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Foreword by the Editors

We are very pleased to write the Foreword of this book by René Lamour, Roswitha
Mirz, and Caren Tischendorf. This book appears as the first volume in the recently
established series “FORUM DAEs”—a forum which aims to present different di-
rections in the widely expanding field of differential-algebraic equations (DAESs).

Although the theory of DAEs can be traced back earlier, it was not until the 1960s
that mathematicians and engineers started to study seriously various aspects of
DAE:s, such as computational issues, mathematical theory, and applications. DAEs
have developed today, half a century later, into a discipline of their own within
applied mathematics, with many relationships to mathematical disciplines such as
algebra, functional analysis, numerical analysis, stochastics, and control theory, to
mention but a few. There is an intrinsic mathematical interest in this field, but this
development is also supported by extensive applications of DAEs in chemical, elec-
trical and mechanical engineering, as well as in economics.

Roswitha Mérz’ group has been at the forefront of the development of the math-
ematical theory of DAEs since the early 1980s; her valuable contribution was to
introduce—with a Russian functional analytic background—the method now known
as the “projector approach” in DAEs. Over more than 30 years, Roswitha Mirz
established a well-known group within the DAE community, making many funda-
mental contributions. The projector approach has proven to be valuable for a huge
class of problems related to DAEs, including the (numerical) analysis of models
for dynamics of electrical circuits, mechanical multibody systems, optimal control
problems, and infinite-dimensional differential-algebraic systems.

Broadly speaking, the results of the group have been collected in the present
textbook, which comprises 30 years of development in DAEs from the viewpoint of
projectors. It contains a rigorous and stand-alone introduction to the projector ap-
proach to DAEs. Beginning with the case of linear constant coefficient DAEs, this
approach is then developed stepwise for more general types, such as linear DAEs
with variable coefficients and nonlinear problems. A central concept in the theory
of DAEs is the “index”, which is, roughly speaking, a measure of the difficulty of
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vi Foreword by the Editors

(numerical) solution of a given DAE. Various index concepts exist in the theory
of DAEs; and the one related to the projector approach is the “tractability index”.
Analytical and numerical consequences of the tractability index are presented. In ad-
dition to the discussion of the analytical and numerical aspects of different classes
of DAEs, this book places special emphasis on DAEs which are explicitly motivated
by practice: The “functionality” of the tractability index is demonstrated by means
of DAEs arising in models for the dynamics of electrical circuits, where the index
has an explicit interpretation in terms of the topological structure of the intercon-
nections of the circuit elements. Further applications and extensions of the projector
approach to optimization problems with DAE constraints and even coupled systems
of DAEs and partial differential equations (the so-called “PDAEs”) are presented.

If one distinguishes strictly between a textbook and a monograph, then we con-
sider the present book to be the second available textbook on DAEs. Not only is it
complementary to the other textbook in the mathematical treatment of DAEs, this
book is more research-oriented than a tutorial introduction; novel and unpublished
research results are presented. Nonetheless it contains a self-contained introduction
to the projector approach. Also various relations and substantial cross-references to
other approaches to DAEs are highlighted.

This book is a textbook on DAEs which gives a rigorous and detailed mathemat-
ical treatment of the subject; it also contains aspects of computations and applica-
tions. It is addressed to mathematicians and engineers working in this field, and it
is accessible to students of mathematics after two years of study, and also certainly
to lecturers and researchers. The mathematical treatment is complemented by many
examples, illustrations and explanatory comments.

Ilmenau, Germany Achim Ilchmann
Hamburg, Germany Timo Reis
June 2012



Preface

We assume that differential-algebraic equations (DAEs) and their more abstract ver-
sions in infinite-dimensional spaces comprise great potential for future mathemat-
ical modeling. To an increasingly large extent, in applications, DAEs are automat-
ically generated, often by coupling various subsystems with large dimensions, but
without manifested mathematically useful structures. Providing tools to uncover and
to monitor mathematical DAE structures is one of the current challenges. What is
needed are criteria in terms of the original data of the given DAE. The projector
based DAE analysis presented in this monograph is intended to address these ques-
tions.

We have been working on our theory of DAEs for quite some time. This theory
has now achieved a certain maturity. Accordingly, it is time to record these devel-
opments in one coherent account. From the very beginning we were in the fortunate
position to communicate with colleagues from all over the world, advancing differ-
ent views on the topic, starting with Linda R. Petzold, Stephen L. Campbell, Werner
C. Rheinboldt, Yuri E. Boyarintsev, Ernst Hairer, John C. Butcher and many others
not mentioned here up to John D. Pryce, Ned Nedialkov, Andreas Griewank. We
thank all of them for stimulating discussions.

For years, all of us have taught courses, held seminars, supervised diploma stu-
dents and PhD students, and gained fruitful feedback, which has promoted the
progress of our theory. We are indebted to all involved students and colleagues,
most notably the PhD students.

Our work was inspired by several fascinating projects and long term cooper-
ation, in particular with Roland England, Uwe Feldmann, Claus Fiihrer, Michael
Giinther, Francesca Mazzia, Volker Mehrmann, Peter C. Miiller, Peter Rentrop, Ewa
Weinmiiller, Renate Winkler.

We very much appreciate the joint work with Katalin Balla, who passed away
too early in 2005, and the colleagues Michael Hanke, Immaculada Higueras, Galina
Kurina, and Ricardo Riaza. All of them contributed essential ideas to the projector
based DAE analysis.
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We are indebted to the German Federal Ministry of Education and Research
(BMBF) and the German Research Foundation (DFG), in particular the research
center MATHEON in Berlin, for supporting our research in a lot of projects.

We would like to express our gratitude to many people for their support in the
preparation of this volume. In particular we thank our colleague Jutta Kerger.

Last but not least, our special thanks are due to Achim Ilchmann and Timo Resis,
the editors of the DAE Forum. We appreciate very much their competent counsel
for improving the presentation of the theory.

We are under obligations to the staff of Springer for their careful assistance.

René Lamour Roswitha Mirz Caren Tischendorf
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Notations

ADAE
BDF
DAE
GLM
IERODE
IESODE
Ivp
MNA
ODE
PDAE
SCF
SSCF

M € L(K", K"
L(K™)

MT
M*
M—l
M-
M+
kerM

Abbreviations

abstract DAE

backward differentiation formula
differential-algebraic equation
general linear method

inherent explicit regular ODE
inherent explicit singular ODE
initial value problem

modified nodal analysis
ordinary differential equation
partial DAE

standard canonical form
strong SCF

Common notation

natural numbers

real numbers

complex numbers

alternatively R or C

n-dimensional vector space

matrix with m rows and n columns

linear mapping from K" into K", also for M € K"
shorthand for L(K™, K™)

transposed matrix

transposed matrix with real or complex conjugate entries
inverse matrix

reflexive generalized inverse of M

Moore—Penrose inverse of M

kernel of M, kerM = {z| Mz =0}

XV



y 2l

L=z

an

Nean u

SC(I”

Mcan,q

Ireg

X ( K to)
domy
CK-subspace

Ci(9)

image of M, imM = {z|z= My, y € R"}

index of M, ind M = min{k : ker M* = ker M**1}
rank of M

determinant of M

linear hull of a set of vectors

dimension of a (sub)space

diagonal matrix

set containing the zero element only
={z|lz=My,ye N}

for all

orthogonal set, N = {z| (n,z) = 0,Vn € N}
Kronecker product

direct sum

XZN,'@/\/]@M:X@./\/}

ordered pair

vector and matrix norms in R™

function norm

scalar product in K™, dual pairing

scalar product in Hilbert space H

identity matrix (of dimension d)

interval of independent variable

total time derivative, total derivative in jet variables
(partial) derivative with respect to x

set of continuous functions

set of k-times continuously differentiable functions
Lebesgue space

Sobolev space

Special notation

obvious constraint

member of admissible matrix function sequence
rank G;, see Definition 1.17

S; =kerW;B, see Theorem 2.8 and following pages
N; = kerGj, in Chapter 9: N; subspace of ker G,

intersection: No+---+N;_1 NN, see (1.12)
canonical subspace, see Definition 2.36
canonical subspace of an index u DAE
canonical subspace (Definition 2.36)

set of consistent values, see (2.98)

set of regular points, see Definition 2.74
fundamental solution matrix normalized at #;
definition domain of f

smooth subspace (cf. Section A.4)

set of reference functions, see Definition 3.17
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ch ChH(Z,R™):={x € C(Z,R™): Dx € C'(Z,R")}, see (1.78)
H} H)N(Z,R™) :={x € Lo(Z,R™): Dx € H'(Z,R")}

cind 1 function space, see (2.104)

g regularity region

For projectors we usually apply the following notation:

0 nullspace projector of a matrix G, imQ =kerG, GQ =0
P complementary projector, P=1—0Q, GP =G
W projector along the image of G, ker W =imG, WG =0
J
P---P; ordered product, [] P
k=i
I1; II; := PyPy - - P
gy ean canonical projector (of an index-yu DAE)

Piicn dichotomic projector, see Definition 2.56
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Introduction

Ordinary differential equations (ODEs) define relations concerning function values
and derivative values of an unknown vector valued function in one real independent
variable often called time and denoted by 7. An explicit ODE

displays the derivative value x' () explicitly in terms of ¢ and x(¢). An implicit ODE

fE(t),x(1),6) =0

is said to be regular, if all its line-elements (x!,x,7) are regular. A triple (x',x,?)
belonging to the domain of interest is said to be a regular line-element of the ODE,
if fu (x!,x,1) is a nonsingular matrix, and otherwise a singular line-element. This
means, in the case of a regular ODE, the derivative value x'(¢) is again fully deter-
mined in terms of # and x(z), but in an implicit manner.

An ODE having a singular line-element is said to be a singular ODE. In turn,
singular ODEs comprise quite different classes of equations. For instance, the linear
ODE

tx'(t) — Mx(t) =0

accommodates both regular line-elements for 7 # 0 and singular ones for = 0. In
contrast, the linear ODE

10000 —0—1000 0
00100 0 1000 0
00010\ X@)+|0 0100[x(t)—| 0 |=0 (0.1)
00001 0 0010 0
00000 0 0001 ¥(t)

has solely singular line-elements. A closer look at the solution flow of the last two
ODEs shows a considerable disparity.

XixX



XX Introduction

The ODE (0.1) serves as a prototype of a differential-algebraic equation (DAE).
The related equation f(x',x,) = 0 determines the components x},x},x}, and x! of
x! in terms of x and 7. The component x; is not at all given. In addition, there arises
the consistency condition x5 — ¥(#) = 0 which restricts the flow.

DAEs constitute—in whatever form they are given—somehow uniformly sin-
gular ODEs: In common with all ODE:s, they define relations concerning function
values and derivative values of an unknown vector valued function in one real in-
dependent variable. However, in contrast to explicit ODEs, in DAEs these relations
are implicit, and, in contrast to regular implicit ODEs, these relations determine just
a part of the derivative values. A DAE is an implicit ODE which has solely singular
line-elements.

The solutions of the special DAE (0.1) feature an ambivalent nature. On the
one hand they are close to solutions of regular ODEs in the sense that they de-
pend smoothly on consistent initial data. On the other hand, tiny changes of y may
yield monstrous variations of the solutions, and the solution varies discontinuously
with respect to those changes. We refer to the figures in Example 1.5 to gain an
impression of this ill-posed behavior.

The ambivalent nature of their solutions distinguishes DAE as being extraordi-
nary to a certain extent.

DAESs began to attract significant research interest in applied and numerical math-
ematics in the early 1980s, no more than about three decades ago. In this relatively
short time, DAEs have become a widely acknowledged tool to model processes
subject to constraints, in order to simulate and to control these processes in various
application fields.

The two traditional physical application areas, network simulation in electronics
and the simulation of multibody mechanics, are repeatedly addressed in textbooks
and surveys (e.g. [96, 25, 189]). Special monographs [194, 63, 188] and much work
in numerical analysis are devoted to these particular problems. These two appli-
cation areas and related fields in science and engineering can also be seen as the
most important impetus to begin with systematic DAE research, since difficulties
and failures in respective numerical simulations have provoked the analysis of these
equations first.

The equations describing electrical networks have the form

A(d(x(1),1)) +b(x(t),t) =0, 0.2)

with a singular constant matrix A, whereas constrained multibody dynamics is de-
scribed by equations showing the particular structure

Xy (2) + by (x1 (1), x2(2),x3(1),2) = 0, 0.3)
xh (1) +ba(x1(t),x2(t),t) =0, (0.4)
b3 (xz(t),t) =0. 0.5)
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Those DAEs usually have large dimension. Multibody systems often comprise hun-
dreds of equations and electric network systems even gather up to several millions
of equations.

Many further physical systems are naturally described as DAEs, for instance,
chemical process modeling, [209]. We agree with [189, p. 192] that DAEs arise
probably more often than (regular) ODEs, and many of the well-known ODEs in
application are actually DAEs that have been additionally explicitly reduced to ODE
form.

Further DAEs arise in mathematics, in particular, as intermediate reduced models
in singular perturbation theory, as extremal conditions in optimization and control,
and by means of semidiscretization of partial differential equation systems.

Besides the traditional application fields, conducted by the generally increasing
role of numerical simulation in science and technology, currently more and more
new applications come along, in which different physical components are coupled
via a network.

We believe that DAEs and their more abstract versions in infinite-dimensional
spaces comprise great potential for future mathematical modeling. To an increas-
ingly large extent, in applications, DAEs are automatically generated, often by cou-
pling various subsystems, with large dimensions, but without manifested mathe-
matically useful structures. Different modeling approaches may result in different
kinds of DAEs. Automatic generation and coupling of various tools may yield quite
opaque DAEs. Altogether, this produces the challenging task to bring to light and
to characterize the inherent mathematical structure of DAEs, to provide test crite-
ria such as index observers and eventually hints for creating better qualified model
modifications. For a reliable practical treatment, which is the eventual aim, for nu-
merical simulation, sensitivity analysis, optimization and control, and last but not
least practical upgrading models, one needs pertinent information concerning the
mathematical structure. Otherwise their procedures may fail or, so much the worse,
generate wrong results. In consequence, providing practical assessment tools to un-
cover and to monitor mathematical DAE structures is one of the actual challenges.
What are needed are criteria in terms of the original data of the given DAE. The
projector based DAE analysis presented in this monograph is intended to address
these questions.

Though DAEs have been popular among numerical analysts and in various appli-
cation fields, so far they play only a marginal role in contiguous fields such as non-
linear analysis and dynamical systems. However, an input from those fields would
be desirable. It seems, responsible for this shortage is the quite common view of
DAEs as in essence nothing other than implicitly written regular ODEs or vector
fields on manifolds, making some difficulties merely in numerical integration. The
latter somehow biased opinion is still going strong. It is fortified by the fact that
almost all approaches to DAEs suppose that the DAE is eventually reducible to an
ODE as a basic principle. This opinion is summarized in [189, p. 191] as follows:
It is a fact, not a mere point of view, that a DAE eventually reduces to an ODE on a
manifold. The attitude of acknowledging this fact from the outset leads to a reduc-
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tion procedure suitable for the investigation of many problems . ... The mechanism
of the geometric reduction procedure completely elucidates the “algebraic” and the
“differential” aspects of a DAE. The algebraic part consists in the characterization
of the manifold over which the DAE becomes an ODE and, of course, the differential
part provides the reduced ODE. Also in [130] the explicit reduction of the general
DAE

f(x/(t)vx(t)vt) =0, (0.6)

with a singular partial Jacobian f,/, into a special reduced form plays a central role.
Both monographs [189, 130] concentrate on related reduction procedures which
naturally suppose higher partial derivatives of the function f, either to provide se-
quences of smooth (sub)manifolds or to utilize a so-called derivative array system.
The differential geometric approach and the reduction procedures represent pow-
erful tools to analyze and to solve DAEs. Having said that, we wonder about the
misleading character of this purely geometric view, which underlines the closed-
ness to regular ODEs, but loses sight of the ill-posed feature.

So far, most research concerning general DAEs is addressed to equation (0.6),
and hence we call this equation a DAE in standard form. Usually, a solution is then
supposed to be at least continuously differentiable.

In contrast, in the present monograph we investigate equations of the form

F((d(x(2),1)) ,x(t),1) =0, (0.7)

which show the derivative term involved by means of an extra function d. We see
the network equation (0.2) as the antetype of this form. Also the system (0.3)—(0.5)
has this form

10 1 b (g (2),x2(2),x3(2),1)
01 (f‘l (’)D n lbzl(xl (tj,xz(tit) —0 (0.8)
00 :

a priori. It appears that in applications actually DAEs in the form (0.7) arise, which
precisely indicates the involved derivatives. The DAE form (0.7) is comfortable; it
involves the derivative by the extra nonlinear function d, whereby x(z) € R™ and
d(x(t),t) € R" may have different sizes, as is the case in (0.8). A particular instance
of DAEs (0.7) is given by the so-called conservative form DAEs [52]. Once again,
the idea for version (0.7) originates from circuit simulation problems, in which this
form is well approved (e.g. [75, 168]).

However, though equation (0.7) represents a more precise model, one often trans-
forms it to standard form (0.6), which allows to apply results and tools from differ-
ential geometry, numerical ODE methods, and ODE software.

Turning from the model (0.7) to a standard form DAE one veils the explicit pre-
cise information concerning the derivative part. With this background, we are con-
fronted with the question of what a DAE solution should be. Following the classical
sense of differential equations, we ask for continuous functions being as smooth
as necessary, which satisfy the DAE pointwise on the interval of interest. This is
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a common understanding. However, there are different opinions on the meaning of
the appropriate smoothness. Having regular ODEs in mind one considers contin-
uously differentiable functions x(-) to be the right candidates for solutions. Up to
now, most DAE researchers adopt this understanding of the solution which is sup-
ported by the standard DAE formulation. Furthermore, intending to apply formal
integrability concepts, differential geometry and derivative array approaches one is
led to yet another higher smoothness requirement. In contrast, the multibody sys-
tem (0.8) suggests, as solutions, continuous functions x(-) having just continuously
differentiable components x; (-) and x;(-).

An extra matrix figuring out the derivative term was already used much earlier
(e.g. [153, 152, 154]); however, this approach did not win much recognition at that
time. Instead, the following interpretation of standard form DAEs (e.g. [96]) has
been accepted to a larger extent: Assuming the nullspace of the partial Jacobian
fv(x,x,t) associated with the standard form DAE (0.6) to be a C!-subspace, and to
be independent of the variables x” and x, one interprets the standard form DAE (0.6)
as a short description of the equation

F((P(t)x(t))" = P'(t)x(t),x(),t) =0, (0.9)

whereby P(-) denotes any continuously differentiable projector valued function such
that the nullspaces ker P(-) and ker . (', x, -) coincide. This approach is aligned with
continuous solutions x(-) having just continuously differentiable products (Px)(-).
Most applications yield even constant nullspaces ker f,/, and hence constant projec-
tor functions P as well. In particular, this is the case for the network equations (0.2)
and the multibody systems (0.8).

In general, for a DAE given in the form (0.7), a solution x(-) should be a contin-
uous function such that the superposition u(-) := d(x(+),-) is continuously differen-
tiable. For the particular system (0.8) this means that the components x; (-) and x(-)
are continuously differentiable, whereas one accepts a continuous x3(-).

The question in which way the data functions f and d should be related to each
other leads to the notions of DAEs with properly stated leading term or properly
involved derivative, but also to DAEs with quasi-proper leading term. During the
last 15 years, the idea of using an extra function housing the derivative part within
a DAE has been emphatically pursued. This discussion amounts to the content of
this monograph. Formulating DAEs with properly stated leading term yields, in par-
ticular, symmetries of linear DAEs and their adjoints, and further favorable conse-
quences concerning optimization problems with DAE constraints. Not surprisingly,
numerical discretization methods may perform better than for standard form DAEs.
And last, but not least, this approach allows for appropriate generalizations to ap-
ply to abstract differential- algebraic systems in Hilbert spaces enclosing PDAEs.
We think that, right from the design or modeling stage, it makes sense to look for
properly involved derivatives.

This monograph comprises an elaborate analysis of DAEs (0.7), which is ac-
companied by the consideration of essential numerical aspects. We regard DAEs
from an analytical point of view, rather than from a geometric one. Our main ob-
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jective consists in the structural and qualitative characterization of DAEs as they
are given a priori, without supposing any knowledge concerning solutions and con-
straints. Afterwards, having the required knowledge of the DAE structure, also solv-
ability assertions follow. Only then do we access the constraints. In contrast, other
approaches concede full priority of providing constraints and solutions, as well as
transformations into a special form, which amounts to solving the DAE.

We believe in the great potential of our concept in view of the further analysis of
classical DAEs and their extensions to abstract DAEs in function spaces. We do not
at all apply derivative arrays and prolongated systems, which are commonly used
in DAE theory. Instead, certain admissible matrix function sequences and smartly
chosen admissible projector functions formed only from the first partial derivatives
of the given data function play their role as basic tools. Thereby, continuity proper-
ties of projector functions depending on several variables play their role, which is
not given if one works instead with basises. All in all, this allows an analysis on a
low smoothness level. We pursue a fundamentally alternative approach and present
the first rigorous structural analysis of general DAE:s in their originally given form
without the use of derivative arrays, without supposing any knowledge concerning
constraints and solutions.

The concept of a projector based analysis of general DAEs was sketched first in
[160, 171, 48], but it has taken its time to mature. Now we come up with a unique
general theory capturing constant coefficient linear problems, variable coefficient
linear problems and fully nonlinear problems in a hierarchic way. We address a
further generalization to abstract DAEs. It seems, after having climbed the (at times
seemingly pathless) mountain of projectors, we are given transparency and beautiful
convenience. By now the projector based analysis is approved to be a prospective
way to investigate DAEs and also to yield reasonable open questions for future
research.

The central idea of the present monograph consists in a rigorous definition of
regularity of a DAE, accompanied with certain characteristic values including the
tractability index, which is related to an open subset of the definition domain of the
data function f, a so-called regularity region. Regularity is shown to be stable with
respect to perturbations. Close relations of regularity regions and linearizations are
proved. In general, one has to expect that the definition domain of f decomposes
into several regularity regions whose borders consist of critical points. Solutions do
not necessarily stay in one of these regions; solutions may cross the borders and
undergo bifurcation, etc.

The larger part of the presented material is new and as yet unpublished. Parts
were earlier published in journals, and just the regular linear DAE framework (also
critical points in this context) is available in the book [194].

The following basic types of DAEs can reasonably be discerned:

v fully implicit nonlinear DAE with nonlinear derivative term

F((d(x(r),0)) ,x(1),1) =0, (0.10)
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v fully implicit nonlinear DAE with linear derivative term
FUD@)x(t)) ,x(1),1) =0, (0.11)

V' quasi-linear DAE with nonlinear derivative term (involved linearly)

A(x(2),0)(d(x(2),1))" 4+ b(x(t),t) = 0, (0.12)
v'  quasi-linear DAE with linear derivative term
A(x(1),t)(D(t)x(2)) +b(x(t),t) =0, (0.13)
v linear DAE with variable coefficients
A(6)(D()x(1))"+ B(t)x(t) = q(t), (0.14)
v linear DAE with constant coefficients
A(Dx(t)) + Bx(t) = q(t), (0.15)

v' semi-implicit DAE with explicitly given derivative-free equation

, (0.16)
fZ(x(t)7t): ) (017)

v' semi-implicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

Ji(®) (0),x1(2),x2(1),1)
S (e (t),xa2(2),1)

v' semi-explicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

, (0.18)

0
0, (0.19)

, (0.20)

X1 (2) + b1 (x1(1),x2(1),£) =0
t)=0. 0.21)

by (x1(t),x2(t),1)

So-called Hessenberg form DAEs of size r, which are described in Section 3.5,
form further subclasses of semi-explicit DAEs. For instance, the DAE (0.8) has
Hessenberg form of size 3. Note that much work developed to treat higher index
DAE:s is actually limited to Hessenberg form DAEs of size 2 or 3.

The presentation is divided into Part I to Part IV followed by Appendices A, B,
and C.

Part I describes the core of the projector based DAE analysis: the construction of
admissible matrix function sequences associated by admissible projector functions
and the notion of regularity regions.
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Chapter 1 deals with constant coefficient DAEs and matrix pencils only. We re-
consider algebraic features and introduce into the projector framework. This can be
skipped by readers familiar with the basic linear algebra including projectors.

The more extensive Chapter 2 provides the reader with admissible matrix func-
tion sequences and the resulting constructive projector based decouplings. With this
background, a comprehensive linear theory is developed, including qualitative flow
characterizations of regular DAEs, the rigorous description of admissible excita-
tions, and also relations to several canonical forms and the strangeness index.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAES, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. It is recommended to take a look to Chap-
ter 2 before reading Chapter 3.

We emphasize the hierarchical organization of Part I. The admissible matrix
function sequences built for the nonlinear DAE (0.10) generalize those for the linear
DAE (0.14) with variable coefficients, which, in turn, represent a generalization of
the matrix sequences made for constant coefficient DAEs (0.15).

Part IV continues the hierarchy in view of different further aspects. Chapter 9
about quasi-regular DAEs (0.10) incorporates a generalization which relaxes the
constant-rank conditions supporting admissible matrix function sequences. Chap-
ter 10 on nonregular DAEs (0.11) allows a different number of equations and of
unknown components. Finally, in Chapter 12, we describe abstract DAEs in infinite-
dimensional spaces and include PDAEs.

Part IV contains the additional Chapter 11 conveying results on minimization
with DAE constraints obtained by means of the projector based technique.

Part II is a self-contained index-1 script. It comprises in its three chapters the
analysis of regular index-1 DAESs (0.11) and their numerical integration, addressing
also stability topics such as contractivity and stability in Lyapunov’s sense. Part II
constitutes in essence an up-to-date improved and completed version of the early
book [96]. While the latter is devoted to standard form DAEs via the interpretation
(0.9), now the more general equations (0.11) are addressed.

Part III adheres to Part I giving an elaborate account of computational methods
concerning the practical construction of projectors and that of admissible projector
functions in Chapter 7. A second chapter discusses several aspects of the numer-
ical treatment of regular higher index DAEs such as consistent initialization and
numerical integration.

Appendix B contains technically involved costly proofs. Appendices A and C
collect and provide basic material concerning linear algebra and analysis, for in-
stance the frequently used C!-subspaces.

Plenty of reproducible small academic examples are integrated into the explana-
tions for easier reading, illustrating and confirming the features under consideration.
To this end, we emphasize that those examples are always too simple. They bring to
light special features, but they do not really reflect the complexity of DAEs.
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The material of this monograph is much too comprehensive to be taught in a stan-

dard graduate course. However different combinations of selected chapters should
be well suited for those courses. In particular, we recommend the following:

Projector based DAE analysis (Part I, possibly without Chapter 1).

Analysis of index-1 DAEs and their numerical treatment (Part II, possibly plus
Chapter 8).

Matrix pencils, theoretical and practical decouplings (Chapters 1 and 7).
General linear DAEs (Chapter 2, material on the linear DAEs of Chapters 10
and 9).

Advanced courses communicating Chapter 12 or Chapter 11 could be given to stu-
dents well grounded in DAE basics (Parts I and II) and partial differential equations,
respectively optimization.
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Projector based approach
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Part I describes the core of the projector based DAE analysis, the construction of ad-
missible matrix function sequences and the notions of regular points and regularity
regions of general DAEs

F((d(x(t),1)) ,x(t),t) =0

in a hierarchical manner starting with constant coefficient linear DAESs, then turning
to linear DAEs with variable coefficients, and, finally, considering fully implicit
DAE:s.

Chapter 1 deals with constant coefficient DAEs and matrix pencils. We recon-
sider algebraic features and introduce them into the projector framework. This
shows how the structure of the Weierstral—Kronecker form of a regular matrix pen-
cil can be depicted by means of admissible projectors.

The extensive Chapter 2 on linear DAEs with variable coefficients characterizes
regular DAEs by means of admissible matrix function sequences and associated
projectors and provides constructive projector based decouplings of regular linear
DAE:s.

Then, with this background, a comprehensive linear theory of regular DAEs is
developed, including qualitative flow properties and a rigorous description of ad-
missible excitations. Moreover, relations to several canonical forms and other index
notions are addressed.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAE:s, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. Also local solvability assertions and pertur-
bation results are proved.

We emphasize the hierarchical organization of the approach. The admissible ma-
trix function sequences built for the nonlinear DAE (0.10) generalize those for the
linear DAE (0.14) with variable coefficients, which, in turn, represent a general-
ization of the matrix sequences made for constant coefficient DAEs (0.15). Part IV
continues the hierarchy with respect to different views.



Chapter 1
Linear constant coefficient DAEs

Linear DAEs with constant coefficients have been well understood by way of the
theory of matrix pencils for quite a long time, and this is the reason why they are
only briefly addressed in monographs. We consider them in detail here, not because
we believe that the related linear algebra has to be invented anew, but as we intend
to give a sort of guide for the subsequent extensive discussion of linear DAEs with
time-varying coefficients and of nonlinear DAEs.

This chapter is organized as follows. Section 1.1 records well-known facts on reg-
ular matrix pairs and describes the structure of the related DAEs. The other sections
serve as an introduction to the projector based analysis. Section 1.2 first provides the
basic material of this analysis: the admissible matrix sequences and the accompany-
ing admissible projectors and characteristic values in Subsection 1.2.1, the decou-
pling of regular DAEs by arbitrary admissible projectors in Subsection 1.2.2, and
the complete decoupling in Subsection 1.2.3. The two subsequent Subsections 1.2.5
and 1.2.6 are to clarify the relations to the WeierstraB—Kronecker form. Section 1.3
provides the main result concerning the high consistency of the projector based ap-
proach and the DAE structure by the Weierstra3—Kronecker form, while Section 1.4
collects practically useful details on the topic. Section 1.5 develops proper formula-
tions of the leading term of the DAE by means of two well-matched matrices. The
chapter ends with notes and references.

1.1 Regular DAEs and the WeierstraB—Kronecker form

In this section we deal with the equation
EX(t)+Fx(t)=q(t),t €T, (1.1)

formed by the ordered pair {E,F} of real valued m x m matrices E, F. For given
functions g : Z — R™ being at least continuous on the interval Z C R, we are look-
ing for continuous solutions x : Z — R™ having a continuously differentiable com-
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ponent Ex. We use the notation Ex'(z) for (Ex)'(z). Special interest is directed to
homogeneous equations

EX(t)+Fx(t) =0, t €R. (1.2)

For E = I, the special case of explicit ODEs is covered. Now, in the more general

setting, the ansatz x, () = Mz, well-known for explicit ODEs, yields

EX.(t) + Fx.(t) = e (ME 4+ F)z,.

Hence, x, is a nontrivial particular solution of the DAE (1.2) if A, is a zero of the
polynomial p(A) := det(AE + F), and z, # 0 satisfies the relation (A.E + F)z, = 0.
Then A, and z, are called generalized eigenvalue and eigenvector, respectively.
This shows the meaning of the polynomial p(4) and the related family of matri-
ces AE + F named the matrix pencil formed by {E,F}.

Example 1.1 (A solvable DAE). The DAE

X —x =0,
xh+x3 =0,
xy =0,
is given by the matrices
100 -100
E=1010| andF=|0 01},
000 010
yielding
A—100
p(A)=detAE+F)=det| 0 A1|=1-—-A.
0 10

The value 4. = 1 is a generalized eigenvalue and the vector z, = (100)T is a gen-
eralized eigenvector. Obviously, x, () = ez, = (¢! 00)" is a nontrivial solution of
the differential-algebraic equation. a

If E is nonsingular, the homogeneous equation (1.2) represents an implicit regu-
lar ODE and its fundamental solution system forms an m-dimensional subspace in
C'(Z,R™). What happens if E is singular? Is there a class of equations, such that
equation (1.2) has a finite-dimensional solution space? The answer is closely related
to the notion of regularity.

Definition 1.2. Given any ordered pair {E, F'} of matrices E,F € L(R™), the matrix
pencil AE + F is said to be regular if the polynomial p(A) := det(AE + F) does not
vanish identically. Otherwise the matrix pencil is said to be singular.

Both the ordered pair {E, F} and the DAE (1.1) are said to be regular if the accom-
panying matrix pencil is regular, and otherwise nonregular.
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A pair {E, F'} with a nonsingular matrix E is always regular, and its polynomial
p(A) is of degree m. In the case of a singular matrix E, the polynomial degree is
lower as demonstrated in Example 1.1.

