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Preface

Systemic risk has long been identified as a potential for financial institutions to
trigger a dangerous contagion mechanism from the financial economy to the real
economy itself. One of the commonly adopted definitions of systemic risk is: “risk
of disruption to the flow of financial services that is

(i) caused by an impairment of all or parts of the financial system; and
(ii) has the potential to have serious negative consequences for the real economy”.

Evident from this definition, or from any of its variants that one can find in the grow-
ing literature on the subject, are two characteristic aspects. The first one being that
such a risk takes place at a much larger scale than that of an individual institution.
The second one being that it eventually spreads to the real economy outside the fi-
nancial system through various “leakage” mechanisms, of which the last crisis has
given some examples: liquidity shrinkage, fire sale of assets, drop in market value
of derivatives. . .

This type of risk, long confined to the monetary market, has spread widely in the
recent past, culminating in the subprime crisis of 2008. The understanding and con-
trol of systemic risk has therefore become an extremely important societal and eco-
nomic question. Such problems are now extensively being studied by people from
disciplines like economics, finance and physics. The contributions by physicists are
relatively new.

The Econophys-Kolkata VI conference, the 6th event in this series of interna-
tional conferences, held during October 21–25 last year, was dedicated to address
and discuss extensively these issues and the recent developments. Like the last event
in the series, this one was also organized jointly by the École Centrale Paris and the
Saha Institute of Nuclear Physics, and was held at the Saha Institute of Nuclear
Physics, Kolkata.

This proceedings volume contains the written versions of most of the talks and
seminars delivered by distinguished experts from all over the world, participating in
the meeting, and accepted after refereeing. For some completeness in the cases of
one or two important topics (like in the case Many-agent Games), some reviews, by
experts who could not attend, were invited and incorporated in this volume.

v



vi Preface

These Proceedings volume is organized as follows: Part I dedicated to the study
of systemic risk, network dynamics and other empirical studies. Part II devoted to
model-based studies. We have also included Part III for “miscellaneous reports”,
to present some on-going or preliminary studies. Finally, we have summarized in
a brief “discussion and comments” Appendix, some of the remarks made by the
participants during the various interesting and animated exchanges that took place
during the panel discussion in the conference.

We are grateful to all the participants of the conference for their participation and
contributions. We are also grateful to Mauro Gallegati and the Editorial Board of the
New Economic Windows series of the Springer-Verlag (Italia) for their support in
getting this Proceedings volume published as well, in their esteemed series.1

The editors also address their thanks to the Centre for Applied Mathematics and
Computational Science at Saha Institute, and École Centrale Paris for their support
in organizing this conference. They would also like to thank Gayatri Tilak for pro-
viding invaluable help during the preparation of the manuscript.

Frédéric Abergel
Bikas K. Chakrabarti
Anirban Chakraborti

Asim Ghosh

Châtenay-Malabry, France
Kolkata, India
Châtenay-Malabry, France
Kolkata, India
April, 2012

1Past volumes:

(i) Econophysics of Order-driven Markets, Eds. F. Abergel, B.K. Chakrabarti, A. Chakraborti,
M. Mitra, New Economic Windows, Springer-Verlag, Milan, 2011.

(ii) Econophysics & Economics of Games, Social Choices and Quantitative Techniques, Eds.
B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K. Gangopadhyay, New Economic Windows,
Springer-Verlag, Milan, 2010.

(iii) Econophysics of Markets and Business Networks, Eds. A. Chatterjee, B.K. Chakrabarti, New
Economic Windows, Springer-Verlag, Milan, 2007.

(iv) Econophysics of Stock and other Markets, Eds. A. Chatterjee, B.K. Chakrabarti, New Eco-
nomic Windows, Springer-Verlag, Milan, 2006.

(v) Econophysics of Wealth Distributions, Eds. A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti,
New Economic Windows, Springer-Verlag, Milan, 2005.
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Systemic Risk, Network Dynamics

and Other Empirical Studies



Chapter 1
Diffusion of Defaults Among Financial
Institutions

Gabrielle Demange

Abstract The paper proposes a simple unified model for the diffusion of defaults
across financial institutions and presents some measures for evaluating the risk im-
posed by a bank on the system. So far the standard contagion processes might not
incorporate some important features of financial contagion.

1.1 Introduction

Financial institutions use the interbank market to develop relationships that protect
them against liquidity risk. These interbank claims are an important concern for
regulators as some argue that they have played a large role in the dissemination of
the financial crisis starting in 2007. However this is still a controversial issue in part
because of the dual role played by these claims as risk sharing and risk spreading
instruments.

Results are rather inconclusive at both theoretical and empirical levels. On one
hand, the theoretical studies about the role and rationale of these relationships,
though pointing to important phenomena such as the insurance against liquidity
shocks and the limitation of bank runs, are conducted in rather simple frameworks
(see e.g. Allen and Gale [2], Freixas et al. [8]). Given the complexity of the existing
architecture, the robustness of the analysis can be questioned. On the other hand,
empirical studies based on simulation methods have so far been unable to repro-
duce the extent of the crisis, even though they do not introduce the frequent bail-out
interventions observed in practice (for a detailed recent survey, see Upper [15]).
Simulations however shed some light on the role of the network in systemic risk
and on how the assessment of the ‘systemic’ importance of a bank varies with the
chosen measure.

Systemic risk can be understood as a diffusion process of defaults. This paper,
building partly on previous studies on diffusion processes, presents a simple model
of diffusion of defaults to discuss some questions about measuring systemic risk.

G. Demange (�)
Paris School of Economics, EHESS, Paris, France
e-mail: demange@pse.ens.fr

F. Abergel et al. (eds.), Econophysics of Systemic Risk and Network Dynamics,
New Economic Windows,
DOI 10.1007/978-88-470-2553-0_1, © Springer-Verlag Italia 2013
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4 G. Demange

Indeed, diffusion processes have been introduced in various areas, ranging from
sociology to study the diffusion of innovation or ideas through social networks, in
epidemiology, viral marketing and so on.

The paper is organized as follows. Section 1.2 presents the model, gives exam-
ples, and defines the diffusion processes. Section 1.3 discusses some measures of
systemic risk and analyze in more details one measure.

1.2 The Framework

I describe a simple model in which financial institutions draw some risky revenues
from their activities, are endowed with capital and portfolios, and are linked through
claims on each other.

Consider n financial institutions, called banks for simplicity and denote N =
{1, . . . , n}. A bank i is endowed with some capital ei . Let z̃i represent1 the (risky)
revenue that i expects from its activities excluding the interbank relationships. In
the sequel zi is called the net worth. Examples are described below. From a balance
sheet perspective, z̃i is equal to the asset values (stocks+ loans to consumers) minus
the consumers’ deposits. The interbank liabilities are described by (ωij ) where ωij

represents the magnitude of i’s nominal debt obligation towards j .
When dealing with a large number of banks, the pattern of their relationships

is quite stable and specific, with some banks having regular and large relationship
while others having none. In such a situation, the interpretation of financial inter-
linkages as a network, where banks are nodes and bilateral exposures are the links,
is very compelling. It may be useful to think of the graph G formed with the set of
links (i, j) where i has an obligation toward j , ωij > 0.

Let us describe the timing. The contagion process takes place ex post once the net
worth values z= (zi) are realized. In the process described below, the creditors to a
defaulting bank receive nothing but the repayment from their not-in-default debtors.
The loss incurred by the defaulting bank can engender defaults among its creditors.
Defaults can then spread sequentially through the system, and affect, perhaps, a
significant number of banks. The resulting set of defaulting banks will be denoted
by D(z) and called defaulting set. Thus, given z, the process is well-defined and
deterministic. Ex ante however, the defaulting set is random given by D(z̃), hence
with a distribution driven by the distribution of z.

The risk of contagion is affected by various factors such as the magnitude of the
inter-bank linkages, the risk distribution of the banks’ net worth values, the sensi-
tivity of the asset prices to distress sales. Let us clarify this by considering three
examples with increasing complexity.

(i) The pure network model.
The elements of z̃ are independent. Defaults can spread only through the inter-
bank liabilities.

1In the following, a ˜ on variable a means that the variable is random.



1 Diffusion of Defaults Among Financial Institutions 5

(ii) Aggregate shocks.
The presence of aggregate shocks induces correlation in the z̃i hence the pos-
sibility of simultaneous defaults. This is described by

z̃i = ỹi + βiη̃,

where the (ỹi)i∈N are independent across banks and independent of η̃. η̃ is
interpreted as a common macroeconomic factor and βi the sensitivity of bank
i’s assets to that factor. If the value of the macroeconomic shock is known at
the beginning of the process, and is not affected subsequently by the contagion
process, the analysis of the contagion process itself is unaffected since it takes
place for each realization of the z.

(iii) Amplification effects.
It has been argued that the impact of ‘distress’ sales from defaulting banks
amplifies crises in case of illiquidity. 268 positions and the sensitivity of prices
to sales determine the strength of this effect. A simple description captures this
effect. Letting xi be i’s asset holding in the market portfolio, i’s net worth is

z̃i = ỹi + βiη̃+ xip0

in which p0 is the asset’s price when no default occurs. As previously, the
(ỹi)i∈N are independent across banks and independent of η̃. For example, tak-
ing βi = xi , the macroeconomic shock η̃ is interpreted as the unexpected vari-
ation in the asset’s price. The liquidation of assets by the defaulting banks trig-
gers a decrease in asset’s price, hence in the asset value of the balance sheets of
all banks. Thus, defaults generate a correlated change in the banks’ net worth
levels through their assets’ positions along the contagion process.2

1.2.1 Contagion Process

We assume that there is no possibility of partial default.3 Let us describe the process
by which the default of some banks propagates to other banks, first in the pure
network model.

The Pure Network Model Once z= (zi) are realized, each bank faces a solvency
constraint. Given the bank’s endowment, the net worth and the amount of its incom-
ing and outgoing liabilities, the constraint for bank i assuming no default from its
debtors is:

2In a model with partial default as in [6], Cifuentes et al. [4] introduce a different mechanism in
which the non-defaulting banks have to sell in order to satisfy some solvability ratio constraints.
3Eisenberg and Noe [6] introduce a model in which default can be partial, represented by a default
level on liabilities. For a measure of the threat index of a bank in that model, see Demange [5].
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zi + ei +
∑

j∈N
ωji −

∑

j∈N
ωij ≥ 0. (1.1)

The left hand side is referred to as i’s net equity. The initial assumption on the
absence of default is indeed satisfied if the net equity of each bank is non-negative,
namely if the solvency condition (1.1) holds for each i. To simplify notation, let us
write it as zi ≥ vi where vi is defined as the initial net value of interbank liabilities
minus the capital

vi =
∑

j∈N
ωij −

∑

j∈N
ωji − ei . (1.2)

If some defaults occur, non-defaulting banks suffer a loss and the solvency condition
is modified. Let D denotes the set of defaulting banks at some point in time. We
assume no recovery, so that a bank that has not failed incurs a loss that amounts to
the total of its loans to the banks in D,

∑
j∈D ωji . Thus, given that banks in D have

failed, the solvency condition for bank i not in D is:

zi ≥ vi +
∑

j∈D
ωji . (1.3)

The process of contagion follows from the initial defaults. Here we simply assume
that all the banks that are insolvent at some step are declared defaulting (this as-
sumption is relaxed afterwards). Given the realized values for the z, the initial set of
defaulting banks is

D0 = {i, for which zi < vi}.
At the beginning of step t , t = 1,2, . . . , for which the process has not stopped, there
is a set Dt−1 of banks that have failed. The solvency conditions (1.3) for the other
banks, given the total loss they have incurred due to the failures in Dt−1, determine
the set of defaulting banks at t :

Dt =
{
i, for which zi < vi +

∑

j∈Dt−1

ωji

}
.

The sequence {Dt } is increasing, Dt−1 ⊂Dt , until no additional failure occurs, that
is Dt−1 =Dt (there are at most n− 1 steps).

The solvency condition (1.3) on a bank only depends on its defaulting debtors,
that is, the j with a positive ωji . Hence, starting with a single default, the defaulting
banks along the process are connected.4

Let us now allow for correlations in the net asset values and amplification effects.

4The process fits in the class of linear ‘threshold’ models as introduced by Granovetter [9]. More
precisely, the linear model assumes a uniform distribution on the threshold, here the z̃, and an
influence of j on i, here ωji . A node not yet ‘active’ at step t becomes active in step t if the
influence of its neighbors in step t−1 is larger than its threshold, here if the sum of their liabilities,∑

j∈D ωji to i is larger than the threshold zi .
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Macroeconomic Risk In the presence of a macroeconomic risk, the diffusion
process is defined for each realized value of z where zi = yi + βiη as in the pure
network model. There is a change in the ex ante evaluation of the defaulting set
because the correlation in the distribution of the z̃i affects the distribution of the
initial defaulting set.

Amplification Effects The presence of an illiquid asset needs some explanation.
Given the realizations of the yi and η, assuming no default, let p0 denote the asset’s
price in that case (recall that the variation in the prices is incorporated in the factor
η, so p0 can be interpreted as the expected value under normal conditions). Denote
by zi the known value yi + βiη+ xip0. The solvency condition for i writes

(yi + βiη+ xip0)+ ei +
∑

j∈N
ωji −

∑

j∈N
ωij ≥ 0 (1.4)

or

zi ≥ vi where vi =
∑

j∈N
ωij −

∑

j∈N
ωji − ei . (1.5)

If the solvency condition (1.5) holds for each i, the initial assumption of no default
is justified. If instead it is not met for a bank, this bank will be unable to fulfill its
obligations, even by selling its asset at price p0 and a fortiori at any lower price (we
use here that xi is non-negative). The bank defaults and liquidates its asset.

Thus, the default of banks in D results in an aggregate amount of asset’s sales
equal to xD =∑

i∈D xi . The sale triggers a decrease in the asset’s price equal to
p0 − P(xD). Accounting for this decrease, the solvency condition (1.3) for non-
defaulting banks is replaced by

zi ≥ vi +
∑

j∈D,(j,i)∈G
ωji

︸ ︷︷ ︸
direct loss

+xi
(
p0 − P(xD)

)
︸ ︷︷ ︸

indirect loss

. (1.6)

Bank i’s incremental loss incurred by the default of D is composed of the direct loss
due to the non-reimbursement of its defaulting neighbors and the indirect loss due
to the variation in prices. To simplify notation, the solvency condition (1.6) on bank
i under defaulting set D writes

zi ≥ Vi(D) where Vi(D)= vi +
∑

j∈D,(j,i)∈G
ωji + xi

(
p0 − P(xD)

)
. (1.7)

Thus, with amplification effects, the default of a bank is influenced not only by its
defaulting neighbors as in a pure network but also by a term reflecting the whole
set of defaulting banks, neighbors or not: the value Vi(D) is strictly increasing in
D for each i when each bank holds a positive quantity of the asset and the asset
price is sensitive to sales. As a result, each bank is affected by the default of any
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other banks, even they are not its debtors. The network is made ‘complete’ by the
presence of the price effect.

A general formulation that encompasses previous examples is described as fol-
lows.

Activation Model For each i there is an activation function Vi defined over sub-
sets D of N , nondecreasing in D, so that the solvency condition on bank i under
defaulting set D writes

zi ≥ Vi(D). (1.8)

Denote vi = Vi(∅).

Given z, a diffusion process is defined as follows. At t = 0, define

D0 =D0(z)= {i, for which zi < vi}.
At the beginning of step t , t = 1,2, . . . , for which the process has not stopped, there
is a set Dt−1 of banks that have failed. Similarly at time t , the set of defaulting banks
Dt is updated from Dt−1 by checking the solvency conditions (1.8) for banks not in
Dt−1:

Dt =
{
i, for which zi < Vi(Dt−1)

}
.

If Dt−1 =Dt , each bank not in Dt is solvent and the process stops. The reached set
is called the defaulting set.

Alternative processes can be contemplated in which all the banks that are insol-
vent at some step are not necessarily eliminated but at least one of them must be.
Specifically a process is said without stop if at a step t for which a ‘new’ bank is
not solvable, that is, a bank i not in Dt−1 for which zi < Vi(Dt−1), then at least
one such a bank is declared defaulting, i.e. Dt strictly includes Dt−1. The process
surely stops in at most n− 1 steps, though it may involves more steps than in the
one described previously.

1.2.2 Characterization of the Defaulting Set

The defaulting set is characterized by a property, which is independent of the process
(provided the process is without stop). Hence, whatever the speed and the order of
eliminations, the same defaulting set is reached.

The characterization is based on the notion of closed set.

Definition 1.1 A set C is said to be closed at z if no i outside C defaults in case of
a failure of each bank in C. Specifically C is closed at z if

zi ≥ Vi(C) for each i not in C. (1.9)
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The condition requires banks outside to be solvent when they incur losses corre-
sponding to the failure of C. Observe that no condition bears on elements in C and
some banks in C can be solvent at z. By construction, a process without stop can
only settle at a set that is closed and contains D0(z). Furthermore,

Claim 1 Let the solvency conditions be described by (1.8). Given z, the defaulting
set is the smallest set that is closed and contains D0(z), whatever the process without
stop. Denote it by D(z).

Proof Let us first show that there is a smallest set among those that are closed
and contain D0(z). Since the value Vi(C) does not increase with C, the non-empty
intersection of two closed sets is closed as well.5 This readily implies that there is a
smallest set among those that are closed and contain D0(z).

Given z denote by D∞ the defaulting set reached by a process without stop.
D∞ is closed at z and contains D0(z). It thus suffices to show that D∞ is a subset
of any C that is closed at z and contains D0(z). Since D∞ coincides with Dt for t
large enough, it suffices to show that Dt is included in C for any t . We prove this by
induction on t .

The induction assumption is true at t = 0 by the assumption on C: D0(z)⊂ C.
Let us assume Dt ⊂ C at t . By monotony of the Vj this implies that Vj (Dt ) is

less than Vj (C). By definition, a bank in Dt+1 defaults at the level given Vj (Dt )

hence a fortiori each one of them defaults at level Vj (C):

for each j ∈Dt+1, zj < Vj (Dt )≤ Vj (C).

Since C is closed, zj < Vj (C) implies that j belongs to C: Dt+1 is a subset of C,
which proves the induction assumption. �

1.3 Measuring Losses and Externalities

Now that a diffusion process has been defined, it remains to evaluate the impact of
a bank on the risk of the system, in particular, how it influences the reached de-
faulting set. Alternative measures of the impact of a bank on the risk of the system
have been proposed (see Elsinger et al. [7], Tarashev et al. [14], Adrian and Brun-
nermeier [1], the survey of Upper [15] among a few). They differ in the following
three dimensions at least.

(i) The time—and the available information—at which the expected loss imposed
by a bank is evaluated: this loss can be evaluated ex ante, thereby accounting
for the probability of initial insolvency of the bank or ex post, conditional on
its insolvency. Also the loss can be computed conditional on some macroeco-

5For closed sets C and C′ and i not in C ∩C′, surely zi ≥ Vi(C) or zi ≥ Vi(C
′). Since both Vi(C)

and Vi(C
′) are larger or equal to Vi(C ∩C′), zi ≥ Vi(C ∩C′): C ∩C′ is closed.



10 G. Demange

nomic events. For example, in the model with macroeconomic shocks, one can
use the distribution conditional on the macroeconomic variable η being smaller
than some value. This is in spirit with proposals to compute a VaR measure (or
an expected shortfall) conditional on ‘systemic events’ (to be made precise).

(ii) The risk that is measured, as an initiator of the default, or as a propagator of
defaults, or both as in the ‘contribution’ approach. Some use the term top-down
versus bottom-up.

(iii) The cost evaluation associated to the reached defaulting set. One may take the
point of view of stockholders and evaluate the equity of the defaulting banks
or rather be concerned with the loss to the non-financial creditors.

I describe very roughly some measures in the context of this paper and then study
in more detailed one ex-post measure.

1.3.1 Some Measures

The measures are built on the cost associated to the set of defaulting banks. Let
C(D) be the cost associated to the defaulting set D.6 For example, taking the point
of view of stockholders, one has C(D) =∑

j∈D ej to evaluate the loss in capital.
If one is concerned with the loss to the non-financial creditors, the loss possibly
includes some measurement of the impact on economic activity. In such a case, it is
reasonable to assume that the cost C has some form of increasing returns to default
(super-modularity as defined in Sect. 1.3.2).

In the sequel I focus on the loss in capital to fix the idea. In some cases it simpli-
fies the presentation owing to the linearity of C in that case.

Loss and Externality Conditional on a Bank’s Default (Bottom Up) The ex-
pected loss conditional on a bank i’s default is assessed by assuming that i is the
only bank to initiate default. Thus, it is computed by considering the (random) de-
faulting set following the initial insolvency of i only. Specifically, the loss condi-
tional on the failure of i is

L
({i})=E

[
C
(
D(z)

)|D0(z)= {i}
]

(1.10)

in which the expectation is taken over the distribution of the defaulting set D(z)
following i’s default. The external loss is obtained by considering the loss imposed
on other banks, that is

L∗
({i})= L

({i})− ei .

Let us illustrate the computation in a simple hierarchical graph, as depicted in
Fig. 1.1 in which an arrow represents a liability, that is, a bank is indebted to a

6This assumes that the cost only depends on the set D and not on the precise values of z.
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Fig. 1.1 Hierarchical
structure

successor. L is given by a simple recursive expression:7

L
({i})= ei +

∑

(i,j)∈G
qjL

({j})

where qj is the probability that j fails if its unique debtor i fails. It is thus given

by qj = Fj (vj+ωij )−Fj (vj )

1−Fj (vj )
where ωij is the loan made by j to i. In the particular

case where each bank has the same capital value e, the same liability to each of its
creditor ω, and the same distribution F one obtains: L({i}) = e(1+ q· number of
i’s creditors +q2· number of creditors of i’s creditors +· · · ).

The smaller the probability of inducing default, the closer the measure is to the
number of creditors. When q is larger, indirect default starts to be determinant. In
the case depicted in Fig. 1.1, L({2}) is larger than L({1}) for small enough q and
the reverse for q large enough.

For more complex networks with cycles, there is not such a simple recursive
expression. One may also consider simultaneous defaults. The (equity) loss to the
initial default of a subset A is defined by

L(A)=E

[ ∑

j∈D(z)

ej |D0(z)=A

]
(1.11)

and the externality (external loss) induced by A as

L∗(A)= L(A)−
∑

i∈A
ei. (1.12)

These computations are performed according to some distribution of the payoffs of
the non-initially defaulting banks. As said previously one may want to account for
some information say on macroeconomic events.

Top Down Ex Ante Evaluation I present here a simple form of the contribution
approach.8 The basic idea here is first to evaluate the total risk in the system and
second to define a contribution of a particular bank or of a subset of banks to that
risk.

7Here the expression is similar to some measures of ‘power’ or ‘prestige’ developed in sociology
such as the Katz prestige index [11].
8[14] also consider the loss imposed by a bank to each subsystem and derives the contribution to
risk of that bank by taking an average (the Shapley value).
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Fig. 1.2 A simple example 1 � 2 � 3

The total risk is evaluated as the expected loss accounting for all possibilities of
failure. Let Π(A) denote the probability that A is the initial insolvent set. In the pure
network model for example Π(A)=∏

k∈A Fk(vk)
∏

k /∈A(1−Fk(vk)). The total risk
is

T (N)=
∑

A⊂N

Π(A)L(A). (1.13)

With macroeconomic shocks, as said above, the cost can be evaluated conditional
on a low enough value for the macroeconomic variable.

The cost that i imposes on the system, also called the ‘contribution’ of i to sys-
temic risk, is defined as the ex ante benefit of making i totally safe. It is given by
the difference

T (N)− T
(
N − {i})

where T (N − {i}) is the risk in the system with i totally safe. Let us examine the
cost in more detail. Specifically let L−i (A) denote the loss due to A defaulting in
the system where i is totally safe; we have T (N − {i})=∑

A⊂N−{i}Π(A)L−i (A).
We may thus write

T (N)− T
(
N − {i})=

∑

A⊂N,i∈A
Π(A)L(A)

︸ ︷︷ ︸
direct cost

+
∑

A⊂N−{i}
Π(A)

[
L(A)−L−i (A)

]

︸ ︷︷ ︸
indirect cost

.

The cost imposed by i is composed of two terms: a direct one associated to all
the events in which i defaults, and an indirect one that reflects the role of i as a
vector in propagating defaults. Indeed the indirect cost only accounts for events in
which i defaults but is not as an initiator; making it totally safe prevents i to spread
default in those events. To illustrate, consider the simple example in Fig. 1.2. Take
the same capital levels e, an identical probability for each of becoming insolvent
alone, and an identical probability q of triggering default on a creditor. To simplify
the presentation, let us assume that the events with several banks simultaneously
initiating defaults are negligible. The direct cost is of course decreasing going down
in the hierarchy (L({1}) = (1+ q + q2)e, L({2}) = (1+ q)e, L({3}) = e) but the
indirect cost is larger for 2 than for 1 because 1 never spreads default. Taking the
sum of the direct and indirect impact, simple computation shows that the system
with 2 safe is safer than with 1 safe.

1.3.2 Some Properties of the Conditional Loss

I concentrate here on some properties of the measure L, still assuming the cost
to be given by equity loss. The diffusion processes defined in the previous section
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fit in known classes in some special cases, such as the linear ‘threshold’ models
(see footnote 4). The aim of this section is to draw insights from previous works
on diffusion processes, and to see whether their main assumptions and results are
adapted to our context. The focus is on properties referred to as sub-modularity or
super-modularity. They describe concavity or convexity properties for a function
defined over subsets.

Definition 1.2 Let Φ be a function defined over the subsets of N . Φ is sub-modular
if for each i in N ,

Φ
(
A+ {i})−Φ(A)≥Φ

(
B + {i})−Φ(B) for any sets A⊂ B ⊂N. (1.14)

Φ is super-modular if the reverse inequality in (1.14) holds.

Sub- or super-modularity on a function bears on its incremental variation and
not on its level, and indicates decreasing or increasing incremental variations. The
sub-modularity of Φ is interesting from a computational point of view in problems
of maximization9 of Φ .

Applied to the loss function Φ = L, subsets are the initial sets of defaulting
banks. Sub-modularity (resp. super-modularity) indicates decreasing (resp. increas-
ing) returns to default: the incremental effect of a bank initially defaulting on others’
defaults is decreasing with the set of banks that have already failed. Consider the
problem of finding a subset A that maximizes L(A) under some constraints, say the
cardinality of A less than a number m. Since L is the loss conditional on the initial
default of A, the solution to the problem may be thought as the set of most ‘danger-
ous’ m banks in terms of the level of the losses (using L∗ instead of L, the problem
is to find the subset of m banks that inflict the largest external loss on others). This
type of problem has been investigated in the context of diffusion to find the nodes
in a network that are the most important in terms of spreading some property. In
viral marketing for example, these nodes are useful to spread the adoption of a new
product.

In our context, however, the following situation looks more relevant. Let a regu-
lation agency have some information on the value of z and in particular knows that
the banks in D0 will fail without intervention. Contemplating the possibility of res-
cuing a subset A, it evaluates the benefit according to Φ(A)= L(D0)−L(D0−A).
Φ inherits the modularity properties of L. Hence starting rescuing j , the value of
rescuing i as well is decreasing or increasing depending on whether L being super-
modular or sub-modular. Thus, here also, the modularity property of L matters.10

9Consider for example the problem of finding a subset A that maximizes Φ(A) under some con-
straints, say the cardinality of A less than a number m. Under sub-modularity, a fast algorithm
provides an approximation for the problem. The algorithm is called ‘greedy’: it first looks for i

with the largest value for Φ among the singletons, say i1 that maximizes Φ({i}), then for j with
the largest incremental change over i1, say i2 that maximizes Φ({i, i1})− Φ({i1}), and so on m

times. The exact problem is known to be NP-hard in the size of n.
10Intuitively, there should be a link between the sub-modularity or super-modularity of L and
the properties of the diffusion process itself, in particular the distribution of D(z̃) given A. Sub-
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The next proposition directly follows from Kempe, Kleinberg, and Tardos [12].
They consider the expected size of the contaminated set (or any positive linear func-
tion of it) and prove its sub-modularity in a linear threshold model. The result di-
rectly applies to the pure network model when each net worth zi is uniformly dis-
tributed on some interval and the loss incurred by the default of a single debtor can
trigger default.

Proposition 1.1 In the pure network model, assuming the z̃i uniformly distributed
on [ai, bi], L and L∗ are sub-modular if each bank i defaults with a positive prob-
ability when one of its debtor fails:

zi < vi +ωji for each j, with ωji > 0. (1.15)

Observe that sub-modularity is a fortiori true if the cost associated with a de-
fault set is itself sub-modular, and not additive as in the case of equity. However,
sub-modularity in the cost function is surely not an appropriate assumption in our
context. For example, if the cost represents the loss to creditors outside the financial
system, it is more plausible that the converse assumption holds: the larger the loss,
the more costly it is to absorb an additional loss.

Also, it is important to note that Proposition 1.1 may not apply in the presence
of information effects, for example due to correlation in the net worth values. To
be more specific, when D has defaulted and a bank has not yet defaulted, the only
relevant information is that it has survived the loss induced by D, i.e., that zi is
larger than Vi(D). No information is drawn from the fact that D has defaulted, as
would be the case if the net worths were correlated.11

Condition (1.15) says that each node can contaminate each one of its neighbor.12

This assumption is taken somewhat implicitly in the standard linear threshold model
(which assumes the threshold to be uniformly distributed on [0,1] and the influences
factors of neighbors to be positive) and not emphasized. However it cannot be dis-
pensed with as shown in the example below.

Example of Non-sub-modularity A simple example illustrates why sub-modularity
may fail. There are three nodes, with 2 linked with 1 and 3. The influence weights
of 1 and 3 on 2 are equal to 1 and the threshold value for 2 is bounded below by 1.5.
Hence, if only 1 or 3 fails, 2 remains safe, whereas if both fail, 2 fails with some
positive probability. We thus have L∗({1} + {3}) > 0 and L∗({1}) = L∗({3}) = 0.

modularity of L suggests a non-explosive dynamics of contagion. However I do not know of any
result of this kind.
11What matters is the correlation that is unknown at the time of the evaluation.
12The condition is satisfied if there is a chance for the bank to default alone. This occurs for
example if its initial values of the capital and liabilities are set so that a Value at Risk requirement is
just binding. Specifically, given a level α, say 99 %, the level of capital, ei , and the interbank assets
and liabilities are set so that the probability of default is equal to the level 1− α: Fi(vi)= 1− α.
But VaR does not make much sense in a context with a uniform distribution.
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This contradicts sub-modularity: adding 3 to 1 increases more the expected size of
the defaulting set than adding 3 to the empty set.

The example is not pathological and extends to any situation in which the default
of a single neighbor is not enough to threaten bank i because the loss of its default
inflict to i is smaller than i’s minimum payoff. This explains the condition (1.15).

The assumption of a uniform distribution is of course not adequate for net worth.
I examine here what are the conditions on a distribution that favor or deter sub-
modularity. Basically, sub-modularity may fail if an additional loss to a bank may
have a sudden large impact on the incremental probabilities of failure conditional
on the fact that it has not yet defaulted as suggested in the example. This is avoided
by assuming the concavity of the distribution functions, as stated is the following
proposition (see our comment later on). Proposition 1.2 considers the more gen-
eral formulation for a diffusion process through activation functions, as described
by (1.8). It is derived by using an extension of the sub-modularity property of the
expected contaminated size when the activation functions are not linear but sub-
modular, still under a uniform distribution (Mossel and Roch [13]). The proof uses
a transformation of the variable z̃i .

Let us say that j directly influences i if Vi({j}) > vi . In other words, i incurs a
loss under the single default of j . In a pure network model i is directly influenced
by its debtors and in a model with price effects by all other banks (assuming all
positions xj positive).

Proposition 1.2 Let the solvency conditions be described by (1.8). Assume that, for
each i,

• the functions Vi are sub-modular.
• the cumulative distribution function of z̃i is strictly increasing on its support,

concave and

Fi

(
Vi

({j}))> 0 for each j, that directly influences i. (1.16)

Then L and L∗ are sub-modular.

The sub-modularity of Vi extends the linearity of the Vi in the pure network
model. In the model with amplification effects, intuitively, sub-modularity should
be satisfied if the decrease in the price due to some sales, p0 − P(xD), diminishes
with the amount of sales. This is indeed the case, as stated in the next claim

Claim 2 Consider the model with amplification effects in which the activation func-
tions are given by (1.7): Vi(D) = vi +∑

j∈D,(j,i)∈Gωji + xi(p0 − P(xD)). If the
drop in the price p0 − P(x) is concave in the sales x, the functions Vi are sub-
modular.

When there are panic effects however, the drop in prices might be convex.
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Consider now the assumptions on the distributions. Condition (1.16) has the same
interpretation as Condition (1.15). It says that i fails with positive probability under
the single default of a bank that has a direct influence on i. The concavity of a dis-
tribution however is a strong assumption. The larger the amount of losses that have
already been incurred, the less likely it is that an additional amount of loss gener-
ates default. Most standard distributions are not concave.13 For example, a normal
distribution is not concave but convex for values below the mean. These values are
precisely the ones that matter when considering the diffusion of the defaults.

The reverse assumptions, a convex distribution and a super-modular activation
functions, do not guarantee super-modularity of the functions L. The reason is the
following, that I call the ground effect. Starting with a larger initial default set,
there are less banks susceptible to default. This effect is true not only at the begin-
ning of the diffusion but also all along the process. This effect is a force towards
sub-modularity, independently of the distribution. A formulation of this idea is the
following proposition, stated in the pure network model for simplification.

Definition 1.3 Consider the pure network model. D is said to be a threat if for each
i not in D

Proba
(
zi < Vi(D)

)
> 0 each i, (1.17)

where Vi(D)= vi +∑
j∈D ωji .

Proposition 1.3 Let D be a threat. Assume in addition the distribution Fi to be
concave for zi > Vi(D) for each i. Then L is sub-modular on larger sets, that is
(1.14) holds for any sets A and B containing D.

Condition (1.17) says that each bank not in D has some chances to fail if all
banks in D default. If whatever situation the bank never fails, no set D is a threat.
Otherwise, each bank is threatened when all its neighbors fail, so (1.17) is satisfied
for ‘large’ enough sets. Observe also that a superset of a threat is also a threat. The
second condition, which requires the concavity of the upper tail of the distributions,
is satisfied by most distributions.

The proof is easy: It suffices to apply Proposition 1.2 to the diffusion process
assuming that D has already defaulted. The distribution for the net worth of the
banks that have not yet defaulted is adjusted only conditional on their absence of
default, that is conditional on zi > Vi(D).

Some Concluding Remarks In conclusion, the properties of the diffusion pro-
cesses studied so far in the (non-financial) literature might not be relevant to fi-
nancial crises, and there is a need for further development. They focus on some
properties on the distribution functions that are not appropriate. The analysis here

13Most standard distributions have a log-concave density. Then the ratio F(x+δ)−F(x)
1−F(x)

, related to the
hazard rate (see for example Bergstrom and Bagnoli [3]) is increasing. Though this is compatible
with the concavity of F , this suggests that concavity is far from being guaranteed.
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distinguishes two influences of the distributions of the net worth on the diffusion of
risks. On one hand, the lower tails of the distributions of the net worth matter for
determining the initial defaults. On the other hand, the reaction of the diffusion to
additional defaults, as embodied by the incremental values of the loss L, is instead
affected by the shape of the distributions for larger values of the net worth, and this
holds especially if interbank liabilities are large. Under standard assumptions on the
distributions, this second effect might play an important role in shaping the loss.
Finally, diffusion processes do not account for information effects.
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Chapter 2
Systemic Risk and Complex Systems:
A Graph-Theory Analysis

Delphine Lautier and Franck Raynaud

Abstract This chapter summarizes several empirical studies in finance, undertaken
through the prism of the graph theory. In these studies, we built graphs in order to
investigate integration and systemic risk in derivative markets. Several classes of
underlying assets (i.e. energy products, metals, financial assets, agricultural prod-
ucts) are considered, on a twelve-year period. In such a high dimensional analysis,
the graph theory enables us to understand the dynamic behavior of our price system.
The dimension of the fully connected graph being high, we rely on a specific type
of graphs: Minimum Spanning Trees (MSTs). Such a tree is especially interesting
for the study of systemic risk: it can be assimilated into the shortest and most prob-
able path for the propagation of a price shock. We first examine the topology of the
MSTs. Then, given the time dependency of our correlation-based graphs, we study
their evolution over time and their stability.

2.1 Introduction

This chapter summarizes several empirical works in finance undertaken since 2009:
[8, 10, 11]. These works share two common points: first, they all focus on systemic
risk and the integration in organized derivative markets. Second, they provide for a
large-scale analysis and rely on the graph theory.

Integration and systemic risk are linked: the former is a favorable condition for
the second to appear in. Concerns about systemic risk have recently grown in deriva-
tive markets, notably among energy commodities. These markets are supposed to
be more and more integrated, both in regard to each other and to other markets.
For some months now, fluctuations in the prices of energy products have often been
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invoked to explain corresponding fluctuations in soft commodities like soy, corn,
or wheat. Furthermore, because commodities are nowadays considered a new class
of assets, investors use them for diversification purposes. Therefore, the price fluc-
tuations recorded in commodity markets might be, at least partially, explained by
external events like the fall in stock prices or in interest rates [2, 4, 7].

In our studies, we propose a holistic approach for systemic risk, which examines
it simultaneously in three dimensions: space, time, and the maturity of the transac-
tions. Such an analysis accounts for the eventuality that a price shock that occurs
on a specific asset’s physical market can spread, not only through its own futures
market, but also into other physical and/or paper markets, and vice versa.

A full comprehension of systemic risk can only be made through a large scale
analysis that requires the manipulation of a huge amount of data. In our most exten-
sive study [10], we work on the basis of 14 derivative markets (six energy commodi-
ties, four agricultural commodities, and four financial assets), over a 12-year period.
This leads us to setup a database containing more than 750,000 futures prices. To
perform such large scale analyses, we rely on methods initially designed for statis-
tical physics, aiming at understanding the behavior of complex systems. They incite
us to consider all prices, quoted in different places and with different maturities, as
a complex dynamic system. Moreover, this consideration leads us to a set of tools
that proves very useful for the study of systemic risk: graph theory.

Through this prism, the nodes in our graph are the daily price’s returns and the
links stand for distances, the latter being computed as a function of the correla-
tions between the returns [12, 14, 15]. This representation allows us to analyze the
linkages between the markets and their evolution, thanks to the structure of the con-
nections between the futures contracts. What is especially interesting here is that we
can consider, simultaneously, all possible pairs of assets.

The size of the fully connected graph being high, we rely, most of the time, on a
specific type of graphs: Minimum Spanning Trees (MSTs). A MST provides a way
to extract the most important information contained in the initial graph. It is unique
and corresponds to the shortest path covering all the nodes of the graph without
loops. Such a tree is thus especially interesting for the study of systemic risk: it can
be assimilated into the shortest and most probable path for the propagation of the
price shock. To the best of our knowledge, it is the first time that this tool has been
used this way.

The visualization of the MST and the computation of some specific measures,
like allometric coefficients, make possible the analyzation of the organization of the
trees. Two extreme configurations are used as references. A chain-like organization
signifies that, when it appears at one extremity of the price system, only one way
exists for the price shock to propagate: before reaching the other extremity of the
graph, the shock will have to cross each node. On the other hand, in a star-like
organization, the paths for the transmission of fluctuations are less easy to predict.
Here, the node located at the center of the star is of crucial importance: whenever a
shock arises at this point, it might disseminate to the whole system! We first examine
the MST according to these two ideal types of organizations. Then, given the time
dependency of correlation-based graphs, we study their evolution over time and their
stability.
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Our first main results lie in the economic meaningfulness of the graphs. In the
spatial as well as in the 3-D analyses, the trees are organized into sub-trees corre-
sponding to the three sectors of activity under examination: energy commodities,
agricultural products, and financial assets. In the maturity dimension, as a result of
arbitrage operations, the trees are ordered according to the maturity of the contracts.
The second set of results, interesting for regulatory purposes, shows that energy
products promote the connection between the different sectors. Moreover, crude oil
stands at the center of the energy complex. A third category of results concerns the
evolution of integration over time. In commodity markets, both spatial and maturity
dimensions tend to be more integrated. Thus, the conditions for the appearance of
systemic risk increase.

Section 2.2 of this chapter explains the data. Section 2.3 gives insights into the
methodology retained. In Sect. 2.4, we present the empirical results: we summarize
the main conclusions reached in previous studies (more particularly in [10]), and we
add some other results, still unpublished until now. Section 2.5 concludes.1

2.2 Data

We select futures markets corresponding to three sectors: energy, agriculture, and
financial assets. On the basis of the Futures Industry Association’s reports, we retain
those contracts whose characteristics are large transaction volumes over long time
periods. We rearrange the futures prices in order to reconstitute daily term structures,
that is, the relation linking, at a specific date, several futures contracts with different
delivery dates. In order to obtain continuous time series, we remove some maturities
from the database. We also take away all observation dates that are not shared by
all markets. Once these selections carried out, our database still contains more than
750,000 prices. Table 2.1 summarizes the characteristics of this database.2

2.3 The Graph Theory: From Full Connected Graphs
to Minimum Spanning Trees (MST)

Among the different tools provided by the graph theory, we select those that allow
us to analyze market integration and systemic risk by using a 3-D approach. We first
focus on the synchronous correlations of price returns. Having transformed these
correlations into distances, we are able to draw a fully connected graph of the price
system, where the nodes (vertices) of the graph represent the time series of futures
prices. In order to filter the information contained in the graph, we then rely on

1The review of the literature related to this chapter can be find in [10].
2Another study, including the freight rate, can also be find in [8].
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Table 2.1 Main characteristics of the collected data: nature of the underlying asset, trading place
of the futures contract, localization of the exchange, time period, longest maturity (in months)
and number of records per maturity. CME stands for Chicago Mercantile Exchange, ICE for Inter
Continental Exchange, US stands for United States and Eu for Europe

Underlying assets Exchange–Zone Period Maturities Records

Light crude CME–US 1998–2011 up to 84 3343

Brent crude ICE–Eu 2000–2011 up to 18 2923

Gasoil ICE–Eu 2000–2011 up to 12 2950

Nat. gas (US) CME–US 1998–2011 up to 36 3336

Nat. gas (Eu) ICE–Eu 1997–2011 up to 9 3698

Wheat CME–US 1998–2011 up to 15 3412

Soy bean CME–US 1998–2011 up to 14 3370

Soy oil CME–US 1998–2011 up to 15 3447

Corn CME–US 1998–2011 up to 25 2960

Eurodollar CME–US 1997–2011 up to 120 3689

Gold CME–US 1998–2011 up to 60 3060

FX rate USD/EUR CME–US 1999–2011 up to 12 3239

Mini SP500 CME–US 1997–2011 up to 6 3611

Minimum Spanning Trees [12]. Such a tree can be defined as the one providing the
best arrangement of the network’s different nodes.3

2.3.1 Synchronous Correlation Coefficients of Prices Returns

The synchronous correlation coefficients of price returns are defined as follows:

ρij (t)= 〈rirj 〉 − 〈ri〉〈rj 〉√
(〈r2

i 〉 − 〈ri〉2)(〈r2
j 〉 − 〈rj 〉2)

, (2.1)

where i and j correspond to two different time series of futures returns. The daily
logarithm price differential stands for price returns ri , with ri = (lnFi(t)− lnFi(t−
Δt))/Δt , where Fi(t) is the price of the futures contract at t . Δt is the lag between
two consecutive trading days.

For a given time period and a given set of data, we thus compute the matrix of
N ×N correlation coefficients C for all the pairs ij . C is symmetric with ρij = 1
when i = j . Thus, N(N − 1)/2 coefficients characterize C.

3For more details on the methodology used and on the graph theory, please refer to [11].
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2.3.2 From Correlations to Distances

In order to use graph theory, we need to introduce a metric. The correlation coef-
ficient ρij cannot be used as a distance dij between i and j , because it does not
fulfill the three axioms that define a metric [6]: (1) dij = 0 if and only if i = j ;
(2) dij = dji , and (3) dij ≤ dik + dkj .

A metric dij can be extracted from the correlation coefficients through the fol-
lowing non linear transformation:

dij =
√

2(1− ρij ). (2.2)

A distance matrix D is thus extracted from the correlation matrix C according to
(2.2). Both, C and D are N ×N dimensional. Whereas the coefficients ρij can be
positive for correlated returns or negative for anti-correlated returns, the quantity
dij that represents the distance between price returns is always positive. This dis-
tance matrix corresponds to the fully connected graph: it represents all the possible
connections in the price system.

2.3.3 From Fully Connected Graphs to Minimum Spanning Trees

A simple connected graph represents all the possible connections between N points
with N(N − 1)/2 links (or edges). The graph can be weighted in order to represent
the different intensities of the links and/or nodes. In our case, these weights represent
the distances between the nodes. For a weighted graph, the MST is the one spanning
all the nodes of the graph without loops. This MST also has less weight than any
other tree.

Through a filtering procedure that reduces the information space from
N(N − 1)/2 to N − 1, the MST highlights the most relevant connections in the
system. In our study, the MST provides the shortest path to linking all nodes and
discloses the underlying mechanisms of systemic risk. Thus, because this tree is
unique, it can be considered the easiest path for the transmission of a price shock.

2.4 The Topology of the Trees

The first information that a Minimum Spanning Tree provides is the kind of arrange-
ment that exists between the vertices: its topology. We thus focus on this topology
and its consequences for systemic risk. We present the results obtained with static
MST, (i.e. we consider the whole time period—or some sub-sets of this period—as
a single window, and we perform a static analysis).

The first step in studying the topologies lies in the visualization of the trees in the
three dimensions under consideration. In a second step, we separate the whole time
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Fig. 2.1 Static Minimum Spanning Trees built from the correlation coefficients of the prices re-
turns. (a) MST in the spatial dimension (April 2001–April 2011). (b) MST of the Brent crude in
the maturity dimension (April 2000–April 2011). The curvature only eases the visualization

period into three sub-periods and show how the topology evolves in the maturity
dimension. Finally, we use allometric coefficients to determine whether the MST
are totally organized, totally random, or are situated somewhere between these two
extreme topologies.

2.4.1 The Emerging Taxonomy in the Three Dimensions

Figure 2.1 presents the MST obtained for the spatial dimension. As far as the spatial
dimension is concerned, all three sectors can be identified. Energy comprises Amer-
ican as well as European markets and is situated between agriculture (on the top)
and financial assets (on the bottom). The most connected node in the graph is the
Brent, which makes it the best candidate for the transmission of price fluctuations
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in the tree (actually, the same could have been said for the Crude (Light crude),
as the distance between these products is very short). Further, the energy sector is
the most integrated of the three sectors because the distances between the nodes
are short. The link between the energy and agricultural products passes through soy
oil, which can be used for fuel. The link between commodities and financial assets
passes through gold, which can be seen as a commodity but also as a reserve of
value. The only surprising link comes from the S&P500, which is more correlated
to soy oil than to financial assets.

Such a star-like organization leads to specific conclusions regarding systemic
risk. A price move in the energy markets, situated at the heart of the price system,
will have more impact than a fluctuation affecting peripheral markets such as interest
rates or wheat.

Things are totally different in the maturity dimension. The results are illustrated
by the example of the Brent crude, depicted by Fig. 2.1b. For all contracts, the MSTs
are linear and the maturities are regularly ordered from the first to the last delivery
dates.

The results obtained in the maturity dimension give rise to three remarks. Firstly,
the linear topology is meaningful from an economic point of view, as it reflects
the presence of the Samuelson effect [17]. In derivative markets, the movements
in the prices of the prompt contracts are larger than the other ones. This difference
results in a decreasing pattern of volatilities along the price curve and leads to higher
correlations between the maturities that are the closest to each other. Secondly, this
type of organization impacts the possible transmission of price shocks. The most
likely path for a shock is indeed unique and passes through each maturity, one after
the other. Thirdly, the short part of the curves are less correlated with the other parts.
This phenomenon can result from price shocks emerging in the physical market with
the most nearby price being the most affected; it could also reflect noises introduced
on the first maturity by investors in the derivative market.

Figure 2.2 represents the 3-D static MST. Its shape brings to mind the spatial
dimension. However, it is enhanced by the presence of the different maturities avail-
able for each market. These maturities have a clear, linear organization. Again, the
tree shows a clear separation between the sectors. Three energy contracts, the crude
oil (Light crude), the Brent and the Heating oil, are at the center of the graph. They
are the three closest nodes in the graph. Whereas the maturities of each market pri-
marily have a linear organization, the American natural gas behaves differently and
displays an atypical topology with numerous ramifications.

It is interesting to see which maturities connect two markets or sectors. Economic
reasoning suggests that two kinds of connections should exist: with the shortest
and/or with the longest part of the curves. In the first case, the price system would
be essentially driven by underlying assets; in the second, it would be dominated
by derivative markets. However, a closer analysis of the 3-D trees does not provide
evidence of either kind. Furthermore, the analysis of the trees at different periods
does not lead to the conclusion that there is something like a pattern in the way
connections occur.
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Fig. 2.2 Static MST in 3-D (2000–2011). Each futures contract is enclosed in a shaded area with
its name. The first and last maturities are respectively represented by a bold circle and a bold
square. The distance between the nodes is set to unity

2.4.2 The Evolution of the MSTs Topology Through Time,
in the Maturity Dimension

As far as the topology in the maturity dimension is concerned, we observed, through
different studies, that the linear topology exhibited by Fig. 2.1b is the result of a mat-
uration process of the derivative market [13]. In such a market, indeed, the maturities
of the futures contracts usually rise through time: the growth in the transaction vol-
umes indeed results in the introduction of new delivery dates and extends the time
horizon of arbitrage operations.

When we examine the topologies of the MST in the maturity dimension in a dy-
namical way, we find an illustration of this maturation process in the evolution of
the topologies of the trees. Figure 2.3 gives an example of such a process through
the case of the Eurodollar futures contract: in the beginning of the study period, the
market is less integrated and the tree is not perfectly linear: there are branches on the
latest maturities. This result is consistent with economic intuition, as the latter are al-
ways characterized by lower transaction volumes. As time goes on, however, the lin-
earization progresses, reflecting the intensification of arbitrage operations towards
longer time horizon. Moreover, the shortest maturities become perfectly ordered. As
far as this maturation process is concerned, we found only one exception among the
14 markets under scrutiny: the American market for natural gas. Here, conversely to
what can been observed on other markets, the MST becomes less and less linear as
time goes on. More precisely, as shown by Fig. 2.4, a cyclical pattern emerges. As
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Fig. 2.3 Time evolution of the Eurodollar futures contract. (a) 1998–2001. (b) 2001–2004.
(c) 2005–2009

the natural gas market is characterized by a strong seasonality, we first thought that
this pattern reflects this seasonality. The maturities of connections between the fu-
tures contracts, however, do not make sense with such an interpretation. Moreover,
the European natural gas market does not behave similarly. A possible answer lies
in a possible disorganization of the market after the difficulties encountered in 2006
with the hedge fund Amaranth. We leave such investigation for later studies.

2.4.3 Allometric Properties of the MST

The computation of the allometric coefficients of a MST provides a means of quan-
tifying where this tree stands between two asymptotic topologies: star-like trees that
are symptomatic of a random organization, and chain-like trees that show a strong
ordering in the underlying structure.

[1] developed the first model for the allometric scaling of a spanning tree. The
first step of the procedure consists of initializing each node of the tree with the value
of one. Then the root or central vertex of the tree must be identified. In what follows,
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the root is defined as the node that has the highest number of links attached to it.
Starting from this root, the method consists of assigning two coefficients Ai and Bi

to each node i of the tree:

Ai =
∑

j

Aj + 1 and Bi =
∑

j

Bj +Ai, (2.3)

where j stands for all the nodes connected to i in the MST. The definition of the
allometric scaling relation is the relation between Ai and Bi :

B ∼Aη, (2.4)

where η is the allometric exponent estimated after removing the leaf nodes
A= C = 1 [5]. It represents the degree or complexity of the tree and stands be-
tween two extreme values: 1+ for star-like trees and 2− for chain-like trees [16].

The main results obtained with this measure are the following:4 within the ma-
turity dimension, the coefficients tend towards their asymptotic value: η = 2−, for
all markets under investigation. However, they are a bit smaller than 2, due to finite
size effects (there is a finite number of maturities). Such a result is probably due to
arbitrage operations. When performed on the basis of contracts having the same un-
derlying asset, such operations are easy and rapidly undertaken, thus resulting in a
perfect ordering of the maturity dates. Such a scaling is appealing from an empirical
as well as a theoretical point of view and suggests a possible universal behavior of
the topologies of derivatives networks. Additionally arbitrage operations have also
a deep impact on the prices dynamic leading to ubiquitous statistical properties of
price returns along the term structure [9].

With concern for the spatial dimension, the exponents indicate that even if
Fig. 2.1a exhibits a star-like organization, the shape of the MST is rather complex
and stands exactly between the two asymptotic topologies. There is an ordering of
the tree, which is well illustrated by the agricultural sector, which forms a regular
branch. Finally, even if the topologies of the spatial and 3-D trees seem similar, they
are quantitatively different. The allometric exponent for the 3-D tree is higher: the
best fit from our data gives an exponent close to 1.757 as compared to the value of
1.493 in the spatial case. Thus, the topology in 3-D merges the organization in sec-
tors induced by the spatial dimension and the chain-like organization arising from
the maturity dimension.

2.5 Dynamical Analysis

Because it is based on correlation coefficients, our study of market integration is
intrinsically time dependent. On the basis of the fully connected graph, we first
examine the dynamic properties thanks to the node’s strength, which provides in-

4For more detailed results, please see [10].
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formation on how close a given node is to all others. We then turn to the MSTs. In
order to study the robustness of the topologies, we compute the length of the MST,
that shows the state of the system at a specific time. Survival ratios also indicate
how the topology evolves over time. Finally, these survival ratios allow us a deeper
investigation into the connections between markets in the 3-D analysis.

In what follows, we retain a rolling time window of ΔT = 480 consecutive trad-
ing days.

2.5.1 The Nodes Strength in the Fully Connected Graphs

In order to examine the time evolution of our system, we investigate the nodes
strength in the fully connected graph. This quantity, calculated for each node i,
indicates the closeness of one node i to all others. It is defined as follows:

Si =
∑

i �=j

1

dij
. (2.5)

In our case, the node strength provides information on the intensity of the correla-
tions linking a given node to the others. When Si is high, the node is close to all
others. For the sake of simplicity, we use this measure in the spatial dimension only.
As far as the maturity dimension is concerned, it was indeed not easy to represent
the nodes strength for all futures contracts.5 Figure 2.5 represents the time evolution
of the nodes strength in the spatial dimension. The figure has been separated into
four panels: the energy sector is at the top, with American products on the left and
European ones on the right; the agricultural sector is at the bottom left and financial
assets are at the bottom right.

Figure 2.5 shows that, at the end of the period, out of all the assets studied, the
two crude oils and Heating oil show the greatest nodes strength. However, since
2010, the American node strength has decreased, which indicates a difference in the
connectivity of the two crude oils. This is an interesting result, as there are, indeed,
delivery problems on the American crude oil since that date. These problems raise
the question of the relevance of the Light crude oil as a worldwide benchmark. The
petroleum products are followed by soy oil, other agricultural assets, the S&P500
contract, gold, the exchange rate USD/EUR, and the gasoil. A remarkable evolution
is the sharp rise in the equity connectivity in the post-Lehman period, as opposed to
2001–2007. This finding corroborates those of [3] and [18]. Finally, the more distant
nodes are those representing the Eurodollar and the two natural gases.

As far as the time evolution of the node strength is concerned, the sectors exhibit
different patterns: the integration movement, characterized by an increase in this
measure, emerges earlier for the energy sector than for the agricultural sector. How-
ever, it decreases for energy at the end of the period (especially for the Light crude

5For more information on these results, please see [8].
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Fig. 2.5 Nodes strength of the markets in the spatial dimension 2001–2011. (a) American energy
products. (b) European energy products. (c) Agricultural products. (d) Financial assets

oil). The nodes strength of the agricultural products is characterized by a plateau
from the middle of 2009 to the beginning of 2010, followed by a drawdown until the
Fall 2010. Last but not least, most of the products exhibit a strong increase, except
for natural gas and interest rate contracts. Thus, whereas the core of the graph be-
comes more and more integrated, the peripheral assets do not follow this movement.

2.5.2 The Length of the Minimum Spanning Trees

The normalized tree’s length can be defined as the sum of the lengths of the edges
belonging to the MST:

L (t)= 1

N − 1

∑

(i,j)∈MST

dij , (2.6)
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Fig. 2.6 Time evolution of the normalized tree length. (a) Spatial dimension. (b) Maturity dimen-
sion for the Brent crude (black line) and the Eurodollar (gray line)

where t denotes the date of the construction of the tree and N − 1 is the number
of edges. The length of a tree is longer as the distances increase, and consequently
when correlations are low. Thus, the more the length shortens, the more integrated
the system is. On the contrary, in the case of random co-movements, the length of
the tree is equal to

√
2.

Figure 2.6 represents the dynamic behavior of the normalized length of the MSTs
in the spatial and in the maturity dimensions. In the spatial dimension, the general
pattern is that the length decreases, which reflects the integration of the system. This
information confirms what was observed in the fully connected graph on the basis of
the nodes strength. In addition, it shows that the most efficient transmission path for
price fluctuations becomes shorter as times goes on. A more in-depth examination of
the figure also shows a very important decrease between October 2006 and October
2008, as well as significant fluctuations in September and October 2008. We leave
the analysis of such events for future studies.

In the maturity dimension, as integration increases, the normalized tree’s length
also diminishes. Figure 2.6 illustrates this phenomenon by representing the evolu-
tions recorded for the Eurodollar contract and Brent crude. As far as the interest
rate contract is concerned, the tree’s length first increases, then in mid-2001 it drops
sharply and remains fairly stable after that date. For crude oil, the decrease is con-
stant and steady, except for a few surges.

2.5.3 Survival Ratios, the Stability of the Prices System
and the Interconnections Between Markets

The robustness of the MSTs over time is examined by computing the single-step
survival ratio of the links, SR . This quantity refers to the fraction of edges in the
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Fig. 2.7 Properties of the pruned trees. (a) Survival ratios and pruned tree length. (b) Number of
occurrences of stable periods of length τ . Inset: same as in (b), but in log–log scale. The dashed
line corresponds to τ−1

MST, that survives between two consecutive trading days [14]:

SR(t)= 1

N − 1

∣∣E(t)∩E(t − 1)
∣∣. (2.7)

In this equation, E(t) refers to the set of the tree’s edges at date t , ∩ is the intersec-
tion operator, and |.| gives the number of elements contained in the set. The survival
ratios are very important for our study. Under normal circumstances, the topology
of the trees should be very stable and the value of the survival ratio around one.

Concerning the stability of the trees, especially in 3-D, when focusing on the
whole system, it is interesting to distinguish between reorganizations occurring in a
specific market (i.e., between different delivery dates of the same contract) and reor-
ganizations that change the nature of the links between two markets or even between
two sectors. However, (2.7) gives the same weight to every kind of reorganization,
whatever its nature. The trouble is, a change in intra-maturity links does not have the
same meaning, from an economic point of view, as a movement affecting the rela-
tion between two markets or sectors. Because we are interested in the strong events
that affect the markets, inter-market and inter-sector reorganizations are more rele-
vant.6 Thus, in order to distinguish between these categories of displacements, we
“prune” the 3-D trees, that is, we only consider the links between markets, whatever
the maturity considered. This pruning does not mean that maturity is removed from
the analysis, but that the information on the specific maturity that is responsible for
the connection between markets is no longer identified.

Pruned trees enable us to compute the length and the survival ratios on the sole
basis of market links. As shown by Fig. 2.7a, most of the time, the survival ratios
remain constant, with a value greater than 0.9. Thus, the topology of the trees is

6One can find all the results concerning the survival ratios in [10].
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Fig. 2.8 Pruned MST of the events 09/02/2004 (a) and 16/09/2008 (b)

very stable: the shape of the most efficient path for the transmission of price shocks
does not change much over time.

Another interesting characteristic of the pruned survival ratios is that they provide
information on the lifetime of a configuration of such trees. In what follows, we
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measure the length of time τ between two different consecutive configurations and
compute the occurrences N(τ) of these periods. Figure 2.7b displays our results. It
shows that N(τ) decreases quickly with τ . The dashed line in the inset (in log–log
scale) suggests that N(τ) is roughly proportional to τ−1. Such a scaling behavior
indicates that there is neither a typical nor an average lifetime of a new configuration
of the MST.

