , σ 2
ε , and σ 2

u .
Agents have rational expectations. Assume that the central bank follows an

interest rate rule i1 = f (η1, ε1, u1). The structure of the problem follows a three-
stage process.

• Stage 1: Central bank announces a policy rule i1 = f (η1, ε1, u1);
• Stage 2: The share α of firms sets (fixed) prices based on rational expectations.

Then shocks occur;
• Stage 3: Central bank reacts to the shocks by setting the actual rate i1.

(a) First, assume that the central bank can credibly commit itself to the announced
price level in stage 1 so that pe = E(p1). Derive the commitment equilibrium
under these assumptions.

First, suppose that the central bank is able to commit to its announcement in
period 1 which then shapes expectations of price-setting firms at stage 2. When
making the announcement, the central bank takes the effects on expectations into
account. Thus, pe becomes a choice variable (via the announcement) and the
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optimization problem becomes

min L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2,

s.t. p1 − pe
1 = κ(y1 − y1,n) = κ(y1 − y∗

1 + � + u1),

E(p1) = pe
1,

� = 1

2
E

(
1

κ
(p1 − pe

1) − � − u1

)2

+ θ

2κ
E
(
p1 − p∗)2 + λ(E(p1) − pe

1).

Keep in mind that the announcement is made before shocks are realized so we need
to take expectations into account

∂�

∂pe
1

= − 1

κ
E

(
1

κ
(p1 − pe

1) − � − u1

)
− λ = 0,

E

(
1

κ
(p1 − pe

1) − �

)
= −κλ,

E(p1 − pe
1) = −κ2λ + κ�,

pC
1 = E(p1) + κ2λ − κ�.

Since pC
1 = E(p1), it follows that λ = �

κ
. In contrast, the actual price decision is

made after the realization of shocks is observed

∂�

∂p1
= 1

κ

(
1

κ
(p1 − pe

1) − � − u1

)
+ θ

κ

(
p1 − p∗)+ λ = 0,

p1 − pe
1 − κ(� + u1) + κθ

(
p1 − p∗)+ κ2λ = 0,

(1 + κθ)p1 = pe
1 + κ(� + u1) + κθp∗ − κ2λ,

(1 + κθ)p1 = pe
1 + κ(� + u1) + κθp∗ − κ�,

(1 + κθ)p1 = pe
1 + κu1 + κθp∗.

As pe
1 = E(p1), it follows that

(1 + κθ)pe
1 = pe

1 + κθp∗ = 0 → pe
1 = p∗.

This yields

(1 + κθ)p1 = (1 + κθ)p∗ + κu1,

pC = p∗ + κ

1 + κθ
u1.
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Combining this with the AS equation yields the output level under commitment

pC − pe
C = p∗ + κ

1 + κθ
u1 − p∗ = κ

1 + θκ
u1 = κ(yD − y1,n),

yD = y1,n + 1

1 + θκ
u1 = y∗

1 − � − u1 + 1

1 + θκ
u1 = y∗

1 − � − θκ

1 + θκ
u1.

This results in the welfare loss

ELC = 1

2
E

(
� + θκ

1 + θκ
u1

)2

+ θ

2κ
E

(
κ

1 + κθ
u1

)2

= 1

2

[

�2 +
(

θκ

1 + θκ

)2

E(u1)
2

]

+ θ

2κ

(
κ

1 + κθ

)2

E(u1)
2

= 1

2

[

�2 +
(

θκ

1 + θκ

)2

E(u1)
2 + θκ

(1 + κθ)2
E(u1)

2

]

= 1

2

[
�2 + θκ

1 + θκ
σ 2

u

]
.

(b) Discuss why there is an incentive for surprise inflation and derive the equi-
librium if surprise inflation is possible, i.e. under the assumption that inflation
expectations are fixed at pe = p∗.

Note that the commitment solution is no Nash Equilibrium since the central bank
has an incentive on stage 3 to renege on its promise made at stage 1 after contracts
are written. Thus, commitment is not dynamically consistent, i.e., there is a time
inconsistency problem.

Now, assume expectations of agents are fixed at the price target of the central
bank, i.e., pe

1 = p∗, and shocks are observed

min L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2,

s.t. p1 − pe
1 = κ(y1 − y∗

1 + � + u1),

p∗ = pe
1.

That is,

minL = 1

2
E

(
1

κ
(p1 − p∗

1) − � − u1

)2

+ θ

2κ
E
(
p1 − p∗)2 .
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The first-order condition gives

∂L

∂p1
= 1

κ
E

(
1

κ
(p1 − p∗

1) − � − u1

)
+ θ

κ
E
(
p1 − p∗) = 0,

1

κ
(p1 − p∗

1) − � − u1 + θ(p1 − p∗) = 0,

(1 + κθ)p1 = (1 + κθ)p∗ + κ(� + u1),

p1 = p∗ + κ

1 + κθ
(� + u1).

The higher price level helps to stimulate output above the natural level, as

p1 − p∗ = κ

1 + θκ
(� + u1) = κ(y1 − y1,n),

y1 = y1,n + 1

1 + θκ
(� + u1)

= y∗ − θκ

1 + θκ
(� + u1).

The resulting welfare loss is given by

ELS = 1

2
E

(
− θκ

1 + θκ
(� + u1)

)2

+ θ

2κ
E

(
κ

1 + θκ
(� + u1)

)2

= 1

2

[
(θκ)2

(1 + θκ)2
(�2 + σ 2

u ) + θ

κ

κ2

(1 + θκ)2
(�2 + σ 2

u )

]

= 1

2

[
(θκ)2

(1 + θκ)2
+ θκ

(1 + θκ)2

]
(�2 + σ 2

u )

= 1

2

[
θκ

1 + θκ
�2 + θκ

1 + θκ
σ 2

u

]
.

Note that the welfare loss can be reduced via surprise inflation compared to the
commitment solution. Thus, the central bank has an incentive to deviate from its
announced price level.

ELS − ELC = −1

2

1

1 + θκ
�2 < 0.

(c) Derive the equilibrium under discretion and the welfare loss L associated with
discretionary central bank policy.
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However, note that individual anticipate the incentive of the central bank to devi-
ate from its announcement and take this into account when forming expectations.
This results in the discretionary outcome with inflationary bias.

Specifically, without effective commitment, the central bank solves the following
problem:

min L = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2,

s.t. p1 − pe
1 = κ(y1 − y1,n) = κ(y1 − y∗

1 + � + u1).

Start from stage 3 after realizations of shocks (no uncertainty) so that

� = 1

2
(y1 − y∗

1 )
2 + θ

2κ
(p1 − p∗)2 + λ(p1 − pe

1 − κ(y1 − y∗
1 + � + u1)),

the first-order condition gives

∂�

∂y1
= (y1 − y∗

1 ) − λκ = 0,

∂�

∂p1
= θ

κ
(p1 − p∗) + λ = 0,

∂�

∂λ
= p1 − pe

1 − κ(y1 − y∗
1 + � + u1) = 0.

Solving the second equation for λ and substituting into the first one yields the
optimal stabilization curve

y1 − y∗
1 = − θ

κ
κ(p1 − p∗),

p1 − p∗ = −1

θ
(y1 − y∗

1 ).

This curve is independent of η1 and u1 since neither affects efficient output y∗.
However, shocks ε1 shift y∗ and thus affect the optimal stabilization curve.

Combining the optimal stabilization curve with the AS curve yields the optimal
price level p1

p1 − p∗ = −1

θ
(y1 − y∗

1 ) = − 1

θκ
(p1 − pe

1) + 1

θ
(� + u1),

p1 + 1

θκ
p1 = p∗ + 1

θκ
pe
1 + 1

θ
(� + u1),

1 + θκ

θκ
p1 =

(
1 + 1

θκ

)
p∗ + 1

θκ
(pe

1 − p∗) + 1

θ
(� + u1),

p1 = p∗ + 1

1 + θκ
(pe

1 − p∗) + κ

1 + θκ
(� + u1).
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This is the central bank’s reaction function that characterizes the optimal response
of the central bank for any expected price level pe

1 after the realization of shocks.
At stage 2, firms set their prices using the best prediction of the price level under

anticipation of the central bank’s reaction. Their expectation of the price level in
stage 3 under rational expectations is given by

pe
1 = E(p1) = p∗ + 1

1 + θκ
(E(p1) − p∗) + κ

1 + θκ
�,

(
1 − 1

1 + θκ

)
E(p1) =

(
1 − 1

1 + θκ

)
p∗ + κ

1 + θκ
�,

pe
1 = E(p1) = p∗ + 1

θ
� > p∗.

As a consequence, announcing a policy of price stabilization at p∗ at stage 1 is
no longer credible since the central bank has strong incentives to deviate from such
an announcement at stage 3 once prices are set and shocks have been realized in
order to get closer to the output target. Yet, rational agents anticipate this incentive
and increase their inflation expectations. In equilibrium, prices are above its target.
Yet, there is no surprise inflation which is why output is not stimulated above its
natural level (see Fig. 5.6).

Agents form rational expectations of future prices given the central bank’s
reaction function. As above, combine the reaction function with the AS curve to
get

pe
D = p∗ + 1

θ
�.

Fig. 5.6 Inflation bias
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Given these expectations, the central bank’s response at stage 3 is given by

pD = p∗ + 1

1 + θκ
(pe

D − p∗) + κ

1 + θκ
(� + u1)

= p∗ + 1

1 + θκ
(p∗ + 1

θ
� − p∗) + κ

1 + θκ
(� + u1)

= p∗ + 1

θ
� + κ

1 + θκ
u1.

Thus, the price level is higher than in the case of � = 0. Combining this results
with the AS curve yields

pD − pe
D = p∗ + 1

θ
� + κ

1 + θκ
u1 − p∗ − 1

θ
�

= κ

1 + θκ
u1

= κ(yD − y1,n),

1

1 + θκ
u1 = yD − ȳn − ε1 + u1,

yD = ȳn + ε1 − θκ

1 + θκ
u1,

1

1 + θκ
u1 = yD − y∗

1 + � + u1,

yD = y∗
1 − � − θκ

1 + θκ
u1.

The corresponding policy rule is derived from the AD curve

yD − ȳn = −σ(i1 − (pe − pD) − ρ) + η1,

ε1 − θκ

1 + θκ
u1 = −σ

(
i1 + κ

1 + θκ
u1 − ρ

)
+ η1,

i1 + κ

1 + θκ
u1 − ρ = 1

σ

(
η1 − ε1 + θκ

1 + θκ
u1

)
,

i1 = ρ + 1

σ

(
η1 − ε1 − (σ − θ)κ

1 + θκ
u1

)
.
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The total welfare loss is given by

E(LD) = 1

2
E(y1 − y∗

1 )
2 + θ

2κ
E(p1 − p∗)2

= 1

2
E

(
−� − θκ

1 + θκ
u1

)2

+ θ

2κ
E

(
1

θ
� + κ

1 + θκ
u1

)2

= 1

2

[

�2 +
(

θκ

1 + θκ

)2

E(u1)
2

]

+ θ

2κ

[(
1

θ

)2

�2 +
(

κ

1 + θκ

)2

E(u1)
2

]

= 1

2

[

�2 +
(

θκ

1 + θκ

)2

E(u1)
2 + 1

θκ
�2 + θκ

(1 + θκ)2
E(u1)

2

]

= 1

2

[
1 + θκ

θκ
�2 + θκ

1 + θκ
σ 2

u

]
.

The welfare loss results from

• Structural inefficiency;
• Inflationary bias; and
• Variations due to stochastic mark-up shocks that cannot be perfectly stabilized.

Note that the inflationary bias in case of discretion results in a higher loss compared
to the commitment solution

ELD − ELC = 1

2

�2

θκ
.
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6Monetary Policy Under Uncertainty

6.1 Exercises

6.1.1 Short Review Questions

(a) What are the consequences for monetary policy, if central bank has only low
quality of data on price and output?

(b) What are the consequences for monetary policy, if central bank has uncertainty
on (1) transmission mechanism of monetary policy, (2) the best model of
monetary policy, (3) the true source of shock, respectively?

(c) What is Taylor Rule? Why does central bank need to react to inflation gap more
aggressively than output gap?

(d) Why does more central bank transparency improve the efficiency of monetary
policy? Under which condition(s) higher transparency may do harms?

6.1.2 Monetary Policy Under Uncertainty: Reputation

Cukierman and Meltzer (1986) consider that a monetary policy maker has a limited
tenure for only two periods. The policy maker is randomly nominated from a pool
of candidates, whose object function is as following:

W = E

[

b(p1 − pe
1) + cp1 − ap2

1

2
+ b(p2 − pe

2) + cp2 − ap2
2

2

]

in which c is normally distributed over the candidates with mean c and variance
σ 2

c > 0. However, a and b are the same for all candidates.
The policy maker only has a limited control over inflation such that pt = p̂t +εt ,

t ∈ {1, 2}, in which p̂t is the policy chosen by the policy maker with pe
t being
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given and εt is a normally distributed random variable with mean zero and variance
σ 2

ε > 0. The random variables, ε1, ε2, and c are independent on each other. The
public cannot observe p̂t or εt , but only pt . The public cannot observe c, either.

The public’s expectation on the second-period price level, pe
2, is formed on the

basis of observed first-period price level p1 in a way such that

pe
2 = α + βp1.

(a) What is the policy maker’s choice on p̂2? Compute the expected value of her
second-period objective function in terms of pe

2.
(b) What is the policy maker’s choice on p̂1, with α and β being given and taking

account of the impact of p1 on pe
2?

(c) Compute the proper value of β. Provide some intuitions on your result.
(d) Provide some intuitions on why the policy maker chooses a lower p̂ in the first

period than in the second.

6.1.3 Monetary Policy: Limited Control and Incomplete
Information

Suppose the central bank wants to minimize a welfare function

L = E
[
(π − π∗)2

]
,

where π∗ is the optimal inflation rate. The central bank has no direct control over
the price level. The inflation rate is given by

π = ρZ + η,

where Z is the instrument to the disposal of the central bank, ρ > 0 is some
parameter, and η is a random term with standard normal distribution.

(a) What is the optimal reaction of the central bank to shocks η?
(b) Suppose now that the central bank cannot observe η but only some variable

� = ζ + η, where ζ ∼ N
(
0, σ 2

)
and ζ and η are independent. What is the

optimal response to observed shocks � in this case?
(c) Suppose now that the central bank can observe η, but not ρ, which has a normal

distribution with mean ρ and variance τ 2 . What is the optimal response of the
central bank to observed shocks η?
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6.1.4 Monetary Policy: Interest Targeting Versus Monetary
Targeting

Suppose the economy is described by linear IS and LM curves that are subject to
disturbances

y = c − ai + ε, and m − p = hy − ki + η,

where a, h, and k are positive parameters and ε and η are independent mean
zero shocks with finite variances. The central bank wants to stabilize output, but
cannot observe y or the shocks ε and η. Other variables are observable. Assume for
simplicity that p is fixed.

(a) What is the variance of y if the central bank fixes the interest rate at some level
i?

(b) What is the variance of y if the central bank fixes the money supply rate at some
level m?

(c) Under which conditions does interest targeting lead to a lower variance of output
than monetary targeting?

(d) Describe the optimal monetary policy, when there are only IS shocks (the
variance of η is zero). Does money or interest rate targeting lead to a lower
variance of y?

(e) Describe the optimal monetary policy, when there are only LM shocks (the
variance of ε is zero). Does money or interest rate targeting lead to a lower
variance of y?

(f) Provide some intuitions on your results from (d) and (e).
(g) When there are only IS shocks, is there a policy that produces a variance of

y that is lower than either money or interest rate targeting? If so, what policy
minimizes the variance of y? If not, why not?

6.2 Solutions for Selected Exercises

6.2.1 Monetary Policy Under Uncertainty: Reputation

Cukierman and Meltzer (1986) consider that a monetary policy maker has a limited
tenure for only two periods. The policy maker is randomly nominated from a pool
of candidates, whose object function is as following:

W = E

[

b(p1 − pe
1) + cp1 − ap2

1

2
+ b(p2 − pe

2) + cp2 − ap2
2

2

]

in which c is normally distributed over the candidates with mean c and variance
σ 2

c > 0. However, a and b are the same for all candidates.
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The policy maker only has a limited control over inflation such that pt = p̂t +εt ,
t ∈ {1, 2}, in which p̂t is the policy chosen by the policy maker with pe

t being
given and εt is a normally distributed random variable with mean zero and variance
σ 2

ε > 0. The random variables, ε1, ε2 and c are independent on each other. The
public cannot observe p̂t or εt , but only pt . The public cannot observe c, either.