Proposition 1.3. For any regular pair {E F}, E,F € L(R™), there exist nonsingular
matrices L,K € L(R™) and integers 0 <1 <m, 0 < u <1, such that

LEK:{IN} %f’l"_l : LFK:{WI} {}"_l . (1.3)

Thereby, N is absent if | = 0, and otherwise N is nilpotent of order U, i.e., N* =0,
NHE=1=£0. The integers | and u as well as the eigenstructure of the blocks N and W
are uniquely determined by the pair {E,F}.

Proof. If E is nonsingular, we simply put / =0, L = E~!', K = I and the assertion is
true.
Assume E to be singular. Since {E, F } is a regular pair, there is a number ¢ € R such
that cE + F is nonsingular. Form £ := (cE+F) 'E, F := (cE+F) 'F =1 —cE,
u=indE, r =rankE*, S = [s;...s,] with s1,...,s, and s,11,...,S, being bases of
imE* and ker E#, respectively. Lemma A.11 provides the special structure of the
product S~'ES, namely,
15 MO

s'Es= [ 3.
with a nonsingular » x r block M and a nilpotent (m — r) x (m — r) block N. N has
nilpotency index p. Compute

—1lpe_ 7 o lp 71—CM 0
STES=1-cS ES{ 0 I_cvl"

The block I — cN is nonsingular due to the nilpotency of N. Denote

_ [ 0 -1 -1
L.—[ 0 (I—CN)1:|S (cE+F)™ ",
K:=S,  N:=(I-cN)'N, W:=M"—c¢l,

so that we arrive at the representation

10 WO
LEK = [ON}, LFK = [0 1}'

Since N and (I — cN)~! commute, one has
N' = ((I—cN)"'N) = (I —cN) )N,

and N inherits the nilpotency of N. Thus, N* =0 and N*~! #£0. Put [ :==m —r. It
remains to verify that the integers / and u as well as the eigenstructure of N and
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W are independent of the transformations L and K. Assume that there is a further
collection [, i, L, K, # = m — [ such that

i O] 2 o [WO
LEK_{ON}, LFK—{OIJ.

Considering the degree of the polynomial

p(A) = det(AE +F) = det(L™") det(A1, +W)det(K ')

= det(L™") det(Al; + W) det(K 1)

we realize that the values r and 7 must coincide, hence [ = [. Introducing U := LL!
and V := KK one has

10] - 10 wol| - |40)
U[ON]LEK[ON}V, U[O I}LFK[ }V,

and, in detail,

UnUnpN| _ |V Vi UnW Un| _ Wvi WV,
Uz1 UnN NVo1 NV |7 [UnW Ux Vor Vo |

Comparing the entries of these matrices we find the relations UjoN = Vi and Upp =
WV, which lead to Ujp = WUON = --- = WHU;,N* = 0. Analogously we derive
U1 = 0. Then, the blocks U1 = V11, Uz = V2> must be nonsingular. It follows that

ViilW =WVyy,  VioN =NVyp

holds true, that is, the matrices N and N as well as W and W are similar, and in
particular, u = [t is valid. a

The real valued matrix N has the eigenvalue zero only, and can be transformed into
its Jordan form by means of a real valued similarity transformation. Therefore, in
Proposition 1.3, the transformation matrices L and K can be chosen such that N is
in Jordan form.

Proposition 1.3 also holds true for complex valued matrices. This is a well-known
result of Weierstrall and Kronecker, cf. [82]. The special pair given by (1.3) is said
to be Weierstrafi—Kronecker form of the original pair {E, F}.

Definition 1.4. The Kronecker index of a regular matrix pair {E,F}, E,F € L(R™),
and the Kronecker index of a regular DAE (1.1) are defined to be the nilpotency
order u in the WeierstraB—Kronecker form (1.3). We write ind{E,F} = u.

The WeierstraB—Kronecker form of a regular pair {E, F} provides a broad insight
into the structure of the associated DAE (1.1). Scaling of (1.1) by L and transforming

x=K B } leads to the equivalent decoupled system
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Y () +Wy(t) = p(t), 1€, (1.4)
NZ(t)+z(t) = r(t), t €T, (1.5)

with Lg =: [1; } . The first equation (1.4) represents a standard explicit ODE. The

second one appears for [ > 0, and it has the only solution

2(t) = uil(—l)ijr(j) (1), (1.6)

Jj=0

provided that r is smooth enough. The latter one becomes clear after recursive use
of (1.5) since

z=r—NZ=r—N(r—NZ) =r—N¥ +N*Z" =r—=Nr'+N*(r—NZ)" = ---

Expression (1.6) shows the dependence of the solution x on the derivatives of the
source or perturbation term g. The higher the index u, the more differentiations
are involved. Only in the index-1 case do we have N = 0, hence z(t) = r(¢), and
no derivatives are involved. Since numerical differentiations in these circumstances
may cause considerable trouble, it is very important to know the index u as well as
details of the structure responsible for a higher index when modeling and simulating
with DAE:s in practice. The typical solution behavior of ill-posed problems can be
observed in higher index DAEs: small perturbations of the right-hand side yield
large changes in the solution. We demonstrate this by the next example.

Example 1.5 (1ll-posed behavior in case of a higher index DAE). The regular DAE

10000 —0—=1000 0

00100 0 1000 0

00010[X()+|0 0 100[x(t)=]| 0 |,

00001 0 0010 0

00000 0 0001 (@)
E F

completed by the initial condition [1 000 O] x(0) =0, is uniquely solvable for each
sufficiently smooth function y. The identically zero solution corresponds to the van-
ishing input function y(¢) = 0. The solution corresponding to the small excitation
y(t) = 8% sinnt, n € N, € small, is

!
x(t) = 8/ n2e® =) cosns ds, xy(t) = en’cosnt,
0
1
x3(t) = —ensinnt, x4(t) = —€cosnt, xs5(t) = €—sinnt.
n

While the excitation tends to zero for n — oo, the first three solution components
grow unboundedly. The solution value at t = 0,
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x1(0) =0, x2(0) = en?, x3(0) = 0, x4(0) = —&, x5(0) =0,

moves away from the origin with increasing n, and the origin is no longer a consis-
tent value at # = 0 for the perturbed system, as it is the case for the unperturbed one.
Figures 1.1 and 1.2 show ¥ and the response x, for e =0.1,n=1and n =100. O

Y X2
A A
0.10 0-103\
0.05 0.05;
. 0.00 t
0.007 ‘ 0.2 0.4 0.6 0.8
—0.05} -0.05
—0.10" -0.10
Fig. 1.1 yand x, forn =1
Y Xz
A
0.053— 500
0.001 t 0 t
: 0.2 0.4 0.6 0.8 0
—0.05} -500
—0.10! -1000 w w

Fig. 1.2 y and x, for n = 100

This last little constant coefficient example is relatively harmless. Time-dependent
subspaces and nonlinear relations in more general DAEs may considerably amplify
the bad behavior. For this reason one should be careful in view of numerical sim-
ulations. It may well happen that an integration code seemingly works, however it

generates wrong results.
The general solution of a regular homogeneous DAE (1.2) is of the form

e*lW ;
X(Z)ZK|: 0 :|y03 yOGRm_

which shows that the solution space has finite dimension m — [ and the solution

depends smoothly on the initial value yo € R”~!. Altogether, already for constant

coefficient linear DAEs, the solutions feature an ambivalent behavior: they depend

smoothly on certain initial values while they are ill-posed with respect to excitations.
The next theorem substantiates the above regularity notion.
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Theorem 1.6. The homogeneous DAE (1.2) has a finite-dimensional solution space
if and only if the pair {E,F} is regular.

Proof. As we have seen before, if the pair {E,F} is regular, then the solutions of
(1.2) form an (m — [)-dimensional space. Conversely, let {E, F} be a singular pair,
i.e., det(AE +F) = 0. For any set of m+ 1 different real values Ay, ..., A, we find
nontrivial vectors 1,...,Mu+1 € R™ such that (LE+F)n; =0,i=1,....m+1,
and a nontrivial linear combination Zf":ﬁl o;n; =0.

The function x(¢) = L7 aze*"n; does not vanish identically, and it satisfies the
DAE (1.2) as well as the initial condition x(0) = 0. For disjoint (m+ 1)-element sets
{M,...,Mm+1}, one always has different solutions, and, consequently, the solution
space of a homogeneous initial value problem (IVP) of (1.2) is not finite. a

Example 1.7 (Solutions of a nonregular DAE (cf. [97])). The pair {E,F},

1100 0100
0001 0000

E=10000|" F=loo10]> ™=%
0010 0000

is singular. In detail, the homogeneous DAE (1.2) reads

(x1 +x2) + x
x/
4

cocoo

X3 =
/ —
X3 -

What does the solution space look like? Obviously, the component x3 van-
ishes identically and x4 is an arbitrary constant function. The remaining equation
(x1 +x2)" +x3 = 0 is satisfied by any arbitrary continuous x,, and the resulting ex-
pression for xp is

xi1(t) =c—x(t) — /Ot x2(s)ds,

¢ being a further arbitrary constant. Clearly, this solution space does not have fi-
nite dimension, which confirms the assertion of Theorem 1.6. Indeed, the regularity
assumption is violated since

p(A) =det(AE + F) = det

coco >
co o+
> — oo
co>»o

Notice that, in the case of nontrivial perturbations ¢, for the associated perturbed
DAE (1.1) the consistency condition ¢35 = g4 must be valid for solvability. In prac-
tice, such unbalanced models should be avoided. However, in large dimensions m,
this might not be a trivial task. a
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We take a closer look at the subsystem (1.5) within the Weierstra—Kronecker
form, which is specified by the nilpotent matrix N. We may choose the transforma-
tion matrices L and K in such a way that N has Jordan form, say

N =diag[/y,...,J5], 1.7)
with s nilpotent Jordan blocks
01
Ji= eLRN), i=1,...s,
0

where ky + -+ ks =1, p=max{k;:i=1,...,s}. The Kronecker index u equals
the order of the maximal Jordan block in N.

The Jordan form (1.7) of N indicates the further decoupling of the subsystem
(1.5) in accordance with the Jordan structure into s lower-dimensional equations

JiG )+ G@t)=rit), i=1,....s.

We observe that §;», ..., are components involved with derivatives whereas the
derivative of the first component {; ; is not involved. Notice that the value of §; 1 (¢)
depends on the (k; — 1)-th derivative of r; 4, (¢) forall i = 1,...,s since

o

i

Gia(r) = ria(6) = (1) = ria (1) = rip(0) + &) = - = Y (= 1) V().

Jj=1

1.2 Projector based decoupling of regular DAEs

1.2.1 Admissible matrix sequences and admissible projectors

Our aim is now a suitable rearrangement of terms within the equation
EX'(t)+ Fx(t) = q(t), (1.8)

which allows for a similar insight into the structure of the DAE to that given by the
WeierstraB—Kronecker form. However, we do not use transformations, but we work
in terms of the original equation setting and apply a projector based decoupling
concept. The construction is simple. We consider the DAE (1.8) with the coefficients
E,F € L(R™).

Put Gy :=E, By :=F, Ny := kerGy and introduce Qp € L(R™) as a projector
onto Ny. Let Py := I — Qp be the complementary one. Using the basic projector
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properties Q% = Q0, QoPy = PyQo =0, Py + Qo =1, GoQo = 0 and Gy = GoF, (see
Appendix A), we rewrite the DAE (1.8) consecutively as

GoxX' +Box=¢q
< GOPox/+BO(QO+P0)x:q
<— (Go + B()Q())(P()x/ + Qo)C) +BoPyx=¢q

—— ~—~—
=:Gy =B
<~ Gl(Poxl+Q0x)+lezq.

Next, let Oy be a projector onto Ny :=ker Gy, and let P; :=1— Q| the complementary
one. We rearrange the last equation to

G1P (Pox'+ Qox) +B1(Q1 + P )x=¢

= (G1+B1Q1) (Pi(Pox'+Qox)+Q1x) +BiPlx=¢q (1.9)
~—_——— N~
Gy B,

and so on. The goal is a matrix with maximal possible rank in front of the term
containing the derivative x'.
We form, fori > 0,

Git1:=G;+BiQ;, Nit1:=kerGiyr1, Biy1:=BP, (1.10)

and introduce Q;+1 € L(R™) as a projector onto N;y with Py :=1— Q;1;. Denote
r; := rank G; and introduce the product of projectors IT; := Py - - - ;. These ranks and
products of projectors will play a special role later on. From B; 1 = B;P; = BoIl; we
derive the inclusion kerIl; C kerB;;1 as an inherent property of our construction.
Since G; = Gj+1 P, the further inclusions

imGo - imG1 c...C imG,' - imG,-_H,

follow, and hence
ro<r <. <ri <rig1.

An additional inherent property of the sequence (1.10) is given by
Ni-1NN; € NiNNigq, i 2> 1 (1.11)

Namely, if G;—1z = 0 and G;z = 0 are valid for a vector z € R™, which corresponds
to P_jz=0and Pz=0, i.e., z= Q;z, then we can conclude that

Git1z=Giz+B;Qiz=Biz=B; 1P_1z=0.

From (1.11) we learn that a nontrivial intersection N;,_; N N;, never allows an in-
jective matrix Gj, i > i,. As we will realize later (see Proposition 1.34), such a
nontrivial intersection immediately indicates a singular matrix pencil AE + F.
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Again, we are aiming at a matrix Gy the rank of which is as high as possible.
However, how can we know whether the maximal rank has been reached? Appropri-
ate criteria would be helpful. As we will see later on, for regular DAEs, the sequence
terminates with a nonsingular matrix.

Example 1.8 (Sequence for a regular DAE). For the DAE

X Fx o tx=qi,
!

)C3 +X2 :q27

X1 +x3 =43,

the first matrices of our sequence are

100 111
Go=E=|001|, By=F=1010
000 101

As a nullspace projector onto ker Gy we choose

000 110 101
Qo= (010]| andobtain Gy = Gy+ByQp= (011|, By =ByPh= ({000
000 000 101

Since G is singular, we turn to the next level. We choose as a projector onto ker G

100 310
Q1= |-100]| andarriveat G, =G;+B1Q; = [011
100 200

The matrix G, is nonsingular, hence the maximal rank is reached and we stop con-
structing the sequence. Looking at the polynomial p(A) = det(AE + F) = 24 we
know this DAE to be regular. Later on we shall see that a nonsingular matrix Gy is
typical for regularity with Kronecker index 2. Observe further that the nullspaces Ny
and N intersect trivially, and that the projector Q; is chosen such that IThQ1 Qg = 0
is valid, or equivalently, Ny C ker Q. a

Example 1.9 (Sequence for a nonregular DAE). We consider the nonregular matrix
pair from Example 1.7, that is

1100 0100
0001 0000
Go=E=15000]" Bo=F=1]0010
0010 0000

Choosing
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1 000] 0100 1100
~1000 . 0001 0000
Q=109 g00| Yelds Gi=15500l" Br1=]0010
0 000] 0010 0000

The matrix Gy is singular. We turn to the next level. We pick

(1000
0000
Q1=10000
10000

which implies  G» = Gy.

We continue constructing

025 =00, Gaj+1 =G, Q2jy1 =01, Gaj2=Go, j=> 1.

Here we have r; = 3 for all i > 0. The maximal rank is already met by Gy, but there
is no criterion which indicates this in time. Furthermore, N; N\ N;+; = {0} holds true
for all i > 0, such that there is no step indicating a singular pencil via property
(1.11). Observe that the product I'THQ1 Qo = PyQ1Qp does not vanish as it does in
the previous example. a

The rather irritating experience with Example 1.9 leads us to the idea to refine
the choice of the projectors by incorporating more information from the previous
steps. So far, just the image spaces of the projectors Q; are prescribed. We refine the
construction by prescribing certain appropriate parts of their nullspaces, too. More
precisely, we put parts of the previous nullspaces into the current one.

When constructing the sequence (1.10), we now proceed as follows. At any level
we decompose

—~

No+ - +Nii=Ni®Xi, Ni:=(No+-+Ne)NN;,  (1.12)

where X; is any complement to ﬁi in Ng+ ---+ N;_1. We choose Q; in such a way
that the condition
X,-gkerQ,» (113)

is met. This is always possible since the subspaces ﬁi and X; intersect trivially (see
Appendix, Lemma A.7). This restricts to some extent the choice of the projectors.
However, a great variety of possible projectors is left. The choice (1.13) implies the
projector products IT; to be projectors again, cf. Proposition 1.13(2). Our structural
analysis will significantly benefit from this property. We refer to Chapter 7 for a
discussion of practical calculations.

If the intersection N, i = (No+---+N;—1) NN; is trivial, then we have

X;=Ny+---+N_; Cker0Q;.
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This is the case in Example 1.8 which shows a regular DAE.

Definition 1.10. For a given matrix pair {E,F }, E, F € L(R™), and an integer K € N,
we call the matrix sequence Gy, ..., Gy an admissible matrix sequence, if it is built
by the rule

Set Gy :=E, By := F, Ny := ker Gy, and choose a projector Qp € L(R™) onto Np.
Fori>1:

Gi:=Gi—1 +Bi-10i-1,
Bi:=Bi_ 1P
Nii=kerGy, Nji=(No++-+Ni-1) NN,
fix a complement X; such that Ny +-- -+ N;—_; = ﬁ; b X;,

choose a projector Q; such that im Q; = N; and X; C ker Q;,
set B :=1—Q;, I; ;== IT; P,

The projectors Qy, ..., in an admissible matrix sequence are said to be admissi-
ble. The matrix sequence Gy, ..., Gy is said to be regular admissible, if additionally,

Ni={0}, Vi=1,... k.
Then, also the projectors Q, ..., Q are called regular admissible.

Admissible projectors are always cross-linked to the matrix function sequence.
Changing a projector at a certain level the whole subsequent sequence changes

accordingly. Later on we learn that nontrivial intersections ﬁ,- indicate a singular
matrix pencil.

The projectors in Example 1.8 are admissible but the projectors in Example 1.9
are not. We revisit Example 1.9 and provide admissible projectors.

Example 1.11 (Admissible projectors). Consider once again the singular pair from
Examples 1.7 and 1.9. We start the sequence with the same matrices Gy, By, Qo, G1
as described in Example 1.9 but now we use an admissible projector Q. The
nullspaces of Gy and G are given by

1 1
Ny = span | . and N| = span 0
0 = Sp. 0 1 = Sp: 0
0 0
This allows us to choose
1100
0000
2 =10000]|"

0000
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which satisfies the condition X; C ker Oy, where X; = Ny and ﬁl = NpNN; ={0}.
It yields

1200 0000
0001 0000
G2=10000|" 2= 0010
0010 0000

Now we find N, = span [—2 10 O]T and with

1 1 0
-1 0 0 1

N0+N1:N0@N1:span< ol lo >:span< ol lo ),
0 0 0 0

we have N, C Ny + Ny, No+ N1 +Np = Ny + N as well as ﬁz = (No—l—N])ﬂNz =N,.

A possible complement X, to ﬁz in Ny + N; and an appropriate projector Q, are

1 0-200
0 0100
Xzfspan ol Q2* 0000
0

0000

This leads to G3 = G», and the nontrivial intersection N, N N3 indicates (cf. (1.11))
that also all further matrices G; are singular. Proposition 1.34 below says that this
indicates at the same time a singular matrix pencil. In the next steps, for i > 3, it
follows that N; = N, and G; = G».

For admissible projectors Q;, not only is their image im Q; = N; fixed, but also a
part of ker Q;. However, there remains a great variety of possible projectors, since,
except for the regular case, the subspaces X; are not uniquely determined and further
represent just a part of ker Q;. Of course, we could restrict the variety of projectors by
prescribing special subspaces. For instance, we may exploit orthogonality as much
as possible, which is favorable with respect to computational aspects.

Definition 1.12. The admissible projectors Qy, ..., Qy are called widely orthogonal
if Qo = Qf, and

—~

X; =N N (No+---+Ni_y), (1.14)

as well as
kerQ; = [No+---+N]*®X;, i=1,...,K, (1.15)

hold true.
The widely orthogonal projectors are completely fixed and they have their advan-

tages. However, in Subsection 2.2.3 we will see that it makes sense to work with
sufficiently flexible admissible projectors.
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The next assertions collect useful properties of admissible matrix sequences
Go,...,Gy and the associated admissible projectors Qy,...,Qy for a given pair
{E,F}. In particular, the special role of the products IT; = Py - - - P, is revealed. We
emphasize this by using mainly the short notation IT;.

Proposition 1.13. Let Qy,...,Q« be admissible projectors for the pair {E,F},
E,F € L(R™). Then the following assertions hold true fori=1,... x:

ey
@
3
“

)
(6)

N

kerHi = N() +-- +Nl‘.

The products IT; = Py - -- P, and I1;_1Q; = Py - - - P_1 Q;, are again projectors.
No+---+Ni—1 Ckerll;_0;.

B; = BiIl; 1.

N; € NiNkerB; = NiNNi1 C ﬁi+1~

If Qo, - .., Qx are widely orthogonal, then imIT; = [No + - -- + N;| -, IT; = IT*
and IT,_1 Q; = (IT-1 Q;)*.

If Qo, ..., Qx are regular admissible, then kerIT;_1Q; = ker Q; and 0;Q0; =0
for j=0,...;i—1.

Proof. (1) (=) To show kerIl; C Ny+---+ N; fori=1,...,k, we consider an

@

element z € ker I'l;. Then,
0=Iz=PRy---Pz=[]U— Q)=
k=0
Expanding the right-hand expression, we obtain
i

z= OwHz € No+---+N;

k=0

with suitable matrices Hj.

(<) The other direction will be proven by induction. Starting the induc-
tion with i = 0, we observe that kerIly = kerPy = Ny. We suppose that
kerIl;_; = Ny +---+ N;_; is valid. Because of

No+-+++N; = Xi+ Ni+N;
each z € Ny + - -- + N; can be written as z = x; + Z; + z; with
% €X; CNo+ - +Ny=kerll_j, Z€N;CN;, z€N.
Since Q; is admissible, we have X; C ker Q; and N; = im Q;. Consequently,
Iiz=TL (I - 0))z= Il (I - Qi)x;i = Il 1x; =0

which implies Ny + - - - + N; C ker I]; to be true.
From (1) we know that imQ; = N; C kerII; for j <. It follows that
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Py = IL(1 - Q) = IT;.
Consequently, I"Ii2 =IT; and IL;I1;_| = II; imply
(I;-10;)* = Iy (I — P)IT-1 Qi = IT,_1 Q; — ITIT,_, O;
=111 Qi — IL;Q; = IT;-1 Q;.

(3) For any z € Ng+ ---+ Nj—1, we know from (1) that IT;_;z =0 and IL;z = 0.
Thus
IT;_1Qiz =II;_1z—IT;z=0.

(4) By construction of B; (see (1.10)), we find B; = BoIl;—1. Using (2), we get that
B; = Boll;_y = Boll;_{II;_y = B]II;_;.
(5) First, we show that ﬁ,- C N;NkerB;. For z € ﬁ,- =(No+---+Ni_1)NN; we
find IT;_;z = 0 from (1) and, hence, B;z = ByIl;_1z = 0 using (4). Next,
N;iNkerB; = N;iN Ny

since Giy1z = (G;+ B;Q;)z = B;z for any z € N; = im Q; = ker G;. Finally,

—~

Niy1 = (No+---+N;) N Ni;1 implies immediately that N; Ny C ]/\7[+1.

(6) We use induction to show that imIT; = [Ny + --- + N;]*. Starting with i = 0,
we know that im ITy = N;- since Qp = Q.
Since X; € Ng+ -+ N;_; (see (1.14)) we derive from (1) that IT;_;X; = 0.
Regarding (1.15), we find

imIT; = IT;_jim P, = T ([No+ -+ + N+ X;) = Tl ([No+ -+ N ).
Using [Ny +---+Ni]* C [No+---+N;_1]* = imIT;_; we conclude
imIT; = IT;y ([No+---+Ni) " = [No+--- +NJ*.

In consequence, IT; is the orthoprojector onto [Ny + - - -+ N;]* along No+ -+ - +
N, ie., IT; = IT}. It follows that

I Q=1L —IL=IT" | — IT} = (IT,_ — IT;))" = (I, Q;)*.

(7) Let N; =0 be valid. Then, X; = No+ -+ Ni_1 = Ng@--- ®Nj_; and, there-
fore,
kerIl; @ No®---&N;i—1 =X; CkerQ;.
This implies Q;Q; = 0for j=0,...,i— 1. Furthermore, for any z € ker I';_; Q;,
we have Q;z € kerIl;_| C ker Q;, which means that z € ker Q;.
O
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Remark 1.14. If the projectors Qy, . .., O are regular admissible, and the Iy, ..., I
are symmetric, then Qy, ..., Qy are widely orthogonal. This is a consequence of the
properties

imI'Ii:(kerH,-)J‘:(NOEBm@N,’)J‘, kerQ; =imI;®X; fori=1,...,K.

In more general cases, if there are nontrivial intersections N, i, widely orthogonal pro-
jectors are given, if the I'l; are symmetric and, additionally, the conditions Q;I1; = 0,
P(I—1II_y) = (P(I—IT;_))* are valid (cf. Chapter 7).

Now we are in a position to provide a result which plays a central role in the projec-
tor approach of regular DAEs.

Theorem 1.15. [f, for the matrix pair {E,F}, E.F € L(R™), an admissible matrix
sequence (Gj)i>o contains an integer W such that G, is nonsingular, then the repre-
sentations
G E=Iy +(I-TI, )G,'E(I—ITy_,) (1.16)
Gy'F=0Qo++Qua+(I—T,1)G,'FII,_ + I, \G,'FIT,_y  (1.17)

are valid and {E F} is a regular pair.

Proof. Let G, be nonsingular. Owing to Proposition 1.13 we express

F(]_Hu—l) = F(QO“‘HOQI +- "+Hu—2Qu—1)
=BoQo+B101+--+Bu-10u-1
=Gu0o+Gu01+--+Gu0pu
=Gu(Qo+Q1++0u1),

therefore

I, G, 'F(I—I_y) =0. (1.18)
Additionally, we have Gy = E+ F(I =TI, 1), thus I = G'E+ G, 'F(I— I, )
and I, 1 =1I, GEIE = GﬁlEH“,l. From these properties it follows that

, \G,'E(I-ITy_) =0, (1.19)

which proves the expressions (1.16), (1.17).

Denote the finite set consisting of all eigenvalues of the matrix —H“,IGEIF by
A. We show the matrix AE + F' to be nonsingular for each arbitrary A not belonging
to A, which proves the matrix pencil to be regular. The equation (AE + F)z =0 is
equivalent to

AG,'Ez+G,'Fz=0

AG,'EMy 124+ AG,'E(I— My 1)z+ Gy ' FIy 12+ G, 'F(I =TI, 1)z =0
(1.20)
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Multiplying (1.20) by I, | and regarding (1.18)—(1.19), yields
Ay 2+ Iy (G 'FII, 2= (Al +T1, G, 'F)IT,_12=0,

which implies IT, 1z =0 for A ¢ A. Using I,z = 0, equation (1.20) multiplied
by I —1II,_ reduces to

A=y 1)Gy'E(I =TIy 1)z + (I =TIy _1)G, ' F(I— Ty 1)z = 0.
Replacing Glle = I—G;LIF(I—Hﬂ_l) we find
A=y y)z+ (1= A)(I =TIy )G, ' F(I = Iy )(I — T, 1)z =0.

If A = 1 then this immediately implies z = 0. If A = 1 it holds that

<%I+(1_HMI)G”1F(I_HH1)> (I_H[vlfl)Z:O-

Qo401 :

Multiplication by Qp 1 gives Oy 1z = 0. Then multiplication by O, » yields
Qu-—2z =0, and so on. Finally we obtain Qpz =0 and hence z = (I — I, )z =
Qoz+-+120,u-12=0. 0

Once more we emphasize that the matrix sequence depends on the choice of the
admissible projectors. However, the properties that are important later on are inde-
pendent of the choice of the projectors, as the following theorem shows.

Theorem 1.16. For any pair {E,F}, E,F € L(R™), the subspaces No+---+N;j, N;
and im G; are independent of the special choice of the involved admissible projec-
tors.

Proof. All claimed properties are direct and obvious consequences of Lemma 1.18
below. a

Theorem 1.16 justifies the next definition.

Definition 1.17. For each arbitrary matrix pair {E,F}, E,F € L(R™), the integers

ri:=rankG;, i > 0, u; ;== dim N; i > 1, which arise from an admissible matrix se-
quence (G;);>0, are called structural characteristic values.

Lemma 1.18. Let Q, ..., 0« and Qy,...,0« be any two admissible projector se-
quences for the pair {E,F}, E,F € L(R™), and N;, N}, G}, Gj, etc. the correspond-
ing subspaces and matrices. Then it holds that:

Q) N()+~~+Nj:N()+"'+Nj, for j=0,..., k.
_ _ j=1 .
2) Gj=¢G,z;, Bj:Bj+GleOQlQljl7 for j=0,...,K,

with nonsingular matrices Zy, ..., Zy.1 given by Zy :=1, Zj | :==Y;11Z;,
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Y1 :=1+Q0(Q0— Qo) =1+ Qo00Py,

Yipr :=1+Q;(I1;.10;—I1;.,10)) + Y 020,
=0

vyhertejz=I:Ij_1f0rl:O,...,j—1.
(3 Git1=Gxs1Zx+1 and No+ -+ Niy1 = No+ -+ + Niey1.
“4) (N()+"'+Nj71)ﬂNj: (N()—F"'-‘FN]‘?])QNij}’j: 1,...,x+1.

Remark 1.19. The introduction of 2(;; seems to be unnecessary at this point. We
use these extra terms to emphasize the great analogy to the case of DAEs with
time-dependent coefficients (see Lemma 2.12). The only difference between both
cases is given in the much more elaborate representation of 2(; for time-dependent
coefficients.

Proof. We prove (1) and (2) together by induction. For i = 0 we have
Go=E=Gy, By=F=By, Ny=kerGy=kerGo=Ny, Zo=1.

To apply induction we suppose the relations

NO+"'+Nj:NO+"'+Nj7 (1.21)
Gj:Gij, Bj:Bj+GjZQlQljl (122)
=0

to be valid for j < i with nonsingular Z; as described above, and
j-1
Z;l =1+ Z 0,¢;;
=0

with certain € ;. Comparing Gi+1 and G;, | we write
Git1 = Gi+BiQi = GiZi +Bi0iZi + B,0i(1 - Z;) (1.23)

and consider the last term in more detail. We have, due to the form of Y}, induction
assumption (1.21) and im (Y; —I) € No+---+N;_; = kerII;_; given for all j >0
(see Proposition 1.13) that

No+--+Nj_1 CkerIl;_1Qj, No+---+Nj_y CkerIl;_10;, j<i, (1.24)

and therefore,
Yijqr 1= —DIji—, j=1,...,i (1.25)

This implies
im(Y;—1I)Cker(Yjy1—1), j=1,...,i (1.26)

Concerning Z; = Y;Z; 1 and using (1.26), a simple induction proof shows
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to be satisfied. Consequently,
im(I—2Z) CNo++Ni—1 =No+--+Ni_1 CkerQ,.
Using (1.23), we get
Giy1 = GiZi+ BiQiZ;,
which leads to
Git1Z; ' = Gi+BiQi = Gi+BiQi+ (BiQi — BiQ)).

We apply the induction assumption (1.22) to find
- - iil -
GinZ ' =G +Bi(Qi— Q) +Gi Y 020
=0

Induction assumption (1.21) and Proposition 1.13 imply kerIT,_; = kerIT,_; and
hence B B
Bi = Boll; | = Boll; 1II; | = BiIl; ;.

Finally,
GinZ ' = Gi1 +Bi(IT-10; — IT10i) + Gis1 Y Q123 Qi
i=0

i—1
= Gip1+BiQi(I10; — T 101) + Giv1 ), QA Qi = Gig1Yirn,
i=0

which means that

Giv1 = Gi1Yi1Zi = Gip1 Zig 1. (1.27)

Next, we will show Z; | to be nonsingular. Owing to the induction assumption, we

know that Z; is nonsingular. Considering the definition of Z;, | we have to show Y;;|
to be nonsingular. Firstly,

Y, =TI, (1.28)

since imQ; C kerIT; for j < i. This follows immediately from the definition of ¥;;
and Proposition 1.13 (1). Using the induction assumption (1.21), Proposition 1.13
and Lemma A.3, we find

Hjﬁj:Hj, ﬁjHj:ij and HjHj:Hj fOI'jZO,...,i.