On Fig. 2.7a, it is possible to identify several events which caused a significant re-
arrangement of the tree. This is the case, for example, for two specific dates, namely
02/09/04 and 09/16/08, where 30 % of the edges has been shuffled. As illustrated
by Fig. 2.8, a focus on these two dates shows that the trees are totally rearranged.
In 2004, the MST becomes highly linear, the financial assets sector is at the center
of the graph, and commodities appear mainly at the periphery of the system. Con-
versely, in 2008, the tree has a typical star-like shape showing an organization based
on the different sectors studied.

2.6 Conclusions

We study systemic risk in energy derivative markets based on two choices. First, we
focus on market integration, which is a favorable condition for the propagation of
a price shock. Second, based on the fact that previous studies mainly focus on the
spatio-temporal dimension of integration, we introduce the maturity dimension and
perform a three-dimensional analysis.

In the context of empirical studies aiming to understand the organization and the
dynamic behavior of a highly dimensional price system, our methodology, based
on graph-theory, proves very useful. Moreover, Minimum Spanning Trees are par-
ticularly interesting in our framework, as they are filtered networks enabling us to
identify the most probable and the shortest path for the transmission of a price shock.

We show that the topology of the MSTs tends towards a star-like organization in
the spatial dimension, whereas the universal linear topology characterizes the matu-
rity dimension. These two topologies merge in the 3-D analysis, and all of them are
very stable. The star-like organization reproduces the three different sectors studied
(energy, agriculture, and finance), and the chain-like structure reflects the presence
of a Samuelson effect. The reasoning behind these findings is very important: the
robustness of our methodology is embedded in these topologies.

Another contribution is to show that the American and European crude oils are
both at the center of our large scale system; furthermore, they provide the links
with the subsets of agricultural products and financial assets. Thus, crude oil is the
best candidate for the transmission of price shocks. If such a shock appears at the
periphery of the graph, it will necessarily pass through crude oil before spreading
to other energy products and sectors. Moreover, a shock will have an impact on the
whole system that will be all the greater the closer it is to the heart of the system.

Another important conclusion is that integration increases significantly on both
the spatial and maturity dimensions. Such an increase can be observed in the whole
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price system. It is even more evident in the energy sector (with the exception of
the natural gas markets), which becomes highly integrated at the end of our period.
Thus, as time goes on, the heart of the price system becomes stronger whereas the
peripheral assets do not change significantly. Moreover, the level of integration is
higher in the maturity than in the spatial dimension: arbitrage operations are easier
with standardized futures contracts written on the same underlying asset.

These results have very important consequences for regulatory as well as for
diversification and hedging purposes.

Whereas the move towards integration started some time ago (and there is prob-
ably no way to refrain it), knowledge of its characteristics remains poor, especially
from a holistic perspective. On the basis of this study, regulation authorities can see
that their actions against systemic risk will not have the same impact depending on
the market they are addressing. They should pay particular attention to the heart of
the system: this is the place where price shocks spread more easily to other markets.

As far as diversification is concerned, portfolio managers must concentrate their
positions on the most stable parts of the graph. More precisely, the benefits asso-
ciated with diversification that rely on sub-indexes and focus on specific sectors
of activity (agricultural products for example) should be more recurrent than those
associated with large scale indexes.

Lastly, one important concern for hedging is the information conveyed by futures
prices and its meaning. The increasing integration of derivative markets is probably
not a problem for hedging purposes, until a price shock appears somewhere in the
system. In such a case, the information related to the transmission path of the shock
is important, as prices might temporarily become irrelevant.

These results call for further work. First, as previously exhibited, survival ratios
make it possible to identify a few events leading to important reconfigurations of
the trees. A thorough analysis of such phenomenon can provide the regulating au-
thorities with a battery of stylized facts about the different possible manifestations
of prices shocks and the signs announcing a future shock. Second, now that we have
defined the paths for shock transmission, it is important to obtain directed graphs
to determine the direction of the propagation of price movements. Third, a focus on
the gas market, which exhibits a striking pattern of cross-maturity connections, can
be of interest for energy specialists.
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Chapter 3
Omori Law After Exogenous Shocks
on Supplier-Customer Network

Yoshi Fujiwara

Abstract We study the relaxation process of a supplier-customer network after
mass destruction due to two giant earthquakes, Kobe 1995 and East Japan 2011,
by investigating the number of chained failures. Firstly, a mass destruction and in-
tervention of business activities in the damaged areas can be considered as a main
shock. The exogenous shock was propagated on the supplier-customer network de-
teriorating financial states of other firms, even if they are not located in geographi-
cal neighbors. To quantify such aftershocks, we use chained failures on the network
assuming that they indicate the trace of propagation of shocks. We show that the
number of chained failures in its temporal change obeys an Omori-law, a power-law
relaxation. This finding implies that the relaxation is much more sluggish than one
would naively expect, and that it might be possible to estimate the extent and dura-
tion of aftershocks by using the empirical law. Several issues are discussed including
the origin of the long-time relaxation.

3.1 Introduction

The Nobi Earthquake in 1891 is the largest inland earthquake in the recorded his-
tory of Japan. A century after the earthquake witnessed a long-time relaxation of
aftershocks. Seismologist, Fusakichi Omori, in his pioneering work [1], found that
the long-time relaxation obeys a power-law decay for the number of aftershocks by
using the Nobi and two other earthquakes. This is known as Omori-law today. Sur-
prisingly, after the centenary of his discovery, the aftershocks obey the Omori-law
even until today for more than 104 days, a long relaxation, indeed (see Fig. 1 in the
review paper [2]).

Interestingly, social and economic systems as well as natural systems have been
found to possess long-time relaxation similar to the Omori-law. Examples include fi-
nancial market crashes [3], book sales ranking dynamics accompanying shocks [4],
and so forth. See the references in [3, 4] for other such systems. These empirical
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findings, their models and theoretical explanations are addressing a same important
question—how is the dynamics of such a complex system affected and reacting to
endogenous and/or exogenous shocks? This is important for understanding the dy-
namics, predicting relaxation processes after shocks, and giving precursory signals
before a main shock in some cases.

In the present paper, we consider two cases of “main shocks”; each case is a mass
destruction of supplier-customer network at a nation-wide scale in Japan. They are
large earthquakes of the East Japan Earthquake in 2011 and the Kobe Earthquake
in 1995. And we shall study subsequent “aftershocks” in the economy by observing
chained failures on the network.

According to the 2011 White Paper on Small and Medium Enterprises in Japan
[5], a large number of firms were directly damaged by the East Japan Disaster due
to the earthquake, tsunami, nuclear and other disasters, in the Tohoku area along
the north-east coast. This primary and exogenous shock resulted in business failures
at a considerable scale. Firstly, a mass destruction of firms and a set of interven-
tion in many industrial sectors and geographical locations took place in those areas.
Secondly, financially fragile firms were eventually forced to cease their business
activities and went into bankruptcies or financially ill-conditions, even if they are
not directly damaged. If these firms are irreplaceable in the supplier-customer links,
other firms in the network were influenced. Thirdly, such influences were so seri-
ous that other firms in upstream or downstream side of the firms on the network
eventually went into bankruptcies or financially ill-conditions as a kind of Tsunami
effect.

These chained failures did not necessarily take place in geographical neighbors
adjacent to the north-east coast, but actually took place at geographically remote
areas as depicted in Fig. 3.1. The top figure shows the numbers of chained failures,
which are carefully defined and investigated as we shall see, in all 47 prefectures.
The bottom one shows the total amounts of debt of those failed firms. One can see
that not only the Tokyo prefecture (at center) but also the northeast prefecture of
Hokkaido (top) and east prefectures in Kyushu island (leftmost) were influenced
seriously, even if they are all located far away from the Tohoku area.

The paper is organized as follows. In Sect. 3.2 we define aftershocks in terms
of chained failures, where a chain refers to neighborhood on the supplier-customer
network. We give a basic idea behind the method of counting the number of chained
failures. In Sect. 3.3, we shall investigate the validity of Omori law by using two
episodes of the Kobe and East Japan. We show that the aftershocks, quantitatively
measured by the cumulative number of chained bankruptcies, satisfy a modified
Omori formula. We shall discuss about several points for our preliminary results of
this finding in Sect. 3.4. Section 3.5 summarizes our conclusion.

3.2 Aftershocks as Chained Failures

Although we do not employ the network structure directly as a dataset, it would be
helpful to give a picture of underlying network data, which we shall briefly describe
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Fig. 3.1 Top: the number of
chained failures caused by the
East Japan Earthquake in
each prefecture is shown in
gray levels. The central
prefecture is Tokyo with the
highest level, while the north
island (Hokkaido) and the
east island (Kyushu) were
also influenced. Bottom: the
total amount of debt of those
failed firms in each prefecture
is shown with the amount in
million Yen. Both: the tilted
rectangular boxes are the part
of Tohoku area along the
north-east coast, directly
damaged by the natural
disaster of earthquake and
tsunami, and also by the
nuclear disaster. Data:
compiled on January 5
(2012) [6]

in Sect. 3.2.1 in order to understand what is meant by “chained failures” in the
definition of aftershocks given in Sect. 3.2.2.
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3.2.1 Supplier-Customer Network

Our underlying data for supplier-customer links at a nation-wide scale is based and
compiled on the following idea. Let us say that a directional link is present as u→ v

in a supplier-customer network among firms, where firm u is a supplier to firm v,
or equivalently, v is a customer of u. It would be difficult to know every transaction
between firms. However, it is pointless to have a record that a firm buys a pencil
from another firm. Necessary for understanding macroscopic economy are data of
links such that the relation u→ v is crucial for the business activity of either or both
of u and v. Therefore, if at least one of the firms at either end of a link nominates
the other firm as one of most important suppliers or customers, then the link should
be listed.

Leading credit research agencies in Tokyo [6, 7] regularly gather credit informa-
tion on most of active firms from detailed survey at branch offices located across
the nation. The credit information of individual firm includes its suppliers and cus-
tomers, which are considered to be most crucial for its business activity. We assume
that the gathered set of links are playing important roles in the supplier-customer
network. In the compiled data, the number of firms is roughly a million, and the
number of directional links is more than four million. The set of nodes in the net-
work covers essentially most of the domestic firms that are active in the sense that
their credit information is required.

In addition, the agencies compile every day exhaustive lists of bankrupted firms.
The data are exhaustive in the sense that any bankrupted firm with a total amount
of debt exceeding 10 million yen (roughly 70 thousand euro or 100 thousand US
dollar) is listed therein. Each record includes the date of failure, the total amount
of debt when bankrupted and categorized causes of bankruptcy. A bankruptcy or
business failure is a critical financial state of a firm; its debt dominates its balance-
sheet so that it has little equity, and the firm cannot no longer manage its business,
although legal definitions differ for cases.

To put these two datasets together, one can define chained failures or bankrupt-
cies as defined in what follows. See [8] for more details of the network and bankrupt-
cies data, empirical analysis for network structure including hierarchical communi-
ties or modules, chained failures and corresponding avalanche-size distribution.

3.2.2 Aftershocks as Chained Failures

For the case of the East Japan Earthquake,because more than 0.7 million firms were
present in the region (see [5]) among two million firms in the entire country,1the

1The total number of firms is based on a census taken by the National Tax Administration Agency.
Other censuses seem to give overestimation including inactive firms or underestimation due to
cursory survey.
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Table 3.1 Scheme for classification of bankruptcy causes. A bankruptcy can be caused by two or
more combination of these classified effects; the most dominant cause is recorded in such a case

Classification Criterion for bankruptcy cause

solo failure Poor performance in business, which includes business depression,
excessive competition and extrinsic shocks
Loose management, which includes failure of speculative invest-
ment, internal conflict and lack of efficient management
Long-term accumulated deficit
Insufficient working capital
Accidental causes (disasters etc.)
Deterioration of products in inventory
Excessive investment in facilities and equipment

link effect Secondary effect from bankruptcy of customer, subsidiary or col-
lateral companies and failure of business-related firms
Failure of accounts receivable

others Refusal of credit by financial institutions
Unclassified

suppliers and customers, who depends their business on the damaged firms and the
regional economy, were affected afterward. For example, suppliers had a delay, or
often a loss, in the receipt of accounts receivable, causing an abrupt drop in sales
which may have deteriorated their financial conditions subsequently.

We shall focus on bankruptcies in order to measure such secondary effects.
A bankruptcy is a critical financial state of a firm in its business activity as de-
scribed in the preceding section, so the data of bankruptcies are quite adequate for
our purpose. Because the secondary effects propagate along the supplier-customer
network, a bankruptcy may be regarded as a fracture under a stress strengthened
in the neighbor of preceding increase of stress, namely a financial fragility. We as-
sume that the process of stress propagation can be traced by observing such chained
failures on the production network.

We employ two datasets by the leading credit research agencies, which carefully
identified the causes of bankruptcies in exhaustive lists of domestic failures [6, 7].
The details of identification and classification are given in [9]. We can summarize
them in Table 3.1.

Furthermore, they carefully investigated the causes of bankruptcies after the
Kobe Earthquake in 1995 and the East Japan Earthquake in 2011. The solo fail-
ures and link effects may have been originated from business depression and other
bankruptcies in the primary shock. A typical case of solo failures is an abrupt drop
of sales due to an exogenous shock in a damaged region, when the firm depends
crucially on the region for its sales. Typical link effects are what we already men-
tioned above. We define that these cases correspond to chained failures in secondary
effects due to the main shock. Explicitly, the cases are:

• Direct type: failure due to severe damage of facilities, infra-structures, factories,
machines and so forth due to the disaster;
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• Indirect type: failures of financial fragile firms due to afterward effect, such as
depression, drop in sales, loss of receivables and so forth;

while the cases of latent fragility prior to the main shock, but later manifested as
bankruptcies, are carefully excluded. Figure 3.1 depicted the number and total assets
of chained failures due to the East Japan Earthquake. We assume that they indicate
the trace of propagation of shocks.

3.3 Omori-Law for Aftershocks on Supplier-Customer Network

The Omori law is a power-law decay of aftershock activity with time after a large
earthquake. It states that the frequency of aftershocks per unit time, n(t) at time t

decays as

n(t)=K(t + c)−p (3.1)

where K is a positive constant which determines the magnitude of n(t) and c is a
positive constant to avoid divergence at the origin, t = 0. p > 0 is the exponent of
the power-law decay. The original proposal corresponds to the case p = 1, and was
later modified into the above form, a modified Omori formula (see [2]).

Equivalently, but more suitable for comparison with data, the cumulative number
N(t) can be written by the following:

N(t)=
∫ t

0
dt ′n(t ′)= K

1− p

[
(t + c)1−p − c1−p

]
(3.2)

for p �= 1.
Because N(t) is accumulation of n(t), the statistical fluctuation and measurement

errors in N(t) is much reduced compared to them in n(t). It is customary to measure
N(t) to estimate the parameters of p and K,c (see [3]).

Let us put the monthly data of chained failures described in Sect. 3.2 into the
cumulative number N(t), where t is the time of occurrence of the extreme shocks.
The result is shown in Fig. 3.2.2

For the Kobe Earthquake in 1995, the chained failures were recorded for three
years by Teikoku Data Bank, Inc. (TDB) [7] (data 1); for one year by Tokyo Shoko
Research, Inc. (TSR) [6] (data 2). We fit the data of TDB by (3.2) in a nonlinear
least-square fitting. The parameter p was estimated as p = 0.68 ± 0.18 with the
standard error. Although the two data have different magnitude of N(t) based on
independent investigation, they simply gives different scales of the parameter K if
they obey a same power-law. The data 2 is rescaled vertically in Fig. 3.2, which can
be fitted well by the power-law with the same exponent p.

2It should be remarked that earlier result based on a fewer number of data for the East Japan
Earthquake is written in [10]. The present paper gives extended results and detailed description of
the network.
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Fig. 3.2 Cumulative number of bankruptcies N(t) and elapsed time t since the events of two
earthquakes, Kobe 1995 and East Japan 2011. Step lines are two data N(t) of the Kobe case for
three years by two credit research agencies, TDB [7] (data 1) and TSR [6] (data 2) (the latter is
scaled with its number for comparison). Gray bars are monthly data of the East Japan case for ten
months by the two agencies. The two curves are modified Omori formula with the same parameter
p = 0.68, which is estimated by least-square fit for the Kobe data

Similarly, although the data for the East Japan Earthquake has an elapsed time
of ten months, it is observed that the fitting is satisfactory with respect to the same
power-law (see gray bars for the actual data and a line for the Omori law). One can
also see that the East Japan case has a much larger impact in terms of the overall
scale in the number of failures. The parameters p and K are to be determined by
new data available in coming months.

Note that while the data 1 was for three years for the Kobe case, longer investi-
gation might reveal that the effect is longer than the first three years. Actually, if one
naively extrapolates the Omori law, there is a possibility that chained failures had
been still going on beyond into the fourth or even longer years.

We have shown that the Omori law holds for the number of aftershocks measured
by chained failures after the exogenous shocks of the two large earthquakes. Let us
discuss about the implication of this finding and also necessary verification to be
done in our future work.

3.4 Discussion

While our result in the preceding section is encouraging, there are several issues to
be investigated further. We shall discuss about them in this section.

First, one could employ other methods of measuring aftershocks, especially with
“magnitudes”. We used the number of chained failures on the production network
in order to measure aftershocks, because a bankruptcy is the most clear evidence
that a firm is in a so critically deteriorated state that it fails under a stress caused by
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the chained failures. In a more mild case, however, a firm can be affected seriously
in its financial state but may not go into bankruptcy yet. If one could measure the
magnitude of stress by an abrupt drop of sales, a sudden increase of debt and so
forth, for example, one would be able to quantify the extent of aftershocks including
their magnitude. This method will be pursued in future.

Second, if our picture of long-time relaxation captures the dynamics on the
supplier-customer network, one should be able to find similar phenomena after other
economic shocks such as the Lehman shock, the present and past financial crises. We
believe the above mentioned method might help to analyze other economic shocks
as well.

Third, let us consider possible implication of the Omori law. The fact that the
relaxation process obeys a power-law implies that the influence of secondary effects
after the primary damage in the network is extremely sluggish. Figure 3.2 indicates
two things—duration of relaxation and its extent. Suppose that one can observe the
first half-year, for instance, then by fitting the data by a modified Omori formula
with a set of parameters, one can predict how long the relaxation will take and how
large effects it will bring about under the hypothesis of power-law relaxation. What
is more important than such a prediction is the possibility that one can identify
industrial sectors and geographical regions that are fragile or robust under such a
propagation of failures. Such information would be useful to plan a recovery of and
investment into sectors and regions.

Fourth, let us mention about the origin of Omori law. The presence of a power-
law relaxation is often found in various complex systems (see [3, 4] for example,
and references therein). The origin of Omori law even in the case of earthquake is
not fully understood. Nevertheless, many proposed mechanisms are based on the
basic idea that the entire region of aftershocks is composed of a number of small
and heterogeneous regions containing faults, among which the stress of main earth-
quake is released subsequently with delayed fractures of the faults. The idea of
delayed fractures is quite analogous to our case. The network has a link effect [11,
Chap. 6.2] in which each past failed firm may quite possibly give a stress onto other
firms in its neighbor with the risk of failure. This influence of one failure onto oth-
ers is not instantaneous as firms would react at different time-scale depending on
financial conditions. This latency causes aftershocks of aftershocks superimposing
a number of Omori-type relaxation. This approach similar to [4] seems promising to
understand the value of 0 < p < 1, being different from the earthquake aftershocks
(usually p > 1 [2]).

3.5 Summary

We studied the relaxation process of a supplier-customer network after mass de-
struction due to two giant earthquakes, Kobe 1995 and East Japan 2011. Specif-
ically, we investigated the number of chained failures as “aftershocks”, which is
defined and measured by observed chained failures on the production network. In
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such episodes of disasters, a mass destruction and intervention of business activities
is considered as an exogenous main-shock. The exogenous shock was propagated
on the supplier-customer network deteriorating financial states of other firms, even
if they are not located in geographical neighbors. Assuming that the chained failures
indicate the trace of propagation of aftershocks, we show that the number of chained
failures in its temporal change obeys an Omori-law, a power-law relaxation.

Our finding in this paper, at this preliminary stage, implies that the relaxation is
much more sluggish than one would naively expect, and that it might be possible
to estimate the extent and duration of aftershocks by using the empirical law. There
are several issues including other methods of quantifying aftershocks, consideration
of magnitudes of aftershocks, study of economic disasters rather than natural ones,
the origin of Omori law, and so forth.
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Chapter 4
Aftershock Prediction for High-Frequency
Financial Markets’ Dynamics

Fulvio Baldovin, Francesco Camana, Michele Caraglio, Attilio L. Stella,
and Marco Zamparo

Abstract The occurrence of aftershocks following a major financial crash mani-
fests the critical dynamical response of financial markets. Aftershocks put additional
stress on markets, with conceivable dramatic consequences. Such a phenomenon
has been shown to be common to most financial assets, both at high and low fre-
quency. Its present-day description relies on an empirical characterization proposed
by Omori at the end of 1800 for seismic earthquakes. We point out the limited pre-
dictive power in this phenomenological approach and present a stochastic model,
based on the scaling symmetry of financial assets, which is potentially capable to
predict aftershocks occurrence, given the main shock magnitude. Comparisons with
S&P high-frequency data confirm this predictive potential.

4.1 Introduction

It is not uncommon for financial indexes or asset prices to experience exceptionally
large negative or positive returns which trigger periods of high volatility, the case
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of abnormal negative returns corresponding to market crashes. An understanding of
the dynamical response of the market to a main shock is of great interest because it
may help, e.g., in the definition of emergency plans for financial crises, or for risk
management.

There is a clear analogy between the behavior of volatility after a main financial
shock and that of the seismic activity after an earthquake of exceptional magnitude
in geophysics [14]. Omori [11], with a subsequent modification by Utsu [18], estab-
lished an important empirical law describing the frequency of occurrence of seismic
events above a given threshold after a main earthquake. The characterizing feature
of this law is the decay as a power of time, t , of the rate of occurrence of after-
shocks above the threshold, indicating the absence of a characteristic time scale in
the manifestly non-stationary Omori regime. More precisely, according to Omori
the number, n(t), of aftershocks per unit time above a given threshold σa is given
by

n(t)=K(t + τ)−p, (4.1)

where K , τ , p depend on the aftershock threshold σa , and also on the specific mag-
nitude of the main shock earthquake. Equivalently, the Omori law can be expressed
in an integral form as

N(t)= K

1− p

[
(t + τ)1−p − τ 1−p

]
(4.2)

if p �= 1, or N(t)=K ln(t/τ + 1) if p = 1, where N(t) is the cumulative number of
aftershocks up to time t after the main shock. Lillo and Mantegna [8] were the first
to verify the validity of an analog of the Omori law for the volatility in Finance after
a main crash. They also showed [9] that standard dynamical models of index evo-
lution, like GARCH, are not adequate to reproduce financial Omori-like regimes.
Several studies [8–10, 12, 15, 16, 20] verified the presence of Omori regimes un-
der various market conditions, triggered by financial crashes [8, 9, 15, 16, 20], by
volatility shocks [10], and even by U.S. Federal Open Market Commission meetings
[12]. In particular, the Omori law in finance has been upgraded to a more general
characterization of market dynamics by Weber et al. [20], who pointed out that this
law holds on a wide range of time scales, with aftercrashes of a main shock playing
the role of main crashes for even smaller aftercrashes, etc.

The above mentioned studies make clear the connection between financial Omori
processes and long-range dependence of the volatility. They also show that a mod-
ulating, time dependent scale for the returns must be considered in order to account
for the manifest non-stationarity of the Omori process. At the same time, they em-
phasize the limits in the predictive value of the Omori law. For example, the pa-
rameters K and τ need to be adjusted for each aftershock threshold considered (see
below). This holds also for the exponent p of the power law decay, which should
be expected to be the most robust parameter. In addition, there is no idea of how
the parameters could be linked to the magnitude of the main shock. These limits
reflect a lack of adequate modeling for the dynamics of financial indexes, especially
in regimes like those covered by the Omori law. In recent contributions [2, 3], some
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of the present authors have proposed a model for the dynamics at high frequency
of exchange rates or stock market indexes, which takes into account most of the
relevant stylized facts. Among them, the martingale character of index evolution,
the manifest non-stationarity of volatility detected in well defined daily windows of
trading activity, the anomalous scaling properties of the aggregate return probability
density function (PDF) in the same windows, and the strong time autocorrelation of
the elementary absolute return. This model for high-frequency data, which applies
more general ideas about the time evolution of financial indexes [4, 7, 17], has also
been tested [2] by comparing its predictions with the statistics of ensembles of daily
histories all supposed to reproduce the same underlying stochastic process. It has
been also shown [3] that some arbitrage opportunities revealed by the model could
be successfully exploited by appropriate trading strategies.

In the present contribution we address the problem of describing with such a
model the Omori processes which may be detected within these daily windows. Our
goal is to show that, after proper calibration, this model allows the prediction of the
aftershock rate within an Omori regime, given the value of the main shock magni-
tude. Indeed, we provide analytical expressions for the rate of financial aftershocks
with explicit dependence on the magnitude of the main shock and on the aftershocks
threshold. By comparing our predictions with high frequency data from the S&P 500
index we show that these quantities are sufficient to determine the Omori response
without further fitting parameters. Our success is partly due to the fact that we are
able to identify the Omori processes within a context for which non-stationarity is
well established [6] and amenable to modeling [2, 3]. In an interday context, the
question of the applicability of the models of Ref. [4] to Omori regimes has already
been raised in Ref. [7].

This note is organized as follows. In Sect. 4.2 we briefly recall the model of
Refs. [2, 3] and present the procedure of calibration. In Sect. 4.3 we discuss the
selection of Omori-like processes from our database and show how our model can
be used to analytically describe these processes. In Sect. 4.4 we compare the results
of the properly calibrated model with the statistical records at our disposal for the
S&P 500 index. Section 4.5 is devoted to general discussion and conclusions.

4.2 Model Calibration

Let us consider the successive (log-)returns over ten minutes intervals of the S&P
500 index S(t) for daily windows from 9.40 a.m., Chicago time, to 1.00 p.m.:

Rt ≡ lnS(t + 1)− lnS(t), t = 0,1, . . . ,19, (4.3)

where the time is measured in ten-minute units and we have set t = 0 at 9.40 a.m.1

A statistics made over the ensemble of 6283 available daily histories from 1985 to

1In order to keep contact with ordinary notations for the Omori law, in this paper we change slightly
our usual conventions by shifting the origin of time by one unit with respect to, e.g., Refs. [2, 3].
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2010 shows [3] that a stochastic process supposed to generate the successive returns
Rt in a generic history of the ensemble is consistent with the following joint PDF:

pR0,R1,...,Rt (r0, r1, . . . , rt )=
∫ ∞

0
dσ ρ(σ )

t∏

i=0

exp
(
− r2

i

2σ 2a2
i

)

√
2πσ 2a2

i

, (4.4)

where

ai =
[
(i + 1)2D − i2D]1/2 (4.5)

with D ≥ 0, i = 0,1, . . . ,19, and ρ(σ )≥ 0 with
∫ ∞

0
dσ ρ(σ )= 1. (4.6)

This joint PDF is a convex combination of products of Gaussian PDF’s for each in-
dividual return. The PDF ρ(σ ) weights this combination and introduces a nontrivial
dependence of the returns from the preceding ones. For D �= 1/2, the coefficients ai
make the process increments non-stationary, and modulated by the exponent D.

The calibration of the model can be done by direct comparison of its predictions
with the main features of the PDF’s of the 10-minute returns Ri ’s, or, alternatively,
with those of the aggregate returns

∑t
i=0 Ri [2, 3]. Here we follow the second op-

tion. Since the model predicts for the PDF of the aggregate return
∑t

i=0 Ri satisfac-
tion of an anomalous scaling of the form

p∑t
i=0 Ri

(r)= 1

(t + 1)D
g

(
r

(t + 1)D

)
, (4.7)

where the scaling function g is expressed as

g(r)=
∫ ∞

0
dσ ρ(σ )

exp(− r2

2σ 2 )√
2πσ 2

, (4.8)

one can determine D through a fitting of the power law t-dependence of the mo-
ments of p∑t

i=0 Ri
. Indeed, for q ∈R, according to (4.7)

E

[∣∣∣∣∣

t∑

i=0

Ri

∣∣∣∣∣

q]
= E

[|R0|q
]
tγ (q) (4.9)

with γ (q) = qD, and provided that the moment E[|R0|q ] exists. In Fig. 4.1 we
report the empirical values for γ (q), using (4.9) as an ansatz. To calibrate D, we
make a linear data regression for q ≤ 2, since for higher moments a multiscaling
behavior [19] is detected (see Fig. 4.1). The result is D � 0.35.

A particularly simple expression for the joint PDF pR0,R1,...,Rt is achieved if the
integration on σ can be worked out explicitly in (4.4). This is indeed the case if we
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Fig. 4.1 Calibration of the
scaling exponent D. The
empirical values for γ (q) are
reported using (4.9) as an
ansatz (points). A linear
regression for 0 < q ≤ 2 gives
γ (q)= qD with D � 0.35
(dashed line)

choose an inverse-gamma distribution for σ 2 [7]. Equivalently, we may set

ρ(σ )= 21− α
2 βα

Γ (α2 )σ
α+1

exp

(
− β2

2σ 2

)
, (4.10)

where the exponent α determines the long-range behavior of g according to g(r)∼
1/rα+1 for |r| � 1, and β is a scale parameter determining the distribution width.
Performing the integration on σ in (4.4) we obtain a multi-variate Student PDF:

pR0,R1,...,Rt (r0, r1, . . . , rt )= βαΓ (α+t+1
2 )

π
t+1

2 Γ (α2 )

(
β2 + r2

0

a2
0

+ r2
1

a2
1

+ · · · + r2
t

a2
t

)− α+t+1
2

.

(4.11)
As we will show in the following, an explicit form for pR0,R1,...,Rt enables us to
obtain a simple analytic expression for N(t). Unlike in previous papers [2, 3], we
thus choose here the functional form in (4.10) for ρ. Besides D, the other parameters
of the model, α and β , are calibrated by first data-collapsing the empirical PDF’s
for

∑t
i=0 Ri according to (4.7) with D = 0.35, and then by fitting α and β on this

data-collapse using (4.11) with t = 0. The result is given in Fig. 4.2. In summary, the
result of the calibration procedure is the triple (α,β,D)= (3.5,2.9 · 10−3,0.35).

The ensemble of histories at our disposal is relatively poor. This implies, as can
be appreciated in Fig. 4.2, that some rare events fall significantly out of the scaling
function, since a much larger number of histories would be needed to correctly char-
acterize their frequency of occurrence. The multiscaling behavior shown in Fig. 4.1
could be at least partly related to this effect. The Omori events are precisely related
to extreme events. In order to obtain a reliable statistics of the aftershocks, we im-
pose thus an upper bound σmax to the absolute value of the returns Ri ’s included
in our empirical analysis (see Fig. 4.2). Once done this, the overall agreement of
the empirical data with the various model predictions gives a convincing validation
of the model itself (see also [3]). Still, the agreement shown in what follows with
respect to the Omori processes must be intended as a first important result, which
calls for more extensive analysis also in terms of the calibration procedure.
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Fig. 4.2 Calibration of the
parameters α and β . The
empirical PDF’s for

∑t
i=0 Ri

at various t are rescaled
according to (4.7) with the
previously calibrated
D = 0.35 (points). The
parameters α and β are then
fitted using (4.11) with t = 0
(dashed line), yielding the
values α = 3.5 and
β = 2.9 · 10−3. An upper
bound to the empirical
analysis is posed at the
σmax = 0.02 for the
10-minute volatility

4.3 Aftershock Prediction

As already mentioned above, in the present analysis we are going to identify and
select Omori processes, which are manifestations of non-stationarity, within a pro-
cess which manifestly turns out to be with non-stationary returns in its ensemble
of daily realizations. This is a simplification which marks an important difference
with respect to the problem of modeling the Omori regimes revealed in Refs. [8–
10, 12, 15, 16, 20], where they were extracted from single time series expected to
be globally stationary on long time scales. In the perspective of our approach here,
dealing with a process which is by itself time-inhomogeneous offers the advantage
that the selection of Omori processes does not imply the need of identifying how
their non-stationarity emerges from an otherwise stationary global behavior. In a
version of our model suited for describing single, long time series of returns [5, 17],
the necessity to consider random exogenous factors influencing the market, leads us
to switch-on at random times some time-inhomogeneities formally similar to those
characterizing the model of the previous section. This is achieved by setting at = 1
concomitantly with these random events (see also [1, 2, 4, 7]). In such a context it is
not a priori clear whether or not the start of an Omori process should imply putting
at = 1 in correspondence with the time t of the main shock. This difficulty is also
accompanied by the need of implementation of a more complicated calibration pro-
cedure [5] with respect to the one presented here.

As shown below, remarkable results of our analysis in this note are:

(i) that the selected processes are legitimately classified as Omori-like in the sense
that they can all be fitted by the Omori law;

(ii) that the description one obtains for them based on the model presented in the
previous section contains explicit dependencies on the intensities of the main
shock and on the aftershocks thresholds.

This endows our approach to the Omori regimes of a predictive potential which, if
confirmed by further analysis, could be exploited by decision-makers under crisis
conditions.
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We select as Omori processes all those histories in the above S&P 500 ensem-
ble for which the initial absolute return, |r0|, besides being smaller than σmax, also
exceeds a main shock threshold σm. At variance with the analysis in Refs. [8–
10, 12, 15, 16, 20], we consider, in place of a single time series, groups of histories
for which σm ≤ |r0| ≤ σmax. As far as the aftershocks are concerned, we record for
each of these histories the elementary returns which exceed in absolute value an
aftershock threshold σa and are below the main shock value |r0|: σa ≤ |ri | ≤ |r0|,
for i ≥ 1. The parameter σa is an important one to be fixed in any analysis of the
Omori law. Again, by imposing the aftershock magnitude to be smaller than that of
the main shock we reduce the influence of extreme events in our limited dataset. We
decided to search for main shocks occurring right at the beginning of the daily time
window described by our model for two main reasons. In first place the ensemble
average volatility on 10 minutes intervals is maximal in the first interval. Secondly,
a main shock occurring right at the beginning of the time window leaves the max-
imum possible time for the development of the subsequent Omori process. While
we will limit ourselves below to discuss such optimal case, different choices are of
course possible.

According to the above selection procedure of the Omori processes, the cumula-
tive number of aftershocks N|r0|(t) after a main shock of magnitude |r0| is given by

N|r0|(t)= E

[
t∑

i=1

1(σa≤|Ri |≤|R0|) | |R0| = |r0|
]
, (4.12)

where 1(σa≤|Ri |≤|R0|) is the indicator function, yielding 1 if σa ≤ |Ri | ≤ |R0| and
zero otherwise. Using (4.11), through a change of variable it is straightforward to
show

N|r0|(t) =
t∑

i=1

2
∫ |r0|

σa

dri
pR0,Ri

(r0, ri)

pR0(r0)

= 2√
π

Γ (α+2
2 )

Γ (α+1
2 )

t∑

i=1

∫ |r0|
ai

√
β2+r2

0
σa

ai

√
β2+r2

0

dx
(
1+ x2)− α+2

2 . (4.13)

If in the considered ensemble of histories there are M realizations {r(m)
i }m=1,2,...,M

in which we register a main shock, i.e., σm ≤ |r(m)
0 | ≤ σmax, then the cumulative

number of aftershocks N(t) is obtained through the sample average

N(t)= 1

M

M∑

m=1

N|r(m)
0 |(t), (4.14)

where we stress the fact that each N|r(m)
0 |(t) is conditioned to the main shock magni-

tude |r(m)
0 |. Notice that since with the available dataset the selected main shocks con-

stitute a small sample (see next section), we use here the sample average rather than
the ensemble one to get the number of aftershocks conditioned to σm ≤ |R0| ≤ σmax.
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Fig. 4.3 Fitting of the
empirical aftershock at
different thresholds σa (points
with error bars), with the
Omori law in (4.2) (dashed
lines). Fitted parameters are
reported in Table 4.1

Table 4.1 Omori parameters
in (4.2) fitted from the
empirical data

σa K p τ

4 · 10−3 0.44 0.29 0.52

5 · 10−3 0.40 0.34 2.00

6 · 10−3 0.35 0.49 2.00

7 · 10−3 0.28 0.59 2.07

4.4 Comparison of the Model Predictions with the Statistics
of Aftershocks

Our choice for the thresholds σm and σmax is such that the absolute first returns
for which σm ≤ |r(m)

0 | ≤ σmax are quite exceptional. They occur with 27/6283 �
0.4 % frequency in our ensemble; Only 3 realizations have |r0| > σmax and are
thus excluded. Accordingly, we analyze the averaged N(t) of aftershocks for these
M = 27 main shocks. A first point to clarify is whether the recorded rates are well
fitted by the Omori law in (4.2). This is shown in Fig. 4.3, where many sets of data
for N(t), obtained with different aftershocks thresholds σa , are indeed fitted by the
Omori equation (4.2). In Table 4.1 one also realizes that K , τ and p need to be
varied for each σa in order to reach a satisfactory fit. In particular, by changing K

and τ it is even possible to obtain reasonable fittings also with p > 1 (see also [10]).
This parameters variability makes it very difficult to use the Omori law to predict the
aftershock occurrence for a given main shock magnitude and aftershock threshold.

Model predictions on the same set of data fitted in Fig. 4.3 are instead given
in Fig. 4.4. Dashed lines in Fig. 4.4 are obtained on the basis of (4.13, 4.14) with
the parameters (α,β,D) resulting from the calibration discussed in Sect. 4.2. The
only difference among the curves is the value of the aftershock threshold σa . The
agreement of the analytical predictions with the data and the sensitivity of the curves
to the variation of the aftershock threshold are remarkable. This shows that our



4 Aftershock Prediction for High-Frequency Financial Markets’ Dynamics 57

Fig. 4.4 Comparison
between the analytical model
predictions for different
aftershock thresholds σa
(dashed lines) with the same
empirical S&P data reported
in Fig. 4.3 (points with error
bars)

model potentially provides a satisfactory and parameter-free description of Omori
processes.

4.5 Conclusions

We have shown here in the case of the S&P 500 index, that a model suited for the
description of the high frequency market dynamics allows also to predict Omori
regimes following exceptional extreme events. Within the class of events consid-
ered, the model specifies the dependence on the main shocks intensities and on the
aftershocks threshold. As such, its description goes far beyond the limits of the
Omori phenomenological law.

Besides providing a further validation of the model of Refs. [2, 3], the results
presented here encourage to extend similar analysis to cases in which the Omori
processes are to be selected within a process which is globally stationary. For the
modeling of these processes, our recipe [5] is that of switching-on at random some
non-stationarities ascribable to coefficients like the at defined above. Global station-
arity of the process on long time scales is then guaranteed by the fact that empirical
averages are in this case made by considering time intervals sliding along the single
long history [5]. While it is conceivable that in many cases main shocks are localized
close to resets of the time inhomogeneity, this is not true in general. Some attempts
to strictly identify main shocks with restarts of them inhomogeneity in the model
(at = 1) already gave some preliminary agreement with the data. A more general
discussion is however needed [5].
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Chapter 5
How Unstable Are Complex Financial Systems?
Analyzing an Inter-bank Network of Credit
Relations

Sitabhra Sinha, Maximilian Thess, and Sheri Markose

Abstract The recent worldwide economic crisis of 2007–09 has focused attention
on the need to analyze systemic risk in complex financial networks. We investigate
the problem of robustness of such systems in the context of the general theory of
dynamical stability in complex networks and, in particular, how the topology of con-
nections influence the risk of the failure of a single institution triggering a cascade
of successive collapses propagating through the network. We use data on bilateral
liabilities (or exposure) in the derivatives market between 202 financial intermedi-
aries based in USA and Europe in the last quarter of 2009 to empirically investigate
the network structure of the over-the-counter (OTC) derivatives market. We observe
that the network exhibits both heterogeneity in node properties and the existence
of communities. It also has a prominent core-periphery organization and can resist
large-scale collapse when subjected to individual bank defaults (however, failure of
any bank in the core may result in localized collapse of the innermost core with
substantial loss of capital) but is vulnerable to system-wide breakdown as a result
of an accompanying liquidity crisis.

5.1 Introduction

Isaac Newton, possibly the greatest physicist of all time, is believed to have once
said that while he could calculate the motions of cosmic bodies, his theories are
useless for understanding the madness of crowds [1]. This statement was suppos-
edly made in the context of the mass frenzy that was seen among the general public
during the height of the South Sea Bubble of 1720, one of the most famous episodes
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of financial speculation and the panic triggered by its subsequent collapse [2]. In-
deed, until about the 1990s, the methods of physics were largely thought to be in-
applicable for the study of society, of which economic activity is an integral part.
However, in recent days, this perception has begun to change and it is instructive to
learn that Paul Samuelson, one of the leading figures of contemporary mainstream
economics, mentioned during an interview in 1998 that the physics of avalanches
was a better guide for understanding the “irrational exuberance” of the overvalued
markets of this period than what standard economics textbooks teach [3]. One might
be tempted to think that physics has at last come of age to be applied fruitfully for
understanding economic phenomena, even though we might be at the same stage
in our search for a physical theory of Economics (a discipline that has often been
referred to as Econophysics [4]) as natural philosophers were at the time of Newton
in their quest for a theory of the physical universe.

The late 2000s financial crisis, possibly the worst economic disaster since the
Great Depression of the 1930s, has brought to fore once again the poverty of main-
stream economics when forced to explain the real world rather than idealized sys-
tems using elegant but unrealistic assumptions of perfect competition and complete
knowledge. The inability of standard theories to understand the mechanisms that
result in such system-wide failures of financial markets is deeply worrying, as these
crises are damaging not just on their own account—often involving collapse of
large financial institutions, extensive intervention in the financial sector by the gov-
ernment and sometimes involving bailouts costing the taxpayer enormous sums of
money—but by affecting the stock market (and in the 2007–09 crisis, also the hous-
ing market) and constricting liquidity, they can depress the rest of the economy. The
potential of financial crashes to drive the economy into severe recession is not a
recent phenomenon but have been seen in earlier instances of market collapses [5].
The lack of availability of credit in the aftermath of such crises can result in failure
of businesses causing large-scale unemployment. This in turn reduces the overall
income and leads to a significant drop in consumer spending, which slows down the
economy further. It is therefore of critical importance to come up with an alternative
theoretical framework to understand the genesis of financial crisis, with the aim of
averting disaster before it strikes by learning to recognize warning signs of an im-
pending collapse. An even more desirable outcome will be to arrive at principles for
designing robust financial structures that are much less likely to suffer system-wide
failure than at present.

A theoretical approach to understand financial crisis has to consider what kind
of conditions can make a large-scale collapse of financial institutions likely. This is
in fact related to the general question of why and how do economic institutions fail,
one of the most fascinating topics of modern economics [6]. As we know from our
everyday experience that large events need not have been triggered by an extraordi-
nary stimulus, an important related question in this context is whether the failure of
a single economic entity can drive events so as to result in a cascading chain of suc-
cessive collapses among several inter-connected institutions— eventually leading to
a large-scale breakdown of the financial system [7]. Indeed, it was the specter of
such a catastrophe that prompted governments across the world to spend enormous



5 How Unstable Are Complex Financial Systems? 61

sums of money to try and save banks and financial institutions that were considered
to be “too big to fail” in the sense of being so intricately and intimately connected
to a large number of other institutions that they would bring down a significant frac-
tion of them if allowed to fail. At an even larger scale, one can imagine that, if
unchecked, such a series of failures can spread world-wide, aided by the existence
of a densely connected global financial network that has been made possible by the
communication revolution [8]. It is conceivable that the general collapse of the fi-
nancial infrastructure coupled with the economic chaos that might ensue may well
be enough to trigger the collapse of our civilization and usher in a new “dark age”,
similar to the what has been repeatedly seen in history [9].

As collapse is usually manifested by a drastic reduction in the complexity of the
system, be it in terms of the diversity of entities it is able to support or the types
or nature of interactions between such entities which are allowed, it is natural to
ask whether increasing complexity can itself make a system more prone to failure.
This question has attracted a great deal of scientific interest for the past four or five
decades, especially among ecologists [10]. At first it may appear counter-intuitive
that a greater variety of elements and a strong degree of interactions among them
can lead to instabilities. Indeed, the risk incurred through lending by financial insti-
tutions is sought to be reduced by securitization and selling debt instruments to other
institutions, thereby connecting them together in a large web of mutual liabilities.
The principle behind this practice appears to be that by sharing a large sum among
many agents, the risk of default to each individual entity is reduced. In other words,
as in selling insurance, if one increases and diversifies as much as possible the popu-
lation which is insured, it reduces the risk that at any given time a significantly large
fraction of the insured individuals will fail and that the insurer has to pay out large
sums simultaneously. Arguments along these lines have been forwarded previously
in other areas, for example in ecology, to contend that larger complexity actually
makes a system more stable. However, in the early 1970s it was shown conclusively
by Robert May [11] through linear stability analysis of large randomly connected
networks that increasing the number of elements and/or the number of connections
between them, as well as, increasing the strength of interactions, makes the system
more unstable. In other words, a complex system is more likely to be knocked out
of its equilibrium state by a small perturbation at any of its constituent elements, as
compared to a simpler system.

Over the past four decades, the pioneering result of May has been debated in-
tensely by scientists from various disciplines (dubbed as the diversity-stability de-
bate [10]) and the exact conditions under which these results apply have been sought
to be determined. A significant challenge to the general validity of these results had
been that (a) the analysis was based on linearization of the system about a “fixed
point” (or static) equilibrium, and (b) the system considered comprised randomly
connected elements. However, subsequent studies of the global stability (e.g., mea-
sured in terms of the persistence of the constituent elements) of dynamical systems
in various regimes, viz., exhibiting periodic and chaotic behavior apart from fixed
point dynamics, has shown the original results to be valid even in this more general
setting [12]. Similarly, the advent of new models of networks in the late 1990s, e.g.,
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those exhibiting the “small-world” property [13] and those having “scale-free” dis-
tribution of degree1 [14, 15], which arguably better represent the connection topol-
ogy of complex systems seen in reality, has resulted in a series of studies of the
stability when the complexity of such networks is increased. Again, it appears that
increasing the size and connection density (as well as, strength of the connection
weights) of these networks make them more, rather than less, unstable [16, 17].
Thus, it appears that despite the appealing intuition of the insurance hypothesis, in-
creased connectance between a large number of dynamically evolving entities does
increase the risk of overall system failure, a result whose implications for economic
systems is obvious [18].

The recent crisis of 2007–09 has, therefore, brought forth calls by scientists (in-
cluding from Robert May himself) to apply the lessons learnt in ecology through
analyzing the stability of complex food webs to the problem of robustness in large,
strongly connected networks of financial institutions [19, 20]. For example, struc-
tural properties of robust networks that can be identified as contributing to the dy-
namical stability of the system can be implemented in designing artificial entities
such as the financial network to decrease their likelihood of failure when subjected
to episodes of stress. It has been pointed out that “ecosystems are robust by virtue
of their continued existence” [19], i.e., only those networks have survived (and are
therefore seen today), whose structure enabled them to withstand the high degree
of fluctuation in their environment and in the dynamics of their constituent species.
On the other hand, financial networks have emerged very recently through the un-
coordinated decisions of a large number of agents, often having divergent aims and
interests. The connection topology of the network has not been developed based on
robust design principles nor has the system been subjected to evolution through a se-
ries of successive failures and regrowth to attain a relatively stable configuration. In
order to assess the fragility of the existing system (prior to redesigning it to make it
more stable), we have to first reconstruct the network of interactions between finan-
cial institutions and study the dynamical stability implications of such a structure
through simulations. Such an analysis can alert us to either “keystone” nodes in the
network whose removal through failure can result in a significant number of other
nodes failing in rapid succession.

Several such empirical studies of the inter-dependency networks of financial in-
stitutions have recently appeared in the literature. In particular, a very large network
of over 7500 banks in USA connected through the Fedwire interbank payment net-
work operated by the Federal Reserve System has been analyzed to reveal a sparsely
connected system (only 0.3 % of the potential number of connections are actually
observed) which nevertheless has relatively low average path length—a signature
of the “small-world” phenomenon seen in many other networks—thus, indicating
the existence of an extremely compact structure [21]. More importantly, the major-
ity of the links correspond to weak flows, and focusing on the small set of high-
value transactions reveals the existence of a core—a small set of 25 banks which
are densely inter-connected—to which other banks (constituting the periphery) con-

1The degree of a node is the number of links it possesses.
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nect. Such core-periphery organization, seen across many other complex systems,
ranging from networks of neurons [22] to language [23], has also been reported for
other networks of financial institutions such as the web of credit relations among
Austrian banks [24]. A recent study on financial contagion propagation has claimed
that applying stress in the core and in the periphery will have very different conse-
quences for the system [25]. Another study has found a distinct bimodal capacity
of nodes to propagate contagion, with those in the periphery having little or no ef-
fect while failure of nodes in the core can destroy the system [43]. The Fedwire
network also exhibits scale-free degree distribution [21], another property it shares
with many other inter-bank networks including those of Austria [24] and Japan [26].
Similar studies of the relation between properties of the connection topology of the
credit network among financial institutions and its stability have also been carried
out for other systems, including the European money market for overnight loans (re-
quired for maintaining liquidity) between Italian banks [27] and the Japanese credit
network between banks and large firms [28, 29].

It is in this context that we report our analysis of a network of bilateral liabilities
(or exposures) between 202 financial intermediaries (FI)2 based in USA and Europe
reconstructed from data for the last quarter of 2009 (the period during which the
financial crisis of 2007–09 reached its denouement). Systemic risk in this system
can be quantified as the probability that the failure of an individual entity results
in a cascading series of defaults propagating through the network of mutual lia-
bilities, with an institution failing when it is unable to honor its commitments to
creditors as a result of its debtors failing and thereby defaulting on their commit-
ments to it. Analysis of topological properties of the network reveal many of the
same features seen in other financial networks, such as core-periphery organization
and long-tailed distributions of degree and strength.3 However, more important than
such static properties is the dynamical response of the network to local perturbations
(specifically, the failure of a particular FI). We have used a simple and intuitively
appealing model of failure propagation in the network that takes into account the
Tier-I core capital of each institution in addition to the information about bilateral
liabilities, to study the impact of the collapse of each constituent FI on the rest of
the network. This allows us to identify “super-spreader” nodes in the system whose
collapse can trigger failure of a large fraction of elements in the network. A crucial
parameter that affects this process is the critical fraction (q) of core capital of an FI
that its net loss (as a result of failure of FIs connected to it via mutual liabilities)
must exceed in order for it to collapse. Although the actual value of this critical
fraction cannot be reliably determined from the empirical data, by studying the be-
havior of the system over a large range of q , it appears that a global or system-wide

2A financial intermediary is an institution, such as a bank, a credit union or a mortgage loan com-
pany, that transfers funds from investors (lenders) to those requiring capital (borrowers). For in-
stance, a bank uses its deposits to provide loans or mortgages thereby mediating transactions be-
tween surplus and deficit agents [30].
3Strength of a node is the sum of weights of all links belonging to it.
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collapse is unlikely except at very small (and possibly unrealistic) values of this pa-
rameter. Our observation that the propagation of disturbances along the network of
explicit financial linkages (also referred to as contagion in the economics literature)
is unlikely to cause system-wide collapse is good news and agrees with an earlier
study [31]. The bad news is that the members of the highly clustered inner core who
constitute the leading broker-dealers are potentially in need of tax-payer bailouts as
failure of any member in the core may trigger failure of the entire core. We also see
that an accompanying liquidity crisis can simultaneously decrease q as more FIs fail
with time, thereby triggering even more failures and decreasing q even further. This
coupling between the collapse of financial institutions and the reduction in availabil-
ity of capital can thus drive a chain reaction of failures that can eventually cause the
entire system to breakdown. Our results thus paint a nuanced picture of inter-bank
networks, which can be viewed as “robust-yet-fragile” [32], and points out the im-
portance of liquidity crisis that may accompany a cascading series of bank failures
in triggering system-wide crisis in complex financial systems.

5.2 The Network of Financial Intermediaries

As already mentioned above, banks function as financial intermediaries between
lenders who deposit money in the bank and borrowers who take out loans or mort-
gages. On the assumption that at any given time at most a small number of depositors
will be withdrawing a substantial portion of their money, a bank holds only a small
fraction of the total amount deposited in reserve to cover regular transactions with
their customers and invests the rest in profit-earning enterprises [33]. While lending
out their money provides banks income through interest payments, this also exposes
them to credit risk of the borrowers defaulting on their promised payments. Another
source of risk for banks can be a sudden devaluation in some of their external assets,
such as, the drop in real estate prices following the end of a housing bubble. If such
losses are a substantial fraction of its capital, a bank may find it difficult to honor its
commitments to its lenders. Under such circumstances, if the bank faces a liquidity
crisis and is unable to raise a loan to cover its liabilities, it can fail. Thus, banks
need to have an optimized operational procedure in order to maximize their return
(by lending out as large a fraction of their total deposits as possible) while at the
same time minimizing the resulting risk.

A widely used method of risk reduction in modern finance is through the use of
risk management instruments known as derivatives which are contracts between two
parties specifying payoffs that will be made between them at some future date based
on the value of an underlying asset such as foreign exchange rates, bonds/interest
rates, commodities and equities [34]. As under normal circumstances a derivative
and its corresponding underlying asset are expected to change their value in the same
direction and by roughly the same amount, one can protect against loss by hedging,
i.e., holding opposite positions in the underlying asset and derivative markets at the
same time, so that losses in one market can be offset by gains in the other. In the
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specific context of credit risk, a credit default swap (CDS) is a type of derivative that
can act as insurance for the lending agency against non-payment of debt. Thus, by
purchasing CDS, a bank can transfer its credit risk (incurred by lending to a third
party) to the seller of the swap, as in return for a series of payments (equivalent
to an insurance premium) the seller agrees to compensate the buyer in the event
of the default by paying off the debt. While for any individual institution such risk
sharing by purchasing and selling derivatives may appear appealing, at the level of
the overall system such practices bind together the different entities into a strongly
interconnected entity where the failure of any one bank does not remain localized
in its effects but spreads through the system. The systemic risk inherent in such a
situation is worsened by a limited number of counterparties dominating the market
in selling risk management instruments.

The subject of our study is the network of bilateral assets and liabilities of 202
financial intermediaries (listed in Table 5.1) aggregated over all categories of deriva-
tive products (including foreign exchange contracts, interest rate swaps, equities,
CDS and commodities). In order to measure credit exposure of a FI, one first needs
to identify the derivatives contracts which would result in loss of value to the insti-
tution if the counterparty defaults [35]. In the absence of bilateral netting4 and any
collateral from counterparties, the Gross Positive Fair Value (GPFV) is the aggre-
gate fair value of all contracts where the FI is owed money by its counterparties.
Thus, GPFV is the maximum credit exposure or losses which the FI can incur if its
counter-parties default. Conversely, the sum total of values of all contracts where
a FI owes money to its counterparties is referred to as Gross Negative Fair Value
(GNFV), and it is the maximum loss incurred by the counterparties in the absence
of netting agreement or bank collateral. Derivatives liabilities and assets are esti-
mated by adjusting the gross payables and receivables (respectively) for collateral,
bilaterally netting where agreements exist and summing over all counterparties.

The firm level data on derivative assets and liabilities used in our study were
obtained from FDIC Call Reports for the fourth quarter of 2009 for US banks that
operate solely as national associations, and from individual Annual Financial State-
ments for the global US banks and Europeans FIs. The firm level derivative liability
(asset) is the positively (negatively) signed sum over all counterparties and prod-
ucts of the bilaterally netted market value of derivatives receivables and payables.
An algorithm described in Ref. [37] is used to reconstruct a bilateral matrix for
derivatives liability or asset between FIs from the firm-level data upto some margin
of error. The starting point for the network reconstruction is this bilateral gross flow
matrix between the FIs, B, where Bij represents the flow of financial obligation from
the seller (row FI i) of the derivative to the buyer (column FI j ). Thus, Ni =∑

j Bij

is the GNFV of bank i, representing the total derivatives obligations owed by it to
other FIs, while Pj =∑

i Bij is the GPFV of bank j , i.e., the total sum owed to it
by all other FIs. The matrix will in general be asymmetric (Bij �= Bji ) and will have
zeros along the diagonal (Bii = 0) as banks do not lend to/borrow from themselves.