The public’s expectation on the second-period price level, pe
2, is formed on the

basis of observed first-period price level p1 in a way such that

pe
2 = α + βp1.

(a) What is the policy maker’s choice on p̂2? Compute the expected value of her
second-period objective function in terms of pe

2.

The policy maker’s problem is to set optimal p̂1 and p̂2 in order to

max
p̂1,p̂2

W = E

[

b(p1 − pe
1) + cp1 − ap2

1

2
+ b(p2 − pe

2) + cp2 − ap2
2

2

]

,

s.t. p1 = p̂1 + ε1,

p2 = p̂2 + ε2,

pe
2 = α + βp1.

The first-order condition with respect to p̂2 gives

∂W

∂p̂2
= E

[
b + c − ap̂2

] = 0,

p̂2 = b + c

a
.

Apply it into the second-period objective function

W2 = E

[

b(p2 − pe
2) + cp2 − ap2

2

2

]

= E

[

b

(
b + c

a
+ ε2 − pe

2

)
+ c

(
b + c

a
+ ε2

)
− a

(
b+c
a

+ ε2
)2

2

]

= (b + c)2

a
− bpe

2 − a

2
E

[(
b + c

a

)2

+ 2
b + c

a
ε2 + ε22

]

= (b + c)2

2a
− bpe

2 − a

2
σ 2

ε .
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(b) What is the policy maker’s choice on p̂1, with α and β being given and taking
account of the impact of p1 on pe

2?

The first-order condition with respect to p̂1 gives

∂W

∂p̂1
= E

[
b + c − bβ − ap̂1

] = 0,

p̂1 = (1 − β)b + c

a
.

(c) Compute the proper value of β. Provide some intuitions on your result.

Since p1 and p2 are linear functions of normally distributed random variables c

and ε, therefore p1 and p2 should also be normal. Since the public’s expectation
on the second-period price level, pe

2, is formed on the basis of observed first-period
price level p1, then it should be that

pe
2 = E [p2|P1]

= E [p2] + cov (p1, p2)

var (p1)
(p1 − E [p1]) .

Now we compute these first and second moments of p1 and p2. The first moments
are

E [p1] = E
[
p̂1
]+ E [ε1]

= (1 − β)b + c

a
,

and

E [p2] = E
[
p̂2
]+ E [ε2]

= b + c

a
.

And the second moments are

var (p1) = var
(
p̂1 + ε1

)

= var

[
(1 − β)b + c

a
+ ε1

]

= σ 2
c

a2
+ σ 2

ε ,
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and

cov (p1, p2) = cov

[
(1 − β)b + c

a
+ ε1,

b + c

a
+ ε2

]

= var
[ c

a

]

= σ 2
c

a2
.

Therefore the public’s expectation on the second-period price level is

pe
2 = E [p2] + cov (p1, p2)

var (p1)
(p1 − E [p1])

= b + c

a
+

σ 2
c

a2

σ 2
c

a2
+ σ 2

ε

[
p1 − (1 − β)b + c

a

]

≡ α + βp1,

therefore the equivalence in parameters implies that

β = σ 2
c

σ 2
c + a2σ 2

ε

∈ (0, 1].

The public wants to establish its expectation pe
2, given its observation p1. In

order to do so, the public would like to know for sure what the policy maker’s taste,
c, is. The problem is that the actual inflation in period 1 does not only depend on
true c, but also on the unobservable ε1. Now if the public sees a p1 greater than its
expectation, (1−β)b+c

a
, it knows that this could be likely due to a policy maker with

a higher-than-expected c—and if this is the case, the public should revise upward its
estimate pe

2 from its unconditionalmean b+c
a
. However, the reason why p1 is greater

than expected could also be due to a positive shock ε1—and if this is the case, the
public shouldn’t revise its estimate. The value β just reflects such trade off: If σ 2

c

is very large relative to σ 2
ε , β would be close to 1—meaning that the public would

attribute most of the above-average realization of p1 to a policy maker whose c is
higher than average, and raise its expectation pe

2 accordingly.

(d) Provide some intuitions on why the policy maker chooses a lower p̂ in the first
period than in the second.

The policy maker knows that her choice of p̂1 will affect the public’s expectation
on second-period inflation, pe

2. When p1 turns out to be high, the public attributes
some of this to a policy maker with a high c and accordingly raises pe

2, which
reduces the policy maker’s welfare W2. Therefore the policy maker chooses a lower
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p̂1 and tries to establish a good reputation as someone with a low c in order to keep
pe
2 down. In the second period, however, there is no future anymore. Therefore there

is no need to worry about the effects that current inflation has on the future expected
inflation.

6.2.2 Monetary Policy: Limited Control and Incomplete
Information

Suppose the central bank wants to minimize a welfare function

L = E
[
(π − π∗)2

]
,

where π∗ is the optimal inflation rate. The central bank has no direct control over
the price level. The inflation rate is given by

π = ρZ + η,

where Z is the instrument to the disposal of the central bank, ρ > 0 is some
parameter, and η is a random term with standard normal distribution.

(a) What is the optimal reaction of the central bank to shocks η?

The optimal reaction of the central bank to shocks η is to solve the optimization
problem

min
Z

L = E
[
(π − π∗)2

]

s.t. π = ρZ + η.

Since η is known as the shock comes, then the problem above turns out to be

min
Z

L = (ρZ + η − π∗)2.

The first-order condition gives

∂L

∂Z
= 2ρ(ρZ + η − π∗) = 0,

Z = π∗ − η

ρ
.

(b) Suppose now that the central bank cannot observe η but only some variable
� = ζ + η, where ζ ∼ N

(
0, σ 2

)
and ζ and η are independent. What is the

optimal response to observed shocks � in this case?
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Now the observable signal � depends on two normally distributed random
variables

[
ζ

η

]
∼ N

([
0
0

]
,

[
σ 2 0
0 1

])
,

and by � = ζ + η it is easy to see that � ∼ (0, 1 + σ 2).
Then the optimal reaction of the central bank to the observed signal � is to solve

the optimization problem

min
Z

L = E
[
(ρZ + η − π∗)2

∣
∣
∣�]

= ρ2Z2 + E
[
(η|�)2

]
+ π∗2 + 2ρZE [η|�] − 2ρZπ∗ − 2π∗E [η|�] .

The first-order condition gives

∂L

∂Z
= 2ρ2Z + 2ρE [η|�] − 2ρπ∗ = 0,

Z = π∗ − E [η|�]

ρ
.

Since � = ζ + η, then cov(�, ζ ) = var(ζ ) = σ 2, and cov(�, η) = var(η) = 1.
Therefore

⎡

⎣
ζ

η

�

⎤

⎦ ∼ N

⎛

⎝

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
σ 2 0 σ 2

0 1 1
σ 2 1 1 + σ 2

⎤

⎦

⎞

⎠ ,

the condition expectations are given by

E

[[
ζ

η

]∣∣
∣
∣�
]

=
[
0
0

]
+
[

σ 2

1

]
1

1 + σ 2
�.

Insert it into the expression for Z and get

Z = π∗ − 1
1+σ 2 �

ρ
.

(c) Suppose now that the central bank can observe η, but not ρ, which has a normal
distribution with mean ρ and variance τ 2. What is the optimal response of the
central bank to observed shocks η?
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Now the optimal reaction of the central bank to the observed shock η is to solve
the optimization problem

min
Z

L = E
[
(ρZ + η − π∗)2

]

= Z2E
[
ρ2
]

+ η2 + π∗2 + 2ZηE [ρ] − 2Zπ∗E [ρ] − 2ηπ∗

= Z2
(
τ 2 + ρ2

)
+ η2 + π∗2 + 2Zηρ − 2Zπ∗ρ − 2ηπ∗.

The first-order condition gives

∂L

∂Z
= 2Z

(
τ 2 + ρ2

)
+ 2ηρ − 2π∗ρ = 0,

Z = π∗ρ − ηρ

τ 2 + ρ2 .

6.2.3 Monetary Policy: Interest Targeting Versus Monetary
Targeting

Suppose the economy is described by linear IS and LM curves that are subject to
disturbances

y = c − ai + ε, and m − p = hy − ki + η,

where a, h, and k are positive parameters and ε and η are independent mean
zero shocks with finite variances. The central bank wants to stabilize output, but
cannot observe y or the shocks ε and η. Other variables are observable. Assume for
simplicity that p is fixed.

(a) What is the variance of y if the central bank fixes the interest rate at some level
i?

If the central bank fixes the interest rate at some level i, then the LM curve is
irrelevant. Equilibrium output is determined by the IS curve under the fixed nominal
interest rate, therefore

var[y] = var[c − ai + ε] = var[ε] = σ 2
ε . (6.1)

(b) What is the variance of y if the central bank fixes the money supply rate at some
level m?

When the policy maker fixes m, the equilibrium level of output is determined by
the intersection of the two curves. Plug IS curve y = c − ai + ε into LM curve
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m − p = hy − ki + η to eliminate i, one can get

m − p = hy − k
c + ε − y

a
+ η,

y = m − p + k c+ε
a

− η

h + k
a

,

the variance can be calculated as

var[y] =
(

k
a

h + k
a

)2

var[ε] +
(

1

h + k
a

)2

var[η] = k2σ 2
ε + a2σ 2

η

(ha + k)2
. (6.2)

(c) Under which conditions does interest targeting lead to a lower variance of
output than monetary targeting?

Compare var[y] obtained in (b) and (c). Interest targeting leads to a lower
variance of output than monetary targeting if

σ 2
ε <

k2σ 2
ε + a2σ 2

η

(ha + k)2
,

(
h2a2 + 2hka + k2

)
σ 2

ε < k2σ 2
ε + a2σ 2

η ,

(
h2a2 + 2hka

)
σ 2

ε < a2σ 2
η ,

σ 2
ε

σ 2
η

<
a

h2a + 2hk
.

(d) Describe the optimal monetary policy, when there are only IS shocks (the
variance of η is zero). Does money or interest rate targeting lead to a lower
variance of y?

When there are only IS shocks (the variance of η is zero), by Eq. (6.1) interest
rate targeting leads to

var[y]|i=i = σ 2
ε ,

and by Eq. (6.2) money targeting leads to

var[y]|m=m = k2σ 2
ε

(ha + k)2
< var[y]|i=i ,

money targeting leads to a lower variance of y.
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(e) Describe the optimal monetary policy, when there are only LM shocks (the
variance of ε is zero). Does money or interest rate targeting lead to a lower
variance of y?

When there are only LM shocks (the variance of ε is zero), by Eq. (6.1) interest
rate targeting leads to

var[y]|i=i = 0,

and by Eq. (6.2) money targeting leads to

var[y]|m=m = a2σ 2
η

(ha + k)2
> var[y]|i=i ,

interest rate targeting leads to a lower variance of y.

(f) Provide some intuitions on your results from (d) and (e).

Consider the situation in (d) in which there are only IS shocks. If the policy maker
targets the nominal interest rate, the equilibrium output changes by the full extent of
the shift in the IS curve caused by a shock to it. Now consider the case in which the
policy maker targets the money supply. A positive IS shock shifts the IS curve to the
right. With m fixed, as y rises to equate planned and actual expenditure, i rises as
well in order for the money market to remain in equilibrium. This rise in i reduced
planned expenditure and thus mitigates some of the positive shock. Therefore y does
not end rising as much. The same idea is true in the opposite direction. A negative
IS shock shifts IS to the left. If the policy maker targets m, i will fall along with
y in order to keep the money market in equilibrium. This fall in i raises planned
expenditure and helps to offset the original negative shock to planned expenditure.
Thus y does not fall as much as if the policy maker had kept i constant.

Consider the situation in (e) in which there are only LM shocks. If the policy
maker targets the nominal money supply, the LM shocks causes the LM curve
to shift around and the equilibrium output in the economy is determined by the
intersection of that shifting LM curve with the stable IS curve. If the policy maker
targets the nominal interest rate, it ensures that i remains constant in the face of any
LM shock. Since i is not allowed to change, planned expenditure does not change
and thus the level of output that equates planned and actual expenditure does not
change in the face of an LM shock.

(g) When there are only IS shocks, is there a policy that produces a variance of
y that is lower than either money or interest rate targeting? If so, what policy
minimizes the variance of y? If not, why not?
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Fig. 6.1 Output stabilization
under IS shocks

If there are only IS shocks, it is possible to keep y constant at some target level
y. By rearranging the LM curve with y set to y, the nominal money supply must be
such that

m = p + hy − ki. (6.3)

The policy maker knows that the fixed p has picked y and is able to observe i. Thus
when i changes—and since there are only IS shocks, we know this must be due to a
shift of the IS curve—the policy maker must change m accordingly. As i rises, for
example, the policy maker must reduce m.

In Fig. 6.1, as i rises due to the rightward shift of IS curve, the policy maker
reduces m which shifts up the LM curve and increases i more. The policy maker
can stop reducing m when m and i are such that Eq. (6.3) is satisfied. At this point,
the new LM curve would intersect the new IS curve right at the target level of y.

Reference

Cukierman, A., & Meltzer, A. H. (1986). A theory of ambiguity, credibility and inflation under
discretion and asymmetric information. Econometrica, 54, 1099–1128.



7Liquidity Trap: Limits for Monetary Policy
at the Effective Lower Bound

7.1 Exercises

7.1.1 Short Review Questions

(a) Why is there a zero lower bound (ZLB) for monetary policy?Why may effective
zero lower bound be different from zero? What characterizes effective lower
bound? Provide reasons why effective zero lower bound may be (1) positive, (2)
negative.

(b) Conventional wisdom insists that depositors would hoard cash instead of
increasing spending once interest rate falls below zero. However, this did not
happen for those countries implementing negative interest rate in the 2010s.
What prevent depositors from hoarding cash?

(c) What is liquidity trap?Why is there liquidity trap at the ZLB under Taylor rules?
(d) What is forward guidance?Under which condition(s) is forward guidance policy

able to increase inflation expectation? Why is there a commitment problem for
forward guidance policy?

7.2 Solutions for Selected Exercises

No solution provided.
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Part III

Unconventional Monetary Policy, Financial
Frictions and Crises



8Monetary Policy in Practice

8.1 Exercises

8.1.1 Short Review Questions

(a) Why is it that a decrease in the discount rate does not normally lead to an
increase in borrowed reserves? Use the supply and demand analysis of the
market for reserves to explain.

(b) Suppose that a central bank has just lowered the discount rate. Does this signal
that the central bank is moving to a more expansionary monetary policy? Why
or why not?

(c) Using the supply and demand analysis of the market for reserves, indicate what
happens to the federal funds rate, borrowed reserves, and non-borrowed reserves
if
1. The economy is unexpectedly strong, leading to an increase in the amount of

bank deposits;
2. Banks expect an unusually large increase in withdrawals from deposit

accounts in the future;
3. The Fed raises the target federal funds rate;
4. The Fed raises the interest rate on reserves above the current equilibrium

federal funds rate;
5. The Fed reduces reserve requirements;
6. The Fed reduces reserve requirements, and then conducts an open market

sale of securities.

8.2 Solutions for Selected Exercises

No solution provided.
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9Financial Frictions andMonetary Policy

9.1 Exercises

9.1.1 Short Review Questions

(a) What is Value-at-Risk (V aR)? How is banks’ leverage ratio related to V aR?
What happens to banks’ leverage ratio immediately after a rise in return to
assets (say, as a result of boom in macroeconomy)? What’s banks’ response
to the change in leverage under V aR constraint? What’s the impact on new
equilibrium asset price? Why is leverage cycle “procyclical”?

(b) How does “financial accelerator” emerge as a result of financial frictions?
Explain in words how financial accelerator amplifies shocks from macroecon-
omy.

(c) How do principal-agent problems affect efficiency in banking? Give a few
examples of the social costs due to principal-agent problems in banking and
their impacts on macro economy.

9.1.2 Financial Intermediation, Bank Capital, and Credit Supply

Based on Holmström and Tirole (1997) consider an economy in which there are
many risky projects to be financed. Each project needs 1 initial input and yields
verifiable gross return y if it’s successful, 0 if it’s unsuccessful. There are two types
of projects

• Good projects (type G) with probability of success being pG;
• Bad projects (type B) with probability of success being pB < PG, but a bad

project gives private benefit B > 0 to the entrepreneur. Assume that pGy > R >
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pB + B (R > 1 is the risk-free rate, defined by the gross return of government
bonds), i.e., bad projects are not socially desirable.