This implies that
I (Y1 — 1) =1 (Yip — DIT; (1.29)

because
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Prop 1 13(1

IL (Y —1) IT 1 Qi(ILi—1 0 — 11 Q)

= (ILi —IL)(I 1 Qi — I 1 Q))

= IL.(Qi—Q) = I (P—-P)
= IL—IL\IL_\P, = IT,— IT;_IJ;

= IL-IL,\ILIL = (I—IL_(IL)IT,.

Equations (1.28) and (1.29) imply
Iy (Y — 1) = Iy (Y = DIL = Iy (Yigr — DILYi1
and, consequently,

[ =Y — Y1 1) 2y, - (Yig1 — DIy
=Yiy1 — (Y = DIG A {(I =I5 1) Y + 111 }
=Yiy1 — (Yig1 —DIG 1 {Y; — I (Y = 1)}

=Yiy1 — (Yigr = DIG 1 {Yi1 — I (Y — DILYi0 }

= (= Y1 —D{I =T (Y1 — DILH) Yips.

This means that Y;1 | is nonsingular and
Y1+} I_( i+1 — ){I Hl 1( i+1 — I)III}

Then also Z;1 = Y;11Z; is nonsingular, and
Z,_H =77 lY,L = 1+ZQ1¢11 11 —1+ZQ1Q+11

with certain coefficients Qf,+1 ;. From (1.27) we conclude Nip 1 = Z

H_1N+1, and, due

to the special form of Z; +1,
Niz1 CNo+-+-+Nip1, No+ -+ N1 SNo+ -+ Nig1.
Owing to the property im (Z;;1 —1) C No+---+N; = No + - - - + N;, it holds that
Nig1 =ZigiNig1 = (I + (Zig1 —1))Nig1 S No+ -+ + Nig1.
Thus, No+ -+ +Nir1 € No+ -+ Njy 1 is valid. For symmetry reasons we have
No+--++Nig1=No+ - +Nij1.

Finally, we derive from the induction assumption that
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i—1
Biy1 = BiP,= (Bi+G; ), Q%) P,
1=0

i1
= BiPiP;+ BiQiPi+ Giy1 ), Q1P
=0
) i1 ) i
= BiP+B;QiII; + Gitq Z O AyP = Biy1+Gitt Z Oy
=0 =0

with 2, ;= WP, 1=0,...,i—1, Aiy11= IT;, and therefore, for I <i—1,

W1y =Aal; =X 11 P1 P = A 11Prr - P =Py - B =11,

We have proved assertions (1) and (2), and (3) is a simple consequence. Next we
prove assertion (4). By assertion (1) from Lemma 1.13, we have Ng +--- + N; =
kerIl; and

Giy1 = Go+BoQo + - +BiQi = Go +BoQo + B1PoQ1 + -+ BiFy- - Fi1Qi
= Go+Bo(Qo+PQi1+--+P---P_10))
= Go+Bo(I—Py---P;) = Go+ Bo(I —IT).

This leads to the description

—~

Niz1 = (No+---+N)NNip1 = {z € R" : Tliz = 0, Goz+ Bo(I — IT;)z = 0}
={zeR":z€No+---+N;, Goz+ Boz =0}
={zeR":zeNy+---+N;, Goz+Boz =0}
= (No+-+-+N;) NN

1.2.2 Decoupling by admissible projectors

In this subsection we deal with matrix pairs {E,F}, E,F € L(R™), the admissible
matrix sequence (G;);>o of which reaches a nonsingular matrix Gy,. Those matrix
pairs as well as the associated DAEs

EX(t)+Fx(t) = q(¢) (1.30)
are regular by Theorem 1.15. They have the structural characteristic values
ro< - <ry g <rg=m

The nonsingular matrix G, allows for a projector based decoupling such that the de-
coupled version of the given DAE looks quite similar to the Weierstral—Kronecker
form.
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We stress that, at the same time, our discussion should serve as a model for a
corresponding decoupling of time-dependent linear DAEs for which we do not have
a Weierstra3—Kronecker form.

When constructing an admissible matrix function sequence (G;);>o we have in
mind a rearrangement of terms within the original DAE (1.30) such that the solution
components IT,,_1x(t) and (I —IT,_1)x(t) are separated as far as possible and the
nonsingular matrix G, occurs in front of the derivative (IT,_1x(t))’. Let the admis-
sible matrix sequence (Definition 1.10) starting from Go = E, By = F be realized up
to Gy, which is nonsingular. Let 4 € N be the smallest such index.

Consider the involved admissible projectors Qo, ..., Qy. Wehave Oy, =0, P, =1,

IT, = II,  for trivial reasons. Due to Proposition 1.13, the intersections N; are
trivial,

—~

Ni=NNNo+--+Ni—1)={0}, i=1,...,u—1,
and therefore
No+-+Ni_1 =No@---®ONi—1, Xi=No@---®ON,—1, i=1,...,u—1. (1.31)
From (1.31) we derive the relations
00;=0, j=0,...,i—-1, i=1,...,u—1, (1.32)
which are very helpful in computations. Recall the properties

GiPi-1 = Gj—1, Bi=Blli1, i=1,...,01,
Gin:Bij7 j:(),...,i—l, i:07...,/.1—1,

from Section 1.2 which will be used frequently.
Applying Go = GoPy = GoIly we rewrite the DAE (1.30) as

Go(Iox(r))' + Box(r) = q(1), (1.33)
and then, with By = BoPy + BoQo = Bolly + G1Qp, as
G1P1Py(ITox(t))' + BoIlox(t) + G1 Qox(t) = q(t).
Now we use the relation

G PP = GiILPP+ G (I —IH)P Ry
= G111, —Gl(I—Ho)Ql
= GIT, - G (I — IT) 01 ITH Q1

to replace the first term. This yields

Gi(Iix(1))' + Bix(t) + G1{Qox(1) — (I = ITy) Q1 (Mo Q1x(1)) } = q(1).
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Proceeding further by induction we suppose
G,’(ILX(I))I + Bix(t)

i—1
+ Gi Y {0ux(t) — (I = T1) Q1 (I, Qr41x(1)) } = q(1)  (1.34)
=0
and, in the next step, using the properties G; 1P+ P, = Gi, B;Q; = Gi+10i,
Gin = Gi+1Qla = 07"'7i7 17 and
Py 1 PII; = IT,P | PIT; 4 (I — IT;) P PIT;
=i — (I = IT;) Qi1
=1ITi 1 — (I -11;) Qi1 IT; Qi 1,
we reach

Giv1(IT1x(t))" + Biy1x(t)

+ Gy i{QIX(t) — (I =I1) Q11 (Th Q11x(1))'} = 4(1),
=0

so that expression (1.34) can be used for all i = 1,..., u. In particular, we obtain
Gu(ITux(t)) + Bux(t)

p-l , (1.35)
+ Gy z):o{le(t) — (I =1I1) Q111 (Th Qr41x(2)) } = q(2).
Taking into account that O, =0, P, =1, II, = I, ;, and scaling with Gﬁl we
derive the equation

-1 2
(ITy—1x(t))' + G, ' Bux(t) +H Qix(1) —“Z (I —=I1) Q11 (I Qr41x(1)) = G g (1).
0

I= =0
(1.36)
In turn, equation (1.36) can be decoupled into two parts, the explicit ODE with
respect to IT,, _1x(t),

(IMy—1x(1)) + G, ' Bux(t) = Iy 1 G ' (1), (1.37)

and the remaining equation

-1
(I— H“,I)G;lBux(t) —l—#z: Ox(t)
i =0 (138)
— Z (I—1I1) Q1 (I Qr 41 x(1)) = (I_H#—I)GEI‘I(Z)'
1=0
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Next, we show that equation (1.38) uniquely defines the component (1 — ITy, 1 )x(t)
in terms of IT,_x(r). We decouple equation (1.38) once again into p further parts
according to the decomposition

=11y 1 =Q0P1- Py 1+0O1P Py 1+ +0p 2P 1+0u 1. (1.39)
Notice that Q;P;y---Py—1, i=0,..., 1t — 2 are projectors, too, and

QiPiy1---Pu10i = 0,

QiP1--Pu1Q; =0, ifi#j,
QiPip1- Py (I =I1) Q11 = Qi(I = I1})Q141 =0, forl=0,...,i—1,
QiPiy1 - Py (I =IL) Qi1 = QiQiy1-

Hence, multiplying (1.38) by Q;P,1---Py—1,i=0,...,u—2, and Q1 yields
QiPiyy- Py GﬁlBux(f) + Qix(t) — QiQir1(IL;Qi1x(1))

u-2
— Y QP PO (ThQr1x(1)) = QiPiy1 -+ Py 1Gy ' q(r) - (1.40)
I=i+1

fori=0,...,u—2and
Qu-1G, ' Bux(t) + Qu-1x(t) = Qu-1G, 'q(1). (1.41)

Equation (1.41) uniquely determines the component Q;,_1x(t) as

Qu-1x(t) = Qu-1G, 'q(t) — Qu_1G, ' Bux(1),

and the formula contained in (1.40) for i = u — 2 gives

Qu72x(t) =
Qu 2Py 1Gy ' q(t) = Qu 2Py 1Gy ' Bux(t) = Qu 20Qu 1 (IMy 20y 1x(1))',

and so on, i.e., in a consecutive manner we obtain expressions determining the com-
ponents Q;x(¢) with their dependence on IT,_1x(¢) and Q;y jx(¢), j=1,...,0—1—
i

To compose an expression for the whole solution x(z) there is no need for the
components Q;x(z) themselves, i = 0,...,u — 1. But one can do it with Qyx(¢),
IT,_1Qix(t),i=1,...,u — 1, which corresponds to the decomposition

I=Q0+IhQ1 4+ 11, >0y + 11, . (1.42)

For this purpose we rearrange the system (1.40), (1.41) once again by multiplying
(1.41) by I, > and (1.40) for i = 1,...,u —2 by IT;_;. Let us remark that, even
though we scale with projectors (which are singular matrices) here, nothing of the
equations gets lost. This is due to the relations
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Qi = QiIl; 1Qi = (Il + (I - IT;—1))QiIT; 1 Q;
=+ ~TIL-1)0)IT;10;, (1.43)
I Qi = (I—(1—-11;-1)Q;)Qi,

which allow a one-to-one translation of the components Q;x(¢) and IT;_; Q;x(t) into
each other. Choosing notation according to the decomposition (1.42),

vo(t) := Qox(t), vi(t) :=IL_10ix(t), i=1,...,u—1, u(t):=IL_1x(t), (1.44)
we obtain the representation, respectively decomposition
x(t) =vo(t) +vi(t)+---+vu_1(t) +u(t) (1.45)

of the solution as well as the structured system resulting from (1.37), (1.40), and
(1.41):

! u'(t) ]
0Not -+ Nopu-1 0
U : v (1)
N :
0 Vlufl(t)_
_ (1.46)
W u(t) Ly
Ho |1 vo(?) Lo
+1 o= | )
Hyu-1 I} Lvu(0) Ly
with the m x m blocks
Noi :=—Q001,
Noj:=QoP---Pi—10j, Jj=2,...u—1,
Niivt = —I5_10;Qi4 1, i=1,...,u-2
/\/'i'::_ i—lQi})H-l"'Pj—lea ]:l+27au_1a i= 1)"'7.“'_27

W= HH,IGEIBH,

Ho:= QoPl"-PﬂqGﬁ]Bu,

HiIZHHQiPiJrl"'PuflGljtlB#v i=1,...,u—2,
Hy—1:=T1, 201G, 'By,

and
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Lq:=TI,,G,",
Lo:=QoPr---Pu1Gy ',
Li:=TI;_1QiPy1--Pu1G,', i=1,...,u-2,

ﬁ,ufl = HuszﬁflGﬁl.

System (1.46) almost looks like a DAE in WeierstraB—Kronecker form. However,
compared to the latter it is a puffed up system of dimension (i + 1)m. The system
(1.46) is equivalent to the original DAE (1.30) in the following sense.

Proposition 1.20. Let the DAE (1.30), with coefficients E,F € L(R™), have the
characteristic values
ro<--<ry 1 <rg=m

(1) If x(.) is a solution of the DAE (1.30), then the components u(.),vo(.),...,
vu—1(.) given by (1.44) form a solution of the puffed up system (1.46).

(2) Conversely, if the functions u(.),vo(.),...,vu—1(.) are a solution of the sys-
tem (1.46) and if, additionally, u(ty) = IT,_ u(ty) holds for a ty € Z, then the
compound function x(.) defined by (1.45) is a solution of the original DAE
(1.30).

Proof. Tt remains to verify (2). Due to the properties of the coefficients, for
each solution of system (1.46) it holds that v;(¢) = IT,_1Qv;(t), i=1,...,u — 1,
vo(t) = Qovo(t), which means that the components v;(z), i =0,..., 1 — 1, belong to
the desired subspaces.

The first equation in (1.46) is the explicit ODE u/(t) + Wu(t) = L4q(t). Let
uy(.) denote the solution fixed by the initial condition u,(f9) = 0. We have u,(t) =
IT,_1uy(t) because of W = IT,, W, Ly = II,_1L,. However, for each arbitrary
constant ¢ € im (/ — IT, 1), the function i(.) := ¢ +uy(.) solves this ODE but does
not belong to im I, _; as we want it to.

With the initial condition u(ty) = ug € imII,_; the solution can be kept in the
desired subspace, which means that u(¢) € imIT,_; for all € Z. Now, by carrying
out the decoupling procedure in reverse order and putting things together we have
finished the proof. a

System (1.46) is given in terms of the original DAE. It shows in some detail the
inherent structure of that DAE. It also serves as the idea of an analogous decoupling
of time-varying linear DAEs (see Section 2.6).

Example 1.21 (Decoupling of an index-2 DAE). We reconsider the regular index-2
DAE

100 111
001|xX+1]010|x=g¢q
000 101

from Example 1.8, with the projectors
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000 000 100
ILh=PP =0 00|,0=1|010|,P0; =000
—-101 000 100

The DAE itself can be rewritten without any differentiations of equations as

(—x1+x3) =2 +q3—q1, (1.47)
Xy +x2=(q1 —g3), (1.48)

1 1
X1+§(—X1+X3)= EC]3. (1.49)

Obviously, ITjx reflects the proper state variable —x; + x3, for which an explicit
ODE (1.47) is given. PyQ1x refers to the variable x; that is described by the algebraic
equation (1.49) when the solution —x; + x3 is already given by (1.47). Finally, Qpx
reflects the variable x, which can be determined by (1.48). Note, that the variable x|
has to be differentiated here. Simple calculations yield W = IT, G, ' BoIT, -1 =0,
Ho = QoP1G, 'BoIl,— =0 and

_lol

o 2772

Hi=Q1G, 'BoIly_| = 00

_lol

2 2

This way the DAE decouples as

(Ix)' = I,G, 'q, (1.50)
—0001(I1)Q1x)' + Qox = QPG 'q, (1.51)
MQ; +HiIx = 10, G, 'q. (1.52)

These equations mean in full detail

0 [0 00]
( 0 ) =1000|g,
—X1+x3 _—1 1 1_

000 x|\’ 0] (00 0]
100 ( 0 >+x2 =|10-1]gq,
0
0
0

000] \ |x o] |00 o0
1 1 T [ 1
X1 —3 ) 0 OOE
0+ 0 0 |=000]g
1 1

% —x1+x3 | _0 0 5

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form (1.47)—(1.49). a
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1.2.3 Complete decoupling

A special smart choice of the admissible projectors cancels the coefficients H; in
system (1.46) so that the second part no longer depends on the first part.

Theorem 1.22. Let {E,F}, E,F € L(R™), be a pair with characteristic values
ro <<y <ry=m.

Then there are admissible projectors Qy, ... Q1 such that the coupling coefficients
Ho, ..., Hu—1 in (1.46) vanish, that is, (1.46) decouples into two independent sub-
systems.

Proof. For any given sequence of admissible projectors Qo,...,Qy 1 the coupling
coefficients can be expressed as Ho = Qo.I1y,—1 and H; = IT;_1Q;, 11, for i =
1,...,u—1, where we denote
Qo := QoPy---Py—1G,'Bo,
Qix := QiPi1-++Pu1G, ' BoIl;_y, i=1,...,u-2,
Ou—14 1= QuflGﬁlBoHufz-
We realize that Q;.Q; = Q;, i =0,...,u — 1, since

Ou-1xQu-1= QuflGﬁlBOHu72Qufl = QuflGﬁlBuleufl
= nylG,,_llG,uQufl = Q[.L*h
and so on for i = g —2,...,0. This implies (Qix)> = Qi i.e., Qi is a projector
onto N;, i =0,...,u — 1. By construction one has Ng + --- + N;_1 C kerQ;, for
i=1,...,u— 1. The new projectors Qp := Qo,...,0u 2 = Ou—2, Ou-1:=0pn 1+
are also admissible, but now, the respective coefficient #, | disappears in (1.46).
Namely, the old and new sequences are related by

Gi == Gi7 = 0,. . ,‘LL - 1, G'u == Gl'l +B”71Q”71* = GuZ'u
with nonsingular Z, := 1+ Q-1 Qu—1+Py—1. This yields

Op—1+:=Qu-1Gu—1BoIl,_» = Qu—l*ZﬁlGﬁlBoHu—z
= Q;LflG,:lBOHufz = Qufl* = Q_[.Lfl
because of
Qu-1:Zy" = Qu-1:(I—=Qu1Qu-1:Pu1) = Qu-1,

and hence .
’H,ufl = Hy72Q,u71*Hp71 = Huszufln/,tfl =0.

We show by induction that the coupling coefficients disappear stepwise with an
appropriate choice of admissible projectors. Assume Qy, ...,Qy 1 to be such that
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Hiv1=0,..., Hy1 =0, (1.53)

or, equivalently,
Ok 1+ 1=0,..., Qy_1.d1,_1 =0,

for a certain k, 0 < k < p — 2. We build a new sequence by letting Q; := Q; for
i=0,....,k—1(if k> 1) and Oy := Q.. Thus, Q4P; = —OrP; and the projectors
Qo, - .., O are admissible. The resulting two sequences are related by

G_,'ZG,'Z,', i=0,...,k+1,
with factors
Zo=1I1, ..., Zx=I, Zi;1=I+Q0uP. Zg ' =I1—01QiP

We form Oy := ijrlleHZkH = Z/Z+11Qk+1- Then, Qo, ..., Oy are also admissi-
ble. Applying Lemma 1.18 we proceed with

Gi=Gjzj, 0;:=2;'0;Zj, j=k+2,...u—1,
and arrive at a new sequence of admissible projectors Qp, . . ., Qu_l. The invertibility
of Z; is ensured by Lemma 1.18. Putting Y.y := Z;1| and, exploiting Lemma 1.18,
— - ‘172 — -
Yi:=Z;Z; ! =1+ Q; 1(I1j 20, 1 —Ij 20 1)+ Y, Qi1 201, j>k+2.
1=0

Additionally, we learn from Lemma 1.18 that the subspaces Ny @ --- ® N; and
No @ --- &N, coincide. The expression for ¥;, j > k+ 2, simplifies to

j=2 j=2
Yi=1+ Z OIl; ,Q0; 1 =1+ Z Oll; 20; 4
1=0 I=k
for our special new projectors because the following relations are valid:
0iZj=0, 0;=27;'0;, M 20, 1= 2Z;",0; 1 =020 1,

0j-1(I1j2Qj-1 —;2Qj-1) = Qj-1(I1j-2Qj-1 — I;2Q;—1) = 0.

We have to verify that the new coupling coefficients F; and H j» J = k+1, disappear.
We compute Qi Z !, = Ok — OuPi = OxQx = Oy and

=2
ZiaZ;' =Y =1-Y 01 205, j>k+2. (1.54)
I=k

For j > k+1 this yields

QjJly—1 = QjPjy1 "'Pu—léﬁlBﬁu—l = ZleijjrlleH : "Y[I_llpu—lylleﬁu—l
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and, by inserting (1.54) into the last expression,

Qj*ﬁufl =

u-2 _ B
Oy 20y 1)Gy "By 1.

1=k

j-1
Z;'Q;(1= ), Q11 Q))Pjy1 - Py (I -
1=k
Rearranging the terms one finds
Q0 Il = (Z;lePj+l Py 1 4Ci 1941 Pjy2 - Py (1.55)
+o A+ Cju20u-2Pui Jer’”un,])G,:lBﬁ”,] .

The detailed expression of the coefficients C; ; does not matter at all. With analogous
arguments we derive

Ordly—1 = (QsPrist -+ Pu—1 +Cr j11Qk41Pes2 -+ Pu—i (1.56)
I —"—Ck’Hsz'u_ZPIJ_] —l—Ck’”,] Qu_l)G;lBﬁu_l.
Next we compute

Oy =L\ PPy Py = TG 1 PPy -+ Py
=1IL (Pc+ Q) PiPryr - Pyy = Iy — QrOiITy 1,

and therefore
Gy'BIy 1 =G B(Iy 1 — I 1 QkOuITy 1) = Gy BITy 1 — Ok Op Ty 1.
Regarding assumption (1.53) and the properties of admissible projectors we have
Qu 1Gy'BIly 1 = Qu 1Gy'BIly 1 — Qu 1 Qi1 1 = Qu 101, =0,
and, fori=k+1,...,u—2,
QiPiv1 -+ Py 1By = QiPiy1 -+ Py—1BIly— — Qi1 = Qi1 =0.
Furthermore, taking into account the special choice of Oy,

OPiy1 -+ Pu_1BIly_y = QxPey1 -+ Py BTy — Ok Okl
= (O — O 1 = 0.

This makes it evident that all single summands on the right-hand sides of the for-
mulas (1.55) and (1.56) disappear, and thus Q;, 11,y =0 for j =k,...,u — 1, that
is, the new decoupling coefficients vanish. In consequence, starting with any admis-
sible projectors we apply the above procedure first for k = y — 1, then for k = u —2
up to k = 0. At each level an additional coupling coefficient is canceled, and we
finish with a complete decoupling of the two parts in (1.46). O
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Definition 1.23. Let the DAE (1.30), with coefficients E, F € L(R™), have the struc-
tural characteristic values

ro<--<ry 1 <ry=m,

and let the system (1.46) be generated by an admissible matrix sequence Gy, ..., Gy.
If in (1.46) all coefficients H;, i =0,...,u — 1, vanish, then the underlying admis-
sible projectors Qy,...,Q, 1 are called completely decoupling projectors for the
DAE (1.30).

The completely decoupled system (1.46) offers as much insight as the Weierstraf3-
Kronecker form does.

Example 1.24 (Complete decoupling of an index-2 DAE). We reconsider once more
the regular index-2 DAE

100 111
001{x¥+1|010|x=g¢q
000 101

from Examples 1.8 and 1.21. The previously used projectors do not yield a complete
decoupling. We now use a different projector Q; such that

1ol 211
QIZ 7%07%a G2: 0117
1 1
5 0 5 101
and further

1 1 1 1
ro-1 000 ol
I =PP=|000],0=]010],PR0 =000
104 000 1ol

The DAE itself can be rewritten without any differentiations of equations as

(x1 —XS)/ =41 —492—93,
(x1+x3) +2x2 = gl +q2 — g3,

X1 +x3 =qg3.

Obviously, ITjx again reflects the proper state variable —x; 4 x3, for which an ex-
plicit ODE is given. PyQ1x refers to the variable x| +x3 that is described by the alge-
braic equation. Finally, Qox reflects the variable x,. Simple calculations yield W =
I, G, 'BoIl,—y =0, Ho = QoPiG, 'BoIl, 1 = 0 and H; = 01G; 'BoI,_ = 0.
In this way the DAE decouples completely as
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(Ix)' = I,G, 'q,
—0001(IHQ1x)' + Qox = QP G, ',
0; = IH0: G, 'q.

These equations mean in full detail

o= O
(=]

o~ O
VN

%(X] —X3) !
O =
—%(xl —X3)
Si+x)]\" [0]
0 > + x| =

%(Xl +x3) 0

%()q +X3)_
0 =
%(xl —|—X3)_

c oo cumo

l—
|
l—

ONI=

o - O
RI— O
=

S OO oo NI=

Rl— O tl—
[ =)
LN

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form described above.

O

Example 1.25 (Decoupling of the DAE in Example 1.5). The following matrix se-
quence is admissible for the pair {E,F} from Example 1.5 which is regular with

index 4:

10000
00100
00010
00001
00000

1-1000
01100
00010
00001
00000

1
0
Gy= |0
0
0

00000 —a—-1000
01000 0 1000
. Qo=100000|, Bp=F=|0 0 100],
00000 0 0010
00000 0 0001
00-100 [00—-100
00-100 00000
01=100100|, Io,=|00 100,
00000 00000
00000 1000 00
0001+a0 00000
000 1 0 00000
0= 1000 -1 0|, IMO,=[00000],
000 1 0 00010
000 0 O 00000
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l1-1la—-a%0 0000 —-1—a—a? (0000 —c?
011 00 0000 -1 0000 O
G3=[001 1 0/,03=10000 1 ,IL03;= (0000 0
000 1 1 0000 -1 0000 O
000 0O 0000 1 0000 1
1-1a—-0?a 101 —o —ot?]
011 0 0 000 0 O
Gi=[001 1 0|, IL=|0000 O [,
000 1 1 000 0 O
000 0 1 000 0 O

and the characteristic values are ro = r; =1, =r3 =4,r4 =5 and u = 4. Addition-
ally, it follows that

035G, 'ByI; =0, 02P3G;'ByIl; =0,
01P,P3G; ' BoITy =0, Q0P P>P;G; ' ByIl; = 0,
and
G, 'BoIl; = —alls. (1.57)

The projectors Qo, Q1,02,03 provide a complete decoupling of the given DAE
EX'(t)+ Fx(t) = q(t). The projectors Qo, [ToQ1, IT; Q> and IT, Q5 represent the vari-
ables x», x3, x4 and x5, respectively. The projector I3 and the coefficient (1.57) de-
termine the inherent regular ODE, namely (the zero rows are dropped)

(x14x3 — 0txg + 0t2xs) — a(x) +x3 — Oxg + 02xs5) = g1 + g2 — 0lq3 + > qy — 0 gs.
It is noteworthy that no derivatives of the excitation g encroach in this ODE. ad

Notice that for DAEs with p = 1, the completely decoupling projector Qy is
uniquely determined. It is the projector onto Ny along So = {z € R™ : Byz € im Gy}
(cf. Appendix A). However, for higher index u > 1, there are many complete de-
couplings, as the next example shows.

Example 1.26 (Diversity of completely decoupling projectors). Let

010 100
E=Gy=|000], F=By=|010],
001 001

and choose projectors with a free parameter o:
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(1 a0
Q=1000],
000
[0 —(14+a)0
Q=10 1 0f,
0o 0 o0
[1-10
G'=|010],
001

(1 -a0
010/,
001

(000
000 ],
1001

Q0PG5 ' By = Qo,

1 Linear constant coefficient DAEs

Gy

G,

[11+00

0 0 0|, B=~h,
0 0 1

(110

010/,

001

i.e., Qo and Q; are completely decoupling projectors for each arbitrary value .

However, in contrast, the projector I1; is independent of «.

O

1.2.4 Hierarchy of projector sequences for constant matrix pencils

The matrices Qy,...,Q; are projectors, where Q; projects onto N; = kerG;,
j=0,...,i, with Py :=1— Qqp, Il := Py and Pj =1- Qj» Hj = Hj_lp',

Nji=No+-+N;_)NNj, j=1,....i.

admissible (Def. 1.10)

(No+-+++N;-1)ON; CkerQj, j=1,....i
II; 1Q;0=0,1<j,j=1,...,i

l

regular admissible
Nj={0}, j=1,..i

Q;i0=0,1<j,j=1,...,i

l

‘ for regular index U pencils

l

complete decoupling (Def. 1.23)
Ho=0,H1=0,...,Hy 1=0
I, = spectral projector (cf. Theorem 1.33)

widely orthogonal (Def. 1.12)
II; =117, j=0,....i

—— | widely orthogonal and regular
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1.2.5 Compression to a generalized Weierstrafi—Kronecker form

The DAE (1.30) as well as its decoupled version (1.35) comprise m equations. The
advanced decoupled system (1.46) is formally composed of m(u + 1) equations;
however, it can be compressed back on an m-dimensional DAE without losing infor-
mation. The next lemma records essential properties to be used in the compression
procedure.

Lemma 1.27. The entries Njj of the decoupled system (1.46) have the following
properties fori=0,..., 10 —2:

Niir1 =Nii1 I5iQiy1,
Nij=NijIlj1Qj,  j=i+2,....u—1,
ker/\[i7i+1 = kerIIiQi+1a

rank N i1 =m—riq.

Proof. We use the additional subspaces S; := kerW;B; C R™ and the projectors
W; € L(R™) with
kerW; =imG;, i=0,...,u—1.

Let G; be the generalized reflexive inverse of G; with G;G; G; = G;, G; GiG; = G,
GiG; =1—W, and G; G; = P,. We factorize G as

Giy1 = Gi+BiQi = Gi + WiB;Q; + GiG; BiQi = Gir1Fit1,

Gir1:=Gi+W:B;Q;, Fiy1=1+PG;B0;.

Since F;4 is invertible (cf. Lemma A.3), it follows that G;. | has rank ;1 like Gj4 .

Furthermore, it holds that ker G; 1 = N; N S;. Namely, G; 1z = 0 means that G,z =
0 and W;B;Q;z =0, i.e., z = Q;z and W;B;z = 0, but this is z € N; N S;. Therefore,
N; N S; must have the dimension m — r;;1. Next we derive the relation

NiNS; =imQ;0j41. (1.58)

If z € N;NS; then z = Q;z and B;z = Gyw implying (G; + B;Q;)(Pw + Qiz) = 0,
and hence Pw + Qiz = Qi1 (Pw+ Qiz) = Qit1w. Therefore, z = Qiz = QiQi+1w.
Consequently, N;NS; C imQ;Q;+1. Conversely, assume z = Q;Q;11y. Taking into
consideration that (G; + B;Q;)Q;+1 = 0, we derive z = Q;z and Biz = B;Q;Q; 11y =
—GiQi+1y,1.e.,z € N; and z € §;. Thus, relation (1.58) is valid.

Owing to (1.58) we have

rank Q;Q;y1 =dimN;NS; =m —ritq. (1.59)

If follows immediately that rank N; ;11 = m — rit1, and, since im Py C ker N1 1,
rank P,y = riy, that im Py = ker N 1. O
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We turn to the compression of the large system (1.46) on m dimensions. The
projector Qg has rank m — rg, the projector I'l;_1Q; hasrank m —r; fori=1,...,u —
1,and IT,_; has rank d := m — 25:01 (m—rj).

We introduce full-row-rank matrices I; € L(R",R" "), i =0,...,u — 1, and
I € L(R™ R?) such that

imIyIT, =T imIl, | =R?  ker[j=im(I—Iy 1) =No+---+Ny_1,

IgNy =R™70, kerI) = ker Qy,
LIL_N; =R"7"i, kerl; =kerITl;,_1Q;, i=1,...,u—1,
as well as generalized inverses I ;" ,I;, i =0,..., 1 — 1, such that
1—;171—6} :H[J—17 1—;11;7 :Ia
I_i‘_l—i‘:ljileia EE_:Ia izla"'vqu
Iy Iy = Qo, Ioly” =1.

If the projectors Qo,...,Qy 1 are widely orthogonal (cf. Proposition 1.13(6)), then
the above projectors are symmetric and I, , I}~ are the Moore—Penrose generalized
inverses. Denoting

Hi:=I;H; d o Li:=ILL; i=0,....,u—1, (1.60)
W=LWI;, Ly:=T;Ly, (1.61)
Nij:i=LGNyI;, j=i+1,..,u—1,i=0,...,u=2, (1.62)

and transforming the new variables

Tu, 7 = L, i=0,...,u—1, (1.63)
Iy, vi=I "7, i=0,...,u—1, (1.64)

1

N
Il

u

we compress the large system (1.46) into the m-dimensional one

! () ]
0Not -+ Nopu—i 0
S : V(1)
K :
g 8# : ‘7;171(0_
- _ - (1.65)
w i(r) Ly
Ho |1 \7()(t) Lo
+ : = q
Hyur 1] Lopa(r) Ly
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without losing any information. As a consequence of Lemma 1.27, the blocks /\7,3,41
have full column rank m —r;y; fori=0,...,u —2.