4Bilateral netting, whose primary purpose is to reduce exposure to credit risk, is an arrangement
between two parties to exchange only the net difference in their obligations to each other [36].
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Table 5.1 The list of 202 banks analyzed in this article arranged in decreasing order according to
their Tier-I core capital

i Financial intermediary Core capital
(billions USD)

1 Bank of America 111.92

2 Royal Bank of Scotland 98.28

3 Citibank 96.83

4 JP Morgan Chase 96.37

5 BNP Paribas 90.37

6 Barclays 77.56

7 Lloyds 74.27

8 UniCredit 56.07

9 Deutsche Bank 49.42

10 Morgan Stanley 46.67

11 Credit Agricole 44.53

12 Wells Fargo Bank 43.77

13 UBS 42.32

14 Wachovia Bank 39.79

15 Credit Suisse 39.49

16 HSBC 35.48

17 Societe Generale 34.69

18 Dexia 25.24

19 Standard Chartered 24.58

20 PNC Bank 24.49

21 Citibank (South Dakota) 19.71

22 Goldman Sachs 17.15

23 US Bank Natl Asso 16.25

24 Fifth Third Bank 13.57

25 Branch Banking & Trust Co 13.54

26 Suntrust Bank 11.97

27 State Street 11.38

28 Regions Bank 10.58

29 New York Mellon 10.15

30 TD Bank 9.27

31 Capital One 8.42

32 RBS Citizens 8.24

33 KeyBank Natl Asso 8.0

34 Union Bank 7.21

35 Comerica Bank 5.76

36 Manufacturers and Traders
Trust Co

4.99

37 Bank of the West 4.80

38 Northern Trust Co 4.76

39 Compass Bank 4.58

i Financial intermediary Core capital
(billions USD)

40 Marshall & Ilsley Bank 3.95

41 Harris Natl Asso 3.52

42 First Tennessee Bank 3.36

43 Huntington Natl Bank 2.87

44 UBS Bank USA 2.52

45 Citizens Bank
of Pennsylvania

2.43

46 RBC Bank (USA) 2.43

47 Zions First Natl Bank 1.81

48 Associated Bank 1.78

49 City Natl Bank 1.60

50 Frost Natl Bank 1.32

51 Amegy Bank 1.27

52 Webster Bank 1.27

53 BanCorpSouth Bank 1.14

54 Bank of Oklahoma 1.08

55 PrivateBank and Trust Co 1.06

56 Mizuho Corp Bank (USA) 1.05

57 Whitney Natl Bank 1.00

58 Susquehanna Bank 0.99

59 RaboBank 0.97

60 California Bank & Trust 0.96

61 Northwest Savings Bank 0.92

62 Arvest Bank 0.88

63 WesternBank Puerto Rico 0.84

64 Trustmark Natl Bank 0.84

65 Signature Bank 0.84

66 Firstmerit Bank 0.83

67 MB Financial Bank 0.82

68 Woodlands Commercial
Bank

0.75

69 Bank of Hawaii 0.75

70 Investors Savings Bank 0.75

71 Israel Discount Bank
of New York

0.72

72 United Community Bank 0.72

73 National Penn Bank 0.7

74 Doral Bank 0.69

75 Columbus Bank & Trust Co 0.67

76 Apple Bank for Savings 0.64



5 How Unstable Are Complex Financial Systems? 67

Table 5.1 (Continued)

i Financial intermediary Core capital
(billions USD)

77 Banco Santander Puerto Rico 0.57

78 IberiaBank 0.55

79 Nevada State Bank 0.54

80 1st Source Bank 0.53

81 Natl Bank of Arizona 0.53

82 UMB Bank 0.53

83 Sterling Savings Bank 0.5

84 Texas Capital Bank 0.49

85 Southwest Bank 0.48

86 Safra Natl Bank of New York 0.48

87 Bank Leumi USA 0.45

88 Bank of North Georgia 0.43

89 Pinnacle Natl Bank 0.42

90 Natl Bank of South Carolina 0.4

91 Chemical Bank 0.4

92 Hancock Bank 0.38

93 Banco Bilbao Vizcaya
Argentaria PR

0.36

94 Columbia State Bank 0.36

95 R-G Premier Bank
of Puerto Rico

0.34

96 Rockland Trust Co 0.33

97 Sun Natl Bank 0.3

98 Hancock Bank of Louisiana 0.3

99 Sandy Spring Bank 0.29

100 Stellarone Bank 0.28

101 S & T Bank 0.27

102 Vectra Bank of Colorado 0.27

103 Centennial Bank 0.27

104 Wells Fargo HSBC Trade
Bank

0.26

105 First American Bank 0.26

106 Mainsource Bank 0.23

107 Boston Pvt Bank & Trust Co 0.22

108 Bangor Savings Bank 0.21

109 First Security Bank 0.21

110 First Commercial Bank 0.2

111 Integra Bank Natl Asso 0.2

112 Berkshire Bank 0.2

113 Enterprise Bank & Trust 0.2

114 Frontier Bank 0.19

i Financial intermediary Core capital
(billions USD)

115 American Chartered Bank 0.19

116 Bank of Nevada 0.18

117 American Natl Bank 0.17

118 Stockman Bank of Montana 0.16

119 American Natl Bank of Texas 0.15

120 First United Bank & Trust Co 0.15

121 Bank of Kentucky 0.13

122 StockYards Bank & Trust Co 0.13

123 Wilson Bank & Trust 0.13

124 Bank of North Carolina 0.13

125 Bank Rhode Island 0.12

126 Community Bank of Texas 0.12

127 FSG Bank 0.12

128 Community Trust Bank 0.1

129 Commerce Bank
of Washington

0.09

130 Paragon Commercial Bank 0.09

131 ICE Trust US LLC 0.08

132 Bryant Bank 0.08

133 Colorado Capital Bank 0.08

134 South Shore Savings Bank 0.08

135 D L Evans Bank 0.08

136 Commercial Bank 0.07

137 Capstar Bank 0.07

138 Northwestern Bank 0.07

139 Gulf Coast Bank & Trust Co 0.07

140 Business First Bank 0.06

141 Guaranty Bank 0.06

142 Guaranty Bond Bank 0.06

143 Avenue Bank 0.05

144 State Bank & Trust Co 0.05

145 Marine Bank 0.05

146 Northeast Bank 0.05

147 Horicon Bank 0.05

148 Citizens Natl Bank 0.05

149 Town North Bank 0.05

150 American State Bank 0.05

151 Community Natl Bank
of Texas

0.05

152 First State Bank
of East Detroit

0.05
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Table 5.1 (Continued)

i Financial intermediary Core capital
(billions USD)

153 Clinton Savings Bank 0.05

154 Jersey Shore State Bank 0.05

155 Passumpsic Savings Bank 0.04

156 Coastal States Bank 0.04

157 Southern Bank 0.04

158 Lincoln Savings Bank 0.04

159 United Bank & Trust 0.04

160 Oakworth Capital Bank 0.03

161 Central Bank 0.03

162 Hometown Bank 0.03

163 Security Financial Bank 0.03

164 Progress Bank & Trust 0.03

165 State Bank Financial 0.03

166 Cornerstone Bank 0.03

167 Bank of South Carolina 0.03

168 C US Bank 0.03

169 Texas Bank 0.03

170 Biddeford Savings Bank 0.03

171 Paragon Natl Bank 0.03

172 Cornerstone Community
Bank

0.03

173 South Central Bank
of Barren County

0.03

174 Somerset Hills Bank 0.03

175 Platte Valley Bank 0.03

176 Keysource Commercial Bank 0.02

177 First State Bank 0.02

178 Premier Commercial Bank 0.02

i Financial intermediary Core capital
(billions USD)

179 Providence Bank 0.02

180 Carroll County State Bank 0.02

181 State Bank of Faribault 0.02

182 Summit Bank 0.02

183 FirstBank 0.02

184 Touchmark Natl Bank 0.02

185 State Bank & Trust Co 0.02

186 First Natl Bank 0.02

187 Commerce Bank of Oregon 0.01

188 Canyon Community Bank 0.01

189 Nebraska Natl Bank 0.01

190 First Natl Bank
of Junction City

0.01

191 First Vision Bank
of Tennessee

0.01

192 New Frontier Bank 0.01

193 Citizens State Bank 0.01

194 Keokuk County State Bank 0.01

195 Boone Bank & Trust Co 0.01

196 Northwoods State Bank 0.01

197 Cleveland State Bank 0.01

198 Farmers Bank 0.01

199 Farmers Savings Bank
& Trust

0.01

200 Business Bank 0.01

201 Mount Vernon Bank
& Trust Co

0.01

202 West Town Savings Bank 0.01

For simplicity we have then constructed an antisymmetric matrix M of netted
positions between FIs, i.e., Mij = Bij −Bji =−Mji . For each FI i, a positive (neg-
ative) entry Mij along the i-th row gives the net sum payable to (receivable from)
the counterparty FI j . To analyze a chain of cascading failures following the col-
lapse of bank i, only the positive entries of M are relevant—as the contagion flows
from the failed FI to its net creditor FIs (i.e., those counterparties to which it owes
more than what they have borrowed from it). Thus, the matrix J we use to construct
the network of bilateral exposures among the FIs is obtained from M, by replacing
all negative matrix entries with zeros, i.e., Jij =Mij if Mij ≥ 0 and Jij = 0 other-
wise. This represents a weighted, directed network of financial institutions, with a
link being directed from a bank to its net creditors and the link weight being the net
liability (in units of billions of US Dollars).
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Fig. 5.1 The cumulative distribution function for (left) the core capital (CT 1) of the 202 FIs con-
sidered and (right) the netted bilateral exposure Jij scaled by the Tier-I capital of the creditor bank.
Assuming a value of 0.06 for the critical fraction q , all links to the right of the broken vertical line
will spread contagion in the network

While most FIs in the network either send or receive at least one link, there are 15
nodes which have neither incoming nor outgoing links. In addition there is one other
node for which the sum borrowed from another FI exactly equals the sum it has lent,
so that on netting it does not have any net liability with respect to other FIs. The six-
teen isolated FIs are City National Bank (node 49), Northwest Savings Bank (61),
Apple Bank for Savings (76), Bangor Savings Bank (108), American National Bank
of Texas (119), D L Evans Bank (135), Northeast Bank (146), Lincoln Savings Bank
(158), Progress Bank & Trust (164), Providence Bank (179), Carroll County State
Bank (180), Commerce Bank of Oregon (187), Canyon Community Bank (188),
New Frontier Bank (192), Keokuk County State Bank (194) and Cleveland State
Bank (197).5 The largest connected component (LCC) of the network of netted bi-
lateral obligations between FIs comprises NLCC = 186 nodes, which have only 424
connections (out of the NLCC(NLCC− 1)/2= 17205 total number of possible links)
between them and is therefore very sparse.

In addition to the data on bilateral exposure, we also have information about the
Tier-I capital, CT 1 (in units of billions of USD) of each FI (Fig. 5.1(left)), which
measures the financial strength of a bank and comprises the core capital consist-
ing primarily of common stock and disclosed reserves (or retained earnings) [38].
Internationally set standards (the Basel agreements) specify the desired minimum
ratio of the core capital of a bank to the total risk-weighted assets held by it in
order to provide protection against defaults or sudden loss in value. In our model
for failure propagation in the inter-bank network, we specify a critical fraction q

of the Tier-I capital of an FI, which, if exceeded by the total net loss of the bank
resulting from failures of one or more of its debtor counterparties, will cause its

5Except for the D L Evans Bank, for which the GNFV exactly equals the GNPV so that the total
netted exposure is zero, all the other banks have no bilateral exposure at all with respect to any
other bank in the network.
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own failure. Figure 5.1(right) shows the distribution of the netted liabilities of the
FIs scaled by the core capital of the creditor counterparty, i.e., Jij /CT 1. If a node
j defaults, then the resulting perturbation will bring down its neighboring node i

only if Jij /CT 1(i) > q (a value of q = 0.06 is shown as a broken vertical line in
the figure). Thus, the distribution of Jij /CT 1 determines the stability of nodes with
respect to local perturbations (failure of a single FI).

5.3 Topological Properties

Calculating the standard topological properties from the directed network repre-
sented by J shows us that it shares many of the features of other inter-bank networks
which have been reported in earlier studies. For example, it exhibits the characteris-
tics of a “small-world” network [13] having both low average path length (〈l〉 = 3.6)
and high clustering coefficient (C = 0.24). The undirected and non-weighted net-
work shows disassortative mixing by degree (assortative coefficient r =−0.28), i.e.,
nodes with low degree preferentially connect to those having high degree. This may
be related to the strong core-periphery structure seen in the network, where a small
number of highly (and strongly) interconnected banks form the central nucleus to
which most of the other banks of the network connect.

We use a generalization of the core decomposition technique applied to directed
networks described in Ref. [22] to obtain the in-degree and out-degree k-core—a
subnetwork containing only those nodes which have at least k incoming and outgo-
ing links (respectively)—for the unweighted network corresponding to J . The cores
corresponding to in-degree and out-degree need not be identical although they may
have nodes in common, and this is indeed what is observed. We observe that 19
banks belong to both the innermost in-degree and out-degree cores (Nodes 1–7, 9–
10, 12, 14–17, 20, 22, 26, 27, 29 and 33—see Table 5.1 for the identity of these FIs),
while 4 banks belong only to the out-degree innermost core (Nodes 8, 11, 13 and 33)
and only 1 bank (Node 19) belong only to the in-degree innermost core. Thus a set
of 24 banks, all having relatively high core capital, form the highly interconnected
central nucleus of the network to which the other banks connect.

While the in-degree and out-degree of an FI can give a sense of its “centrality”
(i.e., importance) in the network, an even better measure is to use eigenvector cen-
trality, which not only considers how many connections a node has, but also weighs
this with the importance (or centrality score) of each neighbor. It is measured by
simply considering the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix for the network, with the vector components corresponding to
each node being their eigenvector centrality score. When a node has high eigenvec-
tor centrality, this could be either because it has many neighbors or it has relatively
large number of important neighbors or both [39]. However, the standard method of
determining eigenvector centrality does not work very well for directed networks,
as is the case here. Using the Katz centrality, which works well for directed net-
works, also has limitations which can be overcome by using a variation, viz., the
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Fig. 5.2 The cumulative distribution function for (left) the in-degree kin (circles) and out-degree
kout (squares) and (right) the in-strength sin (circles) and out-strength sout (squares) of the 202 FIs

Page Rank centrality measure used for example to assign importance to web pages.
In particular, we use the Arnoldi iteration algorithm for Page Rank [40] and imple-
mented in a package by David Gleich [41]. The free parameter α is set equal to 0.85
(as used for heuristic reasons by the Google search engine [39]). We find that the
bank having highest Page Rank is JP Morgan Chase (Node 4), while the next nine
banks in decreasing order of Page Rank are Societe Generale (Node 17), Bank of
America (1), Morgan Stanley (10), Deutsche Bank (9), Royal Bank of Scotland (2),
Lloyds (7), Goldman Sachs (22), HSBC (16) and BNP Paribas (5). Thus, banks with
high centrality (as measured by Page Rank) not only have large core capital but are
also the ones belonging to the innermost core for both in-degree and out-degree.
There is thus a large degree of agreement among the topological measures used to
identify the most crucial nodes of the network.

A recent paper that has looked at systemic risk from the perspective of ecosystem
stability has stated that two topological features of inter-bank networks that are cru-
cial are “First, diversity across the financial system. . . homogeneity bred fragility.
. . . Second, modularity within the financial system. . . Modular configurations pre-
vent contagion infecting the whole network in the event of nodal failure” [20]. We
now proceed to verify whether the FI network indeed shows evidence of (a) hetero-
geneity in node properties, e.g., in terms of degree, strength, Tier-I capital, etc. and
(b) the existence of modularity (i.e., multiple communities of nodes, with members
of each community being more densely and/or strongly connected amongst them-
selves than with members of other communities).

We have already shown in Fig. 5.1 above the distributions for the Tier-I cap-
ital and the netted bilateral liabilities (scaled by the core capital), both of which
span several orders of magnitude but exhibit sharply decaying tails. Figure 5.2(left)
shows the distributions for both the in-degree and the out-degree of each node in the
FI network, while the distributions for the in-strength and out-strength (correspond-
ing to the aggregate of the net amounts lent and borrowed by a bank, respectively)
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are shown in Fig. 5.2(right). All the distributions have long tails; however, prelimi-
nary statistical tests do not appear to suggest a scale-free nature for them. JP Morgan
Chase bank (Node 4) has the highest in-degree (30) and out-degree (39), as well as
the largest out-strength (85.42), while Deutsche Bank (Node 9) has the highest in-
strength (108.76). We note that there is a strong linear correlation between the in-
and out-degrees of the nodes (r = 0.88 with p-value of 0) as well as between their
in- and out-strengths (r = 0.77, p-value = 0). The degree and strength of nodes also
show strong linear correlation of r = 0.75 and r = 0.73 respectively for the incom-
ing and outgoing connections. Not surprisingly, the nodes having large Tier-I capital
have high in-degree and out-degree (their linear correlation coefficients with CT 1
being 0.78 and 0.83 respectively with zero p-values), as well as, high in-strength
and out-strength (the linear correlation coefficients with CT 1 being 0.80 and 0.85
respectively with zero p-values). In the LCC of 186 nodes, 21 have no in-degree,
i.e., they are net borrowers in all of their bilateral interactions, while 36 have no out-
degree, i.e., they are net lenders in all their bilateral interactions. 129 nodes (i.e.,
about 70 % of the LCC) has both incoming and outgoing connections so that they
are net borrowers in some bilateral interactions while being net lenders in others.

In order to look for modularity in the FI network, we have used community de-
tection techniques on both the unweighted and weighted LCC of the network. The
spectral method for module determination [42] has yielded 13 communities in the
unweighted network, the largest having 54 nodes (comprising all of the top 10 %
of FIs according to their core capital except JP Morgan Chase) and the smallest
containing 3 nodes. The smaller modules are seen to have a star-like topology with
all other nodes having connections only to a central hub node of the module which
links the community to the rest of the network. A generalized version of the spec-
tral method has been used in the case of the weighted network, which results in the
network being split into two modules: one containing 8 nodes and another having
the remaining 178 nodes. The FIs in the smaller module (Royal Bank of Scotland,
Lloyds, UniCredit, Deutsche Bank, Credit Suisse, Societe Generale, DEXIA and
Standard Chartered) are all based in Europe, and this points to large credit flows
between FIs whose base of operations are geographically close.

5.4 Dynamics of Failure Propagation

The topological properties of the FI network investigated above can alert us to the
prominent role played by a small set of banks in the system, but do not by themselves
explain how a series of failures can propagate through the network in a cascading
process. In order to relate the static information contained in the weighted adjacency
matrix J to a dynamic picture of how perturbing certain “keystone” nodes can trig-
ger a significant fraction of the network to break down, we need to assume a specific
mechanism for the propagation of the effects of the default of a particular FI to other
FIs connected to it via credit relations. We have used a simple and intuitive model
where the failure of a node results in the loss of the net sums lent to it by all its
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creditors (assuming the existence of bilateral netting agreements between all pairs
of FIs). This can cause another node to fail if the total loss it faces as a result of all
other failures in the network so far, exceeds a critical fraction of its core capital. In
this process, as more and more nodes fail, the total loss faced by the remaining cred-
itor nodes increases substantially thereby making it more likely for them to fail in
subsequent time steps. Understandably, all nodes will not have similar impact upon
the network; we are particularly interested in identifying “super-spreader” nodes,
whose collapse will result in a system-wide breakdown in the network (or at least
that of a large fraction of nodes belonging to it).

To describe the model of failure propagation, we first define the dynamical state
of each node in terms of a binary variable si . At any time step t , if si(t)= 1 the node
is solvent, whereas if si(t)= 0 it is understood to have failed (once a node has failed,
it will remain so for all subsequent time steps). The netted bilateral exposures Jij
(i.e., how much is owed by bank i to bank j ) describes the interactions between the
nodes. In the event of a node i defaulting, all its creditors j lose the net sum Jij (> 0)
lent to it. If the total loss of any node j as a result of such failures exceeds a critical
fraction (q , a parameter in our simulations) of its Tier-I capital, CT 1(j), it also fails.
Thus, the dynamical evolution of each node i in the FI network is described by the
discrete-time equation:

st+1
i = 1−Θ

[∑

j

Jji
(
1− stj

)− q ·CT 1(i)

]
, (5.1)

where, Θ is the Heaviside step function (i.e., Θ(z)= 1 if z > 0 and= 0, otherwise).
The parameter q depends on the ease of credit availability in the system, with a
liquidity crisis corresponding to a sharp decline in the value of q .

Initially, all nodes in our model are in the solvent state (s = 1). To simulate the
propagation of failures, we then change the state of any one node to failed (s = 0)
and observe whether this causes any of its neighbors to fail, and if so, whether the
effect can propagate further along the network. We carry out the process repeatedly,
choosing each node in the network in turn to be the initial failed node. While most
nodes do not trigger any failure events among their neighbors, in a few cases the
initial event can cause a series of failures to cascade along the network. We wait
until the system reaches an equilibrium (i.e., the state of every node remains un-
changed with time) and count the total fraction ffailed of nodes which have failed as
a result of the initial single node failure. Figure 5.3(left) shows the largest of such
cascade events for q = 0.01, when the initial default of Node 23 results in a total of
67 nodes to fail by the end of the cascade. We observe that there are several such
nodes whose collapse affects the entire core of strongly connected FIs and tenta-
tively identify them as “super-spreader” nodes (i.e., FIs whose failure results in a
network-wide disturbance, in contrast to most other nodes which have no effect).
Looking at the distribution of ffailed in Fig. 5.3(right) we note its strongly bimodal
character. The large peak at extremely low values are due to the majority of nodes
which have no effect on the rest of the network, while the smaller peak at higher
values of ffailed correspond to the “super-spreader” nodes. We also note that de-
creasing q (corresponding to a constriction in the credit supply or capital buffers)
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Fig. 5.3 (Left) The failure of a single node in the FI network (node 23) can initiate a series of
cascading failures propagating through the network that results in a total of 67 nodes failing by
the end of the cascade (q = 0.01). The inset shows the time-evolution of the cascade process
with the fraction of surviving nodes, fsurv, declining from 1 at the initial time to a final value
of 0.67. (Right) The distribution of failure cascade sizes (measured in terms of the total fraction
of nodes in the system that fail over the duration of the cascade, ffailed) shown as a function
of the parameter q . The distribution has a strongly bimodal character with a node failure either
resulting in no effect on the rest of the network, or, bringing down a significant number of other
nodes (“many-or-nothing” behavior). The size of cascades increase significantly with decreasing q

(corresponding to tightening of credit availability)

increases the size of the cascades. However, the total number of nodes affected by
an initial single node failure does not approach the size of the entire FI network,
unless q has extremely low (and possibly unrealistic) values. Thus the propagation
of disturbances along the network of bilateral liabilities is unlikely to be the sole
cause of a system-wide collapse of financial institutions. This agrees with an earlier
study [31] which found that perturbations transferred via explicit financial linkages
are not enough for triggering large scale breakdown of financial systems. However,
our results also identify the vulnerability of the innermost core of broker-dealers,
which, though few in number, can through their failure result in over 75 % loss of
Tier-I capital in the system. Finally, the cascade of failures can initiate an accompa-
nying liquidity crisis, as the simultaneous default of multiple FIs may restrict credit
availability with lender institutions reluctant to give out large loans and adopting
a wait-and-watch policy. The resulting decrease in the parameter q will result in
even more FIs failing, which in turn further decreases credit availability making the
liquidity crisis more severe. Thus, a feedback process ensues with the failure prop-
agation and liquidity crisis driving each other, eventually resulting in a global or
system-wide collapse of the financial system. Thus, our results suggest that when
evaluating the robustness of complex financial systems we need to focus not only
on the network of explicit linkages between the institutions, but also on the overall
environment in which they operate.
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Chapter 6
Study of Statistical Correlations in Intraday
and Daily Financial Return Time Series

Gayatri Tilak, Tamás Széll, Rémy Chicheportiche, and Anirban Chakraborti

Abstract The aim of this article is to briefly review and make new studies of cor-
relations and co-movements of stocks, so as to understand the “seasonalities” and
market evolution. Using the intraday data of the CAC40, we begin by reasserting
the findings of Allez and Bouchaud 2011: the average correlation between stocks
increases throughout the day. We then use multidimensional scaling (MDS) in gen-
erating maps and visualizing the dynamic evolution of the stock market during the
day. We do not find any marked difference in the structure of the market during a day.
Another aim is to use daily data for MDS studies, and visualize or detect specific
sectors in a market and periods of crisis. We suggest that this type of visualization
may be used in identifying potential pairs of stocks for “pairs trade”.

6.1 Introduction

Many complex features, including multi-fractal behavior, of financial markets have
been studied for a long time, and constitute today a collection of empirical “laws”,
the so-called “stylized facts” [2]. The questions: “How efficient is the market? To
what extent?” have been long debated on by economists, econometricians and prac-
titioners of finance [3]. It is now accepted that the market is weakly efficient (at
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least to some extent and in certain time scales), and that several quantities like the
price returns, volatility, traded volume, etc. do exhibit “seasonal patterns”;1 why
these “market anomalies” appear is, of course, not well-understood. One reason
for their appearance could be that the markets operate in synchronization with hu-
man activities and so the financial time series of returns of many assets reveal the
related statistical “seasonalities”. Identifying such anomalies in order to make sta-
tistical arbitrage is a usual practice. Another related practice is estimating market
co-movements, which is certainly relevant in several areas of finance, including in-
vestment diversification [5] and risk management [6].

In this paper, we first present some notations, definitions and methods. We then
review existing results on intraday patterns concerning both individual and collec-
tive stock dynamics. We compare the cross-sectional “dispersion” of returns and
its typical evolution during the day, with the intraday pattern of the leading modes
of the cross-correlation matrix between stock returns, following the studies of Allez
and Bouchaud [1]. Then, we make additional plots of the pair-wise cross-correlation
matrix elements and study their typical evolution during the day. Finally, we use
multidimensional scaling (MDS) in generating maps and visualizing the dynamic
evolution of the stock market during the day. When the MDS studies are repeated
with daily data, we find that it is easier to visualize or detect specific sectors and
market events. We suggest that this type of plots may be used in identifying poten-
tial pairs of stocks for “pairs trade”.

6.2 Some Data Specifications, Notations, and Definitions

In order to measure co-movements in the time series of stock prices, the popular
Pearson correlation coefficient is commonly used. However, it is now known that
several factors viz., the statistical uncertainty associated with the finite-size time se-
ries, heterogeneity of stocks, heterogeneity of the average inter-transaction times,
and asynchronicity of the transactions may affect the reliability of this estimator.
The investigation of high-frequency “tick-by-tick” data does enable one to monitor
market co-movements and price formation in real time. However, high-frequency
data have the drawback of aggravating the above mentioned factors even further,
raising the need to adequately evaluate their impact through proper correlation mea-
sures, such as the Hayashi-Yoshida estimator [7]. In this section, we introduce such
concepts, along with notations and definitions, and also specify the details of the
datasets used.

1“The existence of seasonal asset returns may be an indicator of market inefficiencies. . . The pres-
ence of seasonal returns, however, does not necessitate market inefficiency” [4].
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We have considered three data sets.

• Daily returns: we have used the freely downloadable daily closure prices from
Yahoo for N = 54 companies in the New York Stock Exchange, over a period
spanning from January 1, 2008 to May 31, 2011.

• Intraday tick-by-tick: N = 40 companies of the CAC40 stock exchange for March
2011, between 10:00–16:00 CET. We have purposefully avoided the opening and
closing hours of the market, so as to avoid certain anomalies.

• Intraday sampled returns: Same universe as the tick-by-tick but sampled in bins
of 5 minutes or 30 minutes. Thus, the total number of 5 minute bins is 72 per day
and total number of 30 minute bins is 12 per day. The total number of trading
days in one month is around T = 21.

6.2.1 Cross-sectional “Dispersion” of the Binned Data

In this section we introduce the notations and definitions used by the authors of
Ref. [1] for their study of sampled intraday data; we will use the same notations
when reproducing their results for our own dataset.

Stocks are labeled by i = 1, . . . ,N , days by t = 1, . . . , T and bins by k =
1, . . . ,K . The return of stock i in bin k of day t will be denoted as ri(k; t). The
temporal distribution of stock i in bin k is characterized by its moments: mean
μi(k) and standard deviation (volatility) σi(k), which are defined as:

μi(k)=
〈
ri(k; t)

〉
, (6.1a)

σ 2
i (k)=

〈
ri(k; t)2〉−μ2

i (k), (6.1b)

where averages over days for a given stock and a given bin are expressed with angled
brackets: 〈. . . 〉.

The cross-sectional “dispersion” of the returns of the N stocks for a given bin k

in a given day t is as well characterized by its moments:

μd(k; t)=
[
ri(k; t)

]
, (6.2a)

σ 2
d (k; t)=

[
ri(k; t)2]−μ2

d(k; t), (6.2b)

where the averages over the “ensemble” of stocks for a given bin in a given day are
expressed with square brackets: [. . . ]. We note that μd(k; t) may be interpreted as
the “return of an index”, equiweighted on all stocks. We will be more interested in
the average of σ 2

d (k; t) over all days, as a way to characterize the typical intraday
evolution of the “dispersion” between stock returns. Detailed studies of this dis-
persion and other such measures, concerning both stock prices and returns, will be
presented elsewhere [8].

Although the dispersion, described above, indicates the “co-movements” of
stocks, a more common and direct characterization is through the standard “cor-
relation” of returns. In order to measure the correlation matrix of the returns, each
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return is normalized by the dispersion of the corresponding bin, to reduce the in-
traday seasonality and also take into account the fluctuation of the volatility in the
considered time period T . Therefore, following the same prescription as in Ref. [1],
we define: r̂i (k; t)= ri(k; t)/σd(k; t) and study the correlation matrix defined for a
given bin k:

ρij (k) := 〈 r̂i (k; t )̂rj (k; t)〉 − 〈 r̂i (k; t)〉〈 r̂j (k; t)〉
σ̂i (k)̂σj (k)

. (6.3)

The largest eigenvalue of the N × N correlation matrix C(k) composed of the
elements ρij (k), is denoted by λ1(k) and is equal to the risk of the corresponding
eigenmode, the “market mode” with all entries positive and close to 1/

√
N . In fact,

λ1(k)/N can be seen as a measure of the average correlation between stocks. We
will be interested in the intraday evolution or the bin-dependence of the largest
eigenvalue.2

6.2.2 Correlation Matrix with Tick-by-Tick Data

Computing correlations using these intraday data, raises lots of issues concern-
ing usual estimators, as already indicated above. Let us assume that we ob-
serve T time series of prices or log-prices pi (i = 1, . . . , T ), observed at times
tm (m= 0, . . . ,M). The usual estimator of the covariance of prices i and j is the
realized covariance estimator, which is computed as:

Σ̂RV
ij (t)=

M∑

m=1

(
pi(tm)− pi(tm−1)

)(
pj (tm)− pj (tm−1)

)
.

The problem is that high-frequency tick-by-tick data record changes of prices
when they happen, i.e. at times not predefined and not equidistant. Multivariate
tick-by-tick data are thus asynchronous, contrary to daily close prices for exam-
ple, which are by construction synchronous for all the assets on a given exchange.
Using standard estimators without caution, could be one cause for the “Epps effect”,
first observed in [9], which stated that “correlations among price changes in com-
mon stocks of companies in one industry are found to decrease with the length of the
interval for which the price changes are measured.” Hence, here we use the Hayashi-
Yoshida estimator [7] also, which takes (part of) the Epps effect into account. There
are many other estimators that may be used in general, and a comparison of such
estimators has been performed in Ref. [10].

2A similar study about the intraday evolution of the first eigenvector is of great interest and has
been performed as well in [1].
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Hayashi-Yoshida (HY) Estimator In [7], the authors introduced a new estimator
for the linear correlation coefficient between two asynchronous diffusive processes.
Given two Itô processes X, Y such that

dXt = μX
t dt + σX

t dWX
t , (6.4)

dYt = μY
t dt + σY

t dWY
t , (6.5)

d
〈
WX,WY

〉
t
= ρt dt, (6.6)

and observation times 0 = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = T for X, and 0 = s0 ≤ s1 ≤
· · · ≤ sm−1 ≤ sm = T for Y , which must be independent for X and Y , they showed
that the following quantity:

∑

i,j

rXi rYj 1{Oij �=∅}, (6.7)

Oij =]ti−1, ti]∩ ]sj−1, sj ],
rXi =Xti −Xti−1 ,

rYj = Ysj − Ysj−1,

is an unbiased and consistent estimator of
∫ T

0 σX
t σY

t ρt dt , as the largest mesh size
goes to zero. In practice, it amounts to summing every product of increments as soon
as they share any overlap of time. In the case of constant volatilities and correlation,
it provides a consistent estimator for the correlation

ρt
ij =

∑
i,j r

X
i rYj 1{Oij �=∅}√∑

i (r
X
i )2

∑
j (r

Y
j )2

. (6.8)

6.2.3 Pearson Correlation Coefficient and Correlation Matrix
with Daily Returns

In order to study the equal time cross-correlations between N stocks, we first denote
the closure price of stock i in day τ by Pi(τ ), and determine the logarithmic return
of stock i as ri(τ ) = lnPi(τ ) − lnPi(τ − 1). For the sequence of T consecutive
trading days, encompassing a given window t with width T , these returns form the
return vector r ti . In order to characterize the synchronous time evolution of assets,
we use the equal time Pearson correlation coefficients between assets i and j defined
as

ρt
ij =

〈r tir tj 〉 − 〈r ti〉〈r tj 〉√
[〈r ti2〉 − 〈r ti〉2][〈r tj 2〉 − 〈r tj 〉2]

, (6.9)
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where 〈. . .〉 indicates a time average over the T consecutive trading days included
in the return vectors. These correlation coefficients fulfill the usual condition of
−1≤ ρij ≤ 1 and form an N ×N correlation matrix Ct , which serves as the basis
of further analyses [11–13].

For analysis, the data is divided time-wise into M windows (t = 1,2, . . . ,M)
of width T , corresponding to the number of daily returns included in the window.
The consecutive windows may be overlapping/non-overlapping with each other, the
extent of which is dictated by the window step length parameter δt , describing the
displacement of the window, measured also in trading days. The sizes of window
width T , and window step width δt , are to be chosen cleverly: for example, T must
be long enough to grasp any signal with a certain statistical power, but not cover too
long a period over which the signal could have varied.

6.2.4 Distance Matrix

To obtain “distances”, a non-linear transformation

dij =
√

2(1− ρij ), (6.10)

is used, with the property 2≥ dij ≥ 0, forming an N ×N distance matrix Dt , such
that all distances are “ultrametric”. The concept of ultrametricity is discussed in
detail by Mantegna [14]. Out of the several possible ultrametric spaces, the sub-
dominant ultrametric is opted for due to its simplicity and remarkable properties.
The choice of the non-linear function is again arbitrary, as long as all the conditions
of ultrametricity are met.

6.2.5 Multidimensional Scaling (MDS)

Multidimensional scaling is a set of data analysis techniques that display the struc-
ture of “distance”-like data as a “geometrical picture”, where each object is rep-
resented by a point in a multidimensional space. The points are arranged in this
space, such that the distances between pairs of points have the strongest possible
relation to the “similarities” among the pairs of objects—two similar objects are
represented by two points that are close together, and two dissimilar objects are
represented by two points that are far apart. The space is usually a two- or three-
dimensional Euclidean space, but may be non-Euclidean and may have more di-
mensions.

MDS is a generic term that includes many different types—classified according
to whether the similarities data are “qualitative” (called non-metric MDS) or “quan-
titative” (metric MDS). The number of similarity matrices and the nature of the
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MDS model can also classify MDS types. This classification yields classical MDS
(one matrix, unweighted model), replicated MDS (several matrices, unweighted
model), and weighted MDS (several matrices, weighted model). For a general intro-
duction and overview, please see Ref. [15].

The collection of objects to be analyzed in our case, is N stocks, on which a
distance function is defined using (6.10). These distances are the entries of the
similarity matrix

Dt :=

⎛

⎜⎜⎜⎝

d11 d12 · · · d1N
d21 d22 · · · d2N
...

...
. . .

...

dN1 dN2 · · · dNN

⎞

⎟⎟⎟⎠ . (6.11)

Given Dt , the aim of MDS is to find N vectors x1, . . . , xN ∈R
D , such that

‖xi − xj‖ ≈ dij ∀i, j ∈N, (6.12)

where ‖ · ‖ is a vector norm. In classical MDS, this norm is typically the Euclidean
distance metric.

In other words, MDS tries to find a mathematical embedding of the N objects
into R

D such that distances are preserved. If the dimension D is chosen to be 2 or 3,
we are able to plot the vectors xi to obtain a visualization of the similarities between
the N objects. It may be noted that the vectors xi are not unique—with the Euclidean
metric, they may be arbitrarily translated and rotated, since these transformations
do not change the pairwise distances ‖xi − xj‖.

There are various approaches to determining the vectors xi . Generally, MDS is
formulated as an optimization problem, where (x1, . . . , xN) is found as a minimiza-
tion of some cost function, such as

min
x1,...,xN

∑

i<j

(‖xi − xj‖ − dij
)2
. (6.13)

A solution may then be found by numerical optimization techniques. In our case,
we used simulated annealing as the optimization procedure.

6.3 Results

6.3.1 U-Effect in Volatility

In financial studies, among the periodicities or “seasonalities” is the “U-effect” [16,
17], which describes the intraday pattern of average volatility σ(k) = [σi(k)] of
individual stocks: the average volatility is high during the market opening hours,
then decreases so as to reach a minimum around lunch time, and increases again



84 G. Tilak et al.

Fig. 6.1 Plots of the average
volatility of stocks σ(k), the
average cross sectional
dispersion σd(k) and the
average absolute value of the
index return 〈|μd(k, t)|〉 as a
function of the 5-minute bins
denoted by k, from
10h00–16h00 CET, for the
period March, 2011.
Courtesy: E. Guevara H.
et al. [8]

steadily until the market closes. We show a similar result in Fig. 6.1, computed with
the CAC40 intraday data for the period March, 2011. The average of |μd(k; t)| is
a proxy for the “index volatility”, and is displayed in Fig. 6.1: it also shows a U-
shaped pattern similar to that of σ(k).

6.3.2 The Eigenvalues of the Correlation Matrix and Average
Correlations

The largest eigenvalue λ1 of the correlation matrix of stock returns, is well known
to be associated with the “market mode”, i.e. all stocks moving more or less in a
synchronized manner. We show in the top panel of Fig. 6.2 the magnitude of λ1/N

computed from (6.3) on 5-min data, as a function of the bin k. Interestingly, the av-
erage correlation clearly increases as time elapses. As mentioned earlier, the quan-
tity λ1/N captures the behavior of the average correlation between stocks, which
can be seen in the bottom panel of Fig. 6.2.

The evolution of the next six eigenvalues λi(k), i = 2, . . . ,7 is also shown in
Fig. 6.2. We see that the amplitudes of these decrease with time. It may be ap-
propriate to quote the authors of Ref. [1]: “Although by construction the trace of the
correlation matrix, and therefore the sum of all N eigenvalues is constant (and equal
to N ), this decrease is not a trivial consequence of the increase of λ1. . . What we see
here is that as the day proceeds, more and more risk is carried by the market factor,
while the amplitude of sectorial moves shrivels in relative terms (but remember that
the correlation matrix is defined after normalizing the returns by the local volatility,
which increases in the last hours of the day).”
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Fig. 6.2 Top: Top eigenvalues of the correlation matrix, λi(k)/N , i = 1, . . . ,7, as a function of
the 5-minute bins denoted by k, from 10h00–16h00 CET, in March, 2011. [5-min sampled prices,
courtesy E. Guevara H. et al. [8]]. Bottom: The largest eigenvalue λ1/N (circles) is a proxy for
the average correlation (plain) [HY correlations for every pair and every bin of every day, then
averaged over days for visual comfort and comparison with previous figure]

We also compute using (6.8) the cross-correlation matrices with tick-by tick
data, for all 72 bins per day and 20 days in a month. The temporal evolution of the
pairwise average correlation coefficients as a function of bins, for different days,
and further averaged over all the days, are plotted below in Fig. 6.3.

6.3.3 MDS Using Intraday Data

In order to visually capture the co-movement of stocks, we used the MDS plots
of the 40 stocks of the CAC40 index (see list of CAC40 stocks in Table 6.1), for
the period of March 2011. We used 30 minute bins to compute the correlations,
using the Hayashi-Yoshida estimator. We used the period 10h00–16h00 CET, so as
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Fig. 6.3 Plot of the
(pairwise) average
correlations as functions of
bins k, for different days.
Thick solid line: Plot of the
average correlation
coefficients, further averaged
over all the days, which
shows that the average
correlation between stocks
increases throughout the day.
Thick dashed lines: Plots of
the standard deviations on
either side of the average
correlation

to get 12 bins per day for the 22 days. Using the correlation matrices as input, we
made the distance transformations (using (6.10)) to produce the distance matrices.
These distance matrices were then used as inputs to the standard MDS function in
MATLAB. We used the method of simulated annealing to optimize the cost function
of a particular bin. The first bin starts with an initial set of coordinates chosen at
random; for the following bins, we used the final results of the previous bins as the
initial states.3 The output of the MDS were the coordinates, which were plotted as
the MDS maps. The coordinates were plotted in a manner such that the centroid
of the map coincided with the origin (0,0). We then computed the mean distance
of all the coordinates from the center, and plotted this measure as a function of
time.

During the course of any day, since for every bin the correlation matrix changes,
the MDS map also changes. Just as it is interesting to study how the average corre-
lation between the stocks varies during the day, we thought it would be also interest-
ing to study how the MDS map evolves “on an average” during the day. We had two
choices: (i) Run the MDS algorithm for every bin for 22 days, and take the average
of the coordinates over all the 22 maps, and plot this map for every bin. (ii) Take
the average of the correlations over the 22 days for each bin, and plot a single MDS
map for every bin. We executed both, to see the variations. In choice (i), for every
bin k we take an average of the coordinates generated by the 22 MDS runs (for dif-
ferent days) and plot them stock by stock. Some stocks fluctuate a lot on a day to
day basis, in the same time bin; others fluctuate less. On the whole we expected to
see the average structure (clustering) of the market. In choice (ii), we expected to
see less structure, since when we take the average of correlations over all 22 days,
and then run the MDS once for every bin, the variances in the correlations disappear
and so the MDS plots look more uniform.

3This is to avoid too drastic a change in the MDS plots from one bin to another, keeping in mind
that the vectors xi are not unique—with the Euclidean metric, they may be arbitrarily translated
and rotated.
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Table 6.1 RICS list of the
stocks in the CAC 40 Names RICS

ACCOR FICTIVE ACCP.PA

AIR LIQUIDE AIRP.PA

ALCATEL LUCENT ALUA.PA

ALSTOM ALSO.PA

ARCELOR MITTAL FICTIVE ISPA.AS

AXA AXAF.PA

BNP PARIBAS BNPP.PA

BOUYGUES BOUY.PA

CAP GEMINI CAPP.PA

PERNOD RICARD PERP.PA

VALLOUREC VLLP.PA

CARREFOUR CARR.PA

PEUGEOT SA PEUP.PA

VEOLIA ENVIRONNEMENT VIE.PA

CREDIT AGRICOLE SA CAGR.PA

PPR PRTP.PA

VINCI SGEF.PA

DANONE DANO.PA

PUBLICIS PUBP.PA

VIVENDI VIV.PA

EADS PEA FICTIVE EAD.PA

RENAULT RENA.PA

EDF EDF.PA

SAINT GOBAIN SGOB.PA

ESSILOR INTERNATIONAL ESSI.PA

SANOFI SASY.PA

FRANCE TELECOM FTE.PA

SCHNEIDER ELECTRIC SA SCHN.PA

GDF SUEZ GSZ.PA

SOCIETE GENERALE SOGN.PA

LOREAL OREP.PA

STMICROELECTRONICS PEA FICTIVE STM.PA

LVMH LVMH.PA

SUEZ ENVIRONNEMENT SA SEVI.PA

LAFARGE LAFP.PA

TECHNIP TECF.PA

MICHELIN MICP.PA

TOTAL TOTF.PA

NATIXIS CNAT.PA

UNIBAIL-RODAMCO SE UNBP.PA
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Fig. 6.4 MDS plots for bins
1–6. Each point on a plot
represents a stock (see list of
CAC40 stocks in Table 6.1),
designated by two
coordinates (xi, yi ),
i = 1, . . . ,N . We took the
average of the coordinates
(output of the MDS) of each
company over all 22 days, for
a particular bin. We then
plotted the MDS maps using
these averaged coordinates
for the different bins to see
the evolution during the day

(a)
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Fig. 6.4 (Continued)

(b)
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6.3.3.1 Averaged (over Days) Coordinates in Different Bins

We took the average of the coordinates (output of the MDS) of each company over
all 22 days, for a particular bin. We then plotted the MDS maps using these averaged
coordinates for the different bins to see the evolution during the day, as shown in
Fig. 6.4 (for first six bins) and Fig. 6.5 (for last six bins). We find that there is some
structure, and particular companies always stay together in a cluster or a group.

6.3.3.2 Averaged (over Days) Correlations in Different Bins

We also took the average of the correlation coefficients for each pair over all 22
days, and then used them to generate the MDS plot for a particular bin. We then
plotted the MDS maps for the different bins to see the evolution during the day, as
shown in Fig. 6.6 (for first six bins) and Fig. 6.7 (for last six bins). We find that there
is less structure than the previous plots (as average of correlations “smoothen out”
the dissimilarities). The structures of the maps and positions of the companies do
not change drastically during the course of the day.

We further plotted the variation of the mean distance of all the coordinates from
the center of the map, over the different bins to see the temporal evolution during the
day, in Fig. 6.8. This follows exactly the opposite trend of the average correlations
as shown in Fig. 6.2 or Fig. 6.3—the mean distance decreases during the day. This
result is as expected, and not very surprising.

6.3.4 MDS Using Daily Data

In order to capture the co-movement of stocks visually, we again used the MDS
plots of 54 stocks from Yahoo daily data, for the period of January 2008–May 2011.
We computed the correlations using non-overlapping windows of T consecutive
trading days, using (6.9). The choice of T is important because if T/N is small,
then according to the Random Matrix Theory we cannot distinguish between noise
and the true signal. Since MDS needs a full rank correlation matrix, the noise needs
to be cleaned with appropriate statistical measures before applying MDS.

As before, using the correlation matrices as input, we made the distance trans-
formations (using (6.10)) to produce the distance matrices. These distance matrices
were then used as inputs to the MDS code in MATLAB. We used the method of
simulated annealing to optimize the cost function of a particular day. The first day
(time-step) starts with an initial set of coordinates chosen at random; for the follow-
ing days (time-steps), we used the final results of the previous day (time-step) as
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Fig. 6.5 MDS plots for bins
7–12. Each point on a plot
represents a stock (see list of
CAC40 stocks in Table 6.1),
designated by two
coordinates (xi, yi ),
i = 1, . . . ,N . We took the
average of the coordinates
(output of the MDS) of each
company over all 22 days, for
a particular bin. We then
plotted the MDS maps using
these averaged coordinates
for the different bins to see
the evolution during the day

(a)
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Fig. 6.5 (Continued)

(b)
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Fig. 6.6 MDS plots for bins
1–6. Each point on a plot
represents a stock (see list of
CAC40 stocks in Table 6.1),
designated by two
coordinates (xi, yi ),
i = 1, . . . ,N . We took the
average of the correlation
coefficients for each pair over
all 22 days, and then used
them to generate the MDS
plot for a particular bin. We
then plotted the MDS maps
for the different bins to see
the evolution during the day

(a)
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Fig. 6.6 (Continued)

(b)
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Fig. 6.7 MDS plots for bins
7–12. Each point on a plot
represents a stock (see list of
CAC40 stocks in Table 6.1),
designated by two
coordinates (xi, yi ),
i = 1, . . . ,N . We took the
average of the correlation
coefficients for each pair over
all 22 days, and then used
them to generate the MDS
plot for a particular bin. We
then plotted the MDS maps
for the different bins to see
the evolution during the day

(a)
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Fig. 6.7 (Continued)

(b)
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Fig. 6.8 Mean distance of
coordinates of all the points
(40 stocks) from center of the
map, as a function of the bin
k. There are 12 bins of 30
minutes between 10:00 and
16:00 CET

the initial state.4 The output of the MDS were the coordinates, which were plotted
as the MDS maps. The coordinates were plotted in a manner such that the centroid
of the map coincided with the origin (0,0). We then computed the mean distance
of all the coordinates from the center, and plotted this measure as a function of
time.

In Fig. 6.9 we plot MDS maps for sample dates: 28/05/2008 (pre-Subprime cri-
sis), 27/10/2008 (onset of Subprime crisis) and 28/06/2010 (post-Subprime crisis).
In these plots we do see the difference in the positions of the companies. The posi-
tion of Lehman brothers in the plot of the MDS during the post-Subprime crisis is
noteworthy.

We also plot in Fig. 6.9, the mean distance of coordinates from center for the
period 01/01/2008 to 31/12/2009. There is certainly a noticeable variation in this
entire period, and the period of the Subprime crisis can be identified with the low
value of mean distance.

In order to examine carefully whether any clusters can be identified, we worked
with a subset of 18 companies. In Fig. 6.10 and Fig. 6.11, we plot MDS maps for
different sample dates: 03/06/2008, 25/07/2008, and 05/09/2008 (pre-Subprime cri-
sis); 17/10/2008, 28/11/2008 and 13/01/2009 (during Subprime crisis); 24/02/2009,
07/04/2009, 12/09/2009 and 04/11/2009 (post-Subprime crisis).

In these plots we do see the considerable differences in the positions of the com-
panies. However, it is interesting to follow the positions of certain pairs:

(i) JP Morgan and Bank of America
(ii) Nissan and Toyota

4This is to avoid too drastic a change in the MDS plots from one time step to another, keeping
in mind that the vectors xi are not unique—with the Euclidean metric, they may be arbitrarily
translated and rotated. We imposed a small penalty in the cost function for deviation from the
initial state.
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Fig. 6.9 The correlation
matrices are computed from
Yahoo daily closure price data
using (6.9) and 54 trading
day window, for the set of 54
companies. The points on
each MDS plot represent
stocks, each designated by
two coordinates (xi, yi ),
i = 1, . . . ,54. (a) Top: MDS
plot for date 28/05/2008.
(a) Middle: MDS plot for date
27/10/2008. (a) Bottom: MDS
plot for date 28/06/2010.
(b) Mean distance of
coordinates from center for
the two year period
01/01/2008 to 31/12/2009

(a)
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Fig. 6.9 (Continued)

(b)

(iii) Chevron and Exxon
(iv) Pepsi and Coca Cola.

This type of visual plot may therefore be used in identifying potential pairs of stocks
for “pairs trade”. Such a strategy monitors the performances of two historically cor-
related stocks: when the correlation between the two securities temporarily weakens,
i.e. one stock moves up while the other moves down, the pairs trade strategy would
be to short the outperforming stock and to long the underperforming one, betting
that the “spread” between the two would eventually converge. Further analysis is of
course necessary to devise such a strategy.

We also find that there is some noticeable clustering effect, e.g. as all the Eu-
ropean banks are in one cluster and all the European automobiles are in another
cluster.

6.4 Concluding Remarks

In this paper, we first reviewed existing results on intraday patterns concerning both
individual and collective stock dynamics. We studied the cross-sectional “disper-
sion” of returns and its typical evolution during the day, and found that the av-
erage volatility is high during the market opening hours, then decreases so as to
reach a minimum around lunch time, and increases again steadily until the mar-
ket closes. The average of |μd(k; t)|, which is a proxy for the “index volatility”,
also displayed a U-shaped pattern similar to that of σ(k). Studying the intraday pat-
tern of the leading modes (eigenvalues) evaluated using the cross-correlation matrix
between stock returns, we found that the maximum eigenvalue λ1(k) (correspond-
ing to the market mode or average correlation) clearly increases as time elapses.
However, the evolution of the next six eigenvalues λi(k), i = 2, . . . ,7 showed that
the amplitudes of these decrease with time. Then, we made additional plots of the
pair-wise cross-correlation matrix elements and studied their typical evolution dur-
ing the day. Finally, we used multidimensional scaling (MDS) in generating maps
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Fig. 6.10 MDS plots for
different dates.
(a) Top: 03/06/2008
(b) Top: 25/07/2008
(a) Middle: 05/09/2008
(b) Middle: 17/10/2008
(a) Bottom: 28/11/2008
(b) Bottom: 13/01/2009.
The correlation matrices are
computed from Yahoo daily
closure price data using (6.9)
and 30 trading day window,
for the subset of 18
companies. The points on
each plot represent stocks,
each designated by two
coordinates (xi, yi ),
i = 1, . . . ,18

(a)
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Fig. 6.10 (Continued)

(b)
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Fig. 6.11 MDS plots for
different dates.
(a) Top: 24/02/2009
(b) Top: 07/04/2009
(a) Bottom: 12/09/2009
(b) Bottom: 04/11/2009.
The correlation matrices are
computed from Yahoo daily
closure price data using (6.9)
and 30 trading day window,
for the subset of 18
companies. The points on
each plot represent stocks,
each designated by two
coordinates (xi, yi ),
i = 1, . . . ,18

(a)

and visualizing the dynamic evolution of the stock market during the day. When
the MDS studies were repeated with daily data, we found that it was easier to vi-
sualize or detect specific sectors, strongly correlated pairs and market events. We
suggest that this type of plots using daily data may be used in designing strate-
gies of “pairs trade” as explained earlier, or identifying clusters or detecting market
trends.
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Fig. 6.11 (Continued)

(b)
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Chapter 7
A Robust Measure of Investor Contrarian
Behaviour

Damien Challet and David Morton de Lachapelle

Abstract Using the transaction history of all the clients of an on-line broker, we
analyse the daily aggregated investment fluxes of individual investors, companies,
and asset managers. Computing the probability that price returns and daily invest-
ment fluxes have the same sign provides a robust characterisation of contrarian be-
haviour. The three categories are found to be contrarian, but with widely different
intensities. Individual investors are by far the most contrarian of the three, followed
by companies. Asset managers are only mildly contrarian with respect positive price
returns.

7.1 Introduction

Despite the availability of exhaustive data about the dynamics of some markets and
large-scale data analysis, relatively little is known about the statistical behaviour
of the traders themselves. And yet, it is exactly what is missing to make giant
leaps in agent-based modelling. While it is relatively easy to obtain market-like be-
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haviour from interacting heterogeneous adaptive agents (see e.g. [1–4]), validating
such models with fully aggregated data (e.g. price, volume) is mostly hopeless.1

The current state of knowledge is of course due to the necessary secrecy that
protects to a point strategic behaviour and to which brokers are bound. Thus, data
about the actions of single traders are hard to obtain. Some less detailed data sets
have used, for instance daily individual net investment [6], daily aggregate invest-
ment fluxes of the individual traders from NYSE [7], the same type of data with a
weekly resolution from the Australian stock exchange [8], or intraday data of mar-
ket participants (i.e. banks, brokers) in the Spanish stock market [9]. On the other
hand, some authors had access to the trader identity of every single transaction in
Taiwan [10], India [11], and China [12, 13]. Quite tellingly, when having access to
individual time series, researchers have mainly focused on trader gains/losses. The
best established stylised fact is the (on-average) contrarian nature of individual in-
vestors who buy when the asset price has decreased and vice-versa [7, 8]; intraday
trader behaviour was analysed in [9, 13]. Traders types do share however some com-
mon behaviours: in a previous work [14], we showed that the relationship between
the average transaction values and the average portfolio values was determined, on
average, by transaction fee structure and was the same for the three kinds of traders.
Here we investigate contrarian behaviour of the latter at a daily time scale and find
out how independent it can be from price dynamics and from the underlying com-
pany earnings.

7.2 Dataset

Our dataset consists of all orders sent by the clients of Swissquote Bank SA (there-
after referred to as Swissquote). Client accounts belong to three categories: individ-
ual investors, companies investing their liquidities, and asset managers supervising
the destiny of other people’s accounts. We kept only the five most traded stocks
in order to have reliable statistics. Table 7.1 reports the size of this database; UBS
data starts in 2008; the rank of the most traded stocks is as follows: UBS, ABB,
Crédit Suisse Group, Novartis, Nestlé; the tickers of these stocks end with an N;
we will hence refer to them as ABBN, CSGN, NESN, NOVN, UBSN, respectively.
We have double checked our dataset by matching each Swissquote transaction with
Thomson-Reuters tick-by-tick data.

As Swissquote market share went from 0 % to about 3 % in 10 years, raw mea-
sures are necessarily non-stationary. As an illustration, we plot the 5 cumulated
number of new traders, that is, the number of traders who have made at least one
transaction at time t in Fig. 7.1. The rate of trader addition is not constant (it is
linked for example to marketing campaigns) and increased for all stocks around
2009, except for UBSN.

1It is however possible to attempt market reverse-engineering with agent-based models, as pio-
neered in [5].
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Table 7.1 Size of the studied dataset

ABB Crédit Suisse Group NEStlé NOVartis UBS

# clients 30203 20327 13442 15580 40111

# events 698992 348096 140420 168127 873446

# trades 166916 95596 36784 39632 250230

Fig. 7.1 Cumulated number
of known traders as a function
of time for all five assets

7.3 Investment Fluxes

Every financial transaction has a buyer and a seller, thus the net flux of money
is zero, neglecting transaction costs. However, grouping transactions according to
some criterion, e.g. investor type, broker, etc., opens the possibility of disentangling
their respective contributions. Finance literature has studied, mostly at a weekly time
horizon the fluxes of individual clients, mutual funds, on-line and full-service bro-
kers in various markets; the contrarian behaviour of individual client at this horizon
is well documented, as well as their trend-following tendency at a yearly horizon, in
several markets, provided that their respective weight is small enough; whether indi-
vidual client actions predict or not future asset returns is still discussed (see Ref. [7]
for an overview).

Let us now define the way we have aggregated our dataset. The buy and sell flux
in the time interval [t, t + 1[, where the unit can be fixed arbitrarily, is defined as

B(t) =
∑

h∈[t,t+1[
Θ
[
v(h)

]
v(h)p(h) > 0,

S(t) =
∑

h∈[t,t+1[
Θ
[−v(h)

]
v(h)p(h) < 0,
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where h is a timestamp of a given transaction, v(h) the volume exchange at price
p(h), and Θ(x) the Heaviside function that selects buy or sell transactions. These
quantities, when measured for a given client category g is denoted as Bg(t), simi-
larly for Sg(t). One can then define the net flux as fg(t) = Bg(t)+ Sg(t), and the
integrated net flux as Fg(t)=∑t

t ′=0 fg(t
′).

The interpretation of an integrated flux is simple: it is the sum of realised losses
and net transaction values of open positions. The flux of money of a successful
round-trip is indeed negative, since money has been extracted from the market.

7.3.1 Global Behaviour

Figure 7.2 reports F for the five assets under study. Individual traders generally
produce an increasing function of time for two reasons: first the total number of
Swissquote individual clients has been steadily increasing and second, they cannot
easily take short positions on stocks (in practice, they do not). The increase is very
marked when the price of an asset keeps falling. This behaviour was also seen at
the end of the first Internet bubble [15]; it is a signature of contrarian behaviour as
discussed below.

The same plots performed for companies and asset managers (Figs. 7.3 and 7.4)
show a markedly different dynamics.

Yet this does not remedy the fact that the absolute value of fluxes also depends
on the total number of active traders during a given time window, denoted as N(t).
The simplest way to overcome this problem is to introduce normalised quantities
bg(t)= Bg(t)/N(t) and sg(t)= Sg(t)/N(t). In order to remove the dependence on
N(t), we will study normalised net fluxes defined as

φg(t)= bg(t)+ sg(t)

bg(t)+ |sg(t)| =
Bg(t)+ Sg(t)

Bg(t)+ |Sg(t)| ∈ [−1,1];

these quantities can be interpreted as the net buy/sell tendency in a given time in-
terval. In addition, since these quantities are not fat-tailed, they lead to less noisy
measurements. Figures 7.5, 7.6 and 7.7 confirm the behaviour found for the un-
normalised fluxes; since normalised fluxes are not fat-tailed, the resulting plots are
much less noisy and clearly indicate that institutions and individual investors have a
markedly different behaviour.

7.3.2 Fluxes vs Price Returns

Let us now examine how trader behaviour depends on price returns. A compari-
son between cumulated fluxes and price history of individual traders in the case of
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Fig. 7.2 Cumulated net daily investment fluxes F of individual clients as a function of time

UBS strongly suggest that some kind of contrarian behaviour: as long as UBS stock
price plunges, the individual traders have been keen on buying more shares. This
behaviour is not mainly due to the total draw-down or draw-up, but to an effective
behaviour that depends only the price returns of a few past traded days, including
the then-present trading day.
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Fig. 7.3 Cumulated net daily investment fluxes F of companies as a function of time

Relating raw investment fluxes and daily returns r(t) is hard because of their fat-
tailed nature. This is why this contribution focuses on a more robust measure: the
cumulated product of the sign of these quantities, defined as

Rg(t)=
t∑

t ′=1

sign
[
φg(t

′)
]

sign
[
r(t ′)

]
,
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Fig. 7.4 Cumulated net daily investment fluxes F of asset managers as a function of time

provides a good visual check of the evolution of the correlation between the signs
of these quantities as a the time goes on.

This quantity is reported in Fig. 7.8. Remarkably the probability that individual
traders as a group is contrarian remains constant to a good approximation for all
the stocks over all the years spanned by our data, despite the tremendous, lasting,
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Fig. 7.5 Cumulated daily normalised investment fluxes φ of individual clients as a function of
time

and sometimes fast price variations. ABBN and UBSN, the two stocks for which
one has the most data, are also the ones for which this behaviour is visually most
clearly constant. The case of UBSN illustrates particularly well how impervious to
economics fundamentals individual traders can be. 2008 was a terrible year for UBS:
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Fig. 7.6 Cumulated daily normalised investment fluxes φ of companies as a function of time

operating losses were very high; it had to be bailed out by the Swiss government;
in addition it was accused by a USA Senate Panel of facilitating tax evasion and
its licence to operate there was menaced; when the situation cleared up from 2009
onwards, the behaviour of the sign of individual investments did not change (see
Fig. 7.9).
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Fig. 7.7 Cumulated daily normalised investment fluxes φ of asset managers as a function of time

Table 7.2 reports the measured probability that the signs of net fluxes and price
returns are opposite. Every single figure reported in this table is statistically very
significant. It is quite revealing to split the probability to act as a contrarian into two
parts: one when the price return is negative and one when it is positive. It turns out
that the probability of being contrarian is higher when the price return is negative,



7 A Robust Measure of Investor Contrarian Behaviour 115

Fig. 7.8 Cumulated sign product Rindividual(t) as a function of time; close-to-close price returns

except for NESN and NOVN for which they do not differ significantly. One possible
explanation is that these are the only two assets that did not experience tumultuous
times: their annualised share price volatility was about 20 %, whereas the ones of
other tickers are larger than 40 %. It may hence be that above a given volatility
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Fig. 7.9 Share price and
earnings in CHF of UBS.
Source: quarterly reports of
UBS, available on ubs.com

threshold, individual investors react in a different way with respect to negative and
positive price returns.

We have much less data about companies and asset managers. We overcame this
difficulty by aggregating the data for all the stocks in the last columns of Tables 7.3
and 7.4. Companies turn out to be also contrarian, particularly with respect to neg-
ative price returns. Asset managers on the other hand are also contrarian, but with
respect to positive returns.

7.4 Discussion

The above results show that the conditional signs of the investments of the three cat-
egories of traders have different average behaviours. Individual investor behaviour
is markedly contrarian and stays roughly constant as a function of time, even if the
asset prices changes wildly, as exemplified by the extreme case of UBSN. Compa-
nies follow the same pattern, albeit in a much less pronounced way. Asset managers
are contrarian with respect to positive price returns. We also found that individual
traders are more likely contrarian with respect to negative price returns if the as-
set prices have a high volatility. The difference between the categories of traders is
probably due to the use of investment tools and/or strategies by more sophisticated
traders.

This emphasises the need of individual investors for financial advice and decision
tools, since their behaviour is so much determined by the current price returns. Some
brokers offer help building portfolios and actively managing them automatically.

Future work will include more assets that were plagued by a long series of bad
news in order to understand on what the contrarian nature depends on, in particular
with respect to the price volatility.

http://ubs.com


7 A Robust Measure of Investor Contrarian Behaviour 117

Ta
bl

e
7.