There are many risk-neutral entrepreneurs in the economy, each owns wealth
0 < A < 1 which is publicly observable. Each A is a random variable, uniformly
distributed over (0, 1). Entrepreneurs are the only agents in the economy who have
the expertise to run either type of the projects, but their choices of projects are not
publicly observable.

There are many risk-neutral investors in the economy who are endowed with
money. They can invest the money on government bonds which yield safe gross
return R > 1. They can also lend to entrepreneurs or banks.

There are intermediaries in this economy called banks, who have a special
monitoring technology: after spending a non-observable amount of resource C,
entrepreneurs’ private benefit falls to b < B if they operate bad projects. Banks start
with initial wealth LB

B , called bank capital which is owned by shareholders. They
borrow from investors and lend to entrepreneurs. Shareholders of banks demand
gross return-on-equity at least as high as β >> R.

(a) Separation of market and the role of financial intermediation
1. If entrepreneurs borrow directly from investors and investors have the market

power to charge highest lending rate as possible, what is the highest lending
rate investors can actually charge? What is the highest lending rate investors
can actually charge, should entrepreneurs’ choices on projects be observable?
Interpret the difference between these two rates;

2. Show that there exists a threshold A such that all entrepreneurs whose initial
wealth A > A are able to borrow directly from investors;

3. If entrepreneurs borrow from banks, given that they are monitored by banks,
what is the highest lending rate banks can actually charge? To make sure that
banks do exert the effort to monitor, how much profit is needed to be retained
by the banks? How much capital do banks need to hold? Explain, in words,
why do banks need to hold capital;

4. Show that there exists a threshold A such that all entrepreneurs whose initial
wealth A ≤ A ≤ A are able to borrow from banks, and entrepreneurs whose
initial wealth A ≤ A are not able to get any funding.

(b) Credit supply
1. Suppose banks’ shareholders are willing to accept a lower return on equity.

What is the impact on banks’ aggregate credit supply to entrepreneurs?
2. Suppose the good projects’ probability of success pG falls, and the other

assumptions remain unchanged. What is the impact on banks’ aggregate
credit supply to entrepreneurs?

3. Suppose banks becomemore efficient in monitoring: monitoring cost C falls,
and entrepreneurs’ private benefit b—if they operate bad projects and get
monitored—also falls. What is the impact on banks’ aggregate credit supply
to entrepreneurs?



9.1 Exercises 159

4. It is known that central bank is able to shift the risk-free rate, or government
bond rateR throughmonetary policy implementation. If central bank decides
to loosen monetary policy and cutR, what is the impact on aggregate funding
(funding through both direct borrowing and bank lending) in the economy?

9.1.3 Value-at-Risk and Leverage Cycle

Consider an economy that extends to 2 periods: investors invest in risky projects at
t = 0, and will get paid at t = 1. All information is available to public.

There are a fixed number S of ex ante identical risky projects. Each needs 1 unit
of initial investment to start at t = 0, and at t = 1 generates a random gross payoff
R that is uniformly distributed over

[
R − z,R + z

]
with R > 1 and z > 0.

Entrepreneurs who run the projects issue securities to raise funding. Securities
are sold at t = 0 to investors at price P which is determined by the market.
Suppose that funding is scarce so that investors get all the rents, should a project
be successful.

There are many risk averse investors, call them passive investors, each gets e

endowment at t = 0. To spend their endowments, they may buy yP securities and
lend the rest to active investors at gross interest rate equal to 1. A passive investor
gets utility from her consumption c at t = 1, which contains repaid deposit and
return from securities. At t = 0 her expected utility is u(c) = E[c] − 1

2τ var[c] in
which τ > 0 is a constant and var[c] is the variance in consumption.

(a) Passive investor’s demand for security
1. Write down passive investors’ decision problem at t = 0 and derive passive

investor’s demand for security;
2. Delineate passive investor’s demand for security in P − y space. How does

such demand change with τ? Interpret.

There are many risk neutral investors, call them active investors or banks, each
gets e endowment at t = 0. Theymay buy yA securities, using their endowments and
borrowing from passive investors at gross interest rate equal to 1. Active investors
are subject to Value-at-Risk (V aR) constraint, such that e should be sufficient to
cover the largest possible loss.

(b) Active investor’s demand for security
1. Specify active investor’s V aR constraint;
2. Write down active investor’s decision problem at t = 0 and derive active

investor’s demand for security;
3. Delineate active investor’s demand for security in the same P − y space, and

show how equilibrium security price P is determined.
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(c) Asset price and leverage in the bust
Suppose there is a shock to security return at the intermediate date, call it

t = 0.5, so that both types of investors have the chance to exchange in the
security market and adjust their balance sheets: It turns out that the distribution

of security return is
[
R′ − z,R′ + z

]
with R′ < R.

1. Using P − y curves, show the impact on both types’ investors demand for
securities and the new equilibrium security price;

2. How does the shock to security return affect active investors’ balance sheet?
How do they adjust the balance sheet to meet V aR constraint? What’s the
consequence to equilibrium asset price?Why is leverage cycle “procyclical”?

9.2 Solutions for Selected Exercises

9.2.1 Financial Intermediation, Bank Capital, and Credit Supply

Based on Holmström and Tirole (1997) consider an economy in which there are
many risky projects to be financed. Each project needs 1 initial input and yields
verifiable gross return y if it’s successful, 0 if it’s unsuccessful. There are two types
of projects

• Good projects (type G) with probability of success being pG;
• Bad projects (type B) with probability of success being pB < PG, but a bad

project gives private benefit B > 0 to the entrepreneur. Assume that pGy > R >

pB + B (R > 1 is the risk-free rate, defined by the gross return of government
bonds), i.e., bad projects are not socially desirable.

There are many risk-neutral entrepreneurs in the economy, each owns wealth
0 < A < 1 which is publicly observable. Each A is a random variable, uniformly
distributed over (0, 1). Entrepreneurs are the only agents in the economy who have
the expertise to run either type of the projects, but their choices of projects are not
publicly observable.

There are many risk-neutral investors in the economy who are endowed with
money. They can invest the money on government bonds which yield safe gross
return R > 1. They can also lend to entrepreneurs or banks.

There are intermediaries in this economy called banks, who have a special
monitoring technology: after spending a non-observable amount of resource C,
entrepreneurs’ private benefit falls to b < B if they operate bad projects. Banks start
with initial wealth LB

B , called bank capital which is owned by shareholders. They
borrow from investors and lend to entrepreneurs. Shareholders of banks demand
gross return-on-equity at least as high as β >> R.
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(a) Separation of market and the role of financial intermediation
1. If entrepreneurs borrow directly from investors and investors have the market

power to charge highest lending rate as possible, what is the highest
lending rate investors can actually charge? What is the highest lending rate
investors can actually charge, should entrepreneurs’ choices on projects be
observable? Interpret the difference between these two rates;
The first best solution takes place if investors know the entrepreneurs’
choices and only lend to good projects, getting the full rent r

I,FB
D = y.

However, when entrepreneurs’ choices are not observable, they always
have the incentive to choose bad projects and pocket private benefits. The
moral hazard problem forces investors to leave some information rents to
entrepreneurs, inducing them to choose good projects. With the projects’
payoff structure (Fig. 9.1), the incentive compatibility constraint (IC − D)

requires

pG

(
y − rI

D

)
≥ pB

(
y − rI

D

)
+ B,

that is,

rI
D ≤ y − B

pG − pB

= y − B

�p
< r

I,FB
D .

At the same time, rI
D needs to meet investors’ participation constraint (PC −

I), or, an investor lending LI
D should be better off than investing on safe

assets,

pGrI
D ≥ RLI

D, or, LI
D ≤ pGrI

D

R
.

The highest lending rate investors can charge here is rI
D = y − B

�p
, the

difference from r
I,FB
D is the information rent component B

�p
, call it rE

D .

2. Show that there exists a threshold A such that all entrepreneurs whose initial
wealth A > A are able to borrow directly from investors;
Investors’ participation constraint (PC − ID) implies the maximal lending
they can offer is

LI
D ≤ pGrI

D

R
= pG

R

(
y − B

�p

)
.

To start a project, an entrepreneur needs to hold at least A such that

A + LI
D ≥ I, or, A ≥ I − pG

R

(
y − B

�p

)
≡ A(R).

Or, only well-capitalized entrepreneurs obtain direct funding.
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Fig. 9.1 Projects’ payoff structure

Fig. 9.2 Banks’ balance sheet

3. If entrepreneurs borrow from banks, given that they are monitored by banks,
what is the highest lending rate banks can actually charge? To make sure that
banks do exert the effort to monitor, how much profit is needed to be retained
by the banks? How much capital do banks need to hold? Explain, in words,
why do banks need to hold capital;
Banks, as financial intermediaries, are running the balance sheet shown as
Fig. 9.2.
With banks ensuring entrepreneurs to choose good projects, projects’ return
will be split among banks (rB

B ), depositing investors (rI
B) and entrepreneurs

(rE
B ), y = rB

B + rI
B + rE

B . Entrepreneurs’ incentive compatibility constraint
(IC − E) requires that

pGrE
B ≥ pBrE

B + b, or, rB
B + rI

B ≤ y − b

�p
.
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Banks are subject to moral hazard, too. To ensure banks to monitor with cost
C, incentive compatibility constraint (IC − B) requires that

pGrB
B − C ≥ pBrB

B , or, rB
B ≥ C

�p
.

Participation constraints must hold for both banks (PC − B) and investors
(PC − IB ), i.e., banks’ ROE must be high enough to maintain shareholders,
and investors should be better off than investing in safe assets

pGrB
B ≥ βLB

B, or, LB
B(β) ≤ pGrB

B

β
= pGC

β�p
,

and

pGrI
B ≥ RLI

B, or, LI
B(R) ≤ pGrI

B

R
.

Again, banks need to skin-in-the-game, making shirking costlier and reduc-
ing moral hazard in monitoring.

4. Show that there exists a threshold A such that all entrepreneurs whose initial
wealth A ≤ A ≤ A are able to borrow from banks, and entrepreneurs whose
initial wealth A ≤ A are not able to get any funding.
Combining (IC − E), (IC − B), and (PC − IB ) to get

LI
B ≤ pG

R

(
y − b + C

�p

)
.

An entrepreneur can borrow from a bank only if she holds at least A such
that

A + LI
B + LB

B ≥ I, or, A ≥ I − LB
B(β) − pG

R

(
y − b + C

�p

)
≡ A(β,R) < A(R)

if C is small enough. Worst capitalized entrepreneurs with A ∈ (
0, A

)
will

not get any funding. The market is segmented as shown in Figs. 9.3 and 9.4.
Note that entrepreneurs with access to direct finance won’t borrow from
banks, as rE

B = y − rB
B − rI

B = b
�p

< B
�p

= rE
D .

(b) Credit supply
1. Suppose banks’ shareholders are willing to accept a lower return on equity.

What is the impact on banks’ aggregate credit supply to entrepreneurs?

Lower β affects A(β,R). As ∂A(β,R)

∂β
= − ∂LB

B(β)

∂β
= pGC

β2�p
> 0, A(β,R)

falls, allowing more under-capitalized entrepreneurs to borrow from banks.
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Fig. 9.3 Segmentation of borrowers

Fig. 9.4 Market segmentation

2. Suppose the good projects’ probability of success pG falls, and the other
assumptions remain unchanged. What is the impact on banks’ aggregate
credit supply to entrepreneurs?
Lower pG affects both A(β,R) and A(R). As ∂A(β,R)

∂pG
= − C

β�p
−

1
R

(
y − b+C

�p

)
< 0, A(β,R) rises, allowing less under-capitalized

entrepreneurs to borrow from banks. At the same time, ∂A(R)
∂pG

=
− 1

R

(
y − B

�p

)
< 0, A(β,R) rises, allowing less well-capitalized

entrepreneurs to borrow directly. Overall, aggregate credit supply falls.
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3. Suppose banks become more efficient in monitoring: monitoring cost C falls,
and entrepreneurs’ private benefit b—if they operate bad projects and get
monitored—also falls. What is the impact on banks’ aggregate credit supply
to entrepreneurs?
Lower C and b affects A(β,R). As ∂A(β,R)

∂b
= pG

R�p
> 0, ∂A(β,R)

∂C
=

− pG

β�p
+ pG

R�p
> 0 as β >> R, A(β,R) falls, allowing more under-

capitalized entrepreneurs to borrow from banks and increasing aggregate
credit supply.

4. It is known that central bank is able to shift the risk-free rate, or government
bond rate R through monetary policy implementation. If central bank decides
to loosen monetary policy and cut R, what is the impact on aggregate funding
(funding through both direct borrowing and bank lending) in the economy?

As ∂A(β,R)
∂R

= pG

R2

(
y − b+C

�p

)
> 0 and ∂A(R)

∂pG
= pG

R2

(
y − B

�p

)
> 0, both

A(β,R) and A(R) fall with R, increasing aggregate credit supply.

9.2.2 Value-at-Risk and Leverage Cycle

Consider an economy that extends to 2 periods: investors invest in risky projects at
t = 0, and will get paid at t = 1. All information is available to public.

There are a fixed number S of ex ante identical risky projects. Each needs 1 unit
of initial investment to start at t = 0, and at t = 1 generates a random gross payoff
R that is uniformly distributed over

[
R − z,R + z

]
with R > 1 and z > 0.

Entrepreneurs who run the projects issue securities to raise funding. Securities
are sold at t = 0 to investors at price P which is determined by the market.
Suppose that funding is scarce so that investors get all the rents, should a project be
successful.

There are many risk averse investors, call them passive investors, each gets e

endowment at t = 0. To spend their endowments, they may buy yP securities and
lend the rest to active investors at gross interest rate equal to 1. A passive investor
gets utility from her consumption c at t = 1, which contains repaid deposit and
return from securities. At t = 0 her expected utility is u(c) = E[c] − 1

2τ var[c] in
which τ > 0 is a constant and var[c] is the variance in consumption.

(a) Passive investor’s demand for security
1. Write down passive investors’ decision problem at t = 0 and derive passive

investor’s demand for security;
At t = 0 a passive investor maximizes her expected utility by

max
yP

u(c) = E[c] − 1

2τ
var[c],

s.t. c = RyP + e − PyP .
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Applying the budget constraint in the utility function, u(c) = E[RyP +
e − PyP ] − 1

2τ var [RyP + e − PyP ] = RyP + e − PyP − 1
2τ

z2

3 y2
P ,

∂u
∂yP

=
R − P − 1

τ
z2

3 yP = 0, or,

yP (P ) =
{

3τ
(
R−P

)

z2
if R ≥ P

0 otherwise
.

2. Delineate passive investor’s demand for security in P − y space. How does
such demand change with τ? Interpret.
Parameter τ affects passive investors’ risk aversion. The higher τ , the lower
impact of income volatility on their utility, the lower incentive for insurance
(saving).
There are many risk neutral investors, call them active investors or banks,

each gets e endowment at t = 0. They may buy yA securities, using their
endowments and borrowing from passive investors at gross interest rate equal
to 1. Active investors are subject to Value-at-Risk (V aR) constraint, such that e

should be sufficient to cover the largest possible loss.
(b) Active investor’s demand for security

1. Specify active investor’s V aR constraint;
Active investor’s V aR constraint is that they should be sufficiently capital-
ized even in the worst case, i.e., e ≥ V aR, or e ≥ PyA−(R − z

)
yA = V aR.

2. Write down active investor’s decision problem at t = 0 and derive active
investor’s demand for security;
At t = 0 an active investor maximizes her expected utility by

max
yA

E [RyA − (PyA − e)]

s.t. e ≥ PyA − (
R − z

)
yA.

The active investor maximizes her yA until V aR constraint is binding, i.e.,
yA(P ) = e

P−R+z
.

3. Delineate active investor’s demand for security in the same P −y space, and
show how equilibrium security price P is determined.
See Fig. 9.5.

(c) Asset price and leverage in the bust
Suppose there is a shock to security return at the intermediate date, call it

t = 0.5, so that both types of investors have the chance to exchange in the
security market and adjust their balance sheets: It turns out that the distribution

of security return is
[
R′ − z,R′ + z

]
with R′ < R.
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( )
( )

0

Fig. 9.5 Market equilibrium

1. Using P − y curves, show the impact on both types’ investors demand for
securities and the new equilibrium security price;
See Fig. 9.6.