Proposition 1.28. Let the pair {E,F}, E,F € L(R™) have the structural character-

istic values
ro <<y <ry=m.

(1)  Then there are nonsingular matrices L,K € L(R™) such that

I W
0 Not -+ Nou—i Ho |1
LEK = : ., LFK=| : | . ,
/\7#—27#—1 ~3 :
O H/J*l I

with entries described by (1.60)—(1.62). Each block /\7,-,,41 has full column
rankm—riy1, i=0,..., U —2, and hence the nilpotent part in LEK has index

u.
(2) By means of completely decoupling projectors, L and K can be built so
that the coefficients Hy,...,Hy 1 disappear, and the DAE transforms into

Weierstrafi—Kronecker form (1.3) with | = ):lH:_Ol (m—r;).
Proof. Due to the properties

Hi=HIl =HI; Iz, i=0,...,u—1,
W =WII,_, = WI T,
M]:M]H]*IQ]:MJI—;ir}a j: 17"'uu_17 i:07"'7.u_25

we can recover system (1.46) from (1.65) by multiplying on the left by

£

= _ € L(R™ RK+1Dm)

L u—

using transformation (1.64) and taking into account that u = I, i = Il ju and
I, ' = u'. The matrix I'~ is a generalized inverse of
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having the properties I'I'~ = I,,, and

Iy e = [Ty |
Iy To 0
F7F = ". = HOQ]

I, Ii1 L My—0u-1

I
Iy
The product K :=1T"|:| = _

= is nonsingular. Our decomposition

now means that

x = II; 1 x+ Qox+ 1O x+---+ 11, 20, 1x

] u
Vo
=[---1I"'T |:|x=[I-1] .
/ :
Vﬂ_l
and the transformation (1.63) reads
i u I 1
Vo Vo : :
. =TI . =ITT| |x=I| |x=Kx=%
Vp-1 Vu-1 I I

Thus, turning from the original DAE (1.30) to the DAE in the form (1.65) means
a coordinate transformation ¥ = Kx, with a nonsingular matrix K, combined with a
scaling by

I, 1
QoP1 - Py

Ou—2Pu1 :
Ou-1] LI
L is a nonsingular matrix. Namely, LGz = 0 means that

I, 12+ Q0P - Pu—1z2+110Q1 P+ -Py—12+---
+H,U,73Q[.172P[.171Z+ przQ/,hlZ =0,
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and multiplying by IT, | yields IT, z = 0. Multiplying by Q,, | implies Q;, 1z =
0, multiplying by Oy, 2P, 1 gives Qy 2Py 2z =0, and so on. Hence

(I—IIy 1)z=Qu 12+ Qu 2Pu12+--+QoP1-- Py 12=0.

The original DAE (1.30) and the system (1.65) are equivalent in the usual sense,
which proves the first assertion. Regarding the existence of completely decoupling
projectors (see Theorem 1.22), the second assertion immediately follows from the
first one. O

1.2.6 Admissible projectors for matrix pairs in a generalized
Weierstrafi—Kronecker form

Here we deal with the regular matrix pair {E,F} given by the m X m structured

matrices ) )
110 |}m—1 W10 |tm—1
E= {JTON]}Z F= H”]}l , (166)
H
where W € L(R™"), H =: | : | € L(R™",R") and N is a nilpotent, upper trian-
Hy

gular / x [ matrix, [ > 0, of the form
0N+ Nig |t

N=| : (1.67)

e Nuotu M
0

with [y > --- > > 1 and [y +---+ 1, = [. The blocks N; ;| with [; rows and ;|
columns are assumed to have full column rank, which means, kerN; ;11 = {0} for
i=1,...,u—1. Then N has nilpotency order p; that is N* =0, N*=! #£0, and J;
equals the number of its Jordan blocks of order > i, i=1,..., U.

This special form of the nilpotent block is closely related to the tractability index
concept, in particular with the decouplings provided by admissible projectors (see
Proposition 1.28).

The Jordan form of such a nilpotent matrix N consists of /; — /5 (nilpotent) Jordan
chains of order one, [, — /3 chains of order two, and so on up to /, | — I, chains of
order it — 1, and [, chains of order y. Any nilpotent matrix can be put into the
structural form (1.67) by means of a similarity transformation. Thus, without loss
of generality we may suppose this special form.

The polynomial p(1) := det(LE + F) = det(AI + W) has degree m — [. This pair
{E,F} is regular and represents a slight generalization of the classical WeierstraB—
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Kronecker form discussed in Section 1.1 (cf. (1.3)), where the entries of the block
H are zeros.
In accordance with the structure of £ and F in (1.66) we write z € R as

20

R m—1 i
z=|.|, 20eR"", zeRY, i=1,...,u.

2

Now we construct a matrix sequence (1.10) by admissible projectors. Thereby, in
the following pages in the present section, the letter NV is used in a twofold sense:
N;, with a single subscript, indicates one of the subspaces, and N, with double
subscript, means an entry of a matrix.

Put Go =E, By =F.Since Ny =kerGo={z€R":290=0, z, =0, ...,20 =0}
we choose

which leads to

1
IN],Z N17I-l }ll 1
. Hl 0 }l]
0
Gl = ) Bl = I )
e Ny-1p H .I
- 0 - ”

and
Ni={zeR":20=0,2,=0,...,23=0, 21 +Nj222 =0}, N NNy=0.

Choosing

0—Nip Hi I N> Hy
1 }12 0 }lg
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| ~

H

o

1

)

43

we meet the condition Ny C ker Q1, which means that @10y = 0, and find

1

G, =

Nyt

0

M }ll

th

W]
H,

1

Hy

Hy

th

9

Ny ={z€R":20=0,2,=0,...,24 =0, 22+ N»3z3 =0, 21 + N1222 + N1323 = 0},
(No+N1) NNy = (kerIT;) NN, = {0}. Suppose that we are on level i and that we
have Qy, ..., Q,_ being admissible,

0
0 * }ll
0 *
Qi 1= ] W

| ~

Hh

Hi

Qi-1(No+---+Ni2) = Qi1im(I —IT;_») =im Q;_ (I — IT;_») = {0},

1

It follows that

I Nip -

I N

Niy

- Ny—1p

Hh

}li, B, =

W _
H |0 H,
Hi
1
L Hy 1]
(1.68)
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Ni:{zeRm:ZO:O7Z“:0,..., Zi+2:07
Zi+Nii12ie1 =0,..., 21 +Nipza + -+ + N it1zip1 = 0},
(No+---+Ni—1)NN; = (kerIT,_;) NN; = {0}.

Choosing
"0 - r -
0 * }11 1 * }ll
0 * I x
R P = ,
Ql 1 }li+l ’ 14 O }li+1
0 1
L O - L I -
- -
0 H
II, = 0 ,
I Hit
L I -

we meet the admissibility condition (1.13), as Q;(I — IT;—;) = 0, and arrive at

o - - W -
I Niz - - - Nig H, |0
Giy1= I Nitiv2 : Bipi=| 0
o . : 1
e Nt :
L 0 | | Hy I ]

This verifies that formulas (1.68) provide the right pair G;, B; at level i, i > 1, for
{E,F} as in (1.66). Obviously, we obtain precisely a nonsingular matrix G, but
Gy is singular. The characteristic values of our pair {E,F} are u; =0, i > 1, and

ri=m—dimN;=m—1li 1 <m,i=0,....u—1,r,=m.

The next proposition records this result.

Proposition 1.29. Each admissible matrix sequence Gy, . ..,Gy for the special pair
{E,F} given by (1.66), (1.67) consists of singular matrices Go,...,Gy—1 and
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a nonsingular Gy. The characteristic values are u; =0 for i =1,...,u, and
ri=m—dimN; =m—Ili fori=0,....u—1, ry=m.

For the associated DAE, and in particular for the DAE in Weierstral—Kronecker
form (1.66) with its structured part N (1.67) and H = 0, the decoupling into the basic
parts is given a priori (cf. (1.4), (1.5)). The so-called “slow” subsystem

Y (1) +Wy(t) = p(r)

is a standard explicit ODE, hence an integration problem, whereas the so-called
“fast” subsystem
N7 (t)+z(t) = r(t) — Hy(t)

contains exclusively algebraic relations and differentiation problems.

The admissible projectors exhibit these two basic structures as well as a further
subdivision of the differentiation problems: The proper state variable is comprised
by IT,, | while I — I, collects all other variables, where

Those variables that are not differentiated at all and those variables that have to be
differentiated i times are given by

|o

and IT; 1Q; = ) I Yy
1

respectively.

1.3 Transformation invariance

Here we show the structural characteristic values r; for i > 0 to be invariant under
transformations. Given a matrix pair {E,F'}, E,F € L(R™), and nonsingular matri-
ces L,K € L(R™), we consider the transformed pair {£, F'}, formed by

E=LEK, F=LFK. (1.69)

The DAEs associated to the pairs {E,F} and {E,F} are
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EX(t)+Fx(t)=¢q(t) and EX(t)+Fx(t)=q(t).

They are related to each other by the transformation x = Kx and premultiplication
by L where ¢ = Lgq. In this sense, these DAEs are solution-equivalent.

How are the admissible matrix sequences (G;);>o and (G;)i>o as well as the ad-
missible projectors (Q;);>0 and (Q;);>o related for {E,F} and {E,F}? The answer
is simple.

Theorem 1.30. If two matrix pairs {E,F} and {E,F} are related via (1.69), with
nonsingular K, L € L(R™), then they have common structural characteristic values

r,»zf,-,iZO, Mi:lii,iZ].
If Qo,...,Qx are admissible projectors for {E,F}, then the matrices Qy,...,Qx
with Q; := K~ 'Q;K fori=0,...,k are admissible projectors for {E,F}.

Proof. The transformations Gy = LGoK, By = LBoK, Ng = K~ ' Ny are given to be-
gin with, and Qg := K~'QyK is admissible. Compute G| = Gy + ByQy = LG K,
71 =rq, then

Ny =K Ny, NonNy = K~ ' (NgNINy).

Put X; := K~'X; such that Ny = (No N N;) © X; and notice that Q; := K~'Q;K has
the property ker Q1 D X implying the sequence Qy, Q; to be admissible. At level i,
we have

Gi=LGK, No+--+Ni.1 =K '(No+---+N; 1), =K 'N;, i =r3,
and Q; := K~ 'Q;K satisfies condition ker Q; D X; with
X =K 'X,No+---+Ni_y =[(No+---+N_1)NN}] © X;.
O

Now we are in a position to state the important result concerning the consistency
of the projector based approach and the structure described via the Weierstra3—
Kronecker form.

Theorem 1.31. For E F € L(R™) suppose the pair {E,F} to be regular with Kro-
necker index |1 > 0. Then the admissible matrix sequence (G;);>o exhibits singular
matrices Gy, ...,Gy 1, but a nonsingular Gy, and vice versa.

Proof. (=) This is a consequence of the existence of the Weierstral—Kronecker
form (cf. Proposition 1.3), Theorem 1.30 and Proposition 1.29.

(<) Let the pair {E, F } have the characteristic values ro < --- <ry_| < ry =m. By
Theorem 1.22 we can choose completely decoupling projectors. Applying the de-
coupling and compressing procedure for the associated DAE we arrive at an equiv-

alent DAE of the form N
{I /\7} 7+ {W 1} i=q. (1.70)
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The matrix N is nilpotent with index , and it has the structure

tm—ry

=,
I

, (1.71)

N/J—Z,u—l }m—l’u,Q
tm—ry_

with full-column rank blocks /\71-7,-“ Jd=0,...,u—2.
It turns out that {E, F'} can be transformed into WeierstraB—Kronecker form with
Kronecker index pt, and hence {E, F'} is a regular pair with Kronecker index . O

1.4 Characterizing matrix pencils by admissible projectors

Each regular pair of m x m matrices with Kronecker index y > 1 can be transformed
into the WeierstraB—Kronecker form (cf. Section 1.1).

Ji

(ool ooy o= |

Js

where W is d xd, J is [ X I, d+1 = m, J; is a nilpotent Jordan block of order k;,
1 <k; <y, and max;=,.. ki = L.

As in Section 1.1, let /; denote the number of all Jordan blocks of order > i.
Then, J has [, > 1 Jordan blocks of order u, and /; — ;11 Jordan blocks of order i,
i=1...,u—-1Lh1+ -+l =L

In the present section we show how one can get all this structural information as
well as the spectrum of —W, that is the finite spectrum of the given matrix pencil, by
means of the matrix sequence and the admissible projectors without transforming
the given pair into WeierstraB—Kronecker form.

Often the given matrix pair might have a large dimension m but a low Kronecker
index u so that just a few steps in the matrix sequence will do.

The proof of Theorem 1.31, and in particular formula (1.71), show that the de-
tailed structure of the matrix pair can be described by means of admissible projec-
tors. This is the content of the next corollary.

Corollary 1.32. If {E,F}, E,F € L(R™), has the structural characteristic values
ro <o+ <y < ry =m, then the nilpotent part in its Weierstraf3—Kronecker form
contains altogether s = m — ro Jordan blocks, among them r; — ri_ Jordan chains
oforderi,i=1,...,u. Itholds that;, =m—r;_1, i=1,...,1, d:m—Z?ZI(m—

l’jfl).
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Besides the above structural characteristics the matrix sequence also provides the
finite spectrum of the matrix pencil as a part of the spectrum of the matrix W :=
I, 1G,'B.

Theorem 1.33. Let the pair {E,F}, E,F € L(R™), be regular with Kronecker index
U, and let the matrix

W =1, ,G,'BIl, | =11, ,G,'B
be generated by an admissible matrix sequence Gy, ...,Gy. Then the following as-
sertions hold:

(1) Each finite eigenvalue of {E,F} belongs to the spectrum of —W. More pre-
cisely, (AE+F)z =0 with z# 0 implies u := IT,_1z # 0, and (AI +W)u = 0.

2) If(AI+W)u=0, ITy_u#0, then A is a finite eigenvalue of the pair {E,F }.

3 IfAM+W)u=0, (I—-II;_1)u#0, then A = 0 must hold. If, additionally,
IT,_1u#0, then A = 0 is a finite eigenvalue of the pair {E,F}.

4 AM+W)u=0, u#0, A#0, implies Iy _u = u.

(5) IfQo,...,Qu—1 are completely decoupling projectors, then VV simplifies to

—1 -1
W:GIJ BII, :G” By,

and ITy_y is the spectral projector of the matrix pair {E,F}.

Proof. Applying the decoupling procedure (see Subsection 1.2.2) we rewrite the
equation (AE + F)z = 0, with

z=u+vo+--Fvu1, w:=I_ 1z, vo:=00z, ..., vy-1: =11 20,17,

as the decoupled system

Au+Wu=0, (1.72)
0MNot -+ Nou—1 Vo Vo Ho
Al ] =] e (1.73)
.'-NH_Z’H_] . .
0 V”7] VIJ'71 H”—l

Equation (1.73) leads to the representations

Vu—1 = —Hu—1u7
—Hu—2u+ ANy 1 Hu-1u,

V‘u72

and so on, showing the linear dependence of u, v; = H;u, i = 0,...,u — 1. The
property H; = H;II, 1 implies Hi= 'Fliﬂy,l.

If 7 # 0 then u # 0 must be true, since otherwise u = 0 would imply v; = 0,
i=0,...,u—1, and hence z = 0. Consequently, A turns out to be an eigenvalue of
—W and u = II,_z is the corresponding eigenvector. This proves assertion (1).
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To verify (2)—(4) we consider
A+W)i =0, ﬁ:Hu,1ﬂ+(I—Hu,1)ﬁ7é0.

Because W(I —I1,;_1) = 0 and (I — IT,—1)WV = 0, our equation decomposes into
the following two equations:

A(I—Ty_)ia=0, (A+W)a=0. (1.74)

Next, if ITy_1ii # O then we put ¥ := H;d = H;Ily_1d, i = 0,...,u — 1. Thus,
Z:=1II,_1i+7Vo+---+ V1 is nontrivial, and it satisfies the condition (AE 4+ F)Z =
0, and so assertion (2) holds true. Furthermore, if (1 — Hﬂ_l)ﬂ # 0, then the first part
of (1.74) yields A = 0. Together with (2) this validates (3). Assertion (4) is a simple
consequence of (1.74).

It remains to show assertion (5). Compute

G,'By—11,_1G,'By = (I—II,_1)G,'BII,
= (Qu-1+Qu 2Pu—1+--+QoPi - Pu_1)G,'BII;
=Qu Iy 1 +0Qu 2y 1+ +Qolly 1 =0.

For the proof that I, ; is the spectral projector we refer to [164]. a

The matrix W = H”,lGﬁlB = H#,IGQIBH”,I resulting from the projector
based decoupling procedure contains the finite spectrum of the pencil {E, F}. The
spectrum of —W consists of the d finite eigenvalues of the pencil {E,F} plus
m—d = [ zero eigenvalues corresponding to the subspace im (/ —IT,_;) C kerW.
The eigenvectors corresponding to the nonzero eigenvalues of VV necessarily belong
to the subspace imII; ;.

Now we have available complete information concerning the structure of the
Weierstral—Kronecker form without computing that form itself. All this informa-
tion is extracted from the matrix sequence (1.10). Notice that several numerical
algorithms to compute the matrix sequence and admissible projectors are addressed
in Chapter 7. Using the matrix sequence (1.10), the following characteristics of the
matrix pair E, F are obtained:

s d=m-— ):?Zl(m —rj_1), | = m—d are the basic structural sizes and y is the
Kronecker index,

* 141 — r; is the number of Jordan blocks with dimension i+ 1 in the nilpotent part,

* m—r; is the number of Jordan blocks with dimension > i+ 1 in the nilpotent
part,

* the finite eigenvalues as described in Theorem 1.33.

There is also an easy regularity criterion provided by the matrix sequence (1.10).

Proposition 1.34. The pair {E,F}, E,F € L(R™), is singular if and only if there is
a nontrivial subspace among the intersections
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NiONi—1, Ni=N;N(No+---+Ni—1), i > 1. (1.75)

Proof. Owing to the basic property (1.11) and Proposition 1.13, each nontrivial sub-
space among (1.75) indicates a singular pencil. Conversely, let {E,F} be singular.
Then all matrices G; must be singular, their nullspaces N; have dimensions > 1 and
the ranks satisfy the inequality

rOSSrlS ...... Sm_l

There is a maximal rank r,,,, < m — 1 and an integer k such that r; = 7, for all
i > k. If all above intersections (1.75) are trivial, then it follows that

No+--+Ni=No®---@®N;, dim(No@®---®N;) > i+1.

However, this contradicts the natural property No +--- +N; C R™. a

1.5 Properly stated leading term and solution space

Which kind of solutions is natural for the linear DAE
EX' (t)+Fx(t) = q(1), (1.76)

with coefficients E, F € L(R™)? Let Z C R denote the interval of interest, and let ¢
be at least continuous on Z. Should we seek continuously differentiable solutions?
The trivial Example 1.35 below reveals that continuous solutions having certain con-
tinuously differentiable components seem to be more natural. How can we decide
which part of the solution should be continuous only?

By means of any factorization of the leading matrix £ = AD with factors A €
L(R",R™)), D € L(R™,R"), the DAE (1.76) can be formally written as

A(Dx(1))' + Fx(t) = q(1), (1.77)

which suggests seek solutions x(.) having a continuously differentiable part Dx(.).
Introduce the function space of relevant functions by

CH(T,R™) := {x € C(Z,R™): Dx € C'(Z,R")}. (1.78)

We emphasize that the structural characteristic values as well as the admissible ma-
trix sequences (G;);>o in the previous sections are independent of the special fac-
torization of E since the initial guess of any matrix sequence is Gy := E = AD. The
trivial factorization A = E, D = I corresponds to the standard form DAE (1.76) it-
self and make sense, if £ is nonsingular. Our goal is to find nontrivial factorizations
which reflect possible low-smoothness demands for the solutions.

Example 1.35. Consider the simple system
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X (t) +x2(t) = q1 (1),

X (t) +x1(t) = q2(2),

x3(t):q3(t)a

x4(t) = qa(t),

that takes the form (1.76) with

1000 0100
0100 1000
E=10000|" F= o010
0000 0001

Choosing in the resulting equation (1.77) the factors A = E and D = diag(1,1,1,0),
we are led to the understanding that all first three components x;(.),x2(.),x3(.)
should be continuously differentiable. However, a look to the detailed DAE shows
that there is no reason to expect the third component to be so smooth. Observe that
this matrix D has rank three, while E has rank two, and ker D is a proper subspace of
ker E. Choosing instead A =1, D =E or A = E, D = E we obtain ker D = ker E, and
a further look at the detailed DAE confirms that now the space C},(Z,R™) reflects a
natural understanding of the solution.

As we can see in this example, aiming for lowest appropriate smoothness demands
and the notion of a natural solution, the rank of D has to be as low as possible, i.e.,
the dimension of the nullspace ker D has to be maximal, that is, we are led to the
condition ker D = kerE.

In general, if E = AD and kerD = kerE, then the intersection kerA NimD is
trivial, and the sum of these two subspaces is a direct sum. Namely, from z € kerAN
imD, that is, Az = 0, z = Dw, we conclude Ew = ADw = Az = 0, and hence w €
kerE = kerD, thus z = Dw = 0.

Moreover, from E = AD, kerD = kerE, it follows that D and E join their rank
but A may have a greater one. The direct sum kerA @ imD may become a proper
subspace of R”. In the particular case of Example 1.35 the choice A =1,D =E
leads to kerA @imD = im E being a two-dimensional subspace of R*.

There is much freedom in choosing the factorizations £ = AD. We can always
arrange things in such a way that ker D = ker E and imA = im E, and hence all three
matrices £, A and D have the same rank. Then, the decomposition

kerA ®imD = R" (1.79)

is valid. Particular factorizations satisfying condition (1.79) are given by means
of reflexive generalized inverses E~ and the accompanying projectors EE~ €
L(R"), E~E € L(R™) (cf. Appendix A.2). Namely, with A =EE~,D=E, n=k,
we have AD =EE™E =E and

kerA®imD =kerEE~ ®imE =kerEE~ @imEE™ =R".
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Similarly, letting A = E, D = E”E, n = m, we obtain
kerA®imD =kerE ®imE E =kerE"E®ImE E =R".

We refer to Chapter 7 for computational aspects to factorize E = AD. We mention
just the full rank factorization, that is, both A and D are full rank matrices, by means
of a singular value decomposition

Uy Up| [Z0] [V Via]" (U -
g |UnUn Vi) U gy, (1.80)
Uzi Una| [0 0] [Va1 Va2 U] — ==
~—— D
A

rankX = rankE =: r, n = r. The matrix A has full column rank n and D has full
row rank n. Later on we shall understand the property kerA = 0, imD = R" to be
preferable, in particular for numerical integration methods.

Definition 1.36. The matrices A € L(R",R¥) and D € L(R™,R") are said to be well
matched if the subspaces kerA and im D are transversal so that decomposition (1.79)
is valid. Equation (1.77) is a DAE with properly stated leading term if A and D are
well matched.

Given a DAE (1.77) with properly stated leading term, we look for solutions belong-
ing to the function space C},(Z,R™). We might be interested in a different formu-
lation with AD = AD. Also, starting with a standard formulation we have to decide
on the factorization. So we are confronted with the question of whether the solu-
tion space C},(Z,R™) depends on the factorization. The following lemma shows the
independence.

Lemma 1.37. If the matrices D € L(R™,R") and D € L(R™,R") have a common
nullspace N := ker D = ker D, then the corresponding function spaces coincide, that
is

CH(I,R™) =ChH(Z,R™).

Proof. The orthoprojector P € L(R™) onto N* satisfies P = D™D = D*D (cf. Ap-
pendix A.2). Therefore, for any x € C},(Z,R™), we find Dx = DD*Dx = DD™Dx €
C!(Z,R"), and hence x € C}(Z,R™). O

1.6 Notes and references

(1) As we have seen in this chapter, the WeierstraB—Kronecker form of a regular
matrix pencil is very helpful for understanding the structure of a linear constant
coefficient DAE, and, obviously, DAEs and matrix pencils are closely related.

Ever since Weierstrall and Kronecker ([212, 126]) discovered the canonical forms
of matrix pencils, and Gantmacher ([81]) pointed out their connection with differ-
ential equations, matrix pencils have attracted much interest over and over again for
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many years. There are untold publications on this topic; we only mention a few of
them and refer to the sources therein.

(2) A large part of the developments concerning matrix pencils and the accompa-
nying differential equations can be found in the rich literature on control and system
theory, where the resulting differential equations are called singular systems and
descriptor systems rather than DAEs (e.g. [37, 56, 147, 150]).

On the other hand, there are important contributions coming from the area of
generalized eigenvalue problems and generalized matrix inverses in linear algebra
(e.g. [38, 21]). In particular, the Drazin inverse and spectral projections were applied
to obtain expressions for the solution (cf. also [96]). However, it seems that this was
a blind alley in the search for a possible treatment of more general DAEs.

(3) About half a century ago, Gantmacher ([81]) and Dolezal [60] first considered
models describing linear time-invariant mechanical systems and electrical circuits
by linear constant coefficient DAEs. Today, multibody systems and circuit simula-
tion represent the most traditional DAE application fields (e.g. [63, 78, 101]). In
between, in about 1980, due to unexpected phenomena in numerical computations
(e.g. [202, 180]), DAEs (descriptor systems) became an actual and challenging topic
in applied mathematics

(4) It should be mentioned that there are different perceptions concerning the
Weierstraf3—Kronecker form of a regular matrix pencil. For instance, the version
applied here is said to be quasi-Weierstraf3 form in [18] and Kronecker normal form
in [191].

(5) Unfortunately, the transformation to Weierstral—Kronecker form as well as
the Drazin inverse approaches do not allow for modifications appropriate to the
treatment of time-varying and nonlinear DAEs. A development with great potential
for suitable generalizations is given by the derivative array approach due to Camp-
bell ([41]). Following this proposal, we consider, in addition to the given DAE

EX'(t)+ Fx(t) = q(1), (1.81)
the extended system
EO...O X (1) F q(1)
FEO.. . x(¢) 0 q(1)
OFE. . . . =—|.|x(t)+ . , (1.82)
CFE| |t 0 00

Eu

which results from (1.81) by differentiating this equation u times and collecting all
these equations. If the (1 + 1) x m matrix &y is 1-full, or in other words, if there
exists a nonsingular matrix R such that
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In 0
Réu = [o /c}’

then an explicit ODE, the completion ODE, can be extracted from the derivative
array system (1.82), say

u
X(t)=Cx(r)+ Y. g (1). (1.83)
=0

j=

The solutions of the DAE (1.81) are embedded into the solutions of the explicit
ODE (1.83). If {E,F} forms a regular matrix pair with Kronecker index p, then &,
is 1-full (cf. [40]). Conversely, if u is the smallest index such that £, is 1-full, then
{E,F} is regular with Kronecker index p. In this context, applying our sequence
of matrices built using admissible projectors, we find that the 1-fullness of &, im-
plies that G is nonsingular, and then using completely decoupling projectors, we
obtain a special representation of the scaling matrix R. We demonstrate this just for
u=1,2.

Case = 1: Let & be 1-full, and consider z with Gz =0, i.e., Ez+ FQpz =0,

and so
E 0] |Qoz —0
FE z | 7

but then, due to the 1-fullness, it follows that Qopz = 0. This, in turn, gives Ez = 0
and then z = 0. Therefore, G| is nonsingular. Taking the completely decoupling
projector Qg such that Qg = Qon'F holds true, we obtain

Py Q] [Gi" 0 1[E0] [10
|:_P0G1]F Po] [ 0 G]‘l} [F E} - {o pO] (1.84)

R

Case u = 2: Let & be 1-full, and consider z with Gz = 0, i.e. Ez+ FQoz +
FPyQ1z = 0. Because (E + FQo)Q1 = G1Q; = 0 we find that E(Qy + PyQ1)z =
EQz=—FQy0Q)z, and therefore

EO00 0001z
FEO| |(Q+PRQ1)z| =0.
OFFE z

Now, the 1-fullness of & implies QpQ1z = 0, but this yields EPyQ; = 0, so that
PyQ1z =0, and therefore Q1z = 0 and FQgz + Ez = 0. Finally, we conclude that
z = 01z =0, which means that G, is nonsingular. With completely decoupling pro-
jectors Qp, Q1 we compute

PPy QP+ P01 0001 [G,' 0 0
Q0P +P Q1 Qo0 PoPy 0 G,' 0 |=mR,
~PPG,'F  RP RO 0 0 G
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EO0O I 0 0
R|FEO|=|0RPG,'F RP
0FE 0 B 0

The resulting completion ODE (cf. (1.83)) is

X (t) +PPiG; 'Fx(t) =

—1 —1 7 —1 (1'85)
PoP G, "q(t) + (QoP1 +R01)G, "¢ (t) + 001G, "¢ (1),

and it decomposes into the three parts

PyPY (t) + PyPi G, 'FRyPix(t) =PoP G5 'g(t),
P01 (t) =P01G, ¢ (1),
QoY (t) =R01G, 'q (t) + 00 01G5 ' 4" (1),

while the decoupling procedure described in Section 1.5 yields

(RoPix)'(t) + PoQ1G5 ' FPyPix(t) =RyPi G, 'q(t),
PQi1x(t) =Ry 011G, 'q(1),
Qox(1) =P01G; 'q(t) + QQ1 (P01G, ')/ (1).

A comparison shows consistency but also differences. In order to recover the DAE
solutions from the solutions of the explicit ODE (1.85) one obviously needs con-
sistent initial values. Naturally, more smoothness has to be given when using the
derivative array and the completion ODE. Applying derivative array approaches to
time-varying linear or nonlinear DAEs one has to ensure the existence of all the
higher derivatives occurring when differentiating the original DAE again and again,
and in practice one has to provide these derivatives.

(6) The matrix sequence (1.10) for a DAE was first introduced in [156], and
part of the material is included in [97]. Completely decoupling projectors, formerly
called canonical projectors, are provided in [164], and they are applied in Lyapunov
type stability criteria, e.g., in [162, 165].

In these earlier papers, the sum spaces Ny + --- +N; do not yet play their im-
portant role as they do in the present material. The central role of these sum spaces
is pointed out in [170] where linear time-varying DAEs are analyzed. In the same
paper, admissible projectors are introduced for regular DAEs only, which means

that trivial intersections N; are supposed. The present notion of admissible projec-

tors generalizes the previous definition and accepts nontrivial intersections N;. This
allows us to discuss also nonregular DAEs, in particular so-called rectangular sys-
tems, where the number of equations and the number of unknowns are different.

(7) The projector based decoupling procedure is not at all restricted to square
matrices. Although our interest mainly concerns regular DAEs, to be able to con-
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sider several aspects of nonregular DAEs one can construct the admissible matrix
sequences (G;);>o and accompanying projectors (Q;);>o in the same way also for
ordered pairs {E,F} of rectangular matrices E,F € L(R™ R¥). We address these
problems in Chapter 10 on nonregular DAEs.

(8) The Kronecker index is, from our point of view, the most adequate character-
istic of a matrix pencil and the associated DAE. In contrast, the widely used struc-
tural index does not necessarily provide the Kronecker index. This structural index
may be arbitrarily higher and also far less than the Kronecker index (see [209, 18]).

(9) Complete decouplings are used to calculate the spectral projector for descrip-
tor systems in an efficient manner (see [213]).



Chapter 2
Linear DAEs with variable coefficients

In this chapter we provide a comprehensive analysis of linear DAEs
A(t)(D(0)x(t)) +B(t)x(t) = q(r), 1€,

with properly stated leading term, by taking up the ideas of the projector based
decoupling described for constant coefficient DAEs in Chapter 1. To handle the
time-varying case, we proceed pointwise on the given interval and generate admissi-
ble sequences of matrix functions G;(-) = G;_1(-) + B;—1(-)Qi—1(-) associated with
admissible projector functions Q;(-), instead of the former admissible matrix se-
quences and projectors. Thereby we incorporate into the matrix function B;(-) an
additional term that comprises the variations in time. This term is the crucial one of
the generalization. Without this term we would be back to the so-called local matrix
pencils which are known to be essentially inappropriate to characterize time-varying
DAE:s (e.g., [25, 96]). Aside from the higher technical content in the proofs, the pro-
jector based decoupling applies in precisely the same way as for constant coefficient
DAEs, and fortunately, most results take the same or only slightly modified form.