2
Pr

ob
ab

ili
tie

s
th

at
in

di
vi

du
al

in
ve

st
m

en
tfl

ux
es

φ
(t
)

an
d

cl
os

e-
cl

os
e

re
tu

rn
s
r
(t
)

ha
ve

op
po

si
te

si
gn

s;
un

ce
rt

ai
nt

ie
s

ar
e

eq
ua

lt
o

tw
o

st
an

da
rd

de
vi

at
io

ns

In
di

vi
du

al
cl

ie
nt

s
A

B
B

N
C

SG
N

N
E

SN
N

O
V

N
U

B
SN

P
(s

ig
n
[φ

(t
)]=

−s
ig

n
[r(

t)
])

0.
69
±

0.
01

0.
69
±

0.
01

0.
62
±

0.
01

0.
61
±

0.
01

0.
76
±

0.
01

P
(φ

(t
)
<

0|r
(t
)
>

0)
0.

63
±

0.
01

0.
65
±

0.
01

0.
62
±

0.
01

0.
59
±

0.
01

0.
65
±

0.
02

P
(φ

(t
)
>

0|r
(t
)
<

0)
0.

76
±

0.
01

0.
73
±

0.
01

0.
63
±

0 .
01

0.
63
±

0.
01

0.
85
±

0.
01

Ta
bl

e
7.

3
Pr

ob
ab

ili
tie

s
th

at
co

m
pa

ni
es

in
ve

st
m

en
tfl

ux
es

φ
(t
)

an
d

cl
os

e-
cl

os
e

re
tu

rn
s
r
(t
)

ha
ve

op
po

si
te

si
gn

s;
un

ce
rt

ai
nt

ie
s

ar
e

eq
ua

lt
o

tw
o

st
an

da
rd

de
vi

at
io

ns

C
om

pa
ni

es
A

B
B

N
C

SG
N

N
E

SN
N

O
V

N
U

B
SN

A
ll

tic
ke

rs

P
(s

ig
n
[φ

(t
)]=

−s
ig

n
[r(

t)
])

0.
56
±

0.
03

0.
54
±

0.
05

0.
57
±

0.
06

0.
64
±

0.
07

0.
55
±

0.
03

0.
56
±

0.
01

P
(φ

(t
)
<

0|r
(t
)
>

0)
0.

55
±

0.
04

0.
60
±

0.
06

0.
53
±

0.
08

0.
68
±

0.
09

0.
61
±

0.
04

0.
54
±

0.
01

P
(φ

(t
)
>

0|r
(t
)
<

0)
0.

58
±

0 .
04

0.
46
±

0.
07

0.
61
±

0.
08

0.
60
±

0.
10

0.
50
±

0.
04

0.
58
±

0.
01

Ta
bl

e
7.

4
Pr

ob
ab

ili
tie

s
th

at
as

se
t

m
an

ag
er

in
ve

st
m

en
t

flu
xe

s
φ
(t
)

an
d

cl
os

e-
cl

os
e

re
tu

rn
s
r
(t
)

ha
ve

op
po

si
te

si
gn

s;
un

ce
rt

ai
nt

ie
s

ar
e

eq
ua

l
to

tw
o

st
an

da
rd

de
vi

at
io

ns

A
ss

et
m

an
ag

er
s

A
B

B
N

C
SG

N
N

E
SN

N
O

V
N

U
B

SN
A

ll
tic

ke
rs

P
(s

ig
n
[φ

(t
)]=

−s
ig

n
[r(

t)
])

0.
51
±

0.
03

0.
57
±

0.
04

0.
53
±

0.
04

0.
51
±

0.
05

0.
54
±

0.
04

0.
54
±

0.
01

P
(φ

(t
)
<

0|r
(t
)
>

0)
0.

55
±

0.
04

0.
62
±

0.
05

0.
56
±

0.
06

0.
53
±

0.
08

0.
57
±

0.
06

0.
56
±

0.
01

P
(φ

(t
)
>

0|r
(t
)
<

0)
0.

48
±

0 .
04

0.
52
±

0.
06

0.
50
±

0.
06

0.
48
±

0.
07

0.
52
±

0.
06

0.
51
±

0.
01



118 D. Challet and D. Morton de Lachapelle

Acknowledgements DC warmly thanks Fabrizio Pomponio and Riadh Zaatour for their help
with Thomson-Reuters data; DMdL is grateful to Swissquote Bank SA for financial support. DC
acknowledges useful discussions with the participants of Kolkata Econophys VI conference.

References

1. Caldarelli G, Marsili M, Zhang Y-C (1997) A prototype model of stock exchange. Europhys
Lett 50:479–484

2. Lux T, Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of a finan-
cial market. Nature 397:498–500

3. Jefferies P, Hart ML, Hui PM, Johnson NF (2001) From market games to real-world markets.
Eur Phys J B 20:493–502. cond-mat/0008387

4. Challet D, Chessa A, Marsili M, Zhang Y-C (2000) From minority games to real markets.
Quant Finance 1:168. cond-mat/0011042

5. Lamper D, Howison S, Johnson N (2002) Predictability of large future changes in a competi-
tive evolving population. Phys Rev Lett 88:017902–017905. cond-mat/0105258

6. Tumminello M, Lillo F, Piilo J, Mantegna RN (2011) Identification of clusters of investors
from their real trading activity in a financial market. Arxiv preprint. arXiv:1107.3942

7. Kaniel R, Saar G, Titman S (2008) Individual investor trading and stock returns. J Finance
63(1):273–310

8. Jackson A (2004) The aggregate behaviour of individual investors
9. Lillo F, Moro E, Vaglica G, Mantegna RN (2008) Specialization and herding behavior of

trading firms in a financial market. New J Phys 10:043019
10. Barber BM, Lee YT, Liu YJ, Odean T (2009) Just how much do individual investors lose by

trading? Rev Financ Stud 22(2):609–632
11. De S, Pochiraju B, Gondhi N, Chhabra R (2011) Does sign matter more than size? An inves-

tigation into the source of investor overconfidence
12. Zhou WX, Mu GH, Chen W, Sornette D (2011) Strategies used as spectroscopy of financial

markets reveal new stylized facts. Arxiv preprint. arXiv:1104.3616
13. Zhou WX, Mu GH, Kertész J (2012) Random matrix approach to the dynamics of stock in-

ventory variations. Arxiv preprint. arXiv:1201.0433
14. Morton de Lachapelle D, Challet D (2010) Turnover, account value and diversification of real

traders: evidence of collective portfolio optimizing behavior. New J Phys 12:075039
15. Griffin JM, Harris JH, Shu T, Topaloglu S (2011) Who drove and burst the tech bubble?

J Finance 66(4):1251–1290

http://arxiv.org/abs/cond-mat/0008387
http://arxiv.org/abs/cond-mat/0011042
http://arxiv.org/abs/cond-mat/0105258
http://arxiv.org/abs/arXiv:1107.3942
http://arxiv.org/abs/arXiv:1104.3616
http://arxiv.org/abs/arXiv:1201.0433


Chapter 8
Evolution of Zipf’s Law for Indian Urban
Agglomerations Vis-à-Vis Chinese Urban
Agglomerations

Kausik Gangopadhyay and Banasri Basu

Abstract We investigate into the rank-size distributions of urban agglomerations
for India between 1981 to 2011. The incidence of a power law tail is prominent.
A relevant question persists regarding the evolution of the power tail coefficient.
We have developed a methodology to meaningfully track the power law coefficient
over time, when a country experience population growth. A relevant dynamic law,
Gibrat’s law, is empirically tested in this connection. We argue that these empirical
findings for India are in contrast with the findings in case of China, another country
with population growth but monolithic political system.

8.1 Introduction

It is the job of a scientist to find a mathematical rigor in a natural system, which is
apparently anomalous to a casual observer. When a scientist does this in the physical
world, the laws discovered are called physical laws. On the other hand, the human
society and the institutions created by human beings seem somewhat vulnerable for
such laws being maintained. Since human beings have their own desires and wishes,
human institutions are often kept outside the purview of physical laws. Nevertheless,
if we find some physical laws being observed in the context of human society, not
only it will widen the scope of physical laws, but also usher a novel dimension in
the study of social sciences.

We discuss the case of Indian city size distribution and Zipf’s law [1] (alterna-
tively known as Pareto distribution or simply power law) in this backdrop. Zipf’s
law, named after linguist George Kingsley Zipf, is a simple empirical law which is
often successful in describing the distribution of populations for various cities in a
nation. Zipf noted that the second most common word in the English language (‘of’)
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appears at approximately half the rate of the most common word (‘the’). The third
most common word (‘to’) appears at approximately one third the rate of the most
common word [1]. The fact that the law has been observed in many other spheres
makes it even more mysterious. We can set many examples in this context: word
usage in human language [2], size distribution of islands [3], websurfing [4], the
distribution of wealth and income in many countries [5, 6], and the size distribu-
tion of lunar craters [7]. The examples also include forest fires [8], solar flares [9],
and football goal distribution [10]. Recently in a quantitative analysis [11] of exten-
sive chess databases it is shown that the pooled distribution of all opening weights
follows Zipf’s law with universal exponent.

In the context of urban economics and regional science, “Zipf’s law” is synony-
mous to a remarkable regularity in the distribution of city sizes all over the world. It
is also known as the “Rank-Size Distribution”. This says that the population of a city
is inversely proportional to the city’s rank among all cities. This could be interpreted
in multiple ways. Let us take a cut-off, say a population of fourteen million. Indeed
according to the 2011 Census, there are three Indian metropolises over the popu-
lation of fourteen million, Greater Mumbai (18,414,288), Delhi (16,314,838) and
Kolkata (14,112,536). If we consider another cut-off, which is just half of the previ-
ous cut-off, there ought to be double the number of cities over the new cut-off com-
pared to the previous cut-off. We verify that there are exactly six cities with a popu-
lation of more than seven million—the other three cities being Chennai (8,696,010),
Bangalore (8,499,399) and Hyderabad (7,749,334). If one calculates the natural log-
arithm of the rank and of the city size (measured in terms of the number of people)
and plot the resulting data in a diagram, a remarkable log-linear pattern is obtained,
this is the Rank-Size Distribution. If the slope of the line equals minus 1, (as is for
example approximately the case for the USA, India, and France) the relationship is
known as Zipf’s Law. Zipf’s law has repeatedly been shown to hold in the top tails
of city size distribution across different countries and periods [12–17].

Of course, Zipf’s law is really not a law at all. It’s merely a simple mathematical
model that appears to describe some human behavior. Even more amazingly, Zipf’s
law has apparently held for at least 100 years. Given the different social conditions
from country to country, the different patterns of migration a century ago and many
other variables that you’d think would make a difference; the generality of Zipf’s law
is astonishing. Keep in mind that this pattern emerged on its own, that is, it is “self-
organized”. No city planner imposes it, and no citizen conspires to make it happen.
Something is enforcing this invisible law, but we are still in the dark about what that
something might be. Many inventive theorists working in disciplines ranging from
economics to physics have taken a whack at explaining Zipf’s law, but no one has
completely solved it. Paul Krugman, who has tackled the problem himself, wryly
noted [15] that “the usual complaint about economic theory is that our models are
oversimplified—that they offer excessively neat views of complex, messy reality.
In the case of Zipf’s law the reverse is true: we have complex, messy models, yet
reality is startlingly neat and simple.” Zipf’s law is popular and thrilling because
of its mysterious nature despite being simple. In the complex human decision of
choice of a dwelling place, the existence of such a simple relationship being held is
a mystery in itself.
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The evolution of Zipf’s law coefficient have been studied for countries such as
Japan [18], USA [19]. In this article, we investigate the evolution of Zipf’s law coef-
ficient in case of India during 1981 to 2011 using Indian Census data. Even though,
Zipf’s law is a static phenomenon, it is important to investigate into its dynamic evo-
lution over time partly because that enables us with a clearer understanding of the
process of growth of urban agglomerations. Also it is pertinent for the reason that
we want to relate the evolution of Zipf’s law coefficient with another law related to
the dynamic process—Gibrat’s law. More specifically, Gibrat’s law postulates that
the mean and variance of the growth rate of an urban agglomeration are independent
of its size. It has been demonstrated [8] that Zipf’s law is an outcome of Gibrat’s law.
We will expound the case of India—a country with remarkable population growth
and contrast the findings to the Chinese experience.

The organization of this paper is as follows. Section 8.2 elaborates the empirical
analysis. Section 8.3 summarizes our results comparing and contrasting them with
the empirical findings in case of China. This section uses findings from an earlier
work [20].

8.2 Empirical Analysis

8.2.1 Zipf’s Law for Indian Urban Agglomerations

We gather our data from the Indian Census [21], which is conducted once in a
decade. We have used data from four different waves, namely censuses conducted in
the years of 1981, 1991, 2001, and 2011. According to the census conducted on the
first day of March, 2011, the population of India stood at 1,210,193,422 persons.
The details of Indian census is tabulated in Table 8.1. Figure 8.1 shows the rank-
size distribution for urban agglomerations of India in 1981, 1991, 2001, and 2011,
respectively.

The slope of the rank-size line in log scale determines the power law coefficient
for any set of urban agglomerations. The estimation for Zipf’s law requires a state-
ment on the threshold of the power law region. We can visualize the power law tails
for each census year data. However, the starting point of such a tail varies across
years. For a country with population growth, it is intuitive that a shift in the thresh-
old of power law region is bound to happen over years. The pertinent issue is: how
to handle this question of finding an “appropriate” threshold level? We need a mea-
sure, which is irrespective of the absolute number of the threshold. This could be
materialized, in one way, by considering the population-proportions of urban ag-
glomerations, namely, proportion of population in each urban agglomeration of the
total population of India. This will stabilize the threshold value of power law obey-
ing tail over time in a world with considerable population growth. We expound the
mathematical form of Zipf’s law:

logR(x)= α − β logx, for all x > x0. (8.1)
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Table 8.1 Indian Census during 1981–2011. Figures in parenthesis represent the corresponding
figure as percentage of the total population in that particular year

Census year Total population Urban population Rural population

2011 1,210,193,422 377,105,760 833,087,662

(100) (31.16) (68.84)

2001 1,027,015,247 285,354,954 741,660,293

(100) (27.78) (72.22)

1991 844,324,222 217,177,625 627,146,597

(100) (25.72) (74.28)

1981 683,329,097 159,462,547 523,866,550

(100) (23.34) (76.66)

Fig. 8.1 Rank-size
distribution of urban
agglomerations in India
during 1981–2011

The parameter β will be close to unity, under Zipf’s law and x0 is the threshold
size. For a theoretical abstraction, let us suppose that population of all urban ag-
glomerations grow in equal proportions. Therefore, an urban agglomeration with
size x has become one with a population of A · x. The above equation, in that case,
boils down to:

logR(x)= (α + βa)− β logAx, for all Ax >Ax0, (8.2)

where a = logA. This (8.2) represents the structure of Zipf’s law in case a pop-
ulation growth happens. This also implies that the minimum cut-off has to be set
upward and the estimated power-law line will have a higher intercept, in such
a scenario. Indeed, once the threshold is adjusted, the slope of this line will not
change even slightly. Alternatively, if we look into population proportions, we note
no change both in the intercept and slope in case of a population growth. Let the
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Fig. 8.2 Rank-population
proportion distribution of
urban agglomerations in India
during 1981–2011

population of a country be N. We can calculate the population proportions of urban
agglomerations of this country, x

N
. From a plot of rank-population proportions in

the log scale, we can derive a form of (8.1). This equation remains unchanged in
case the populations of all urban agglomerations and consequently that of the entire
country grow by a factor of A:

logR(x)= (α − βN)− β log
x

N
, for all x > x0,

(8.3)
logR(x)= (α − βN)− β log

Ax

AN
, for all Ax >Ax0.

We illustrate our case in Fig. 8.2 with plots of ranks of urban agglomerations against
population-proportions. The curves coincide on one another, mostly. This shows the
stability of Zipf’s law with respect to relative population over time. We undertake
this strategy of dealing with population growth. The issue boils down to the choice
of threshold for urban agglomerations to consider under power law in 1981. Once
that decision has been made, we will adjust that threshold for subsequent years by
multiplying the initial value by the factor of population growth. Our focus is to study
evolution of Zipf’s law coefficient over time. Since we are interested in the evolution
of power law tail, the initial value of the power law coefficient hardly matters. We
set the threshold for 1981 in such a manner so that the slope of the rank-size plot
(in log scale) is as close as possible to unity. This is the value postulated by Zipf’s
law.

The basic way to estimate the parameters of Pareto distribution is called the “lin-
ear fit method”. Under this method, we regress the log of rank of an urban agglom-
eration on the log of its population. The coefficient of the regression line yields the
estimate for the exponent of power law. Though widely used, this method produces
a biased estimate of the power law exponent [22].The alternative approach lies in
estimation of the Maximum Likelihood Estimator (MLE). This is also known as
the “hill method” in the econophysics literature. For a sample consisting of a finite
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Table 8.2 Zipf’s law verified for Indian urban agglomeration. The standard errors of estimates are
noted in the parentheses

Census year Minimum size Linear fit estimate Maximum likelihood estimate

2011 212,523 0.935 1.018

(0.007) (0.069)

2001 180,355 0.921 1.044

(0.007) (0.075)

1991 148,272 0.899 0.976

(0.008) (0.075)

1981 120,000 0.889 0.991

(0.009) (0.080)

number of data points, we can calculate the probability of observing this sample,
in entirety, by employing the probability density function and cumulative density
function. Given a particular process, this probability is a function of parameters
inherent in the particular probability distribution used in the calculation of the sam-
ple probability, commonly known as the likelihood of that sample. We maximize
this likelihood with respect to the distribution parameters. The set of parameter-
values, for which the likelihood is maximized, is collectively known as the maxi-
mum likelihood estimate of the parameters. We have rendered the analytical expres-
sions of the maximum likelihood estimate for the Pareto distribution in our earlier
work [23].

We have computed both estimates using linear fit method and maximum likeli-
hood method. Our estimates are tabulated in Table 8.2 for 1981 to 2011 for all four
census rounds. As discussed, we have chosen a cut-off of 120,000 as the minimum
size of urban agglomeration to be included in 1981 sample so that the Zipf’s law
coefficient—estimated value 0.991—is close to the theoretical prediction of 1.000.
Afterwards, we multiply this minimum value by the population growth rate to ar-
rive at the subsequent figures for the years 1991–2011. For example, the growth rate
of population was 23.56 % during 1981–1991. Therefore, we add 23.56 % to the
threshold value of 120,000 to arrive at the figure of 148,272 (rounded off to whole
number). From Fig. 8.3 it is apparent that the coefficient of Zipf’s law is remarkably
close to the theoretical value of two for all these years. Also, the movement of Zipf’s
law coefficient is negligible which indicates little change in the process of formation
of urban agglomerations over the course of three decades.

8.2.2 Empirical Validation of Gibrat’s Law for India

Next pertinent empirical issue is the validity of Gibrat’s law in this context. We
examine whether the relation between mean and variance of growth rate of urban
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Fig. 8.3 Evolution of Zipf’s
law coefficient for India
during 1981–2011

agglomerations depend on size. We consider the population growth rate of all avail-
able urban agglomerations for the period of 1991–2001 and 2001–2011. The size
for these urban agglomerations are their populations in the initial year of the con-
sidered period, say 1991 and 2001. A non-parametric way to summarize the popula-
tion growth rates is through the Kernel estimates of local mean, which we elaborate
hereby. Suppose, the growth rate of a city, gi , bears some relation with the size of
the city, Si , modeled as:

gi =m(Si)+ εi,

for all i = 1,2, . . . , n, n being the total number of urban agglomerations with avail-
able data. gi is the growth rate of the ith urban agglomeration in a time period and
Si is its size in the initial year of the period considered.

The objective is to find a smooth estimate of local mean of growth rate over
size, say m(S). The Kernel estimate often give rise to inaccuracies in the boundary
region. We choose a particular interval, say [1.2 ·miniSi,0.8 ·maxiSi] to exclude
the effect of the boundaries. We perform a kernel density regression in the support
of Si . The local average smooths around a point s, and the smoothing is done using a
kernel, which is a continuous weight function symmetric around s. We use a popular
kernel, namely Epanechnikov, for which: K(x)= 3

4 (1−ψ2) · 1|ψ |≤1. The function,
m(·), does depend on the size the bandwidth h of a kernel determines the scale of
smoothing. The Nadaraya-Watson estimate [24] of m(·) is given by the following
expression,

m̂(s)= n−1 ∑n
i=1 Kh(s − Si)gi

n−1
∑n

i=1 Kh(s − Si)
.

The means and variances of the growth rate of the urban agglomerations are
illustrated in Fig. 8.4. A visual inspection verifies the veracity of Gibrat’s law. There
is no significant trend—either in the mean or in the variance—over size for both time
periods. Thereby, it verifies that since Gibrat’s law is satisfied in this case, Zipf’s law
should hold true, dynamically.
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Fig. 8.4 The growth rates of Indian urban agglomerations have been plotted against their sizes.
The scatter plot, mean growth rate (calculated through Nadaraya-Watson estimate) and the variance
of growth rates have been plotted against size of urban agglomerations. Panels (a), (c) and (e)
illustrates plots for 1991–2001; whereas panels (b), (d), and (f) are for 2001–2011
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8.3 Discussion

India and China are two countries in Asia with a lot of similarities. These are tradi-
tionally less urbanized nations and the impetus for urbanization is fairly recent for
both India and China. For India, the urban population augmented from 23.34 % in
1981 to 31.16 % in 2011. Urbanization has taken place in China since the 1980s in
an even more rapid scale. The urbanization rate increases [25] from 23.01 % in 1984
to 43.90 % by the end of 2006. Definitely, this immense growth opens up a plethora
of questions about the morphology in general. For example, cities in special eco-
nomic zones may have prospered due to favorable government policies unlike their
counterparts in non-industrialized zones. First, in this context we demonstrated [23]
that Zipf’s law can be equally valid for these countries like urbanized western na-
tions. The subsequent question is about dynamic authenticity of this empirical phe-
nomenon. The Indian experience has already been narrated in Sect. 8.2. We sum
up our empirical findings: Power law coefficient stays near the theoretically predic-
tion over time, 1981–2011, and Gibrat’s law is also satisfied. We draw heavily from
our past study [20] regarding the empirical facts on China. The power law coef-
ficient grew between 1990 and 2000. The underlying reason has been detected to
a violation in Gibrat’s law in case of China. We reproduce the graphs in Fig. 8.5,
in which mean and variance of growth rates of the Chinese urban agglomerations
during 1990–2000 have been plotted against their sizes. The plots indicate that the
large cities grew rather less in China compared to medium and small sized urban
agglomerations.

Why this anomaly between India and China? Is the cause rooted in the policies
for formation of Special Economic Zones (SEZs) as surmised before [20]? Obvi-
ously, the growth rate of urban agglomerations is pegged for China at the upper end.
The following model of job creation and migration to the newly created SEZs could
match the empirical reality in a simulation experiment. The government introduce
the feature of Special Economic Zones by giving special privileges to some urban
agglomerations. The privileged urban agglomerations are chosen in such a way that
they are not from the most populous cities. The other elements of that mathematical
model are as follows. The probability of an additional job being created at a location
is proportional to the number of already existing jobs at that location. There is a scale
parameter, which for certain ranges favors growth of big cities and for other ranges,
favors the growth of small cities. A number of new jobs are created in the locations
of the SEZs. These new jobs require higher skill levels compared to the previously
existing jobs. A worker matched with these jobs leave their old locations of work
and move to the new location. Also higher skilled workers are primarily from the
top ranking cities. Under these circumstances, a simulation study [20] demonstrated
the augment of power law exponent on account of creation of SEZs. A verification
of the role of SEZ could be experimented with India adopting favorable policies in
creating SEZs in India. The Special Economic Zone Act was passed by the Govern-
ment of India in 2005. Subsequent formation of SEZs [26, 27] could have induced
some bias against the growth of urban agglomerations in the upper end. Neverthe-
less, we fail to notice any significant difference between mean growth rate of urban
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Fig. 8.5 The mean and variance of growth rates of Chinese urban agglomerations have been plot-
ted against their sizes for 1990–2000

agglomerations across different sizes in panels (a) and (b) of Fig. 8.4. Therefore,
the hypothesis stating the role of SEZs is ineffectual in reconciling this issue, when
Indian evidence is considered alongwith.

We propose another avenue to resolve this anomaly. It might depend on the gov-
ernment policies on the growth of cities as it is in the case of China. It has been
observed [25] that the Chinese governmental policies favored restriction of popu-
lous cities to a specific size and expansion of non-populous cities since 1980s. On
a more elaborate note, the Chinese government started the urban planning policy in
1980. This policy and its successor the Urban Planning Law enacted in 1990 metic-
ulously controls the size of large cities and appropriately develops medium-sized
and small cities. This policy introduces a bias against the growth of large cities and
could very well be responsible for non-observance of Gibrat’s law. However, that
is hardly the case for India. The expansion of rather small cities and restriction of
populous cities are not at all promoted in a democratic society like India compared
to the policies pursued in a monolithic society like China. Therefore, the distinction
may lie in the political system rooted in these two countries.

References

1. Zipf GK (1949) Human behaviour and the principle of least effort. Addison-Wesley, Cam-
bridge

2. Zipf GK (1935) The psychobiology of language. Houghton-Mifflin, Boston
3. Sasaki Y et al (2006) J Phys Soc Jpn 75:074804
4. Huberman BA et al (1998) Science 280:95
5. Yakovenko VM, Rosser JB Jr (2009) Rev Mod Phys 81:1703
6. Chatterjee A, Chakrabarti BK (2007) Eur Phys J B 60:135
7. Baldwin RB (1964) Astron J 69:377
8. Malamud BD et al (1998) Science 281:1840
9. Boffetra G et al (1999) Phys Rev Lett 83:4662

10. Malacarne LC, Mendes RS (2000) Physica A 286:391



8 Evolution of Zipf’s Law 129

11. Blasuis B, Tonjes R (2009) Phys Rev Lett 103:218701
12. Zanette D, Manrubia SC (1997) Phys Rev Lett 79:523
13. Moura NJ Jr, Ribeiro MB (2006) Physica A 367:441
14. Gabaix X, Ioannides Y (2004) Handbook of regional and urban economics 4. Enderson V,

Thisseb J-F (eds) North-Holland, Amsterdam, p 2341
15. Krugman P (1996) The self organising economy. Blackbell Publishers, Oxford, UK and Cam-

bridge
16. Gabaix X (1999) Q J Econ 114:739
17. Soo KT (2005) Reg Sci Urban Econ 35(3):239
18. Kuninaka H, Matsushita M (2008) J Phys Soc Jpn 77:114801
19. Eeckhout J (2004) Am Econ Rev 94(5):1429
20. Gangopadhyay K, Basu B (2010) Econophysics and economics of games, social choices and

quantitative techniques. ISBN: 978-88-470-1500-5, p 90
21. http://www.censusindia.gov.in
22. Clauset A, Shalizi CR, Newman MJ (2009) SIAM Rev 51:661
23. Gangopadhyay K, Basu B (2009) Physica A 388:2682
24. Pagan A, Ullah A (1999) Nonparametric econometrics. Cambridge University Press, Cam-

bridge
25. Chen Z, Fu S, Zhang D (2010) Searching for the parallel growth of cities. SSRN Working

Paper
26. Nema P, Pokhariyal P (October 5, 2008) SEZs as growth engines – India vs China. SSRN

Working Paper
27. Sen A (Nov 2006) Will India recreate China’s SEZ magic? The Economic Times

http://www.censusindia.gov.in


Part II
Model-Based Studies



Chapter 9
Reaction to Extreme Events in a Minimal Agent
Based Model

Andrea Zaccaria, Matthieu Cristelli, and Luciano Pietronero

Abstract We consider the issue of the overreaction of financial markets to a sudden
price change. In particular, we focus on the price and the population dynamics which
follows a large fluctuation. In order to investigate these aspects from different per-
spectives we discuss the known results for empirical data, the Lux-Marchesi model
and a minimal agent based model which we have recently proposed. We show that,
in this framework, the presence of a overreaction is deeply linked to the population
dynamics. In particular, the presence of a destabilizing strategy in the market is a
necessary condition to have an overshoot with respect to the exogenously induced
price fluctuation. Finally, we analyze how the memory of the agents can quantita-
tively affect this behavior.

9.1 Introduction

The interest of the physics community in the study of financial markets has been
mainly focused on two aspects: the analysis of the large amount of the recently
available data [4–6, 13, 14, 17] and a number of different proposals for the mod-
elization of the dynamics. Concerning this last aspect, the most used way to describe
financial markets is represented by Agent Based Models (ABM) [5, 7–10, 16]. This
approach is probably the closest to physicists’ tastes, being grounded on the non
trivial connection between traders’ strategies and price dynamics. However, a num-
ber of ABMs, even starting from very different hypothesis, are able to reproduce the
main statistical evidences of real markets. This is mainly due to the lack of strict
empirical results, which led to a severe difficulty to discriminate between the dif-
ferent models and, in turn, to perform the standard falsification procedure which is
so important from a physicist’s point of view. As a consequence, we believe that a
big effort must be made in order to investigate i) the main ingredients an ABM must
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contain to reproduce the empirical evidence (for an attempt in this direction, see
[1–3]) ii) the existence of more statistical regularities in financial data and iii) the
non trivial connections between ABMs’ and price dynamics. The present paper is
focused on this last issue and, in particular, on a peculiar behavior which has been
detected after an extreme price fluctuation: the overreaction with respect to large
price movements. At present we do not know if agents update their strategies after a
shock and which direction takes their short-term reaction: this kind of study might
be performed, for example, using the data analyzed in [18] and [19]. In the present
paper, after a brief review of some known result about this issue, we study the reac-
tion to large price movements in the framework of a minimal ABM which permits a
detailed investigation of agents’ reactions in terms of their strategy update. We find
that a large fraction of the agents must use a trend-following, i.e. chartist strategy in
order to reproduce a realistic price dynamics.

This article is organized as follows. Section 9.2 summarizes some of the results
obtained by Zawadowski et al. with respect to the empirical price dynamics after
a shock [20] and in the context of a specific ABM [21]. Section 9.3 studies with
some details the price and the population dynamics in similar conditions. Section 9.4
concludes.

9.2 Known Results

9.2.1 Overshoots in Real Financial Markets

Zawadowski et al. [20] have analyzed the behavior of real financial markets after
a big intra-day price jump. In particular, they have studied two TAQ (Trades and
Quotes) datasets from NYSE and NASDAQ. In order to select the events in a pre-
cise way, they performed a detailed filtering procedure. They found a significant
reversion tendency after both large increases and decreases: within a time of about
60 minutes after the initial price change, the market tends, on average, to overreact
after the jump, to rebound and finally to retrieve a new stable value of the price.
Moreover, they have found an evidence for a linear relation between the size of the
triggering fluctuation and the size of the reversal and a sharp increase in volatility,
volume and bid-ask spread in correspondence with the event. This empirical evi-
dence has been recently confirmed by Preis et al. [15].

9.2.2 Lux-Marchesi Model

In [21] the authors have analyzed the reaction to an extreme price movement in
the framework of the Lux-Marchesi [11, 12] model. Here we briefly summarize the
main assumptions of Lux and Marchesi. By the way, some of them will turn to be
useful when we will describe the minimal ABM which we are going to study in the
next section. The main feature of this model is its high degree of realism: agents’



9 Reaction to Extreme Events in a Minimal Agent Based Model 135

strategies, impact on the price and population dynamics are represented in detail
and give rise to a reasonable price statistics. Three classes of agents are present. The
fundamentalists represent a stabilizing tendency, because their market operations
are driven by their perception about the price they believe to be fair for the stock.
This value is called fundamental price pf . As a consequence, they buy if the price is
lower than pf and they sell if it is higher. Instead, the chartist use past price move-
ments as a reference. They are divided in two categories: optimists, who always buy,
and pessimists, who always sell. The population dynamics takes into account many
parameters and a detailed discussion about this issue would go beyond the aims of
the present paper; however, we point out that, on average, a change of class occurs
if the agent finds a strategy which is more profitable than the one she is actually
adopting.

Zawadowski et al. [21] have compared the response to an endogenous (that is,
triggered by the market itself) fluctuation with the response due to an exogenous
event.

In the first case, they have studied the events as a function of the distance Δp =
p − pf between the actual price and the fundamental one. They have found an
exponential decay of Δp as a function of time, whose characteristic time depends
on the initial price variation and, being the attractive force due to the presence of
fundamentalists, on the fraction of chartists in the market.

In order to reproduce the effect of the sudden arrival of an exogenous news the
authors changed the fundamental price pf → pf +Δp and recorded the average
response finding, as expected, that p quickly follows the movement of the funda-
mental price and then, more interestingly, an overshoot occurs, after which the price
reaches pf .

The authors suggest that the cause of the overshoot is linked to the population
dynamics: the movements inside the chartists community (that is, the flows between
optimists and pessimists) are much faster than the ones between chartists and funda-
mentalists. Since the transition rates between chartists depend on the time derivative
of the price, the upward trend makes most of the chartists optimist (and vice versa,
pessimist in the case of price drops) who act following the trend without considering
the fundamental price and ultimately causing the overshoot.

We point out, however, that this explanation is, out of necessity, qualitative, be-
cause of the presence of a lot of parameters and the high complexity which char-
acterizes the dynamics which underlies the transition rates from one class to the
other. These two factors prevent a detailed analysis about the mechanisms which
ultimately are causing the overshoot and a study of the reaction as a function of
the different parameters which are involved in the dynamics. As a consequence this
explanation, even if reasonable and shareable, can be hardly tested.

9.3 Overshoots in a Minimal Agent Based Model

As we have seen in the previous sections, the empirically founded presence of
overshoots following large price fluctuations calls for an interpretation in terms of
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agents’ strategies. A first attempt has been made by Zawadowski et al. [21], who
analyzed this interesting aspect in the framework of the Lux-Marchesi model. In
this section we study this problem in the framework of the minimal ABM recently
introduced in [1–3]. As we will see, the low number of parameters and the simplic-
ity which characterizes the population dynamics permits a detailed investigation of
the phenomenon.

Now we briefly summarize the main features of the model.
The N agents are divided in two classes: Nf fundamentalists and Nc =N −Nf

chartists. Differently from the Lux-Marchesi model, there is no further division
among the chartist class; however, chartists still represent the destabilizing ten-
dency of the market by having, as a reference for the price, the moving average
pM(t) ≡ 1

M

∑M−1
i=0 p(t − i) and being trend-followers. They will buy if the actual

price is higher than pM(t) and sell otherwise. This results in the following equation
for the price evolution:

p(t + 1)= p(t)+ Nc

N

b

M − 1

(
p(t)− pM(t)

)+ Nf

N
γ
(
pf − p(t)

)+ σξ(t) (9.1)

where b and γ quantify the strength of the chartists’ and fundamentalists’ impacts
on the price, respectively, and the factor 1/(M − 1) makes the volume of chartists’
trades independent on the time window M . The white noise σξ(t) has σ = 1. The
transition rates between the two classes are composed by an herding factor and a
term which accounts for the signal readable from the price dynamics. In formulas,
the probability a chartist has to become a fundamentalist reads

Pcf ∝
(
K + Nf

N

)
exp

(
γ |pf − p|) (9.2)

and the rate from fundamentalists to chartists is

Pfc ∝
(
K + Nc

N

)
exp

(
b
|pM − p|
M − 1

)
. (9.3)

Let us now consider the response to an extreme price movement in the framework
of this minimal model.

As a first step we varied only the fundamental price pf . In this case no over-
shoot is present, because the sudden variation of p − pf gives a strong signal to
fundamentalists, who rapidly become the majority and bring the price back to its
fundamental value.

Then we varied only the price. A typical example of the result of our simulations
is depicted in Fig. 9.1. We have plotted the price (black line) and the number of
chartists (red line) as a function of time. Here the shock is represented by a sudden
crash (or rise) of the price, that is, p→ p ± δp (with δp = 200), keeping the fun-
damental price constant. In this case only in the first two shocks have an overshoot
(that is, the realized price movement is larger than δp). Looking at the population
dynamics one can notice that this is due to the fact that chartists were already ac-
tive in the market. However the distance between the price and the fundamental
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Fig. 9.1 Model reaction to
three sudden price changes
p→ p± 200, keeping pf

fixed. The overshoot is
present in the first two cases,
in which chartists were active
before the extreme event. In
the last case the
fundamentalists quickly bring
the price to its fundamental
value, without any overshoot.
(Color figure online)

Fig. 9.2 Model reaction to
five sudden changes
p→ p± 200 and
pf → pf ± 200. The
overshoot is always present,
being the market signal due to
the extreme price movement
stronger for chartist. (Color
figure online)

one quickly makes all the chartists fundamentalists and the price is quickly brought
back to a value close to pf . The third shock occurs when most of the agents were
fundamentalists: in this case there is no overshoot.

Finally, we vary both p and pf by adding or subtracting δp = 200, with results
plotted in Fig. 9.2. The price (black line) quickly adjusts around the new value of
pf always exhibiting an aftershock due to the trend followers (red line). In fact, the
signal which fundamentalists perceive, p − pf , is small compared to the chartists’
one due to the trend and so, in this case, there are always bursts of chartism and,
consequently, overshoots.

In conclusion, the overshoots are always caused by the trend following strategy
of the chartists, whose presence in the market is a necessary condition to observe
this phenomenon.

As a further step, we take into account how a variation of the parameters acts on
the overshoot dynamics. Is it clear from (9.1) that only three variables are involved:
b, γ and M . While the first two are deeply linked and must be somehow balanced
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Fig. 9.3 The average
overshoot for different values
of the agents’ memory M

in order to give a realistic population dynamics, M can be freely varied in order to
study how the presence of different time scales affects the output [1–3]. To analyze
the overshoot from a quantitative point of view we define ts as the time at which the
market is perturbed by the signal and tm as the time at which the maximum price
variation is reached with respect to the next equilibrium price. In the following we
will consider Δt = tm − ts , the time interval between the signal and the start of the
price reversal, and Δp = |p(tm)− p(ts)|, the size of the overshoot, defined as the
maximum distance the price has reached. We find that these quantities may fluctuate
from one realization to the other; thus we average them over a sufficient number of
simulations, keeping the exogenous fluctuation fixed and equal to δp = −200 (the
case δp = +200 shows identical results). The averaged price evolution is plotted
in Fig. 9.3, with the time rescaled by a factor 5. One can see a strong dependence
on the value of M : if the agents have a short memory, they produce a quicker and
stronger overshoot. In Fig. 9.4 we show how Δp and Δt vary with M . In the second
case one may notice a clear linear dependence.

9.4 Conclusions and Perspectives

We have analyzed the response to a large price fluctuation in the framework of a
minimal agent based model. We believe this issue to be of great importance, being
linked to the psychological dynamics of the traders. We have found a realistic behav-
ior in terms of the price movements: agents act in such a way to cause an overshoot.
In terms of agents’ strategies, the presence of fundamentalists in the market cause a
quick rearrangement of the price to the fair value; as a consequence, the overshoot
can be reproduce only if chartists were already active when the exogenous signal
arrived. Finally, we have analyzed the dependence of the size and the characteristic
time of the overshoot as a function of the main strategic parameter of the model, the
length of agents’ memory M .

As a further analysis, we would like to compare events of different sizes and
having different sources of fluctuations. In particular, we would like to compare the
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Fig. 9.4 The size of the average overshoot (left) and reversal time (right) as functions of M .
Agents with a longer memory produce smaller overshoots, but reach their maximum distance later

reactions to an endogenous versus an exogenous fluctuation. We believe that the em-
pirically established differences between these reactions can be taken into account
if one consider a simple mechanism of coherence in agents’ strategies. These issue
will be considered in future works.
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Chapter 10
Predatory Trading and Risk Minimisation:
How to (B)Eat the Competition

Anita Mehta

Abstract We present a model of predatory traders interacting with each other in the
presence of a central reserve (which dissipates their wealth through say, taxation),
as well as inflation. This model is examined on a network for the purposes of corre-
lating complexity of interactions with systemic risk. We suggest the use of selective
networking to enhance the survival rates of arbitrarily chosen traders. Our conclu-
sions show that networking with ‘doomed’ traders is the most risk-free scenario,
and that if a trader is to network with peers, it is far better to do so with those who
have less intrinsic wealth than himself to ensure individual, and perhaps systemic
stability.

10.1 Introduction

The topic of predatory trading and its links with systemic risk is of great contem-
porary interest: at the time of writing this paper, these links have been mentioned
repeatedly in the World Economic Forum at Davos, in addition to having formed the
backbone of the ‘Occupy’ movements worldwide. Immense public anger has been
expressed against corporate greed (with predatory trading forming a major way that
this is manifested), and many intellectuals worldwide attribute this to the collapse of
the world economic system. In this paper, we examine these ideas in a more techni-
cal way to see if rigorous mathematical links can be established between these two
concepts.

In order to put our mathematical models in the context of current interdisciplinary
literature, we quote the conclusions of two key papers. First we define predatory
trading along the lines of a recent paper [1], as that which induces and/or exploits
other investors’ need to ‘reduce’ their positions. If one trader needs to sell, others
also sell and subsequently buy back the asset, which leads to price overshooting and
a reduced liquidation value for the distressed trader. In this way, a trader profits from
triggering another trader’s crisis; according to the authors of [1], the crisis can spill
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over ‘across traders and across markets’. To model this scenario, we invoke a model
of predatory traders in the presence of a central reserve [2], which is principally a
source of wealth dissipation in the form of taxation. We assume that this dissipation
acts uniformly across the traders’ wealth, irrespective of their actual magnitudes.
Among our findings [2] is the fact that when all traders are interconnected and inter-
acting, the entire system collapses, with one or zero survivors. This finds resonance
with the ideas of another key paper [3], where analogies with model ecosystems
have led the authors to conclude that propagating complexity (via the increase of
the number and strength of interactions between different units) can jeopardise sys-
temic stability.

The original model [4] on which [2] is based, was introduced as a model of
complexity. It embodies predator-prey interactions, but goes beyond the best-known
predator-prey model due to Lotka and Volterra by embedding interacting traders in
an active medium; this is a case where the Lotka-Volterra model cannot be sim-
ply applied. As mentioned above, a central reserve bank represents such an active
medium in the case of interacting traders, whose global role is to reduce the value of
held wealth as a function of time [2]. This forms a more realistic social backdrop to
the phenomenon of predatory trading, and it is this model that we study in this pa-
per. In order to relate it to the phenomenon of systemic risk, we embed the model on
complex networks [5, 6]; these represent a compromise between the unrealistic ex-
tremes of mean field, where all traders interact with all others (too global) and lattice
models, where interaction is confined to local neighbourhoods (too local). Many real
world networks, in spite of their inherent differences, have been found to have the
topology of complex networks [7–9]; and the embedding of our model on such net-
works [10] allows us to probe the relevance of predatory trading to systemic stability.

The plan of the paper is as follows. First, in Sect. 10.2, we introduce the model
of interacting traders of varying wealth in the presence of a central reserve, and
show that typically only the wealthiest survive. Next, in Sect. 10.3, we probe the ef-
fect of networks: starting with an existing lattice of interacting traders with nearest-
neighbour interactions, we add non-local links between them with probability p [5].
Survivor ratios are then measured as a function of this ‘wiring probability’ p, as
p is increased to reflect the topologies of small world and fully random networks
(p = 1). In Sect. 10.4, we ask the following question: can the destiny of a selected
trader be changed by suitable networking? We probe this systematically by network-
ing a given trader non-locally with others of less, equal and greater wealth and find
indeed that a trader who would die in his original neighbourhood, is able to change
his fate, becoming a survivor via such selective non-local networking. In Sect. 10.5,
we provide a useful statistical measure of survival, the pairwise probability for a
trader to survive against wealthier neighbours, i.e. to win against the odds. Finally,
we discuss the implications of these results to systemic stability in Sect. 10.6.

10.2 Model

The present model was first used in the context of cosmology to describe the accre-
tion of black holes in the presence of a radiation field [11]. Its applications, however,
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are considerably more general; used in the context of economics [2], it manifests an
interesting rich-get-richer behaviour. Here, we review some of its principal proper-
ties [4].

Consider an array of traders with time-dependent wealth mi(t) located at the
sites of a regular lattice. The time evolution of wealth of the traders is given by the
coupled deterministic first order equations,

dmi

dt
=

(
α

t
− 1

t1/2

∑

j �=i

gij
dmj

dt

)
mi − 1

mi

. (10.1)

Here, the parameter α is called the wealth accretion parameter (modelling in-
vestments, savings etc) and gij defines the strength of the interaction between the
traders mi and mj . The first parenthesis in the R.H.S of (10.1) represents the wealth
gain of the ith trader, which has two components: his wealth gain due to invest-
ments/savings (proportional to α) modulated by dissipation (at the rate of 1/t) due
to e.g. taxation, and his wealth gain due to predatory trading (the second term of
(10.1)), also modulated by dissipation (at the rate of 1/t1/2) in the same way. Notice
in the second term, that the loss of the other traders corresponds to the gain of the ith
trader, so that each trader ‘feeds off’ the others, thus justifying the name ‘predatory
trading’. The last term,−1/mi , represents the loss of the ith trader’s wealth through
inflation to the surroundings; we will see that this term ensures that those without
a threshold level of wealth ‘perish’, as in the case of those individuals in society
who live below the poverty line. Here and in the following we will use words such
as ‘dying’ or ‘perishing’ to connote the bankruptcy/impoverishment, of a trader and
conversely, ‘life’ will be associated with financial survival, i.e. solvency.

A logarithmic time is introduced in the study for convenience. We define a scaled
time s = ln(t/t0), where t0 is some initial time. Similarly, for convenience, we
rescale wealth to be Xi =mi/t

1/2. Using the new variables, (10.1) can be rewritten
as,

dXi

ds
≡X′i =

(
2α − 1

2
−

∑

j �=i

gij

(
Xj

2
+X′j

))
Xi − 1

Xi

, (10.2)

where the primes denote differentiation performed with respect to s.
Continuing our recapitulation of the results of the model [4], we consider a sce-

nario where there is a single isolated trader, whose initial (‘inherited’) wealth is X0.
Under the dynamics defined by (10.2), the trader will survive financially only if

X0 > X�(=
√

2
2α−1 ) (this imposes the condition α > 1/2 [4]), else he will even-

tually go bankrupt (see Fig. 10.1). Next, consider a system of two traders with
equal initial wealth; here, there exists a critical coupling gc such that for g < gc the
two traders both survive, provided that their individual inherited wealth is greater
than X�. For two unequally wealthy traders (X1 <X2, say), the poorer trader goes
bankrupt first at time s1; the richer one either survives (if his wealth at time s1,
X2(s1), exceeds the threshold X�) or goes bankrupt (if X2(s1) < X�). The main
inferences are twofold: the wealthier predatory trader ‘consumes’ the poorer one’s



144 A. Mehta

Fig. 10.1 The plots show the
evolution of individual
non-interacting traders with a
range of initial wealth
obeying (10.2). Traders with
initial wealth X0 greater than
X� live forever, or else they
die in time. Here α = 1.0,

therefore X� =
√

2
2α−1 =

√
2

(Color figure online)

wealth in due course, and then survives or not depending on whether his own wealth
at that point is enough to tide him through its eventual dissipation through taxes
and inflation. We thus see that this relatively simple model captures not just the
mechanism of predatory trading, but also includes the flavour of more sophisticated
concepts like inherited wealth, taxation and inflation.

Consider the limit of an infinitely large number of traders all connected to each
other; this represents a limiting mean field regime, with fully collective behaviour
involving long-range interactions. For g > gc, all but the wealthiest will eventually
go bankrupt. In the weak coupling regime (g < gc) on the other hand, the dynamics
consist of two successive stages [4]. In Stage I, the traders behave as if they were
isolated from each other (but still in the presence of the reserve); they get richer (or
go bankrupt ) quickly if their individual wealth is greater (or less) than the threshold
X�. In Stage II, slow, collective and predatory dynamics leads to a scenario where
again, only the single wealthiest trader survives. This weakly interacting mean field
regime shows the presence of two well-separated time scales, a characteristic fea-
ture of glassy systems [12]. The separation into two stages embodies an interest-
ing physical/sociological scenario: the first stage is fast, and each trader survives
or ‘dies’ only on the basis of his inherited wealth, so that everyone without this
threshold wealth is already eliminated before the second stage sets in. Competition
and predatoriness enter only in the second stage, when the wealthier feast off their
poorer competitors progressively, until there is only overlord left. This is a perfect
embodiment of systemic risk, as the entire system collapses, with only one survivor
remaining [2].

Similar glassy dynamics also arise when the model is solved on a periodic lattice
with only nearest-neighbour interactions. The dynamical equations in (10.2) take
the form:

X′n =
(

2α − 1

2
+ g

∑

m

(
1

Xm
− αXm

))
Xn − 1

Xn
, (10.3)

by keeping the terms upto first order in g [4]. Here, m runs over the z nearest neigh-
bours of the site n, where for a one-dimensional ring topology, z= d , while z= 2d
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Fig. 10.2 The survival ratio
S(s) plotted as a function of
reduced time s, for traders
distributed in a regular
one-dimensional lattice of
size 100,000. In Stage I,
traders grow independently,
while in Stage II the growth
is collective. Here, S1 = 0.8
is the survival ratio at the end
of Stage I and S∞ is the
asymptotic survival ratio

for a two-dimensional lattice—these are the two cases we consider here. We sum-
marise earlier results [4] on the dynamics: In Stage I, traders evolve independently
and (as before) only those whose initial wealth Xi(s = 0) exceeds the threshold X�,
survive. In Stage II, the dynamics are slow and collective, with competition and
predatoriness setting in: however, an important difference with the earlier fully con-
nected case is that there can be several survivors, provided that these are isolated
from each other by defunct or bankrupt traders (i.e. no competitors remain within
their effective domain). Their number asymptotes to a constant S∞ (Fig. 10.2), and
these ‘isolated overlords’ survive forever. The moral of the story is therefore that in
the presence of predatory dynamics, interaction-limiting ‘firewalls’ can help avoid
systemic collapse: conversely, full globalisation with predatory dynamics makes
systemic collapse inevitable. Apart from providing quantitative support for the con-
clusions of [3], this underscores the necessity of economic firewalls for the preven-
tion of systemic risk [13].

Following the mean field scenario, where the wealthiest trader is the only sur-
vivor, it is natural to ask if this would also hold when the range of interactions is
limited. Somewhat surprisingly, this turns out not always to be the case, with non-
trivial and counter-intuitive survivor patterns being found often [10]. While one can
certainly rule out the survival of a trader whose initial wealth is less than threshold
(X�), many-body interactions can then give rise to extremely complex dynamics in
Stage II for traders with X > X�. This points to the existence of ways of winning
against the odds to (b)eat the competition, when interactions are limited in range; in
the remainder of this paper, we use selective networking as a strategy to achieve this
aim.

10.3 Traders in Complex Networks

In this section, we examine the mechanisms of selective networking: a particularly
interesting example to consider is the class of small-world networks. These have the
property that long- and short-range interactions can coexist; such networks also con-
tain ‘hubs’, where certain sites are preferentially endowed with many connections.
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Small-world networks can be constructed by starting with regular lattices, adding
links randomly with probability p to their sites [5] and then freezing them, so that
the average degree of the sites is increased for all p > 0.

10.3.1 One-Dimensional Ring and Two-Dimensional Square
Lattices

Consider a regular one-dimensional ring lattice of size N = 2000. To start with, the
wealth of the traders located on the lattice sites evolve according to (10.3), where
the interactions are with nearest neighbours only. Next, the lattice is modified by
adding new links between sites chosen randomly with an associated probability p.
For p = 0, the network is ordered, while for p = 1, the network becomes completely
random.

In the first scheme [10], we add links probabilistically starting with site i = 1
and end with i =N , only once: we call this the 1-cycle scheme. The survival ratios
of traders as a function of reduced time s for different values of wiring probability
p are presented in Fig. 10.3(a). Consider the p = 0 case, which corresponds to a
regular lattice; here the survival ratio S(s) shows two stages, Stage I and Stage II,
in its evolution. For all values of 0 < p ≤ 1, the existence of these well-separated
Stages I and II is also observed. There is a noticeable fall in the survivor ratio as p

is increased, though; this is clearly visible in the asymptotic values S∞(p) plotted
with respect to p in the inset of Fig. 10.3(a). As p increases, the number of links in-
creases, leading to more interaction and competition between the traders, and hence
a decrease in the number of survivors [3]. As expected, this behaviour interpolates
between the two characteristic behaviours relevant to the regular lattice and mean
field scenarios.

Next we implement the 5-cycle scheme [10], where the rewiring is done five
times. Figure 10.3(b) shows the survivor ratio S(s) as a function of s, with a clear
decrease of S(s) for increasing p. The asymptotic survival ratios S∞ for the 1- and
5-cycle schemes are shown in the insets of Fig. 10.3(a) and (b) respectively, with
a clear decrease of S∞ as p increases. In addition, the survivor ratio in the 5-cycle
scheme is consistently smaller than in the 1-cycle scheme, for all p.

The above procedures are repeated for a two-dimensional square lattice of size
50× 50 [10], and survival ratios obtained as a function of s for the 1- and 5-cycle
schemes (see Figs. 10.3(c)–(d)). The asymptotic survivor ratios for these two cases
are shown in the insets of Figs. 10.3(c)–(d); they follow a decreasing trend with
increasing p, similar to the 1d case. Finally, we plot the asymptotic survival ratios
of the 1- and 5-cycle schemes in 1d and 2d , in Fig. 10.4.

All the above simulations reinforce one of the central themes of this paper, that
economic firewalls are good ways to avoid systemic collapse in a predatory scenario,
since the more globalised the interactions, the greater the systemic risk [3].
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Fig. 10.3 The plots of S(s) as a function of reduced time s, for increasing values of wiring
probabilities p. The 1-cycle scheme is shown in (a) for a 1-dimensional ring and (c) for a
2-dimensional square lattice. The 5-cycle scheme is shown in (b) for a 1-dimensional ring and
(d) for a 2-dimensional square lattice. The insets in all the figures show the asymptotic survival
ratios S∞ as a function of the probability p. Here, the system size for the 1-d ring is 2000 and for
the 2-d square lattice it is 50×50—all our data is averaged over 10 random network configurations
(Color figure online)

Fig. 10.4 The plot of
asymptotic survival ratios
S∞(s) as a function of the
probabilities p for 1- and
5-cycle schemes in 1 and 2
dimensions. The error bars
for all the graphs do not
exceed 0.003 and are smaller
than the plot symbols

10.4 Networking Strategies: The Lazarus Effect

Since the central feature of this model is the survival of traders against the competi-
tion, it is of great interest to find a smart networking strategy which can change the
fate of a trader, for example, by reviving a ‘dying’ trader to life—we call this the
Lazarus [14] effect.
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Fig. 10.5 (a) The central trader here is a survivor in his original configuration. (b) The asymptotic
wealth of the central trader diverges with increasing connectivity to eventual non-survivors (Color
figure online)

We systematically investigate the effect of adding a finite number of non-local
connections to a chosen central trader. In [10], it was shown that the growth or
decay of the wealth of a trader is solely dictated by its relative rate of change versus
the cumulative rate of change of its neighbours’ wealth. The key to better survival
should therefore lie in choosing to network with traders whose wealth is decaying
strongly. We accordingly divide all possible non-local connections into two classes:
class A comprises eventual non-survivors (X <X�), while class B comprises would-
be survivors (X >X�). In the next subsection, we look at the outcome of networking
with members of class A.

10.4.1 Non-local Connections with Eventual Non-survivors
(Xi < X�)

Recall that non-survivors (X <X�) die very early during Stage I. In connecting such
traders to a given trader with X >X�, we can be sure that they will never be able to
compete with him, much less run him out of business.

Let us consider a central trader who is an eventual survivor, as shown in Fig. 10.5.
We now let him network with eventual non-survivors from all over the lattice, and
record the growth of his wealth as a function of the number of traders in his network;
the results are shown in Fig. 10.5(b). When all the neighbours go out of business,
their contribution in (10.3) is zero, leading to the exponential solution shown in
Fig. 10.5(b). The wealth of the central trader increases markedly as more and more
small traders are connected to him, making him an even wealthier survivor asymp-
totically.

We now use this observation to return a ‘dying’ trader to life. Figure 10.6 shows
our results: the central trader would eventually have gone bankrupt in his original en-
vironment, but on adding 100 small traders (whose wealth X <X�) to his network,
he comes back to solvency: further additions, e.g. 200 or 364 such traders, evidently
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Fig. 10.6 (a) The central trader goes bankrupt in his original configuration without extra connec-
tions. He becomes a survivor after linking up with more and more non-survivors. (b) A crossover
is seen here as the central trader is returned to (financial) ‘life’, his wealth Xcm increasing with
increasing connections to non-surviving traders (X <X�) (Color figure online)

make him an even wealthier survivor (Fig. 10.6(b)). Thus, networking with eventual
non-survivors is the surest way to invoke the Lazarus effect on a ‘dying’ trader.

10.4.2 Networking with Would-Be Survivors Xi > X�

Choosing to network with traders whose intrinsic wealth is greater than X� could
turn out to be rather delicate. The financial lifespan of such traders will certainly
exceed Stage I: and depending on their individual environments, they could either
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Fig. 10.7 The central trader is networked with would-be survivors (Xi >X�) who are poorer than
himself (Xi <Xcm). (a) The initial configuration, where the central trader has 6 non-local connec-
tions, (b) the asymptotic state with the only survivor being the central trader. (c) With the linkage
of one more non-local trader to the existing configuration (d) the central trader goes bankrupt. In
(b) and (d), the open (dark) circles represent asymptotic non-survivors (survivors)

survive through Stage II with a positive growth rate, or die as a result of a negative
growth rate. Networking with such traders is like playing Russian roulette.

Consider first non-local connections with would-be survivors (Xi >X�) who are
poorer than our chosen trader (Xi <Xcm). Such would-be survivors will live beyond
Stage I, their wealth showing at least initially a positive growth rate (Fig. 10.1).
From a mean field perspective, we would therefore expect to see a decrease in the
chances of survival of the chosen trader as it networks with more and more would-be
survivors.

Figure 10.7 shows a sample scenario, where the central trader is connected non-
locally with would-be survivors who are poorer than himself. In Fig. 10.7(a) the cen-
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Fig. 10.8 The central trader is networked with traders whose Xn > X�. In (a) the growth of Xcm
with an increasing number of connections is plotted—n= 4 corresponds to a regular lattice. There
is a crossover seen when the number of connections increases from n= 10 to n= 11; for larger n
values, the central site goes bankrupt. This observation is supported by the rates of growth of Xcm
and its neighbours Xn (b) when n= 10 and (c) when n= 11 (Color figure online)

tral trader networks with 6 would-be survivors and is able to survive asymptotically
(Fig. 10.7(b)). On the other hand, adding one more would-be survivor (Fig. 10.7(c))
to the existing network of the central trader, causes him to go out of business at long
times (Fig. 10.7(d)). As the central trader is made bankrupt by the arrival of the new
connection, the fates of some of his other links are also changed (cf. Figs. 10.7(b)
and (d)).

To understand the dynamics, we present the rates of growth for another sam-
ple scenario in Fig. 10.8. An increase in the number of non-local connections with
would-be survivors, leads to a fall in the absolute value of Xcm as well as its rate of
growth X′cm. Beyond a certain number of networked contacts, the wealth of the cen-
tral trader begins to decay, and eventually vanishes. This crossover from life to death
happens when the cumulative rate of the wealth growth of the neighbours ΣX′i,j
is larger than that of the central trader X′cm. Unfortunately, however, the intricate
many-body nature of this problem precludes a prediction of when such crossovers
might occur in general.

Finally, in the case where a given trader networks with would-be survivors who
are richer than himself (Xi > X� and Xi > Xcm), one would expect a speedier
‘death’. One such sample scenario is depicted in Fig. 10.9 and the corresponding
rates of evolution of the traders’ wealth in Fig. 10.10. We notice that in his original
configuration with four neighbours (n = 4), the central trader is a survivor. As we
increase the number of networked connections, the growth rate of his wealth gets
stunted; there is a substantial fall for 2 extra links (n = 6 in Fig. 10.10). Adding
one more link (n= 7) does the final damage; the central trader goes bankrupt. The
rates shown in Fig. 10.10(b) and (c) for n= 6 and n= 7 connections vividly capture
the competition for survival, leading to solvency in one case and bankruptcy in the
other.
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Fig. 10.9 The central trader is networked with would-be survivors (Xi > X�) that are wealthier
than himself (Xi > Xcm). (a) The initial configuration with 2 non-local connections, (b) and its
asymptotic state; the only survivor here is the central trader. (c) With the addition of one more
non-local trader to the existing configuration (d) the central trader goes bankrupt. In (b) and (d),
the open (dark) circles represent asymptotic non-survivors (survivors)

As expected, we observe that fewer connections (here, n= 7) are needed, com-
pared to the earlier case with smaller would-be survivors (n= 11), to eliminate the
chosen trader. In closing, we should of course emphasise that the n values mentioned
here are illustrative.