2. How does the shock to security return affect active investors’ balance
sheet? How do they adjust the balance sheet to meet V aR constraint?
What’s the consequence to equilibrium asset price? Why is leverage cycle
“procyclical”?
It’s a reverse case of the boom cycle in the textbook.
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Fig. 9.6 Market equilibrium after the shock

Reference

Holmström, B., & Tirole, J. (1997). Financial intermediation, loanable funds and the real sector.
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10Monetary Policy and Financial Stability

10.1 Exercises

10.1.1 Short Review Questions

(a) Explain, in words, how banks achieve optimal risk sharing through maturity
transformation, when there is uncertainty in liquidity demand.

(b) Why is fragility in banking desirable as a disciplinary device for banks?

10.1.2 Risk Sharing and Financial Intermediation

Consider a one-good, three-date economy: There are infinitely many ex ante
identical consumers, each endowed with one unit of resource at t = 0. Consumption
takes place either at t = 1 or t = 2, while the timing preference only gets revealed
at t = 1: With probability π a consumer is an impatient one (type 1 consumer), who
only values consumption at t = 1, while with probability 1 − π a consumer (type
2 consumer) is a patient one, who only values consumption at t = 2. A consumer’s
type is private information.

Let ci denote the consumption of a type i = 1, 2 consumer, and ex post, the
utility from consumption is u(ci) = 1

1−γ
c
1−γ
i with γ > 1.

The economy has two technologies of transferring resources between periods:
storage technology with gross return equal to 1, and a long-term investment
technology with a constant gross return R > 1 at t = 2 for every per unit invested
at t = 0. If necessary, an on-going long-term project can be liquidated or stopped
prematurely at t = 1, with a return 0 < δ < 1.
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(a) Specify the social planner’s problem, who wants to maximize a consumer’s
expected utility at t = 0 by allocating her endowments between two technolo-
gies.
1. Compute the optimal allocation, and consumption for each type’s

consumer—denote the solution as
(
c∗
1, c

∗
2

)
;

2. Why aren’t consumption levels for two types’ consumers identical? Will
there be liquidation at t = 1?

3. What will happen to the consumers’ optimal consumption when γ → +∞?
(b) Suppose that the economy is in autarky such that every consumer has to allocate

her endowments between two technologies by herself at t = 0. Show that the
consumer’s ex post consumption is inferior to the solution in (a) 1.

(c) Suppose there is a bond market available at t = 1. At t = 1 competitive bond
issuers purchase long assets from impatient consumers, issue bonds against
these long assets, and sell bonds to the patient consumers (who can pay with
the proceeds from their short assets). Each unit of bond bought at t = 1 will
deliver one unit of consumption good to the bond holder at t = 2.
1. Compute the equilibrium bond price;
2. Show that the consumer’s ex post consumption is inferior to the solution in

(a) 1.
(d) Suppose there is a competitive banking sector in the economy, in which banks

take consumers’ endowments as deposits at t = 0 and allocate between the two
technologies. Consumers withdraw ci at t = i according to their type i.
1. Show that banks can replicate the optimal solution achieved in (a) 1.
2. Comparing with the result in (b) , how can banks improve social welfare in

the economy?

10.1.3 Bank Run and Financial Fragility

Consider the equilibrium with intermediation, as in Exercise 2 (d) in which banks
offer consumers the deposit contracts

(
c∗
1, c

∗
2

)
at t = 0.

(a) Explain why there exist two (Nash) equilibria which are consistent with rational
behavior for all agents: one in which only the early consumers withdraw at t =
1, and another one in which everyone withdraws at t = 1—no matter what type
he or she is. What is the individual consumption level in the latter equilibrium?
Does the existence of multiple equilibria depend on the value of δ?

(b) Propose a mechanism that can eliminate the bank run equilibrium. Explain how
it works.

(c) Suppose that it is known in the economy that a small group of consumers always
panic at t = 1, i.e., they want to withdrawwith certainty at t = 1 no matter what
type they actually are. Will there still exist two Nash equilibria as in (a)?
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10.1.4 Financial Intermediation, Fragility, and Unconventional
Monetary Policy

Consider a one-good, three-date economy: There are infinitely many ex ante
identical consumers (whose population is normalized to 1), each endowed with
one unit of resource at t = 0. Consumption may take place either at t = 1 or
t = 2, while each consumer’s timing preference of consumption only gets revealed
at t = 1: With probability p (0 < p < 1) a consumer is an impatient one (type 1
consumer), who only values consumption at t = 1, while with probability 1 − p a
consumer is a patient one (type 2 consumer), who only values consumption at t = 2.
A consumer’s type is private information and only known to herself.

Let ci denote the consumption of a type i = 1, 2 consumer. At t = 0, without
knowing her type, a consumer’s expected utility from consumption is u = p

√
c1 +

(1 − p)
√

c2.
The economy has two technologies of transferring resources between periods:

storage technology with gross return equal to 1, and a long-term investment
technology with a constant gross return R > 1 at t = 2 for every unit invested
at t = 0. If necessary, an on-going long-term project can be liquidated or stopped
prematurely at t = 1, with a return 0 ≤ δ < 1.

(a) Suppose at t = 0 a social planner allocates all resources in this economy
to maximize each consumer’s expected utility: At t = 0 the planner collects
0 ≤ α ≤ 1 from each consumer and invests on the storage technology, and
the rest—(1 − α) from each consumer—will be invested on the long-term
technology. At t = 1 the total proceeds from the storage technology will be
evenly distributed among impatient consumers (whose population is p), and
at t = 2 the total proceeds from the long-term technology will be evenly
distributed among patient consumers (whose population is 1−p). Show that the
optimal solution to type i = 1, 2 consumer’s consumption is c∗

1 = 1
p+(1−p)R

,

c∗
2 = R2

p+(1−p)R
, and the resource invested on storage technology is α∗ =

p
p+(1−p)R

.
(b) Suppose that the economy is in autarky such that every consumer has to allocate

her endowments between two technologies by herself at t = 0. Show that
consumers cannot achieve the optimal solution defined in (a) .

(c) Suppose there is a competitive banking sector in the economy, in which banks
take consumers’ endowments as deposits at t = 0 and allocate between the two
technologies. Consumers withdraw ci at t = i according to their type i. Show
that banks can implement the optimal solution achieved in (a) in the following
way: (1) Banks invest α∗ of deposits on storage technology, 1 − α∗ of deposits
on long-term technology; (2) consumers who withdraw at t = 1 get c∗

1 each,
and consumers who withdraw at t = 2 get c∗

2 each; (3) impatient consumers all
withdraw at t = 1 and patient consumers all withdraw at t = 2.

(d) Banking sector in this economy is fragile: Patient consumers may demand their
deposits at t = 1, which leads to bank run. However, whether this happens or
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not crucially depends on the value of δ. Show that as long as δ > 1
R
and banks

do the same as described in (c) , there will never be bank runs.
(e) During recent crisis, several central banks purchased huge volume of securities,

hoping to prevent price of long assets from falling too much. Using your
finding in (d), explain why such unconventional policy helps eliminate panics in
banking sector.

10.1.5 Monetary Policy, Financial Stability, and Banking Regulation

One way for the banks to cushion adverse shocks is to hold capital buffer so that
losses can be absorbed before banks have to go bankruptcy. However, there are
reasons that banks prefer being undercapitalized, and such incentive is partially
affected by monetary policy. Therefore, monetary policy has strong implication
for financial stability, and properly designed regulatory rules is complementary to
eliminate instabilities. This exercise explores these issues through a simple model.

Consider an economywhere banks could invest either in a safe project that yields
G with probability PG and 0 otherwise, or in a risky project that yields B with
probability PB and 0 otherwise. The projects have constant returns to scale and
satisfy G < B and PGG > PBB > 1. Developing project G requires additional
effort with a fixed cost c.

Banks are financed by short-term, unsecured deposits with a return rD per unit of
deposit. Depositors are risk-neutral and will require an expected return equal to the
risk-free rate in the economy, which is equal to R > 0. We assume the participation
constraint for banks is satisfied.

Capital is costly for banks because equity holders require a substantial expected
return on equity (RoE) r > 0, otherwise banks would not be able to attract investors
in the stock market.

(a) Describe the competitive equilibrium in the absence of bank capital, and
determine under what conditions the safe project, G, or the risky one, B, will be
implemented by banks.

(b) Assume that in the absence of bank capital the only equilibrium obtained is
characterized by implementing the risky project. Determine the minimum level
of capital a regulator needs in order to restore the possibility of an equilibrium
where the safe project is preferred by banks.

(c) Suppose that the risk-free rate R is perfectly under the control of central bank.
What’s the impact of monetary policy on banks’ choice of projects?

(d) Assume depositors are able to observe banks’ capital. What will be the amount
of capital a profit-maximizing bank will choose?
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10.1.6 Countercyclical Capital Buffer Requirement

(a) Read the website of Basel III countercyclical capital buffer (CCyB) from the
Bank for International Settlements (https://www.bis.org/bcbs/ccyb/), explain
how CCyB works.

(b) Using your findings in the Exercise 3 (c), Chap. 9, explain how CCyB contains
leverage cycles.

10.2 Solutions for Selected Exercises

10.2.1 Risk Sharing and Financial Intermediation

Consider a one-good, three-date economy: There are infinitely many ex ante
identical consumers, each endowed with one unit of resource at t = 0. Consumption
takes place either at t = 1 or t = 2, while the timing preference only gets revealed
at t = 1: With probability π a consumer is an impatient one (type 1 consumer), who
only values consumption at t = 1, while with probability 1 − π a consumer (type
2 consumer) is a patient one, who only values consumption at t = 2. A consumer’s
type is private information.

Let ci denote the consumption of a type i = 1, 2 consumer, and ex post, the utility
from consumption is u(ci) = 1

1−γ
c
1−γ
i with γ > 1.

The economy has two technologies of transferring resources between periods:
storage technology with gross return equal to 1, and a long-term investment
technology with a constant gross return R > 1 at t = 2 for every per unit invested
at t = 0. If necessary, an on-going long-term project can be liquidated or stopped
prematurely at t = 1, with a return 0 < δ < 1.

(a) Specify the social planner’s problem, who wants to maximize a consumer’s
expected utility at t = 0 by allocating her endowments between two technolo-
gies.
1. Compute the optimal allocation, and consumption for each type’s

consumer—denote the solution as
(
c∗
1, c

∗
2

)
;

Suppose the social planner invests s on the short assets, then she solves

max
s

πu (c1) + (1 − π)u (c2) ,

s.t. πc1 = s,

(1 − π)c2 = (1 − s) R.

Using Lagrangian for first-order conditions

L = πu (c1) + (1 − π)u (c2) − λ [(1 − π)c2 − (1 − πc1) R] ,

∂L
∂c1

= πu′ (c1) − λπR = 0,

https://www.bis.org/bcbs/ccyb/


174 10 Monetary Policy and Financial Stability

∂L
∂c2

= (1 − π)u′ (c2) − λ(1 − π) = 0,

∂L
∂λ

= (1 − π)c2 − (1 − πc1)R = 0.

Rearranging to get

u′ (c1) = Ru′ (c2) ,

c
−γ

1 = Rc
−γ

2 ,

c2

c1
= R

1
γ .

Together with (1 − π)c2 = (1 − πc1)R, solve to get

c∗
1 = R

(1 − π)R
1
γ + πR

,

c∗
2 = R

1+ 1
γ

(1 − π)R
1
γ + πR

.

2. Why aren’t consumption levels for two types’ consumers identical? Will there
be liquidation at t = 1?
First of all, we explore some properties of

(
c∗
1, c

∗
2

)
. From u′ (c∗

1

) = Ru′ (c∗
2

)
,

R > 1 and u′′(·) < 0, one can see that u′ (c∗
1

)
> u′ (c∗

2

)
and c∗

1 < c∗
2. We

further claim that 1 < c∗
1 < c∗

2 < R.

Proof It’s known that γ > 1, or,− cu′′(c)
u′(c) > 1, this is equivalent to ∂[cu′(c)]

∂c
<

0. Together with c∗
1 < c∗

2 and R > 1, it implies that 1 · u′(1) > Ru′(R).

Further,
(
c∗
1, c

∗
2

)
satisfies resource constraint c∗

2 = (1−πc∗
1)R

1−π
and optimality

condition u′ (c∗
1

) = Ru′ (c∗
2

)
. Resource constraint implies either (a) c∗

1 > 1
and c∗

2 < R, or (b) c∗
1 ≤ 1 and c∗

2 ≥ R.

If (a) is true, 1 · u′(1) > c∗
1u

′ (c∗
1

)
> c∗

2u
′ (c∗

2

)
> Ru′(R), it goes through;

If (b) is true, u′ (c∗
1

) = Ru′ (c∗
2

) ≤ Ru′(R) < 1 · u′(1), which implies
c∗
1 > 1. A contradictions.

�

The result achieves constrained efficiency: should there be no heterogeneous
liquidity preference, all resources should be invested on the long assets
which give highest yields R. With liquidity preference shock, equilibrium
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consumption c∗
1 and c∗

2 are strictly lower than R. The loss in consumption is
a liquidity premium.
For social planner, she faces a trade-off between insurance and yield. Risk
aversion implies c∗

1 closer to c∗
2, while high yield opportunity suggests more

investment on long assets, hence c∗
2 closer to R. The equilibrium reflects such

trade-off.
There is no liquidation at t = 1 in the social planner’s solution. To see
this, suppose that (c̃1, c̃2) solves social planner’s problem, with c long assets
liquidated at t = 1. Budget constraints become

πc̃1 = s + cδ,

(1 − π)c̃2 = (1 − s − c)R.

However, the social planner could make at least type 1 consumers better off
(and type 2 consumers indifferent) by investing c instead on short assets at
t = 0, making ĉ1 = s+c

π
> c̃1 = s+cδ

π
, given that 0 < δ < 1. This contradicts

the assumption that (c̃1, c̃2) solves social planner’s problem.
3. What will happen to the consumers’ optimal consumption when γ → +∞?

When γ → +∞

lim
γ→+∞

c∗
2

c∗
1

= R
1
γ = 1.

When risk aversion dominates, consumers get full insurance.
(b) Suppose that the economy is in autarky such that every consumer has to allocate

her endowments between two technologies by herself at t = 0. Show that the
consumer’s ex post consumption is inferior to the solution in (a) 1.

Suppose, at t = 0, without knowing her type, one consumer invests 0 ≤ α ≤
1 on short assets and the rest on long assets. At t = 1, her type gets revealed.
1. If she is type 1, she gets the storage and liquidates the rest at t = 1, ca

1 =
α + (1 − α)δ ≤ 1;

2. If she is type 2, she waits and gets returns from both assets at t = 2, ca
2 =

α + (1 − α)R ≤ R.
The allocation

(
ca
1 , c

a
2

) �= (
c∗
1, c

∗
2

)
is inferior to the planner’s solution.

(c) Suppose there is a bond market available at t = 1. At t = 1 competitive bond
issuers purchase long assets from impatient consumers, issue bonds against
these long assets, and sell bonds to the patient consumers (who can pay with
the proceeds from their short assets). Each unit of bond bought at t = 1 will
deliver one unit of consumption good to the bond holder at t = 2.
1. Compute the equilibrium bond price;

A type 1 consumer sells long assets to type 2 consumers at price b for short
assets, then she consumes cb

1 = α + (1 − α)bR; a type 2 consumer sells
short assets to type 1 consumers at price b for long assets, then she consumes
cb
2 = α

b
+ (1 − α)R. If b > 1

R
, everyone wants to set α = 0, implying no
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equilibrium; if b < 1
R
, everyone wants to set α = 1, implying no equilibrium

either. Therefore, in equilibrium it must be b = 1
R
.

2. Show that the consumer’s ex post consumption is inferior to the solution in
(a) 1.
The allocation then

(
cb
1, c

b
2

) = (1, R) �= (
c∗
1, c

∗
2

)
is inferior to the planner’s

solution.
(d) Suppose there is a competitive banking sector in the economy, in which banks

take consumers’ endowments as deposits at t = 0 and allocate between the two
technologies. Consumers withdraw ci at t = i according to their type i.
1. Show that banks can replicate the optimal solution achieved in (a) 1.

Banks can replicate the optimal solution as follows:
(a) Collect deposits from consumers at t = 0, offering them deposit contracts

d0 = (
c∗
1, c

∗
2

)
;

(b) A type 1 consumer withdraws c∗
1 at t = 1, and a type 2 consumer

withdraws c∗
2 at t = 2.

The allocation is indeed an equilibrium outcome, as it fulfills
(a) Utility maximization;
(b) Feasible, or, meets budget constraints;
(c) Incentive compatible, given that each consumer’s true type is not

observed by banks. Indeed, as c∗
1 < c∗

2, a truly patient type 2 consumer
will wait till t = 2 to withdraw; she will not mimic the impatient one of
type 1.