In contrast to Chapter 1 which is restricted to square DAE systems, that means,
the number of unknowns equals the number of equations, the present chapter is
basically valid for systems of k equations and m unknowns. Following the arguments
e.g., in [130], so-called rectangular systems may play their role in optimization and
control. However, we emphasize that our main interest is directed to regular DAEs,
with m = k by definition. Nonregular DAEs, possibly with m # k, are discussed in
more detail in Chapter 10.

We introduce in Section 2.1 the DAEs with properly stated leading term and
describe in Section 2.2 our main tools, the admissible matrix function sequences as-
sociated to admissible projector functions and characteristic values. Widely orthog-
onal projector functions in Subsection 2.2.3 form a practically important particular
case. The analysis of invariants in Section 2.3 serves as further justification of the
concept.

The main objective of this chapter is the comprehensive characterization of regular
DAE: , in particular, in their decoupling into an inherent regular explicit ODE and
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a subsystem which comprises the inherent differentiations. We consider the con-
structive existence proof of fine and complete decouplings (Theorem 2.42) to be the
most important special result which describes the DAE structure as the basis of our
further investigations. This leads to the intrinsic DAE theory in Section 2.6 offering
solvability results, flow properties, and the T-canonical form. The latter appears to
be an appropriate generalization of the WeierstraB—Kronecker form. Several specifi-
cations for regular standard form DAEs are recorded in Subsection 2.7. Section 2.9
reflects aspects of the critical point discussion and emphasizes the concept of regu-
larity intervals.

In Section 2.10 we explain by means of canonical forms and reduction steps how
the strangeness and the tractability index concepts are related to each other.

2.1 Properly stated leading terms
We consider the equation
A(Dx)' +Bx =g, (2.1
with continuous coefficients
AeC(Z,L(R",R"), DeC(Z,L(R",R"), BeC(Z,LR"R")),

and the excitation g € C(Z,R¥), where Z € R is an interval. A solution of this equa-
tion is a function belonging to the function space

CH(T,R™) := {x € C(Z,R™) : Dx € CY(Z,R")},

which satisfies the DAE in the classical sense, that is, pointwise on the given inter-
val.

The two coefficient functions A and D are to figure out precisely all those com-
ponents of the unknown function, the first derivatives of which are actually involved
in equation (2.1). For this, A and D are supposed to be well matched in the sense
of the following definition, which roughly speaking means that there is no gap and
no overlap of the factors within the product AD and the border between A and D is
smooth.

Definition 2.1. The leading term in equation (2.1) is said to be properly stated on
the interval Z, if the transversality condition

kerA(t) ®@imD(tr) =R", t € T, (2.2)
is valid and the projector valued function R : Z — L(IR") defined by
imR(¢) =imD(¢t), kerR(t) = kerA(t), t€Z,

is continuously differentiable.
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The projector function R € C'(Z,L(IR")) is named the border projector of the lead-
ing term of the DAE.

To shorten the phrase properly stated leading term, sometimes we speak of proper
leading terms.

We explicitly point out that, in a proper leading term, both involved matrix functions
A and D have necessarily constant rank. This is a consequence of the smoothness of
the border projector R (see Lemma A.14).

Applying the notion of C!-subspaces (Definition A.19, Appendix A), a proper
leading term is given, exactly if im D and kerA are transversal C'-subspaces. Equiv-
alently (see Lemma A.14), one has a proper leading term, if condition (2.2) is satis-
fied and there are basis functions ©% € C'(Z,R"), i =1,...,n, such that

imD(t) = span {9 (¢),...,0:(¢)}, kerA(r) =span{O+1(¢),..., % (1)}, te.

Having those basis functions available, the border projector R can simply be repre-

sented as

1

R:= [191...19,,}{ 0} [Or...8,] " (2.3)

~—
r

If A and D form a properly stated leading term, then the relations
imAD =imA, kerAD = kerD, rankA =rankAD =rankD =:r

are valid (cf. Lemma A.4), and A, AD and D have common constant rank r on ZL.

Besides the coefficients A, D and the projector R we use a pointwise generalized
inverse D~ € C(Z,L(R",R™)) of D satisfying the relations

DD D=D, D DD =D, DD” =R. (2.4)

Such a generalized inverse exists owing to the constant-rank property of D. Namely,
the orthogonal projector Pp onto ker D along kerD is continuous (Lemma A.15).
If we added the fourth condition D™D = Pp to (2.4), then the resulting D~ would
be uniquely determined and continuous (Proposition A.17), and this ensures the
existence of a continuous generalized inverses satisfying (2.4).

By fixing only the three conditions (2.4), we have in mind some more flexibility.
Here D™ D =: Py is always a continuous projector function such that ker Py =kerD =
kerAD. On the other hand, prescribing Py we fix, at the same time, D™ .

Example 2.2 (Different choices of Py and D™ ). Write the semi-explicit DAE

Xy 4+ Biixi +Biaxa = q1,
B1x1 +Bxx; = g2,

with m 4+ my = m equations in the form (2.1) with properly stated leading term as



60 2 Linear DAEs

I By By
A= 3 D= IO 5 B= 9
[0] [ ] [321 Bzz]

such that kerA = {0}, imD = R™ and R = I. Any continuous projector function Py
along ker D and the corresponding generalized inverse D~ have the form

w=laol o =la]

with an arbitrary continuous block 2(. The choice 2l = 0 yields the symmetric pro-
jector F. ad

2.2 Admissible matrix function sequences

2.2.1 Basics

Now we are ready to compose the basic sequence of matrix functions and subspaces
to work with. Put
G() :ZAD7 B() = B7 N() = kerGo (2.5)

and choose projector functions Py, Qo, ITy € C(Z,L(R™)) such that
Ilp =Py =1—Qp, imQp = Ny.
For i > 0, as long as the expressions exist, we form

Giy1 =G +B;0;, (2.6)
Nit1 =kerGiqy, 2.7

choose projector functions P4 1,Q;y1 such that Pyy =1 — Q;11, imQiy1 = Nit1,
and put

IT g = ILiPyy,
Bi+1 :=B;P,— G;41D™ (DII41D™ ) DIT,. (2.8)

We emphasize that B;; | contains the derivative of DII;, 1D, that is, this term com-
prises the variation in time. This term disappears in the constant coefficient case,
and then we are back at the formulas (1.10) in Chapter 1. The specific form of the
new term is motivated in Section 2.4.1 below, where we consider similar decoupling
rearrangements for the DAE (2.1) as in Chapter 1 for the constant coefficient case.
We are most interested in continuous matrix functions Gj;1,B;11; in particular we
have to take that DIT;, 1D~ is smooth enough.

Important characteristic values of the given DAE emerge from the rank functions

rj:=rankG;j, j > 0.
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Example 2.3 (Matrix functions for Hessenberg size-1 and size-2 DAEs). Write the
semi-explicit DAE

Xy 4 Biixi +Biaxa = q1,
Br1x1 +Bxxy = g2,

with m 4+ my = m equations in the form (2.1) as

| . __|B1n1 Bz - |
A_[O},D_[IO],B_[BZIBH},D _[o}'

Then we have a proper leading term and
10 _ 100 _ | B2
GO_ |:OO:| 9 QO_ |:0[:| ) Gl_ |:0322:| .
Case 1:

Let B be nonsingular on the given interval. Then G is also nonsingular. It follows
that Q; = 0, thus G, = Gy and so on. The sequence becomes stationary. All rank
functions r; are constant, in particular ro = my, r; = m.

Case 2:

Let By; = 0, but the product BB, remains nonsingular. We denote by £ a pro-
jector function onto imBj, and by B}, a reflexive generalized inverse such that
BpB}, = Q, B|,B1» = I. The matrix function G; now has rank | = mj, and a
nontrivial nullspace. We choose the next projector functions Q; and the resulting
DIL1D™ as

Q0 _
Ql[_BIZO], DILD =1-Q.

This makes it clear that, for a continuously differentiable DIT; D™, we have to as-
sume the range of By to be a C'-subspace (cf. A.4). Then we form the matrix
functions

B — B]]O o 7.(2/0 G — I+(BII+Q/)Q BIZ
! By 0 0 o}’ 2 By Q2 0|’

and consider the nullspace of G».
G>z = 0 means
214 (Bl +2)Qzi + Bz =0, By Qz =0.

The second equation means By B12B|,z1 = 0, thus B},z; = 0, and hence Qz; = 0.
Now the first equation simplifies to z; + Bi2z; = 0. Multiplication by B}, gives
72 =0, and then z; = 0. Therefore, the matrix function G, is nonsingular, and again
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the sequence becomes stationary.

Up to now we have not completely fixed the projector function 2 onto imBj;. In
particular, we can take the orthoprojector function such that 2 = Q* and kerQ =
ker B}, = im B{,, which corresponds to B}, = B}, = (B},B12) 'B}, and

kerQ) = {z € R"*"2: Bj,z; = 0}.

O

Example 2.4 (Matrix functions for a transformed regular index-3 matrix pencil).
The constant coefficient DAE

010
001|xX(t)+x(t)=q(t), teR,
000

E

has WeierstraB—Kronecker canonical form, and its matrix pencil {E,I} is regular
with Kronecker index 3. By means of the simple factorization

010f 000
E=1001| [010| =:AD
000f (001

we rewrite the leading term properly as

A(Dx(t)) +x(t) =q(t), teR.

Then we transform %(z) = K(¢)x(¢) by means of the smooth matrix function K,

0
0| x(r) =¢q(t), teR. 2.9
1

B
=
=

&
=

Next we reformulate the DAE once again by deriving

000 000 / 000
(D(t)x(r)) = (D(r) [0 10 x(t))/f)(t)< 010 x(t)> +D'() [010]x(0),
001 001 001

which leads to the further equivalent DAE
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010 000 ! 100
0—t1 < 010 x(t)) +10 0 0| x(r)=q(t), teR. (2.10)
000 001 0—11
——
A(r) D B(r)

Observe that the local matrix pencil {A(¢)D, B(t)} is singular for all # € R.

We construct a matrix function sequence for the DAE (2.10). The DAE is expected
to be regular with index 3, as its equivalent constant coefficient counterpart. A closer
look to the solutions strengthens this expectation. We have

010 000 100 010
At)=|0—t1|,D(#)=|010|,B@)= {00 0|, Go(t)=|0—-z1],
000 001 0—z1 000

and R(z) = D(¢). Set D(t)~ = D(¢t) and ITy(t) = Po(r) = D(t). Next we compute
G1(t) = Go(t) + B(t)Qo(t) as well as a projector Q () onto ker Gy (¢) = Ny (¢):

110 0-10
Gi(t)=|0—-t1|, Qitr)=1]010
0r 0
This leads to
000 000 1 1 0
II(r)=10 0 0| ,B1(t)=[{0 1 0|, G(t)=101—1¢1
0-r1 0-—t1 0 00

A suitable projector function Q, and the resulting B, and G35 are:

0 —t 1 000 110
()= 10 t —1 |, IL(t)=0,B2(t)= 10 0 0| ,G3(t)= |0 1—1¢1
0—t(1—1)1—¢ 0—r1 0 —t 1

The matrix functions Gj, i = 0,1,2, are singular with constant ranks, and G3 is
the first matrix function that is nonsingular. Later on, this turns out to be typical for
regular index-3 DAEs (cf. Definition 10.2), and meets our expectation in comparison
with the constant coefficient case (cf. Theorem 1.31). At this place it should be
mentioned that here the term ByPyQ; vanishes identically, which corresponds to the
singular local matrix pencil. This fact makes the term G; D~ (DII 1D)’ DIIyQ, crucial
for G, to incorporate a nontrivial increment with respect to G.

Observe that the nullspaces and projectors fulfill the relations

No(t)NNi(t) = {0}, (No(r)+Ni(r)) NN2(2) = {0},
01(1)Qo(t) =0, Q2(1)Qo(t) =0, Q2(t)Q:(r) =0.

The matrix functions G; as well as the projector functions Q; are continuous and it
holds that imGy = im G| = im G, C im G3. O
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Any matrix function sequence (2.5)—(2.8) generates subspaces
imGo g g imGi g imGi+]

of nondecreasing dimensions.
To show several useful properties we introduce the additional projector functions
W; : T — L(R¥) and generalized inverses G, :I— L(R¥,R™) of G, such that

kerW; =imGj, 2.11)

GiG;Gj=Gj, G;G;G; =G, G;G;=P;, G;G; =1-W,.  (2.12)

Proposition 2.5. Let the DAE (2.1) have a properly stated leading term. Then, for
each matrix function sequence (2.5)—(2.8) the following relations are satisfied:

(1) kerIl; CkerBi1,

2 WinBiv1 =WinBi=--- = Wip1Bo = Wi B,
Wir1Bir1 = Wir1Bo = Wi 1Boll,

(3)  Git1 = (Gi+W;BQ;)F 1 with Fi 1 =1+ G; B;Q; and
imG;y] =imG; ®imW,BQ;,

(4)  N;NkerB; = N;NNiy1 € Niy1 NkerBiyy,

(5) Ni—-1NN; CN;NNiqq,

(6) imG;+imB; Cim[AD,B] = im[Gy,Bo].

Proof. (1) From (2.8) we successively derive an expression for B :

Bii1 = (Biflpifl - GiDi(DITiDi)lDITz#OPi —Giy1D™ (DI D™ )'DIT;
i+1
= B;_|P_1P,— Y G;D” (DII;D")'DII,
j=i
hence
i+1
Biy1 =BoIl;— Y G,D~(DII,D™)'DII;, (2.13)
j=1
but this immediately verifies assertion (1).
(2) Because of imG; C im G,y for j <i+1, we have Wiy 1Bir1 = Wit 1Boll; due
to (2.13). Taking into account also the inclusion imB;Q; =imG;1Q; CimG;; C
imGijy1, for j < i, we obtain from (2.8) that W, 1Bj+1 = Wit1BiP, = W;11B; —
Win1BiQi = Wi 1Bi = WiiBi1Pi-1 = Wip1Bi—1 = - -- = Wiy 1By, which proves
assertion (2).
(3) We rearrange G;1 as

Giy1 = Gi+ G,G; BiQ;+ (I — G;G; )B;Q;i = G;((I + G; B;Q;) + WiBi0;.

Because of Q;G; = Q;P,G; = 0 the matrix function Fi;| := I + G; B;Q; remains
nonsingular (see Lemma A.3) and the factorization
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Giy1 = (Gi+WiBiQi)Fi41 = (Gi + W;BQ;)Fi11

holds true. This yields assertion (3).

(4) z € N;NkerB;, ie., Giz=0, Biz=0, leads to z = Q;z and Gj;1z = B;Qiz =
Biz =0, thus z € N;N\N;;1. Conversely, z € N;N Ny yields z = Q;z, Biz= B;Qiz =
Gi+1z2=0,1i.e., z € N;NkerB; and we are done with assertion (4).

(5) Fromz € N;_; NN;itfollows thatz = Q;_1zand Biz=B;Q;_1z=B;P,_10;—1z2=0
because of B; = B;P;,_ (cf. (2.13)), hence z € N;NkerB; = N; N\ Nj11.

(6) follows from imGy + imBy = im[Gy,By] by induction. Namely, imG; +
imB; C im[Gy, By| implies imB;Q; C im [Gy, Bo|, hence im G+ C im [G;,BoQ;] C
im[Gy, By, and further imB; | C im[G;y1,B;] C im[Gy, By)- |

2.2.2 Admissible projector functions and characteristic values

In Chapter 1 on constant coefficient DAEs, useful decoupling properties are ob-
tained by restricting the variety of possible projectors Q; and somehow choosing
smart ones, so-called admissible ones. Here we take up this idea again, and we in-
corporate conditions concerning ranks and dimensions to ensure the continuity of
the matrix functions associated to the DAE. Possible rank changes will be treated as
critical points discussed later on in Section 2.9. The following definition generalizes
Definition 1.10.

Definition 2.6. Given the DAE (2.1) with properly stated leading term, Qg denotes
a continuous projector function onto ker D and Py = I — Qy. The generalized inverse
D™ isgivenby DD D=D, D DD~ =D, DD™ =R, DD =P,.

For a given level k € N, we call the sequence Gy, ..., G, an admissible matrix func-
tion sequence associated to the DAE on the interval Z, if it is built by the rule

Set Gy :=AD, By := B, N, := ker Gy.
Fori>1:
Gi = Gi_1+Bi-10i-1,
B;:=B;_P,_1 —G;D™ (DI,D")'DII;_,
Ni:=kerG;, N;:= (No+---+Ni—1) NN,
fix a complement X; such that Ny +---+ N, = ﬁ,- e X,

choose a projector Q; such that imQ; = N; and X; C ker Q;,
set P :=1—Q;, IT, == IT,_ P,

and, additionally,
(a) Gjhasconstantrank ;onZ,i=0,...,K,

(b) the intersection N; has constant dimension u; := dim N; on Z,
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(c) the product function IT; is continuous on Z and DIL;D~ is there continuously
differentiable, i =0, ..., K.

The projector functions Qy,...,Q in an admissible matrix function sequence are
said to be admissible themselves.

An admissible matrix function sequence Gy, ..., G is said to be regular admissible,
if

Ni={0}, Vi=1,... k.

Then, also the projector functions Qy, ..., Qy are called regular admissible.

Examples 2.3 and 2.4 already show regular admissible matrix function se-
quences.
The matrix functions Gy, ..., Gy in an admissible sequence are a priori continuous
on the given interval.
If Gy, ..., Gy are admissible, besides the nullspaces Ny, ..., N, and the intersection

spaces Ni,..., N also the sum spaces Ny +---+N;, i = 1,...,k, and the comple-
ments Xi,..., X, have constant dimension. Namely, the construction yields

No+-+No1 =X ®N;, No+-+N=Xi®N;, i=1,...x,
and hence

dim Ny = m — ry,
dim(No + - +N;—1) = dimX; +u;,
dim(No—|—---+N,~):dimXi+m—ri, i=1,...,K.

It follows that

dim(No+---+N;) =dim(No+--- +Ni—1) —u;+m—r;
——

dimX; dimN;
i1 i i1
=Y (m—rj—uj))+m—ri=Y (m—rj)= Y uj1.
j=0 j=0 j=0

We are most interested in the case of trivial intersections N, i, yielding X; = No+-- -+
Ni_1, and u; = 0. In particular, all so-called regular DAEs in Section 2.6 belong to

this latter class. Due to the trivial intersection ﬁ; = {0}, the subspace Ny + - - - + N;
has dimension dim(Np + - - - + N;_1 ) + dim N, that is, its increase is maximal at each
level.

The next proposition collects benefits from admissible projector functions. Com-
paring with Proposition 1.13 we recognize a far-reaching conformity. The most im-
portant benefit seems to be the fact that I'l; being a product of projector functions is
again a projector function, and it projects along the sum space Ny + - - - + N; which
now appears to be a C-subspace.



2.2 Admissible matrix function sequences 67

We stress once more that admissible projector functions are always cross-linked
with their generating admissible matrix function sequence. Nevertheless, for brevity,
we simply speak of admissible projector functions or admissible projectors, drop-
ping this natural background.

Proposition 2.7. Given a DAE (2.1) with properly stated leading term, and an inte-

gerk € N.

If Qo,...,Qx are admissible projector functions, then the following eight relations

become true fori=1,... K.

() kerIl; =No+---+N,

(2) the products Il; = Py---P; and II;_1Q; = Py--- P,_1Q;, as well as DII;D™ and
DII;_1Q;D™, are projector valued functions, too,

3) No+---+Ni1 Skerll; 1Q;,

4) Bi=BiIIL,

(5) N;CN;NNi1, and hence N; C N,

6) Gi10;=B;0;,0< <],

(1) D(No+---+N;) =imDPy---P,_1Q; ®imDIT; 2Q; 1 ®---®imDPyQy,

(8)  the products Q;(I — IT;_y) and P,(I — II,_y) are projector functions onto ﬁ,-
and X;, respectively.

Additionally, the matrix functions G1,...,Gyg, and G11 are continuous.

If Qo,...,Qx are regular admissible then it holds fori=1,... K that

1(6:1"17,',1Q,':kerQi7 and Qin:O7 j:O,...7i—l.

Proof. (1) See the proof of Proposition 1.13 (1).

(2) Due to assertion (1) it holds that ker I'l; = Ny + - - - + N;, which means IT;Q; =0,
j=0,...,i. With 0 = IT;Q; = IT;(I — P;), we obtain II; = I;P;, j =0,...,i, which
yields I';I1; = IT;. Derive further

(I5i-10i)* = (IT—y — IT)(IT;—y — IT;)
=1Ly — 1L IL; — ILIL; +1I1; = I1;_1 Q;,
—— =
=IT;_F; =IT;
(DILD™)? = DI, D DILD™ = DILD ™,
N~
=P,

(DIT;_1Q;D™)* = DIT;_1Q; D" DIT;_1Q;D~ = D(IT;_1Q;)*D™ = DIT,_ 1 Q;D".

=P

(3) See the proof of Proposition 1.13 (3).

(4) The detailed structure of B; given in (2.13) and the projector property of IT;_;
(cf. (1)) proves the statement.

(5)z€ N;N(No+---+N;_1) means that z = Q;z, IT,_1z = 0, hence

Git12= Giz+BiQiz=Biz=BiIl;_1z=0.
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(6) For 0 < j <, it follows with (4) from

Git1 =G +B;Q; = Go+BoQo+B101 + -+ B;Q;
=Go+BoQo+Bi1RO1+-+BiR--Fi-10;

that
Git10j = (Go+BoQo+---+BjPy---P;_10;)0; = (G;+B;0Q;)Q; = B;0,.
(7) From ker I'l; = Ny + - - - + N; it follows that

D(No+---+N;) = Dim(I = IT;) = Dim (Qo + Ry Q1 + -~ + 11,1 0;)
=D{imQy®imPyQ| & - BimIL_0;}
=imDPyQ; & --- ®imDIT;_Q;.

This proves assertion (7).
(8) We have (cf. (3))
Ol —IL1)Qi(I—ILi—1) = (Qi— Qi I Qi )({ — IT;—1) = Qi(I — IT;—y).

=0

Further, z = Q;(I — IT;_; )zimplies z € N;, IT;_1z=IT;_; Q;(I — II;_1 )z = 0, and hence
€ ﬁ,’.

Conversely, from z € ﬁ,- it follows that z = Q;z and z = (I — II;_y)z, thus
z=Q;(I — I1;_1)z. Similarly, we compute

Pl =TT )P~ T 1) = P~ i) =PI — i) Qi1 — TTi—1) = Bi(I —TT;-1).

From z = P,(I— IT;_ )z it follows that Q;z =0, IT;_z = IT;(I —II;_;)z = 0, therefore
z € X;.

Conversely, z € X; yields z = Pz, z= (I — IT;_1 )z, and hence z = P,(I — IT;_1 )z. This
verifies (8).

Next we verify the continuity of the matrix functions G;. Applying the representa-
tion (2.13) of the matrix function B; we express

i
Git1 =G;+BoIl;_1Q;— Y G;,D (DII;D”)'DIL;_, Q;,
i—1

J

which shows that, supposing that previous matrix functions Gy, ...,G; are continu-
ous, the continuity of Il;_;Q; = Il;_| — IT; implies Gj; is also continuous.

Finally, let Qop,...,Qx be regular admissible. IT;,_1Q;z = 0 implies
Qiz=(I—1II;_1)0iz € Ng+ -+ Ni_1, hence Q;z € ]V,-, therefore Q;z = 0. It re-
mains to apply (3). a
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As in the constant coefficient case, there is a great variety of admissible projector
functions, and the matrix functions G; clearly depend on the special choice of the
projector functions Q;, including the way complements X in the decomposition of
No +---+ N;_; are chosen. Fortunately, there are invariants, in particular, invariant
subspaces and subspace dimensions, as shown by the next assertion.

Theorem 2.8. Let the DAE (2.1) have a properly stated leading term. Then, for a
given x € N, if admissible projector functions up to level K do at all exist, then the
subspaces

imGj;, No+---+N;, Sj:=kertW;B, j=0,....,k+1,
as well as the numbers
rj:=rankG;, j=0,...,K, uj::dimﬁj,j:L...,K,

and the functions rcy1 0 Z — NU{0}, uxr1:Z — NU{0} are independent of the
special choice of admissible projector functions Qy, ..., Q.

Proof. These assertions are immediate consequences of Lemma 2.12 below at the
end of the present section. a

Definition 2.9. If the DAE (2.1) with properly stated leading term has an admissible
matrix functions sequence up to level k, then the integers

ri=rankG;, j=0,....k, w;j=dimN;, j=1,...,K,
are called characteristic values of the DAE.

The characteristic values prove to be invariant under regular transformations and
refactorizations (cf. Section 2.3, Theorems 2.18 and 2.21), which justifies this no-
tation. For constant regular matrix pairs, these characteristic values describe the
infinite eigenstructure (Corollary 1.32).

The associated subspace Sy = ker WyB has its special meaning. At given ¢t € Z,
the subspace

So(t) =kerWh(1)B(t) = {z € R" : B(t)z € imGy(r) = imA(r) }

contains all solution values x(¢) of the solutions of the homogeneous equation
A(Dx)"+ Bx = 0. As we will see later, for so-called regular index-1 DAEs, the sub-
space So(¢) consists at all of those solution values, that means, for each element
of So(#) there exists a solution passing through it. For regular DAEs with a higher
index, the sets of corresponding solution values form proper subspaces of So(z).

In general, the associated subspaces satisfy the relations

Sir1=S8i+Ni=8i+No+--+N;i=So+No+---+N;, i=0,..., K.
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Namely, because of imG; C imGjy, it holds that Wi 1 = Wi W,, hence
Si+1 = ker Wi 1B = ker W, 1 W;B 2 ker W;B = S;, and Proposition 2.5 (2) yields
Siv1 =kerWi1Biy1 DkerBiy1 D Ng+---+N;.

Summarizing, the following three sequences of subspaces are associated with
each admissible matrix function sequence:

imGy CimG; C --- CimG; C --- C im[AD B] C R, (2.14)
NoCNo+N; C---CNo+---+N; C--- CR", (2.15)

and
SoCSC---CS5C---CR™M (2.16)

All of these subspaces are independent of the special choice of the admissible pro-
jector functions. In all three cases, the dimension does not decrease if the index
increases. We are looking for criteria indicating that a certain Gy, already has the
maximal possible rank. For instance, if we meet an injective matrix Gy, as in Exam-
ples 2.3 and 2.4, then the sequence becomes stationary with @, = 0, Gy11 = Gy,
and so on. Therefore, the smallest index p such that the matrix function Gy, is in-
jective, indicates at the same time that im Gy, is maximal, but im Gy, is a proper
subspace, if i > 1. The general case is more subtle. It may happen that no injective
Gy, exists. Eventually one reaches

imGy =im[AD BJ; (2.17)
however, this is not necessarily the case, as the next example shows.

Example 2.10 (Admissible matrix sequence for a nonregular DAE). Set m =k =3,
n = 2, and consider the constant coefficient DAE

10 , T101
01 <[(1)(1)8]x> +l010|x=g, 2.18)
00 010

which is nonregular due to the singular matrix pencil. Here we have im [AD B] = R>.

Compute successively

[100] (000 [000]
Go=|010|, Qy=1000], Wo=[000],
1000 001 1001]
[101] (100 [000] 100
Gi=1|010|, Q;=|000[, W=1]000|, B =010},
1000 |-100 1001] 010
201 (000
G,=1010|, IL=1]010
1000 000
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We read off Ng = {z € R3:21 =20 =0}, Ny = {z€R3: 2, = 0,2, + 23 = 0} and
N, ={z¢€ R3:z = 0,2z; + z3 = 0}. The intersection Ng NN, is trivial, and the
condition QQg = 0 is fulfilled. We have further

No+ N = {Z cR? o) :0}, (N()JrN])ﬂNz = ﬁz =N, C Ny + Ny,
thus No + Ny = Nyg + N1 + N, and Ny + N1 = N, & Ny.

We can put X, = Ny, and compute

100 000
Q=10 00|, withX, CkerQy, By= [010
—200 010

The projectors Qyp, Q1, Q> are admissible. It holds that B,0» =0, G3 = G,, N3 = N>,
and I, = II;, and further

So={zeR¥: =0}, Sp=8=5=S;.

We continue the matrix function sequence by Q3 := 05, B3 = By, B303 =0, G4 =
G3, and so on. It follows that no G; is injective, and

imGop=---=imG; = ---=R?>x {0} Cim[AD B] =R,
So=-=8=-=Rx{0} xR,
No CNg+Ni =No+N +Ny=--=Rx {0} xR,

and the maximal range is already im Gy. A closer look at the DAE (2.18) gives

/
X1 +x1+x3 =q1,
/
X2+X2 =q2,
X2 = q3.

This model is somewhat dubious. It is in parts over- and underdetermined, and much
room for interpretations is left (cf. Chapter 10). O

Our next example is much nicer and more important with respect to applications. It
is a so-called Hessenberg form size-3 DAE and might be considered as the linear pro-
totype of the system describing constrained mechanical motion (see Example 3.41
and Section 3.5).

Example 2.11 (Admissible sequence for the Hessenberg size 3 DAE). Consider the
system

X By Bia Biz| | X1 q1
Y|+ |[BaBn 0| x| =g (2.19)
0 0 B3y O X3 q3

with m = m; + my + m3 equations, m; > my > m3 > 1, k = m components, and a
nonsingular product B3;By1B13. Put n = my +my,



72 2 Linear DAEs

10 100 10 By Biz B3
A= 01|, D:{OIO}’ D =1|01|, B=|ByB»n 0|,
00 00 0 By 0

and write this DAE in the form (2.1).

Owing to the nonsingularity of the m3 x m3 matrix function product B3; B3B3, the
matrix functions B3 and B, B3 have full column rank m3 each, and B3, has full row
rank mj3. This yields im [AD B] = R™. Further, since B3 and B B3 have constant
rank, there are continuous reflexive generalized inverses Bj; and (B21B13)~ such
that (see Proposition A.17)

B3Bi3 =1, £):=B13B}; is a projector onto  im B3,
(321313)7321313 =1, :2321313(321313)7 is a projector onto imBj;By3.
Let the coefficient function B be smooth enough so that the derivatives used below

do exist. In particular, £2; and 2, are assumed to be continuously differentiable. We
start constructing the matrix function sequence by

100 000 Bi1 B Bi3 10 B3
Go=|010]|, Qy=1]000|, By=|ByyBxn 0|, G =010
000 0017 0 By 0 00 0

It follows that
No={zeR":21=0,20=0}, Ny ={z€R":z1+Bi3z3=0, 20 =0},

Ny =NonNy = {0}, X =No,
No+N =No@&N, ={z€R":2,=0, 7 €imBy3}.

The matrix functions Gy and G| have constant rank, o = r; = n. Compute the pro-
jector functions

Q 00
0= 0 00|, DH1D=|:

11— 0]
-B;00

0 1

such that imQ; = N; and Q1Qp = 0, that is kerQ; D X;. Q; is continuous, and
DIT D™ is continuously differentiable. In consequence, Qg, Q1 are admissible. Next
we form

Bi1+Q]{ B2 0 I+ (B11+£])Q; 0 Bj3
By = By BnO|, Gy= Bo1£2 10
0 B3 0 0 00
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71 +B1323
For z € Rmtmtms with z; € ker2; it holds that imG, = ) , since
0
im B3 = im ;. This proves the inclusion

imG, CR" x {0} = {Gyz: z € R™MT™H" 71 cker)} CimGy,

and we obtain imG, = R" x {0}, and r, = rank G, = m; + my = n. Then we inves-
tigate the nullspace of G,. If z € R™ satisfies Gz = 0, then

21+ (Bi1 +21)Q2121 +Bi3zz =0, (2.20)
Br1 Q121 +22 = 0. (2.21)

In turn, equation (2.20) decomposes into

(I—91)z1+ (I —Q21)(B1; —|—Q{)lel =0,
B(I+Bp3(Bii+ Q1)) Q2121 +23 = 0.

Similarly, considering that im By B13 = im By B13B; is valid, we derive from (2.21)
the relations
=2, Bz =—(BaBi3) 2.