10.5 Survivor Distributions and Rare Events

We have seen that the safest strategy for the Lazarus effect is to network with even-
tual non-survivors, i.e. those who will never get past Stage I. It is also relatively safe
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Fig. 10.10 The central trader of a configuration given in Fig. 10.9(b) is connected with non-local
traders with Xn > Xcm. In (a) the growth of Xcm with an increasing number of connections is
plotted—n = 4 corresponds to a regular lattice. There is a crossover seen when the number of
connections increases from n = 6 to n = 7; for larger n values, the central trader goes bankrupt.
This observation is supported by the rates of growth of the wealth of the central trader, Xcm, and
that of its neighbours Xn, (b) when n= 6 and (c) when n= 7 (Color figure online)

to network with would-be survivors, provided they are poorer than oneself. (This
would explain why multinationals are not afraid to enter an arena where smaller-
size retailers predominate, for example.) However, in this section we consider rare
events, where the wealthiest trader in a given neighbourhood dies marginally, and a
poorer one survives against the odds.

We look first at the four immediate neighbours of a given trader, and consider
their pairwise interactions with him. Clearly, had such a pair been isolated, the larger
trader would have won [4]. However, many-body interactions in the lattice mean that
this is not always true. We therefore ask the question: what is the proportion of cases
where the poorer trader wins?

Each survivor has four neighbours; we first calculate the probability distribution
of the initial wealth differences in a pairwise fashion between a survivor and each
of his neighbours. The initial wealth differences are given by δXi =Xcm −Xi (i =
1,2,3,4) corresponding to the four neighbours—right, left, bottom and top—of a
survivor. The distribution of δXi for all the survivors is shown in Fig. 10.11. Here,
a negative δXi means that the survivor is poorer than his neighbour, and conversely
for positive δXi . All four distributions corresponding to four neighbouring pairs
overlap due to isotropy; the resulting distributions are universal functions of wealth
differences, depending only on μ.

We also obtain the cumulative wealth difference between survivors and all of
their four neighbours viz. 4Xcm−∑4

i=1 Xi =∑4
i=1 δXi (see Fig. 10.12). The distri-

butions of
∑4

i=1 δi are plotted in Fig. 10.12 for different values of μ. For a positive
cumulative wealth difference we know that the survivor is richer than his neigh-
bours, matching our intuition based on the mean-field regime. The negative side of
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Fig. 10.11 The plots show the distribution of pairwise wealth differences between survivors and
their four neighbours. They are obtained for exponential distributions of initial wealth with dif-
ferent mean values 1/μ, where μ = − log(S1)/X�. The plots are for (a) 1/μ = 3.92 (S1 = 0.6)
(b) 5.607 (S1 = 0.7) (c) 8.963 (S1 = 0.8) and (d) 18.982 (S1 = 0.9). The system size is 400× 400

Fig. 10.12 The plots show the distribution of wealth differences between survivors and all of their
four neighbours. They are obtained for exponential distributions of initial wealth with different
mean values 1/μ, where μ=− log(S1)/X�. The plot in ‘red’ represents the case for 1/μ= 3.92
(S1 = 0.6), ‘green’ represents 1/μ= 5.607 (S1 = 0.7), ‘blue’ represents 1/μ= 8.963 (S1 = 0.8),
and ‘pink’ represents 1/μ= 18.982 (S1 = 0.9). The system size is 400× 400 (Color figure online)

the distribution is more interesting, comprising traders who are poorer than their
four neighbours combined, and who have won against the odds.

Notice that both the survivor-neighbour pair distribution (Fig. 10.11), and the
survivor—all neighbours cumulative distribution (Fig. 10.12) get broader with in-
creasing μ. This is because increasing μ=− log(S1)/X� [4] increases the number
of potential survivors S1 beyond Stage 1. In each case, the fraction of area under the
negative side of the survivor pair-distribution gives an estimate of survivors against
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Fig. 10.13 The plots show the probability of finding a poorer survivor, who has won against the
odds. The probability increases with increase in S1 (refer to Figs. 10.11 and 10.12). While the
solid line shows the combined cumulative probabilities (CCP) (from Fig. 10.12), the rest of the
lines represent the individual cumulative probabilities (from Fig. 10.11)

the odds—an example of some of the rare events alluded to at the beginning of this
section.

Figure 10.13 shows this fraction, both in terms of individual survivor-pair dis-
tributions and cumulative distributions, as a function of the μ of the initial wealth
distribution, for different system sizes. There are more survivors, hence more sur-
vivors against the odds, leading to an increase in the fraction plotted on the y-axis
of Fig. 10.13 for both distributions. For the largest system size, there is full isotropy
in the pairwise distributions; the probability of finding a survivor against the odds
is now seen to be a regular and universal function of μ in both pairwise and cumu-
lative cases, relying only on wealth differences rather than on wealth. Finally, the
cumulative distribution gives a more stringent survival criterion than the pairwise
one, as is to be expected from the global nature of the dynamics.

A major conclusion to be drawn from Fig. 10.13 is the following: there are traders
who are eliminated against the odds (traders who are wealthier than the eventual
survivor). These should be easier to revive (as they have failed marginally) by selec-
tive networking than those who have failed because they are indeed worse off. This
question is of real economic relevance, and its mathematical resolution seems to us
to be an important open problem.

10.6 Discussion

We have used the model of [4] to investigate two related issues in this paper on
predatory trading [2]: first, that of systemic risk in the presence of increasing in-
teractions, and next, the use of selective networking to prevent financial collapse.
As long-range connections are introduced with probability 0 < p < 1 to individual



156 A. Mehta

traders [10], we find that the qualitative features of the networked system remain
the same as that of the regular case. The presence of two well-separated dynami-
cal stages is retained, and the glassy dynamics and metastable states of [4] persist.
However, the number of survivors decreases as expected with increasing p, quantita-
tively validating the thesis of [3]; and systemic risk is far greater as the complexity
of interactions is increased. This view finds resonance with the present economic
scenario, where it appears that some measure of insulation via economic firewalls,
is needed to prevent individual, and hence eventually systemic, collapse.

Another central result of this paper is the use of smart networking strategies
to modify the fate of an arbitrary trader. We find that it is safest to network with
eventual non-survivors; their decay and eventual death lead to the transformation of
the destiny of a given site, from bankruptcy to solvency, or from solvency to greater
solvency. Networking with peers, or with those who are born richer, in general leads
to the weakening of one’s own finances, and an almost inevitable bankruptcy, given
a predatory scenario.

However, the above is not immutable: the probability distributions in the last
section of the paper indicate an interesting possibility of survival ‘against the odds’.
It would be interesting to find a predictive way of financial networking that would
enable such a phenomenon to occur both at the individual, and at the societal, level.
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Chapter 11
Statistical Mechanics of Labor Markets

He Chen and Jun-ichi Inoue

Abstract We introduce a probabilistic model of labor markets for university grad-
uates, in particular, in Japan. To make a model of the market efficiently, we take
into account several hypotheses. Namely, each company fixes the (business year in-
dependent) number of opening positions for newcomers. The ability of gathering
newcomers depends on the result of job matching process in past business years.
This fact means that the ability of the company is weaken if the company did not
make their quota or the company gathered applicants too much over the quota. All
university graduates who are looking for their jobs can access the public informa-
tion about the ranking of companies. Assuming the above essential key points, we
construct the local energy function of each company and describe the probability
that an arbitrary company gets students at each business year by a Boltzmann-Gibbs
distribution. We evaluate the relevant physical quantities such as the employment
rate. We find that the system undergoes a sort of ‘phase transition’ from the ‘good
employment phase’ to ‘poor employment phase’ when one controls the degree of
importance for the ranking.

11.1 Introduction

Deterioration of the employment rate is now one of the most serious problems in
Japan and various attempts to overcome these difficulties have been done by central
or local governments. Apparently, labor (work) is important not only for each of us
to earn our daily bread, but also for our state to keep the revenues by collecting the
taxes from labors. Especially, in recent Japan, the employment rate is getting worse
and the government has over-issued quite a lot of government bonds to compensate
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a lack of the tax revenues and the national debt (amount to ∼ 6× 1015 Japanese yen
or more!) is now becoming a serious risk to cause a national-wide bankruptcy.

To make the matter worse, the earthquake and tsunami hit the northeast coast on
11th March 2011, and as the result, Fukushima nuclear power plant was seriously
damaged and people living in that area has taken refuge from the nuclear radiation.
These unpredictable disasters caused by nature and human error have made our
country in financial difficulties that we have never encountered before. Many people
lost their jobs and a lot of companies and plants could not be maintained. Hence, the
reconstruction (improvement) of working condition for the labors and companies is
now not something that can be ignored.

To consider the effective policy and to carry out it for sweeping away the unem-
ployment uncertainty, it seems that we should investigate the labor markets scien-
tifically and if it is possible, one should simulate artificial labor markets in personal
computer to reveal the essential features of the problem. In fact, in macroeconomics
(labor science), there exist a lot of effective attempts to discuss the macroscopic
properties [1–6]. However, apparently, the macroscopic approaches lack of their
microscopic view point, namely, in their arguments, the behavior of microscopic
agents such as job seekers or companies are neglected.

Taking this fact in mind, in this paper, we shall propose a simple probabilistic
model based on the concept of statistical mechanics for stochastic labor markets, in
particular, Japanese labor markets for university (college) graduates.

11.2 Empirical Evidence: The Philips Curve

Let us first mention the relationship between the unemployment and the inflation
rates in recent Japan (from 1970s to 2000s) in empirical evidence of the labor mar-
ket. This relationship is generally called as Philips curve. In the original paper of
Philips [7], he found the relation for the empirical data set from the middle of nine-
teen century to the beginning of twenty century (1861–1913) in UK. However, up to
now, a lot of verifications have been done for various data sets in various countries.
Therefore, we are confirmed that the Philips curve should be regarded as one of the
‘universal properties’ in labor markets.

In Fig. 11.1, we plot the Philips curves of our country in 1980s, 90s and 2000s
and the age-dependence of the curve (the lower-right panel). In these panel, the
fitting curve (the solid curve): π + b ∝ U−c is actually obtained by the least
square estimation for the parameter b and c from the n-data points (Xi, Yi) =
(logUi, log(πi + b)), i = 1, . . . , n. From the lower-right panel in Fig. 11.1, we
clearly find that the curve is slowly getting ‘flat’.

From these empirical findings, we easily notice that the curve changes (evolves)
in time and the behavior might be dependent on the situation of economy in the
country. Therefore, it is important for us to reveal the dependence from the mi-
croscopic point of view and it is our motivation to deal with the problem in this
paper.
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Fig. 11.1 The Philips curves in Japan. From the upper left to the lower right, the curves in 1980s,
90s and 2000s are plotted. In the lower-right panel, Philips curve in Japan (from 1970s to 2000s)
is shown by a single plot. We clearly find that the Philips curve is getting ‘flat’

11.3 Hypotheses in Modeling

We first discuss several basic properties should be satisfied in our probabilistic mod-
eling. As we already mentioned, in our modeling, the job seekers are restricted to
university graduates and the other persons on the job searching are neglected for
simplicity. Strictly speaking, this assumption should not be justified, however, as
is well known, Japanese society is still somewhat conservative and once labors get
their jobs, they stay in the company by their retirement age. In this sense, we omit
the contribution from the on the job searching persons to the labor market because
the fraction at the present time might be negligibly small.

Based on the above general ‘hypotheses’, we assume that the following three
points (i)–(iii) should be taken into account to construct the effective labor markets.

(i) Each company recruits constant numbers of newcomers in each business year.
(ii) If the company takes too much or too less applications which are far beyond or

far below the quota, the ability of the company to gather applicants in the next
business year decreases.

(iii) Each company is apparently ranked according to various perspectives such as
the stability, the wage-level, the location, the welfare of employees, etc. The
ranking is useful information and it is available for all students.
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In following, we shall attempt to construct labor markets by considering the above
three essential points. Our model system is a variant of urn models [1, 8] or the
so-called Kolkata Paise Restaurant Problem (KPRP) [9, 10].

11.4 System Parameters

First of all, in this section, we define the system parameters and their sizes such as
the number of companies, open positions (vacancies) and applicants. Let us define
the total number of companies as K and each of them is distinguished by the label
k = 1,2, . . . ,K . Then, the number of the quota of the company k is specified by
v∗k . In real labor markets, the quota v∗k itself fluctuates in time (business year) and
it changes according to the gross margin in the previous year and some companies
in financial difficulties might decrease the quota. However, in this paper, we fix the
value and regard the quota as a ‘uniform’ and ‘time-independent’ variable.

Hence, the total job vacancy in society in each business year V is given by

V =
K∑

k=1

v∗k . (11.1)

On the other hand, we define the number of new university graduates by N and each
of the students is specified by the index i as i = 1,2, . . . ,N . Then, we introduce

α ≡ V

N
(11.2)

as job offer ratio and it is independent of system size for O(V )=O(N). Apparently,
for α = V/N > 1, that is V > N , the labor market behaves as a ‘seller’s market’,
whereas for α < 1, the market becomes a ‘buyer’s market’. For this model system,
we might assume that each student post his/her single application (what we call
‘entry sheet’ or CV) to the company. In our analysis given below, the relevant system
parameter is job offer ratio α rather than V or N because obviously the α = V/N is
system size independent.

11.5 The Local Energy Function: A Link to Physics

Here we define a sort of ‘local energy function’ for each company which represents
the ability of gathering applicants in each business year t . The energy function is a
nice bridge to link the labor market to physics. Let us first define the following local
mismatch measurement: hk(t) for each company k(= 1,2, . . . ,K) as

hk(t)= 1

V

∣∣v∗k − vk(t)
∣∣= 1

αN

∣∣v∗k − vk(t)
∣∣ (11.3)
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where vk(t) denotes the number of students who seek for the position in the com-
pany k at the business year t (they will post their own ‘entry sheet (CV)’ to the
company k). Hence, the local mismatch measurement hk(t) is the difference be-
tween the number of applicants vk(t) and the quota v∗k . We should keep in mind that
from the fact (i) mentioned before, the v∗k is a business year t-independent constant.
Some analysts reported that the increase of unemployment rate in recent Japanese la-
bor market is due to the mismatch between the university graduates and companies.
Namely, most of students look for the positions in famous and already established
large companies and they do not want to work for a small business in, say, like fos-
tering venture businesses. Such a sort of ‘local mismatch’ could be quantified by
hk(t).

On the other hand, we define the ranking of the company k by εk(> 1) which is
independent of the business year t . Here we assume that the ranking of the company
k is higher if the value of εk is larger. In this paper, we simply set the value as

εk = 1+ k

K
. (11.4)

Namely, the company k =K is the highest ranking company, whereas the company
k = 1 is the lowest.

Form the above set-up and on the analogy of the Boltzmann-Gibbs distribution in
conventional statistical mechanics, we define the probability Pk(t) that the company
k gathers their applicants at time t as

Pk(t)= εk

Z
exp

[−Hk(βk,hk)
]≡ exp[−E(εk,Hk(βk,hk))]

Z
, (11.5)

Z ≡
K∑

k=1

exp
[−E

(
εk,Hk(βk,hk)

)]
(11.6)

where we defined Z as the normalization constant for probability (a sort of par-
tition function in statistical physics). We also defined two τ -dimensional mar-
ket history vectors with the length τ : βk ≡ (βk(t − 1), . . . , βk(t − τ)) and hk ≡
(hk(t − 1), . . . , hk(t − τ)). Then, Hk appearing in the probability (11.5) is defined
by the inner product of these two vectors as

Hk(βk,hk)≡ βk · hk. (11.7)

We should notice that the above inner product choice for the expression of Hk is just
an example and one can easily extend (modify) the functional form to much more
generalized one: Hk = f (βk,hk) including (11.7) as a special case.

With the above definitions, the local energy function is written explicitly by

E
(
εk,Hk(βk,hk)

)≡−γ log εk +
τ∑

l=1

βlhk(t − l). (11.8)
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In this paper, we simply choose a particular market history vector as βk =
(β,0, . . . ,0).

Thus, the local energy function (11.8) is now simplified as

E
(
εk, hk(t − 1)

)=−γ log εk + βhk(t − 1). (11.9)

The parameters γ > 0 and β specify the probability from the macroscopic point
of view. Namely, the company k having relatively small hk(t) can gather a lot of
applicants in the next business year and the ability is controlled by the parameter β
(we used the fact (ii) which was mentioned in the previous section). On the other
hand, the high ranked company can gather lots of applicants and the degree of the
ability is specified by the parameter γ (we used the fact (iii) which was mentioned
in the previous section).

Thus, local energy function E(εk,hk(t − 1)) is written in terms of the sum of
these two independent factors. Therefore, the result of the previous business year
hk(t) is much more important factor for γ > β and the ranking becomes more es-
sential for γ < β to decrease the energy.

We should bear in mind that even if the highest ranking company k = K gath-
ers a lot of applicants as over the quota vK(t)� v∗K at some year t , however, the
second term appearing in the energy function ∼ −β|v∗K − vK(t)| � 1 acts as the
‘negative feedback’ on the first ranking preference to decrease the probability that
the company K gathers the applicants at the next business year t + 1.

11.6 Job Matching Process: Microscopic Quantities

We should notice that for the probability Pk(t), each student i decides to post their
entry sheet to the company k at time t as

aik(t)=
{

1 (with prob. Pk(t)),

0 (with prob. 1− Pk(t))
(11.10)

where aik = 1 means that the labor i(= 1, . . . ,N) post their entry sheet to the com-
pany k and aik = 0 denotes that he/she does not. In this paper, we assume that each
labor post their entry sheets a-times on average. In other wards, the company k takes
aNPk(t)-entry sheets on average.

We can now evaluate how many acceptances are obtained by a student and let us
define the number by si for each student i(= 1, . . . ,N). Then, we should notice that
the number of acceptances for the student i is defined by si(t)=∑K

k=1 sik(t) with

sik(t)=
{
Θ(v∗k − vk(t))δaik(t),1 (with prob. 1),

Θ(vk(t)− v∗k )δaik(t),1 (with prob. v∗k /vk(t))
(11.11)

where Θ(· · · ) denotes the step function and δa,b stands for the Kronecker delta.
Thus, (11.11) means that the sik takes 1 when the student i posts the sheet to the
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company k and the total number of sheets the company k gathers does not exceed the
quota v∗k . On the other hand, the variable sik also takes 1 with probability v∗k /vk(t)
even if vk(t) > v∗k holds. In other words, for vk(t) > v∗k , the v∗k students are ran-
domly selected as winners’ from vk(t) candidates.

In following, we investigate statistical properties of these microscopic quantities
by means of their distribution.

11.6.1 The Distribution of Physical Quantities

For the model introduced in the previous section, we evaluate the distribution of
several microscopic physical quantities. To calculate the distribution numerically,
we define the distribution of such quantity A(t) by

P(A)= lim
T→∞

1

T

T−1∑

t=0

δA(t),A. (11.12)

Using the above definition, the distribution of the number of entry sheets vk(t) which
the company k(= 1, . . . ,K) obtains is evaluated by substituting A(t) = vk(t) into
the above definition (11.12) for finite system size K,N(� 1). After recursively up-
dating the (11.5), (11.6) for T (� 1)-times, we obtain the distribution of any micro-
or macroscopic quantities through (11.12).

In Fig. 11.2(left), we show the distribution of the microscopic quantity aik . The
system size is chosen as N = 10000, K = 1000 and fix the quota for each company
so as to be a company-independent variable as v∗k = v ≡ 30 (homogeneous quota)
for simplicity. This choice leads to α = 3. The time step to evaluate (11.12) is set to
T = 104 and the ranking factor γ is fixed as γ = 1. From this figure, we find that
aik is distributed around the average a. In our computer simulations to be given in
the next sections, we use the P(aik) to determine the number of entry sheets posted
by each student.

We next consider the distribution of the number of entry sheets obtained by com-
pany k. We plot the result in Fig. 11.2(right). From this figure, we clearly find that
in the regime of market history actually works (the market history is switched on)
β = γ = 1, the distribution has a single peak around the relatively large value of
vk . However, as one increases the ranking effect γ as γ � β , the peak eventually
moves to zero. The fraction (probability) of companies getting no entry sheet is
easily evaluated as follows.

Obviously, the probability P(vk = v̄) follows a binomial distribution P(vk =
v̄)= aNCv̄P

v̄
k (1− Pk)

aN−v̄ , where we neglected the time-dependent part in Pk(t),
that is ∼ −β|v∗k − vk(t)| for γ � β . Then, P(vk = 0) is written as P(vk = 0) =
(1− Pk)

aN � exp(−aNPk), where Pk is roughly estimated in the thermodynamic
limit as

Pk = (1+ k/K)γ

∑K
k=1(1+ k/K)γ

� (1+ k/K)γ

∫ K

1 (1+ k/K)γ dk
= (γ + 1)

K

(1+ k/K)γ

2γ+1 − 1
. (11.13)
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Fig. 11.2 The distribution of aik (left). In our simulations, we set N = 10000, K = 1000 and for
simplicity v∗k = v = 30, which reads α = 3. The time step to evaluate (11.12) is set to T = 104.
β and γ are fixed as β = γ = 1. We plot the P (aik) for a = 10 and 30. The right panel shows
the distribution of the number of entry sheets the company k obtains. In our simulations, we set
N = 10000, K = 1000 and v∗k = v = 30 leading to α = 3. The time step to evaluate (11.12) is set
to T = 104. We set β = 1 and change γ as γ = 1,10 and 15

Hence, in the limit of K ∝ N →∞ (in other words, K , N →∞ keeping ρ ≡
K/N =O(1)), the highest ranking company has Pk=K � (γ + 1)/2K , whereas the
lowest ranking company gets Pk=1 � (γ + 1)/2γ+1K . Substituting these results
into P(vk = 0), we immediately have

P(vK = 0) = exp
[−aN(γ + 1)/2K

]
, (11.14)

P(v1 = 0) = exp
[−aN(γ + 1)/2γ+1K

]
. (11.15)

These results imply that in the limit of γ →∞, the lowest ranking company gets
no entry sheet with probability P(v1 = 0) = exp(0) = 1 from (11.14), whereas
the highest ranking company always can get macroscopic order of entry sheet as
P(vk = 0)= 0 from (11.15). We easily notice that the argument for (11.15) should
be valid for any companies which satisfy k�K . Therefore, for large γ � 1, macro-
scopic number of companies completely lose their applicants (the entry sheets)
by this probabilistic nature. We can actually confirm this result indirectly from
Fig. 11.2(right) as P(vk) = 0 for γ = 15 which is relatively a large value in our
simulations.

In following, we investigate the macroscopic behavior of this system through
several physical quantities.

11.7 Unemployment Rate: Macroscopic Quantity

In the previous section, we modeled the microscopic matching process between stu-
dents and companies by means of the probability distribution Pk(t) of Boltzmann-
Gibbs-type. As our main purpose is to reconstruct the macroscopic behavior of la-
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bor markets from the microscopic description, we should calculate the macroscopic
quantities by means of the microscopic variables. To reconsider the results in the
previous section from the macroscopic viewpoint, here we can calculate the unem-
ployment rate U as a function of t as follows.

Ut = 1

N

N∑

i=1

δsi (t),0. (11.16)

Namely, the unemployment rate at business year t is defined as a ratio of students
who could not get any job (si(t)= 0) to the total number of students N .

11.7.1 The Order Parameter

To discuss the macroscopic quantity, we consider the long time average of Ut as an
‘order parameter’ U as usually used in statistical physics. Namely, we define the
order parameter as follows.

U = lim
T→∞

1

T

T−1∑

t=0

Ut . (11.17)

Here it should be noted that the above time average should be identical to the
ensemble average 〈U 〉, where the bracket 〈. . .〉 stands for the average over the
joint probability for the microscopic quantities P(a1, . . . ,aK ; s1, . . . , sN ) with
ak ≡ (a1k, . . . , aNk), aik ∈ {0,1}, si ∈ {0,1,2, . . . , a}, i = 1, . . . ,N , k = 1, . . . ,K
when the system can reach the equilibrium state.

11.7.2 The Beveridge Curve

In Fig. 11.3(left), we plot the employment rate 1−U as a function of α for several
choices of (γ,β)= (1,1), (1,5), (5,1). From this figure, we certainly find that the
employment rate is lower than ∼ 0.7. In these numerical simulations, we assumed
that each student posts their entry sheet just only once on average. However, if the
number of posting increases the situation might be changed. Thus, we next consider
the case in which each student posts their applications a times on average. There-
fore, we increases the number of entry sheets a for each student to post to the market.
We check the case a = 1,2 and a = 3. The result is shown in Fig. 11.3(right). From
this figure, as we expected, we find that the employment rate increases up to near 1
(perfect employment) when we increase the number a.

We should notice that the plots shown in Fig. 11.3(left) and Fig. 11.3(right) cor-
respond to the so-called Beveridge curve in economics (labor science). Usually, the
Beveridge curve is defined as the behavior of the number of vacancy V against the
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Fig. 11.3 The employment rate 1−U as a function of α (left). We evaluated the rate for the cases
(γ,β)= (1,1), (1,5), (5,1). In our simulations, we set the system sizes as N = 500, K = 50. The
errorbars are calculated by five independent trials. The right panel shows the employment rate
1−U as a function of α for the case of a = 1,2 and a = 3 keeping γ = β = 1

unemployment rate U (hence, it is sometimes referred to as UV curve). However, as
we already mentioned, in the thermodynamic limit V , N→∞, the relevant system
parameter is job offer rate α rather than the number of vacancies V . Thus, we might
regard the α as the effective number of vacancies. Hence, the U–α curves shown in
these figures correspond to the conventional Beveridge curves.

11.8 Phase Transitions in Labor Markets

We next consider the γ -dependence of the employment rate for several values of a.
In Fig. 11.4, we show the employment rate 1− U as a function of γ for a fixed β

value (β = 1). The results are plotted for a = 1,2,3 and a = 10. The left panel is
given for α = 1, whereas the right panel is obtained for α = 10. From this panel, as
we expected, we find that the employment rate for a relatively high job offer ratio
α = 10 increases up to near 1 when we increase the number a.

One of the remarkable features of the results is existing a sort of ‘phase transi-
tions’ in our probabilistic labor market. Namely, in the lower panel in Fig. 11.4, we
clearly find that there exist two distinct phases, namely, ‘perfect employment phase’
(1 − U � 1) and ‘perfect unemployment phase’ (1 − U � 0, that is, U � 1), and
the system changes gradually from the perfect employment phase to the poor em-
ployment phase around γ � 10(≡ γc). To evaluate the residual employment rate,
we consider the extreme limit γ →∞ for the simplest case α = a = 1. In this limit,
all students want to post their own single entry sheet to the highest-ranking com-
pany k =K . As the result, only v∗K = v = 10 students get their jobs and the residual
employment rate is approximately evaluated as 1−U � v/N = 10/500= 0.02.

From the viewpoint of labor markets, the phase transition might be understood
as follows. For the case of a society with quite high job offer ratio such as α = 10,
the employment rate can be almost 1 when each labors can post a = 10 entry sheets
on almost randomly to companies. However, as labors start to take into account
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Fig. 11.4 The employment rate 1−U as a function of γ for a fixed β value (β = 1). The results
are plotted for a = 1,2,3 and a = 10. The left panel is given for α = 1, whereas the right panel is
obtained for α = 10

the ranking of company, namely, for γ � γc, the employment rate is gradually de-
creased to the zero-level. Apparently, this result is induced due to the global mis-
match between students and companies as observed in recent Japanese labor market
for university graduates.

11.9 The Philips Curve

In the previous section, we have made a simple probabilistic model for job matching
process between university graduates and companies in Japan. We evaluated the
unemployment rate U as an order parameter and found that the system undergoes a
phase transition when one changes the system parameters.

We next consider the Philips curve for our labor market. To obtain the Philips
curve, we should evaluate the inflation rate separately and it needs some informa-
tion about the production process of the companies and consumption procedure by
consumers. Moreover, the bargaining process of wages of labors for each company
also should be taken into account to determine the inflation rate. In this paper, we
shall use the macroscopic formula for the inflation rate given by Neugart [6]. Then,
by making coupled equations with our result of unemployment rate, we attempt to
draw the Philips curve.

11.9.1 Macroscopic Neugart Model

In this subsection, we shall briefly explain the derivation of non-linear maps with
respect to the unemployment and inflation rates according to Neugart [6].

We first defined the update rule for the unemployment rate as follows.

Ut+1 =Ut + ξ(1−Ut)− otUt (11.18)
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where the second term in the right hand side denotes the contribution of labors who
are fired (lost) their jobs at time t and the ratio is controlled by a single parameter
ξ . The third term means the contribution of labors who get their job at time t and ot
is a time-dependent rate. The ot is explicitly given by

ot = Js + Γ (m− πt )

Ut + d(1−Ut)
(11.19)

where the denominator denotes the total amount of labors who seek for the jobs
at time t and d(1− Ut) corresponds to the labors who are ‘on the job searching’.
On the other hand, in the numerator, Js denotes the time-independent number of
job openings and the time-dependent part of job openings comes from the second
term Γ (m− πt ). In this term, πt denotes the inflation rate at time t and m stands
for a constant growth rate for the value of money. Hence, (11.19) means that the
probability getting jobs ot decreases when the number of labors who seek for jobs
increases, and increases when the inflation rate is smaller than the growth rate for
the value of money.

On the other hand, the inflation rate at time t is written in terms of the ‘expected
inflation rate’ πe,t as follows.

πt = 1

δ

(
πe,t + wb,t −wp

wp

)
= 1

δ

(
πe,t + μ− (1− c2)Ut

1−μ

)
(11.20)

where δ stands for a scaling factor and wb,t is bargaining wages and we naturally
set wb,t = 1− (1− c2)Ut with a constant 0≤ c2 ≤ 1. The justification of this choice
depends on the validity of our assumption that the bargaining should go well when
the unemployment rate is low. The union having enough number of labors can ne-
gotiate with management for wage increases well. The wp is a base wage and it is
controlled a single parameter μ as wp = 1−μ.

Then, the expected inflation rate is updated by means of a linear combination of
inflation rate πt and the expected inflation rate πe,t with 0≤ c1 ≤ 1 as follows.

πe,t+1 = c1πt + (1− c1)πe,t . (11.21)

From (11.18), (11.19), (11.20) and (11.21), we obtain the following non-linear maps
with respect to U and π :

Ut+1 =Ut + ξ(1−Ut)−Ut

Js + Γ (m− πt )

Ut + d(1−Ut)
, (11.22)

πt+1 = 1

δ

(
μ

1−μ
+ c1πt + (1− c1)

(
δπt − μ− (1− c2)Ut

1−μ

))

− 1

δ

(
1− c2

1−μ

(
Ut + ξ(1−Ut)−Ut

Js + Γ (m− πt )

Ut + d(1−Ut)

))
. (11.23)

The fixed point of the above non-linear maps is easily obtained as (U∗,π∗)= ({μ−
m(δ−1)(1−μ)}/(1−b),m). Then, according to Neugart [6], we set the value of Js
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Fig. 11.5 Philips curve
obtained by the Neugart
model [6]

in terms of the above fixed point, namely, by inserting the fixed point Ut+1 = Ut =
U∗, πt+1 = πt = π∗ into (11.22), we obtain Js = J ∗s ≡ ξ(1 − U∗)(U∗ + d(1 −
U∗))/U∗.

The chaotic attractor (Ut ,πy) gives the Philips curve. In Fig. 11.5, we plot the
Philips curve obtained by the set of parameters: ξ = 0.18, d = 0.01, c1 = c2 = 0.5,
μ = 0.04, Γ = 0.5, δ = 2 and m = 0.03. From this figure, we observe that the
chaotic attractor follows the scaling form: π + 1.0∝U−0.006186.

11.9.2 Coupling with Our Probabilistic Model

As is shown in the previous sections, we can make a model for the probabilistic labor
market which described by aik(t): (11.10) and si(t): (11.11) with si(t)=∑

k sik(t)

microscopically. The behavior of the system is macroscopically written in terms of
the time-dependence of unemployment rate Ut or the order parameter U which is
defined as long-time average of the Ut as U = limT→∞(1/T )

∑T−1
t=0 Ut . To draw

the Philips curve, here we consider the coupled equations for Ut obtained in our
model and πt which is one of the no-linear map in the Neugart model. Namely,
here we use (11.23) with Js = J ∗s for the update rule for the inflation rate. The
other parameters in the Neugart model are set to ξ = 0.18, d = 0.01, c1 = c2 = 0.5,
μ= 0.04, Γ = 0.5, δ = 2 and m= 0.03.

11.9.2.1 Typical Dynamics

We first show the typical dynamics of the unemployment rate Ut and inflation rate
πt in Fig. 11.6. From this figure we find that both Ut and πt are ‘clustered’ during
the interval 100∼ 200. Within each interval, the these quantities behave periodically
(oscillate).

Finally we plot the Philips curve as a trajectory (Ut ,πt ) of the dynamics. The
results are shown in Fig. 11.7. We find that the negative correlation between Ut and
πt is actually observed for β = 10, γ = 1 and the curve is ‘well-fitted’ by the form:
π + 1.49∝U−0.54.
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Fig. 11.6 Typical dynamics of the unemployment rate Ut and inflation rate πt . The upper panel
is given for β = γ = 1, whereas the lower panel is plotted for β = 10, γ = 1. We set N = 500,
K = 50, v∗k = 10(α = 1) and a = 10. We find that both Ut and πt are ‘clustered’ during the interval
100∼ 200. Within each interval of ‘clustering’, the these quantities behave periodically (oscillate)

Fig. 11.7 The Philips curve
for our probabilistic model
for β = 10, γ = 1. We set
N = 500, K = 50, v = 10
(α = 1) and a = 10. The
curve is ‘well-fitted’ the
form: π + 1.49∝U−0.54

11.10 Summary

In this paper, on the basis of statistical physics, we proposed a minimal model to
describe Japanese labor markets from the microscopic point of view. The model
is definitely the simplest one and it might be possible for us to consider various
extensions.
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Chapter 12
Kolkata Paise Restaurant Problem:
An Introduction

Asim Ghosh, Soumyajyoti Biswas, Arnab Chatterjee,
Anindya Sundar Chakrabarti, Tapan Naskar, Manipushpak Mitra,
and Bikas K. Chakrabarti

Abstract We discuss several stochastic optimization strategies in games with many
players having large number of choices (Kolkata Paise Restaurant Problem) and
two choices (minority game problem). It is seen that a stochastic crowd avoiding
strategy gives very efficient utilization in KPR problem. A slightly modified strategy
in the minority game problem gives full utilization but the dynamics stops after
reaching full efficiency, thereby making the utilization helpful for only about half
of the population (those in minority). We further discuss the ways in which the
dynamics may be continued and the utilization becomes effective for all the agents
keeping fluctuation arbitrarily small.
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12.1 Introduction

The Kolkata Paise Restaurant (KPR) problem [1–5] is a repeated game, played be-
tween a large number (N ) of agents having no interaction amongst themselves.
In KPR problem, prospective customers (agents) choose from n restaurants each
evening simultaneously (in parallel); N and n are both large and fixed (typically
n= N ). Each restaurant has the same price for a meal (hence no budget constraint
for the agents). It is assumed that each can serve only one customer any evening
(generalization to a larger value is trivial). The information regarding the customer
distributions for earlier evenings is available to everyone. If more than one customer
arrives at any restaurant on any evening, one of them is randomly chosen (each of
them are anonymously treated) and is served, while the rest do not get dinner that
evening. An alternative visualization can be one in which multiple customers arriv-
ing in a single restaurant have to share the food meant for one customer, keeping all
of them unhappy. The utilization fraction f̄ in the problem is defined as the aver-
age fraction of restaurants which were visited by people any evening in the steady
state. Each agent develops its own (parallel) algorithm to choose the restaurant every
evening such that he/she is alone there. Also, the times required to converge/settle to
such a solution (if exists), should be low (faster than, say, logN ). If the restaurants
have different ranks which are agreed upon by all the agents, additional complica-
tions may arise.

Paisa is the smallest monetary unit in Indian currency, and the use of the word
would essentially be synonymous with anything that is very cheap. In Kolkata, there
used to be very cheap and fixed rate “Paise Restaurant” which were popular among
the daily labourers. During lunch hours, the labourers used to walk (to save the
transport costs) to one of these restaurants and would miss lunch if they got to a
restaurant where there were too many customers. Walking down to the next restau-
rant would mean failing to report back to work on time! There were indeed some
well-known rankings of these restaurants, as some of them would offer tastier items
compared to the others. A more general example of such a problem would be when
the society provides hospitals (and beds) in every locality but the local patients go to
hospitals of better rank (commonly perceived) elsewhere, thereby competing with
the local patients of those hospitals. Unavailability of treatment in time may be con-
sidered as a lack of service for those people and consequently as (social) wastage of
service by those unvisited hospitals.

A dictator’s solution to the KPR problem is the following: everyone is asked
to form a queue and is assigned a restaurant with rank matching the sequence of
the person in the queue on the first evening. Then each person is asked to go to
the next ranked restaurant in the following evening, thus for the person in the last
ranked restaurant this means going to the first ranked restaurant. This shift process
continues for successive evenings, thus providing clearly the most efficient solution
(with utilization fraction f̄ of the services by the restaurants equal to unity) and
the system arriving at this solution trivially and immediately (from the first evening
itself). However, in reality this cannot be the true solution of the KPR problem,
where each agent decides on his own (in parallel and democratically) every evening,
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based on complete information about past events. In this game, the customers try
to evolve a learning strategy to eventually get dinners at the best possible ranked
restaurant, avoiding the crowd. It is seen that these strategies take considerable time
to converge and even after that the eventual utilization fraction f̄ is far below unity.

12.2 Kolkata Paise Restaurant Problem

In this review, we will talk about the KPR problem where N agents are parallelly
visiting n restaurants on every day [n, N →∞; keeping n/N finite]. Each agent
has been trying to get food from the best rank restaurants every day. But, each day,
one agent can visit one restaurant and every restaurant has the capacity to serve food
for one customer per evening. Therefore, as mentioned before, many agents go to
a particular restaurant then one of the agents will be randomly chosen and will be
served and the rest of the agents will not get dinner for that day, thus satisfying one
of them. An alternative picture is one in which many customers have to share the
food served for one customer, leaving all of them unsatisfied. Generally one can
see that a few of the restaurants are not visited by any of the agents on a particular
evening and that many agents crowd in other restaurants and do not get dinner for the
evening. The utilization fraction f̄ in the problem is therefore given by the average
fraction of restaurants which were visited by customers on any evening in the steady
state.

We discuss the case where instead of deterministic strategies, if everyone follows
stochastic strategies, then one gets not only to higher values of the utilization frac-
tion, but also attains it in very small convergence time (usually of order logN or
smaller).

In general in the KPR problem n = gN and N →∞ and in its primitive ver-
sion, g = 1 (n=N ), while for general phase transition studies (see Sect. 12.3) one
considers g ≤ 1. For the Minority Game (see Sect. 12.4) n = 2 (with N →∞ as
usual).

12.2.1 Random-Choice Case (Stochastic)

Suppose there are N agents and n restaurants. Any agent can select any restaurant
with equal probability. Therefore, the probability that a single restaurant is chosen
by m agents is a Poisson distribution in the limit N→∞, n→∞:

Δ(m) =
(
N

m

)
pm(1− p)N−m; p = 1

n

= (N/n)m

m! exp(−N/n) as N→∞, n→∞. (12.1)
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Therefore the fraction of restaurants not chosen by any agent is given by Δ(m= 0)=
exp(−(N/n)) and that implies that average fraction of restaurants occupied on any
evening is given by [2]

f̄ = 1− exp(−N/n)� 0.63 (12.2)

for n=N in the KPR problem.

12.2.2 Rank Dependent Strategies (Stochastic)

Let us now consider that all restaurants have a well defined rank (agreed by every
agent) depending upon quality of food, services, etc. although price of a meal is
same for all restaurants. Thus, all agents will try to get food from best rank restau-
rants. But since a restaurant can serve only one customer, it means that many of
the agents in crowded restaurants will remain unsatisfied. Now, assume that any
kth restaurant have rank k and any agent choses that restaurant with probability
pk(t) = kζ /

∑
kζ (here ζ is any natural number). Here we discuss the results for

such kind of strategy.
If an agent selects any restaurant with uniform probability p then the probability

that a single restaurant is chosen by m agents is given by

Δ(m)=
(
N

m

)
pm(1− p)N−m. (12.3)

Therefore, the probability that a restaurant with rank k is not chosen by any of the
agents will be given by

Δk(m= 0) =
(
N

0

)
(1− pk)

N ; pk = kζ∑
kζ

� exp

(−kζN

Ñ

)
as N→∞, (12.4)

where Ñ =∑N
k=1 k

ζ � ∫ N

0 kζ dk = Nζ+1

(ζ+1) . Hence

Δk(m= 0)= exp

(
−kζ (ζ + 1)

Nζ

)
. (12.5)

Therefore the average fraction of agents getting dinner in the kth ranked restaurant
is given by

f̄k = 1−Δk(m= 0) (12.6)

and the numerical estimates of f̄k is shown in Fig. 12.1. Naturally for ζ = 0, the
problem corresponding to random choice f̄k = 1−e−1, giving f̄ =∑

f̄k/N � 0.63
and for ζ = 1, f̄k = 1− e−2k/N giving f̄ =∑

f̄k/N � 0.57.
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Fig. 12.1 The main figure
shows average fraction of
utilization (f̄k) versus rank of
the restaurants (k) for
different ζ values. The inset
shows the distribution
D(f =∑

f̄k/N) of the
fraction f agent getting
dinner any evening for
different ζ values. The
simulations are done for
N = 104 and n= 104.
From [5]

12.2.3 Strict Crowd-Avoiding Case (Mixed)

We consider the case (see [4, 5]) where each agent chooses on any evening (t) ran-
domly among the restaurants in which nobody had gone in the last evening (t−1). It
was observed [5] that the distribution D(f ) of the fraction f of utilized restaurants
is again Gaussian with a most probable value at f̄ � 0.46. The explanation was
given in the following way: As the fraction f̄ of restaurants visited by the agents
in the last evening is avoided by the agents this evening, the number of available
restaurants is N(1− f̄ ) for this evening and is chosen randomly by all the N agents.
Hence, it fits with (12.1) by considering (N/n)= 1/(1− f̄ ). Therefore, following
(12.1),

(1− f̄ )

[
1− exp

(
− 1

1− f̄

)]
= f̄ . (12.7)

The solution of this equation gives f̄ � 0.46.

12.2.4 Stochastic Crowd Avoiding Case

Up to this point it is seen that indeed the random choice gives best utilization. Fol-
lowing a rank or strictly avoiding the crowd do not improve this fraction. While fol-
lowing a rank inherently prefers some restaurants and thereby making those crowed,
the strict crowd avoidance on the other hand eliminates the possibility of a high uti-
lization by not allowing repeated (successful) visits to a given restaurant.

However, in this section, we describe the following stochastic strategy: [5] If
an agent goes to restaurant k on an evening (t − 1) then the agent goes to the same
restaurant next evening with probability pk(t)= 1

nk(t−1) where nk(t−1) is the num-
ber of customers in kth restaurant on t − 1 day’s evening or otherwise choose any
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Fig. 12.2 The figure shows
that distribution of utilization
fraction in different condition
of the KPR problem. All
simulation data are shown for
N = 104 and n= 104

other restaurant k′(�= k) with uniform probability. In this process, the average uti-
lization fraction is f̄ � 0.8 in the steady state and the distribution D(f ) is a Gaus-
sian with peak at f � 0.8 (see Fig. 12.2).

An approximate estimate of f̄ can be made using the following argument: Let
ai denote the fraction of restaurants where exactly i agents (i = 0, . . . ,N) appeared
on any evening and assume that ai = 0 for i ≥ 3. Therefore, a0+ a1+ a2 = 1, a1+
2a2 = 1 and hence a0 = a2. Given this strategy, a2 fraction of agents will attempt
to leave their respective restaurants in the next evening (t + 1), while no intrinsic
activity will occur at the restaurants where, nobody came (a0) or only one came
(a1) in the previous evening (t). These a2 fraction of agents will now get equally
divided (each in the remaining N − 1 restaurants). Of these a2, the fraction going
to the vacant restaurants (a0 in the earlier evening) is a0a2. Hence the new fraction
of vacant restaurants is now a0− a0a2. In restaurants having exactly two agents (a2
fraction in the last evening), some vacancy will be created due to this process, and
this is equal to a2

4 − a2
a2
4 . Steady state implies that a0− a0a2+ a2

4 − a2
a2
4 = a0 and

hence using a0 = a2 we get a0 = a2 = 0.2, giving a1 = 0.6 and f̄ = a1 + a2 = 0.8.
Of course, the above calculation is approximate as none of the restaurant is assumed
to get more than two customers on any evening (ai = 0 for i ≥ 3). The advantage in
assuming only a0, a1 and a2 to be non vanishing on any evening is that the activity of
redistribution on the next evening starts from this a2 fraction of the restaurants. This
of course affects a0 and a1 for the next evening and for steady state these changes
must balance. The computer simulation results also conform that ai ≤ 0.03 for i ≥ 3
and hence the above approximation does not lead to a serious error.

12.2.5 A General Study for Crowd Avoiding Case

The stochastic crowd avoiding case can be generalized by modifying the probabil-
ity of an agent to choose the same restaurant as the previous evening as pi(t) =
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Fig. 12.3 The figure shows
the average utilization
fraction (f̄ ) for different
values of ξ . All simulation
data are shown for N = 104

and n= 104

1/nξi (t − 1) where ξ is positive real number. Of course ξ = 1 is the case discussed
in the previous section. It is observed (numerically) that the utilization fraction
increases with decreasing ξ . However, the time to reach steady state value also
increases. So, in this method we can reach a better utilization fraction as ξ → 0
(Fig. 12.3). We observe, trivially, that the ξ = 0 case does not have any dynamics.
On the other hand, the utilization fraction decreases to a limiting value (f̄ � 0.676)
for ξ →∞. The details of the critical behavior of this model will be reported else-
where [6].

12.3 KPR and Phase Transition

Recently Ghosh et al. applied a stochastic crowd avoiding strategy in the KPR prob-
lem with considering gN agents and N number of restaurants [7]. It was observed
that if the stochastic crowd avoiding strategy is applied to the problem then one can
find out a particular value of g = gc below which all the agents are satisfied (and the
state is called an absorbing or frozen state) and above the value of gc, some of the
agents will not be satisfied (and the state is called an active state). Therefore there is
a phase transition between the an absorbing state and an active state with variation
of g. The exponents of the transition in this process is well fitted with stochastic
sandpile model.

12.3.1 The Models

Consider gN (g < 1) agents and the N restaurants. It is reminded that a restaurant
can serve only one agent in an evening. Suppose in any evening a particular restau-
rant (ith restaurant) is visited by ni agents and then one of the agents is chosen
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randomly and is served and rest (ni − 1) agents do not get any dinner for that day.
Suppose all the agents are following the stochastic crowd avoiding dynamics men-
tioned before. Here two cases of the model are discussed (Model A & Model B). In
model A, if any (ith) restaurant is visited by ni agents in any evening then in the
next evening each of the ni agents will independently choose the same restaurant
with probability p = 1/ni or a different restaurant otherwise with uniform prob-
ability. But in model B, if any (ith) restaurant is visited by ni (ni > 1) agents in
any evening then in the next evening all agents will independently choose any of
the restaurants with uniformly probability (p = 1/N ). If, however, ni = 1 then the
agent will stick to his/her choice in the next evening. In both the models, one can
find a value of g = gc below which all the agents will be getting food and when
g > gc , some of agents will not be satisfied. The order parameter is given by the
steady state density of active sites ρa (density of sites having n > 1). So the absorb-
ing phase corresponds to ρa = 0 (g < gc) whereas, for g > gc the steady state gives
a non-zero value of the order parameter (ρa > 0). Here the lattice versions (1D &
2D) models are also discussed.

12.3.2 Numerical Results

In this model one can see that below gc the order parameter ρa goes to zero with
time and above gc, ρa goes to a stationary non zero value with time. Now, it is known
that the evolution of order parameter is an exponential form and can be expressed as

ρa(t)= ρ0
a

[
1− e−t/τ

]
(12.8)

for g > gc , and

ρa(t)= ρ0
ae
−t/τ (12.9)

for g < gc , where τ in the above expressions represents the relaxation time in the
system. Therefore, the order parameter asymptotically goes to steady state value
with time. Now, near critical point the order parameter can be scaled as ρa ∼ (g −
gc)

β where β is the order parameter exponent, similarly τ also scales as τ ∼ (g −
gc)

−ν . A scaling form for ρa can be written as

ρa ∼ t−αF

(
t

τ

)
; τ ∼ (g − gc)

−ν ∼ Lz, (12.10)

where L denotes size of the system and α, z are dynamic exponents near critical
point. For time t→∞, and using (12.8), (12.9) and (12.10) we get a scaling relation
β = να. The exponents have been obtained by numerical simulations and the scaling
relations are also discussed.
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12.3.3 Model A

12.3.3.1 Mean Field Case

The model in its original form (as discussed so far) is mean-field (i.e. infinite range)
type, in the sense that the excess agents from a restaurant can choose from all the
remaining restaurant in the next evening and the geometrical distance was not an
issue. In the mean filed case, the simulations are done by taking system size L= 106

and different scaling exponents are estimated (see Fig. 12.4). The simulation results
suggest that gc = 0.7502±0.002 and β = 0.98±0.02. Also doing the data collapse
it has been shown z= 0.50±0.01, ν = 1.00±0.01 and α = 1.00±0.01. Therefore,
the scaling relation β = να is satisfied by the estimated exponents for this case.

12.3.3.2 Lattice Cases

This model was also studied for 1-d and 2-d lattices. In 1-d, by studying the dy-
namics in the lattice it is meant that the excess agents can only go to the nearest
neighbor sites in the next step. For 1-d, lattice size N = L = 104 have been taken
and averaging over 103 initial conditions were permormed. For 2-d, a square lattice
(N = L2) with L= 1000 and averaging over 103 initial conditions were considered.
Periodic boundary condition have been employed in both cases.

1. The model is defined for 1-d as follows: The agents are allowed to hop only to
their nearest neighbor restaurants, and each agent can choose either left or right
neighbor randomly. It is found that gc = 1 and hence the phase transition is not
very interesting.

2. In the 2-d version of the model, a square lattice is considered and the agents
are to choose one of the 4 nearest neighbors randomly in next evening. For
N = 1000 × 1000, gc = 0.88 ± 0.01, β = 0.68 ± 0.01, z = 1.65 ± 0.02,
ν = 1.24 ± 0.01 and α = 0.42 ± 0.01. It was observed that these indepen-
dently estimated exponent values do not fit with the scaling relation β = να.
However, this type of scaling violation was also observed previously in many
active-absorbing transition cases [8].

12.3.4 Model B

12.3.4.1 Mean Field Case

For the mean field case, N = 106, averaging over 103 initial condition were taken.
The phase diagram and the universality classes of the transition has been numer-
ically investigated. In the mean field case, the phase boundary seems to be linear
starting gc = 1/2 for p = 0 and ending at gc = 1 for p = 1 (Fig. 12.5), obeying
gc = 1

2 (1 + p). In this case, for p = 0, gc = 1/2, and this is similar to the fixed
energy sandpiles [9–11]. Again the critical exponents are the same along the phase
boundary and they match with those of model A.
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Fig. 12.4 Simulation results
for mean field case,
gc = 0.7502± 0.0002.
(a) Variation of steady state
density ρa of active sites
versus g − gc , fitting to
β = 0.98± 0.02. The inset
shows the variation of ρa
with density g. (b) Relaxation
to absorbing state near critical
point for different system
sizes, the inset showing the
scaling collapse giving
estimates of critical
exponents α = 1.00± 0.01
and z= 0.50± 0.01. (c)
Scaling collapse of ρa(t). The
inset shows the variation of
ρa(t) versus time t for
different densities g. The
estimated critical exponent is
ν = 1.00± 0.01. The system
sizes N are mentioned.
From [7]

12.3.4.2 Lattice Cases

This model was also studied for 1-d and 2-d lattices. For a linear chain in 1-d, N =
L = 104 and average over 103 initial condition were considered. For 2-d, square
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Fig. 12.5 Phase diagram for
the generalized model in the
(g,p) plane, showing the
phase boundaries separating
the active and absorbing
phases in 1-d, 2-d and mean
field cases. The active phases
are on the right of the phase
boundaries while the
absorbing phases are on the
left in the respective cases.
The system sizes are N = 105

for mean field, 1000× 1000
for 2-d, and 104 for 1-d.
From [7]

restaurants (lattice) with L = 1000 and averaging over 103 initial conditions were
considered.

1. For 1-d, for the case p = 0, gc = 0.89 ± 0.01, with β = 0.42 ± 0.01, z =
1.55 ± 0.02, ν = 1.90 ± 0.02 and α = 0.16 ± 0.01. The phase boundary in
(g,p) is nonlinear: it starts from gc = 0.89± 0.01 at p = 0 to p = 0.43± 0.03
at g = 1 (Fig. 12.5). Thus, one can independently define a model at unit density
(g = 1) and calculate the critical probability pc for which the system goes from
an active to an absorbing phase.

2. For 2-d, for the case p = 0, gc = 0.683 ± 0.002, with β = 0.67 ± 0.02, z =
1.55± 0.02, ν = 1.20± 0.03 and α = 0.42± 0.01. The phase boundary seems
nonlinear, from gc = 0.683± 0.002 for p = 0 (Fig. 12.5) extending to gc = 1 at
p = 1.

In summary, it is shown how a crowd dynamics in a resources allocation game
gives rise to a phase transition between an active and a frozen phase, as the den-
sity varies. In this respect, a class of models has been defined and studied, where
gN agents compete among themselves to get the best service from N restaurants
of same rank, generalizing the ‘Kolkata Paise Restaurant’ problem. In the original
problem, where density g = 1, the model was far from its critical value gc, the relax-
ation time τ , given by (12.10) never showed any L=N1/d dependence. As long as
g ≤ gc , absorbing frozen configurations are present, and whether that can be reach-
able or not, depends on the underlying dynamics. The existence of a critical point
gc above which the agents are unable to find frozen configurations was found. In the
case in which the agents are moving if and only if they are unsatisfied (model B) with
p = 0, they fail to reach satisfactory configurations if the density is above gc = 1/2.
Strategies where agents wait longer (higher p) speed up the convergence, increas-
ing gc and decreasing the time to reach saturation configurations (faster-is-slower
effect). The exponent values of the phase transitions in finite dimensions are in good
agreement with the exponents of stochastic fixed-energy sandpile (Table. 12.1) [9–
13]. Thus, it is a simple model for resource allocation, which is solvable (the MF
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Table 12.1 The table shows
that comparison of the critical
exponents of this model with
those of the conserved Manna
model [13]

Model A Model B Manna

β 1D 0.42 ± 0.01 0.382 ± 0.019

2D 0.68 ± 0.01 0.67 ± 0.02 0.639 ± 0.009

MF 0.98 ± 0.02 0.99 ± 0.01 1

z 1D 1.55 ± 0.02 1.393 ± 0.037

2D 1.65 ± 0.02 1.55 ± 0.02 1.533 ± 0.024

MF 0.50 ± 0.01 0.50 ± 0.01 2

α 1D 0.16 ± 0.01 0.141 ± 0.024

2D 0.42 ± 0.01 0.42 ± 0.01 0.419± 0.015

MF 1.00 ± 0.01 1.00 ± 0.01 1

ν 1D 1.90 ± 0.02 1.876 ± 0.135

2D 1.24 ± 0.01 1.20 ± 0.03 1.225 ± 0.029

MF 1.00 ± 0.01 1.00 ± 0.01 1

limit), and shows a variety of interesting features including phase transitions as in
well known models.

12.4 KPR and Its Application on MG

So far we have dealt with the cases where the number of choices and the num-
ber of agents making those choices are of comparable magnitudes (KPR problem).
However, there is another very well studied limit where the number of agents re-
main large but the number of choices is only two. A pay-off is given to the agents
belonging to the minority group. Given there is no dictator and the agents do not
communicate among themselves, how to device a strategy to extract maximum gain
for maximum number of people, has been a long standing question. This problem
goes by the name Minority Game (MG). This is, in fact, a particular version of the
El Farol bar problem introduced by Brian Arthur [14].

In MG, the total number of agents (N ) being odd, the maximum possible utiliza-
tion can come when (N − 1)/2 agents are in the minority. However, if the agents
choose randomly, the utilization is far from the maximum value, in fact the devia-
tion is of the order of

√
N . However, there can be deterministic strategies, where

agents learn from their past experiences and in those cases this fluctuation can be
considerably reduced, giving a self-organized, efficient market [15–20]. But in all
those cases, the fluctuations (deviation from maximum utilization) scales with sys-
tem size as

√
N . Only the pre-factor, depending upon the particulars of the strategy,

can be reduced.
Recently, Dhar et al. [21] applied a stochastic strategy, inspired by the stochastic

strategy used in KPR [2, 4, 5], to show that the fluctuations, or deviation from max-
imum utilization, can be reduced to be of the order of Nε for any ε > 0 in log logN
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time. Stochastic strategy was used in MG before [22], where the fluctuation could
be made of the order 1, but the time to reach that state scaled with

√
N . The strategy

taken by Dhar et al., is the first of its kind that gives smallest fluctuation in very
short time. In the following sections we discuss the main results of this strategy and
its subsequent modifications.

12.5 KPR Strategy in MG: Results

As mentioned before, Minority Game deals with N (odd) agents selecting between
two choices, when an incentive is associated with people belonging to minority. For
example, consider the situation where there are only two restaurants in a locality
and N = 2M + 1 agents select between these two restaurants for dinner. An agent
is happy if he or she goes to the less crowded restaurant. But they cannot communi-
cate among themselves and cannot change their choices once they fix it for a given
evening. The agents, however, have in their possession the entire history of which
restaurant was more crowded. This is a classic example to the MG problem. Other
examples can be buying or selling of stocks and so on.

For any configuration at time (day) t , one can write the populations in the two
restaurants as, M −Δ(t) and M +Δ(t)+ 1. In the this strategy, a deviation from
the classic MG problem was made that the knowledge of Δ(t) was also available to
the agents, while originally only its sign was known. In that sense, agents have more
information than usual.

The strategy of the agents is as follows: At t = 0 the agents select randomly.
Then the agents belonging to the minority stick to their choice in the next day. But
the agents in the majority change their choice with a probability

p = Δ(t)

(M +Δ(t)+ 1)
(12.11)

for Δ(t) > 0 and stick to their choice with probability 1− p. As it is a probabilis-
tic strategy, the number of people shifting will also have a fluctuation of the order√
Δ(t), which is the new difference between the two populations; which leads us

to the recurrence relation Δ(t + 1) =√Δ(t). This shows that after log logN time
Δ(t) becomes of the order 1 and remains there.

Therefore, by following the same stochastic strategy, the difference between the
populations in the two restaurants can be minimized in a very short time. This is in
contrast with standard MG strategies, where the agents indeed try to differ in their
strategies to maximize individual gain. However, the difference being in general the
strategies were deterministic, i.e. given a history, all the subsequent steps are known.
The stochasticity itself makes the agents differ. Furthermore, that the agents follow
the same stochastic strategy and do not deviate from it, can be justified if it can be
shown that a single individual does not gain by deviating from this strategy. Indeed
it was shown that for this strategy, an individual will not gain by deviating from this
strategy.
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12.5.1 Stability Against Individual Deviator

In the above discussions it is discussed that if the agents in the MG problem follow
a simple stochastic strategy, the difference between the two choices can be made of
the order 1 in log logN time. However, it is not always expected that all the agents
will follow the same strategy, until it is shown that no one will gain by deviating
from the strategy.

12.5.1.1 Game with One Cheater

Defining cheater as one who will not follow the strategy followed by rest present in
the majority. Now suppose there is a cheater, say X1 in the majority, say in restau-
rant A. If he want to stay, then the number of agents in the restaurant A, who will
follow the conventional strategy is M + Δ(t). The probability that r̃ agents from
M +Δ(t) agents in A will shift from A to minority, say restaurant B is

P(r̃)=
(
M +Δ(t)

r̃

)
pr̃(1− p)M+Δ(t)−r̃ . (12.12)

For M→∞ the probability distribution will become Poisson with λ= p(M + 1).
So this distribution will be

P(r)= λr

r! exp(−λ)(1+Br), (12.13)

where

B = λ

M
−

(
λ3

2
+ λ2Δ− λ2

2

)
1

M2
. (12.14)

Using the above probability distribution, it can be shown that [21] there exist a value
of λ for a given Δ(t) such that existence of cheater does not effect the dynamics of
the game. This λ is given by

λ−Δ= 1

6
+ λ2

2M

√
λ

Δ

(
1+ Δ

λ

)
. (12.15)

Or restoring the inequality given that X1 will gain switching as he is in majority
then we get

λ <Δ+ 1

6
+ λ2

2M

√
λ

Δ

(
1+ Δ

λ

)
. (12.16)

As λ ∝Δ, this means for a large difference Δ we can increase the noise safely up
to 1

6+ without letting the cheater to win. We have seen in Fig. 12.6 that (12.15)
match the simulation result. In the simulation we took p = Δ+c

M+Δ+1 , with vary-
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Fig. 12.6 The data points are
the simulation data and the
line is (12.15). The total
number of player is 2001

ing the noise parameter c. Below this optimal value of λ, cheater will gain if
he shift from majority to minority, above this optimal value a cheater will gain if he
shift from minority to majority.