2. Comparing with the result in (b) , how can banks improve social welfare in
the economy?
Banks provide liquidity insurance to consumers, allowing them to withdraw
when liquidity shock hits while partially enjoying the high return that long
assets generate.

10.2.2 Bank Run and Financial Fragility

Consider the equilibrium with intermediation, as in Exercise 2 (d) in which banks
offer consumers the deposit contracts

(
c∗
1, c

∗
2

)
at t = 0.

(a) Explain why there exist two (Nash) equilibria which are consistent with rational
behavior for all agents: one in which only the early consumers withdraw at
t = 1, and another one in which everyone withdraws at t = 1—no matter
what type he or she is. What is the individual consumption level in the latter
equilibrium? Does the existence of multiple equilibria depend on the value of
δ?

It’s easier to show that no-run strategic profile
(
c∗
1, c

∗
2

)
is an equilibrium

outcome: it isn’t profitable for anyone to mimic the other type as c∗
1 < c∗

2.
To see that all-run strategic profile

(
cr
1, c

r
2

)
is an equilibrium outcome, it is

sufficient to show that early withdrawers exhaust all resources so that any
deviator (waiting instead of running) is worse off, i.e., cr

2 = 0. If everyone
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demands repayment at t = 1, total demand for withdrawal is c∗
1, while the

maximum supply of liquidity is s + (1 − s)δ = πc∗
1 + (1 − πc∗

1)δ < 1 < c∗
1

given that δ < 1. Therefore, all resources must be exhausted to meet the
demand and nothing is left, i.e., cr

2 = 0. The actual payoff for the consumers
is cr

1 = πc∗
1 + (1 − πc∗

1)δ < c∗
1. The run equilibrium is thus an inefficient

equilibrium.
The existence of run equilibrium hinges on the assumption that δ < 1. If this
assumption is dropped, is there a δ that makes bank run impossible, or, deviating
from the all-run strategic profile

(
cr
1, c

r
2

)
is profitable? If yes, there must be

resources left after the run, or,

πc∗
1 + (1 − πc∗

1)δ > c∗
1,

δ >
(1 − π)c∗

1

1 − πc∗
1

.

We can explore further for a weaker condition. Notice that c∗
1 > 1,

δ >
(1 − π)c∗

1

1 − πc∗
1

>
(1 − π)c∗

1

c∗
1 − πc∗

1
= 1.

Therefore, eligible δ must be strictly higher than 1, while lower than R.
(b) Propose a mechanism that can eliminate the bank run equilibrium. Explain how

it works.
One proposal is deposit insurance, that banks pay an insurance premium at

t = 0 to an insurance company, and the insurance company provides guarantee
for d0. Knowing that higher consumption is guaranteed at t = 2, type 2
consumers will never have the incentive to run. However, in reality moral hazard
induces banks to abuse insurance scheme, and this makes the scheme collapse.
Therefore, deposit insurance seldom provides full guarantees in the real world.

(c) Suppose that it is known in the economy that a small group of consumers always
panic at t = 1, i.e., they want to withdraw with certainty at t = 1 no matter what
type they actually are. Will there still exist two Nash equilibria as in (a) ?

Depending on the size of the panicking group. There still exist two Nash
equilibria only if the group is small enough.

10.2.3 Financial Intermediation, Fragility, and Unconventional
Monetary Policy

Consider a one-good, three-date economy: There are infinitely many ex ante
identical consumers (whose population is normalized to 1), each endowed with
one unit of resource at t = 0. Consumption may take place either at t = 1 or
t = 2, while each consumer’s timing preference of consumption only gets revealed
at t = 1: With probability p (0 < p < 1) a consumer is an impatient one (type 1
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consumer), who only values consumption at t = 1, while with probability 1 − p a
consumer is a patient one (type 2 consumer), who only values consumption at t = 2.
A consumer’s type is private information and only known to herself.

Let ci denote the consumption of a type i = 1, 2 consumer. At t = 0, without
knowing her type, a consumer’s expected utility from consumption is u = p

√
c1 +

(1 − p)
√

c2.
The economy has two technologies of transferring resources between periods:

storage technology with gross return equal to 1, and a long-term investment
technology with a constant gross return R > 1 at t = 2 for every unit invested
at t = 0. If necessary, an on-going long-term project can be liquidated or stopped
prematurely at t = 1, with a return 0 ≤ δ < 1.

(a) Suppose at t = 0 a social planner allocates all resources in this economy to
maximize each consumer’s expected utility: At t = 0 the planner collects 0 ≤
α ≤ 1 from each consumer and invests on the storage technology, and the rest—
(1 − α) from each consumer—will be invested on the long-term technology. At
t = 1 the total proceeds from the storage technology will be evenly distributed
among impatient consumers (whose population is p), and at t = 2 the total
proceeds from the long-term technology will be evenly distributed among patient
consumers (whose population is 1 − p). Show that the optimal solution to type

i = 1, 2 consumer’s consumption is c∗
1 = 1

p+(1−p)R
, c∗

2 = R2

p+(1−p)R
, and the

resource invested on storage technology is α∗ = p
p+(1−p)R

.
The social planner solves

max
α

p
√

c1 + (1 − p)
√

c2,

s.t. pc1 = α,

(1 − p)c2 = (1 − α) R.

Solve to get c∗
1 = 1

p+(1−p)R
, c∗

2 = R2

p+(1−p)R
, and α∗ = p

p+(1−p)R
.

(b) Suppose that the economy is in autarky such that every consumer has to allocate
her endowments between two technologies by herself at t = 0. Show that
consumers cannot achieve the optimal solution defined in (a) .

Suppose at t = 0, without knowing her type, one consumer invests 0 ≤ α ≤ 1
on short assets and the rest on long assets. At t = 1, her type gets revealed.
1. If she is type 1, she gets the storage and liquidates the rest at t = 1, ca

1 =
α + (1 − α)δ ≤ 1;

2. If she is type 2, she waits and gets returns from both assets at t = 2, ca
2 =

α + (1 − α)R ≤ R.
Given that ca

2 ≤ R < c∗
2, certainly the allocation

(
ca
1 , c

a
2

) �= (
c∗
1, c

∗
2

)
is inferior

to the planner’s solution. Note: Here the relative rate of risk aversion is smaller
than 1, which is different from what is assumed in the standard Diamond–
Dybvig model. As a result c∗

1 < 1 and c∗
2 > R, therefore, it is crucial here to
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show that c∗
2 > R so that it never falls in the range of ca

2 and
(
ca
1 , c

a
2

) �= (
c∗
1, c

∗
2

)

for sure.
(c) Suppose there is a competitive banking sector in the economy, in which banks

take consumers’ endowments as deposits at t = 0 and allocate between the two
technologies. Consumers withdraw ci at t = i according to their type i. Show
that banks can implement the optimal solution achieved in (a) in the following
way: (1) Banks invest α∗ of deposits on storage technology, 1 − α∗ of deposits
on long-term technology; (2) consumers who withdraw at t = 1 get c∗

1 each,
and consumers who withdraw at t = 2 get c∗

2 each; (3) impatient consumers all
withdraw at t = 1 and patient consumers all withdraw at t = 2.

The social planner’s solution can be decentralized in the banking economy
because the banking allocation

(
c∗
1, c

∗
2

)
is (1) utility maximizing as it solves

the social planner’s problem; (2) feasible as it fulfills the resource constraints as
specified in the planner’s problem; and (3) implementable: Impatient consumers
won’t mimic the patient ones because they cannot wait till t = 2 and the patient
ones won’t mimic the impatient ones because they are worse off (c∗

1 < c∗
2) by

mimicking, so that the deposit contract is incentive compatible and consumers
self-select the proper outcomes.

(d) Banking sector in this economy is fragile: Patient consumers may demand their
deposits at t = 1, which leads to bank run. However, whether this happens or
not crucially depends on the value of δ. Show that as long as δ > 1

R
and banks

do the same as described in (c) , there will never be bank runs.
The bank run outcome is not equilibrium only if it is profitable for a patient

consumer to deviate unilaterally given that all other consumers run on the bank;
this is equivalent to saying that there is resource left even after all consumers run
on the bank, so that it is profitable for a patient consumer to unilaterally deviate,

wait till t = 2 and get better off: pc∗
1 + (

1 − pc∗
1

)
δ > c∗

1, or, δ >
(1−p)c∗

1
1−pc∗

1
=

1
R

= δ (using c∗
1 from (a). However, it is sufficient to reach δ >

(1−p)c∗
1

1−pc∗
1

= δ).

(e) During recent crisis, several central banks purchased huge volume of securities,
hoping to prevent price of long assets from falling too much. Using your finding
in (d), explain why such unconventional policy helps eliminate panics in banking
sector.

As long as the asset purchasing program can maintain δ > δ, bank runs are fully
eliminated as explained in (d).



ADynamic Optimization Using Lagrangian
and Hamiltonian Methods

A.1 The Deterministic Finite Horizon Optimization Problem

We start with a simplest case of the deterministic finite horizon optimization
problem, i.e., there is a terminal point in the decision process.

A.1.1 Basic Tools

Problems with Equality Constraints: The General Case
Readers may have already practiced the static optimization problems with equality
constraints many times before; the problems won’t change much if we simply
introduce a finite time dimension, i.e., some constraints must hold for each of the
periods t ∈ {0, . . . , T }—In a static problem people do maximization with respect to
n variables (x1, . . . , xn), and in a dynamic context with finite periods t ∈ {0, . . . , T }
we just solve basically the same problem with n(T +1) variables (x1, . . . , xn(T +1)).
As we know the Theorem of Lagrange, as Theorem A.1 states, provides a powerful
characterization of local optima of equality constrained optimization problems in
terms of the behavior of the objective function and the constraint functions at these
points. Generally such problems have the form as following:

max f (x)

s.t. x ∈ D = U ∩ {x|g(x) = 0} ,

in which object function f : R
n(T +1) → R and constraints gi : R

n(T +1) →
R

k(T +1),∀i ∈ {1, . . . , k(T + 1)} be continuously differentiable functions, and
U ⊆ R

n(T +1) is open. To solve it we set up a function called Lagrangian L :
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D × R
k(T +1) → R

L (x,λ) = f (x) +
k(T +1)∑

i=1

λigi(x)

in which the vector λ = (
λ1, . . . , λk(T +1)

) ∈ R
k(T +1) is called Lagrange multiplier.

Theorem A.1 Let f : Rn → R and gi : Rn → R
k be continuously differentiable

functions, ∀i ∈ {1, . . . , k}. Suppose that x∗ is a local maximum or minimum of f

on the set

D = U ∩ {x|gi(x) = 0,∀i ∈ {1, . . . , k}} ,

in which U ⊆ R
n is open. Suppose also that rank (Dg(x∗)) = k. Then, there exists

a vector λ∗ = (
λ∗
1, . . . , λ

∗
k

) ∈ R
k such that

Df
(
x∗)+

k∑

i=1

λ∗
i Dgi(x

∗) = 0.

Then by TheoremA.11 we find the set of all critical points ofL (x,λ) for x ∈ U ,
i.e., the first-order conditions

∂L

∂xj

= 0, ∀j ∈ {1, . . . , n(T + 1)},

∂L

∂λi

= 0, ∀i ∈ {1, . . . , k(T + 1)},

which simply say that these conditions should hold for each x and λ in every period.
Now we continue to explore the interpretation for the Lagrange multiplier λ. We

relax the equality constraints by adding a sufficiently small constant to each of them,
i.e.,

g(x, c) = g(x) + c

in which c = (c1, . . . , ck) is a vector of constants. Now the set of constraints
becomes

D = U ∩ {x|g(x, c) = 0} .

1Please note that as a tradition people denote the derivative of a multi-variate function f (x) :
R

n → R by Df (x), which is an n dimensional vector Df (x) :=
[

∂f (x1,...,xn)
∂x1

, . . . ,
∂f (x1,...,xn)

∂xn

]
.
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Then by Theorem A.1 at the optimum x∗(c) there exists λ∗(c) ∈ R
k(T +1) such that

Df
(
x∗(c)

)+
k(T +1)∑

i=1

λ∗
i (c)Dgi(x∗(c)) = 0. (A.1)

Define a new function of c, F(c) = f (x∗(c)). Then by chain rule,

DF(c) = Df
(
x∗(c)

)
Dx∗(c).

Insert (A.1) into the equation above, one can get

DF(c) = −
⎛

⎝
k(T +1)∑

i=1

λ∗
i (c)Dgi(x∗(c))

⎞

⎠Dx∗(c),

and this is equivalent to

DF(c) = −
k(T +1)∑

i=1

λ∗
i (c)Dgi(x∗(c))Dx∗(c). (A.2)

Define another new function of c, Gi(c) = gi(x∗(c)). Then again by chain rule,

DGi(c) = Dgi

(
x∗(c)

)
Dx∗(c).

Insert this into (A.2), and one can get

DF(c) = −
k(T +1)∑

i=1

λ∗
i (c)DGi(c). (A.3)

By the equality constraint g(x) + c = 0 one can easily see that

DGi(c) = −ei

in which ei is the i-th unit vector in R
k(T +1), i.e., the vector that has a 1 in the i-th

place and zeros elsewhere. Therefore (A.3) turns out to be

DF(c) = −
k(T +1)∑

i=1

λ∗
i (c) (−ei )

= λ∗(c).
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From the equation above one can clearly see that the Lagrange multiplier λi

measures the sensitivity of the value of the objective function at its maxima x∗
to a small relaxation of the constraint gi . Therefore λi has a very straightforward
economic interpretation, that λi represents the maximum amount the decision maker
would be willing to pay for a marginal relaxation of constraint i—this is sometimes
called the shadow price of constraint i at the optima.

Problems with Equality Constraints: A Simplified Version
The general case may be a little bit messy to go through, now we deal with the same
problem in a much simplified version, i.e., the univariate case which we are quite
familiar with. Suppose that an agent maximizes her neoclassical utility functionwith
respect to a single good x, and x must follow an equality constraint,

max
x

u(x),

s.t. g(x) = 0.

Then the problem can be easily solved by setting up Lagrangian

L = u(x) + λg(x),

and the optimal x, denoted by x∗, can be derived from the first-order conditions

∂L

∂x
= 0,

∂L

∂λ
= 0.

Now relax the constraint a little bit by ε around x∗, and rewrite the optimization
problem at x∗ as

max
ε

u(x∗, ε),

s.t. g(x∗) = ε.

By TheoremA.1 the optimal value of ε can be solved from the first-order conditions
of the Lagrangian

L ′ = u(x∗, ε) + λ
[
g(x∗) − ε

]
.

However, since we already know that x∗ is the optimal solution of the original
problem, and the optimal value of ε must be achieved when ε → 0, i.e.,

∂L ′

∂ε

∣
∣
∣
∣
ε→0

= ∂u(x∗, ε)
∂ε

− λ = 0,

λ = ∂u(x∗, ε)
∂ε

.
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The last step clearly shows that the Lagrange multiplier λ measures how much the
utility changes when the constraint is relaxed a little bit at the optimum, i.e., the
shadow price at the optimum.

Problems with Inequality Constraints: The General Case
The solution of problems with inequality constraints is characterized by the
following theorem:

Theorem A.2 Let f be a concave, continuously differentiable function mapping U
into R, where U ⊆ R

n is open and convex. For i = 1, . . . , l, let hi : U → R be
concave, continuously differentiable functions. Suppose there is some x ∈ U such
that

hi(x) > 0, i = 1, . . . , l.

Then x∗ maximizes f over

D = {x ∈ U |hi(x) ≥ 0, i = 1, . . . , l}

if and only if there is λ∗ ∈ R
l such that the Kuhn–Tucker first-order conditions hold:

∂f (x∗)
∂xj

+
j∑

i=1

λ∗
i

∂hi(x
∗)

∂xj

= 0, j = 1, . . . , n,

λ∗
i ≥ 0, i = 1, . . . , l,

λ∗
i hi(x

∗) = 0, i = 1, . . . , l.

For problems with inequality constraints, the solution procedure is pretty similar.
The only differences are the following: First, of course, the prototype problem is
different in the constraints, which are now

x ∈ D = U ∩ {x|h(x) ≥ 0} .

Second, besides the first-order conditions, there is an additional complementary
slackness condition saying that at optimum

λ∗ ≥ 0,

λ∗h∗ = 0.