Altogether this yields
N ={zeR": 0=, 71 =122, 23=E3 00}, ﬁz ={0}, Xo=No+Ny,
with

€1 = (1= (1= Q1) (Bu +2)Q0)B13(BuB13)”
=—(I—(I—)(B11 +21))B13(B21B13) ",
& 1= —By(I+ (B +£]))Bi13(B21B13) .

Notice that & = £10;, & = £3€2;. The projector functions

0&£ 0
0,=109,0|, DILD = I_O-Ql _(11:21)51 7
0 53 0 2

fulfill the required admissibility conditions, in particular, Q»Qp =0, 0201 =0, and
hence Qp, Q1, Q> are admissible. The resulting B, G3 have the form:

Bi1 Bi2 0 I+ (Bii+Q2))Q1 Bié& +Bi2Q Bz
By= By B»n 0|, G3= B 1824 I+B21E1+B2»& 0
0 B3 0 0 B3, 0

The detailed form of the entries B;; does not matter in this context. We show G3 to
be nonsingular. Namely, G3z = 0 implies B3;£2;z5 = 0, thus £2,7> = 0, and further
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B12,z1 +2z2 = 0. The latter equation yields (I — £2;)z; = 0 and B,12;z; =0, and
this gives Q171 = 0, zo = 0. Now, the first line of the system G3z = 0 simplifies to
z1+Bi3z3 = 0. Inturn, (I — Q;)z; = 0 follows, and hence z; =0, z3 = 0. The matrix
function G3 is nonsingular in fact, and we stop the construction.

In summary, our basic subspaces behaves as

imGyp =imG; =imG, C imG3 =im[AD B] =R™,
No C Ng+Ny CNg+Ni+Np =Ny+Ni+N>+N; CR™”.

The additionally associated projector functions W; onto imG; and the subspaces
S; = ker W;B are here:

000
Wo= (000, Wo=W=W,, W3=0,
0017

and
SQZ{ZERm:B32Z2=O}, So=81=5 CS=R".

The last relation is typical for the large class of DAEs named Hessenberg form
DAEs (cf. Section 3.5). While imG3 and S3 reach the maximal dimension m, the
dimension of the resulting maximal subspace Ny + N| + N, is less than m.

Notice that the relation WyBQy = 0 indicates that im Gy = im G holds true, and
we can recognize this fact before explicitly computing G (cf. Proposition 2.5(3)).
Similarly, Wi BQ; = 0 indicates that im G| = im G,. Furthermore, we know that
r3 = ry +rank (W,LBQ») = n+ m3 = m before we compute G3. O

Now we come to an important auxiliary result which stands behind Theorem 2.8,
and which generalizes Lemma 1.18.

Lemma 2.12. Given the DAE (2.1) with properly stated leading term, if there are
two admissible projector function sequences Qy,...,Q« and Qy,...,Qx, both ad-
missible on L, then the associated matrix functions and subspaces are related by the
following properties:

@)) lierﬁj:N0+---+Nj:N0+---+Nj:kerHj, j=0,...,K
2) G;j=¢G,z,

_ _ S J=1
Bj :Bj—GijD_(DHjD_)/DHj+Gj Z;OQIQ[j[, j=1,...,K

with nonsingular matrix functions Zy, . .., Zc+1 given by
Zo:=1,7Zi11:=Yi117;, i=0,...,K

Y1 := I+ 00(00— Qo) =1+ Qo0oh,

i—1
Yigr =1+ QI 10; — I 1Q0) + Y 00, i =1,... K,
1=0

and certain continuous coefficients 2;; that satisfy condition Uy = Ay IT;_y,
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3) Z_,'(Niﬂ(No—i—n'—%-Ni,l_))ZNiﬂ(_No-i—"'—i-Ni,l), i=1,...,K
4 GK-H?GK—HZ_K—Ha NO:""'+NK+1:NO+"'+NK+1,
Ziet1 (N1 N (No+ -+ 4+ Ni)) = Niey1 0 (No + - - + Ni).

Proof We have Go = AD = Gy, Bg = B = By, kerPy = Ny = Ny = ker Py, and
hence PO = P()P(), PO = P()PQ.

The generalized inverses D~ and D™~ of D satisfy the properties DD~ = DD~ =R,
D™D =P, DD = Py, and therefore D~ = D"DD~ = D"DD~ = P,D~,
D™ = P()D_.

Compare G = Gy + ByQp and

G1 = Go+ByQo = Go+ BoQo = Go + By Q0 Qo
= (Go+BoQo)(Py+ Qo) = G1Zi,

where Z; :=Y; := Py + Qo = I +Q0QoPy = I + Qo(Qo — Qo). Z; is invertible; it has
the inverse Z; ' =1 — Q0QoP.
The nullspaces N; and N are, due to G| = GZi, related by Ny = Zl_lNl C Ny+Nj.
This implies No + Ny = No + (Z; 'Ni) € No + Ny. From Ny = ZiN; C No+ Ny =
No + Ny, we obtain Ny +N; = Ny + Nj.

Since the projectors PyP; and PyP; have the common nullspace Ny +N; = Ny +
N1, we may now derive

=hP R
. I O _ o
DPyP\D~ = DPyP, PhP, PhD™ = DPyPiPhPL.D™ = DPyP. D" DPyP,D",
DPyP\D~ = DPyP,D-DPy\P\D~.

Taking into account the relation 0 = G101 = G101 + Gi(Z1 — I)Qy, thus
G101 = —G1(Z, —I)Q; we obtain (cf. Appendix B for details)

B =B, —-GZ,D~ (DP()P]Di)/D.

This gives the basis for proving our assertion by induction. The proof is carried out
in detail in Appendix B. A technically easier version for the time-invariant case is
given in Chapter 1, Lemma 1.18. O

2.2.3 Widely orthogonal projector functions

For each DAE with properly stated leading term, we can always start the matrix
function sequence by choosing Qg to be the orthogonal projector onto Ny = kerD,
that means, Qp = Q, Fo = Fj. On the next level, applying the decomposition
R™ = (No N N;y)*+ @ (Ng NNy) we determine X; in the decomposition Ny = X; &
(NoNN1) by X1 = NoN (No NNy )*. This leads to No+ Ny = (X1 & (NgNNy)) + Ny =
X ®Nj and R™ = (Ng+N;p)* @ (No +Np) = (No+N1)+ @ X1 @ Ny. In this way Q0
is uniquely determined as im Q = Ny, kerQ1 = (No +Np)* @ Xi.
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On the next levels, if Qp,...,Q;—| are admissible, we first apply the decomposition
R™ = (IV,-)L @ N, and choose

—~

X;i=No+---+N_1)N(N)* . (2.22)

The resulting decompositions Ny + - - - + N; = X; & N;, and
R™ = (Ng+---+N)* @ (No+---+N;) = (No+--- +N;)- ©X; © N; allow for the
choice

imQ; =Nj, kerQ;i = (No+---+N) " @X,. (2.23)

Definition 2.13. Admissible projector functions Qy,...,Q are called widely or-
thogonal if Qy = Qf and both (2.22) and (2.23) are fulfilled fori = 1,..., k.

Example 2.14 (Widely orthogonal projectors). The admissible projector functions
Qo, 01 built for the Hessenberg size-2 DAE in Example 2.3 with Q2 = Q* are widely
orthogonal. In particular, it holds that

kerQ; = {z€ R™ ™2 : B},z; = 0} = (Ng® N )" @ No.

O

Widely orthogonal projector functions are uniquely fixed by construction. They
provide special symmetry properties. In fact, applying widely orthogonal projector
functions, the decompositions

x(t) = I (#)x(¢t) + Ty (1) Qi (#)x(t) + - - - + Mo (2) Q1 (¢)x(2) + Qo (#)x(2)

are orthogonal ones for all # owing to the following proposition.

Proposition 2.15. If Qy, ..., QO are widely orthogonal, then II;, i =0,...,k, and
II;_1Q;,i=1,...,K, are symmetric.

Proof. Let Qy,...,QOx be widely orthogonal. In particular, it holds that Iy = 11,
kerITy = Ny, imITy = Ny

Compute imIT; = imPyP; = Py imP; = Py((No +N1)* ©X1) = Py(No + Ny )+

= Py(Ny NNit) = Ny NN = (No+ Ny ).

To use induction, assume that imIT; = (No+---+N;)*, j<i—1.

Due to Proposition 2.7 (1) we know that kerIl; = Ny + --- + N; is true; further
IT;_;X; = 0. From (2.23) it follows that

imIT; = IT;_im P = IT;_ (No + -+ + N;) - & X))
=IL_{(No+-+N) " =TI (No+--+Ni_1)"NN;")
= (No+---+Niet) NN = (No+---+N)) "
Since IT; is a projector, and kerIT; = No + --- + N;, imIL; = (Ng + - - - —i—N,-)L, I1;

must be the orthoprojector.
Finally, derive (IT;_1Q;)* = (Il — I, F)* = Iy — IT;_1P; = IT; 1 Q;. g
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Proposition 2.16. If, for the DAE (2.1) with properly stated leading term, there exist
any admissible projector functions Qy, . . ., Qx, and if DD* € C'(Z,L(R")), then also
widely orthogonal projector functions can be chosen (they do exist).

Proof. Let Qy,...,Qy be admissible. Then, in particular the subspaces Ny +- - - + N,
i =0,...,Kk are continuous. The subspaces im DIIyQ1,...,im DIT;_1Qx belong to
the class C', since the projectors DITyQD~,...,DII._1 QD do so. Taking Propo-
sition 2.7 into account we know the subspaces D(Ng+---+N;), i = 1,...,k, to be
continuously differentiable.

Now we construct widely orthogonal projectors. Choose Qp = Q_o’ and form
Gi = Gy + ByQop. Due to Lemma 2.12 (d) it holds that G| = GiZ,
No+ Ny = No + Ny, Zi(Ng N Ny) = Ng N Ny. Since Z; is nonsingular, G has con-
stant rank r, and the intersection NU/; = N| N Np has constant dimension u;. Put
X; = Non (N ONl) and fix the projector O by means of imQ; = Ny, kerQ; =
X @ (No +N1) 0, is continuous, but for the sequence 00,0, to be admis-
sible, DIT)D~ has to belong to the class C!. This projector has the nullspace
kerDIT;D~ = D(Ny + Ny) @ kerR = D(Ny + Ny ) @ kerR, which is already known
to belong to C L If DIT\D~ has a range that is a C 1 subspace, then DIT, D™ it-
self is continuously differentiable. Derive im DIT;D~ = im DIT, = D(Ny +Ny)* =
D(No+Ny)* = DD*(D(Ny + N1))*. Since D(Ny + Ny) belongs to the class C', s
does (D(No+Nyp))= . It turns out that DIT; D~ is in fact continuously dlfferentlable
and hence, Qg, 0, are admissible.

To use induction, assume that Qy,...,Q;_; are admissible and widely orthogonal.
Lemma 2.12 (d) yields G; = GiZ;, No+ --- + Ny = Ny + --- + N;_1,
No+--+Ni=No+---+Ni, Z(Ni N (No+---+Ni—1)) = N0 (No + - + Ni—1).
Since Z; is nonsingular, it follows that G, has constant rank r; and the intersection
NU; =N:n (No+--- —|—Ni_1) has constant dimension ;. The involved subspaces are
continuous. Put

Xi= (No+-+ +Niet) N (No+-++Ni-1) NN

and choose Q; to be the projector onto N; along (No +--- +N;)* © X;.

Qo,...,0i1,0; would be admissible if DIT;D~ was continuously differentiable.
We know ker DIT,D™ = D(No+ -+ N;) @ kerR to be already continuously differ-
entiable. On the other hand, we have imDIT;D~ = D imIT; = D(Ng +--- + N;)* =
DD*(D(Np+---+N;))*, hence im DIT,D~ belongs to the class C'. O

The widely orthogonal projectors have the advantage that they are uniquely de-
termined. This proves its value in theoretical investigations, for instance in verifying
Theorem 3.33 on necessary and sufficient regularity conditions for nonlinear DAEs,
as well as for investigating critical points. Moreover, in practical calculations, in
general, there might be difficulties in ensuring the continuity of the projector func-
tions II;. Fortunately, owing to their uniqueness the widely orthogonal projector
functions are continuous a priori.

By Proposition 2.16, at least for all DAEs with properly stated leading term, and
with a continuously differentiable coefficient D, we may access widely orthogonal
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projector functions. However, if D is just continuous, and if DD* fails to be continu-
ously differentiable as required, then it may happen in fact that admissible projector
functions exist but the special widely orthogonal projector functions do not exist for
lack of smoothness. The following example shows this situation. At this point we
emphasize that most DAEs are given with a smooth D, and our example is rather
academic.

Example 2.17 (Lack of smoothness for widely orthogonal projectors). Given the

10 Laol 000
01 <{010}x) +(00—-1|x=gq,
00 010

with a continuous scalar function ¢, the DAE has the coefficients

10 00 0
A=01 7D:[(1)?8},B: 001 ,R:Ll)ﬂ.
00 01 0

First we construct an admissible matrix function sequence. Set and derive

l —o 1a0 000 laa O
D =0 11|, Go=|010|, Q=1000|, Gi=1|01—-1|, (224
00 000 001 00 O
and further
0—-a0 10 la 0
01=101 0|, 01Qp=0, DH]D_{OO],GZ_ 01 -1
010 01 0

The projector functions Qg, Q1 are admissible, and G, is nonsingular, such that 0, =
0. This sequence is admissible for each arbitrary continuous ¢¢; however it fails to
be widely orthogonal. Namely, the product IlyQ; is not symmetric.

Next we construct widely orthogonal projector functions. We start with the same
matrix functions Qg, D™ and G (see (2.24)). Compute further

0 —o 1
No®MN; :span{ o, |1 }, (No @Nl)L =span | o
1 1 0
The required projector function onto Ny along No & (No & Ny)™ is
! a* —a0 1 0
Or=-—>5|—o 1 0], anditfollows that DIL D™ = [ o 0} .
1 +o —a 10 1+a?
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We recognize that, in the given setting, DII} D~ is just continuous. If we addition-
ally assume that oo € C 1(I ,R), then Qp, Q) appear to be admissible. Notice that in

2
this case DD* = [1 taa is continuously differentiable, which confirms Propo-

1
sition 2.16 once more.

Let us stress that this special DAE is solvable for arbitrary continuous . From this
point of view there is no need to assume « to be C'. Namely, the detailed equations
are

(x14+ax) = qi,
Xh—x3 = qo,
X2 = (g3,
with the solutions

t

21 () + o) xa(t) = x1(0) + (02 (0) + / g3(s)ds,
0

q3(t)

x2(1) = q3(t),
q5(1) — qa(1).

X3(t)

It turns out that widely orthogonal projectors need some specific slightly higher
smoothness which is not justified by solvability. a

2.3 Invariants under transformations and refactorizations

Given the DAE (2.1) with continuous coefficients and properly stated leading term,
we premultiply this equation by a nonsingular matrix function
L € C(Z,L(R¥)) and transform the unknown x = K% by means of a nonsingular
matrix function K € C(Z,L(R™)) such that the DAE

A(Dx) +Bx=gq (2.25)
results, where g := Lq, and
A:=1A, D:=DK, B:=LBK. (2.26)

These transformed coefficients are continuous as are the original ones. Moreover,
A and D inherit from A and D the constant ranks, and the leading term of (2.25) is
properly stated (cf. Definition 2.1) with the same border projector R = R as kerA =
kerA, imD = imD.

Suppose that the original DAE (2.1) has admissible projectors Qy, . .., Q. We form
a corresponding matrix function sequence for the transformed DAE (2.25) starting
with
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Gy = AD=ILADK = LGyK, By=B=LByK,
Qo:=K'0)k, D" =K'D™, Py=K 'PBK,
such that DD~ = DD~ =R, D~ D = By, and
Gl = G() +BOQO _ L(G() +B()Q())K = LG K.
This yields No = K~'No, Ny = K~!N;, Non' Ny = K~'(No N N;). Choose
0: := K~10,K which corresponds to X := K 1Xx,. Proceeding in this way at each

level,i=1,...,k, with
0i:=K '0iK

it follows that I_T, = K’]H,-K, Dﬁ,’Di =DII,D—, Xi = KﬁlX,', Wi =K! ﬁ,’, and
Giy1 =LGiy1K, Biy) =LBiy K.

This shows that Qy, ..., are admissible for (2.25), and the following assertion
becomes evident.

Theorem 2.18. If the DAE (2.1) has an admissible matrix function sequence up

to level x € N, with characteristic values r;, u;, i = 1,...,K, then the transformed
equation (2.25) also has an admissible matrix function sequence up to level K, with
the same characteristic values, i.e., /i =r;, l; =u;, i=1,...,K.

By Theorem 2.18 the characteristic values are invariant under transformations of
the unknown function as well as under premultiplications of the DAE. This fea-
ture seems to be rather trivial. The invariance with respect to refactorizations of the
leading term, which we verify next, is more subtle.

First we explain what refactorization means. For the given DAE (2.1) with prop-
erly stated leading term, we consider the product AD to represent a factorization
of the leading term and we ask whether we can turn to a different factorization
AD = AD such that kerA and im D are again transversal C'-subspaces. For instance,
in Example 2.4, equation (2.10) results from equation (2.9) by taking a different
factorization.

In general, we describe the change to a different factorization as follows:
Let H € CY(Z,L(R*,R") be given together with a generalized inverse
H~ €CY(Z,L(R",R*)) such that

H HH =H , HH H=H, RHH R=R. (2.27)

H has constant rank greater than or equal to the rank of the border projector R.
In particular, one can use any nonsingular H € C'(Z,L(RR")). However, we do not
restrict ourselves to square nonsingular matrix functions H.

Due to AR = ARHH ™ R we may write

A(Dx)' = ARHH ™ R(Dx)' = ARH(H RDx)' —ARH(H R)'Dx
=AH(H Dx)' —AH(H R)'Dx.
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This leads to the new DAE
A(Dx) +Bx=gq (2.28)
with the continuous coefficients
A:=AH, D:=H D, B ::B—ARH(H*R)’D. (2.29)

Because of AD = AD we call this procedure that changes (2.1) to (2.28) a refactor-
ization of the leading term. It holds that

kerA =kerAH =kerRH, imD =imH D =imH R;

further (H RH)> = H RHH RH = H RH. Tt becomes clear that
H™RH € C'(Z,L(R?)) is actually the border projector corresponding to the new
DAE (2.28), and (2.28) has a properly stated leading term.

We emphasize that the old border space R” and the new one R® may actually have
different dimensions, and this is accompanied by different sizes of the involved
matrix functions. Here, the only restriction is n,s > r := rank D.

Example 2.19 (A simple refactorization changing the border space dimension). The
semi-explicit DAE
x| +Biixi +Biaxo = qi,
Byix1 + Baxy = qo,

comprising m and m;, equations can be written with proper leading term in different
ways, for instance as

10],[10] ., [BiiBn]
{O O] ({O 0} x) + [le sz x=gq (2.30)
as well as
I r, |Bui Bia| .
[O} ([10]x)+ {le 322] x=gq. (2.31)

The border projector R of the DAE (2.30) as well as H and H ™,

R:{(I)g}, H:[(IJ, H =]10],

satisfy condition (2.27). The DAE (2.31) results from the DAE (2.30) by refactor-
ization of the leading term by means of H. The border projector of the DAE (2.31) is
simply R = H~RH = I. The dimension of the border space is reduced from m +
in (2.30) to my in (2.31). a

Example 2.20 (Nontrivial refactorization). The following two DAEs are given in
Example 2.4,
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010 000 ! 100
001 ( 010x(t)>+ 01 0|x(r)=q@k), teR
000 0—r1 0—r1
——— —— ——
A D(1) B(1)
and
010 000 ! 100
0-r1 ( 010 x(t)) +10 0 0| x(t)=4q(), teR
000 001 0—r1
—_——— ——— ——
A(r) D B(t)

The border projector of the last DAE is simply R = D. The nonsingular matrix func-
tion

100 1

H(it)=1010|, H@) =H@r)'=|0

0r1 0

0
1

fulfills condition (2.27). Comparing the coefficients, one proves that the first DAE
results from the refactorization of the second DAE with H. Conversely, one obtains
the second DAE by refactorization of the first one with H~!.
Observe that the matrix pencil {AD(¢),B(t)} is regular with Kronecker index 3,
while {A(¢)D,B(t)} is a singular pencil. This confirms once more the well-known
fact that local matrix pencils are inapplicable to characterize time-varying DAEs.

O

Theorem 2.21. Let the DAE (2.1) have a properly stated leading term and an admis-
sible matrix function sequence up to level ¥ € N and characteristic values ry, . .., ry,
Uly...,Ug.

Let the matrix functions H € C'(Z,L(R*,R") and H~ € C'(Z,L(R",R®) satisfy con-
dition (2.27).

(a) Then the refactorized DAE (2.28) also has a properly stated leading term and
an admissible matrix function sequence up to level k. Its characteristic values
coincide with that of (2.1).

(b) The subspaces imGj, No+---+N;, i =0,..., K, are invariant.

Proof. Put F1 :=1.
We use induction to show that the following relations are valid:

G, =GiF;-- -1, (2.32)
0i:=(F-R)'QF F, I_0;=I_0;, II=I (2.33)
i1
Bi=B;—G,D"H(H R)DIL;+G; Y Q;Z;IT; 1, (2.34)
=0

with nonsingular
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i—2
Fi=1+Po1 ), QiZiajlli20i1, i=1,....k
Jj=0

The coefficients Z;; are continuous matrix functions whose special form does not
matter at all.

Since Gg = AD = AD = Gy we may choose D~ = D™ H, Qg = Qp. It follows
that I_T() = I, B() =B=8B —ARH(HiR)/D and B()Q_() = BQy = BpQy, hence
G1 = Go+BoQy = Gy +BoQo = G| = G1Fy. Choose Q1 = Q1 = F; ' 0 such that
IT, =11y, I1)Q, = I1)Q,, DII;D~ = H~ DII, D~ H, and further

B

ByoPy— G\D~ (DIT,D™)'DITy
BoPy—ARH(H R)'D—G\D H(H DIT,D H)'H DIl
= ByPy— G| D™ (DHlDi)/DH() +G\ D™ (DHlDi)/DH()
—ARH(H R)'D—G\D”H(H RDII;D RH)'H™ DIl
= B, +GD~ (DIL,D")'DIly—ARH(H R)'D— GD”H{(H R)'DIT,D”RH
+H R(DIT,D™)'RH +H RDIT,D~ (RH)'}H D
=By —ARH(H R)D—GD"H(H R)'DIT, — G\I1,D~ (RH)'H™ RD
=B, —G/D H(H R)DII; —ARH(H R)'D+G\II;D"RH(H R)'D.

In the last expression we have used that
D (RHH RYD=D RD=0.
Compute G| IT}D"RH(H R))D—ARH(H R)D=G,(Iy - I)D"RH(H R)'D and

Gi(ITy 1) = G (I = Qo)(I — Q1) —I) = G1(—Qo — Q1 + QoQ1)
= G1(—Qo+ Q001) = —G1QoP:.
This yields the required expression
B] =B — G]DiH(HiR)/DH] + G1QoZ1p11y

with Zj := —Q0P1D7RH(H7R)/D.
Next, supposing the relations (2.32)—(2.34) to be given up to i, we show their validity
for i+ 1. Derive

Giy1 = Gi+Bi0i = {Gi+Bi(F-- - FI) "' Qi}F - Fy
={Gi+Bill1(F- Fy) "' Qi} -+ F,

and, because of H,-,lFfl .- 'Flfl = II;_, we obtain further
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i1
Giy1 = {Gi +B;iQ; — G;D”H(H R)'DIL;0; + G; Z QjZini—lQi}Fi <Py
=0

i1
~{Gin+G Y 0,210 }F -
j=0
i-1
= Git1 {H—Pi Y QjZini—lQi}Fi -k
Jj=0
= Gi1Fin b,
with nonsingular matrix functions
i—1 i—1
Fir=1+P Y, Q;Zijlli1Qi, Fii=1-PY Q;ZIli1Q:.
j=0 j=0

Put Qiy1 := (Fir1 -+ F1) "' Qip1Firr -+ Fi, and compute

M:0;41 = ;01 = ILF,! "'F,-liQiHE'H 2l
=150 1 Fiy1 - B = 1L,Qi (| ILF - - Fy = I1L;Q; 1 11; = IL;Q; 1,

iy =I5, = I5:Qiy = I — I,Q; 1 = Iy
It remains to verify the expression for B; | 1. We derive

Biy1 = B;P,— G;1D™ (DIL;+ 1D~ ) DII;
= Bill;— G 1Fy1---FAD”H(H DII;; \D”H)'H™ DIT,

and
_ i—1
B = {Bi — G,‘D_H(H_R)/DIL' + G Z QjZ,‘jH,;l }1_[,
=0

~Git1(Fiy1-+-Fi—1)D"H(H DII,;1D”H)'H DIT;
~Gi1D"H{(H R)RDII;.\D RH +H R(DII,.\D")RH
+H RDII;\D~ (RH)'}H ™ DIT,,

and

i—1
Bit1 = BiP,— GiD"H(H R)'DIL;+G; Y. Q;Z;I];
j=0

—Gi\D"H(H R)'DIL;+y — G\ D~ (DI D~ ) DIT;
~Gi1I11D™ (RH)'H ™ RDII;
~Giy1(Fy1---FL —1)D"H(H DIT; D~ H)'H™ DIT;,
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and

Bi\y = Biy1 —Gi\D"H(H R)'DIT;y, — G, \PDH(H R)'DII;
i—1
+Gip1 T \D”H(H R)'DIL; + G P Y Q;ZiIT;
j=0
~Giy1(Fp1 -+ F,—1)D”H(H DIL;;1D~H)'H ™ DITI;.

Finally, decomposing
i-1 i-1 i-1
PY 0,ZIT =Y Q;ZiI;—0; Y Q,Z;IT,
j=0 j=0 Jj=0

and expressing
i
Fp-F—1=Y Qi1
Jj=0

and taking into account that

i
Givi{Iliy1 — YD H(H R)'DII; = Gi11 Y Qi%Biy1,;D” H(H R)'DIJ;
j=0

we obtain

i
Biy1 =Bit1 — G\ D"H(H R)'DIT1 + Y Q;Zit1 ;DIT;.
j=0

O

By Theorem 2.21, the characteristic values and the tractability index are invariant
under refactorizations of the leading term. In this way, the size of A and D may
change or not (cf. Examples 2.4 and 2.19).

It is worth mentioning that also the associated function space accommodating the

solutions of the DAE remains invariant under refactorizations as the next proposition
shows.

Proposition 2.22. Given the matrix function D € C(Z,L(R™,R")) and the projec-
tor function R € C'(Z,L(R")) onto imD, let H € C'(Z,L(R*,R")) be given to-
gether with a generalized inverse H~ € C'(T,L(R",R*)) such that H-HH™ = H™,
HH H =H, and RHH R = R. Then, for D = H™ D, it holds that

CH(Z,R™) =CpH(Z,R™).

Proof. For any x € Ch(Z,R™) we find Dx = H Dx € C'(Z,R®), and hence
x € C}(Z,R™). Conversely, for x € Cf(Z,R™), we find Dx = RDx = RHH ™ Dx =
RHDx € C'(Z,R®), and hence x € C},(Z,R™). O
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2.4 Decoupling regular DAEs

The main objective of this section is the characterization of regular DAEs by means
of admissible matrix function sequences and the projector based structural decou-
pling of each regular DAE (2.1) into an inherent regular ODE

' — (DI, D™ )u+DI,_G,'B,D u=DII,_1G,'q

and a triangular subsystem of several equations including differentiations

0MNot -+ Nou—i 0
0 . . (Dvl)/
 Nuaun :
(Dvu-1)'
I Mo - Mog—1 ] T Ho Lo
I . V1 Hi L
+ . + . D u= . q
.. MIJ*Q,IJ*I . . .
1 V-1 Hy-1 Ly

This structural decoupling is associated with the decomposition (see Theorem 2.30)

x=D u+tvotvi+--+vy 1.

2.4.1 Preliminary decoupling rearrangements

We apply admissible projector functions Qy,...,Q to rearrange terms within the
DAE (2.1) in a similar way as done in Chapter 1 on constant coefficient DAEs
for obtaining decoupled systems. The objective of the rearrangements is to place a
matrix function G in front of the derivative component (DITx)’, the rank of which
is as large as possible, and at the same time to separate terms living in Ny + - - - + Ni.
We emphasize that we do not change the given DAE at all, and we do not transform
the variables. We work just with the given DAE and its unknown. What we do are
rearrangements of terms and separations or decouplings of solution components
by means of projector functions. We proceed stepwise. Within this procedure, the
special form of the matrix functions B; appears to make good sense.

This part is valid for general DAEs with proper leading term, possibly with less or
more variables than equations (m # k). The rearranged DAE versions serve then as
the basis for further decouplings and solutions in the present chapter and also in
Chapter 10.

First rewrite (2.1) as
GoD~ (Dx)' +Box = q, (2.35)
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and then as
GoD™ (Dx)"+ By(Qox + Pox) =

and rearrange this in order to increase the rank of the leading coefficient to

(Go+BoQo) (D~ (Dx)' + Qox) + BoPox = q,

or
G\D™ (Dx)/—I-B()Pox-l-GlQ()x =q. (2.36)
Compute
P.D™ (Dx)' = PyP\D~ (Dx)' + QoP,D~ (Dx)’
= D DRPD" (Dx)' +QoP\D™ (Dx)’
= D™ (DPyP,x)' — D~ (DPyP\D~ ) Dx+ QoP, D™ (Dx)’
=D (DP()Plx)/ — D™ (DP()PlD )'Dx — (I P())QlD ( )
= D™ (DIL)x)' — D™ (DIT,D™)'Dx — (I — ITy) 01 D~ (DITyx)',
and hence

G\D~ (Dx)' = G\D~ (DIT;x)' — G\D~ (DIT;D~)' DPyx — G, (I — Iy) Q1 D~ (DITyx)'.
Inserting this into (2.36) yields
G\D~ (DITyx) + (BoPy— G\D~ (DIT;D~)'DPy)x
+ G1{Qox— (I - IH) 01D~ (Dx)'} = g,
and, regarding the definition of the matrix function By,
G\D™ (DITyx)' + Bix+G{Qox— (I — IT)) ;D™ (Dx)'} = q. (2.37)

Note that, if No NNy = 0, then the derivative (DITjx)’ is no longer involved in the
term

oD~ (Dx)/ = 01D DPyQ1D™ (Dx)/ =Q0i1D" (DPlex)/ — 01D (DPleDf)/Dx

In the next step we move a part of the term Bx in (2.37) to the leading term, and so
on. Proposition 2.23 describes the result of these systematic rearrangements.

Proposition 2.23. Let the DAE (2.1) with properly stated leading term have the ad-
missible projectors Qy, ..., Qx, where k € NU{0}.

(1) Then this DAE can be rewritten in the form

K—1

GD™ (DIkx)' + Biex+ Gy Y {Qix+ (I = 1) (P — Qi1 P)D™ (DITx)'} = g.
=0
(2.38)
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(2) If, additionally, all intersections ﬁ[, i=1,...,K, are trivial, then the DAE (2.1)
can be rewritten as
GxD ™ (DITex)' + Byx

k-1 (2.39)
+Gx Y {Qix— (I —=I1)Qy 1 D™ (DI,Q; 1 1x)' +ViDIix} = g,
1=0

with coefficients
Vi=(I—IL){AD~ (DILD") — QD™ (DIT; 11D~ ) }DILD™, 1 =0,...,k— 1.

Comparing with the rearranged DAE obtained in the constant coefficient case (cf.
(1.35)), now we observe the extra terms V; caused by time-dependent movements of
certain subspaces. They disappear in the time-invariant case.

Proof (of Proposition 2.23). (1) In the case of Kk = 0, equation (2.35) is just a trivial
reformulation of (2.1). For ¥ = 1 we are done by considering (2.37). For applying
induction, we suppose for i+ 1 < x, that (2.1) can be rewritten as

i—1
GiD™ (DITix)' +Bix+G; Y {Qux+ (I—IL) (P — Qi+1P)D~ (DITx)'} = q. (2.40)
=0

Represent Bix = B;Pix+ B;Q;x = B;P,x + Gi1+1Q;x and derive

G:D™ (DITx)' = Giy 1P\ B;D™ (DITix)’
= Giy1{Ili}\PD™ (DIIix)' + (I — IT;)Pi;\ D™ (DITx)'}
= Gy 1{D"DIT;;\D™ (DITx)' + (I — IT;)Piy D™ (DITix)'}
= Giy1D ™ (DII;11x) — Gy 1D~ (DIT; D~ ) DIT;x
+Gip1(I = IT) (P, — Qi1 P,)D™ (DITix)").