12.5.1.2 Majority Stay or Minority Flip

For a situation when one agent will stay if he finds himself in majority (in A) and
will shift if he finds himself in minority (in B). Then he will win by staying in
majority if r number of agent shift from majority A to minority B, given r ≥Δ+ 1.
The total probability P(win | stay in majority) that he will win, which is same as
expected payoff is

EP(majority | stay)=
∞∑

r=Δ+1

P(r). (12.17)

Now, if he is in B having total number of agent M −Δ and shift to A having total
number of agent M+Δ+1, he will win if r number of agent come from A to B, with
r ≥Δ+ 2. The total probability of his win if he flip is P(win |flip from minority),
which is same as his payoff given by

EP(minority |flip)=
∞∑

r=Δ+2

P(r) (12.18)

where P(r) is given by (12.13). Total probability of win or expected payoff, if he
stay at majority and flip if he is in minority is sum of (12.18) and (12.17), which
after little algebra is given by

EPI = 2

(
1− Γ (Δ+ 1, λ)

Δ!
)
− λΔ+1

(Δ+ 1)! (12.19)
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Fig. 12.7 The simulation
data is compared with the
solid line which is (12.19)
with given in (12.21)
neglecting the small
correction term in the bracket,
thus λ= 2c. The total number
of player is 2001

where Γ (s, x) is a incomplete gamma function. To get more accurate result we need
to average the expected payoff (EPI ). From numerical experiment we know that
fluctuation in Δ is very small. So this gives very little error when fitted with the
simulated result. This error can be minimized by little adjustment of the constant
terms. The best fit will come for the first argument Δ+a where a �= 1, but a = 0.65.
and the second argument λ = 2Δ in the Γ (s, x). From Fig. 12.7 we find that the
noise c can not be increased to very large value else a cheater will always gain the
game.

We have seen that if we take Δ= 0 so that λ= c, the noise parameter, then the
curve have same features as the simulated curve, this is due to the fact that Δ does
not become zero in the presence of non zero noise. So we need to know the average
Δ in this case, which is given by

〈Δ〉 = 1

2
λ

(
1− Γ (Δ0, λ)

(Δ0 − 1)!
)
. (12.20)

This is the average difference if A become minority after a shift of agents. So we
get

λ= 2〈Δ〉
(

1− Γ (Δ0, λ)

(Δ0 − 1)!
)−1

. (12.21)

12.5.1.3 Minority Stay or Majority Flip

Let the cheater is in A having M+Δ+1 agents who will shift to B there are M−Δ

agents. He will shift to B making nA =M +Δ and nB =M −Δ+ 1. Now he will
win if r number of people from A shift to B with r ≤Δ− 1. Then the probability
that he will win is given by P(win |flip from majority). Now if he is in B, then he
will stay. If r ≤Δ number of people shift from A to B he will win. The probability
that he will win staying in B is P(win | stay in minority). The total probability of
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Fig. 12.8 The symbols
represent the simulation data
and the line is (12.22) with λ

given in (12.23). In the plot
average Δ is not the noise
parameter c but a little less,
so instead of λ= 2(c+ 1),
λ= 2c+ 1.85 is plotted in the
theoretical curve. The total
number of player is 2001

winning if he always stays in minority, which is same as expected payoff EII in the
same case

EPII =
Δ−1∑

r=0

P(r)+
Δ∑

r=0

P(r)≈ 2
Γ (Δ,λ)

(Δ− 1)! +
λΔ

Δ! exp(−λ). (12.22)

We have seen that if we take Δ= 0 so that λ= c, the noise parameter, then the
curve have same features as the simulated curve (see Fig. 12.8), this is because Δ

does not become zero in the presence of non zero noise. So we need to know the
average Δ in this case which is

λ= 2
(〈Δ〉 + 1

)
. (12.23)

12.5.2 Freezing of Dynamics and Escape Routes from It

It is clear from the strategy discussed above, that once Δ(t)= 0 i.e., the difference
of population in the two restaurants is 1 (which is the minimum possible value as the
total number is odd), the dynamics stops. This leaves the system highly asymmetric
in the sense that the people in the majority (minority) will remain in the majority
(minority) forever. This situation is of course socially unacceptable, although this is
the most efficient division.

12.5.2.1 Resetting After a Given Time

To resolve this status quo, Dhar et al. [21] suggested that once Δ(t) = 0 a major
reshuffle can take place if all the agents (whether in majority or in minority) shift
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after waiting T time steps. This time period needs to be much smaller than the life-
time of the agents. If an inefficiency parameter is defined as follows

η= lim
N→∞

4

N

〈
(r −N/2)2〉, (12.24)

then for this case this would be

η� K1N
ε−1

T +K2 log logN
(12.25)

where K1, K2 and ε are constant. This means that efficiency increases with T . How-
ever, large T would mean longer wait in the majority. Clearly, other parameters like
overall social welfare and equality needs to be considered here. Also, as indicated in
the Dhar et al. paper, it will be interesting to see what if the agents try to maximize
their pay-offs for next n > 1 days.

12.5.2.2 Continuous Transition of Social Efficiency

In the above method, the system becomes efficient only when the agents act for
overall social welfare or have a long-term gain strategy. Even then, efficiency de-
pends upon time waiting time T , which gives rise to a competition regarding its
magnitude.

Biswas et al. [23] suggested a subsequent modification in the strategy such that
the fluctuation could be reduced to any arbitrarily small value by tuning a parameter.
This, therefore, gives a continuous phase transition and as long as a finite fluctuation
is kept in the system, the frozen condition can be avoided.

The modified strategy is the following: The agents in the majority in a given day
shifts to the other choice with a probability

p+(t)= Δ′(t)
M +Δ′(t)+ 1

, (12.26)

(where Δ′(t)= qΔ(t) and q is a constant) and people in the minority stick to their
choices (p− = 0).

Regarding the steady-state behavior, consider the following: Suppose the popu-
lations in the majority and minority are M + Δ(t) and M − Δ(t) respectively, at
time t . Now, if 2Δ(t) number of people can be shifted from majority to minor-
ity, then the population difference will remain same and the same process can be
repeated, sustaining a steady state. Of course, this possibility can only arise when
q > 1. If Δs is the steady state value for fluctuation, then

(M +Δs + 1)
qΔs

M + qΔs + 1
= 2Δs. (12.27)
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Fig. 12.9 Steady state values
of the order parameter Os for
different values of q and x.
The solid lines show the
analytical results for the pure
and annealed disordered
cases. Both match very well
with the simulation points.
Inset shows the log–log plot
near the critical point for the
disordered case, confirming
β = 1.00± 0.01. All
simulation data are shown for
M = 105. From [23]

The two solutions of this quadratic equation are

Δs = 0 or
q − 2

q
(M + 1). (12.28)

This means that for q < qc = 2, the system will reach the zero fluctuation state
(although the dynamics of the system will be very much different for q < 1 and
q > 1), and for q > 2 there will remain a residual fluctuation in the system signifying
an active-absorbing type phase transition around q = qc = 2.

Formally, one can define an order parameter like O(t) = Δ(t)/M and in the
steady state the saturation value is Os = 0 when q < 2 and Os = (q − qc)/q for
q > 2 both for M � 1, giving the order parameter exponent β = 1. Figure 12.9
shows the numerical results and its comparison with the above calculations.

Regarding the dynamics of the system in approaching this steady state, assume
that at time t the populations at the two restaurants are NA(t) and NB(t) and
NA(t) > NB(t). Therefore,

Δ(t)= NA(t)−NB(t)− 1

2
. (12.29)

Now, according to the strategy in (12.26), the number of people shifted from choice
A to choice B will be

S(t) = qΔ(t)

M + qΔ(t)+ 1

(
M +Δ(t)+ 1

)

≈ qΔ(t) (12.30)

up to leading order term, when Δ(t)�M , i.e., when q is close to qc, or in the long
time limit if q < qc and not too close to it. With this transfer amount, in the next
step NA(t + 1)=NA(t)− S(t) and NB(t + 1)=NB(t)+ S(t). For q > 1, majority
will become minority, so
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Δ(t + 1) = NB(t + 1)−NA(t + 1)− 1

2
≈ qΔ(t)−Δ(t)− 1. (12.31)

Subtracting Δ(t) from both sides and dividing by M , one arrives at

dO(t)

dt
=−(2− q)O(t)− 1

M
. (12.32)

The last term can be neglected for large M . The it follows

O(t)=O(0) exp
[−(2− q)t

]
. (12.33)

So this exponential decay in the region 1 < q < 2 gives a time scale τ ∼ (qc−q)−1,
diverging at the critical point with exponent 1.

In (12.30), if one keeps the second order term, one gets

S(t)≈ qΔ(t)− 1

M

(
q2Δ2(t)− qΔ2(t)

)
. (12.34)

The time evolution equation becomes

dO(t)

dt
=−(2− q)O(t)− q(q − 1)O2(t). (12.35)

Now, exactly at the critical point q = 2, the solution is

O(t)= O(0)

2O(0)t + 1
, (12.36)

which, in the long time limit gives O(t) ∼ t−1, giving the critical exponent value
α = 1.

A more general solution of (12.35) can be obtained (for any q) as follow: Con-
sider the auxiliary variable u(t) = |q − 1|t /O(t) and substitute it in (12.35). This
gives after simplifications

u(t + 1)= u(t)+ q|q − 1|t . (12.37)

Using this recursion relation, one can write u(t) in a GP series and can perform the
sum to get the following:

O(t)= 1− |q − 1|
q

1

(
1−|q−1|
qO(0) + 1)|q − 1|−t − 1

. (12.38)

Putting q = 2 in the above equation, one gets back (12.36). Also, a time scale is
obtained from the above equation in the form

τ ∼ 1

| ln(|q − 1|)| . (12.39)

As q→ qc, the power law divergence (qc − q)−1 is recovered.
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Furthermore, for q < 1 the dynamical equation (12.38) will reduce to

O(t)∼ O(0)

O(0)+ 1
(1− q)t . (12.40)

12.5.3 Reducing Fluctuation with Less Informed Agents

As is clear from the strategies discussed above, the agents in those versions of the
game, posses more information than the usual minority game problem. Particularly,
the agents are aware of the amount of excess population in the majority, while in the
usual case then only know whether they were in the majority or minority. This extra
information is important. Although it is logical that the would agents eventually
come to know about this excess population, there have been studies to confirm if this
extra information is essential in obtaining the maximum efficient state. It is found
that this information is not essential. The system can indeed reach the maximum
efficient state even when this knowledge is partially or even fully absent.

12.5.3.1 Non-uniform Guessing of the Excess Crowd: Phase Transition

It has been argued in Ref. [23] that in considering less informed agent a natural step
would be the agents with different guessing abilities. This means that although the
agents do not know the exact value of the excess population, they can make a guess
about the value. This acts as an annealed disorder. Formally, the ith agent at time t

makes a guess about Δ(t) which is

Δi(t)=Δ(t)(1+ εi), (12.41)

where εi is an annealed random variable taken from a uniform distribution in the
range [0 : 2x]. This means,

〈
Δi(t)

〉=Δ(t)
(
1+ 〈εi〉

)=Δ(t)(1+ x), (12.42)

where the angular brackets denote average over disorder. One can generally write

Δ(t + 1)= ∣∣Δ(t)− S(t)
∣∣, (12.43)

where

S(t)=
∣∣∣∣

〈
Δ(t)(1+ ε)

M +Δ(t)(1+ ε)

〉∣∣∣∣. (12.44)

This leads to

O(t + 1)=O(t)

∣∣∣∣

〈
ε

1+ (1+ ε)O(t)

〉∣∣∣∣. (12.45)
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Fig. 12.10 Data collapse for
finding ν in the disordered
case for different x values.
The estimate is
ν = 1.00± 0.01. Inset shows
the uncollapsed data. The
straight line at the critical
point gives α = 1.00± 0.01.
Simulation data is shown for
M = 106. From [23]

In the steady state O(t + 1)=O(t)=O∗, leading to

(1−O∗)2xO∗

(1+O∗)
= ln

[
1+ 2xO∗

1+O∗

]
. (12.46)

A numerical solution of this self-consistent equation was found to agree with the
simulation results (see Fig. 12.9). For small O∗, O∗ ∼ (x − 1) giving β = 1. Also,
for small O(t), the dynamical equation can be written as

dO(t)

dt
= (x − 1)O(t)− xO2(t). (12.47)

The critical point is at xc = 1. So at the critical point, O(t)∼ t−1, giving α = 1 and
above the critical point the exponential decay would give a time scale, diverging at
x = xc with an exponent ν = 1.

The above results were also verified using numerical simulations. A finite size
scaling form was considered

O(t)≈ t−αF
(
t1/ν(q − qc), t

d/z/N
)
, (12.48)

where d is the spatial dimension, which was taken as 4 in this mean-field scenario.
This form suggests that at the critical point the order parameter decays in a power-
law, with exponent α, which was numerically found to be 1.00± 0.01 (see inset of
Fig. 12.10). One can also plot (see Fig. 12.10) O(t)tα against t (q − qc)

ν , where
by knowing α, ν can be tuned to get best data collapse, giving ν = 1.00 ± 0.01.
Also, O(t)tα can be plotted against t/Nz/d , where z/d can be obtained from the
data collapse (Fig. 12.11) to be 0.50 ± 0.01. Therefore, it was concluded that the
analytical estimates were verified and the scaling relation α = β/ν was satisfied.

In the above mentioned case, the non-uniform guessing power acts as an annealed
disorder. When this disorder is quenched, the case slightly complicated. It is no
longer possible to tackle analytically as done above. It was seen that the agents with
higher ε are more likely to change side and be in the majority. So, if the average
pay-offs are plotted against ε, a monotonic decay is observed (Fig. 12.12).
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Fig. 12.11 Data collapse for
finding z in the disordered
case for different system sizes
(M = 103,104,105,106) at
x = 1.0. The estimate is
z/d = 0.50± 0.01. Inset
shows the uncollapsed data.
The linear part in the inset
confirms α = 1.00± 0.01.
From [23]

Fig. 12.12 For quenched εi
the average pay-offs of the
agents are plotted for
different ε values having
different ranges as indicated.
The monotonic decay with
increasing ε clearly indicates
that agents with higher ε are
more likely to be in the
majority. From [23]

12.5.3.2 Following an Annealing Schedule

Usually in minority game, agents do not have any information about the amount
of excess population in the majority. They are only aware whether they are in the
minority or majority. All the strategies mentioned above require this information in
some form (fully or partially). However, it was studied in Ref. [23] that even without
this information, the system can reach the fully efficient state in lnN time.

In this case of least informed agents, the agents assume a simple time evolution
for the excess population. An example can be

ΔT (t)=ΔT (0) exp(−t/τ ), (12.49)

where ΔT (0) is close to
√
M , corresponding to the initial random choice. Assuming

this form, one can plot the actual Δ(t) along with this trial function with time. They
have a simple relation as follows:

2Δ(t)=ΔT (t). (12.50)
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Fig. 12.13 Time variation of the excess population Δ(t) are plotted for different functional forms
of ΔT (t). Left: In log-linear scale the excess population are plotted for exponential decay. Right:
For power law (ΔT (0)/(1+ t)κ decay, with different values of κ). M = 5×103 for the simulations.
From [23]

This implies that even when the agents are completely unaware of the excess popu-
lation, they can reach an efficient state (Δ(t)∼ 1) in lnN time.

It was also checked in Ref. [23] if this process is specific to the functional form
considered for the trial function. For this purpose a power-law decay was also con-
sidered

ΔT (t)= ΔT (0)

(1+ t)κ
. (12.51)

Again it was found that for different κ values, the relation in (12.50) is satisfied. It
was therefore concluded that this relation is true for a wide range of the functional
form (the restrictions in the functional form is discussed later).

The behavior of the order parameter when a trial function is considered, can be
verified as follows: The dynamical evolution of O(t) would be

O(t + 1)= |η(t)−O(t)|
1+ η(t)

, (12.52)

where η(t) = ΔT (t)/M . When η(t) > O(t), one can obtain (by Taylor series ex-
pansion)

dO(t)

dt
− [

η(t)− 2
]
O(t)= η(t)

[
1− η(t)

]
. (12.53)

A general solution of the above equation will be of the form

O(t) =
∫ t

0 dt1 η(t1)(1− η(t1))e
∫ t1

0 (2−η(t2)) dt2

e
∫ t

0 (2−η(t1)) dt1

+C1e
− ∫ t

0 (2−η(t1)) dt1, (12.54)
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where C1 is a constant. This is valid only when η(t) is not a fast decaying function.
When η(t) < 2, the dominant terms in the above equation is

O(t)≈ η(t)(1− η(t))

2− η(t)
≈ η(t)

2
, (12.55)

which was the numerical observation (see Fig. 12.13). If one evaluates (12.54) using
η(t)= η0 exp(−t/τ ) for τ > 1/2, one gets

O(t)∼ τ

2τ − 1
η(t). (12.56)

Therefore, O(t)≈ η(t)/2 is only valid when τ � 1/2, which limits the fastness in
the trial function.

When one considers a fast decaying trail function, one would simply have

O(t)∼O(t − 1)− η(t − 1)∼O(0)−
t−1∑

k=0

η(k). (12.57)

So, O(t) will saturate to a finite value in this case.

12.5.4 Effect of Random Traders

The above mentioned strategies concern with agents following a given strategy (this
does not remove their heterogeneity, since these are stochastic strategies that involve
uncorrelated random numbers). However, it is often the case in real markets that
there exist agents who do not follow the market signals (fluctuations) in deciding
their trade strategies. Whatever might be their logic, it terms of market signals, they
can be treated as random traders who decide completely randomly as opposed to
the chartists who follow given strategies (deterministic or stochastic). Following
discussions deal with effect of such random traders in minority games.

12.5.4.1 Single Random Trader

Consider the scenario when there is only one random trader in the system. The other
agents follow some strategy mentioned before, and reach the minimum fluctuation
state. After that Δ(t) = 0, so no chartist will shift from his or her choice. How-
ever, the single random trader will continue to shift on average in a 2 days time
period. The majority will be determined by this random trader. Therefore, that ran-
dom trader will always be the loser. Although the resource utilization will be perfect
in this case, it will be at the cost of one player being in the majority for ever.
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Fig. 12.14 The saturation
values of Os are plotted
against q for different
fractions p of the random
traders. M = 106 for the
simulations. From [23]

12.5.4.2 More than One Random Trader

The case of the single random trader has the problem that the random trader is
always a loser. This makes the system unstable in the sense that resource allocation
is unfair for that agent as long as he or she follows that strategy (random in this
case). However, this problem can be avoided by considering more than one random
player. In this case it is not always possible to keep all the random players in the
majority, since the majority is no longer determined by a single random player. Also,
as the average time period is 2 days for the random players, both the choices will
become majority and minority in this time period (due to symmetry of the choices).
It is true that random players would make the fluctuations to grow. If the number
of random player is pN , then the fluctuation would scale as

√
N (see Fig. 12.14).

However, one can always keep the number of random players at a minimum value.
If this number is 2, then the fluctuation would be minimum and uniform resource
allocation is guaranteed.

12.6 Summary

We consider a repetitive game performed by N agents choosing every time (paral-
lelly) one among the n(≤ N) choices, such that each agent can be in minority: no
one else made the same choice in the KPR case (typically n = N ) and Nk < N/2
for the Minority Game (n = 2; k = 1,2). The strategies to achieve this objective
evolve with time bounded by N . Acceptable strategies are which evolve quickly
(say within logN time). Also the effectiveness of a strategy is measured by the re-
sulting utilization factor f̄ giving the (steady state) number of occupied restaurants
in any evening for the KPR, by the value of fluctuation Δ in the minority game case
(Δ= 0 corresponds to maximum efficiency).

The study of the KPR problem shows that a dictated solution leads to one of
the best possible solution to the problem, with each agent getting his dinner at the
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best ranked restaurant with a period of N evenings, and with best possible value
of f̄ (=1) starting from the first evening on itself. For a democratic situation (for
parallel decision strategies), the agents employ stochastic algorithms based on past
occupation informations (e.g., of Nk(t))). These strategies are of course less efficient
(f̄ � 1; the best one discussed in [5], giving f̄ � 0.8 only). Here the time required
is very weakly dependent on N , if any. We also note that most of the “smarter”
strategies lead to much lower efficiency.

Finally we note that the stochastic strategy Minority Game [21], a very effi-
cient one: The strategy is described by (12.11), where the agents very quickly (in
log logN time; N = 2M + 1) get divided almost equally (M and M + 1) between
the two choices. This strategy guarantees that a single cheater, who does not fol-
low this strategy, will always be a loser. However, the dynamics in the system stops
very quickly (leading to the absorbing state), making the resource distribution highly
asymmetric (people in the majority stays there for ever) thereby making this strategy
socially unacceptable. To rectify this, we noted that the presence of a single random
trader (who picks between the two choices completely randomly) will avoid this ab-
sorbing state and the asymmetric distribution. However, this will always make that
random trader a loser. But the presence of more than one random trader will avoid
that situation too, making the average time period of switching between majority
and minority for all the traders (irrespective of whether they are chartists or random
traders) to be 2. Hence, the system will always evolve collectively such that only
two agents will make random choices between the binary choices, while the rest
N − 2 will follow the probabilities given by (12.11).
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Chapter 13
Kolkata Paise Restaurant Problem
and the Cyclically Fair Norm

Priyodorshi Banerjee, Manipushpak Mitra, and Conan Mukherjee

Abstract In this paper we revisit the Kolkata Paise Restaurant problem by allowing
for a more general (but common) preference of the n customers defined over the
set of n restaurants. This generalization allows for the possibility that each pure
strategy Nash equilibrium differs from the Pareto efficient allocation. By assuming
that n is small and by allowing for mutual interaction across all customers we design
strategies to sustain cyclically fair norm as a sub-game perfect equilibrium of the
Kolkata Paise Restaurant problem. We have a cyclically fair norm if n strategically
different Pareto efficient strategies are sequentially sustained in a way such that each
customer gets serviced in all the n restaurants exactly once between periods 1 and n

and then again the same process is repeated between periods (n+ 1) and 2n and so
on.

13.1 Introduction

The Kolkata Paise Restaurant problem [2, 3, 5–7] is a repeated game with identi-
cal stage (or one-shot) games and with the same set of n customers (or agents or
players). In each stage these n customers have to simultaneously choose between n

restaurants to get served. All the customers have a common and rational preference
ordering over the service of these n restaurants and, to each customer, the least pre-
ferred outcome is not getting the service. Without loss of generality, we assume that
the first restaurant is the most preferred followed by the second restaurant and so on
and that getting served in the last restaurant is preferred to not getting the service.
The price of getting the service from each restaurant is identical. Each restaurant
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can serve only one customer so that if more than one customer arrives at the same
restaurant, the restaurant randomly chooses one customer to serve and the others do
not get the service in that stage. Thus, given the common preferences of the cus-
tomers over the set of restaurants, the stage game of the Kolkata Paise Restaurant
problem is a symmetric one. Moreover, as long as the first restaurant is strictly pre-
ferred to the last restaurant, the stage game of the Kolkata Paise Restaurant problem
is non-trivial. Given the restrictions on the preferences, Pareto efficiency means that
each customer goes to a different restaurant and each restaurant gets exactly one
customer to serve.

In the very first work on the Kolkata Paise Restaurant problem [2], it was as-
sumed that the common preferences of the customers is such that going to any
unoccupied restaurant is strictly preferred to going to any other restaurant where
at least another customer is present. This restriction implied that the set of pure
strategy Nash equilibria of the stage game were all Pareto efficient. Hence there
are exactly n!(= n(n − 1) . . .2.1) pure strategy Nash equilibria of this version of
the stage game of the Kolkata Paise Restaurant problem. If customers are ratio-
nal, n is small and if customers can mutually interact, then, given the fact that the
set of pure strategy Nash equilibrium are also Pareto efficient, one can show that
it is easy to sustain any pure strategy Nash equilibrium of the stage game of the
Kolkata Paise Restaurant problem as a sub-game perfect equilibrium outcome of
the Kolkata Paise Restaurant problem without designing any punishment strategy.
This is because, in this context, unilateral deviation means going to a restaurant
where there is already another customer which is payoff reducing. In this context
it seems quite unfair to sustain exactly one pure strategy Nash equilibrium of the
stage game repeatedly as a sub-game perfect Nash equilibrium of the Kolkata Paise
Restaurant problem. This is because in any pure strategy Nash equilibrium of the
stage game, the customer going to the first restaurant derives a strictly higher pay-
off than the customer going to the last restaurant. Instead it seems more natural to
sustain the cyclically fair norm where n strategically different Pareto efficient allo-
cations are sequentially sustained in a way such that each customer gets serviced
in all the n restaurants exactly once between periods 1 and n and then again the
same process is repeated from the (n+1)th period to period 2n and so on. A variant
of the cyclically fair norm was proposed in [7] under the large player assumption.
However, this type of cyclically fair norm can also be sustained as a sub-game per-
fect Nash equilibrium because unilateral deviation at any stage means going to a
restaurant already occupied by another customer which is always payoff reducing.
Therefore, the existing structure of the Kolkata Paise Restaurant problem is such
that if the number of customers n is small and if the customers can coordinate their
action then the problem becomes uninteresting as there is no need to design pun-
ishment strategies to induce customers to remain in the equilibrium path. Thus it
is natural that the existing literature on Kolkata Paise Restaurant problem [2, 5–7]
deals with situations where n is macroscopically large so that the agents cannot
rely on the other agents’ actions and therefore what matters to each agent is the
past collective configuration of actions and the resulting average utilization of the
restaurants.
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In this paper we revisit the Kolkata Paise Restaurant problem by relaxing the
assumption on preferences that ensures the Pareto efficiency of all the pure strat-
egy Nash equilibria of the stage game. Therefore, we analyze the Kolkata Paise
Restaurant problem by looking at a more general (but common across agents) ratio-
nal preference structure over the restaurants such that the stage game allows for the
possibility of inefficient pure strategy Nash equilibria. In this scenario we assume
that n is small and that customers can take coordinated actions and then analyze the
possibility of sustaining the cyclically fair norm as a sub-game perfect equilibrium
of the Kolkata Paise Restaurant problem. Clearly, in this context, there is a need for
designing punishment schemes in order to sustain the cyclically fair norm as a sub-
game perfect equilibrium since unilateral deviation from the proposed norm can be
payoff enhancing as the configurations under the cyclically fair norm may not be
pure strategy Nash equilibria of the stage game.

13.2 The Stage Game

We start by formally defining and analyzing the stage game associated with the
Kolkata Paise Restaurant (or KPR) problem. Let N = {1, . . . , n} be the finite set of
agents, S = {R1, . . . ,Rn} be the set of restaurants and vector u= (u1, . . . , un) ∈ �n

represent the utility (in terms of money) associated with each restaurant which is
common to all customers or agents. Assume w.l.o.g. that 0 < un ≤ · · · ≤ u2 ≤ u1

with u1 �= un. Formally, the one shot KPR game is G(u) ≡ (N,S,π), where S =
{R1, . . . ,Rn} is the common action space and πi : Sn �→ � is the payoff function
of agent i. For any agent i, si = k ∈ S implies that agent i chooses the strategy of
going to restaurant k. It may so happen that more than one agents goes to the same
restaurant. In that case, service is provided to only one of them and this selection is
completely random. Therefore, for any strategy profile s ∈ Sn, the expected payoff
to agent i, πi(s)= usi

ηi (s)
where ηi(s)= 1+|{j ∈N : j �= i, si = sj }| is the number of

agents that have selected the same restaurant as agent i. We call a strategy profile s =
(s1, . . . , sn) ∈ Sn Pareto efficient, if the sum of payoffs of the agents is maximized,
that is,

s ∈ arg max
s′∈Sn

∑

i∈N
πi

(
s′
)
.

Given the current setting, a strategy combination leads to Pareto efficiency if and
only if the strategies of the agents are such that they end up in different restaurants,
that is, ∀i, j ∈N , si �= sj . A strategy combination s∗ = (s∗1 , . . . , s∗n) is a pure strat-
egy Nash equilibrium (NE) if no agent i has incentive to deviate from the existing
strategy s∗i given the strategies s∗−i = (s∗1 , . . . , s∗i−1, s

∗
i+1, . . . , s

∗
n) of the other play-

ers, that is, for each agent i ∈N ,

πi

(
s∗
)≥ πi

(
si , s

∗−i

) ∀si ∈ S.
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Remark 13.1 It was proved in [2] that if u1 < 2un then the set of all pure strategy
Nash equilibria of the one-shot KPR problem coincides with the set of all Pareto
efficient strategies. This result is quite intuitive since the restriction u1 < 2un means
that going to any unoccupied restaurant is strictly preferred to going to any other
restaurant where at least another agent is present. Hence for any agent i ∈N , given
the strategy of all other agents, it is always optimum for agent i to select the most
preferred unoccupied restaurant. Since the number of restaurant is the same as the
number of agents, it is always possible for agent i to find an unoccupied restaurant.
Hence in any pure strategy Nash equilibrium all agents end up in different restau-
rants which is also a Pareto optimal strategy combination.

Before concluding this section we provide a discussion on symmetric mixed
strategy equilibria in the following remark.

Remark 13.2 (Symmetric mixed strategy equilibria) Let u1 < 2un and let A(S) de-
note the set of all mixed strategies defined over S.1 A symmetric mixed strategy
Nash equilibrium p∗ = (p∗, . . . , p∗︸ ︷︷ ︸

n

) ∈ A(S)N where p∗ = (p∗1, . . . , p∗n) ∈ [0,1]n

with
∑n

i=1 p
∗
i = 1 is a solution to the following sets of equation:

For each i ∈N ,
∑n−1

k=0(1−p∗i )k = nc(n)
ui

for some constant c(n) which is positive

real.2

(i) For N = {1,2}, the symmetric mixed strategy Nash equilibrium is p∗ =
(p∗,p∗) where p∗ = (p∗1 = 2u1−u2

u1+u2
,p∗2 = 2u2−u1

u1+u2
) and c(2)= 3u1u2

2(u1+u2)
.

(ii) For N = {1,2,3}, there are two symmetric mixed strategy Nash equilibria.
These equilibria are characterized by p∗ = (p∗1,p∗2,p∗3) and c(3) where p∗i =
3
2 − 1

2

√
12c(3)
ui

− 3 for all i ∈ {1,2,3}, the constant c(3) takes two values given

by c(3) = √E1E2E3
( 3(E1+E2+E3)±

√
9(E1+E2+E3)

2−20(E2
1+E2

2+E2
3 )

(E2
1+E2

2+E2
3 )

)
and Ei =

ujul for all i �= j �= l �= i. It can be verified that given u3 < 2u1, 9(E1 +E2 +
E3)

2 − 20(E2
1 +E2

2 +E2
3) > 0 and hence c(3) is always positive real.

(iii) In general, for n > 3 such symmetric mixed strategy equilibria always exists
[1]. A general feature of the symmetric mixed strategy equilibria is that 0 <

p∗n ≤ · · · ≤ p∗1 < 1 and p∗1 �= p∗n.

It is quite clear from Remark 13.2 that working out the mixed strategy equilibria,
in general, is difficult. Therefore, in this paper, we concentrate only on pure strategy
equilibria of the stage game.

1A mixed strategy is a probability distribution defined on the strategy set. Therefore, in the present
context, A(S) is the set of all probability distributions on the set of restaurants S.
2For mixed strategy equilibria the required condition is

∑n−1
r=0

{(
n−1
r

)
(p∗i )r (1− p∗i )n−r−1 ui

r+1

} =
c(n) for all i ∈N and after simplification we get

∑n−1
k=0(1− p∗i )k = nc(n)

ui
for all i ∈N .
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13.3 The KPR Problem

The KPR problem is an infinitely repeated game where in each stage the same set
of N = {1, . . . , n} agents play the one shot KPR game G(u) defined in the previous
section.3 We represent the KPR problem as G∞(u)= (N, (Σi)i∈N, (Πi)i∈N) where
N is the set of agents and for any agent i, Σi is the set of strategies available to i,
while Πi is the payoff function of i. However, the concepts of strategy and payoff,
have now become more complex, due to this repeated interaction setting.4

Let us start with the concept of strategy in G∞(u). In each period t , the play of
the one-shot KPR game would result in some action profile st = (st1, . . . , s

t
n) ∈ Sn.

Given any period t , define history ht = (s1, s2, . . . , st−1) as the description of past
play. That is, ht is a sequence of action profiles realized through times 1 to t − 1.
For any t , ht is assumed to be common knowledge. Let Ht denote the set of all
possible histories at time t . Strategy of i in G∞(u), specifies an action, that is, the
restaurant that i goes to, in each period t , for each possible history ht . Therefore,
∀ i ∈N , ∀ σi ∈Σi , σi :Ht �→ S.

For each possible sequence of action profiles over time, we get a sequence of
payoffs, for each agent. To calculate the payoff of an agent we define the concept
of the discount factor δ ∈ (0,1). It is presumed that agents are impatient, and hence,
discount future payoffs, so that present discounted value of a dollar to be received
one period later is δ, two periods later is δ2, and so on. In general, any payoff x

to be received τ periods later, is valued at the present period as δτ x. Therefore,
present discounted value of the infinite sequence of payoffs corresponding to any
infinite sequence of action profiles {s1, s2, s3, . . .}, for agent i, is

∑∞
t=1 δ

t−1πi(s
t ).

We assume that each agent discounts the future payoffs at same rate.5

Remark 13.3 In this remark we provide two interpretations of the discount factor.

(i) The popular interpretation of discount factor δ is that it is the time-value of
money. Suppose a person puts an amount of money x in a bank at the beginning
of present period. If the bank pays interest r per period, upon withdrawal the
person gets x(1+ r) money at the beginning of the next period. Therefore, we
can say that amount x to be received in the beginning of the next period is
worth only 1

1+r
x money in the present period. Setting δ = 1

1+r
we get that; at

present, the next period payoff x is worth δx and the next to next period payoff
x is worth δ2x. Therefore, a sequence of future payoffs {x1, x2, x3, . . .} is worth∑∞

t=1 δ
t−1xt at present.

(ii) The concept of δ, can also be used to view the infinitely repeated game as a finite
period repeated game that ends after a random number of periods. Suppose that

3An infinitely repeated game like the KPR problem, where the same stage game is played repeat-
edly, is also referred to as a supergame [4].
4The analysis of the concepts of repeated game theory is taken from [8] and [9].
5It can be easily verified that the conclusions of this paper remain qualitatively same if we allow
for unequal discount factors across agents.
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after each period is played, a (possible weighted) coin is flipped to determine
whether the game will end. If the probability that the game ends immediately
is p and then, with probability 1− p, the game continues for a least one more
period and then the payoff x, to be obtained in the next stage (if it occurs), is
worth only (1−p)x

(1+r)
. Similarly, a payoff x to be received two periods from now

(if both periods are played) is worth only (1−p)2x

(1+r)2 before this stage’s coin flip

occurs. Therefore, the sum x + δx + δ2x + · · · with δ = 1−p
1+r

reflects both the
time value of money and the possibility that the game may end.

For different values of δ, we get different KPR problems G∞δ (u). Therefore, for
any agent i, payoff function Πi in G∞δ (u) is a mapping Πi :Σ1× . . .Σn �→ � such
that for any strategy profile σ = (σ1, . . . , σn), Πi(σ )=∑∞

t=1δ
t−1πi(σ

t
1, σ

t
2, . . . , σ

t
n).

A strategy profile σ ∗ = (σ ∗1 , . . . , σ ∗n ) is a Nash equilibrium (NE) of G∞δ (u), if no
agent i finds it profitable to deviate unilaterally from σ ∗, that is for each i ∈N ,

Πi

(
σ ∗

)≥Πi

(
σi, σ

∗−i

) ∀σi ∈Σi.

We focus on a particular strategy profile σ̄ satisfying the following conditions.

(i) Without loss of generality, in period t = 1 each agent i(∈ N) goes to restau-
rant i.

(ii) For any period t > 1, if agent i went to restaurant 1 in the last period t − 1,
then i goes to restaurant n at period t .

(iii) For any period t > 1, if agent i went to restaurant k > 1 in the last period t − 1,
then i goes to restaurant k − 1 at period t .

Note that strategy σ̄ requires that action of any agent i at any period t depend only
on i’s action at period t −1 and not on other agents’ actions in the past. If all agents
play σ̄ at G∞δ (u), we get the cyclically fair norm.

Proposition 13.1 If u1 < 2un, then for all δ ∈ (0,1), σ̄ is a Nash equilibrium of
G∞δ (u).

Proof If u1 < 2un then we know that in any period t , going to any unoccupied
restaurant is strictly preferred to going to any other restaurant where at least another
agent is present. Hence it is always optimum for any agent i ∈ N , in any period t ,
to select the most preferred unoccupied restaurant. Since the number of restaurant
is the same as the number of agents, it is always possible for agent i in any period t

to find an unoccupied restaurant.
Given σ̄ it is clear that any unilateral deviation from σ̄ by any agent i, at any

time t , would lead to i being tied with another agent at some restaurant thereby
ensuring a strict reduction in payoff in that period.

Depending on the deviation strategy σi , in all periods after t , agent i can face a
tie or he may not face a tie. If agent i faces a tie then he is strictly worse off in that
period in comparison to σ̄i and if he does not face a tie then he gets the same payoff
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in that period in comparison to σ̄i . The reason is that given that all other agents
j ∈ N \ {i} are continuing with the strategy σ̄j , in each period after t , for agent i,
there is exactly one restaurant which is not occupied and hence, given the preference
of agent i we get the result. Thus, in either case Πi(σi, σ̄−i ) < Πi(σ̄ ) implying that
σ̄ is a Nash equilibrium of G∞δ (u). �

Our objective is to sustain σ̄ as a sub-game perfect equilibrium in order to imple-
ment the cyclically fair norm. That is, we need to show that σ̄ constitutes a sub-game
perfect equilibrium of G∞δ (u). Before defining the sub-game perfect equilibrium we
need to define a sub-game. We call any ‘piece’ of game G∞δ (u) following any his-
tory ht , at any period t , a subgame of G∞δ (u). Therefore, a sub-game is that piece
of the game that remains to be played beginning at any point at which the complete
history of the game thus far is common knowledge. The definition of a strategy in
any infinitely repeated game is closely related to the definition of a sub-game. In
particular, an agent’s strategy specifies the actions the agent will take in the first
period of the repeated game and the first stage of each of its sub-game. There are in-
finite number of sub-games of G∞δ (u). Since G∞δ (u) is an infinitely repeated game,
each of its sub-games, beginning at period t + 1 of G∞δ (u) is identical to G∞δ (u).
Note that the t th period of a repeated game taken in isolation is not a sub-game
of the repeated game. Therefore, a sub-game is a piece of the original game that
not only starts at a point where the history of the game thus far is common knowl-
edge among the agents, but also includes all the moves that follow this point in the
original game. A Nash equilibrium strategy profile σ ∗∗ = (σ ∗∗1 , . . . , σ ∗∗n ) is a sub-
game perfect equilibrium if these strategies constitute a Nash equilibrium in every
sub-game.

Corollary 13.1 If u1 < 2un, then for any δ ∈ (0,1), σ̄ is a sub-game perfect equi-
librium of G∞δ (u).

Proof Given particular property of σ̄ where i’s behavior depends only on his own
past behavior, no deviation by i in any period t (and hence in the sub-game starting
from period t) can induce a change in future actions of other agents in N \ {i}.
Thus, using the arguments from the last paragraph of the proof of Proposition 13.1,
it follows that σ̄ continues to be a Nash equilibrium in every sub-game of G∞δ (u). �

Remark 13.4 If u1 = 2un then, by making minor alterations in the arguments in
the proofs of Proposition 13.1 and Corollary 13.1, one can implement the cyclically
fair norm as a sub-game perfect equilibrium with the same strategy σ̄ and for any
δ ∈ (0,1). The proof is left to the reader.

Observe that the strategy profile σ̄ , that implements the cyclically fair norm as a
sub-game perfect equilibrium when u1 ≤ 2un, is such that there is no specification
of punishment in the sense that it is silent about what happens if one agent devi-
ates from the existing strategy. However, if u1 > 2un then implementing the cycli-
cally fair norm becomes non-trivial and one has to design appropriate punishment
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Table 13.1 The two-agent
payoff matrix G(u1, u2) R1 R2

R1
(
u1
2 , u1

2

)
(u1, u2)

R2 (u2, u1)
(
u2
2 , u2

2

)

schemes. To see this, consider the simple stage game with n = 2. The two-agent
payoff matrix with 1 as the row player and 2 as the column player is presented in
Table 13.1.

If u1 < 2u2 then there are only two pure strategy Nash equilibria (R1,R2) and
(R2,R1) of the stage game. Even when u1 = 2u2, (R1,R2) and (R2,R1) continue
to be pure strategy Nash equilibria of the stage game. Therefore, the Pareto efficient
strategies where both agents go to different restaurants are pure strategy Nash equi-
libria for u2 ≥ u1

2 . It is this strong result that drives Proposition 13.1 and we can
easily implement the cyclically fair norm. Note that if u2 = u1

2 , then there are three
pure strategy Nash equilibria (R1,R2), (R2,R1) and (R1,R1) of the stage game.
Therefore, for u1 = 2u2, there exists a sub-game prefect equilibrium that leads to
inefficiency in every period. Specifically, the strategy that specifies that each agent
should go to the first restaurant in all periods is a sub-game perfect equilibrium,
where sum of the stage game payoffs of the two agents is u1 which is strictly less
that sum u1 + u2 that results under any Pareto optimal strategy. The problem gets
only worse if 2u2 < u1, because now there is only one pure strategy Nash equi-
librium (R1,R1) of the stage game which is not Pareto efficient. How to design
strategies to implement the cyclically fair norm as a sub-game perfect equilibrium
when n= 2 and 2u2 < u1 is discussed in the next section.

13.4 The Two Agent Problem

In this section we show that for N = {1,2} and for u2 < u1
2 , if agents are sufficiently

patient (that is, if δ is sufficiently high), then, by designing an appropriate strategy
one can implement the cyclically fair norm as a sub-game perfect equilibrium of
G∞δ (u1, u2). The strategy profile we propose, to implement the cyclically fair norm,
is σ c = (σ c

1 , σ
c
2 ), that specifies the following.

(i) Without loss of generality, if t is odd, then agent 1 plays R1 and agent 2 plays
R2.

(ii) If t is even, then agent 2 plays R1 and agent 1 plays R2.
(iii) If in any period t both agents end up in the same restaurant, then from t + 1

onwards both agents play R1.

Strategy profiles of the type σ̄ c above, are called trigger strategies because
agents cooperate until someone fails to cooperate, which triggers a switch to non-
cooperation forever. In other words, each agent is willing to settle for lower payoffs
under the expectation that the other agent would do the same. If some agent breaks
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this cooperative arrangement, the other agent punishes the deal-breaker by playing
certain actions (for all periods in future) that ensure lower present discounted pay-
offs. Thus, a deviation triggers a punishment play by the non-deviating agents. Such
trigger strategies are sub-game perfect only if the punishment play for all future pe-
riods, induced by these strategies, are credible. This credibility, in turn, requires that
the punishment play be the Nash equilibrium of G∞δ (u1, u2) as a whole.

Proposition 13.2 For all δ ∈ (u1−2u2
u1

,1), the strategy profile σ̄ c = (σ c
1 , σ

c
2 ) is a

Nash equilibrium of G∞δ (u1, u2).

Proof We first assume that agent 1 plays strategy σ̄ c
1 . Given σ̄ c

1 , we show that if
δ ∈ (u1−2u2

u1
,1) then σ̄ c

2 is the best response of agent 2.
It is clear that at any history, if agent 1 decides to play R1 in all future periods,

then, given 2u2 < u1, the best response of agent 2 is to play R1 in all future periods.
Consider the other possibility, that is, agent 1 decides to alternate between restau-

rants 1 and 2 at each odd and even period, respectively. Then it is obvious that the
best response of agent 2 at any even period is to play R1 (since agent 1 is playing
R2 and u1 > u2). However, finding the best response of agent 2, at odd periods
(when agent 1 plays R1), is a little more complicated. If agent 2 chooses R1, then
as per σ̄ c, agent 1 plays R1 at all future periods, giving 2 a present discounted
payoff u1

2 + δ u1
2 + δ2 u1

2 + · · · = u1
2(1−δ)

. Define P to be the present discounted pay-
off that agent 2 gets by making the optimal action choice at any such odd period.
Therefore, if the optimal choice of agent 2 is R1, then P = u1

2(1−δ)
. If the optimal

choice of agent 2 is R2, then in the next period, that is in period t + 1 which is even,
agent 1 plays R2. As mentioned before, the best response of 2 at t + 1 is R1, and
so we have the following: (i) agent 2 gets payoff u1 at t + 1 and (ii) agent 2 faces
the same choice problem in period t + 2 as in period t and, since all sub-games of
G∞δ (u1, u2) is G∞δ (u1, u2) itself, agent 2 selects P . Therefore, if R2 has to be the
optimal choice of agent 2 at all odd periods t then agent 2 gets u2 + δu1 + δ2P and
hence, by definition of P and using observations (i) and (ii), it follows that P has
to satisfy the condition that P =max{ u1

2(1−δ)
, u2 + δu1 + δ2P } = u2 + δu1 + δ2P .

If P = u2 + δu1 + δ2P then we get P = u1δ+u2
1−δ2 . Finally, for σ̄ c

2 to be the best re-

sponse it is both necessary and sufficient that u1δ+u2
1−δ2 > u1

2(1−δ)
which holds for all

δ ∈ (u1−2u2
u1

,1). Therefore, at any odd period the best response of agent 2 is R2

implying that for all δ ∈ (u1−2u2
u1

,1), the strategy σ̄ c
2 is the best response of agent 2

when agent 1 plays σ̄ c
1 . Using very similar arguments it is now quite easy to show

that for all δ ∈ (u1−2u2
u1

,1), the strategy σ̄ c
1 is the best response of agent 1 when

agent 2 plays σ̄ c
2 . Hence, σ̄ c = (σ̄ c

1 , σ̄
c
2 ) is a Nash equilibrium of G∞δ (u1, u2) for all

δ ∈ (u1−2u2
u1

,1). �

Corollary 13.2 For all δ ∈ (u1−2u2
u1

,1), the strategy profile σ̄ c = (σ c
1 , σ

c
2 ) is a sub-

game perfect equilibrium of G∞δ (u1, u2).
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Proof The set of sub-games of G∞δ (u1, u2) can be partitioned into two classes. One
class following those histories where each agent followed the cyclically fair norm
and alternated between restaurants 1 and 2 in a way such that Pareto efficiency is
achieved in every period. The other class following those histories where there has
been a tie at some restaurant and agents have shifted to (R1,R1) from the next
period onwards. Recall that every sub-game of G∞δ (u1, u2) is G∞δ (u1, u2) itself. If
agents adopt strategy σ̄ c for the game as a whole, then they end up playing strategy
σ̄ c in sub-games of the first class and (ii) the punishment play (R1,R1) in each
period of sub-games of the second class. By Proposition 13.2, for sub-games of
the first type, strategies σ̄ c constitute a Nash equilibrium. For sub-games of the
second type, the punishment play of R1 by both agents at all periods constitutes a
Nash equilibrium of G∞δ (u1, u2) since (R1,R1) is the unique Nash equilibrium of
G(u1, u2) when 2u2 < u1. Hence, the punishment play is always credible and the
result follows. �

From Corollary 13.2 it follows that as long as agents are sufficiently patient, the
strategy profile σ̄ c implements the cyclically fair norm. Therefore, the bound on δ,
obtained in Proposition 13.2 above, signifies the need for sufficiently patient agents
to implement cyclically fair norm that calls for cooperative behavior. If agents feel
the need to obtain high payoffs in the future (or equivalently if δ is high enough) then
they are willing to make a sacrifice by going to the inferior restaurant in alternate
periods in order to maximize long term individual payoff. In the next section we
analyze the KPR problem with three agents. We show how using different strategy
profiles one can implement the cyclically fair norm.

13.5 The Three Agent Problem

We depict the payoff matrices of G(u1, u2, u3) in Tables 13.2, 13.3 and 13.4.
Recall that if the one shot game G(u1, u2, u3) represents the one shot game of the

KPR problem then u1 ≥ u2 ≥ u3 > 0 and u1 �= u3. With different types of additional
conditions on u1, u2 and u3, we identify and discuss the associated set of pure
strategy Nash equilibria in the following cases.

(N1) If u2 < u1
3 then there is a unique pure strategy Nash equilibrium (R1,R1,R1)

of G(u1, u2, u3). This equilibrium is inefficient.
(N2) If u3 < u2 = u1

3 then the four pure strategy Nash equilibria of G(u1, u2, u3)

are (R1,R1,R1), (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All these
equilibria are inefficient. The equilibrium (R1,R1,R1) is Pareto dominated
by all the remaining equilibria since the aggregate payoff under (R1,R1,R1)
is u1 which is strictly less than the aggregate payoff (u1 + u2) that results
from each of the remaining equilibria.

(N3) If we have u3 = u2 = u1
3 , then (R1,R1,R3), (R1,R3,R1) and (R3,R1,R1)

are also pure strategy Nash equilibria along with the other equilibria speci-
fied in (N2) and hence we have seven pure strategy Nash equilibria. Again,
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Table 13.2 The payoff
matrix when agent 3 plays R1 G(u1, u2, u3) R1 R2 R3

R1 ( u1
3 , u1

3 , u1
3 ) ( u1

2 , u2,
u1
2 ) ( u1

2 , u3,
u1
2 )

R2 (u2,
u1
2 , u1

2 ) ( u2
2 , u2

2 , u1) (u2, u3, u1)

R3 (u3,
u1
2 , u1

2 ) (u3, u2, u1) (
u3
2 ,

u3
2 , u1)

Table 13.3 The payoff
matrix when agent 3 plays R2 G(u1, u2, u3) R1 R2 R3

R1 ( u1
2 , u1

2 , u2) (u1,
u2
2 , u2

2 ) (u1, u3, u2)

R2 ( u2
2 , u1,

u2
2 ) ( u2

3 , u2
3 , u2

3 ) ( u2
2 , u3,

u2
2 )

R3 (u3, u1, u2) (u3,
u2
2 , u2

2 ) (
u3
2 ,

u3
2 , u2)

Table 13.4 The payoff
matrix when agent 3 plays R3 G(u1, u2, u3) R1 R2 R3

R1 ( u1
2 , u1

2 , u3) (u1, u2, u3) (u1,
u3
2 ,

u3
2 )

R2 (u2, u1, u3) ( u2
2 , u2

2 , u3) (u2,
u3
2 ,

u3
2 )

R3 (
u3
2 , u1,

u3
2 ) (

u3
2 , u2,

u3
2 ) (

u3
3 ,

u3
3 ,

u3
3 )

the equilibrium (R1,R1,R1) is Pareto dominated by the other six non-
comparable equilibria. The equilibria are inefficient.

(N4) If max{u3,
u1
3 } < u2 < u1

2 then the three pure Nash strategy equilibria of the
game G(u1, u2, u3) are (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All
these equilibria lead to the same aggregate payoff and hence, are Pareto non-
comparable. The equilibria are inefficient.

(N5) If u3 = u2 < u1
2 then (R1,R1,R3), (R1,R3,R1) and (R3,R1,R1) are also

pure strategy Nash equilibria along with the other equilibria specified in (N4)
and hence we have six pure strategy Nash equilibria of G(u1, u2, u3). The
equilibria are Pareto non-comparable and inefficient.

(N6) If u3 < u1
2 ≤ u2 ≤ u1 then the three pure strategy equilibria of G(u1, u2, u3)

are (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All these equilibria are
inefficient and Pareto non-comparable.

(N7) If u1
2 ≤ u3 then we do not identify all possible pure strategy Nash equilibria.

However, what is important is that the Pareto efficient strategies, characterized
by all agents going to different restaurants, are all included in the set of all pure
strategy Nash equilibria.

The equilibria in case (N7) above are uninteresting as implementation of the
cyclically fair norm as a sub-game perfect equilibrium of G∞(u1, u2, u3) is quite
easy (see Corollary 13.1 and Remark 13.4). For cases (N1)–(N3), all agents going to
the best restaurant, that is, the strategy profile (R1,R1,R1) constitutes a pure strat-
egy Nash equilibrium and is Pareto inefficient. Therefore, as in Proposition 13.2 and
Corollary 13.2, for cases (N1)–(N3), we can implement the cyclically fair norm as
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a sub-game perfect equilibrium of G∞δ (u1, u2, u3) for δ sufficiently close to one. It
can be easily shown that, by designing a strategy profile which is a natural exten-
sion of σ c = (σ c

1 , σ
c
2 ) to the three agent case and that specifies that the non-deviating

agents punish the deviating agent by going to the best restaurant for all future pe-
riods, one can implement the cyclically fair norm. For the rest of the cases, that
is, (N4)–(N6), strategy profile (R1,R1,R1) fails to be a pure strategy Nash equi-
librium of the stage game, and so, implementing the cyclically fair norm becomes
more subtle. This is because the threat of punishment embodied in strategy of type
σ c, that is, going to the best restaurant for all future periods, is no longer a credible
one as it is not a Nash equilibrium of the stage game.

In the rest of this section, we focus on the interesting cases (N4), (N5) and
(N6). Since there is no qualitative difference between (N4) and (N5), we analyze
only cases (N4) and (N6) in detail. As long as agents are sufficiently patient, we
can show that for both cases we can implement the cyclically fair norm as a sub-
game perfect equilibrium of the KPR problem G∞δ (u1, u2, u3). Interesting to note
here is that, for cases (N4) and (N6), the set of pure strategy Nash equilibria is
{(R1,R1,R2), (R1,R2,R1), (R2,R1,R1)}. However, while for (N4), each agent
playing R1 gets more expected payoff than the agent playing R2, for (N6), each
agent playing R1 gets an expected payoff which is no more than the payoff of the
agent playing R2. It is precisely for this difference in payoffs for the same given pure
strategy Nash equilibrium for cases (N4) and (N6) that calls for designing different
punishment strategies to implement the cyclically fair path.

Consider first (N4), that is max{u3,
u1
3 }< u2 < u1

2 . Consider the strategy profile
σa = (σ a

1 , σ
a
2 , σ

a
3 ) that specifies the following.

(i) Without loss of generality at t = 1, each agent i ∈ {1,2,3} plays Ri.
(ii) If agent i plays R1 in period t − 1, then i plays R3 in period t .

(iii) If agent i plays Rk �=R1 in period t − 1, then i plays R(k − 1) in period t .
(iv) If any agent i violates either of 1, 2 or 3 in some period t then in all future

periods t + 1, t + 2, . . . , all the non-deviating agents (N \ {i}) plays R1.

Conditions (i)–(iii) in the strategy profile σa ensures that agents follow the cycli-
cally fair norm. Condition (iv) is the punishment requirement that specifies that,
if an agent deviates, then the non-deviating agents punish the deviating agent by
playing R1, for all future periods.

Proposition 13.3 If max{u3,
u1
3 } < u2 < u1

2 , then there exists δ̄ ∈ (0,1) such
that for all δ ∈ (δ̄,1), σa = (σ a

1 , σ
a
2 , σ

a
3 ) is a sub-game perfect equilibrium of

G∞δ (u1, u2, u3).

Proof Fix agent 2’s strategy at σa
2 and agent 3’s strategy at follows σa

3 . We first show
that, given this specification, σa

1 is the best response for agent 1 provided agent 1
is sufficiently patient. Consider agent 1 at any history and at any time t . Given the
utility restriction max{u3,

u1
3 } < u2 < u1

2 , agent 1 has an incentive to deviate only
if at time t , agent 1 is supposed to play either R3 or R2 (otherwise agent 1 has no
profitable deviation in the stage game at t when the strategy prescribes R1). Also,
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the best deviation for agent 1 is to play R1 and get a payoff of u1
2 . If agent 1 deviates,

then, following the strategy profile σa , agents 2 and 3 play R1 for all future periods.
At each of such future periods, the best response of agent 1 is to play R2. Therefore,
the present discounted payoff of agent 1 from deviation is

D1(δ)= u1

2
+ (

δu2 + δ2u2 + · · ·
)= u1(1− δ)+ 2δu2

2(1− δ)
. (13.1)

By not deviating in a period t where agent 1 had to play R2 (under conditions (i)–
(iii)), agent 1’s present discounted value of payoff from period t onwards is

E2(δ)=
(
u2 + δu1 + δ2u3

)+ (
δ3u2 + δ4u1 + δ5u3

)+ · · · = u2 + δu1 + δ2u3

(1− δ3)
.

(13.2)
Similarly, by not deviating in a period t ′ where agent 1 had to play R3, agent 1’s
present discounted value of payoff from period t ′ onwards is

E3(δ)=
(
u3 + δu2 + δ2u1

)+ (
δ3u3 + δ4u2 + δ5u1

)+ · · · = u3 + δu2 + δ2u1

(1− δ3)
.

(13.3)
A sufficient condition for σa

1 to be a best response for agent 1 (given the strategies
σa

2 and σa
3 of agents 2 and 3 respectively) is that min{E2(δ),E3(δ)}>D1(δ). Note

that min{E2(δ),E3(δ)} =E3(δ) since E2(δ)−E3(δ)= (u2−u3)(1−δ2)+(u1−u2)δ(1−δ)

(1−δ3)
>

0. Therefore, for any δ ∈ (0,1) such that E3(δ)−D1(δ) > 0, σa
1 is the best response

for agent 1. Observe that E3(δ) − D1(δ) = F(δ)

2(1−δ3)
where F(δ) = 2(u3 + δu2 +

δ2u1) − (u1(1 − δ) + 2δu2)(1 + δ + δ2). Note that F(δ) is continuous in δ and,
given (N4), F(0) = 2u3 − u1 < 0 and F(1) = 4(u1

2 + u3
2 − u2) > 0. Hence, there

exists a δ̄ ∈ (0,1) such that for all δ ∈ (δ̄,1), F(δ) > 0 and σa
1 is the best response

for agent 1. Using similar arguments it is easy to show that σa
2 is the best response

for agent 2 against σa
1 and σa

3 and σa
3 is the best response for agent 3 against σa

1 and
σa

2 . Hence σa is a Nash equilibrium of G∞δ (u1, u2, u3) for all δ ∈ (δ̄,1). Finally,
since the punishment play induced by σa is either of the three pure strategy Nash
equilibria (R1,R2,R1), (R2,R1,R1) and (R1,R1,R2); it is credible. Hence, for
all δ ∈ (δ̄,1), the strategy profile σa = (σ a

1 , σ
a
2 , σ

a
3 ) is also a sub-game perfect equi-

librium. �

To implement the cyclically fair norm for the KPR problem for the case (N6),
that is for the stage game G(u1, u2, u3) satisfying u3 < u1

2 ≤ u2 ≤ u1, we consider
the strategy profile σb = (σ b

1 , σ
b
2 , σ

b
3 ) that specifies the following conditions.

(i) Without loss of generality at t = 1, each agent i ∈ {1,2,3} plays Ri.
(ii) If agent i plays R1 in period t − 1, then i plays R3 in period t .

(iii) If agent i plays Rk �=R1 in period t − 1, then i plays R(k − 1) in period t .
(iv) If any agent i violates either of 1, 2 or 3 in some period t , then we have the

following:
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a. If the deviation is initiated by agent 1, then, for all future periods, agent 2
plays R2 and agent 3 plays R1.

b. If the deviation is initiated by agent 2, then, for all future periods, agent 1
plays R1 and agent 3 plays R2.

c. If the deviation is initiated by agent 3, then, for all future periods, agent 1
plays R2 and agent 2 plays R1.

The first three conditions of strategy profile σb are identical to that of the strategy
profile σa since these three conditions are meant to induce cooperative behavior
across agents in order to implement the cyclically fair norm. However, the punish-
ment scheme (that is, condition (iv)) under the strategy profile σb is different and
more subtle compared the punishment scheme under σa . Under σb, the two non-
deviating agents punish the deviating agent by going to two different restaurant by
playing R1 and R2. The best response to this behavior, at any stage game (irre-
spective of the identity of the deviating agent) is to go to R1. Thus, the punishment
scheme generates any one of the three pure strategy Nash equilibria—(R1,R2,R1),
(R2,R1,R1) and (R1,R1,R2); where the deviating agent gets stage game payoff
of u1

2 for all future periods after the deviation period.