The economic intuition behind the condition is pretty clear: If any resource i has
a positive value at the optima, i.e., λ∗

i > 0, then it must be exhausted to maximize
the object function, i.e., h∗

i = 0; and if any resource j is left at a positive value at
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the optima, i.e., h∗
j > 0, then it must be worthless at all, i.e., λ∗

j = 0. To see how
one can arrive at such results, an example is exposed in the next section.

Problems with Inequality Constraints: An Example
Consider the following two-period Ramsey–Cass–Koopmans problem of a farmer.
Suppose that

• Time is divided into two intervals of unit length indexed by t = 0, 1;
• Kt and Nt denote the amounts of seeds and labor available in period t ;
• Seeds and labor input produce an amount Yt of corn according to the neoclassical

production function Yt = F (Kt , Lt );
• For each period t the farmer must decide

– how much corn to produce,
– how much corn to eat, and
– how much corn to put aside for future production;

• Next period’s seed is next period’s stock of capital Kt+1;
• Choice of consumption Ct and investment

– is constrained by current production

Ct + Kt+1 ≤ Yt ,

– aims at maximizing the utility function (assume that U(·) satisfies Inada
condition)

U(C0, C1) = u(C0) + βu(C1);

– Leisure does not appear in the utility function; assume that the farmer works
a given number of hours N each period.

Then the maximization problem turns out to be

max
C0,C1

U(C0, C1) = u(C0) + βu(C1),

s.t. C0 + K1 ≤ F(K0),

C1 + K2 ≤ F(K1),

0 ≤ C0,

0 ≤ C1,

0 ≤ K1,

0 ≤ K2.
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Comparing with the prototype problem presented in Theorem A.2 we may define
that

x = (C0, C1,K1,K2),

f (C0, C1,K1,K2) = U(C0, C1),

n = 4

as well as the constraints

h1 = F(K0) − C0 − K1 ≥ 0,

h2 = F(K1) − C1 − K2 ≥ 0,

h3 = C0 ≥ 0,

h4 = C1 ≥ 0,

h5 = K1 ≥ 0,

h6 = K2 ≥ 0.

By Theorem A.2 the first-order conditions are

0 = ∂U

∂C0
+ λ1

∂h1

∂C0
+ . . . + λ6

∂h6

∂C0
= ∂U

∂C0
− λ1 + λ3, (A.4)

0 = ∂U

∂C1
+ λ1

∂h1

∂C1
+ . . . + λ6

∂h6

∂C1
= ∂U

∂C1
− λ2 + λ4, (A.5)

0 = ∂U

∂K1
+ λ1

∂h1

∂K1
+ . . . + λ6

∂h6

∂K1
= −λ1 + λ2F

′(K1) + λ5, (A.6)

0 = ∂U

∂K2
+ λ1

∂h1

∂K2
+ . . . + λ6

∂h6

∂K2
= −λ2 + λ6, (A.7)

as well as λi ≥ 0, ∀i ∈ {1, . . . , 6}. And complementary slackness gives λihi = 0,
∀i ∈ {1, . . . , 6}.

Now let’s try to simplify all the statements above. Knowing by Inada condition
that

lim
ci→0

∂U

∂Ci
= +∞

we infer that C0 > 0 and C1 > 0. From complementary slackness one can directly
see that λ3 = λ4 = 0. Then by the strict concavity ofU(·), ∂U

∂Ci
> 0. Therefore (A.4)

and (A.5) simply imply that λ1 = ∂U
∂C0

> 0 and λ2 = ∂U
∂C1

> 0, as well as λ6 > 0
from (A.7)—this further implies that K2 = 0 by complementary slackness. And
from h2 one can see that F(K1) ≥ C1 > 0, implying that K1 > 0 as well as λ5 = 0.
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Budget Constraint 

Indifference Curve 

Fig. A.1 Shadow price

From (A.6) one can see that

F ′(K1) = λ1

λ2
=

∂U
∂C0

∂U
∂C1

.

This is just the Euler condition. With two other conditions h1 = 0 and h2 = 0 one
can easily solve for (C0, C1,K1).

Figure A.1 gives a graphical interpretation to this inequality constrained opti-
mization problem. The agent maximizes her life-time utility by choosing the
consumption level for each of the two periods, on the basis of her intertemporal
budget constraints. The optimum is achieved where the indifferent curve is exactly
tangent to the frontier of the budget constraint. Suppose that we relax the budget
constraint by adding a little bit to it, the vector λ just describes by how much
the indifferent curve responds to the relaxation—in mathematical term, exactly the
gradient �xU as the graph shows.

A.1.2 The General Deterministic Finite Horizon Optimization
Problems: From Lagrangian to Hamiltonian

Let’s take a closer look at the structure of the problem in the example. What makes
it interesting is that the variables from the different periods are linked through the
constraints (otherwise we can solve the problem by simply repeating dealing with
the insulated T + 1 static problems), therefore one variable’s change in one period
may have pervasive effects into the other periods. So one may wonder whether there
exists a solution method by exploiting such linkage—this is just the widely applied
optimal control method.
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As a general exposure, the prototype problem can be described as following.
Think about the simplest case with only two variables kt , ct in each period t ∈
{0, 1, . . . , T }, T < +∞. The problem is to maximize the object function U :
R
2(T +1) → R which is the summation of the function u : R2 → R for each period,

constrained by the intertemporal relations of k and c as well as the boundary values

max{ct }
U =

T∑

t=0

1

(1 + ρ)t
u (kt , ct , t) ,

s.t. kt+1 − kt = g (kt , ct ) ,

kt=0 = k0,

kT +1 ≥ kT +1.

k and c represent two kinds of variables. Variable kt is the one with which each
period starts and on which the decision is based, therefore it’s usually called state
variable. And variable ct is the one the decision maker can change in each period
and what is left over is fed back into the next period state variable, therefore it’s
usually called control variable. The constraint linking these variables across periods
is called the law of motion.

If we express everything in continuous time, we only need to rewrite the
summation by integration and the intertemporal change by the derivative with
respect to time. However solving the continuous time problems with the Lagrangian
would be a bit tricky. And in order to give the readers more exposures to the
continuous time models, in the section that follows we start with building up the
foundations of finite horizon optimization problems in continuous time. Readers
may extend the same idea into the discrete time problems as an exercise.

Continuous Time
Suppose that time is continuous such that t ∈ [0, T ], T ≤ +∞. A typical
deterministic continuous time optimization problem can be written as (often people
simply set k(T ) to be zero)

max
{c(t)}

U =
∫ T

0
e−ρtu (k(t), c(t), t) dt,

s.t. k̇(t) = g (k(t), c(t), t) ,

k(0) = k0,

k(T ) ≥ k(T ).

Set up Lagrangian for this problem

L =
∫ T

0
e−ρt u (k(t), c(t), t) dt +

∫ T

0
μ(t)

(
g (k(t), c(t), t) − k̇(t)

)
dt + ν

[
k(T ) − k(T )

]
, (A.8)
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and we are supposed to find the first-order conditions with respect to k(t) and c(t).
However the second term in L involves k̇(t), and this makes it difficult to derive it
with respect to k(t). Therefore we rewrite this term with integration by parts

∫ T

0
μ(t)k̇(t)dt = μ(t)k(t)|T0 −

∫ T

0
k(t)μ̇(t)dt

= μ(T )k(T ) − μ(0)k0 −
∫ T

0
k(t)μ̇(t)dt.

Insert it back into Lagrangian, we get

L =
∫ T

0

[
e−ρtu (k(t), c(t), t) + μ(t)g (k(t), c(t), t)

]
dt

−
(

μ(T )k(T ) − μ(0)k0 −
∫ T

0
k(t)μ̇(t)dt

)
+ ν

[
k(T ) − k(T )

]
.

Define Hamiltonian function as

H(k, c, μ, t) = e−ρtu (k(t), c(t), t) + μ(t)g (k(t), c(t), t) , (A.9)

then Lagrangian turns out to be

L =
∫ T

0
[H(k, c, μ, t) + k(t)μ̇(t)] dt − μ(T )k(T ) + μ(0)k0 + ν

[
k(T ) − k(T )

]
.

Now let k∗(t), c∗(t) be the optimal path for state and control variable. Define
p1(t) as an arbitrary perturbation for c∗(t), then a neighboring path around c∗(t)
can be defined as

c(t) = c∗(t) + εp1(t).

Similarly define p2(t) as an arbitrary perturbation for k∗(t), then a neighboring path
around k∗(t) can be defined as

k(t) = k∗(t) + εp2(t)

as well as the end-period state variable

k(T ) = k∗(T ) + εdk(T ).

RewriteL in terms of ε

L ∗(·, ε) =
∫ T

0
[H(k(t, ε), c(t, ε), t) + k(t, ε)μ̇(t)] dt − μ(T )k(T , ε) + μ(0)k0 + ν

[
k(T , ε) − k(T )

]
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and the first-order condition must hold

∂L ∗(·, ε)
∂ε

∣
∣∣
∣
ε→0

= 0

=
∫ T

0

[
∂H
∂ε

+ μ̇(t)
∂k

∂ε

]
dt + (ν − μ(T ))

∂k(T )

∂ε
.

By the chain rule

∂H
∂ε

= ∂H
∂k

∂k

∂ε
+ ∂H

∂c

∂c

∂ε

= ∂H
∂k

p2(t) + ∂H
∂c

p1(t),

and insert it into the first-order condition

∂L ∗(·, ε)
∂ε

∣∣∣
∣
ε→0

=
∫ T

0

[
∂H
∂k

p2(t) + ∂H
∂c

p1(t) + μ̇(t)p2(t)

]
dt + (ν − μ(T )) dk(T )

=
∫ T

0

[(
∂H
∂k

+ μ̇(t)

)
p2(t) + ∂H

∂c
p1(t)

]
dt + (ν − μ(T )) dk(T )

= 0.

Therefore the first-order condition is equivalent to the following equations:

∂H
∂c

= 0, (A.10)

∂H
∂k

= −μ̇(t), (A.11)

μ(T ) = ν. (A.12)

Since we assume that k∗(t), c∗(t) be the optimal path, then these conditions
must hold. Condition (A.10) is called the Euler equation, and condition (A.11) is
the Maximum Principle. Condition (A.12) requires that the terminal date costate
variable, μ(T ), equal the terminal date static Lagrange multiplier ν.

There is still something missing—Go back to the Lagrangian (A.8), we also have
to address the concern on complementary slackness regarding the terminal time
capital constraint, i.e.,

ν
[
k(T ) − k(T )

] = 0 with ν ≥ 0.
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Combining with condition (A.12) the complementary slackness is simply equivalent
to

μ(T )
[
k(T ) − k(T )

] = 0, (A.13)

which is often called transversality condition. The intuition behind it is pretty clear:
If there is strictly positive amount of more capital is left at the end date T than
required, i.e., k(T ) − k(T ) > 0, then its price must be zero, i.e., μ(T ) = 0, because
it is worthless at all. On the other hand, if the capital stock at the end date has a
strictly positive value, i.e., μ(T ) > 0, then the agent must leave no excessive capital
at all, i.e., k(T ) − k(T ) = 0.

Now the lengthy procedure which we went through simply tells us that one can
actually start from the Hamiltonian and directly arrive at the first-order conditions.
As a summary, to solve the deterministic multi-period optimization problem the
whole procedure can be simplified into the following steps:

• Formulate the optimization problem as we did in the beginning of this section,
and write down its Hamiltonian as (A.9);

• Derive the first-order conditions regarding control and state variables, respec-
tively, such as (A.10) and (A.11);

• Add the transversality condition such as (A.13);
• Make further treatments on these equations to get whatever you are interested in.

In addition, please note that the menu also works for the problems with more
than one state and/or control variables. The first-order conditions are in the same
forms as Eqs. (A.10) and (A.11), for control and state variables, respectively.

Discrete Time
Since discrete time problems have the same nature as the ones for continuous time,
therefore here we simply present the results without going into the details of proofs.

A typical deterministic discrete time optimization problem can be written as

max{ct }
U =

T∑

t=0

1

(1 + ρ)t
u (kt , ct , t) ,

s.t. kt+1 − kt = g (kt , ct ) ,

kt=0 = k0,

kT +1 ≥ kT +1.
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Construct the present value Hamiltonian Ht = u (kt , ct , t) + λtg (kt , ct ), and the
first-order conditions are ∀t ∈ {0, 1, . . . , T }

∂Ht

∂ct

= 0,

∂Ht

∂kt

= − (λt − λt−1) ,

∂Ht

∂λt

= kt+1 − kt ,

as well as the complementary slackness such that λT ≥ 0 and λT

(
kT +1 − kT +1

) =
0.

Present Versus Current Value Hamiltonian
Often what we consider in economics is the optimization problem regarding a
discounted object function (in contrast to the prototype model by Ramsey), such
as

max
{c(t)}

U =
∫ T

0
e−ρtu (k(t), c(t), t) dt,

s.t. k̇(t) = g (k(t), c(t), t) ,

k(0) = k0,

k(T ) − k(T ) ≥ 0

in which ρ is the discount rate. As we did in Sect. A.1.2 the present value
Hamiltonian can be expressed as

H = e−ρtu (k(t), c(t), t) + μ(t)g (k(t), c(t), t)

– notice that μ(t) is the present value shadow price, for it correspondents to the
discounted object function. Same as before, the first-order conditions can be
derived as Eqs. (A.10) and (A.11), plus the transversality condition (A.13).

Sometimes it’s convenient to study a problem in the current time terms, and
people set up the current value Hamiltonian as

Ĥ = u (k(t), c(t), t) + q(t)g (k(t), c(t), t)

in which q(t) = μ(t)eρt is the current value shadow price, for it correspondents
to the non-discounted object function. Now the first-order conditions are slightly
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different in ∂Ĥ
∂k

∂Ĥ
∂c

= 0, (A.14)

∂Ĥ
∂k

= ρq(t) − q̇(t), (A.15)

as well as the transversality condition

q(T )e−ρt
[
k(T ) − k(T )

] = 0. (A.16)

Although Eq. (A.15) is a little more complicated, it is very intuitive. Notice

that ∂Ĥ
∂k

is just the marginal contribution of the capital to utility, i.e., the dividend
received by the agent, the equation reflects the idea of asset pricing: given that q̇(t)

is the capital gain (the change in the price of the asset), and ρ is the rate of return on
an alternative asset, i.e., consumption, Eq. (A.15) says that at the optimum the agent
is indifferent between the two types of the investment, for the overall rate of return
to the capital,

∂Ĥ
∂k

+ q̇(t)

q(t)
,

equals the return to consumption, ρ. For this reason, Eq. (A.15) is also called non-
arbitrage condition.

A.2 Going Infinite

What will happen when we extend the results of finite horizon optimization
problems into the ones with infinite horizon?

The optimization itself is only a little different—T = +∞ in the object function

U =
∫ +∞

0
e−ρtu (k(t), c(t), t) dt,

and there will be no terminal time condition any more, because the time doesn’t
terminate at all. But this makes a big change of the problem: Now the optimal time
path looks like a kite—we hold the thread at hand, but we don’t know where it ends.

Note that the principles behind the finite time optimization problem are that
following the optimal time path nothing valuable is left over in the end of the world
(such that μ(T )

[
k(T ) − k(T )

]
is non-positive) and the agent doesn’t exit the world

with debt (such thatμ(T )
[
k(T ) − k(T )

]
is non-negative),which are captured in the

transversality condition. To maintain the same principles in the infinite time horizon,
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we may assume that there is an end of the world, but after a nearly infinitely long
time. Therefore we may impose a similar transversality condition for the problems
of infinite time horizon

lim
T →+∞ μ(T )

[
k(T ) − k(T )

] = 0,

i.e., the value of the state variable must be asymptotically zero: If the quantity of
k(T ) remains different from the constraint asymptotically, then its price,μ(T ), must
approach 0 asymptotically; if k(T ) − k(T ) grows forever at a positive rate, then the
priceμ(T )must approach 0 at a faster rate so that the product,μ(T )

[
k(T ) − k(T )

]
,

goes to 0.



BDynamic Programming

Dynamic programming is another powerful tool to solve dynamic optimization
problems.

B.1 Dynamic Programming: The Theoretical Foundation

The theoretical foundation of dynamic programming is contraction mapping. Let’s
start with some formal definitions.

Definition B.1 A metric space (S, ρ) is a non-empty set S and a metric, or distance
ρ : S × S → R, which is defined as a mapping, ∀x, y, v, with

1. ρ(x, y) = 0 ⇔ x = y,
2. ρ(x, y) = ρ(x, y), and
3. ρ(x, y) ≤ ρ(x, v) + ρ(v, y).