Taking into account that (I — IT;)) = QoP,-- P, + --- + Qi P + Q; and
GiQ;=Gi110;,1=0,...,i—1, we realize that (2.40) can be reformulated to

Giy1D™ (DI;1x)' + (BiP,— Giy1 D™ (DI D™ ) DIT;)x

i-1
+Gi10ix+Gis1 ) {Qix+ (I IT) (P — Q141 P)D™ (DITx)'}
=0

+Gis1(I = IL) (P — Qi1 P)D™ (DITx) = q.

We obtain in fact

i
Gir1D™ (DI 1x)' + Biy1x+Gig1 Y_{Qux+ (I—IL) (P, — Q141 P,)D™ (DITx)'} = ¢
=0

as we tried for.
(2) Finally assuming N; = {0},i=1,..., k, and taking into account Proposition 2.7,
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we compute the part in question as

k—1 k=1

F:=Y (I-1)(P— Qi \P)D™ (DIx)' = Y (I = IT) (P — Qy11)D ™ (DITyx)’
=0 =0
k—1
= Y (1—m){PD™ (D) — Q11D DILQ;1 D (DI }.
[=0
Applying the relations

(DILx)" = (DILD™) (DITx) + DILD™ (DITx)’,
(I-IL)RD~DILD™ = (I-II)RILD™ =0,
DIN,Q;11D™ (DITx)' = (DIT,Qy11x) — (DIL, Q111D )'DINx,

Q1+1(DINQ11D™)'DIT; = Qy41(DILD ™)' DIT — Q111 (DI D™ ) DI,
= —Qu41(DIT\D™)'DIT;,

we obtain, with the coefficients V; described by the assertion,

k—1
F =Y (1~ m){RD™(DI,D™Y DITix+ Q11 D™ (DIT Q141 D) DITx
=0

k=1

- Qz+1D_(DHlQ1+1X)'} =Y {VIDHIX* (I—11)Q141D™ (DH1Q1+1X)/},
=0

and this completes the proof. a

How can one make use of the rearranged version of the DAE (2.1) and the structural
information included in this version? We discuss this question in the next subsection
for the case of regular DAEs, that is, if m = k and a nonsingular G,; exists. We study
nonregular cases in Chapter 10.

For the moment, to gain a first impression, we cast a glance at the simplest sit-
uation, if Gg already has maximal rank. Later on we assign the tractability index 0
to each DAE whose matrix functions Gy already have maximal rank. Then the DAE
(2.35) splits into the two parts

GoD™ (Dx)/ + GoGaBox = G()Gaq, WoBox = Woq. 241

Since imGy is maximal, it holds that imByQp C imG; = imGy, hence
WoBo = WoBoRy. Further, since DG, Gy = D, we find the DAE (2.35) to be equiv-
alent to the system

(Dx)' — R'Dx+ DGy BoD ™~ Dx+ DG, BoQox = DGy q, WoBoD™ Dx = Wq,
(2.42)
the solution of which decomposes as x = D™ Dx + Qopx. It becomes clear that this
DAE comprises an explicit ODE for Dx, that has an undetermined part Qox to be
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chosen arbitrarily. The ODE for Dx is accompanied by a consistency condition ap-
plied to Dx and g. If Gy is surjective, the consistency condition disappears. If Gy is
injective, then the undetermined component Qox disappears. If Gy is nonsingular,
which happens just for m = k, then the DAE is nothing other than a regular implicit
ODE with respect to Dx.

Example 2.24 (Nonregular DAE). The DAE
i |-
HEGEECIE A FORG
leads to
—t 12 0 1 —
G =210 an=[oi]. Bo=lp5] e-a

Compute further

I S R |
DG, BoD™ =0, ByQy=0, DG, =1[01].
For the second equation in formula (2.42) we obtain
WoBox = Woq & —x1 +1xa =q1 —1q2
and the inherent explicit ODE in formula (2.42) reads
(—x1+1x0) = qo.
In this way the consistency condition (q; —1q2)" = g follows. The solution is
x(t) =D (—x1 +1x2) + Qox

PRl

with an arbitrary continuous function x;. ad

Of course, if the tractability index is greater than O, things become much more sub-
tle.

2.4.2 Regularity and basic decoupling of regular DAEs

We define regularity for DAESs after the model of classical ODE theory. The system
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A()X (1) +B(t)x(t) = q(t), t €T, (2.43)

with continuous coefficients, is named a regular implicit ODE or an ODE having
solely regular line-elements, if the matrix A(¢) € L(R™) remains nonsingular on the
given interval. Then the homogeneous version of this ODE has a solution space of
dimension m and the inhomogeneous ODE is solvable for each continuous excita-
tion g. No question, these properties are maintained, if one turns to a subinterval. On
the other hand, a point at which the full-rank condition of the matrix A(¢) becomes
defective is a critical point, and different kinds of singularities are known to arise
(e.g. [123]).

Roughly speaking, in our view, a regular DAE should have similar properties. It
should be such that the homogeneous version has a finite-dimensional solution space
and no consistency conditions related to the excitations g arise for inhomogeneous
equations, which rules out DAEs with more or less unknowns than equations. Ad-
ditionally, each restriction of a DAE to a subinterval should also inherit all charac-
teristic values.

In the case of constant coefficients, regularity of DAEs is bound to regular pairs
of square matrices. In turn, regularity of matrix pairs can be characterized by means
of admissible matrix sequences and the associated characteristic values, as described
in Section 1.2. A pair of m X m matrices is regular, if and only if an admissible ma-
trix sequence shows a nonsingular matrix G,; and the characteristic value ry, = m.
Then the Kronecker index of the given matrix pair results as the smallest such index
u. The same idea applies now to DAEs with time-varying coefficients, too. How-
ever, we are now facing continuous matrix functions in distinction to the constant
matrices in Chapter 1. While, in the case of constant coefficients, admissible pro-
jectors do always exist, their existence is now tied to several rank conditions. These
rank conditions are indeed relevant to the problem. A point at which these rank
conditions are defective is considered as a critical point.

We turn back to the DAE (2.1), i.e.,
A(t)(D(t)x(1)) +B(t)x(t) = q(t), t € T. (2.44)

We are looking for solutions in the function space C},(Z,R™). Recall that the ranks
r; = rank G; in admissible matrix function sequences (see Definitions 2.6, 2.9, The-
orem 2.8) give the meaning of characteristics of the DAE on the given interval. The
following regularity notion proves to meet the above expectations.

Definition 2.25. The DAE (2.44) with properly stated leading term and m = k is
said to be, on the given interval,

(1)  regular with tractability index 0, if ry = m,

(2)  regular with tractability index | € N, if there is an admissible matrix function
sequence with characteristic values ry | <ry =m,

(3) regular, if the DAE is regular with any tractability index u (i.e., case (1) or
(2) apply).
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This regularity notion is well-defined in the sense that it is independent of the special
choice of the admissible projector functions, which is guaranteed by Theorem 2.8.

Since for a regular DAE the matrix function G, is nonsingular, all intersections

JV i =N;N(Np+---+N;_1) are trivial, as a consequence of Proposition 2.7. Then it
holds that

Xi=(No+-+N_1)©N;=No++Ni_| =No&---BN,_; C kerQ;,
i=1,...,u—1,thus Q;(I —II;_;) = 0, and, equivalently,
00;=0, 0<j<i—-1,i=1,...,u—1 (2.45)
Additionally, Proposition 2.7 (4) yields G, Q; = B;Q, thus

Q;=G,'BjIl; 1Q;, j=1,...,u—1. (2.46)

While, in the general Definition 2.6, only the part II; Q; = II; 1 — II; of an ad-
missible projector function Q; is required to be continues, for a regular DAE, the
admissible projector functions are continuous in all their components, as follows
from the representation (2.46).

We emphasize once again that, for regular DAESs, the admissible projector functions
are always regular admissible, and they are continuous in all components. At this
place, we draw the readers attention to the fact that, in papers dealing exclusively

with regular DAESs, the requirements for trivial intersections N, ; and the continuity of
Q; are usually already incorporated into the admissibility notion (e.g., [170]) or into
the regularity notion (e.g., [167], [137]). Then, the relations (2.46) are constituent
parts of the definitions (see also the recent monograph [194]).

Here is a further special quality of regular DAEs: The associated subspaces (cf.
Theorem 2.8)

S;=kerW,B={z€R":Biz€imG;} = S;_1 +N_;

are now C-subspaces, too. They have the constant dimensions ;. This can be imme-
diately checked. By Lemma A.9, the nonsingularity of G, implies the
decomposition Ny_1 &Sy = R™, thus dimS;,_; = r;_. Regarding the relation
ker (Gy—2+Wyu—2Bu—20u—2) = Ny_>NSy_>, we conclude by Proposition 2.5 (3)
that Ny > NSy, > has the same dimension as Ny 1 has. This means
dimNy > NSy 2 =m—ry 1. Next, the representation Sy, | =Sy 2+ Ny > leads
to ry—y =dimSy_»+ (m—ry_2) — (m—ry_1), therefore dimS,_» = r,_2, and so
on.

We decouple the regular DAE (2.44) into its characteristic components, in a
similar way as we did with constant coefficient DAEs in Subsection 1.2.2. Since
Gy is nonsingular, by introducing Q, = 0, P, = I, I, = II,_y, the sequence
Qo,...,0Qu—1,0u is admissible, and we can apply Proposition 2.23. The DAE (2.44)
can be rewritten as
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GyD™ (DII,_1x)' +Bux (2.47)
n—1
+Gyu Y {Qx— (I-11))Q; 1 D™ (DI, Qy41x)' + V,DITx} = q.
=0

If the coefficients were constant, we would have D~ (DII,_x)' = (D™ DII,_x)' =
(ITy—1x)', further D~ (DIT;Qy41x) = (IT;Q;+1x)’, and V; = 0. This means that for-
mula (2.47) precisely generalizes formula (1.35) obtained for constant coefficients.
The new formula (2.47) contains the extra terms V; which arise from subspaces
moving with time. They disappear in the time-invariant case.

In Subsection 1.2.2, the decoupled version of the DAE is generated by the scaling
with Gljl, and then by the splitting by means of the projectors I, 1 and I —IT; .
Here we go a slightly different way and use DII,,_; instead of II,_. Since II,_;
can be recovered from DIT,,_ due to I,y = D™ DII, 1, no information gets lost.
Equation (2.47) scaled by Gﬁl reads

D™ (DI, _1x)'+ G, 'Bux (2.48)
n—1
+ Y {0 — (- )@\ D™ (DI Qy11%)' + ViDITx} = Gy 'q.
=0

The detailed expression for V; (Proposition 2.23) is
Vi = ([~ I){PD™ (DIL,D™) — Q111D (DI1;11 D~ ) }DILD™ .

This yields DII, _1V; =0, 1=0,...,u—1, and multiplying (2.48) by DII,,_; results
in the equation

DII, D™ (DI, _1x)' + DITy_1G,'Byx = DI, G, (2.49)

Applying the C'-property of the projector DII, D™, and recognizing that
By =BylIl, 1 = ByD™DII,, 1, we get

(DI 1x)' — (DIT, 1D~ )' DI, x+DII, G, 'ByD™DII, _1x=DII, G, 'q.

(2.50)

Equation (2.50) is an explicit ODE with respect to the component DI, |x. A sim-

ilar ODE is described by formula (1.37) for the time-invariant case. Our new ODE

(2.50) generalizes the ODE (1.37) in the sense that, due to D™ DII, | = II,_y,
equation (2.50) multiplied by D~ coincides with (1.37) for constant coefficients.

Definition 2.26. For the regular DAE (2.44) with tractability index u, and admissi-
ble projector functions Qy, ..., Qy—1, the resulting explicit regular ODE

' — (DI, D™ )u+DII,_G,'B,D u=DIT,_1G,'q (2.51)

is called an inherent explicit regular ODE (IERODE) of the DAE.
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It should be pointed out that there is a great variety of admissible projector func-
tions. In consequence, there are various projector functions IT, 1, and the IERODE
(2.51) is not unique, except for the index-1 case. So far, we know the nullspace
No +---+ Ny of the projector function IT,_; to be independent of the choice
of the admissible projector functions Qy,...,Qu—1, which means the subspace
No+ -+ + Ny is unique; it is determined by the DAE coefficients only (Theo-
rem 2.8). Later on we introduce advanced fine decouplings which make the corre-
sponding IERODE unique.

Lemma 2.27. If the DAE (2.44) is regular with index u, and Qy,...,Qu—1 are ad-
missible, then the subspace imDII, 1 is an invariant subspace for the IERODE
(2.51), that is, the following assertion is valid for the solutions u € C'(Z,R") of the
ODE (2.51):

u(ty) € im(DITy—1)(t.), with a certaint, € T < u(t) €im (DI, _1)(t)Vt € L.

Proof. Let i@ € C'Y(Z,R") denote a solution of (2.51) with
i(t) = (DITy_ D™ )(t,)i(t,). We multiply the identity

i — (DI, \D™)'ia+DIl, G,'D ia=DI, ,G,'q
by I —DII,_;D~, and introduce the function v := (I — DIT,_ D~ )i € C'(Z,R").
This gives
(I-DIly_D™ )i’ — (I—DII, D~ )(DII,_1D™ )i =0,
further,
vV —(—DI,_\D”)ia—(I—DIMy_D”)(DI,_D”) i=0,
and
v —(I-DII,_\D”)'v=0.

Because of ¥(z,) = 0, ¥ must vanish identically, and hence # = DII, D~ ii holds
true. (]

We leave the IERODE for a while, and turn back to the scaled version (2.48) of
the DAE (2.44). Now we consider the other part of this equation, which results from
multiplication by the projector function I — IT,, ;. First we express

(I=II,_1)D™ (DITy_1x) + (I — I, _1)G, ' Bux
=(I-I,_1)G,"{GuD™ (DIy_1x)' +By_1Py_1x
—GyuD™ (DI, D™ )'DII,_x}
(I =My 1)G, ' {By_1Py_1x+G,D DI, D~ (DI, 1x)'}
= (I - Hufl)G;llB”,IHuflx,
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and then obtain the equation

u—1

(I =TI, 1)Gy'By I, x+ Y {Qix+V;DITx} (2.52)
=0
n—=2
- Y (I—I1)Q; D™ (DI Qu41x) = (I- T, 1)G, g,
=0

which is the precise counterpart of equation (1.38). Again, the extra terms V; com-
prise the time variation. By means of the decompositions

DH[)C = DH[(Hufl +1— Hﬂ,l)x = DH“71X+DH[(I—PZ+1 i ~Pu,1)x
= DIl 1x+DIL(Qp+1 +Py1Qri2+ -+ PPy 20u1)x
= DH,uflx“‘Dr[l(QHl + e —|—DHH,2QH,1)X,

we rearrange the terms in (2.52) once more as
u—l u=2 u-2
Y 0x— Y (I-11)Q1\D” (DI, Qy11x) + Y, M1 DITQ; 1 x (2.53)
I= =0 =0
+’CHH71X = (IfHH,l)G;qu,

with the continuous coefficients

u—1
K:=(I—Iy )G, 'By 1Ty 1+ Y ViDIT, (2.54)
=0

u—1
— (I =My )Gy By Ty + Y (1 — HZ){PZD’ (DILD")
=0

— Q11D (DHH—ID_)/}DH/J,fl

u—1
= (I_Hyfl)G;LlBuflnufl + Z (I_Hl—l)(Pl - QI)D_(DHID_)/DH/VHI
=1

and

!
My =) V;DILQ1D™ (2.55)
Jj=0

!
Z (I = I;){P;D” (DI;D")' = Q1D (DI1; 1D~ )"} DI, Q11 D™,
j:

[=0,...,u—2.

The coefficients M, vanish together with the V; in the constant coefficient case.
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Next we provide a further splitting of the subsystem (2.53) according to the de-
composition

I—1II, 1 =QoP - Py 1+ +0u 2P 1+0u

into p parts. Notice that the products Q;P;;1---Py—1 are also continuous projec-
tors. To prepare the further decoupling we provide some useful properties of our
projectors and coefficients.

Lemma 2.28. For the regular DAE (2.44) with tractability index W, and admissible

projector functions Qy, ...,Qy 1, the following relations become true:
(1) QiP1-- Py (I-1T;) = 0, 1=0,...,i—1,
i=1,...,u—-2,
Qu_1(I-11;) =0, 1=0,...,u—2,
(2) QiPiy1-- Py (I -1II;) = Q;, i=0,...,u—2,
Ou—1(I—ITy- 1)=Qu 1
(3) QiPiy1--- Py 1(I = Iiys) = QiPiv1 - Pigs, s=1,...,0—1—1i
i=0,...,u—-2,
(4) QiP1- Py i My =0, 1=0,...,i—1,
i=0,...,u—-2,
Qu-1Miy1 =0, [=0,...,u—2,
(5) QiPir1- Pu—10s =0if s # 1, s=0,...,u—1,
QiPiy1---Pu10i = Qi, i=0,...,u—2,
(6) M; = Zl (I—1II,_y)(P—Q;)D™ (DII; 1 Q;D~)'DII; 1Q;D",
B j=1,...,u—1,
(7) H”_lGﬁlBu = Hu_lGﬁlBOHﬂ_l, and hence

DIl G,'ByD™ =DII, G,'BD".

Proof. (1) The first part of the assertion results from the relation
QiPiy1-+-Py—1 = QiPiy1---Py_1ITi_y, and the inclusion im (7 —IT;) C kerIT;_,
I <i—1.The second part is a consequence of the inclusion im (I —IT;) C kerQy, 1,
I<pu-2.

(2) This is a consequence of the relations Py---Py_1(I —II;) = (I — IT;) and
0i(I-1I1;) = Q;.

(3) We have

QiPiy1---Py Iy =0, thus QiPyy---Py 1(I-Tly 1) =QiPiy1---Py_1.

Taking into account that Q;(I — IT;ys) = 0 for j > i+ s, we find
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QiPry - Py (I —Iivg) = QiPiy1 - PipsPrysy1 - Py (I — Iigy)
- Qz i+1° z+th+s+1 "'Pufl(I_I—IiJrs)
- Ql i+1° z+5(1 ITZ+S) Ql i+1° z+s

(4) This is a consequence of (1).
(5) This is evident.
(6) We derive

j—1
M;=Y (I-1L)AD " (DILD")'DII; Q;D~
=1

j—2
— Y (I—-1)Q\D™ (DI 11D )'DII; 1 Q;D~
=0
-1
=Y (1—m)PD {(DH.FIQjD_)/_DHZD—(DHFIQJ’D_)/}DHFIQJD_
=

—_

Jj—2

- Y (I—11)Q1\ D™ { (DI, Q;D™)'
i=0

- DHH]D*(DHj—leDi)/}DHj—lQJDi

~.
|
—_

=Y (I-1I)PD (DI;—,Q;D")'DII;_1Q,D~
1

Il
-

Jj—2

- Z (I—1I1)Qi\D~ (DII;_1Q;D)'DII;_1Q;D~
=0

j7
=Y (I—1,_)PD (DI, ,Q;D")'DII;_1Q;D~
=

—_

j—1
- Y (I—I1,_,)Q,D (DII; 1Q;D")'DII; 1Q;D~
=1
(7) Owing to P, =1, it holds that
By =By_1Py_1 —GuD™ (DIT,D™)' DI,
=By 1Pu—1—GuD™ (DII,_1D~)'DII, ;.
We compute
1, G, 'By =y 1G,'{By_1Py_1 — GuD" (DII,_,D")'DIT,_}
= HM_IG;'B#_lIIM_l — Hu_1D7 (DH“_IDi)/DHﬂ_I .

=0

The next step is
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I, Gy 'By Iy =y G {By 2Py — Gy D™ (DITy D™ )'DII, »}IT,
= Hu—lcﬁlBu—ZHu—l — Iy 1Py 1D (DIly D™ )' DIy,

=0
and so on. O

As announced before we split the subsystem (2.53) into p parts. Multiplying by
the projector functions QiPy1-+-Py 1, i=0,...,u —2, and Qy 1, and regarding
Lemma 2.28 one attains the system

n—=2
Qix—QiQi 1D (DITQiy1x) — Y, QiPii---PQi1D™ (DILQyy1x)  (2.56)
1=+
u-2
+ Z QiPi1- Py a M1 DILQpy 1 x
]

=i

=—QiPy1- Py Ky 1x+QiPry1 Py 1Gylq,  i=0,...,u—2,

as well as
Qu-1x=—Qu 1 KIy_1x+ 0, 1G,'q. (2.57)

Equation (2.57) determines Qy_1x in terms of ¢ and II,_ix. The i-th equa-
tion in (2.56) determines Q;x in terms of g, Il 1x, Oy _1x,...,0i41x, and so
on, that is, the system (2.56), (2.57) successively determines all components of
I—1I, 1 = Qo+ 1IIpQy +---+1II; 20y 1 in a unique way. Comparing with the
constant coefficient case, we recognize that, the system (2.56), (2.57) generalizes
the system (1.40), (1.41).

So far, the regular DAE (2.44) decouples into the IERODE (2.51) and the subsystem
(2.56), (2.57) by means of each arbitrary admissible matrix function sequence. The
solutions of the DAE can be expressed as

x=II_x+ (I —Iy_1x) =D u+ (I —IIy_y)x,

whereby (I — IT,—i)x is determined by the subsystem (2.56), (2.57), and
u = DII, D" u is a solution of the IERODE, which belongs to its invariant sub-
space.
The property
kerQ;=kerIl;_1Q;, i=1,...,u—1, (2.58)
is valid, since we may represent Q; = (I + (I — I;_1)Q;)I1;—; Q; with the nonsin-
gular factor I+ (I —IT;_1)Q;, i = 1,...,u — 1. This allows us to compute Q;x from

IT;_, Q;x and vice versa. We take advantage of this in the following rather cosmetic
changes.

Denote (cf. (1.45))

vo:=Qox, vi:=IL_ 10, i=1,...,u—1, (2.59)
u:= DII, _yx, (2.60)
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such that we have the solution expression

x=vot+vi+--+vy1+D u (2.61)

Multiply equation (2.57) by I, _», and, if i > 1, the i-th equation in (2.56) by

IT;_;. This yields the following system which determines the functions v, _1,...,vp
in terms of ¢ and u:

0N -+ N07H_1 Yo ’

. Vi

0 ' Dl (2.62)
. N#*Z#*l :

Vu-1
I Mo Mo pu-1 Yo Ho Lo
7 : vy My B Ly
+ + . D u= q
. Mu—z u—1 :
I Vu-1 Hu-1 Ly

The matrix function D := (D; J)l” j;lo has as entries the blocks D;; = DIT;,_Q;,
i=1,...,u—1, Dy =0, and D;; = 0, if i # j. This matrix function is block-
diagonal if n = m. The further coefficients in (2.62) are also continuous, and their
detailed form is

Not :=—0001D",

Noj :=—QoP;---Pi1Q;D", j=2,...,u—1,
Niiy1 = —IIi_10;Qi1D ™,

Nij:=—IL1QiPiy1---P;i1Q;D™, j=it2, . u—lLi=1,...,0-2,
Moj = QoP1---Py_1M;DII;_1Q;, j=1,...,u—1,

Miji= I QiPiry Pyt MDIT; 1 Qj, j=i+1,...,u—1,i=1,...,u—2,
Lo:= Q0P Py_1Gy',
Li=T0_1QiPy1- Py 1Gy', i=1,...,0—2,

Lyy =T, 20, 1G,",

Ho := QoP1--- Py 1 KIIy 1,
Hl'::Hi—lQiPi+1"'P}L—1KH[J—17 i:17"'7.u_25
Hufl = H‘LL72Q/.L71KH}L713

with K and M ; defined by formulas (2.54), (2.55). Introducing the matrix functions
N, M, H, L of appropriate sizes according to (2.62), we write this subsystem as
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N(Dv) + Mv+HD u= Ly, (2.63)

whereby the vector function v contains the entries vy, ..., vy 1.

Again, we draw the reader’s attention to the great consistency with (1.46). The
difficulties caused by the time-variations are now hidden in the coefficients M;;
which disappear for constant coefficients.

We emphasize that the system (2.62) is nothing other than a more transparent re-
formulation of the former subsystem (2.56), (2.57). The next proposition records
important properties.

Proposition 2.29. Let the DAE (2.44) be regular with tractability index U, and let
Qo,...,Qu—1 be admissible projector functions. Then the coefficient functions in
(2.62) have the further properties:

(1) Mj = MjDijleDi and MjD = ./\/;'J'Dijle, for j=1,....u0—1,
i=0,....u—-2.

(2) rankNj i =rank N D=m—ripy, fori=0,...,u—2.

(3)  kerNiiy1 =kerDIL;Q; 1D, and kerN; ;1D = kerIT;Q; 1, for
i=0,....u—2.

(4)  The subsystem (2.62) is a DAE with properly stated leading term.

(5)  The square matrix function N'D is pointwise nilpotent with index L, more
precisely, (ND)* = 0 and rank (ND)* ™' =m—r,_1 > 0.

(6) M,',,'.H:O, iZO,...,u—Z.

Proof. (1) This is given by the construction.

(2) Because of N; ;i1 = N;;1DD~, the matrix functions N;;+; and N; ;41D have
equal rank. To show that this is precisely m — r;;; we apply the same arguments as
for Lemma 1.27. First we validate the relation

imQ;0;11 =N;NS;.

Namely, z € N; NS; implies z = Qiz and B;z = G;w, therefore,
(Gi + BiQi)(Pw + Qjz) = 0, further (Pw + Qiz) = Qir1(Pw + Qiz) = Qipiw,
Qiz= Q;0iy1w, and hence z = Q;z = Q; Qi 1w.

Conversely, z € imQ;Q;+1 yields z = Q;z, z = Q;Q;i+1w. Then the identity (G; +
B;iQ;)Qi1 = 0leads to Biz = B;Q;Q; 1w = —G;Qiy1w, thus z € N;N ;.

The intersection N; NS; has the same dimension as N;.j, so that we attain
dimim Q;Qi+1 =dimN 1 =m—riq1.

(3) From (1) we derive the inclusions

ker DIT;Q;i 1D~ CkerNjip1, kerIT;Qir C kerNiy(D.

Because of IT;Q; 11 = D~ (DIT;Q;11D~)D, and ker I;Q;1 = ker Q;+1, the assertion
becomes true for reasons of dimensions.
(4) We provide the subspaces
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20
kerN:{z: : eR"“:ziekerHi,]Qi,i:1,...,u—1}
[Zpu—1]
and -~ _
20
impz{zz : eR"“:z,»eimn,»_lg,»,i:l,...,u—l}
[Zp—1]

which obviously fulfill the condition ker A/ ¢ im D = R" . The border projector is
R = diag (0,DIT)Q1D~,...,DIT, >Q, 1D ), and it is continuously differentiable.
(5) The matrix function N'D is by nature strictly block upper triangular, and its main
entries (N'D); 41 =N i+1D have constant rank m — riy, fori =0,..., 10 —2.

The matrix function (A"D)? has zero-entries on the block positions (i,i -+ 1), and the
dominating entries are

((ND))iiv2 = Niis1DNis1 12D = Ii-10iQi4 1 I1:Qi+1Qi42 = IT;-10i0i11 042,

which have rank m — r;1», and so on.

In (ND)*~! there remains exactly one nontrivial block in the upper right corner,
((ND)”il)ouu,I = (—1)”71Q0Q1 . 'QH*I’ and it has rank m — Tu—1-

(6) This property is a direct consequence of the representation of M, in Lem-
ma 2.28 (6) and Lemma 2.28 (1). O

By this proposition, the subsystem (2.62) is in turn a regular DAE with tractabil-
ity index u and transparent structure. Property (6) slightly eases the structure of
(2.62). We emphasize that the DAE (2.62) lives in R™*. The solutions belong to the
function space CID (Z,R™"). Owing to the special form of the matrix function £ on
the right-hand side, each solution of (2.62) satisfies the conditions vy = Qgvy and
Vi:ITl',lQiVi,fOI‘i: 1,...,[.1,—1.

We now formulate the main result concerning the basic decoupling:

Theorem 2.30. Let the DAE (2.44) be regular with tractability index U, and let
Qo,...,0u—1 be admissible projector functions. Then the DAE is equivalent via
(2.59)—(2.61) to the system consisting of the IERODE (2.51) related to its invariant
subspace im DI, 1, and the subsystem (2.62).

Proof. If x € C,(Z,R™) is a solution of the DAE, then the component u :=
DII, xeC 1(Z,R™) satisfies the IERODE (2.51) and belongs to the invariant sub-
space im IT, ;. The functions vy := Qox € C(Z,R™), v; :=IT;_1Qix € Ch(Z,R™),
i=1,...,u — 1, form the unique solution of the system (2.62) corresponding
to u. Thereby, we recognize that DII,, x = DII;, 1D~ Dx, Dv; := DII;_Qix =
DII;_1Q;D Dx, i=1,...,u—1, are continuously differentiable functions since Dx
and the used projectors are so.

Conversely, let u = DII,_1x denote a solution of the IERODE, and let vy,...,vy_1
form a solution of the subsystem (2.62). Then, it holds that v; = II;_{Q;v;, for
i=1,...,u—1,and vo = Qgvo. The functions u and Dv; = DIT;_1Q;v;, i =1,...,
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u — 1, are continuously differentiable. The composed function x := D~ u+vo+v; +
-++=+vy 1 is continuous and has a continuous part Dx. It remains to insert x into the
DAE, and to recognize that x fulfills the DAE. O

The coefficients of the IERODE and the system (2.62) are determined in terms
of the DAE coefficients and the admissible matrix function sequence resulting
from these coefficients. We can make use of these equations unless we suppose
that there is a solution of the DAE. Considering the IERODE (2.51) and the sys-
tem (2.62) as equations with unknown functions u € C'(Z,R"), vo € C(Z,R™),
v € Cll) (Z,R™), i=1,...,u — 1, we may solve these equations and construct con-
tinuous functions x := D u+vo+vy+---+vy 1 with Dx = DD"u+ Dvy +--- +
Dvy, | being continuously differentiable, such that x satisfies the DAE. In this way
we restrict our interest to those solutions u of the IERODE that have the property
u = DII,_ 1D u. In this way one can prove the existence of DAE solutions, suppos-
ing the excitation and the coefficients to be sufficiently smooth.

The following additional description of the coupling coefficients Hy,...,Hy—1
in the subsystem (2.62), which tie the solution u of the IERODE into this subsys-
tem, supports the idea of an advanced decoupling. We draw the reader’s attention to
the consistency with Theorem 1.22 which provides the easier time-invariant coun-
terpart of a complete decoupling. This lemma plays its role when constructing fine
decouplings. Further, we make use of the given special representation of the coef-
ficient Ho when describing the canonical projector function associated to the space
of consistent values for the homogeneous DAE in the next subsection.

Lemma 2.31. Let the DAE (2.44) be regular with tractability index W. Let
Qo,...,Qu—1 be admissible projector functions, and

Qo+ := QoPy -+ Py_1G, ' {By+GoD™ (DII,_,D~)'D},

Oks := OkPey1 -+ Pu1Gy {Bi+GD™ (DITy \D™)'DI 1}, k=1,...,u =2,
Ou—14:= QuflG,,_LlBufl-

(1)  Then the coupling coefficients of the subsystem (2.62) have the representations

Ho = QosIly-1,
Hi = 1QpeIly 1, k=1,...,0—2,
Hy1 =Ty 20y 111 1.
(2) The Qos,...,Qu-1+ are also continuous projector functions onto the sub-
spaces Ny, ... ,Ny_1, and it holds that Q. = Qpdli_1 fork=1,...,u—1.
Proof. (1)Fork=0,...,u—2, we express

Ak = QkPry1 -+~ Pu1 KTy (cf. (2.54) for K and Prop. 2.23 for V)

n—1
= QP Puo1Gy ' Bu Ty + QuPis1 -+ Py Y, VDI, .
=0
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Regarding the identity IT;D~ (DIT;D~ ) DIT; = 0 we derive first

u—1 n—1
Iy Y VDI =T, Y V,DIT,
=0 I=k
u—1

=IL 1 Y {({-IL)P,D~(DILD™)' DIy
N———

1=k
F—II;

— (I =1I1;) Q11D (DI 1 D™ )' DIy 1 }

u—1

=1L, Y {PD (DIL,D") — (I —I1;)Q; 11D~ (DII;1 1D~ )' DI, D~ }DI,
=k
u—1

=IL Y {PD(DILD™) — (I —I1)Qi D™ (DIl D~ )'DI1, 1D~ }DIT, ;.
1=k

Then, taking into account that Q;, = 0, as well as the properties

OiPiv1 Pu1=0kbir1 - PuIl1, OrPiyr - Pu1Pe=QkPeyr Py 111,
OrPe1 Pu—101 =0, if I > k+1,

we compute

n—1
OPir1--Py1 Y, ViDII,
=0

u—1
= QPi1+--Pyy Y, D (DILD ™)' DI,
I=k+1
n—1
+ OrPry1--Pu-i Z 11,0, D~ (DI, D™ )'DIT,
I=k
—_————
IL—I1,
n—1
= OPrt1 Pu—1 Z D~ (DHlDi)/DH,u_l
I=k+1

+ QPet1 -+ Pu1P(DIly D™ )'DITy .