Proposition 13.4 If u3 < u1
2 ≤ u2 ≤ u1, then there exists δ∗ ∈ (0,1) such that for all

δ ∈ (δ∗,1), the strategy profile σb = (σ b
1 , σ

b
2 , σ

b
3 ) is a sub-game perfect equilibrium

of G∞δ (u1, u2, u3).

Proof We first show that if agent 2 plays σb
2 and agent 3 plays σb

3 then playing σb
1 is

the best response for agent 1. Observe that the most profitable deviation at any time
t available to 1 is to play R1 in that period t where the prescribed strategy under
σb for agent 1 is R3. If agent 1 decides to deviate then, as per σb , for all future
periods, agent 2 plays R2 and agent 3 plays R1. Given this punishment strategy
followed by agents 2 and 3, the best response of agent 1, in all future periods, is
to play R1. Therefore, the resultant punishment play at each period in future is
(R1,R2,R1) with each stage payoff of u1

2 to 1. So, the present discounted value of
the payoff sequence that results after deviation for agent 1 is D2(δ) = u1

2 + δ u1
2 +

δ2 u1
2 + · · · = u1

2(1−δ)
. By not deviating in a period t (where agent 1 had to play R3)

and following σb
1 , agent 1 gets a present discounted value payoff that equals E3(δ)=

(u3+δu2+δ2u1)+· · · = u3+δu2+δ2u1
1−δ3 . If for any δ ∈ (0,1), E3(δ)−D2(δ) > 0, then

σb
1 is the best response for agent 1. Observe that E3(δ) −D2(δ) = G(δ)

2(1−δ3)
where

G(δ)= 2(u3+ δu2+ δ2u1)−u1(1+ δ+ δ2). Note that G(δ) is continuous in δ and,
given (N6), G(0) = 2u3 − u1 < 0 and G(1) = 2(u2 + u3 − u1

2 ) > 0. Hence, there
exists a δ∗ ∈ (0,1) such that for all δ ∈ (δ∗,1), G(δ) > 0 and σb

1 is the best response
for agent 1. Using similar arguments it is easy to show that σb

2 is the best response
for agent 2 and σb

3 is the best response for agent 3. Hence σb is a Nash equilibrium
of G∞δ (u1, u2, u3) for all δ ∈ (δ∗,1). Finally, since the punishment play induced by
σb is a pure strategy Nash equilibrium, it is credible. Hence, for all δ ∈ (δ∗,1), the
strategy profile σb = (σ b

1 , σ
b
2 , σ

b
3 ) is also a sub-game perfect equilibrium. �
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13.6 Summary

Using simple and basic techniques from infinitely repeated games with discounting
we have established how with small number of players one can sustain the cyclically
fair norm as an equilibrium in a KPR problem with general preference structures. In
particular, we have highlighted how to design pure strategies, that at times requires
careful designing of the punishment scheme for perpetrators, to sustain the cycli-
cally fair norm that requires cyclical stage game sacrifices on part of the agents. We
have established the following results.

(i) If for the KPR problem the set of pure strategy Nash equilibria of the stage
game includes the set of all Pareto efficient strategies then there is no need to
design punishment schemes to implement the cyclically fair norm as a sub-
game perfect equilibrium of the KPR problem.

(ii) Sufficiently high patience level of the agents and the design of appropriate pun-
ishment strategies become mandatory when, for the KPR problem with either
two agents or three agents, the set of pure strategy Nash equilibria of the stage
game does not include the set of all Pareto efficient strategies.

(iii) The punishment scheme that works for the two agent case is one where the
deviating agent is punished by shifting to the inefficient Nash equilibrium of the
stage game for all future periods after the deviation. This kind of punishment
is enough to deter a rational agent with sufficiently high patience level from
unilateral deviation.

(iv) For the three agent KPR problem one needs to design different types of pun-
ishment schemes as, depending on the restrictions on the (common) prefer-
ences, we have different sets of pure strategy Nash equilibria of the stage
game. The restrictions on preferences that are of interest are the following—
(a) u1

2 > u2 > u3 and (b) u2 ≥ u1
2 > u3. For both these cases the set of pure

strategy Nash equilibria of the stage game are identical and yet one needs to
design different pure strategies to implement the cyclically fair norm. For both
(a) and (b), the pure strategy Nash equilibrium of the stage game requires two
agents going to the first restaurant and one agent going to the second restaurant.
However, for case (a), the expected payoff associated with going to the first
restaurant is more than the payoff obtained from going to the second restau-
rant, but, for case (b), the expected payoff associated with going to the first
restaurant is weakly less than the payoff obtained from going to the second
restaurant. Therefore, while designing the punishment scheme for the perpe-
trators one needs to incorporate this payoff difference across (a) and (b) and
hence we require two different strategies to implement the same cyclically fair
norm.

We believe that for the KPR problems with more than three agents and general pref-
erence structure, the designing of punishment schemes to implement the cyclically
fair norm is an important issue that needs to be addressed in greater detail.
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Chapter 14
An Introduction to Multi-player, Multi-choice
Quantum Games: Quantum Minority Games
& Kolkata Restaurant Problems

Puya Sharif and Hoshang Heydari

Abstract We give a self contained introduction to a few quantum game protocols,
starting with the quantum version of the two-player two-choice game of Prison-
ers dilemma, followed by an n-player generalization trough the quantum minority
games, and finishing with a contribution towards an n-player m-choice generaliza-
tion with a quantum version of a three-player Kolkata restaurant problem. We have
omitted some technical details accompanying these protocols, and instead laid the
focus on presenting some general aspects of the field as a whole. This review con-
tains an introduction to the formalism of quantum information theory, as well as
to important game theoretical concepts, and is aimed to work as a review suiting
economists and game theorists with limited knowledge of quantum physics as well
as to physicists with limited knowledge of game theory.

14.1 Introduction

Quantum game theory is the natural intersection between three fields. Quantum me-
chanics, information theory and game theory. At the center of this intersection stands
one of the most brilliant minds of the 20th century, John von Neumann. As one of
the early pioneers of quantum theory, he made major contributions to the mathe-
matical foundation of the field, many of them later becoming core concepts in the
merger between quantum theory and information theory, giving birth to quantum
computing and quantum information theory [1], today being two of the most active
fields of research in both theoretic and experimental physics. Among economists
may he be mostly known as the father of modern game theory [2–4], the study
of rational interactions in strategic situations. A field well rooted in the influential
book Theory of Games and Economic Behavior (1944), by Von Neumann and Os-
car Morgenstern. The book offered great advances in the analysis of strategic games
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and in the axiomatization of measurable utility theory, and drew the attention of
economists and other social scientists to these subjects. For the last decade or so
there has been an active interdisciplinary approach aiming to extend game theoret-
ical analysis into the framework of quantum information theory, through the study
of quantum games [5–10]; offering a variety of protocols where use of quantum
peculiarities like entanglement in quantum superpositions, and interference effects
due to quantum operations has shown to lead to advantages compared to strategies
in a classical framework. The first papers appeared in 1999. Meyer showed with a
model of a penny-flip game that a player making a quantum move always comes
out as a winner against a player making a classical move regardless of the classi-
cal players choice [11]. The same year Eisert et al. published a quantum protocol in
which they overcame the dilemma in Prisoners dilemma [12]. In 2003 Benjamin and
Hayden generalized Eisert’s protocol to handle multi-player quantum games and in-
troduced the quantum minority game together with a solution for the four player
case which outperformed the classical randomization strategy [13]. These results
were later generalized to the n-players by Chen et al. in 2004 [14]. Multi-player mi-
nority games has since then been extensively investigated by Flitney et al. [15–17].
An extension to multi-choice games, as the Kolkata restaurant problem was offered
by the authors of this review, in 2011 [18].

14.1.1 Games as Information Processing

Information theory is largely formulated independent of the physical systems that
contains and processes the information. We say that the theory is substrate inde-
pendent. If you read this text on a computer screen, those bits of information now
represented by pixels on your screen has traveled through the web encoded in elec-
tronic pulses through copper wires, as burst of photons trough fiber-optic cables and
for all its worth maybe on a piece of paper attached to the leg of a highly motivated
raven. What matters from an information theoretical perspective is the existence of
a differentiation between some states of affairs. The general convention has been
to keep things simple and the smallest piece of information is as we all know a
bit b ∈ {0,1}, corresponding to a binary choice: true or false, on or off, or sim-
ply zero or one. Any chunk of information can then be encoded in strings of bits:
b = bn−1bn−2 · · ·b0 ∈ {0,1}n. We can further define functions on strings of bits,
f : {0,1}n → {0,1}k and call these functions computations or actions of informa-
tion processing.

In a similar sense games are in their most general form independent of a physi-
cal realization. We can build up a formal structure for some strategic situation and
model cooperative and competitive behavior within some constrained domain with-
out regards to who or what these game playing agents are or what their actions actu-
ally is. No matter if we consider people, animals, cells, multinational companies or
nations, simplified models of their interactions and the accompanied consequences
can be formulated in a general form, within the framework of game theory.
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Lets connect these two concepts with an example. We can create a one to one
correspondence with between the conceptual framework of game theory and the
formal structure of information processing. Let there be n agents faced with a binary
choice of joining one of two teams. Each choice is represented by a binary bit bi ∈
{0,1}. The final outcome of these individual choices is then given by an n-bit output
string b ∈ {0,1}n. We have 2n possible outcomes, and for each agent we have some
preference relation over these outcomes bj . For instance, agent 1 may prefer to have
agent 3 in her team over agent 4, and may prefer any configuration where agent 5
is on the other team over any where they are on the same and so on. For each
agent i, we’ll have a preference relation of the following form, fully determining
their objectives in the given situation:

bx1 � bx2 � · · · � bxm, m= 2n, (14.1)

where bxi � bxj means that the agent in question prefers bxi to bxj , or is at least
indifferent between the choices. To formalize things further we assign a numerical
value to each outcome bxj for each agent, calling it the payoff $i (bxj ) to agent i
due to outcome bxj . This allows us to move from the preference relations in (14.1)
to a sequence of inequalities. bxi � bxj ⇐⇒ $(bxi ) ≥ $(bxj ). The aforementioned
binary choice situation can now be formulated in terms of functions $i (bxj ) of the
output strings bxj , where each entry bi in the strings corresponds to the choice of
an agent i.

So far has the discussion only regarded the output string without mentioning any
input. We could without loss of generality define an input as string where all the
entries are initialized as 0’s, and the individual choices being encoded by letting
each participant either leave their bit unchanged or performing a NOT-operation,
where NOT(0)= 1.

More complicated situations with multiple choices could be modeled by letting
each player control more than one bit or letting them manipulate strings of informa-
tion bearing units with more states than two; of which we will see an example of
later.

14.1.2 Quantization of Information

Before moving on to the quantum formalism of operators and quantum states, there
is one intermediate step worth mentioning, the probabilistic bit, which has a certain
probability p of being in one state and a probability of 1− p of being in the other.
If we represent the two states ‘0’ and ‘1’ of the ordinary bit by the two-dimensional
vectors (1,0)T and (0,1)T , then a probabilistic bit is given by a linear combination
of those basis vectors, with real positive coefficients p0 and p1, where p0+p1 = 1.
In this formulation, randomization between two different choices in a strategic situ-
ation would translate to manipulating an appropriate probabilistic bit.
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Fig. 14.1 The Bloch sphere.
A geometric representation of
the state space of a single
qubit

The Quantum Bit Taking things a step further, we introduce the quantum bit or
the qubit, which is a representation of a two level quantum state, such as the spin
state of an electron or the polarization of a photon. A qubit lives in a two dimensional
complex space spanned by two basis states denoted |0〉 and |1〉, corresponding to the
two states of the classical bit.

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (14.2)

Unlike the classical bit, the qubit can be in any superposition of |0〉 and |1〉:
|ψ〉 = a0|0〉 + a1|1〉, (14.3)

where a0 and a1 are complex numbers obeying |a0|2 + |a1|2 = 1. |a2
i | is simply

the probability to find the system in the state |i〉, i ∈ {0,1}. Note the difference
between this and the case of the probabilistic bit! We are now dealing with complex
coefficients, which means that if we superpose two qubits, then some coefficients
might be eliminated. This interference is one of many effects without counterpart in
the classical case. The state of an arbitrary qubit can be written in the computational
basis as:

|ψ〉 =
(
a0
a1

)
. (14.4)

The state of a general qubit can be parameterized as:

|ψ〉 = cos

(
ϑ

2

)
|0〉 + eiϕ sin

(
ϑ

2

)
|1〉, (14.5)

where we have factored out and omitted a global phase due to the physical equiv-
alence between the states eiφ |ψ〉 and |ψ〉. This so called state vector describes a
point on a spherical surface with |0〉 and |1〉 at its poles, called the Bloch-sphere,
parameterized by two real numbers θ and ϕ, depicted in Fig. 14.1. A simple com-
parison between the state space of the classical, probabilistic and quantum bit is
shown in Fig. 14.2.
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Fig. 14.2 The classical bit
has only two distinct states,
the probabilistic bit can be in
any normalized convex
combination of those states,
whereas the quantum bit has a
much richer state space

14.1.2.1 Hilbert Spaces and Composite Systems

The state vector of a quantum system is defined in a complex vector space called
Hilbert space H . Quantum states are represented in common Dirac notation as
“ket’s”, written as the right part |ψ〉 of a bracket (“bra-ket”). Algebraically a “ket”
is column vector in our state space. This leaves us to define the set of “bra’s” 〈φ| on
the dual space of H , H �. The dual Hilbert space H � is defined as the set of linear
maps H →C, given by

〈φ| : |ψ〉 �→ 〈φ|ψ〉 ∈C, (14.6)

where 〈φ|ψ〉 is the inner product of the vectors |ψ〉, |φ〉 ∈H . We can now write
down a more formal definition of a Hilbert space: It is a complex inner product
space with the following properties:

(i) 〈φ|ψ〉 = 〈ψ |φ〉†, where 〈ψ |φ〉† is the complex conjugate of 〈ψ |φ〉.
(ii) The inner product〈φ|ψ〉 is linear in the first argument: 〈aφ1 + bφ2|ψ〉 =

a†〈φ1|ψ〉 + b†〈φ2|ψ〉.
(iii) 〈ψ |ψ〉 ≥ 0.

The space of an n-qubit system is spanned by a basis of 2n orthogonal vectors
|ei〉; one for each possible combination of the basis-states of the individual qubits,
obeying the orthogonality condition:

〈ei |ej 〉 = δij , (14.7)

where δij = 1 for i = j and δij = 0 for i �= j . We say that the Hilbert space of
a composite system is the tensor products of the Hilbert spaces of its parts. So the
space of an n-qubit system is simply the tensor product of the spaces of the n qubits.

HQ =HQn
⊗HQn−1 ⊗HQn−2 ⊗ · · · ⊗HQ1 , (14.8)

where Qi the quantum system i is a vector in C2. A general n-qubit system can
therefore be written

|ψ〉 =
1∑

xn,...,x1=0

axn···x1 |xn · · ·x1〉, (14.9)
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where

|xn · · ·x1〉 = |xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉 ∈HQ (14.10)

with xi ∈ {0,1} and complex coefficients axi . For a two qubit system, |x2〉 ⊗ |x1〉 =
|x2〉|x1〉 = |x2x1〉, we have

|ψ〉 =
1∑

x2,x1=0

ax2x1 |x2x1〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (14.11)

This state space is therefore spanned by four basis vectors:

|00〉, |01〉, |10〉, |11〉, (14.12)

which are represented by the following 4-dimensional column vectors respectively:

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ . (14.13)

14.1.2.2 Operators

A linear operator on a vector space H is a linear transformation T :H →H , that
maps vectors in H to vectors in the same space H . Quantum states are normalized,
and we wish to keep the normalization; we are therefore interested in transforma-
tions that can be regarded as rotations in H . Such transformations are given by
unitary operators U . An operator U is called unitary if U−1 = U†. They preserve
inner products between vectors, and thereby their norm. A projection operator P is
Hermitian i.e. P = P † and satisfies P 2 = P . We can create a projector P , by taking
the outer product of a vector with itself:

P = |φ〉〈φ|. (14.14)

P is a matrix with every element Pij being the product of the elements i, j of
the vectors in the outer product. This operator projects any vector |γ 〉 onto the 1-
dimensional subspace of H , spanned by |φ〉:

P |γ 〉 = |φ〉〈φ||γ 〉 = 〈φ|γ 〉|φ〉. (14.15)

It simply gives the portion of |γ 〉 along |φ〉.
We will often deal with unitary operators U ∈ SU(2), i.e operators from the spe-

cial unitary group of dimension 2. The group consists of 2×2 unitary matrices with
determinant 1. These matrices will be operating on single qubits (often in systems
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of 2 or more qubits). The generators of the group are the Pauli spin matrices σx , σy ,
σz, shown together with the identity matrix I :

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
.

(14.16)

Note that σx is identical to a classical (bit-flip) ‘NOT’-operation. General 2 × 2
unitary operators can be parameterized with three parameters θ,α,β , as follows:

U(θ,α,β)=
(

eiα cos(θ/2) ieiβ sin(θ/2)
ie−iβ sin(θ/2) e−iα cos(θ/2)

)
. (14.17)

An operation is said to be local if it only affects a part of a composite (multi-
qubit) system. Connecting this to the concept of the bit-strings in the previous sec-
tion; a local operation translates to just controlling one such bit. This is a crucial
point in the case of modeling the effect of individual actions, since each agent in a
strategic situation is naturally constrained to decisions regarding their own choices.
The action of a set of local operations on a composite system is given by the ten-
sor product of the local operators. For a general n-qubit |ψ〉 as given in (14.9) and
(14.10) we get:

Un⊗Un−1⊗ · · · ⊗U1|ψ〉 =
1∑

xn,...,x1=0

axn...x1Un|xn〉 ⊗Un−1|xn−1〉 ⊗ · · · ⊗U1|x1〉.
(14.18)

14.1.2.3 Mixed States and the Density Operator

We have so far only discussed pure states, but sometimes we encounter quantum
states without a definite state vector |ψ〉, these are called mixed states and consists
of a states that has certain probabilities of being in some number of different pure
states. So for example a state that is in |ψ1〉 = a1

0 |0〉+ a1
1 |1〉 with probability p1 and

in |ψ2〉 = a2
0 |0〉 + a2

1 |1〉 with probability p2 is mixed. We handle mixed states by
defining a density operator ρ, which is a hermitian matrix with unit trace:

ρ =
∑

i

pi |ψi〉〈ψi |, (14.19)

where
∑

i pi = 1. A pure state in this representation is simply a state for which all
probabilities, except one is zero. If we apply a unitary operator U on a pure state, we
end up with U |ψ〉 which has the density operator UρU† =U |ψ〉〈ψ |U†. Regardless
if we are dealing with pure or mixed states, we take the expectation value of upon
measurement ending up in a |φ〉 by calculating Tr(|φ〉〈φ|ρ), where |φ〉〈φ| is a so
called projector. For calculating the expectation values of a state to be in any of a
number of states |φi〉, we construct a projection operator P =∑

i |φi〉〈φi | and take
the trace over P multiplied by ρ.
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14.1.2.4 Entanglement

Entanglement is the resource our game-playing agents will make use of in the quan-
tum game protocols to achieve better than classical performance. Non-classical cor-
relations are thus introduced, by which the players can synchronize their behavior
without any additional communication. An entangled state is basically a quantum
system that cannot be written as a tensor product of its subsystems, we’ll thus define
two classes of quantum states. Examples below refers to two-qubit states.

Product states:

|ΨQ〉 = |ΨQ2〉 ⊗ |ΨQ1〉, or using density matrix ρQ = ρQ2 ⊗ ρQ1, (14.20)

and entangled states

|ΨQ〉 �= |ΨQ2〉 ⊗ |ΨQ1〉, or using density matrix ρQ �= ρQ2 ⊗ ρQ1 . (14.21)

For a mixed state, the density matrix is defined as mentioned by ρQ =∑N
i=1 pi |ψi〉〈ψi | and it is said to be separable, which we will denote by ρ

sep
Q , if

it can be written as

ρ
sep
Q =

∑

i

pi

(
ρi

Q2
⊗ ρi

Q1

)
,

∑

i

pi = 1. (14.22)

A set of very important two-qubit entangled states are the Bell states

∣∣Φ±Q
〉= 1√

2

(|00〉 ± |11〉), ∣∣Ψ±Q
〉= 1√

2

(|01〉 ± |10〉). (14.23)

The GHZ-type-states

|GHZn〉 = 1√
2

(|00 · · ·0〉 + eiφ |11 · · ·1〉) (14.24)

could be seen as an n-qubit generalization of |Φ±Q〉-states.

14.1.3 Classical Games

It is instructive to review the theory of classical games and some major solution
concepts before moving on to examples of quantum games. We’ll start by defining
classical pure and mixed strategy games, and then move on to introducing some
relevant solution concepts and finish off with a definition of quantum games.

A game is a formal model over the interactions between a number of agents
(agents, players, participants, and decision makers may be used interchangeably)
under some specified sets of choices (choices, strategies, actions and moves, may
be used interchangeably). Each combination of choices made, or strategies chosen
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by the different players leads to an outcome with some certain level of desirability
for each of them. The level of desirability is measured by assigning a real number,
a so called payoff $ for each game outcome for each player. Assuming rational
players, each will choose actions that maximizes their expected payoff E($), i.e.
in an deterministic as well as in an probabilistic setting acting in a way that, based
on the known information about the situation, maximizes the expectation value of
their payoff. The structure of the game is fully specified by the relations between the
different combinations of strategies and the payoffs received by the players. A key
point is the interdependence of the payoffs with the strategies chosen by the other
players. A situation where the payoff of one player is independent of the strategies
of the others would be of little interest from a game theoretical point of view. It is
natural to extend the notion of payoffs to payoff functions whose arguments are the
chosen strategies of all players and ranges are the real valued outputs that assigns a
level of desirability for each player to each outcome.

Pure Strategy Classical Game We have a set of n players {1,2, . . . , n}, n strat-
egy sets Si , one for each player i, with s

j
i ∈ Si , where s

j
i is the j th strategy of

player i. The strategy space S = S1×S2×· · ·×Sn contains all n-tuples pure strate-
gies, one from each set. The elements σ ∈ S are called strategy profiles, some of
which will earn them the status of being a solution with regards to some solution
concept.

We define a game by its payoff-functions $i , where each is a mapping from the
strategy space S to a real number, the payoff or utility of player i. We have:

$i : S1 × S2 × · · · × Sn→R. (14.25)

Mixed Strategy Classical Game Let Δ(Si) be the set of convex linear combina-
tions of the elements s

j
i ∈ Si . A mixed strategy smix

i ∈Δ(Si) is then given by:

∑

s
j
i ∈Si

p
j
i s

j
i with

∑

j

p
j
i = 1, (14.26)

where p
j
i is the probability player i assigns to the choice s

j
i . The space of mixed

strategies Δ(S)=Δ(S1)×Δ(S2)×· · ·×Δ(Sn) contains all possible mixed strategy
profiles σmix. We now have:

$i :Δ(S1)×Δ(S2)× · · · ×Δ(Sn)→R. (14.27)

Note that the pure strategy games are fully confined within the definition of
mixed strategy games and can be accessed by assigning all strategies except one,
the probability pj = 0. This class of games could be formalized in a framework
using probabilistic information units, such as the probabilistic bit.
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14.1.4 Solution Concepts

We will introduce two of many game theoretical solution concepts. A solution con-
cept is a strategy profile σ ∗ ∈ S, that has some particular properties of strategic
interest. It could be a strategy profile that one would expect a group of rational self-
maximizing agents to arrive at in their attempt to maximize their minimum expected
payoff. Strategy profiles of this form i.e. those that leads to a combination of choices
where each choice is the best possible response to any possible choice made by other
players tend to lead to an equilibrium, and are good predictors of game outcomes in
strategic situations. To see how such equilibria can occur we’ll need to develop the
concept of dominant strategies.

Definition 14.1 (Strategic dominance) A strategy sdom ∈ Si is said to be dominant
for player i, if for any strategy profile σ−i ∈ S/Si , and any other strategy sj �=
sdom ∈ Si :

$i

(
sdom, σ−i

)≥ $i

(
sj , σ−i

)
for all i = 1,2, . . . , n. (14.28)

Lets look at a simple example. Say that we have two players, Alice with legal
strategies s1

Alice, s2
Alice ∈ SAlice and Bob with s1

Bob, s2
Bob ∈ SBob. Now, if the payoff

Alice receives when playing s1
Alice against any of Bob’s two strategies is higher

than (or at least as high as) what she receives by playing s2
Alice, then s1

Alice is her
dominant strategy. Her payoff can of course vary depending on Bob’s move but
regardless what Bob does, her dominant strategy is the best response. Now there is
no guarantee that such dominant strategy exists in a pure strategy game, and often
must the strategy space be expanded to accommodate for mixed strategies for them
to exist.

If both Alice and Bob has a dominant strategy, then this strategy profile becomes
a Nash Equilibrium, i.e. a combination of strategies for which none of them can gain
by unilaterally deviating from. The Nash equilibrium profile acts as an attractor in
the strategy space and forces the players into it, even though it is not always an
optimal solution. Combinations can exist that can lead to better outcomes for both
(all) players.

Definition 14.2 (Nash equilibrium) Let σNE−i ∈ S/Si be a strategy profile containing
the dominant strategies of every player except player i, and let sNE

i ∈ Si be the

dominant strategy of player i. Then for all sji �= sNE
i ∈ Si :

$i

(
sNE
i , σNE−i

)≥ $i

(
s
j
i , σ

NE−i

)
for all i = 1,2, . . . , n. (14.29)

If we have a situation where an agent can increase its payoff without decreasing
any others, then this would per definition mean that nobody would mind if that agent
would do so. Each such increase in payoff is called a Pareto improvement. When no
such improvement can be done, then the strategy profile is said to be Pareto optimal.
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Definition 14.3 (Pareto efficiency) A Pareto efficient or Pareto optimal strategy pro-
file is one where none of the participating agents can increase their payoff without
decreasing the payoff of someone else.

14.2 Quantum Games

In the quantum game protocols (protocol and scheme may be used interchange-
ably) presented in this paper, the mi different choices available to a player i will
be encoded in the basis states of an mi -level quantum system, where the mi de-
notes the dimensionality of the Hilbert space HQi

associated with that subsystem.
Each of the n player holds one subsystem leading to a total system with a state
vector a in an

∏n
i=1 dim(HQi

)—dimensional space. The definition of a quantum
game must therefore include a Hilbert space of a multipartite multilevel system
HQ =HQn

⊗HQn−1 ⊗ · · · ⊗HQ1 .
The different subsystems must in general be allowed to have a have a common

origin to accommodate entanglement in the shared initial state ρin ∈HQ . This is
often modeled by including a referee that prepares an initial state and distributes
the subsystems among the players. Whether or not this step invokes on the non-
communication criteria certain games have, is under debate. We justify it by the fact
that no communication is done under the crucial step of choosing a strategy. The
strategies are applied by local quantum operations on the quantum state held by each
player. No player has any access to any part of the system except its own subsystem,
and no information can be sent between the players with aid of the shared quantum
resource. Classical strategies becomes quantum strategies by expanding the strategy
sets:

si ∈ Si ⇒Ui ∈ S(mi), (14.30)

where the set of allowed quantum operations S(mi) is some subset of the special
unitary group SU(mi). We will later see that the nature of the game can be deter-
mined by restrictions on S(mi). It is an important point to be able to show that the
classical version of a game is recoverable just by restricting the set of allowed op-
erators. At least if we want it to be a proper quantization [9], i.e. an extension of
the classical game into the quantum realm, and not a whole new game without a
classical counterpart.

We define a quantum game in two steps:

Un ⊗Un−1 ⊗ · · · ⊗U1 :HQn
⊗HQn−1 ⊗ · · · ⊗HQ1

→HQn
⊗HQn−1 ⊗ · · · ⊗HQ1 , (14.31)

$i :HQn
⊗HQn−1 ⊗ · · · ⊗HQ1 →R, (14.32)

where the first step is a transformation of the state of the complete system by local
operations, and the second is a mapping from the Hilbert space of the quantum state
to a real number, the expected payoff of player i.
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14.2.1 The Quantum Game Protocol

• The game begins with an entangled initial state |ψin〉. Each subsystem has a di-
mensionality m that equal to the number of pure strategies in each players strategy
set. In the protocols covered in this paper, all players will face the same number
of choices. The number of subsystems equals the number of players. One can
assume that |ψin〉 has been prepared at some location by a referee that then has
distributed the subsystems among the players [12, 13].

• The players then chooses an unitary operator U from a subset of SU(m), and
applies it to their subsystem. The initial state ρin transforms to a final state ρfin,
given by:

ρfin =U ⊗U ⊗ · · · ⊗UρinU
† ⊗U† ⊗ · · · ⊗U†. (14.33)

In the absence of communication, and due to the symmetry of these games, all
players are expected to do the same operation.

• The players then measures their own subsystem, collapsing their quantum states
to units of classical information. For the case of a two-choice protocol, each
player ends up with a classical bit bi , and the complete system has thus col-
lapsed into a classical string b, corresponding to a pure strategy profile σ ∈ S.
For the quantum game to have an advantage over a classical game, the collective
action of the players must have decreased the probability of the final state ρfin to
collapse into such basis states (classical information strings/strategy profiles) that
are undesired, i.e. leading to lower or zero payoff $.

• To calculate the expected payoffs E($), we define for each player i a payoff-
operator Pi , which contains the sum of orthogonal projectors associated with the
states for which player i receives a payoff $. We have:

Pi =
∑

j

$j
i

∣∣χj
i

〉〈
χ
j
i

∣∣, (14.34)

where the states |χj
i 〉 are those sates that leads to a payoff for player i, and $j

i the
associated payoffs. The expected payoff E($i ) of player i is calculated by taking
the trace of the product of the final state ρfin and the payoff-operator Pi :

Ei($)= Tr(Piρfin). (14.35)

14.2.2 Prisoners Dilemma

The prisoners dilemma is one of the most studied game theoretical problems. It
was introduced in 1950 by Merrill Flood and Melvin Dresher, and has been widely
used ever since to model a variety of situations, including oligopoly pricing, auction
bidding, salesman effort, political bargaining and arms races. In is in its standard
form, a symmetric simultaneous game of complete information. Two players, Alice
and Bob (A and B) are faced with a choice to cooperate or to defect, without any
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Table 14.1 The normal-form
representation of prisoners
dilemma

Bob

Cooperate Defect

Alice
Cooperate (3,3) (0,5)

Defect (5,0) (1,1)

information about the action taken by the other. The payoffs they receive due to
any combination of choices is shown in Table 14.1, where the first entry in each
parenthesis shows the payoff $A of Alice and the second entry the payoff $B of Bob.
Given that Bob chooses to cooperate, Alice receives $A = 3 if she chooses to do the
same, and she receives $A = 5 if she chooses to defect. If Bob instead defects, then
Alice receives $A = 0 by cooperating and $A = 1 by choosing to defect. No matter
what Bob does, Alice will always gain by choosing to defect, equipping her with a
strictly dominant strategy! Due to the symmetry of the game, the same is true for
Bob, forcing them into a Nash equilibrium strategy profile of (defect, defect), which
pays out $AB = 1 to each. This outcome is clearly far from efficient, since there is
a Pareto optimal strategy profile (cooperate, cooperate) that would have given them
$AB = 3, and hence the dilemma.

Quantum prisoners dilemma was introduced by J. Eisert, M. Wilkens, and
M. Lewenstein in 1999 [11]. Here Alice and Bob are equipped with a quantum
resource, a maximally entangled Bell-type-state, and each of them are in posses-
sion of a subsystem. The Hilbert space of the game is given by: H =HB ⊗HA,
with HA = HB = C2. We’ll identify the following relations, mapping classical
outcomes with basis states of the Hilbert space: (cooperate, cooperate)→ |00〉,
(cooperate,defect)→ |01〉, (defect, cooperate)→ |10〉 and (defect, cooperate)→
|11〉. The entangled initial state is created by acting with an entangling operator
J = 1√

2
I⊗2 + iσ⊗2

x on a product state initialized as (cooperate, cooperate):

J |00〉 = 1√
2

(|00〉 + i|11〉). (14.36)

Note that the entangling operator performs a global operation, i.e. an operation per-
formed on both subsystems simultaneously. One can consider it to be performed by
a referee, loyal to both parties. The game proceeds by Alice and Bob performing
their local strategies UA and UB , and the state is turned into its final form: |ψfin〉 =
(UB⊗UA)J |00〉. Before measurement is performed, an disentangling operator J † is
applied. The inclusion of J and J † into the protocol assures that the classical game
is embedded into the quantum version, whereby the classical prisoners dilemma can
be accessed by restricting the set of allowed operators to UA, UB ∈ {I, σx}. It is a
simple task to show that any combination of the identity operator I and the bit-flip
operator σx commutes with J , and together with the fact that JJ † = I , one con-
cludes that this restriction turns the protocol into classical (one-bit) operations on a
bit string ‘00’. The complete protocol is shown as a circuit diagram in Fig. 14.3.

It is now left to define a set of operators U , representing allowed quantum strate-
gies, and the payoff operators PA and PB . Eisert et al. considered a two parameter
subset of SU(2) as the strategy space:
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Fig. 14.3 Circuit diagram of
the quantum prisoners
dilemma protocol

U(θ,α)=
(
eiα cos(θ/2) sin(θ/2)
− sin(θ/2) e−iα cos(θ/2)

)
. (14.37)

The classical strategies are represented by U(0,0) = I and U(0,π) = σx . We
construct Alice’s payoff operator PA as defined in (14.34) with values from the
payoff matrix:

PA = 3|00〉〈00| + 5|01〉〈01| + 1|11〉〈11|. (14.38)

Her expected payoff is calculated by taking the trace of the final state and the
payoff operator: E($A)= Tr(PAρfin), where ρfin = |ψfin〉〈ψfin|. It can be shown that
when the set of strategies are expanded to allow any U(θ,α), the old Nash equi-
librium (defect, defect) → U(0,π)⊗ U(0,π) ceases to exist! Instead a new Nash
equilibrium emerges at

UA =UB =U(0,π/2)=
(
i 0
0 −i

)
. (14.39)

This strategy leads to an expected payoff E($A)=E($A)= 3. Thereby they both
receive an expected payoff that equals the Pareto optimal solution in the classical
pure strategy version, with the addition that this solution is also a Nash equilibrium.
Dilemma resolved. It should be added that if the strategy sets are further expanded
to include all SU(2) operations, this solution vanishes, and there is no Nash equilib-
rium strategy profile in pure quantum strategies, whereby one has to include mixed
quantum operations to find an equilibrium [19].

14.2.3 Minority Games

We extend the previous protocol to ones with multiple agents, by introducing the
minority game. The game consists of n of non-communicating players that must
independently make up their mind between two choices. We could regard these
players as investors on a market deciding between two equally attractive securities,
as commuters choosing between two equally fast routes to a suburb, or any col-
lection of agents facing situations where they wish to make the minority choice.
The core objective of the players are thus to avoid the crowd. We encode the two
choices as |0〉 and |1〉 in the computational basis like before. The players receive
payoff a $= 1 if they happen to be in the smaller group. So if the number of players
choosing |0〉 is less than the number of players choosing |1〉, the first group receives
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payoff whereas the second group is left with nothing. Would the players happen to
be evenly distributed between the two choices, then they’ll all go empty handed.

The Nash equilibrium solution is to randomize between |0〉 and |1〉 using a fair
coin. The one shoot version we are considering will necessarily have a mixed strat-
egy solution, since any deterministic strategy would lead all players to the same
choice and thus a maximally undesired outcome. The expected payoff E($) for a
player is simply the number outcomes with that player in the minority group di-
vided by the number of different possible outcomes. For a four player game, there
are two minority outcomes for each player, out of sixteen possible. This gives a
expected payoff of 1/8.

A quantum version of a four player minority game was presented by Benjamin
and Hayden in 2000 [13], offering a solution that significantly outperformed the
classical version of the game. The advantage comes from the possibility of elim-
inating (or reducing the probability of) such final outcomes where the players are
evenly distributed among the two choices. The collective application of local uni-
tary operators on the subsystems of an entangled state can thus transform this initial
state in such a way that a better-than-classical result is achieved. This transforma-
tion does not have a classical analogue, and the performance is due to interference
effects from the local phases added to the qubits by the players local operations. We
are not including the action of an entangling operator J in this section, we simply
assume the initial state to be entangled at the start of the protocol, and it can again
be assumed that the state has been prepared by an unbiased referee and distributed
among the players. Considering the four-player case, we begin the protocol with an
GHZ-type state similar to the one used in the previous two-player game, but now
consisting of four entangled qubits.

|ψin〉 = 1√
2

(|0000〉 + |1111〉). (14.40)

The Hilbert space of the game is sixteen dimensional, accounting for all possible
game outcomes. HQ =HQ4 ⊗HQ3 ⊗HQ2 ⊗HQ1 , with HQi

=C2. Each player
i = 1,2,3,4 is permitted to manipulate its subsystem with the full machinery of
local quantum operations: Ui ∈ SU(2) given in (14.17). The payoff operator Pi

projects the final state onto the desired states of player i, and is given by

Pi =
k∑

j=1

∣∣ξji
〉〈
ξ
j
i

∣∣. (14.41)

The sum is over all the k different states |ξji 〉, for which player i is in the minority.
Its worth to note that the sums are always over a even number k, and that they run
over the states of the following form:

Pi =
k∑

j=1

∣∣ξji
〉〈
ξ
j
i

∣∣=
k/2∑

j=1

∣∣ϑj
i

〉〈
ϑ
j
i

∣∣+
k/2∑

j=1

∣∣ϑj
i

〉〈
ϑ
j
i

∣∣, (14.42)
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where |ϑj
i 〉 is the bit-flipped version of |ϑj

i 〉, i.e 0’s and 1’s are interchanged. The
payoff operator P1 for player 1 in the four player case is given by:

P1 = |0001〉〈0001| + |1110〉〈1110|. (14.43)

By playing U(θ,α,β) = U(π2 ,−π
8 ,

π
8 ), the four players can completely eliminate

the risk of upon measurement ending up with an outcome where none of them re-
ceives a payoff. This quantum strategy leads to an expected payoff E($)= 1

4 that is
twice as good as in the classical case E($)= 1

8 . The strategy profile is a Nash equi-
librium as well as Pareto optimal. Quantum minority games has been extensively
studied for cases of arbitrary n, and it can be shown that the quantum versions gives
rise to better than classical payoffs for any game with an even number of play-
ers [14].

14.2.4 Kolkata Restaurant Problem

The Kolkata restaurant problem is an extension of the minority game [20–24], where
the n players now has m choices. As the story goes, the choice is between m restau-
rants. The players receive a payoff if their choice is not too crowded, i.e the number
of agents that chose the same restaurant is under some limit. We will discuss the
case for which this limit is one. Just like in the minority game previously discussed,
the Kolkata restaurant problem offers a way for modeling heard behavior and mar-
ket dynamics, where visiting a restaurant translates to buying a security, in which
case an agent wishes to be the only bidder. In our simplified model there are just
three agents, Alice, Bob and Charlie. They have three possible choices: security 0,
security 1 and security 2. They receive a payoff $= 1 if their choice is unique, i.e
that nobody else has made the same choice, otherwise they receive $= 0. The game
is so called one shoot, which means that it is non-iterative, and the agents have no
information from previous rounds to base their decisions on. Under the constraint
that they cannot communicate, there is nothing left to do other than randomizing
between the choices just like in the minority games in the previous section. Given
the symmetric nature of the problem, any deterministic strategy would lead all three
agents to the same strategy, which in turn would mean that all three would leave
empty handed. There are 27 different strategy profiles possible, i.e combinations of
choices. 12 of which gives a payoff of $ = 1 to each one of them. Randomization
gives therefore agent i an expected payoff of E($)= 4

9 .
In the quantum version we let Alice, Bob and Charlie share a quantum resource

[18]. Each has a part of a multipartite quantum state. They play their strategy by
manipulating their own part of the combined system, before measuring their subsys-
tems and choosing accordingly. Whereas classically the players would be allowed
randomizing over a discrete set of choices, in the quantum version each subsys-
tem is allowed to be transformed with arbitrary local quantum operations, just like
before. In the absence of entanglement, quantum games of this type usually yield
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the same payoffs as their classical counterparts, whereas the combination of unitary
operators (or a subset therein) and entanglement, will be shown to outperform the
classical randomization strategy.

When moving from quantum game protocols with two choices into ones with
three, we’ll need some additional structure. Instead of qubits will we be dealing
with qutrits, which are their three level versions. The local operations on qutrits
are now represented by a more complicated group of matrices, the SU(3) group.
Everything else will essentially be similar to that of the quantum minority game.

A qutrit is a 3-level quantum system on 3-dimensional Hilbert space HQ =C3,
written in the computational basis as:

|ψ〉 = a0|0〉 + a1|1〉 + a2|2〉 ∈C3, (14.44)

with a0, a1, a2 ∈ C and |a0|2 + |a1|2 + |a2|2 = 1. A general n-qutrit system |Ψ 〉 is
a vector on 3n-dimensional Hilbert space, and is written as a linear combination of
3n orthonormal basis vectors.

|Ψ 〉 =
2∑

xn,...,x1=0

axn...x1 |xn · · ·x1〉, (14.45)

where

|xn · · ·x1〉 = |xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉 ∈HQ =
n-times︷ ︸︸ ︷

C3 ⊗ · · · ⊗C3, (14.46)

with xi ∈ {0,1,2} and complex coefficients axi , obeying
∑ |axn···x1 |2 = 1.

Single qutrits are transformed with unitary operators U ∈ SU(3), i.e operators
from the special unitary group of dimension 3, acting on HQ as U :HQ →HQ .
In a multi-qutrit system, operations on single qutrits are said to be local. They affect
the state-space of the corresponding qutrit only. The SU(3) matrix is parameterized
by defining three general, mutually orthogonal complex unit vectors x̄, ȳ, z̄, such
that x̄ · ȳ = 0 and x̄∗ × ȳ = z̄. We construct a SU(3) matrix by placing x̄, ȳ∗ and z̄

as its columns [25]. Now a general complex unit vector is given by:

x̄ =
⎛

⎝
sin θ cosφeiα1

sin θ sinφeiα2

cos θeiα3

⎞

⎠ , (14.47)

and one complex unit vector orthogonal to x̄ is given by:

ȳ =
⎛

⎝
cosχ cos θ cosφei(β1−α1) + sinχ sinφei(β2−α1)

cosχ cos θ sinφei(β1−α2) − sinχ cosφei(β2−α2)

− cosχ sin θei(β1−α3)

⎞

⎠ , (14.48)
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where 0≤ φ, θ,χ,≤ π/2 and 0≤ α1, α2, α3, β1, β2 ≤ 2π . We have a general SU(3)
matrix U , given by:

U =
⎛

⎝
x1 y∗1 x∗2y3 − y∗3x2
x2 y∗2 x∗3y1 − y∗1x3
x3 y∗3 x∗1y2 − y∗2x1

⎞

⎠ , (14.49)

and it is controlled by eight real parameters φ, θ , χ , α1, α2, α3, β1, β2.
The initial state, a maximally entangled GHZ-type state

|ψin〉 = 1√
3

(|000〉 + |111〉 + |222〉) ∈HQ =C
3 ⊗C

3 ⊗C
3, (14.50)

is symmetric and unbiased in regards to permutation of player position and has the
property of letting us embed the classical version of the game, accessible trough
restrictions on the strategy sets. To show this, we define a set of operators corre-
sponding to classical pure strategies that gives raise to deterministic payoffs when
applied to |ψin〉. The cyclic group of order three, C3, generated by the matrix:

s =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ (14.51)

where s3 = s0 = I and s2 = sT , has the properties we are after. The set of classical
strategies S = {s0, s1, s2} with si ⊗ sj ⊗ sk|000〉 = |ijk〉 acts on the initial state
|ψin〉 as:

si ⊗ sj ⊗ sk
1√
3

(|000〉 + |111〉 + |222〉)

= 1√
3

(|0+ i0+ j0+ k〉 + |1+ i1+ j1+ k〉 + |2+ i2+ j2+ k〉). (14.52)

Note that the superscripts denotes powers of the generator and that the addition is
modulo 3. In the case under study, where there is no preference profile over the
different choices, any combination of the operators in S = {s0, s1, s2} leads to the
same payoffs when applied to |ψin〉 as to |000〉. We form a density matrix ρin out of
the initial state |ψin〉 and add noise that can be controlled by the parameter f [17].
We get:

ρin = f |ψin〉〈ψin| + 1− f

27
I27, (14.53)

where I27 is the 27 × 27 identity matrix. Alice, Bob and Charlie now applies a
unitary operator U that maximizes their chances of receiving a payoff $ = 1, and
thereby the initial state ρin is transformed into the final state ρfin.

ρfin =U ⊗U ⊗UρinU
† ⊗U† ⊗U†. (14.54)
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We define for each player i a payoff-operator Pi , which contains the sum of orthog-
onal projectors associated with the states for which player i receives a payoff $= 1.
For Alice this would correspond to

PA =
(

2∑

x3,x2,x1=0

|x3x2x1〉〈x3x2x1|, x3 �= x2, x3 �= x1, x2 �= x1

)

+
(

2∑

x3,x2,x1=0

|x3x2x1〉〈x3x2x1|, x3 = x2 �= x1

)
. (14.55)

The expected payoff Ei($) of player i is as usual calculated by taking the trace of
the product of the final state ρfin and the payoff-operator Pi :

E($i )= Tr(Piρfin). (14.56)

It can be shown that if Alice, Bob and Charlie acts with a general SU(3), there exist
a Uopt(φ, θ,χ,α1, α2, α3, β1, β2) ∈ SU(3), given by Uopt(π4 , cos−1( 1√

3
), π

4 ,
5π
18 ,

5π
18 ,

5π
18 ,

π
3 ,

11π
6 ), that outperforms classical randomization. The strategy profile Uopt ⊗

Uopt ⊗ Uopt leads to a payoff of E($) = 6
9 , assuming (f = 1), compared to the

classical Ec($) = 4
9 . Letting the payoff function depend on the fidelity parameter

f , we get a payoff function E($(f ))= 2
9 (f + 2) where we can clearly see that the

expected payoff reaches the classical value as f → 0.

14.3 Outlook

As the field of quantum information theory matures and information processing
moves into the quantum realm, will it be increasingly important to study the broad
spectrum of effects of this transition. Game theory is the study of strategic decision
making under limited information. How decision making should or will change as
situations are played out in a world where this information is quantum information,
will be some of many conceptual challenges to address if classical communica-
tion and computing, is due to be replaced by systems governed by the peculiar and
counter-intuitive laws of quantum mechanics.
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Chapter 15
Cluster Analysis and Gaussian Mixture
Estimation of Correlated Time-Series by Means
of Multi-dimensional Scaling

Takero Ibuki, Sei Suzuki, and Jun-ichi Inoue

Abstract We investigate cross-correlations between typical Japanese stocks col-
lected through Yahoo!Japan website (http://finance.yahoo.co.jp/). By making use of
multi-dimensional scaling (MDS) for the cross-correlation matrices, we draw two-
dimensional scattered plots in which each point corresponds to each stock. To make
a clustering for these data plots, we utilize the mixture of Gaussians to fit the data
set to several Gaussian densities. By minimizing the so-called Akaike Information
Criterion (AIC) with respect to parameters in the mixture, we attempt to specify the
best possible mixture of Gaussians. It might be naturally assumed that all the two-
dimensional data points of stocks shrink into a single small region when some eco-
nomic crisis takes place. The justification of this assumption is numerically checked
for the empirical Japanese stock data, for instance, those around 11 March 2011.

15.1 Introduction

We sometimes encounter the problem to find a non-trivial structure in correlated
time series observed from multi channels. For instance, in neuroscience, we should
extract the meaningful structure from brain waves and specify what kind of the
structure corresponds to human behavior by using various techniques of pattern
recognition. This type of knowledge is required for achieving the so-called Brain
Machine Interface (BMI) (which is sometimes refereed to as the Brain Computer
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Fig. 15.1 The Nikkei stock
average around 11th March
2011. It is easily found that
the curve suddenly drops
after the crisis

Interface (BCI)), which is one of the remarkable applications of neuroscience to en-
gineering. Such time series obtained from multi-channel measurements have been
widely provided in both natural and social sciences. Hence, it is now important for
us to carry out empirical data analysis extensively to solve various modern and seri-
ous problems around us.

As everybody knows, in our country on 11th March 2011, a massive earthquake
and huge TSUNAMI hit the northeast coast and, as a result, Fukushima nuclear
power plant was seriously damaged. People who was living in that area has taken
refuge from the nuclear radiation. These unpredictable disasters caused by both na-
ture and/or human errors have made our country in a lot of difficulties that we have
never encountered before.

Of course, the disaster affected seriously on Japanese economy. In fact, after
the earthquake, Japanese NIKKEI stock market quickly responded to the crisis and
quite a lot of traders sold their stocks of companies whose branches or plants are
located in that disaster stricken area. As a result, the Nikkei stock average suddenly
drops after the crisis (see Fig. 15.1). As is shown in Fig. 15.1, ‘crushes’ actually
took place due to the reaction of the stock market to the earthquake. Obviously,
the curve of the Nikkei stock average shown in Fig. 15.1 is a ‘macroscopic’ aspect
(behavior) of the market. Namely, microscopic information about the behavior of
each stock is averaged out. Actually, the curve was obtained as an average of several
(more than 1000) stocks. It is important for us to make an attempt to bring out
more ‘microscopic’ useful information, which is never obtained from the averaged
macroscopic quantities such as stock average, about the market.

As a candidate of such ‘microscopic information’, we can use the (linear) cor-
relation coefficient based on the two-body interactions between stocks [1, 2]. To
figure out the mechanism of financial crisis, it might be helpful for us to visualize
such correlations in stocks and compare the dynamical behavior of the correlation
before and after crisis.
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In this paper, we attempt to visualize the correlation of each stock in two-
dimension. In [2], the authors constructed ‘minimum spanning tree’ to visualize
such correlations in stocks, however, here we use a different approach. Namely, we
specify each location of N stocks from a given set of the N(N − 1)/2 distances by
making use of the so-called multi-dimensional scaling (MDS) [3]. We next make a
clustering of these scattered data points by fitting the data with a mixture of Gaus-
sians under the Akaike Information Criterion (AIC). In order to maximize the likeli-
hood function (minimizing the AIC), we use both simulated annealing (SA) and the
so-called EM (Expectation and Maximization) algorithm. It might be naturally as-
sumed that all the two-dimensional scattered points shrink into a single small region
when economic crisis takes place. The justification of this assumption is numerically
checked for the empirical Japanese stock data, for instance, those around 11 March
2011.

This paper is organized as follows. In Sect. 15.2, we explain our measurement
of stock correlation, that is linear correlation coefficient. We also mention how we
convert the coefficient to the distance between stocks. The set of the distances is
an input data for the multi-dimensional scaling (MDS). The detail procedure of
the MDS is explained in Sect. 15.3. Then, we show the resulting scattered plots
obtained for the Japanese stock data around 11th March 2011. In Sect. 15.4, we
attempt to make a clustering of data by fitting the scattered plots by a mixture of
Gaussians. To estimate the parameters appearing in the mixture, we utilize both
simulated annealing and EM algorithm. We also introduce the Akaike Information
Criterion (AIC) to determine the number of components in the mixture so as to
fit the data as plausible as possible. The result for the empirical data is shown in
Sect. 15.5. The last section is summary.

15.2 Linear Correlation Coefficient

In this paper, we utilize the linear correlation coefficient (Pearson product-moment
correlation coefficient) to measure the strength of correlation between stocks [1, 2].
The coefficient is calculated as follows.

Let us define pi(t)(≥ 0) as a price of stock i at time t . Then, we evaluate the
return of the price pi(t) in terms of logarithmic measurement as

r
(t)
i ≡ logpi(t)− logpi(t − 1). (15.1)

For this logarithmic return, we calculate the moving average over the time window
with width M as

r
(t)
i ≡ 1

M

t∑

l=t−M+1

r
(l)
i (15.2)
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for stock i, and also evaluate the two-body correlation between stocks i, j by the
following definition

r
(t)
i r

(t)
j ≡ 1

M

t∑

l=t−M+1

r
(l)
i r

(l)
j . (15.3)

Then, the linear correlation coefficient is given by

ρ
(t)
ij =

r
(t)
i r

(t)
j − (r

(t)
i )(r

(t)
j )

√
[(r(t)i )2 − (r

(t)
i )2][(r(t)j )2 − (r

(t)
j )2]

. (15.4)

We should keep in mind that the above coefficient (15.4) satisfies

−1≤ ρ
(t)
ij ≤ 1 (15.5)

and apparently it cannot be treated as a ‘distance’. Hence, we transform the coeffi-
cient ρ(t)

ij into the distance d
(t)
ij between the stocks i, j as

d
(t)
ij =

√
(1− ρ

(t)
ij )

2
. (15.6)

Then, the distance d
(t)
ij actually satisfies

0≤ d
(t)
ij ≤ 1 (15.7)

and

• d
(t)
ij ≥ 0 (non-negative),

• d
(t)
ij = 0 if i = j (identity of indiscernibles),

• d
(t)
ij = d

(t)
j i (symmetry),

• d
(t)
ij + d

(t)
jk ≥ d

(t)
ik (triangle inequality).

In next section, we use a set of d(t)
ij as an input data to the multi-dimensional scaling.

15.3 Multi-dimensional Scaling

In this section, we shall explain the procedure of making a scattered plot by multi-
dimensional scaling (MDS). Let us first specify the location of stock i by means
of P -dimensional vector Xi ≡ (xi1, xi2, . . . , xiP ), i = 1, . . . ,N . Naturally, the dis-
tance between stocks i, j is given by

dij =
√√√√

P∑

m=1

(xim − xjm)2. (15.8)
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We also define the inner product of vectors of stocks i and j as

Xi ·Xj = zij = 1

2

(
1

N

N∑

k=1

d2
kj +

1

N

N∑

k=1

d2
ik −

1

N2

N∑

k=1

N∑

l=1

d2
kl − d2

ij

)
(15.9)

where we should notice that we chose the origin of axis as the ‘center of mass’ for
N stocks points, that is,

∑N
i=1 Xi/N .

Then, to find the location Xi ; i = 1, . . . ,N which generates a set of distances
{dij } properly, we should minimize the following energy function:

E =
∑

i

∑

j

(
zij −

P∑

m=1

ximxjm

)2

(15.10)

with respect to Xi ; i = 1, . . . ,N . Thus, our problem to find the best possible loca-
tions for stocks is rewritten in terms of an optimization problem to find the ground
state of the energy function E.

We easily notice that the solution to minimize E is given in terms of a symmetric
N ×N matrix Z ≡ {zij | i, j = 1, . . . ,N} and a P ×N matrix X = (X1, . . . ,XN)T

as

Z =XXT . (15.11)

It should be noted that the T appearing in the shoulder of vector such as (· · · )T
stands for the transposing. As the matrix Z is real and symmetric, we can write

Z = YΛY T (15.12)

where we defined Y = (y1, . . . ,yN)T for eigenvector yk of Z satisfying

Zyk = λkyk, k = 1, . . . ,N. (15.13)

Λ is defined as

Λ= diag(λ1, . . . , λN). (15.14)

Hence, we immediately obtain the solution

X = YΛ1/2. (15.15)

As we need two-dimensional plot (P = 2), we should pick up the two eigenvec-
tors for the largest and the second largest eigenvalues, and construct X in terms
of (15.15).

15.3.1 Empirical Data Analysis

We apply the above procedure to the financial data provided on the web site [4].
Especially, we pick up 200 stocks including the so-called TOPIX (TOkyo stock
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Fig. 15.2 The distribution P (ρ) of the linear correlation coefficient from the upper left to the
lower right, the results on 10th, 11th, 14th and 15th March 2011 are plotted

Price IndeX) Core30, which consists of typical 30 stock indices being picked up
from the view point of ‘current price’ or ‘liquidity’ from the Nikkei stock market. It
should be kept in mind that the data is not given as ‘tick-by-tick’, the minimal time
interval of the data is one day (the closing price is given in the data set).

We first plot the distribution P(ρ) of the linear coefficient {ρ(t)
ij }, i, j = 1, . . . ,N

for specific four days around the crisis in Fig.15.2. From these panels, we find that
after the crisis on 11th March 2011, the correlation is strongly enhanced. More
precisely, on 14th March, a single bulk of the distribution on 11th splits into two
bulks, namely, positively and negatively correlated parts. However, the next day
15th March, the negative part vanishes and a single strongly correlated bulk sur-
vives.

The distribution does not necessarily mention something about microscopic in-
formation about the behavior of stocks. Thus, for this set of Japanese stocks, we
next draw the scattered plots by making use of the MDS in Fig. 15.3. From these
panels, we clearly find that after the crisis, the scattered plots actually shrink into a
small region centered at the origin (the center of mass) as we expected before. As
time goes on, the plots change their structure into very curious one. Apparently, the
shape is completely different from the usual structure such as a plot on 10th March
2011 (Fig. 15.3a).
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(a)

Fig. 15.3 The result of the MDS. We pick up 200 stocks including the so-called TOPIX Core30
and the Nikkei stock average as empirical data set. From (a) to (d), the result on 10th, 11th, 14th
and 15th March 2011 are shown. Different colors indicate different types of business. The num-
bers accompanying the dots show company IDs. We set the width of time window to evaluate the
correlation coefficient as M = 7 (days)

15.4 Clustering by Mixture of Gaussians

In this section, we make a clustering from scattered plots which was obtained by
the MDS in the previous section. We first approximate the plots by a mixture of
two-dimensional Gaussians. Let us consider that the number of Gaussians is K and
each component is given by a multivariate normal Gaussian N (x | μ(k),Σ (k)), k =
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(b)

Fig. 15.3 (Continued)

1, . . . ,K , where μ(k) stands for the mean and Σ (k) denotes a matrix of variance-
covariance. The vector x corresponds to the N points in two-dimension, namely,
xi = (xi, yi)

T ; i = 1, . . . ,N . Hence, a mixture of these Gaussians is written by

p(x)=
K∑

k=1

πkN
(
x | μ(k),Σ (k)

)
(15.16)

where πk is an weight of the kth Gaussian and it should satisfy
∑L

k=1 πk = 1 for
normalization.
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(c)

Fig. 15.3 (Continued)

Then, for a given set of N data points x1,x2, . . . ,xN , the likelihood function
L(π , {μ}, {Σ})≡ log

∏N
i=1 p(xi ) is written as

L
(
π , {μ}, {Σ})

=
N∑

i=1

log
K∑

k=1

πk

2π |Σ (k)|1/2
exp

[
−1

2

(
xi −μ(k)

)T (
Σ (k)

)−1(
xi −μ(k)

)]
(15.17)

where we defined

π ≡ (π1,π2, . . . , πK), (15.18)
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(d)

Fig. 15.3 (Continued)

{μ} ≡ (
μ(1),μ(2), · · · ,μ(K)

)
, (15.19)

{Σ} ≡ (
Σ (1),Σ (2), · · · ,Σ (K)

)
(15.20)

for simplicity.
Therefore, we might use the gradient learning algorithm with respect to the above

parameters by regarding the likelihood L as a cost function, namely,

dπ

dt
= ∂L

∂π
,

dμ(k)

dt
= ∂L

∂μ(k)
,

dΣ (k)

dt
= ∂L

∂Σ (k)
, k = 1, . . . ,K. (15.21)
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However, the number of parameters amounts to 6K − 1, and even for K = 2 mix-
tures, we should have 11 variables. Obviously, it is very difficult for us to deal with
the differential equations to obtain the solution numerically within a certain pre-
cision. Hence, in the next subsections, we use simulated annealing (SA) and the
so-called EM algorithm to maximize the likelihood function.

15.4.1 Simulated Annealing

We attempt to minimize the likelihood L by simulated annealing. According to the
conventional Gibbs sampler, we update each parameter in such a way as πk →
πk+ δπk , where δπk etc. are given randomly from some suitable range. We also use
the linear scheduling of temperature as T → T −ΔT .

For the resulting maximum of the likelihood L(π∗, {μ}∗, {Σ}∗), the K ellipses
which approximate the scattered plot are given by

(
σ (k)∗
y

)2(
x −μ(k)∗

x

)2 − 2σ (k)∗
xy

(
x −μ(k)∗

x

)(
y −μ(k)∗

y

)+ (
σ (k∗)
x

)2(
y −μ(k)∗

y

)2

= 2
((
σ (k)∗
x σ (k)∗

y

)2 − (
σ (k)∗
xy

)2) (15.22)

for k = 1, . . . ,K .