For example, a plane
(
R
2, d2

)
is a metric space, in which the metric d2 : R2 ×

R
2 → R is defined as

d2(x, y) = ||x − y||2 =
√

(x1 − y1)
2 + (x2 − y2)

2,∀x, y ∈ R
2,

i.e., d2(·), or || · ||2, is just the Euclidean distance.

Definition B.2 A norm is a mapping Rn � x �→ ||x|| ∈ R on Rn , with

1. ∀x ∈ R
n, ||x|| = 0 ⇔ x = 0,

2. ∀x ∈ R
n, ∀α ∈ R, ||αx|| = |α|||x|| and

3. ∀x, y ∈ R
n,||x + y|| ≤ ||x|| + ||y||.
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In the definition of metric space, the set S is just arbitrary. It can be a subset of
n dimensional space, i.e., S ⊆ R

n, but it can also be a function space B(X)—a set
containing all (normally, bounded) functions mapping a set X to R, B : X → R.
Then we define a supremum norm on such function space

d∞ = ||f − g||∞ = sup
x∈X

|f (x) − g(x)|,∀f, g ∈ B(X),

and this metric space of bounded functions on X with supremum norm is denoted
by (B(X), d∞).

Having defined all the necessary terms, we continue with a special mapping.

Definition B.3 Suppose a metric space (S, ρ) and a function T : S → S mapping
S to itself. T is a contraction mappingwith modulus β, if ∃β ∈ (0, 1), ρ(T x, Ty) ≤
βρ(x, y), ∀x, y ∈ S.

An example in Fig. B.1 shows a contraction mapping T : (0, 1) → (0, 1). The
distance between images T x and Ty is less than |y−x|. One may notice that under a
contraction mapping like this, a fixed point v ∈ S = (0, 1) exists such that T v = v.
Indeed, the following theorem tells us that this is a general phenomenon.

Theorem B.1 (Contraction Mapping Theorem) If (S, ρ) is a complete metric
space and T : S → S is a contraction mapping with modulus β, then

1. T has a unique fixed point v ∈ S, and
2. ∀v0 ∈ S, ρ (T nv0, v) ≤ βnρ (v0, v), n ∈ N .

T n means that the mapping is applied for n times. But what does the Theorem
imply for our questions on dynamic programming? Well, look at the prototype

Fig. B.1 Contraction
mapping

x y

Tx

Ty T

0 1

1

v
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problem

V (kt) = max
ct ,kt+1

{u(ct ) + βV (kt+1)} . (B.1)

The right-hand side is just a mapping of function V (·), mapping the function
space to itself. And the equilibrium solution making V = T V is simply a fixed
point of the mapping! Now the Contraction Mapping Theorem tells us that a unique
fixed point exists if the mapping is a contraction mapping, therefore, if we want to
say that there is a unique solution for the prototype problem, we have to make sure
that the mapping in (B.1) is a contraction mapping.

However, showing a mapping to be a contraction one directly by definition is
usually tricky. Fortunately, the following theorem makes the task more tractable.

Theorem B.2 (Blackwell’s Sufficient Conditions for a Contraction) Suppose
X ⊆ R

n and B(X) is the function space for all bounded functions f : X → R

with supremum norm || · ||∞. If a mapping T : B(X) → B(X) satisfies

1. (Monotonicity condition) ∀f, g ∈ B(X) and ∀x ∈ X with f (x) ≤ g(x) implies
(Tf )(x) ≤ (T g)(x), ∀x ∈ X;

2. (Discounting condition) ∃β ∈ (0, 1) such that

[T (f + a)] (x) = f (x) + a ≤ (Tf )(x) + βa,∀f ∈ B(X), a ≥ 0, x ∈ X,

then T is a contraction mapping with modulus β.

Now we can show that our prototype problem of dynamic programming satisfies
Blackwell’s sufficient conditions for a contraction, therefore there exists a unique
fixed point for the mapping. Suppose that we are going to solve the following
dynamic optimization problem with exact utility and production functions,

V (k) = max
k′

{
c1−θ

1 − θ
+ βV (k′)

}
= max

k′

{[
Akα + (1 − δ)k − k′]1−θ

1 − θ
+ βV (k′)

}

s.t. c + k′ = Akα + (1 − δ)k,

in which we write k and k′ instead of kt and kt+1 for simplicity, and the right-hand
side defines the mapping T . Since k takes its maximum value when c = 0, k is thus
bounded above by k such that

0 + k = Ak
α + (1 − δ)k,

k =
(

A

δ

) 1
1−α

.
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Therefore define the state space X ⊆ [
0, k

]
as a complete subspace of R, and B(X)

the function space of all bounded continuous functions on X with supremum norm.
Then we need to show that the mapping T : B(X) → B(X) in the complete
(why?) metric space (B(X), d∞) satisfies Blackwell’s sufficient conditions for a
contraction.

Check the monotonicity condition. Let f (x) ≤ g(x), ∀x ∈ X, then

Tf (k) = max
k′

{[
Akα + (1 − δ)k − k′]1−θ

1 − θ
+ βf (k′)

}

≤ max
k′

{[
Akα + (1 − δ)k − k′]1−θ

1 − θ
+ β

[
f (k′) + g(k′) − f (k′)

]
}

= max
k′

{[
Akα + (1 − δ)k − k′]1−θ

1 − θ
+ βg(k′)

}

= Tg(k).

Check the discounting condition.

[T (f + a)] (k) = max
k′

{[
Akα + (1 − δ)k − k′]1−θ

1 − θ
+ βf (k′) + βa

}

= Tf (k) + βa.

Both conditions hold. Therefore the dynamic optimization problem has a unique
equilibrium solution.

B.2 Defining a Dynamic Programming Problem

Consider a general discrete-time optimization problem

max
{ct ,kt+1}+∞

t=0

+∞∑

t=0

βtu(ct )

s.t. kt+1 = f (ct , kt ).

You may interpret this problem in an economic context. Given any capital
stock level kt in period t , a representative agent maximizes her life-long utility by
choosing her period t consumption level ct (such variables whose value is directly
chosen by individuals are called control variables; in contrast, those not directly
chosen by individuals are called state variables such as kt ). So essentially the
optimization problem is to seek a policy function ct = h(kt ) which maps the state kt
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into the control ct . As soon as ct is chosen, the transition function kt+1 = f (ct , kt )

determines next period state kt+1 and the same procedure repeats. Such procedure
is recursive.

The basic idea of dynamic programming is to collapse a multi-periods problem
into a sequence of two-periods problem at any t using the recursive nature of the
problem

V (kt ) = max
ct ,kt+1

+∞∑

i=0

βiu(kt+i)

= max
ct ,kt+1

{

u(ct ) + β

+∞∑

i=0

βiu(ct+i+1)

}

= max
ct ,kt+1

{u(ct ) + βV (kt+1)}

s.t. kt+1 = f (ct , kt ). (B.2)

Equation V (kt ) = maxct ,kt+1 {u(ct ) + βV (kt+1)} is known as Bellman equation.
The value function V (·) is only a function of state variable kt because the optimal
value of ct is just a function of kt . Then the original problem can be solved by the
methods we learned for two-periods problems plus some tricks.

B.3 Getting the Euler Equation

The key step now is to find the proper first-order conditions. There are several
possible approaches, and readers may pick up one of them with which he or she
feels comfortable.

B.3.1 Using Lagrangian

Since the problem looks pretty similar to a maximization problem with equality
constraint, one may suggest Lagrangian—Let’s try.

Rewrite V (kt ) as

V (kt) = max
ct ,kt+1

{u(ct ) + βV (kt+1) + λt [f (ct , kt ) − kt+1]}︸ ︷︷ ︸
Lt

.

Step 1 Since V (kt ) is maximized value for Lagrangian, the first-order conditions
with respect to ct and kt+1 must hold,

u′(ct ) + λt
∂f (ct , kt )

∂ct

= 0, (B.3)

βV ′(kt+1) − λt = 0. (B.4)
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Step 2 Since V (kt) is optimized at kt , then

V ′(kt ) = u′(ct )
dct

dkt

+ βV ′(kt+1)
dkt+1

dkt

+ dλt

dkt
[f (ct , kt ) − kt+1]

+λt

[
∂f (ct , kt )

∂kt

+ ∂f (ct , kt )

∂ct

dct

dkt

− dkt+1

dkt

]

=
[
u′(ct ) + λt

∂f (ct , kt )

∂ct

]

︸ ︷︷ ︸
(A)

dct

dkt

+ [
βV ′(kt+1) − λt

]

︸ ︷︷ ︸
(B)

dkt+1

dkt

+dλt

dkt
[f (ct , kt ) − kt+1]︸ ︷︷ ︸

(C)

+λt
∂f (ct , kt )

∂kt

.

(A) = 0 by (B.3), (B) = 0 by (B.4), and (C) = 0 by first-order condition of
Lagrangian. Therefore

V ′(kt) = λt
∂f (ct , kt )

∂kt

. (B.5)

Step 3 By (B.3) and (B.4) eliminate λt

u′(ct ) + βV ′(kt+1)
∂f (ct , kt )

∂ct

= 0.

And since t is arbitrarily taken, this equation must hold if we take one period
backward

u′(ct−1) + βV ′(kt)
∂f (ct−1, kt−1)

∂ct−1
= 0. (B.6)

Next insert (B.3) into (B.5) to eliminate λ and (B.6) into (B.5) to eliminate V ′(kt ),
then Euler equation is obtained.

B.3.2 Tracing Dynamics of Costate Variable

The other way of thinking is to trace the dynamics of costate variable V (kt ).

Step 1 Since V (kt ) is maximized value of u(ct ) + βV (kt+1), then the first-order
condition with respect to ct gives

u′(ct ) + βV ′(kt+1)
∂kt+1

∂ct

= u′(ct ) + βV ′(kt+1)
∂f (ct , kt )

∂ct

= 0. (B.7)



B Dynamic Programming 203

Step 2 Since V (kt) is optimized at kt , then

V ′(kt ) = u′(ct )
dct

dkt

+ βV ′(kt+1)

[
∂f (ct , kt )

∂kt

+ ∂f (ct , kt )

∂ct

dct

dkt

]

=
[
u′(ct ) + βV ′(kt+1)

∂f (ct , kt )

∂ct

]
dct

dkt

+ βV ′(kt+1)
∂f (ct , kt )

∂kt

.

Apply (B.7) and get

V ′(kt ) = βV ′(kt+1)
∂f (ct , kt )

∂kt

. (B.8)

Since t is arbitrarily taken, (B.7) also holds for one period backward, i.e.,

V ′(kt ) = − u′(ct−1)

β
∂f (ct−1,kt−1)

∂ct−1

. (B.9)

Step 3 Apply (B.7) and (B.9) into (B.8) and obtain Euler equation.

B.3.3 Using Envelope Theorem

We may also use the Envelope Theorem to find the first-order condition.

Theorem B.3 Suppose that value function m(a) is defined as following:

m(a) = max
x

f (x(a), a).

Then the total derivative of m(a) with respect to a equals the partial derivative of
f (x(a), a) with respect to a, if f (x(a), a) is evaluated at x = x(a) that maximizes
f (x(a), a), i.e.,

dm(a)

da
= ∂f (x(a), a)

∂a

∣∣
∣
∣
x=x(a)

.

Proof Since m(a) is maximized value of f (x(a), a) at x = x(a), then

∂f (x(a), a)

∂x
= 0
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by the first-order condition. Therefore the total derivative of m(a) with respect to a

is

dm(a)

da
= ∂f (x(a), a)

∂x

dx(a)

da
+ ∂f (x(a), a)

∂a

= ∂f (x(a), a)

∂a

since the first term is equal to 0. �

Solve the budget constraint for ct and get ct = g(kt , kt+1). Apply it to V (kt) and
get a univariate optimization problem

V (kt ) = max
kt+1

{u(g(kt , kt+1)) + βV (kt+1)} .

Step 1 Similar as before, since V (kt ) is the maximized value of u(g(kt , kt+1)) +
βV (kt+1), then the first-order condition with respect to kt+1 gives

u′(g(kt , kt+1))
∂g(kt , kt+1)

∂kt+1
+ βV ′(kt+1) = 0. (B.10)

Step 2 Since V (kt ) is already optimized at kt , differentiating V (kt ) with respect to
kt gives

dV (kt )

dkt

= ∂V (kt )

∂kt︸ ︷︷ ︸
(A)

+ ∂V (kt )

∂kt+1

∂kt+1

∂kt︸ ︷︷ ︸
(B)

. (B.11)

This is pretty intuitive: kt may generate a direct effect on V (kt ) as part (A) shows;
however, kt may also generate an indirect effect on V (kt ) through kt+1 (remember
the dynamic budget constraint). And since V (kt) is optimized by kt+1, the first-order
condition implies that ∂V (kt )

∂kt+1
= 0. Therefore Eq. (B.11) becomes

V ′(kt ) = ∂V (kt )

∂kt

= u′(g(kt , kt+1))
dg(kt , kt+1)

dkt

(B.12)

which is also called Benveniste–Scheinkman condition.

Step 3 Similar as before, take one period forward for (B.12) and apply it into (B.10)
then obtain Euler equation.
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B.3.4 Example

Consider a discrete time Ramsey problem for a decentralized economy

max
{ct ,bt }+∞

t=0

+∞∑

t=0

βtu(ct )

s.t. bt+1 − bt = wt + rtbt − ct − nbt .

Collapse the infinite horizon problem into a sequence of two-periods problem

V (bt ) = max
ct ,bt+1

+∞∑

i=0

βiu(ct+i )

= max
ct ,bt+1

{

u(ct ) + β

+∞∑

i=0

βiu(ct+i+1)

}

= max
ct ,bt+1

{u(ct ) + βV (bt+1)}

s.t. bt+1 = wt + (1 + rt )bt − ct − nbt .

Now we solve the problem with all three approaches.

Using Lagrangian
Rewrite Bellman equation in Lagrangian form

V (bt ) = max
ct ,bt+1

{u(ct ) + βV (bt+1) + λt [wt + (1 + rt )bt − ct − nbt − bt+1]} .

Step 1 The first-order conditions of Lagrangian are

u′(ct ) − λt = 0, (B.13)

βV ′(bt+1) − λt = 0, (B.14)

and eliminate λt to get

u′(ct ) = βV ′(bt+1). (B.15)

Step 2 Now differentiate V (bt ) at bt

V ′(bt ) = u′(ct )
dct

dbt

+ βV ′(bt+1)(1 + rt − n)

+dλt

dkt
[wt + (1 + rt )bt − ct − nbt − bt+1]︸ ︷︷ ︸

=0
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+λt

[
(1 + rt − n) − dct

dbt

− (1 + rt − n)

]

= [
u′(ct ) − λt

]

︸ ︷︷ ︸
=0

dct

dbt

+ [
βV ′(bt+1) − λt

]

︸ ︷︷ ︸
=0

(1 + rt − n) + λt (1 + rt − n).

That is,

V ′(bt ) = λt (1 + rt − n). (B.16)

Step 3 Insert (B.13) and (B.15) into (B.16) and get the desired result.

Tracing Dynamics of Costate Variable
Now solve the same problem by tracing the dynamics of the costate variable.

Step 1 Since V (bt ) is the maximized value of u(ct )+βV (bt+1), then the first-order
condition with respect to bt+1 gives

− u′(ct ) + βV ′(bt+1) = 0. (B.17)

Step 2 Now differentiate V (bt ) at bt

V ′(bt ) = u′(ct )
∂ct

∂kt

+ βV ′(bt+1)

[
(1 + rt − n) − ∂ct

∂kt

]
.

That is just

V ′(bt) = β(1 + rt − n)V ′(bt+1). (B.18)

Step 3 Insert (B.17) twice into (B.18) and get the desired result.

Using Envelope Theorem
Now solve the same problem with Envelope Theorem.

Step 1 Since V (bt ) is maximized value of u(ct ) + βV (bt+1), then the first-order
condition with respect to bt+1 gives

− u′(ct ) + βV ′(bt+1) = 0. (B.19)

Step 2 Now the problem is to find V ′(bt+1). Differentiate V (bt ) at bt

V ′(bt) = ∂V (bt)

∂bt

= (1 + rt − n)u′(ct ). (B.20)
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Step 3 Take one period backward for (B.19) and insert into (B.20) to obtain the
Euler equation.

B.4 Solving for the Policy Function

As seen in previous sections policy function ct = h(kt ) captures the optimal solution
for each period given the corresponding state variable, therefore one may desire to
get the solution of the policy function. Dynamic programming method has a special
advantage for this purpose, and we will see several approaches in the following.