15.4.2 EM Algorithm

We can maximize the likelihood function indirectly by making use of the EM algo-
rithm [5]. In the algorithm, the so-called ‘E-step’ (Expectation step) evaluates the
following Q function:

Q
({μ}, {Σ} | {μt }, {Σ t }

)=
∑

x

∑
k N (x | μ(k)

t ,Σ
(k)
t ) logN (x | μ(k),Σ (k))

∑
k N (x | μ(k)

t ,Σ
(k)
t )

.

(15.23)
Then, we update each parameter by the following ‘M-Step’ (Maximization step):

⎧
⎪⎨

⎪⎩

μ
(k)
t+1 = arg max

μ(k)
Q
({μ}, {Σ} | {μt }, {Σ t }

)
, k = 1, . . . ,K,

Σ
(k)
t+1 = arg max

Σ (k)
Q
({μ}, {Σ} | {μt }, {Σ t }

)
, k = 1, . . . ,K.

(15.24)

Repeating the above ‘E-step’ and ‘M-step’ until the parameters converge to the
steady state, namely, μ(k)∗,Σ (k)∗, the cluster C(x) to which the vector x belong
is determined by

C(x)= arg max
k

gk(x) (15.25)
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(a)

Fig. 15.4 The resulting clusters obtained by SA. From (a) to (d), the results on 10th, 11th, 14th
and 15th March 2011 are shown. The scattered plots we make a clustering are the same as shown
in Fig. 15.3

where we defined

gk(x)≡ N (x | μ(k)∗,Σ (k)∗)
∑

k N (x | μ(k)∗,Σ (k)∗)
. (15.26)

15.4.3 The Number of Parameters and AIC

In the previous subsections, we fixed the number of parameters K during the SA
and the EM algorithm. However, we should also determine the number from the
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(b)

Fig. 15.4 (Continued)

empirical data. For this purpose, we utilize the Akaike Information Criterion (AIC).
The AIC is defined as a function of K by

AIC ≡ (−2)
{
L
(
π∗, {μ}∗, {Σ}∗)− (# of parameters in the probabilistic model)

}

= −2L
(
π∗, {μ}∗, {Σ}∗)+ 12K − 2. (15.27)

Hence, we select the reasonable number K after evaluating the AIC for K =
1,2, . . . ,Kmax and selecting the best possible K that minimizes the AIC.
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(c)

Fig. 15.4 (Continued)

15.5 Empirical Data Analysis

By using the above theoretical framework, we carry out numerical analysis for the
empirical data which was shown in Fig. 15.3.

15.5.1 Simulated Annealing

We apply simulated annealing (SA) to maximize the likelihood function and to esti-
mate the parameters appearing in the mixture of Gaussians. In our numerical analy-
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(d)

Fig. 15.4 (Continued)

sis, we set the parameters to control the SA as T0 = 20 (initial value of temperature),
ΔT = 0.001, δπk = 0.01

K
× a uniform random number in the interval [0,1]. The in-

crements of the other parameters are chosen from a uniform distribution of the range
[0,1]. We show the result in Fig. 15.4.

From this figure, we find that before crisis, those widely distributed scattered
plots are well-fitted by two large clusters. Just after the crisis, we also find that two
clusters are needed to explain the scattered plots and after the crisis, say, 14th and
15th March 2011, the number of clusters changes as K = 3 and K = 6, respectively.
We should notice that the density of each dominant cluster does not decreases (rather
increases) although the number K increases.
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(a)

Fig. 15.5 The resulting clusters obtained by EM. From (a) to (d), the results on 10th, 11th, 14th
and 15th March 2011 are shown. The scattered plots we make a clustering are the same as shown
in Fig. 15.3

15.5.2 EM Algorithm

We next show the result of clustering achieved by the EM algorithm in Fig. 15.5.
The number of clusters is slightly different from that of the SA. Actually, we find
K = 2,4,5 and K = 6 for 10th, 11th, 14th and 15th March 2011, respectively.
However, after crisis on 15th March 2011, a large amount of members in each cluster
is overlapping with the result by SA.
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(b)

Fig. 15.5 (Continued)

15.5.3 Time Dependence of AIC

As we saw in the previous subsection, we found that the number of clusters itself
is not an indicator to specify the time of crushes. Here we examine the AIC to
characterize the crises because the AIC could be evaluated at each time step. We
show the result in Fig. 15.6. From this figure, we clearly find that for both procedure
to maximize the likelihood, the AIC takes a sharp and deep minimum at the crisis.
This result implies that we can utilize the AIC instead of the stock average to specify
the time of the crisis.
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(c)

Fig. 15.5 (Continued)

To conform the conjecture, we plot the AIC from 14th January 2001 to 18th
October 2011 in Fig. 15.7. In this figure, the AIC takes its minimum at socially
serious affair around which the stock sharply drops. For instance, we recognize that
the AIC takes its keen minimum around 16th January 2008 and 10th October 2008.
These points correspond to the crush caused by ‘subprime lending problem’ and the
crisis due to ‘Lehman shock’, respectively. Thus, we can specify the signal of crisis
from the behavior of AIC.
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(d)

Fig. 15.5 (Continued)

15.6 Summary

In this paper, we investigated cross-correlations between typical Japanese stocks
collected through Yahoo!Japan website (http://finance.yahoo.co.jp/). By making use
of MDS for the cross-correlation matrices, we drew two-dimensional scattered plots
in which each point corresponds to each stock. To make a clustering for these data
plots, we utilized the mixture of Gaussians to fit the data set to several Gaussian
densities. By minimizing the AIC with respect to parameters in the mixture via
simulated annealing and EM algorithm, we specified the best possible mixture of
Gaussians. We actually found that all the scattered plots shrink into a single small

http://finance.yahoo.co.jp/
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Fig. 15.6 Time evolution of the AIC around 11th March 2011. The left panel is result for the
SA, whereas the right panel shows the result by the EM algorithm. We clearly find that for both
procedure to maximize the likelihood, the AIC takes a sharp and deep minimum at the crisis

Fig. 15.7 The behavior of
AIC from 14th January 2001
to 18th October 2011

region when some economic crisis takes place. The shape of clusters after the crisis
seems to be quite non-trivial. By applying the clustering procedure, we determined
the number of clusters before and after the crisis, however, the number itself can
not be used for characterizing the crisis. However, we also found the AIC might be
utilized for the indicator to specify the crush.

Relationship between our approach and random matrix theory [6, 7] is important
and it should be addressed as our future study. Although we here applied the pro-
cedure to financial data set, however, it could be applicable to the other problems
including some marketing data.
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Chapter 16
Analyzing Crisis in Global Financial Indices

Sunil Kumar and Nivedita Deo

Abstract We apply the Random Matrix Theory and complex network techniques
to 20 global financial indices and study the correlation and network properties be-
fore and during the financial crisis of 2008 respectively. We find that the largest
eigenvalue deviate significantly from the upper bound which shows a strong corre-
lation between financial indices. By using a sliding window of 25 days we find that
largest eigenvalue represent the collective information about the correlation between
global financial indices and its trend indicate the market conditions. It is confirmed
that eigenvectors corresponding to second largest eigenvalue gives useful informa-
tion about the sector formation in the global financial indices. We find that these
clusters are formed on the basis of the geographical location. The correlation net-
work is constructed using threshold method for different values of threshold θ in the
range 0 to 0.9, at θ = 0.2 the network is fully connected. At θ = 0.6, the Ameri-
cas, Europe and Asia/Pacific form different clusters before the crisis but during the
crisis Americas and Europe are strongly linked. If we further increase the thresh-
old to 0.9 we find that European countries France, Germany and UK consistently
constitute the most tightly linked markets before and during the crisis. We find that
the structure of Minimum Spanning Tree before the crisis is more star like whereas
during the crisis it changes to be more chain like. Using the multifractal analysis, we
find that Hurst exponents of financial indices increases during the period of crisis
as compared to the period before the crisis. The empirical results verify the validity
of measures, and this has led to a better understanding of complex financial mar-
kets.
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16.1 Introduction

The financial markets exhibit very complex dynamics and in recent years have
been the focus of some physicists’ attempts to apply statistical mechanics to
economic problems [15]. The Random Matrix Theory (RMT) tool was devel-
oped [16] to deal with the statistics of eigenvalues and eigenvectors of com-
plex many body systems and recently it has been successfully used to inves-
tigate the structure of cross-correlation in a large number of financial markets
[6, 8, 10, 12, 13, 17, 20, 21, 23, 25]. The largest eigenvalue represents the collective
information about the correlation between different stocks and its trend is expected
to be dependent on the market conditions, whereas the component of eigenvectors
corresponding to remaining large eigenvalues are associated with the formation of
different sectors in financial market. Complex network technique in nature have be-
come important method for studying properties of complex systems in the real world
and penetrated into statistical physics, social sciences, biological sciences, financial
markets [1, 7] and many other fields. The study of complex networks has been initi-
ated by a desire to understand various real systems from the empirical data. Complex
network display the spatial topological structure of a system, while the time series is
the expression of the temporal dynamics. A network representation is found useful
to characterize the system, by associating each element by a node and each inter-
action by a link. As one of most important advances in statistical physics, complex
network theory has become a powerful tool for analyzing financial time series. In
this paper, we use threshold and hierarchical method to construct the correlation
network of financial indices. The network generated by threshold method [7] are in
general disconnected. If the system present a clear cluster organization, threshold
methods are typically able to detect them. One of the most common algorithms to
detect a possible hierarchical structure hidden in the data is given by the Minimum
Spanning Tree (MST) [2, 14] and has been applied successfully [3, 4, 18, 19]. This
method selects only the indices with closest interactions among all indices and it
generates a visual presentation of the linkage relationship among selected interac-
tions between financial indices [24]. The MST performs better role in identifying the
economic sectors from the correlation matrix when it is compared with other more
traditional methods, such as spectral methods. In the later procedure one extract
the eigenvectors of the correlation matrix and identifies sectors as groups of indices
which have a large component (compared to others) in an eigenvector. Despite the
fact that this method gives some useful information, the eigenvectors sometimes mix
different economic sectors (especially when eigenvalues are close to one another).

16.2 Data Analyzed

We investigate the daily closing prices of 20 financial indices around the world
traded from the period July 2, 1997 to June 1, 2009. The detail of financial indices
and their volatilities are shown in Table 16.1. The data has been obtained from [26].
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Table 16.1 List of financial market indices and their volatilities for the full period

S.No. Country Index Volatility

1 Argentina MERV 0.0153

2 Brazil BVSP 0.0161

3 Egypt CCSI 0.0055

4 India BSESN 0.0123

5 Indonesia JKSE 0.0119

6 Malaysia KLSE 0.0090

7 Mexico MXX 0.0115

8 South Korea KS11 0.0145

9 Taiwan TWII 0.0115

10 Australia AORD 0.0067

11 Austria ATX 0.0093

12 France FCHI 0.0108

13 Germany GDAXI 0.0117

14 Hong Kong HSI 0.0122

15 Israel TA100 0.0090

16 Japan N225 0.0111

17 Singapore STI 0.0101

18 Switzerland SSMI 0.0093

19 United Kingdom FTSE 0.0090

20 United States GSPC 0.0091

The daily closing prices and logarithmic returns of 20 financial indices are shown in
Fig. 16.1. There are differences in public holidays or weekends among countries so
we shifted the data according to the rule that when more than 30 % of markets did
not open on a particular day, we remove that day from the data, and when it is below
30 %, we kept existing indices and inserted the last closing price for each of the
remaining indices. Also these markets do not operate at the same time zones. It has
been studied [8, 17, 20] that correlations of Asian with the USA indices increases
when one considers the correlation of the USA indices with the next day indices
of the Asian market. We did not considered weekly data to avoid the problem of
different operating hours between international market so that we do not miss major
changes in markets which tend to occur during a small interval of days. Thus, we
consider all indices taken at the same date and filtered the data accordingly.

16.3 Random Matrix Theory Approach

Let Si(t) and Ri(t) denote the daily closing prices and returns of indices i at time t

(i = 1,2, . . . ,N ; t = 1,2, . . . ,L), respectively. The logarithmic returns Ri(t) can
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Fig. 16.1 (a) Daily closing prices of financial indices of 20 countries for the period July, 1997 to
June, 2009 (b) Corresponding log-returns

be defined as,

Ri(t)≡ ln
(
Si(t +Δt)

)− ln
(
Si(t)

)
, (16.1)

where Δt = 1 day is the time lag. The normalized returns for indices i is defined as,

ri(t)≡ Ri(t)− 〈Ri〉
σi

, (16.2)

where σi ≡
√
〈R2

i 〉 − 〈Ri〉2 is the standard deviation of Ri , and 〈· · · 〉 denotes a time
average over the period studied. We then compute the equal-time cross-correlation
matrix C with elements,

Cij ≡
〈
ri(t)rj (t)

〉
. (16.3)

The elements of Cij are limited to the domain −1≤ Cij ≤ 1, where Cij = 1 defines
perfect positive correlations, Cij =−1 corresponds to perfect negative correlations,
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Fig. 16.2 Mean volatility of 20 financial indices

and Cij = 0 corresponds to no correlation. If N time series of length T are mutually
uncorrelated, the resulting cross-correlation matrix is termed as a Wishart matrix.
Statistical properties of such random matrices are known. In the limit of N →∞,
L→∞, such that Q≡ L/N ≥ 1, the probability distribution Prm(λ) of the eigen-
value λ is given by,

Prm(λ)= Q

2π

√
(λrand

max − λ)(λ− λrand
min )

λ
, (16.4)

for λ within the bounds λrand
min ≤ λi ≤ λrand

max , where λrand
min (λrand

max ) are the lower (upper)
bound given by,

λrandmax(min) =
[
1± (1/

√
Q)

]2
. (16.5)

The volatility gives us a measure of the market fluctuations. We quantify the
volatility, as the local average of the absolute value of daily returns of indices in
an appropriate time window of T days, as an estimate of volatility in that period

v(t) =
∑T−1

t=1 |R(t)|
T−1 . We compute the mean volatility of all indices (June 7, 2007

to November 30, 2009) by taking T = 25 days which is shown in Fig. 16.2. The
volatility for two periods June 7, 2006 to November 30, 2007 and December, 2007
to June, 2009 (before and during the crisis) for individual countries is shown in
Fig. 16.3, we consider these two periods as the period before and during the finan-
cial crisis of 2008 respectively. We then construct the cross-correlation matrix Cij

from daily returns of N = 20 indices before and during crisis periods. The prob-
ability densities of Cij , P(Cij ) for both periods are compared in Fig. 16.4. The
largest eigenvalue deviating from RMT prediction reflects that some influence of
the full global market is common to all indices and it alone yields “genuine” in-
formation hidden in C. The range of eigenvalues within the RMT bounds corre-
sponds to noise and do not yield any system specific information. Therefore, we
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Fig. 16.3 Volatility of 20 financial indices before and during the crisis

Fig. 16.4 Plot of the probability density of elements of correlation matrix C calculated using daily
returns of 20 indices before and during the crisis. We find the average magnitude of correlation
〈|C|〉 = 0.435 before and 〈|C|〉 = 0.463 during the crisis respectively

compare the properties of C with those of a random correlation matrix in Fig. 16.5
and Fig. 16.6 respectively to extract information about the cross correlations. If there
is no correlation between these financial indices, the eigenvalues should be bounded
between RMT predictions i.e. λrand

min = 0.597 and λrand
max = 1.5063. We find that be-

fore the financial crisis period (June 7, 2006 to November 30, 2007), λreal
min = 0.0527

and λreal
max = 9.0454; during financial crisis period (December, 2007 to June, 2009),

λreal
min = 0.0388 and λreal

max = 9.5282. Here, we find that largest eigenvalues deviate
significantly from the upper bound λrand

max which shows a strong correlation between
financial indices. We also find an increase in the value of 〈Cij 〉 = 0.4353 before
the crisis and 〈Cij 〉 = 0.4634 during the crisis period. Since the largest eigenvalue
represents the collective information about the correlation between different indices
therefore we expect its trend to be dependent on the market conditions [12, 21, 23]
and can be seen in Fig. 16.7 which is plotted for eigenvectors corresponding to
first largest eigenvalue. We find that eigenvectors corresponding to second largest
eigenvalue give the information about a sector formation in global financial in-
dices. In Fig. 16.8, we compare eigenvectors corresponding to second largest eigen-
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Fig. 16.5 Comparison of probability density function of 20 financial indices before the crisis. For
N = 20 indices, T = 387 days and Q= 19.35, λrand

min = 0.597 and λrand
max = 1.506 and λreal

min = 0.0527
and λreal

max = 9.045

Fig. 16.6 Comparison of probability density function of 20 financial indices during the crisis. For
N = 20 indices, T = 387 days and Q= 19.35, λrand

min = 0.597 and λrand
max = 1.506 and λreal

min = 0.0388
and λreal

max = 9.528

value before and during the financial crisis. Countries corresponding to financial
indices above eigenvector threshold 0.15 that are contributing most to eigenvec-
tors corresponding to second largest eigenvalues are as follows: Argentina, Brazil,
Mexico, France, Germany, Switzerland, UK, US (before the crisis) and Indonesia,
Malaysia, South Korea, Taiwan, Australia, Hong Kong, Japan, Singapore (during
the crisis). We find that these sectors are forming on the basis of the geographical
location. Before crisis indices of Americas (Argentina, Brazil, Mexico, US) and Eu-
rope (France, Germany, Switzerland) contribute significantly while during the crisis
indices of Asia/Pacific (Indonesia, Malaysia, South Korea, Taiwan, Australia, Hong
Kong, Japan, Singapore) contribute significantly to the eigenvectors corresponding
to second largest eigenvalue. The classification of major world indices has been
considered as [26]. However, eigenvectors corresponding to third largest eigenvalue
(Fig. 16.9) does not give so much information as it is near the random matrix bound.
We also analyze the eigenvalue dynamics of correlation matrices C constructed by
using 3088 daily returns of 20 indices using a sliding window of 25 days. The cor-
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Fig. 16.7 Comparison of eigenvectors corresponding to first largest eigenvalue before and during
the financial crisis of 2008 respectively. No significant difference is observed except the financial
indices of Indonesia, Malaysia, and Mexico

Fig. 16.8 Comparison of eigenvectors corresponding to second largest eigenvalue. Before crisis
indices of Americas (Argentina, Brazil, Mexico, US) and Europe (France, Germany, Switzerland)
contribute significantly while during the crisis Asia/Pacific (Indonesia, Malaysia, South Korea, Tai-
wan, Australia, Hong Kong, Japan, Singapore) contribute significantly. These sectors are formed
on the basis of geographical location

relation matrix was constructed from 20 financial indices having the 3088 returns.
Fig. 16.10 shows the trend of first, second, and third largest eigenvalue over each of
these sliding windows. Here, we find increase in the first and second largest eigen-
values during the financial crisis of 2008 while third largest eigenvalues do not show
significant variation. We also analyze the evolution of the structure of the last eigen-
state, U20 by evaluating the Inverse Participation Ratio (IPR) which allows quan-
tification of the number of components that participate significantly in each eigen-
vector and tells us more about the level and nature of deviation from RMT. The IPR
of the eigenvector uk is defined by I k ≡∑N

l=1[uk
l ]4, where uk

l , l = 1, . . . ,N are the
components of eigenvector uk . Thus IPR allows us to compute the inverse of the
number of eigenvector components that contribute significantly to each eigenvector.
Fig. 16.11 shows the IPR of 20 financial indices and is closest to 0.05 (=1/20), the
value we would expect when all components contribute equally, in the most volatile
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Fig. 16.9 Comparison of eigenvectors corresponding to third largest eigenvalue before and during
the financial crisis of 2008 respectively

Fig. 16.10 Largest eigenvalues of the correlation matrices constructed from daily returns of 20
financial indices using a sliding window of 25 days

Fig. 16.11 IPR for the eigenvector U20 as a function of time which is obtained from correlation
matrix C constructed from daily returns of 20 financial indices for 123 time windows of 25 days
each. The dashed line marks the value 0.05 of IPR when all components contribute equally
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periods of time span. This has similar characteristics to those found for different
indices.

16.4 Construction and Analysis of the Correlation Network
of Financial Indices

16.4.1 Threshold Method

The main idea of constructing the index correlation network is as follows: Let the
set of index represent the set of vertices of the network. A certain threshold value
θ is specified such that −1 ≤ θ ≤ 1. We add an undirected edge connecting the
vertices i and j if the correlation coefficient Cij is greater than or equal to θ . Dif-
ferent values of θ define the networks with the same set of vertices, but different
set of edges [7]. We construct networks for different values of threshold θ in the
range 0 to 0.9. The Fruchterman-Reingold layout is used to find the clusters. The
Fruchterman-Reingold algorithm [5] is a force-directed layout algorithm. The idea
of a force directed layout algorithm is to consider a force between any two nodes.
In this algorithm, the nodes are represented by steel rings and the edges are springs
between them. The attractive force is analogous to the spring force and the repulsive
force is analogous to the electrical force. The basic idea is to minimize the energy
of the system by moving the nodes and changing the forces between them. We find
that at threshold θ = 0.2 the network is fully connected. In the network at threshold
θ = 0.6 (Fig. 16.12) the Americas, Europe and Asia/Pacific forms different clusters
before the crisis but during the crisis Americas and Europe forms a combined clus-
ter of strong link between them. If we further increase the threshold θ up to 0.9 we
find that European countries: France, Germany and UK, consistently constitute the
most tightly linked markets for both before and during the crisis.

16.4.2 Minimum Spanning Tree

We construct the network of 20 financial indices (before and during 2008 crisis)
by using the metric distances [14] dij =

√
2(1−Cij ) forming an N × N distance

matrix D whose elements varies between 0 and 2. Here Cij is the correlation be-
tween indices i and j whose elements varies from −1 to 1 thus small values of
dij imply high correlations among indices. The number of possible nodal connec-
tions of financial indices is large, N(N − 1)/2. The MST can reduce this com-
plexity by showing only the N − 1 most important non-redundant connections in
a graphical manner. We use the Prim Algorithm [22] for drawing MST. Prim al-
gorithm is an algorithm in graph theory that finds a minimum spanning tree for a
connected graph i.e. it finds a subset of the edges that forms a tree that includes
every vertex, where the total weight of all the edges in the tree is minimized. If
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Fig. 16.12 The financial network of 20 indices at different threshold: (a) θ = 0.2 (before)
(b) θ = 0.2 (during) (c) θ = 0.6 (before): Cluster of financial indices of Americas (Ar-
gentina, Brazil, Mexico, and US), Europe (Austria, France, Germany, Switzerland, and UK), and
Asia/Pacific (Australia, Hong Kong, Indonesia, Malaysia, Japan, Singapore, South Korea, Taiwan).
(d) θ = 0.6 (during): Clusters of indices of Asia/Pacific (Australia, Hong Kong, Japan, India, Sin-
gapore, South Korea, Taiwan), Americas (Argentina, Brazil, Mexico,US), and Europe (Austria,
France, Germany, Switzerland, UK). (e) θ = 0.9 (before) (f) θ = 0.9 (during). At θ = 0.9 indices
corresponding to Europe: France, Germany and UK consistently constitute the most tightly linked
markets both before and during the crisis

the graph is not connected, then it will only find a MST for one of the connected
components. The MST shows the presence of clusters of nodes (indices) which
are quite homogeneous and it also displays a structure in subclusters where nodes
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Fig. 16.13 The MST using Prim algorithm. (a) Before the crisis (b) During the crisis. There is a
strong tendency for financial indices to organize by geographical location

are indices belonging to the same subsector. We find that there is a strong ten-
dency for financial indices to organize by geographical location that can be seen
in Fig. 16.13(a) and (b). Before the crisis the structure of MST is more star like
whereas during the crises it changes to be more chain like. Using MST, we find that
there is a strong tendency for financial indices to organize by geographical loca-
tion.

16.5 Multifractal Analysis of Global Financial Indices

We use the Multifractal Detrended-Fluctuation Analysis (MF-DFA) method [9, 11]
to study the multifractal properties of financial indices. The multifractality degree
can be quantified by Δh = h(qmin) − h(qmax). As the large fluctuations are char-
acterized by smaller scaling exponent h(q) than small fluctuations therefore h(q)

for q < 0 are larger than those for q > 0 and Δh is positively defined. We calculate
Hurst exponents for financial indices before and during the crisis. Figure 16.14 show
increase in the value of Hurst exponents for most of the financial indices during the
crisis as compared to period before the crisis. We also find the multifractal degree
(Δh) of financial indices before and during the crisis and results are compared in
Fig. 16.15. We find that there is no significant variation in the multifractal degree
except the indices of Egypt, Malaysia, Taiwan, Israel, and Singapore.

16.6 Conclusion

We study results obtained before and during the financial crisis of 2008 by using
RMT and Network (Threshold and MST) methods. We analyze the eigenvalue dy-
namics of correlation matrix of 20 financial indices using a sliding window of 25
days. We find that largest eigenvalues deviate significantly from the upper bound
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Fig. 16.14 Hurst exponents for 20 financial indices. Hurst exponents increases for most of the
financial indices during the crisis period

Fig. 16.15 Multifractal degree (Δh) before and during the financial crisis for 20 financial indices.
A large variation in the value of Δh is observed in case of Egypt, Malaysia, Taiwan, Israel and
Singapore during the crisis period

λrand
max which shows a strong correlation between financial indices. We find that the

largest eigenvalue represent the collective information about the correlation between
different indices and its trend indicates the market conditions. We also perform the
eigenvector analysis corresponding to the first, second and third largest eigenvalue
before and during the crisis. It is confirmed that eigenvectors corresponding to sec-
ond largest eigenvalue gives useful information about the sector formation in the
global financial indices. We compare eigenvectors corresponding to second largest
eigenvalue before and during the financial crisis. Countries corresponding to finan-
cial indices above eigenvector threshold 0.15 that are contributing more are as fol-
lows: Argentina, Brazil, Mexico, France, Germany, Switzerland, UK, US (before
the crisis) and Indonesia, Malaysia, South Korea, Taiwan, Australia, Hong Kong,
Japan, Singapore (during the crisis). We find that these sectors are formed on the
basis of the geographical location. However, eigenvectors corresponding to third
largest eigenvalue does not give much information as the third largest eigenvalue
is near the random matrix bound. We study properties of the correlation networks
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of financial indices by using the threshold and hierarchical (MST) method respec-
tively. We analyze the effect of financial crisis of 2008 on the correlation network of
global financial indices. By constructing networks for different values of threshold
θ in the range 0 to 0.9, we find that at threshold θ = 0.2 the network is fully con-
nected. At threshold θ = 0.6, we find that the Americas, Europe and Asia/Pacific
form different clusters before the crisis but during the crisis Americas and Europe
are strongly linked. If we further increase the threshold θ up to 0.9 we find that Eu-
ropean countries France, Germany and UK consistently constitute the most tightly
linked markets before and during the crisis. We also study the topological properties
(mean degree, clustering coefficients, connected components, and clique) of corre-
lation network before and during the crisis. Using MST, we find that there is a strong
tendency for financial indices to organize by geographical location. Before the cri-
sis the structure of MST is more star like whereas during the crises it changes to
be more chain like. We also study multifractal properties of global financial indices
and find that there is an increase in the value of Hurst exponents of financial indices
during the crisis period.
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Chapter 17
Study of Systemic Risk Involved in Mutual
Funds

Kishore C. Dash and Monika Dash

Abstract Systemic risk, may be defined as the risk that contaminates to the whole
system, consisting of many interacting agents that fail one after another. These
agents, in an economic context, could be firms, banks, funds, or other financial in-
stitutions. Systemic risk is a macroscopic property of a system which emerges due
to the nonlinear interaction of agents on a microscopic level. A stock market itself
is a system in which there are many sub-systems, like Dowjones, Nifty, Sensex,
Nasdaq, Nikkei and other market indices in global perspective. In Indian market,
subsystems may be like Sensex, Nifty, BSE200, Bankex, smallcap index, midcap
index, S&P CNX 500 and many others. Similarly there are many mutual funds,
which have their own portfolio of different stocks, bonds etc. We have attempted to
study the systemic risk involved in a fund as a macroscopic object with regard to
its microscopic components as different stocks in its portfolio. It is observed that
fund managers do manage to reduce the systemic risk just like we take precautions
to control the spread of an epidemic.

17.1 Introduction

Systemic risk is the macroscopic property of a system which emerges due to the
nonlinear interactions of agents on a microscopic level. It may be defined as the risk
that contaminates to the whole system, consisting of many interacting agents that
fail one after another. A stock market itself is a system in which there are many
sub-systems, like Dowjones, Nifty, Sensex, Nasdaq, Nikkei and other market in-
dices in global perspective. In Indian market, subsystems may be like Sensex, Nifty,
BSE200, Bankex, smallcap index, midcap index, S&P CNX 500 and many others.
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17.2 Current Study

There are many mutual funds, which have their own portfolio of different stocks,
bonds etc. We have attempted to study the systemic risk involved in a fund as a
macroscopic object with regard to its microscopic components as different stocks in
its portfolio.

17.3 The Model

On the microscopic level, each node i of the network at time t is represented by a
dynamic variable Si(t) ∈ {0,1} characterizing the failure state. The state is Si(t)= 1,
if the node has failed and Si(t) = 0 otherwise. On the macroscopic side, the system
state at time t is encoded in the n-dimensional state vector S(t), with n being the
number of nodes. The macrodynamic variable of interest for systemic risk is the
total fraction of failed nodes in the system [1]

X(t)= 1

n

n∑

i=1

Si(t). (17.1)

When the value of X(t) is close to one, the system is prone to systemic risk and
free of it when the value is close to zero. Here, X(t) is a measure of systemic risk.
Agents are represented by nodes. Each of the nodes is characterized by two discrete
states 0 and 1, which can be interpreted as, a healthy and a failed state respectively.
We assign state ‘0’ while in one phase and state ‘1’ when it completely changes its
phase.

17.4 Mutual Funds Studied

HDFC Equity (G) An open ended growth scheme, DOA—01.01.1995
HDFC Top 200 (G) An open ended growth scheme, DOA—11.10.96
HDFC Taxsaver (G) An open ended ELSS Fund, DOA—31.03.1996
HDFC Capital Builder (G) An open ended growth scheme, DOA—01.02.1994
Franklin India Prima Plus (G) An open ended growth scheme, DOA—29.09.1994

17.4.1 HDFC Equity Top Ten Holdings

(From 1st July 2010 to 30th June 2011 for a period of one year) [2]

• SBI: 8.41 % Lowest on 5.10.11 (1715.3), other lows 22.6.11 (2141.05), 20.1.11
(2468.8), 26.7.10 (2408.85)
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Fig. 17.1 Daily NAV of HDFC Equity (1), FIPP (2), Top 200 (3) and HDFC Cap Builder (4)

• ICICI Bank: 6.99 %—Lowest on 8.6.10 (816.9), other lows 2.7.10 (840.1),
20.7.10 (889.4), 30.7.10 (904.45), 6.8.10 (951.85)

• TCS: 4.62 %—others—last week of Sept’11
• Infosys: 3.99 %—Minimum 3rd week of Aug’11, minimum end of August—11

and 2nd week of Sept’11
• Bank of Baroda: 3.61 %—Minimum Aug’11 last week, others—Jan 3rd week,

Feb 2nd week and May 3rd week
• CIL: 3.57 %—Lowest—25.2.11 (291.60), 25.11.10 (304.57), 9.12.10 (307.5),

4.10.11 (319.75), 30.3.11 (341.85)
• Bharti Airtel: 3.17 %—Min 2nd week of Nov’10, other lows—last week of Jan,

2nd week of March’11
• RIL: 2.90 %—Lowest (719.5) on 26.08.11, other lows—between last week of

Sept’11 and 1st week of Oct’11
• Tata Motors: 2.76 %—Minimum—last week of August, phase changed during

1st week of Feb, 3rd week of June and 3rd and last week of Aug’11
• Cipla: 2.42 %—Lowest—Sept 1st week ’11

It is observed that all the nodes failed [Si(t) = 1] between last week of August
(2011) and 1st week of October (2011) giving rise to X(t)= 1

n

∑n
i=1 Si(t)

∼= 1 and
at macroscopic level HDFC Equity does fail during that period as it is clear from
the chart (Fig. 17.1)

17.4.2 HDFC Top200 Top Ten Holdings

(From 1st July 2010 to 30th June 2011 for a period of one year) [2]

• SBI: 6.86 %—Lowest 5.10.11 (1715.3), other lows 22.6.11 (2141.05), 20.1.11
(2468.8), 26.7.10 (2408.85) [3]



280 K.C. Dash and M. Dash

• ICICI Bank: 6.43 %—Lowest 8.6.10 (816.9), other lows 2.7.10 (840.1), 20.7.10
(889.4), 30.7.10 (904.45), 6.8.10 (951.85)

• Infosys: 5.88 %—Minimum End of August—11 and 2nd week of Sept’11
• ITC: 4.56 %—Minimum in last week of Feb’11
• RIL: 4.13 %—Lowest (719.5) on 26.08.11, other lows—between last week of

Sept’11 and 1st week of Oct’11
• TCS: 3.95 %—Min 3rd week of Aug’11, others—last week of Sept’11
• Bank of Baroda: 3.47 %—Minimum Aug’11 last week, others—Jan 3rd week,

Feb 2nd week and May 3rd week
• CIL: 3.19 %—Lowest—25.2.11 (291.60), other lows 25.11.10 (304.57), 9.12.10

(307.5), 4.10.11 (319.75), 30.3.11 (341.85)
• Bharti Airtel: 2.91 %—Min 2nd week of Nov’10, other lows—last week of Jan,

2nd week of March’11
• Titan Industries: 2.54 %—Lowest—21.6.10 (2182.41), other lows 11.8.10

(2770.05), 31.8.10 (2932.75), 9.2.11 (3086), 21.3.11 (3431.15), 3.5.11 (3771.45),
22.6.11 (4288)

It is observed that all the nodes except ITC fail [Si(t) = 1] between last
week of August (2011) and 1st week of October (2011) giving rise to X(t) =
1
n

∑n
i=1 Si(t)

∼= 1 and at macroscopic level HDFC Top 200 fails during that period
as it is clear from the chart (Fig. 17.1).

(Titan also fails but the graph has not been updated due to splitting.)

17.4.3 HDFC Capital Builder Top Ten Holdings

(From 1st July 2010 to 30 June 2011 for a period of one year) [2]

• TCS: 6.79 %—Min 3rd week of Aug’11, others lows—last week of Sept’11
• Ipca Lab: 5.95 %—Lowest 4.10.11 (232), other lows 8.3.11 (260.5), 16.10.10

(267.15), 30.3.11 (290), 4.5.11 (294)
• SBI: 5.77 %—Lowest 5.10.11 (1715.3), other lows 22.6.11 (2141.05), 20.1.11

(2468.8), 26.7.10 (2408.85)
• BOB: 5.47 %—Minimum Aug’11 last week, others—Jan 3rd week, Feb 2nd

week and May 3rd week
• RIL: 5.47 %—Lowest (719.5) on 26.08.11, other lows—between last week of

Sept’11 and 1st week of Oct’11
• Infosys: 5.21 %—Minimum End of August—11 and Sept’11 2nd week
• Bharti Airtel: 4.95 %—Minimum 2nd week of Nov’10, last week of Jan, 2nd

week of March’11
• Oil India Ltd: 4.60 %—Lowest—24.2.11 (1220), other lows 21.6.11 (1241.30),

5.9.11 (1288)
• ICICI Bank: 3.92 %—Lowest 8.6.10 (816.9), other lows 2.7.10 (840.1), 20.7.10

(889.4), 30.7.10 (904.45), 6.8.10 (951.85)
• Dr. Reddy’s Lab: 3.84 %
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It is observed that EIGHT of the nodes fail [Si(t) = 1] between last week of
August (2011) and 1st week of October (2011) giving rise to X(t)= 1

n

∑n
i=1 Si(t)

∼=
1 and at macroscopic level HDFC Capital Builder fails during that period as it is
clear from the chart (Fig. 17.1). No information about two stocks (IPCA Lab and
OIL India, as no charts available).

17.4.4 HDFC Tax Saver Top Ten Holdings

(From 1st July 2010 to 30 June 2011 for a period of one year) [2]

• SBI: 5.38 %—Lowest 5.10.11 (1715.3), other lows 22.6.11 (2141.05), 20.1.11
(2468.8), 26.7.10 (2408.85)

• TCS: 4.94 %—Min 3rd week of Aug’11, others—last week of Sept’11
• ITC: 4.88 %—Minimum in last week of Feb’11
• Sun Pharma: 4.33 %—Lowest—17.6.10 (328.98), other lows 23.9.10 (378),

24.2.11 (407), 4.10.11 (452)
• Infosys: 4.24 %—Minimum End of August—11 and 2nd week of Sept’11
• Bharti Airtel: 3.72 %—Minimum 2nd week of Nov’10, last week of Jan, 2nd

week of March’11
• ICICI Bank: 3.61 %—Lowest 8.6.10 (816.9), other lows 2.7.10 (840.1), 20.7.10

(889.4), 30.7.10 (904.45), 6.8.10 (951.85)
• Crompton Greaves: 3.33 %—Lowest in last week of Aug and first week of

Oct’11
• L & T: 2.75 %—Lowest in last week of Sept’11 and first week of Feb’11. Phase

changed during 1st to last week of Jan, 1st week of Feb, last week of Feb, 3rd
week of March, mid May.

• Bank of Baroda: 2.74 %—Minimum Aug’11 last week, others—3rd week of
January, 2nd week of February and 3rd week of May

It is observed that EIGHT of the nodes fail [Si(t) = 1] between last week of
August and 1st week of October of 2011 giving rise to X(t) = 1

n

∑n
i=1 Si(t)

∼= 1.
(ITC is not failing) and at macroscopic level HDFC Tax Saver fails during that
period as it is clear from the chart (Fig. 17.2). No information about SUNPHARMA.

17.4.5 Franklin India Prima Plus Top Ten Holdings

(From Aug’ 2010 to 29 July 2011) [3]

• Infosys: 8.24 %—Minimum End of August—11 and 2nd week of Sept’11
• Bharti airtel: 7.67 %—Minimum 2nd week of Nov’10, last week of Jan, 2nd

week of March’11
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Fig. 17.2 Daily NAV of HDFC Tax Saver

• ICICI Bank: 6.08 %—Lowest 8.6.10 (816.9), other lows 2.7.10 (840.1), 20.7.10
(889.4), 30.7.10 (904.45), 6.8.10 (951.85)

• RIL: 4.81 %—Lowest (719.5) on 26.08.11, other lows—between last week of
Sept’11 and 1st week of Oct’11 [4]

• GRASIM: 3.76 %—Lowest 3rd week of June, other lows—during last week of
Aug’11

• IDEA: 3.57 %—Lowest—end of Feb’11 [4]
• KOTAK MAHINDRA BANK: 3 % Lowest 1st week of Feb’11.
• HDFC Bank Ltd: 2.88 %—Min 1st week of Feb’11
• DR REDDY’S LAB: 2.27 %—Lowest—3rd week of July, other lows—1st week

of October
• BOSCH: 2 %—Lowest 3rd week of March [4]

It is observed that SIX of the nodes failed [Si(t)= 1] between last week of Au-
gust (2011) and 1st week of October (2011) giving rise to X(t)= 1

n

∑n
i=1 Si(t)

∼= 1,
(IDEA, KOTAK MAHINDRA BANK, BOSCH did not fail while Grasim partially
did) and at macroscopic level FRANKLIN INDIA PRIMA PLUS failed during that
period as it is clear from the chart (Fig. 17.1).

17.5 Conclusion

Thus it is observed that risk is getting transmitted just like an infectious disease from
one to another giving rise to systemic risk at the macroscopic level. In case of mutual
funds, however it is an indirect way of infection as fund managers choose different
stocks at different times, change the percentage of holding and try to minimize the
risk, as we have seen in some cases some nodes are not failing. It is also evident
from the performance of some funds flashed in Table 17.1.
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Fig. 17.3 Daily closing value. (Courtesy: http://in.finance.yahoo.com)

Table 17.1 NAV Performance (Courtesy: Intouch mutually, Vol 8, June 2011, HDFC mutual
fund [2], Franklin Templeton India monthly factsheet, July 2011 [3])

Stock Last 6 months Last 1 year Last 3 years Last 5 years Last 10 years

FIPP (G) 4.17 6.40 15.63 16.63 27.77

S and P CNX 500 −0.01 −1.14 8.59 11.55 20.30
(Bench Mark)

HDFC Equity −5.04 11.02 25.24 19.82 32.47

HDFC CB −5.37 7.93 20.33 17.26 27.93

HDFC TS −4.81 7.88 23.03 15.36 30.74

S and P CNX 500 −7.78 2.31 12.19 12.03 20.06
(Bench Mark)

HDFC Top 200 −5.25 9.03 22.5 19.83 27.93

BSE 200 −7.96 2.96 12.08 12.73 20.53
(Bench Mark)

Bench Mark index of S&P CNX 500 is different because FIPP and HDFC declare
their annual performance in different months (July and June respectively).

http://in.finance.yahoo.com
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Fig. 17.4 Daily closing values. (Courtesy: http://in.finance.yahoo.com)

Fig. 17.5 Daily closing values. (Courtesy: http://in.finance.yahoo.com)

http://in.finance.yahoo.com
http://in.finance.yahoo.com
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17.6 Disclaimer

We are no way connected with the mutual funds that we have studied and the view
is completely ours.
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Chapter 18
Characterizing Price Index Behavior Through
Fluctuation Dynamics

Prasanta K. Panigrahi, Sayantan Ghosh, Arjun Banerjee,
Jainendra Bahadur, and P. Manimaran

Abstract We study the nature of fluctuations in variety of price indices involving
companies listed on the New York Stock Exchange. The fluctuations at multiple
scales are extracted through the use of wavelets belonging to Daubechies basis. The
fact that these basis sets satisfy vanishing moments conditions makes them ideal to
extract local polynomial trends, through the low pass or ‘average coefficients’. Sub-
tracting the trends from the original time series yields the fluctuations, at different
scales, depending on the level of low-pass coefficients used for finding the ‘aver-
age behavior’. The fluctuations are then studied using wavelet based multifractal
detrended fluctuation analysis to analyze their self-similar and non-statistical prop-
erties. Due to the multifractality of such time series, they deviate from Gaussian
behavior in different frequency regimes. Their departure from random matrix the-
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ory predictions in such regimes is also analyzed. These deviations and non-statistical
properties of the fluctuations can be instrumental in throwing significant light on the
dynamics of financial markets.

18.1 Introduction

Financial time-series which were in the past of interest to only economists, have led
to considerable inter-disciplinary research due to the applicability of various physi-
cal laws and techniques in their analysis. This has led to the discovery of various new
aspects like fractality [1], multifractality [2], correlated behavior [3, 4] and complex
network structure [5]. The last few years has also seen a lot of activity in terms of
explaining the correlations in financial markets through the Random Matrix Theory
(RMT) framework [6–8].

Fractals as first predicted by Benoit Mandelbrot in the 1960s [9] have been
widely applied to understand various processes in Physics [10], Chemistry [11] and
Biology [12]. Mandelbrot in 1963 proposed the study of fluctuations in the market
prices [1] which opened new vistas for the analysis of stock markets through statis-
tical physics. In the recent years, Peng et al. proposed the “Detrended Fluctuation
Analysis (DFA)” in 1994 [2] to study the DNA nucleotide structure as a random
walk problem which was extended to study the price fluctuations in economic time-
series under a mono-fractal hypothesis [13–15]. However, the inadequacy of the
mono-fractal hypothesis to model the behavior of financial time series was soon
pointed out and consequently, a multi-fractal model called the “Multi-Fractal De-
trended Fluctuation Analysis (MFDFA)” was proposed [16]. This method used a
variable window approach to calculate the local variances in the profile of the data
series from the polynomial fit. Manimaran et al. in 2009 [17] building on the work
by Kantelhardt et al. proposed the “Wavelet Based Multi-Fractal De-trended Fluctu-
ation Analysis (WBMFDFA)”, where, using the Multi-Resolution Analysis (MRA)
capable “fractal like” kernels, the time-frequency resolution and extraction of fluc-
tuations for multi-fractal analysis was shown to have a greater efficiency than its
predecessor.

The study of the correlation matrix of the financial return series have been shown
to agree well with the predictions of RMT and the nearest-neighbor-spacing of the
rank-ordered unfolded eigenvalues of the correlation matrix follow that of the Gaus-
sian Orthogonal Ensemble (GOE) [7, 18]. This behavior dubbed as an universal
behavior of the financial return series have again, recently been studied with re-
spect to temporal evolution of financial correlations to study the differences between
the assumption of strongly correlated financial time-series and uncorrelated finan-
cial time-series [19]. In this context, it becomes important to analyze the nature of
correlations in the time-frequency domain in order to ascertain the effects of non-
stationarity and transience on such studies. The inefficient handling of such signals
by either Fourier Transform or Short Term Fourier Transform for the purpose of a
time-frequency localized study have already been established, leading to the devel-
opment of Wavelet Transform [20].
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In this work, we will use a wavelet based fluctuation extraction technique to study
the correlations of the fluctuations at various frequency windows (called scales in
the wavelet parlance). We will also briefly comment on the multi-fractal nature of
the fluctuations and the distributions of the associated parameters: Hurst exponent
and singularity strength. The organization of the article is as follows: in Sect. 18.2,
we will briefly review the theoretical methods of Wavelet Based Fluctuation Ex-
traction (WBFE), Wavelet Based Multi-Fractal De-trended Fluctuation Analysis
(WBMFDFA) and the Random Matrix Theory (RMT) based method to study the
time-frequency localized correlations of the fluctuations. Further in Sect. 18.3, we
discuss the results obtained by the application of WBFE, WBMFDFA and corre-
lation analysis on the price index of 196 scrips trading on the New York Stock
Exchange (NYSE) between September 1984 to June 2010. Finally, we summarize
and conclude with the scope for future work in Sect. 18.4.

18.2 Review of Theoretical Methods

18.2.1 Wavelet Based Fluctuation Analysis

In the following, the analysis of a time series given by X(t) is carried out by calcu-
lating the “log-normalized return series” R(t):

r(t) = logX(t + 1)− logX(t), (18.1)

R(t) = r(t)− 〈r(t)〉
σr

(18.2)

where, 〈·〉 and σr are the time average and standard deviation of the log-return series
r(t). σr is also called as the “volatility of returns”. The profile Y(t) is calculated by
taking the cumulative sum of the log-normalized return series:

Y(t)=
t∑

k=1

R(k) (18.3)

which is then subjected to the Wavelet Based Fluctuation Extraction (WBFE) [17].
The WBFE can be performed following the steps:

1. Calculate the one-dimensional discrete wavelet transform (1DWT) [20–23] of
the profile:

Y(t)=
∞∑

b=−∞
cbφb(t)+

l∑

a≥0

∞∑

b=−∞
dabψab(t) (18.4)

where cb are the “low-pass” coefficients that capture the trend or the average
behavior of the signal and dab are the “high-pass” coefficients capturing the local
fluctuations in the signal at various window sizes a. The functions Φ and Ψ are
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called the “scaling filter” and the “high pass” filters respectively. The father and
mother wavelets φb(t) and ψab(t) are orthogonal to each other and are subjected
to the admissibility conditions

∫
φ(t) dt <∞, (18.5)

∫
ψ(t) dt = 0, (18.6)

∫
φ∗(t)ψ(t) dt = 0, orthogonality, (18.7)

∫ ∣∣φ(t)
∣∣2 dt = 1=

∫ ∣∣ψ(t)
∣∣2dt. (18.8)

The scaled and translated versions of ψ(t) are called the “daughter wavelets”

ψab(t)= 2a/2ψ
(
2at − b

)
, a ∈R, b ∈ Z

+ (18.9)

which differ from the mother wavelet ψ(t) at the ath scale by 2a in height and
2a/2 in width. a and b are called the scaling and translation parameters respec-
tively and l = "logN/ log 2# is the maximum number of scales for the profile
Y(t) of length N .

The wavelet kernel for the 1DWT should be chosen such that it captures the
maximum information from the signal. For example, the Daubechies’ family of
wavelets satisfy vanishing moment conditions which make them blind to vari-
ous polynomial trends. The wavelet Db-N (with the index number N being even
integers between 2 and 20), has N/2 vanishing moments limiting the represen-
tation of a polynomial trend of N/2 in the signal. The Db-4 wavelet has two
vanishing moments making it blind to constant and linear trends. In this work
the Db-4 wavelet is employed.

2. Calculate the approximate trend Ta(t) at the scale of interest a and subtract it
from the profile Y(t) to get the fluctuations Za(t):

Za(t)= Y(t)− Ta(t). (18.10)

The Za(t) obtained by this method represent the fluctuations at different frequency
bands (the scale is inversely related to the frequency). Consequently, these fluc-
tuations can be probed to analyze the behavior of the signal in various frequency
bands like Fourier power law and moments of the fluctuation distribution. It has
been shown earlier that the well-known f−3 behavior of market fluctuations appear
only in the low frequency or long wavelength regime [24]. Due to the varying win-
dow sizes (corresponding to different scales) and the convolution error generic to
wavelet transforms, the extracted fluctuations happen to have erroneous values at
the edges. These errors are corrected by performing the WBFE on the reversed pro-
file and then taking the average of the two (forward and reversed) fluctuation series
at each scale.
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18.2.2 Wavelet Based Multi-fractal De-trended Fluctuation
Analysis

These fluctuations can also be subjected to a multi-fractal analysis which is a modi-
fied form of the original MFDFA proposed by Kantelhardt et al. in 2002 [16].

The fluctuations obtained in (18.10) are further subdivided into Ns = "N/s# seg-
ments of size s such that s = 2a−1W , where W is the support width of the wavelet
and a represents the scale. Thus the fluctuations obtained at various scales can be
analyzed at window sizes corresponding to the scale and the wavelet used.

Since the fluctuations are guaranteed to have zero mean, we can directly find the
variance of each segment and thus calculate the fluctuation function

Fq(s)=
[

1

2Ns

s∑

k=1

{
σ 2(k, s)

}q/2
]1/q

, q �= 0. (18.11)

Fq(s) is the “qth order” fluctuation function, where q ∈ [−m,m],m ∈ Z
+. The

negative (positive) q values capture the fractality of the broader (finer) fluctuations.
It can be easily seen that at q = 0, the F0(s) blows up. Hence, to circumvent this
issue, at q = 0,

F0(s)= exp

[
1

2Ns

s∑

k=1

log
{
σ 2(k, s)

}q/2
]1/q

, q = 0. (18.12)

The “generalized Hurst exponent” h(q) can be obtained from Fq(s) since, as a func-
tion of the segment size s, Fq(s) follows a power law of the form

Fq(s)∼ sh(q). (18.13)

It must be noted that at q = 2, this method reduces to the standard mono-fractal fluc-
tuation analysis and h(2) is the Hurst exponent. The multi-fractal scaling exponent
τ(q) can be calculated as

τ(q)= qh(q)− 1. (18.14)

The singularity spectrum f (β) is related to the multi-fractal scaling exponent τ(q)
by a Legendre transform

β = d

dq
τ(q), and f

(
d

dq
τ(q)

)
= q

d

dq
τ(q)− τ(q)≡ f (β)= qβ − τ(q).

(18.15)

18.2.3 Correlation Analysis of Fluctuations

The fluctuations Za obtained at scale a through (18.10) can be analyzed for correla-
tions. The fluctuations for the entire data set of N scrips can be written as a N × T
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matrix X , where T is the time length of the fluctuation series of each the N scrips.
The correlation matrix is thus given by

C (x, y)= 1

T
X X T , (18.16)

where, · · ·T is the transposition operation. In the case where X consisted of N

mutually independent normally distributed fluctuations of length T , C could be
considered to be a Wishart matrix [18, 25, 26]. Under the constraint N→∞, T →
∞ and Q≡ T/N ≥ 1 the density of eigenvalues of the correlation matrix takes the
form [27]

ρ(Λ)= Q

2πσ 2
X

√
(Λmax −Λ)(Λ−Λmin)

Λ
, (18.17)

with σ 2
X being the variance of the matrix X and Λmax

min given by

Λmax
min = σ 2

X

[
1+ 1

Q
± 2

√
1

Q

]
. (18.18)

It must be noted that under the constraint N→∞, the eigenvalues of the matrix C
lie strictly in the range [Λmin,Λmin]. However, for finite sized matrices, there exists
a finite probability of finding eigenvalues outside this range. Indeed, it has been
shown that for financial time series, the nearest-neighbor eigenvalue spacing λ ≡
Λi+k −Λi , obtained through unfolding the eigenvalues of C follow the distribution
for a Gaussian Orthogonal Ensemble (GOE) [7]

ρ(λ)= πλ

4
exp

(
−π

2
λ2

)
. (18.19)

Here, we will investigate the scale dependence of the ρ(λ) for the correlation of the
fluctuations Za(t) and Z′a(t) at scale a, where Za(t) and Z′a(t) are different scrips in
the corpus. This will give us an idea about the effectiveness of the RMT predictions
in different frequency regimes.

18.3 Results and Discussion

18.3.1 Data

We have analyzed 196 scrips trading on the New York Stock Exchange (hereafter
referred to as NYSE) in the period from September the 7th, 1984 to June the 10th,
2010. The scrips analyzed in this work have been chosen so as to encompass high-
cap, mid-cap as well as low-cap sections of the American stock market. This com-
bined with the time-frame for analysis includes some of the major crashes of the
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NYSE, for the example the Black Monday on October 19, 1987, the July 2, 1997
crash triggered by the Asian financial crisis, the burst of the dot-com bubble leading
to a three years sluggish activities from March 10, 2000 and the two years long
bear run of the market from 2007–2009. The data has been analyzed using the
WBMFDFA method and also through a correlation analysis of the fluctuations in
the random matrix theory framework.

18.3.2 Time-Frequency Localized Correlation Analysis

Analysis and investigation of correlations of the fluctuations over different fre-
quency windows a (a ∝ 1/f where f is the frequency) can provide us with in-
sight into the spectral behavior of the market correlations thereby improving our
understanding of the collective behavior of the market in different time spans. For
example, if the correlations between different scrips representing different sectors of
the market in short time windows (high frequency, low scale) is low, then this could
be exploited to guard the simultaneous crashes of different sectors in the event of
a crisis. However, if the scrips are correlated in the low frequency limit, then the
long term correlations of the market could lead to the “healing” of the market in a
systematic and efficient way after a crash. This kind of information could be very
useful for the policy makers in order to both monitor the economy as well provide
for safe-guards against possible crashes.

In order to understand the nature of spectral correlations in the market, we ana-
lyze the spectrum of the correlation matrices at different scales. In Fig. 18.1, we have
shown the density of the unfolded eigenvalues of the correlation matrices of the fluc-
tuations obtained at different scales. We observe from Fig. 18.1a that at lower and
middle scales (up to a = 7), the unfolded eigenvalue distribution ρ(Λ) is largely
uniform and changes to fit (18.17) at higher scales as shown in Fig. 18.1b. Since
in this analysis, we have looked at the behavior of the fluctuations over the whole
time period T = 5799, the value of Q = 29.58 is very large. We could expect that
the correlations of such fluctuations will show significant deviations from the RMT
prediction since it fits well in short time windows [28]. We must remember that the
fluctuations obtained by the WBFE method at characteristic of the frequency range
(scale) under study. The spectral correlations under investigation here show that at
high frequencies (low scales), the GOE fit of (18.17) is not followed by ρ(Λ). How-
ever, at higher scales, that is at lower frequencies, the ρ(Λ) fits reasonably well
with (18.17).

In Fig. 18.2a, we have plotted the density of the eigenvalue spacing ρ(λ) against
different scales. It is clearly visible that at the lower and middle scales, the ρ(λ) fol-
lows the RMT prediction well, which we have exemplified in Fig. 18.2b at scale 5.
This is in contrast with the results in Fig. 18.1a suggesting that the eigenvalue spac-
ing at lower scales is behaves differently from the eigenvalues themselves. This is
an interesting observation which we believe should be explored in greater details.
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Fig. 18.1 Plots depicting the density of unfolded eigenvalues ρ(Λ) of the correlation matrix of
the fluctuations at (a) different scales and at (b) scale 10. It can be seen the ρ(Λ) fits with the
analytical (18.17)

Fig. 18.2 Plots depicting the density of nearest neighbor unfolded eigenvalue spacing ρ(λ) of
the correlation matrix of the fluctuations at (a) different scales and at (b) scale 5, ρ5(λ) fit with
ρ(λ) = aλ exp(−bλ2) where a = 35.64 and b = 0.7707 (with 95 % confidence bounds) as an
illustration. We can see that though the GOE fits well in the high and mid frequency ranges, at low
frequency or long periods, they do not fit with the RMT assumptions

18.4 Conclusion

To summarize, we have analyzed the nature of fluctuations from different sectors
of the New York Stock Exchange (NYSE) through Wavelet based multi-fractal
analysis and RMT based techniques. The number of companies being small, it is
expected that there will be significant deviation from the RMT prediction. Inter-
estingly, although the density of unfolded eigenvalues exhibited this behavior, the
nearest-neighbor eigenvalue spacing distribution matched reasonably well with the
RMT predictions at lower and middle scales. This points out that the spacing dis-
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tribution can shed considerable light on the nature of the high frequency fluctuation
correlation, for a smaller corpus of data.

In conclusion, wavelet analysis when combined with RMT approach can reveal
considerable information about the correlations at different scales and is quite use-
ful for modeling the behavior of high and low frequency components of physical
processes.
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Appendix
Discussions and Comments

The articles in the proceedings seem to hint at two aspects of systemic risk. The
first one is the fact that such a risk takes place at a much larger scale than that of an
individual institution. The second is that it eventually spreads to the real economy
outside the financial system through various “leakage” mechanisms, of which the
last crisis in 2008 has given some examples: liquidity shrinkage, fire sale of assets,
drop in market value of derivatives, etc.

It is now high-time to put forward a network-based, dynamical system approach
stemming from statistical physics, complex systems and chaos theory, and use it in
the context of financial systems. It is clear—and many authors and observers of the
markets have noted this fact—that the rapid changes in the structure of financial
markets over the past two decades have had a tremendous influence on the financial
system as a whole. We strongly believe that it would be hopeless to try and under-
stand a notion such as systemic risk without connecting it to the real-life description
of the complex mechanisms that control liquidity, transaction costs, derivatives val-
uation, electronic and algorithmic trading.

The complexity of the financial system must be explored with the eye of the
physicist, the formalism of the mathematician and the toolbox of the computer sci-
entist. Clearly, the suitable scientific framework for the understanding of systemic
risk is that of complex systems and networks. Fundamental concepts such as the
thermodynamic limit, mean field theory or phase transitions are well adapted when
trying to understand the fundamental macroscopic features of any network, in par-
ticular the financial system. It would however be necessary to go much further than
the existing attempts at understanding systemic risk by undertaking the study of
non-stationary, time-dependent networks. In fact, the time evolution of networks, or
to put it differently, a dynamical-system-based approach to networks, is definitely
relevant in order to gain some understanding of the possible “routes to chaos”,
some of which have been recently witnessed. The financial system is a complex,
time-dependent dynamical system with many degrees of freedom and potentially
non-trivial, manifold long-time dynamics. This feature has the rather dramatic con-
sequence that the control of the system must be thought of as a time-dependent
process, rather than a stationary one. One is no more interested in the question of
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the system being in equilibrium, but rather, in that of knowing which “attractor”
the network is prone to go to, and that of finding the available tools for forcing the
system away from, or towards a particular attractor. Concepts and ideas from the
control of unstable dynamical systems could be used, helping us to understand the
response of the financial network to external “shocks”.

Transposing some well-trodden paths to a brand new domain, it seems very nat-
ural to ask a series of questions:

(i) What are the phase transition mechanisms of financial networks?
(ii) How, if at all, does the concept of self-organized criticality apply to the finan-

cial system?
(iii) What are the graph-theoretic properties of the financial network that drive sys-

temic risk?
(iv) How can one build a dynamical system view of the financial network?
(v) How can one control systemic risk?

Such questions may seem obvious, but it is clear that the answers to them will
not be so. In addressing this task, we will need to broaden in a considerable fashion,
the classical set of tools commonly used to describe the dynamics of networks, so as
to, on the one hand, fully integrate ideas and concepts from dynamical system the-
ory and, on the other hand, to superimpose to this purely graph-theoretic approach
characteristic features of financial institutions: derivatives, market sensitivity, credit
exposure, etc.

Hopefully, this conference proceedings will stimulate the interest of many re-
searchers, young and old, to venture deeper into this domain. One hopes one of the
future Econophys-Kolkata meetings would revisit this theme.

Photograph of the participants in the Econophys-Kolkata meeting held at the Saha
Institute of Nuclear Physics, Kolkata during October 21–25, 2011
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