Now consider the problem of Brock andMirman (1972). Suppose utility function
takes the form ut = ln ct and the production function follows Cobb–Douglas
technology. No depreciation and population growth.

max
{ct ,kt }+∞

t=0

∗∞∑

t=0

βt ln ct

s.t. kt+1 = kα
t − ct .

B.4.1 Solution by Iterative Substitution the Euler Equation

Recall that the recursive structure of dynamic programmingmethod implies that the
problem that the optimizer faces in each period is the same as that she faces last
period or next period, so the solution to such a problem should be time-invariant.
Thus one can start from deriving the solution under some circumstances and iterate
it on an infinite time horizon until it is time invariant. However this approach only
works when the problem is simple.

Forward Induction
Set up the Bellman equation and solve for Euler equation. This gives

1

ct

= αβ
kα−1
t+1

ct+1

kt+1

ct

= αβ
kα
t+1

ct+1

kα
t − ct

ct

= αβ
kα
t+1

ct+1

kα
t

ct

= αβ
kα
t+1

ct+1
+ 1.
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Apply this condition to itself and get a geometric serial

kα
t

ct
= 1 + αβ

(
1 + αβ

kα
t+2

ct+2

)

= 1 + αβ + α2β2 + α3β3 + . . .

= 1

1 − αβ
,

(why?) and this gives

ct = (1 − αβ)kα
t .

Another way to see this is exploring saving rate dynamics. Express ct by kt and
kt+1

1

kα
t − kt+1

= β
1

kα
t+1 − kt+2

αkα−1
t+1 . (B.21)

Define saving rate at time t as

st = kt+1

kα
t

,

Rearranging (B.21) gives

1

kα
t

1

1 − st
= β

1

kα
t+1

1

1 − st+1
αkα−1

t+1

kt+1

kα
t

1

1 − st
= αβ

1 − st+1

st

1 − st
= αβ

1 − st+1
,

and this is

st+1 = 1 + αβ − αβ

st
. (B.22)

Plot st+1 as a function of st as Fig. B.2, and this gives two solutions, αβ < 1 and
1 respectively. Only the former is plausible. Then

ct = (1 − st )k
α
t = (1 − αβ)kα

t .



B Dynamic Programming 209

1ts

ts1

1t ts f s

45

Fig. B.2 Solution for st

Backward Induction
Suppose that the world ends after some finite period T . Then surely for the last
period

sT = 0.

Apply this to (B.22)

sT = 0 = 1 + αβ − αβ

sT −1
,

solve to get

sT −1 = αβ

1 + αβ
.

Continue this process,

sT −1 = αβ

1 + αβ
= 1 + αβ − αβ

sT −2
,

and this yields

sT −2 = αβ + α2β2

1 + αβ + α2β2 .
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We find that for any t between 0 and T

st =
∑T −t

i=1 αiβi

1 +∑T −t
i=1 αiβi

=
αβ(1−αT−t βT −t )

1−αβ

1 + αβ(1−αT−t βT −t )
1−αβ

= αβ(1 − αT −t βT −t )

1 − αβ + αβ(1 − αT −t βT −t )
.

And in the limit

lim
T −t→+∞ st = αβ

implying that

ct = (1 − αβ)kα
t .

B.4.2 Solution by Value-Function Iteration

Another solution method is based on iteration of the value function. The value
function actually will be different in each period, just as we earlier found the
function g(kt ) was different depending on how close we were to the terminal period.
But it can be shown (but we do not show this here) that as we iterate through time,
the value function converges, just as g(kt ) converged in our earlier example as we
iterated back further away from the terminal period. This suggests that if we iterate
on an initial guess for the value function, even a guess we know is incorrect, the
iterations eventually will converge to the true function.

Guess and Verify
One may guess the form of solution and try to verify whether it’s true. We guess that

V (kt) = A + B ln kt .

Then the problem becomes

V (kt ) = max
ct ,kt+1

{ln ct + βV (kt+1)}

= max
ct ,kt+1

{ln ct + β(A + B ln kt+1)}

s.t. kt+1 = kα
t − ct .

The first-order condition with respect to kt+1 yields

− 1

ct

+ βB

kt+1
= 0,

kt+1 = βB(kα
t − kt+1),
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kt+1 = βB

1 + βB
kα
t ,

ct = 1

1 + βB
kα
t .

Then apply the results to the Bellman equation, and the following must hold if our
conjecture is right

V (kt) = ln

(
βB

1 + βB
kα
t

)
+ β

[
A + B ln

(
1

1 + βB
kα
t

)]

= lnβB + βA − (1 + βB) ln(1 + βB)
︸ ︷︷ ︸

A

+ α(1 + βB)
︸ ︷︷ ︸

B

ln kt

= A + B ln kt .

Solve to get

B = α

1 − αβ
,

A = 1

1 − β

[
ln(1 − αβ) + αβ

1 − αβ
lnαβ

]
,

ct = 1

1 + βB
kα
t = (1 − αβ)kα

t .

and therefore

kt+1 = βB

1 + βB
kα
t = αβkα

t ,

ct = 1

1 + βB
kα
t = (1 − αβ)kα

t .

Value-Function Iteration
Unfortunately few problems can be solved by simple conjectures. As a last resort
one needs onerous effort on value functions. Suppose that the world ends after some
finite period T . Then surely

V (kT +1) = 0,

as well as

cT = kα
T , and kT +1 = 0.
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Apply these in Bellman equation,

V (kT ) = ln kα
T + βV (kT +1) = ln kα

T .

For one period backward,

V (kT −1) = max
cT −1,kT

{ln(cT −1) + βV (kT )}

= max
cT −1,kT

{
ln(cT −1) + β ln kα

T

}

s.t. kT = kα
T −1 − cT −1.

This is simply a two-period intertemporal optimization with an equality constraint.
Using Lagrangian

L = ln(cT −1) + β ln kα
T + λ

[
kα
T −1 − cT −1 − kT

]
,

first-order conditions give

∂L

∂cT −1
= 1

cT −1
− λ = 0,

∂L

∂kT

= αβ
kα−1
T

kα
T

− λ = αβ
1

kT

− λ = 0,

∂L

∂λ
= kα

T −1 − cT −1 − kT = 0.

Solve to get

cT −1 = 1

1 + αβ
kα
T −1,

kT = αβ

1 + αβ
kα
T −1.

Then V (kT −1) can be expressed as

V (kT −1) = ln

(
1

1 + αβ
kα
T −1

)
+ β ln

(
αβ

1 + αβ
kα
T −1

)α

= αβ ln(αβ) − (1 + αβ) ln(1 + αβ) + (1 + αβ) ln kα
T −1.

Again take one period backward,

V (kT −2) = max
cT −2,kT −1

{ln(cT −2) + βV (kT −1)}

s.t. kT −1 = kα
T −2 − cT −2,
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and the same procedure applies. After several rounds you may find that for time t

long before T the value function converges to

V (kt ) = max
ct ,kt+1

{
ln ct + β

[
1

1 − β

(
ln(1 − αβ) + αβ

1 − αβ
ln αβ

)

+ α

1 − αβ
ln kt+1

]}

s.t. kt+1 = kα
t − ct .

As before since V (kt ) is the maximized value the first-order condition with respect
to kt+1 still holds

− 1

ct

+ αβ

1 − αβ

1

kt+1
= 0,

this yields

ct = (1 − αβ)kα
t

kt+1 = αβkα
t .

Although this solution method is very cumbersome and computationally
demanding since it rests on brutal-force iteration of the value function, it has
the advantage that it always works if the solution exists. Actually, the convergence
of the value function is not incidental. The Contraction Mapping Theorem tells us
that the convergence result is always achieved as long as the value function contains
a contraction mapping (which works for most of dynamic optimization problems
under the neoclassical assumptions). Such result is crucial for both theory and
application. In theory, it ensures that a unique equilibrium solution (the fixed point)
exists so that we can say what happens in the long run; in application, it implies
that even we start iteration from an arbitrary value function, the value function will
finally converge to the true one. Therefore, in practice when the value function is
hardly solvable in an analytical way, people usually set up the computer program to
perform the iteration and get a numerical solution.

B.5 Extensions

B.5.1 Extension 1: Dynamic Programming Under Uncertainty

Consider a general discrete-time optimization problem

max
{ct ,kt+1}+∞

t=0

E0

[+∞∑

t=0

βtu(ct )

]

s.t. kt+1 = ztf (kt ) − ct ,
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in which the production f (kt ) is affected by an i.i.d. process {zt }+∞
t=0 (technology

shock, which realizes at the beginning of each period t) meaning that such shock
varies over time, but its deviations in different periods are uncorrelated (think about
the weather for the farmers). Now the agent has to maximize the expected utility
over time because future consumption is uncertain.

Since technology shocks realize at the beginning of each period, the value of total
output is known when consumption takes place and when the end-of-period capital
kt+1 is accumulated. The state variables are now kt and zt . The control variables are
ct . Similar as before, set up the Bellman equation as

V (kt , zt ) = max
ct ,kt+1

{u(ct ) + βEt [V (kt+1, zt+1)]}

s.t. kt+1 = ztf (kt) − ct .

Let’s apply the solution strategies introduced before and see whether they work.

Step 1 The first-order condition with respect to kt+1 gives

− u′(ct ) + βEt

[
dV (kt+1, zt+1)

dkt+1

]
= 0. (B.23)

Think why it is legal to take derivative within expectation operator.

Step 2 By Envelope Theorem differentiating V (kt , zt ) with respect to kt gives

dV (kt , zt )

dkt

= u′(ct )ztf
′(kt ). (B.24)

Step 3 Take one step forward for (B.24) and apply it into (B.23), then we get

u′(ct ) = βEt

[
u′(ct+1)zt+1f

′(kt+1)
]
.

Suppose that

f (kt ) = kα
t ,

u(ct ) = ln ct .

Then Euler equation becomes

1

ct

= βEt

[
1

ct+1
zt+1αkα−1

t+1

]
.
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In deterministic case our solutions were

ct = (1 − αβ)kα
t ,

kt+1 = αβkα
t .

Now let’s guess that under uncertainty the solution is of similar form such that

ct = (1 − A)ztk
α
t ,

kt+1 = Aztk
α
t ,

and check whether it’s true or false. The Euler equation becomes

1

(1 − A)zt k
α
t

= βEt

[
1

(1 − A)zt+1k
α
t+1

zt+1αkα−1
t+1

]

= αβ

[
1

(1 − A)kt+1

]

= αβ

[
1

(1 − A)Aztk
α
t

]
.

Therefore it’s easily seen that

A = αβ,

which seems quite similar as before.
However since the consumption and capital stock are random variables, it’s

necessary to explore their properties by characterizing corresponding distributions.
Assume that ln zt ∼ N

(
μ, σ 2

)
. Take log of the solution above,

ln kt+1 = lnαβ + ln zt + α ln kt .

Apply this result recursively,

ln kt = lnαβ + ln zt−1 + α ln kt−1

= lnαβ + ln zt−1 + α(ln αβ + ln zt−2 + α ln kt−2)

. . .

=
(
1 + α + α2 + . . . + αt−1

)
lnαβ

+
(
ln zt−1 + α ln zt−2 + . . . + αt−1 ln z0

)

+αt ln k0.
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In the limit the mean of ln kt converges to

lim
t→+∞ E0 [ln kt ] = lnαβ + μ

1 − α
.

The variance of ln kt is defined as

var[ln kt ] = E
{
(ln kt − E [ln kt ])2

}

= E
{((

1 + α + α2 + . . . + αt−1
)
ln αβ + (ln zt−1 + α ln zt−2

+ . . . + αt−1 ln z0

)
+ αt ln k0 −

[(
1 + α + α2 + . . . + αt−1

)
ln αβ

+
(
1 + α + . . . + αt−1

)
μ + αt ln k0

])2}

= E
{[

(ln zt−1 − μ) + α (ln zt−2 − μ) + α2 (ln zt−2 − μ) + . . .

+αt−1 (ln z0 − μ)
]2}

= E

⎡

⎣

(
t∑

i=1

αi−1(ln zt−i − μ)

)2
⎤

⎦

=
t∑

i=1

α2i−2E
[
(ln zt−i − μ)2

]

+
∑

∀i,j∈{1,...,t}i �=j

αi−1αj−1E
[
(ln zt−i − μ)(ln zt−j − μ)

]

= 1 − α2t

1 − α2 var [ln zt ]

= 1 − α2t

1 − α2 σ 2,

or simply pass the variance operator through the sum and get

var[ln kt ] = var[ln zt−1] + α2var[ln zt−2] + . . . + α2t−2var[ln z0]
=
(
1 + α2 + . . . + α2t−2

)
σ 2

= 1 − α2t

1 − α2 σ 2.
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In the limit the variance of ln kt converges to

lim
t→+∞ var(ln kt ) = σ 2

1 − α2 .

As a conclusion one can say that in the limit ln kt converges to a distribution with

mean lnαβ+μ
1−α

and variance σ 2

1−α2 .

B.5.2 Extension 2: Dynamic Programming in Continuous Time

Till now one may get the illusion that dynamic programming only fits discrete time.
Now with slight modification we’ll see that it works for continuous time problems
as well. Consider a general continuous time optimization problem

max
ct ,kt

∫ +∞

t=0
e−ρtu(ct )dt

s.t. k̇t = φ(ct , kt ) = f (kt ) − ct

in which we assume that φ(ct , kt ) is quasi-linear in ct only for simplicity.
Following Bellman’s idea, for arbitrary t ∈ [0,+∞) define

V (kt ) = max
ct ,kt

∫ +∞

t

e−ρ(τ−t )u(cτ )dτ.

Now suppose that time goes from t to t + �t , in which �t is very small. Let’s
imagine what happened from t on. First u(ct ) accumulates during �t . Since �t is
so small that it’s reasonable to think that u(ct ) is nearly constant from t to t + �t ,
and the accumulation of utility can be expressed as u(ct )�t . Second, from t + �t

onwards the total utility accumulation is just V (kt+�t). Therefore V (kt ) is just the
sum of utility accumulation during �t , and discounted value of V (kt+�t), i.e.,

V (kt ) = max
ct ,kt

{
u(ct )�t + 1

1 + ρ�t
V (kt+�t)

}

(Why V (kt+�t) is discounted by 1
1+ρ�t

?). Rearrange both sides

(1 + ρ�t)V (kt ) = max
ct ,kt

{u(ct )(1 + ρ�t)�t + V (kt+�t)}

ρ�tV (kt ) = max
ct ,kt

{u(ct )(1 + ρ�t)�t + V (kt+�t) − V (kt )}

ρV (kt ) = max
ct ,kt

{
u(ct )(1 + ρ�t) + V (kt+�t) − V (kt )

�t

}
,
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and take limit

ρV (kt ) = lim
�t→0

max
ct ,kt

{
u(ct )(1 + ρ�t) + V (kt+�t) − V (kt )

�t

}
.

Finally this gives

ρV (kt ) = max
ct ,kt

{
u(ct ) + V ′(kt )k̇t

}

= max
ct ,kt

{
u(ct ) + V ′(kt )φ(ct , kt )

}
.

Then you are able to solve it by any of those three approaches. Here we only try
one of them.

Step 1 First-order condition for the maximization problem gives

u′(ct ) + V ′(kt )
∂φ(ct , kt )

∂ct

= u′(ct ) − V ′(kt ) = 0. (B.25)

Step 2 Differentiating V (kt ) gives

ρV ′(kt ) = V ′′(kt )φ(ct , kt ) + V ′(kt )
∂φ(ct , kt )

∂kt

,

that is,

[
ρ − ∂φ(ct , kt )

∂kt

]
V ′(kt ) = V ′′(kt )φ(ct , kt ) = V ′′(kt )k̇t .

Take derivative of V ′(kt ) with respect to t

dV ′(kt )

dt
= V̇ ′(kt ) = V ′′(kt )k̇t =

[
ρ − ∂φ(ct , kt )

∂kt

]
V ′(kt ),

and get

V̇ ′(kt )

V ′(kt )
= ρ − ∂φ(ct , kt )

∂kt

= ρ − f ′(kt ). (B.26)

Step 3 Take derivative of (B.25) with respect to t and get

u̇′(ct )

u′(ct )
= u′′(ct )

u′(ct )
ċt = V̇ ′(kt )

V ′(kt )
= ρ − f ′(kt )
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by (B.26), and further arrangement gives

−u′′(ct )ct

u′(ct )

ċt

ct

= f ′(kt ) − ρ

ċt

ct

= σ
[
f ′(kt ) − ρ

]
.

Note that this is exactly the same solution as we got by the optimal control
method.

Reference
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