This leads to

-1
Ak:QkPk+1“'Pu1Gﬁ1{BkH,,¢1— ) G,-D_(DH]-D_)’DHHI}
Jj=k+1
p—1
+QrPesi Pyt Y, D™ (DILD™)'DII,
I=k+1
+ QiPet1 -+ Pu—1 P(DITy_1D™)'DIT, ;.
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Due to QyPy1 - ~Py,1G;1Gj = OrPis1--- Py, for j > k+1, it follows that

u—1
Ak = OrPreyi "‘P/.hlG;lBkHufl —QPey1-+-Py1 Y, D (DIL;D™)'DIT,
Jj=k+1
n—1
+QrPesi--Py1 Y, D™ (DILD™)' DI,
I=kt1

+ QtPey1 -+ Py—1P(DITy D7) DI,
= QiPii1-+ Py 1Gy ' Billy 1+ QiPeyy -+ Py 1 PD™ (DIT, 1D )' DI,
= Or:d1y 1,
which proves the relations Ho = QoP---Py_1KIly_1 = Qo.II, 1, and
Hi = I 1 QkPryr - Py Ky = I (Al = Qredly—1, k= 1,...,
1 — 2. Moreover, it holds that Hy | = ITy 2Qu 1K = Qu 1Gy'By 11T,
=1y 2Qu 1511y 1.

(2) Derive

O Ok = OrPrit1 - 'PuflGﬁl {Bx+ G D™ (DIIy_ 1D~ )' DI } O
= QP 'PuflGﬁlBka + OPiy1 -+ Pu—1PD ™ (DIT, D~ )'DIL;_; Oy
= QkPes1+ - Pu—10k — QkPey1 - Pu—1BD™ (DI D™ )(DII_ QD™ )'D.

=0k =0

Then, O« O« = Ok« follows. The remaining part is evident. a

2.4.3 Fine and complete decouplings

Now we advance the decoupling of the subsystem (2.62) of the regular DAE (2.44).
As benefits of such a refined decoupling we get further natural information on the
DAE being independent of the choice of projectors in the given context. In particu-
lar, we fix a unique natural [IERODE.

2.4.3.1 Index-1 case

Take a closer look at the special case of regular index-1 DAEs. Let the DAE (2.44)
be regular with tractability index 1. The matrix function Gg = AD is singular with
constant rank. We take an arbitrary continuous projector function Q. The resulting
matrix function G = Go + BQy is nonsingular. It follows that Q1 =0, I} = Iy and
Vo = 0 (cf. Proposition 2.23), further By = BPy — GD~ (DITyD~)'DIIy = BPy. The
DAE scaled by G;l is (cf. (2.48)) now
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D™ (DITyx)' + Gy 'BPyx+ Qox = G .
Multiplication by DITy = D and I — ITy = Qg leads to the system

(Dx)' — R'Dx+DG{'BD™Dx = DGy 'q, (2.64)
Qox+ QoG 'BD Dx = Q)G 'q, (2.65)
and the solution expression x = D™ Dx + Qpx. Equation (2.65) stands for the subsys-

tem (2.62), i.e., for
Qox+ HoD™ Dx = Lygq,

with Ho = QoK ITy = QoG; ' BIly = QoG 'BPy, Lo = QoG .

The nonsingularity of G| implies the decomposition Sy & Ny = R (cf. Lemma A.9),
and the matrix function QOGle is a representation of the projector function onto
Ny along Sp.

We can choose Qg to be the special projector function onto Ny along Sy from the
beginning. The benefit of this choice consists in the property Ho = QoGl_lBPo =0,
that is, the subsystems (2.65) uncouples from (2.64).

Example 2.32 (Decoupling of a semi-explicit index-1 DAE). We reconsider the semi-
explicit DAE from Example 2.3

I r, |Bu Biz|
[O] ([10]x)+ [321 322} x=gq
with nonsingular Bj;. Here we have the subspaces
No={zeR™" :7;, =0} and Sp={z€R™ "™ :Byz;+Bpz =0},

and the projector function onto Ny along Sy is given by
0 O
&= [3221321 1} '

This projector is reasonable owing to the property Hy = 0, although it is far from
being orthogonal. It yields

- I 1+ B12B,) By 312} —1 { I —B1By,
D = B ,G1= 22 G = N - 22 ,
[—3221321} ! { By By ! —By, Byy (I+ By, By1Bi2)

and the IERODE
x| + (B —3123521321)x1 =q1— B1zBEZlQ2.

Notice that in Example 2.3, Qy is chosen to be the orthoprojector, but precisely the
same IERODE results for this choice. O

The last observation reflects a general property of regular index-1 DAEs as the fol-
lowing proposition states.
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Proposition 2.33. Let the DAE (2.44) be regular with index 1. Then its IERODE

W' —Ru+DG;'BD u=DG|'q
is actually independent of the special choice of the continuous projector function

Qo.

Proof. We compare the IERODEs built for two different projector functions
Qo and Q. It holds that G| = Go +BQo = Go + BQoQo = Gi(Py + Qo)
= G1(I + QoQoPy) and D~ = D"DD~ = D™R = D"DD~ = BD~, therefore
DG{' = DG{', DG{'BD~ = DG, 'B(I — 0o)D~ = DG{'B(I — QyQ0)D~ =
DG 'BD~. O
Regular index-1 DAEs are transparent and simple, and the coefficients of their

IERODE:s are always independent of the projector choice. However, higher index
DAE:s are different.

2.4.3.2 Index-2 case

We take a closer look at the simplest class among regular higher index DAEs, the
DAEs with tractability index p = 2.

Let the DAE (2.44) be regular with tractability index u = 2. Then the IERODE
(2.51) and the subsystem (2.62) reduce to

W' — (DILD™)'u+DII|G,'BiD"u = DII,| G, 'q,

and

0-000:D ([0 0 T[]\, [v], [Ho] ~~ _ [QoPG;"
0 28 ([oomad [n]) + ] # [ o= g

with

Ho = QoPIKIT; = QoPiG, ' BiIT; + Qo(P1 — Q1)D™ (DIT,D™)'DITy
= QoP\G, 'BoIT; + QoP\ D™ (DIT; D) DIT,
Hi = QKT = I[1,0,G, ' B IT;.

Owing to the nonsingularity of G», the decomposition (cf. Lemma A.9)
N ®S; =R"

is given, and the expression 01G, B appearing in H; reminds us of the represen-
tation of the special projector function onto N; along S; (cf. Lemma A.10) which is
uniquely determined. In fact, 01G, !B, is this projector function. The subspaces N;
and S are given before one has to choose the projector function Q, and hence
one can settle on the projector function Q; onto N; along S; at the beginning.



2.4 Decoupling 107

Thereby, the necessary admissibility condition Ny C kerQ; is fulfilled because of
No C S1 =kerQ;. It follows that

01G,'B|IT; = 01G,'B\Pi = 0\P =0, H,=I1Q:G,'BiII, =0.

Example 2.34 (Advanced decoupling of Hessenberg size-2 DAEs). Consider once
again the so-called Hessenberg size-2 DAE

I , [B. B
M ([10]x) + {B; ﬂx:q, (2.66)

with the nonsingular product B,;Bj,. Suppose the subspaces im B, and kerB,; to
be C!-subspaces. In Example 2.3, admissible matrix functions are built. This DAE
is regular with index 2, and the projector functions

00 Q 0 -
QO = |:O ]:| I Ql = |:_Bl_2 0:| ’ 'Q = B12B12) (267)

are admissible, for each arbitrary reflexive inverse B}, such that €2 is continuously
differentiable. We have further DIT;D™ =1 — Q and

So =581 ={zeR™*"™ : By;z; = 0}.
In contrast to Example 2.3, where widely orthogonal projectors are chosen and
kerQ; = {z€ R™ ™™ : B},z; =0} = (Ng® Ny )" & Ny,

now we set By, 1= (B21B12)"'By; such that  projects R™ onto imBj, along
kerB;;, and Q; projects R™ onto N along

kerQ1 = {Z < le+m2 . lezl = O} = S].

Except for the very special case, if ker B, = ker B»1, a nonsymmetric projector func-
tion DIT)D~ =1 —Q =1—B1>(B3B12) ' By results. However, as we already know,
this choice has the advantage of a vanishing coupling coefficient H;.

In contrast to the admissible projector functions (2.67), the projector functions

0 0 Q0 _
QO = Bl_z(Bll —Ql)([—Q) [:| ) Ql = |:_B1—2 0:| ) Q -:3123127 (268)

form a further pair of admissible projector functions again yielding DII})D™ =1 —
Q. With B}, := (B21B12) ' By, this choice forces both coefficients 1 and H to

disappear, and the subsystem (2.62) uncouples from the IERODE. One can check
that the resulting IERODE coincides with that from (2.67). a

As mentioned before, the index-2 case has the simplest higher index structure.
The higher the index, the greater the variety of admissible projector functions. We
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recall Example 1.26 which shows several completely decoupling projectors for a
time-invariant regular matrix pair with Kronecker index 2.

2.4.3.3 General benefits from fine decouplings
Definition 2.35. Let the DAE (2.44) be regular with tractability index p, and let
Qo ...,Qu—1 be admissible projector functions.

(1) If the coupling coefficients Hy,...,H, 1 of the subsystem (2.62) vanish, then
we speak of fine decoupling projector functions Qy,...,Qu—1, and of a fine

decoupling.
(2) If all the coupling coefficients Ho,...,H, | of the subsystem (2.62) vanish,
then we speak of complete decoupling projector functions Qo,...,Qu—1, and

of a complete decoupling.

Special fine and complete decoupling projector functions Qp, Q are built in Exam-
ples 2.34 and (2.32).

Owing to the linearity of the DAE (2.44) its homogeneous version
A(t)(D(t)x(t)) +B(t)x(t) =0, t€J, (2.69)
plays its role, and in particular the subspace
Sean(t) :={z € R™: Ix € C)(Z,R™), A(Dx)' +Bx =0, x(t) =z}, 1 € T.

The subspace Scq,(¢) represents the geometric locus of all solution values of the
homogeneous DAE (2.69) at time ¢. In other words, S.q,(¢) is the linear space of
consistent initial values at time t for the homogeneous DAE.

For implicit regular ODEs (2.43), S¢qn(f) = R™ is simply the entire time-invariant
state space R™. In contrast, for intrinsic DAEs, the proper inclusion

Scan (t) g SO (t)

is valid. While Sy (7) represents the so-called obvious constraint associated with the
DAE (2.69), the subspace S.4,(2) serves, so to say, as the complete final constraint
which also incorporates all hidden constraints.

In particular, for the semi-explicit DAE in Example 2.3, we find the obvious
constraint

So(l‘) = {Z € RMmtm 1= —Bzz(l‘)71321 (Z‘)Zl}, dimSo(t) =myq,
and further

Sean(t) ={z € R™MT™ : 25 = =By (t) "' Bai ()21} = So(0),
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supposing By, () remains nonsingular. However, if By (¢) = 0, but By (t)B12(t) re-
mains nonsingular, then

Sean(t) = {z € R™M ™™ :B5, ()71 = 0,
2 = —[(B21B21) ' By (Bi1 — (B12((B21B21) ' B21))(1)z1}

is merely a proper subspace of the obvious constraint
So(t) ={z¢€ R™+ma By (t)z1 =0}.

Example 2.4 confronts us even with a zero-dimensional subspace S¢q, () = {0}.

Except for those simpler cases, the canonical subspace S.4, is not easy to ac-
cess. It coincides with the finite eigenspace of the matrix pencil for regular linear
time-invariant DAEs. Theorem 2.39 below provides a description by means of fine
decoupling projector functions.

Definition 2.36. For the regular DAE (2.44) the time-varying subspaces Scqn(?),
t € Z, and Negu(t) := No(t) +---+Ny—1(t), t € Z, are said to be the canonical
subspaces of the DAE.

By Theorem 2.8, N4, is known to be independent of the special choice of admissible
projectors, which justifies the notion. The canonical subspaces of the linear DAE
generalize the finite and infinite eigenspaces of matrix pencils.

Applying fine decoupling projector functions Qy,...,Qy 1, the subsystem (2.62)
corresponding to the homogeneous DAE simplifies to

0MNot -+ Nou—1 Vo [T Mop -+ Moy Vo

. V1 . V1

0 : D . " 1 : .

e Nuape ' e Mo

0 V-1 1 Vu-1
[ Ho 0
0 0

| Apwu=||. (2.70)

0 0

For given u, its solution components are determined successively as
Vu—1 =0, ...,vi=0,vg=—-HoD u,

and hence each solution x € C}(Z,R™) of the homogeneous DAE possesses the
representation

x=D u+vo=(I—-Ho)D u= (]—QO*Hufl)D_DHule_MZ (I— Qo*)Hﬂle_u,

whereby u = DII, D™ u is a solution of the homogeneous IERODE
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u' — (DI, D) u+ DIl 1G,'BD u=0,

and Q. is defined in Lemma 2.31. Owing to the relations PyQo. = 0, the continuous
matrix function (I — Qo.)IT,—; is also a projector function, and the nullspace is
easily checked to be

ker (1_ QO*)H/J—I = Nean-

Since each solution of the homogeneous DAE can be represented in this way, the
inclusion
Scan C im (1 - QO*)H/.lfl

is valid. On the other hand, through each element of im (( — Qo.(¢))I1,1(¢)), at
time 7, there passes a DAE solution, and we obtain

im (I - QO*)HlJfl = Scan~

In fact, fixing an arbitrary pair xo € im ((/ — Qo+ (t0))I1u—1(t0)), to € Z, we determine
the unique solution u of the standard IVP

u — (DHulei)/u —|—DHu,1GEIBD7u =0, u(n)= D(to)H,J,l (t0)xo,

and then the DAE solution x := (I — Qo«)II,—1D"u. It follows that
x(to) = (I — Qo«(to) ) I1y—1(t9)xo = xo. In consequence, the DAE solution passes
through X0 € im((l — Qo+ (t()))H#,1 (l())).

Owing to the projector properties, the decomposition

Nean(t) ® Sean(t) =R™, 1t €T, 2.71)

becomes valid. Moreover, now we see that S.,, is a C-subspace of dimension
_ pu—1
d=m—Y;_, (m—r).

Definition 2.37. For a regular DAE (2.44) with tractability index u, which has a fine
decoupling, the projector function I, € C(Z,L(R™)) being uniquely determined
by

imIle,, = Scan; ker Iean = Nean

is named the canonical projector function of the DAE.

We emphasize that both canonical subspaces S.4, and N4, and the canonical pro-
jector function I1.,,, depend on the index . Sometimes it is reasonable to indicate
this by writing Sean ys Nean p and Iegp .

The canonical projector plays the same role as the spectral projector does in the
time-invariant case.

Remark 2.38. In earlier papers also the subspaces S; (e.g., [159]) and the single
projector functions Qy,...,Q, | forming a fine decoupling (e.g., [157], [164]) are
named canonical. This applies, in particular, to the projector function Q| onto
Ny along Sy,_1. We do not use this notation. We know the canonical projector
function Il.,, in Definition 2.37 to be unique, however, for higher index cases, the
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single factors P; in the given representation by means of fine decoupling projectors
are not uniquely determined as is demonstrated by Example 1.26.

Now we are in a position to gather the fruit of the construction.

Theorem 2.39. Let the regular index-L DAE (2.44) have a fine decoupling.

(1)  Then the canonical subspaces S.q, and Neq, are C-subspaces of dimensions
d :mf):fl:_ol(mfr,-) and m —d.
(2)  The decomposition (2.71) is valid, and the canonical projector function has
the representation
Ieqn = (I_ QO*)H,u—la

with fine decoupling projector functions Qo, ...,Qu—1.
(3) The coefficients of the IERODE (2.51) are independent of the special choice
of the fine decoupling projector functions.

Proof. Tt remains to verify (3). Let two sequences of fine decoupling projector func-
tions Qo,...,Qy—1 and Oo,..., Q_u_l be given. Then the canonical projector func-
tion has the representations IT.q; = (I — Qo« ) ITy—1 and g, = (I — Qo) [Ty 1. Tak-
ing into account that D~ = ByD~ we derive

DHIu_1D7 =DII.,,D™ = Dﬁ#_1D7 = Dﬁu_l[)i.
Then, with the help of Lemma 2.12 yielding the relation G, = G, Z,,, we arrive at
pr, G,' =pM,_ D DZ,'G,' =DII,_,G,",

pr,_,G,'BD” =DII,_,G,'BD” =DII,_,G,'B(I-00)D™ =DII,_,G,'BD",
and this proves the assertion. a

For regular index-1 DAEs, each continuous projector function Qg already generates
a fine decoupling. Therefore, Proposition 2.33 is now a special case of Theorem 2.39
3).

DAEs with fine decouplings, later on named fine DAEs, allow an intrinsic DAE
theory in Section 2.6 addressing solvability, qualitative flow behavior and the char-
acterization of admissible excitations.

2.4.3.4 Existence of fine and complete decouplings

For regular index-2 DAEs, the admissible pair Qg,Q; provides a fine decoupling,
if Oy is chosen such that ker Q1 = ;. This is accompanied by the requirement that
imDIT)D~ = DS is a C'-subspace. We point out that, for fine decouplings, we need
some additional smoothness with respect to the regularity notion. While regularity
with index 2 comprises the existence of an arbitrary C! decomposition (i.e., the
existence of a continuously differentiable projector function DII;D™)
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imDITiD~ &imDIIyQ1 D~ @ kerA = R",
e

=DN,
one needs for fine decouplings that the special decomposition
DS1 & DN ® kerA =R",

consists of C!-subspaces. For instance, the semi-explicit DAE in Example 2.34 pos-
sesses fine decoupling projector functions, if both subspaces im B, and kerB,; are
continuously differentiable. However, for regularity, it is enough if imBy; is a C'-
subspace, as demonstrated in Example 2.3.

Assuming the coefficients A, D, B to be C', and choosing a continuously differ-
entiable projector function Qy, the resulting DN; and DS are always C'-subspaces.
However, we do not feel comfortable with such a generous sufficient smoothness
assumption, though it is less demanding than that in derivative array approaches,
where one naturally has to require A, D, B € C? for the treatment of an index-2 prob-
lem.

We emphasize that only certain continuous subspaces are additionally assumed to
belong to the class C!. Since the precise description of these subspaces is somewhat
cumbersome, we use instead the wording the coefficients of the DAE are sufficiently
smooth just to indicate the smoothness problem.

In essence, the additional smoothness requirements are related to the coupling coef-
ficients H1,...,Hy 1 in the subsystem (2.62), and in particular to the special pro-
jectors introduced in Lemma 2.31. It turns out that, for a fine decoupling of a regular
index-u DAE, certain parts of the coefficients A, D, B have to be continuously dif-
ferentiable up to degree p — 1. This meets the common understanding of index u
DAE:s, and it is closely related to solvability conditions. We present an example for
more clarity.

Example 2.40 (Smoothness for a fine decoupling). Consider the DAE

1000] [1000] ., [0 0 0 0
0100| (|o100 00 0 —1
oo1o|\oo10/*) Tlo—10 o]*=%
0000| ‘{0000 @0 —10

A D B

on the interval Z = [0, 1]. According to the basic continuity assumption, B is con-
tinuous, that is, o € C([0,1]). Taking a look at the solution satisfying the initial
condition x; (0) = 1, that is

X () =1, x3(1) = (t), xa(t) = x53(t) = &' (1), xa(r) = x3(r) = (1)

we recognize that we must more reasonably assume o € C2([0, 1]). We demonstrate
by constructing a fine decoupling sequence that this is precisely the smoothness
needed.
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The first elements of the matrix function sequence can be chosen, respectively, com-
puted as

0000 100 0 0000 1000
0000 010—1 0100 010-1
Q=10000["%"=loo1 0| 2= o000/ 2= |o-11 0
0001 000 0 0100 0000
We could continue with
0000 10 0 0
0010 01 0 —1
2=10010["%={o-11 o
0010 00 —10

which shows the DAE to be regular with tractability index 3, and Qp,Q1,0> to be
admissible, if oo € C([0, 1]). However, we dismiss this choice of 0, and compute it
instead corresponding to the decomposition

MeS={zeR:z1=0,n=3=u}®{zeR 1 az; =z} =R*".

This leads to
0000 1 000
a010 N 0 000
QD= lgo10| PR =Ih=|_o 540l
a010 0 010

and hence, for these Qp, 01, 0> to be admissible, the function ¢ is required to be
continuously differentiable. The coupling coefficients related to the present projec-

tor functions are
0000

o' 000
0000}’
0000

H = Hr =0.

If o does not vanish identically, we have not yet reached a fine decoupling. In the
next round we set Oy = Qy such that G; = G, but then we put

0000
a'100
0000}
o100

01 := Q1. := 1G5 ' {B; + G|D~ (DILD ™)' DIly} =

in accordance with Lemma 2.31 (see also Lemma 2.41 below). It follows that
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1 000 1 000

- —'000| = 0 1 0-1
DIWD™=Ih=1 o ool 92=|_¢/—11 0 |

0 010 0 000

and we see that, to ensure that DIT;D~ becomes continuously differentiable, and
0o,0: admissible, we need a two times continuously differentiable function c.
Then we have N» = N,, which allows for the choice Q> = Q>. The resulting
00,01, 0> are fine decoupling projector functions. 0

In general, if the DAE (2.44) is regular with tractability index u, and Qy,...,Qy 1
are admissible projector functions, then the decomposition

N,ufl @S‘ufl — Rm

holds true (cf. Lemma A.9). If the last projector function Q1 is chosen such
that the associated subspace S, 1 2 No® -+ @ Ny_» becomes its nullspace, that
is kerQy | = Sy—1, imQy 1 = Ny, then it follows (cf. Lemma A.10) that
Ou-1= Q,HG,;l \Bu—1, and hence (cf. (2.54))

H[,lfl = H;L72Q/J71KH/471 = 1—11.172Q;L7]IC
=y Qu-1(I = My—1) Gy ' Bu—111u1
—_— —————

:Qu—l
n—1
+ Y Iy 20y 1(I—-1IT)(P,— Q;)(DILD™)'DIT,
0 %/_/

=
=0

=11, 20y 1G,'By 1Tl =TIy 50y I, =0.

So far one can prevail on the coefficients H,_| to vanish by determining
kerQ, 1 = Sy—1. This confirms the existence of complete decoupling projector
functions for regular index-1 DAESs, and the existence of fine decoupling projec-
tor functions for regular index-2 DAEs.

Remember that, for regular constant coefficient DAEs with arbitrary index, com-
plete decoupling projectors are provided by Theorem 1.22. We follow the lines of
[169] to prove a similar result for general regular DAEs (2.44).

Having Lemma 2.31 we are well prepared to construct fine decoupling projector
functions for the general regular DAE (2.44). As in Example 2.40, we successively
improve the decoupling with the help of Lemma 2.31 in several rounds. We begin
by forming arbitrary admissible projector functions Qy,...,Qu—> and Gy_1. Then
we determine Q| by kerQy 1 = 8,1 and imQy | = N, _1. This yields G, =
Gu-1+Bu 10,1 aswell as

Qu1=0u 1G;'By 1=0Qu 1., and
7'[”71 = HkaQ,ufl*Hufl = Huszuflnufl =0.
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If 4 = 2 we already have a fine decoupling. If u > 3, we assume DII, 30, 2D,
which is a priori continuous, to be even continuously differentiable, and compose a
new sequence from the previous one. We set

Q_O = Q07 .. '7Q_[J73 = Q[J737 and Q_[.L72 = Q[.L72*'

DI=I”,2D’ =DII, 3D~ — DI, 30, ».D" is continuously differentiable, and the
projector functions Qy, .. .,Q“,z are admissible. Further, some technical calcula-
tions yield

Gu1 =Gy {I+Qu-aPur+(I—I,u_3)Qu2D (DI, _»D")'DITy 30, >}

Zy1

The matrix function Z;, | remains nonsingular; it has the pointwise inverse
1 = _ B _
Z#*I =1- Q,u—2Pu—2 - (1_ Hp—3)Qu—ZD (DHM—ZD )/DHH—3Qﬂ—2-
We complete the current sequence by
Ou-1 ::ZﬁllQuleufl = ZﬁllQp—L

It follows that Q1 Q2 = z;l, Ou-10u—2+=0and Qy_10; = z,;l, 0u-10:i=0
for i =0,...,u — 3. Applying several basic properties (e.g., IT,—» = IT, »I1, »)
we find the representation DIT,_1D~ = (DII,_,D~)(DII,_1D~) which shows the
continuous differentiability of DIT,_D~. Our new sequence Qy,...,Qy—1 is ad-
missible. We have further imG,_; =imG,,_i, thus

S‘qul = 5#71 = keI’W/Jle = kerWlJleZufl = Z/Illsll*l‘

This makes it clear that, Qu— 1= Z;ll Qp—1 projects onto N#_l = Z;llN#_ 1 along
S’#,l = Z;llS#,l, and therefore the new coupling coefficient satisfies 7-_[#,1 = 0.

Additionally, making further technical efforts one attains 7-_{,,1,2 =0.
If u = 3, a fine decoupling is reached. If u > 4, we build the next sequence analo-
gously as

QO = Q_07 .- 'aQ[J74 = Q_[.L747 Q_H*3 = Q,LL*3*7
Q_u72 = ZﬁizQ_u72Zu725 Q_ufl = Z,IllQ_uflzufl .

Supposing DIT,,_40y-3.D~ to be continuously differentiable, we prove the new
sequence to be admissible, and to generate the coupling coefficients

7‘7,4,1 =0, 7—7”72 =0, 7'7#,3 =0.

And so on. Lemma 2.41 below guarantees the procedure reaches its goal.
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Lemma 2.41. Let the DAE (2.44) with sufficiently smooth coefficients be regular
with tractability index @ > 3, and let Qy,...,Qu—1 be admissible projector func-
tions.

Let k € {1,...,u — 2} be fixed, and let Q) be an additional continuous projector
function onto Ny = ker Gy such that DIT,_1 0D~ is continuously differentiable and
the inclusion No+ - - + Ni_ C ker Oy is valid. Then the following becomes true:

(1)  The projector function sequence

Q0 :=0Qo,...,0k—1:= Ok_1,
Ox,
Ok+1 1=Z{J1Qk+1Zk+1,~--,Q_u—1 = ZﬁllQu—ﬂu—l,

with the continuous nonsingular matrix functions Ziy1,...,2Z, 1 determined
below, is also admissible.

(2)  If, additionally, the projector functions Qo, ...,Qu—1 provide an advanced de-
coupling in the sense that the conditions (cf. Lemma 2.31)

Op 11l 1=0,..., Ory1:dly 1 =0
are given, then also the relations
Ou-1:Ily—1=0,..., Q1.1 1 =0, (2.72)
are valid, and further
Oy = (Qks — Or) 1. (2.73)

The matrix functions Z; are consistent with those given in Lemma 2.12; however,
for easier reading we do not access this general lemma in the proof below. In
the special case given here, Lemma 2.12 yields simply Zyg = 1,Y1 =2, =1,...,
Y, = Z;, =1, and further

k=1 k=1
Yir1 =14 0i(Qc— Q)+ Y, Q2 Ok = <1+ Y lelek> (H- O (Ox — Qk)) )
1=0 1=0

Zi+1 = Yit1,
j-2

Yi=I+Y 0101, Zj=YiZj_, j=k+2,... 1
1=0

Besides the general property kerIT; = kerIl;, j =0,..., 1 — 1, which follows from
Lemma 2.12, now it additionally holds that
imQy =imQy, but kerQ;=kerQ;, j=k+1,...,u—1.

We refer to Appendix B for the extensive calculations proving this lemma.
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Lemma 2.41 guarantees the existence of fine decoupling projector functions, and
it confirms the procedure sketched above to be reasonable.
The following theorem is the time-varying counterpart of Theorem 1.22 on constant
coefficient DAEs.

Theorem 2.42. Let the DAE (2.44) be regular with tractability index L.

(1)  If the coefficients of the DAE are sufficiently smooth, then a fine decoupling
exists.
(2) Ifthere is a fine decoupling, then there is also a complete decoupling.

Proof. (1) The first assertion is a consequence of Lemma 2.41 and the procedure
described above.
(2) Let fine decoupling projectors Qo, ..., Oy 1 be given. We form the new sequence

00 = Qos, 01:=2;'01Z,..., Qu-1 1=Z;EIQ;L712”71,

with the matrix functions Z; from Lemma 2.12, in particular Z; =1+ OoPy. It holds
that D~ = PyD~. Owing to the special form of Z;, the relations I1;_;Z; = IT;_,
Hj,lz;‘ = II;_; are given for j < i— 1. This yields Q;Q; = Q,-Z;IQJ-Z]- =
QiIIFlZ;] 0;Z;=0.
—_——

=0

Expressing DIT|D~ = DPyZ; ' P\ZiPyD~ = D PyZ; ' P Z, lyD~ = DIT; D™, and suc-
~——
I1
cessively,
DIL.D™ = DIT; 1Z'PZ;P,
= DIT,_\D~DZ; 'PZ;P, = DI, D" DZ; 'P,Z;P; = DILLD",
| S —
II;

we see that the new sequence of projector functions Qy, ..., Q_y,l is admissible, too.
Analogously to Lemma 2.41, one shows

7:11,171 :07“'; 7—_{1 :07 7:[0 = (Q0*7Q0)Hﬁl717

and this completes the proof. a

2.5 Hierarchy of admissible projector function sequences for
linear DAEs

The matrices Qy,...,Q; are admissible projectors, where Q; projects onto
Nj=kerGj, j=0,...,i,withPy:=1—Qo,Ilp:=Fyand P; :=1—Q;,II; :=1I; P;,

—~

Nj:= (N0—|—~~-—|-Nj7])ﬁNj, j=1,...,i
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admissible (Def. 2.6) -
~ ) ) widely orthogonal (Def. 2.13)
(N()+"'—|-Nj7])@Njgkeer,.J:1,...,1 > H/ZH},]’ZO,...,Z’

ijleQl:071<j7 J=1,...1

l

regular admissible

ﬁj ={0}, j=1,...,i —— | widely orthogonal and regular
Qj0=0,1<j,j=1,...,i

l

for regular index yt DAEs
(square by definition)

l

fine decoupling (Def. 2.35)
Hl :O;"'7H/,171 =0
DIl D™ = DIlgp uD™

l

complete decoupling (Def. 2.35)
Ho=0,H1=0,...,Hy 1=0
IT 1 = 1.4y  (cf. Def. 2.37)

2.6 Fine regular DAEs

Here we continue to investigate regular DAEs (2.44) which have tractability index u
and fine decoupling projector functions Qy,...,Qy 1. It is worth emphasizing once
more that Theorem 2.42 guarantees the existence of a fine decoupling for all regular
DAEs with sufficiently smooth coefficients.

Definition 2.43. Equation (2.44) is said to be a fine DAE on the interval Z, if it is
regular there and possesses a fine decoupling.

By Theorem 2.39 and Lemma 2.31,
Hcan = (1_ QO*)H;Lfl - (I_HO)prl

is the canonical projector function onto S, along Neay, and hence DII.q, = DII,; 1,
and therefore DIl.,,D~ = DIl D™, and imDII, | = imDIl.4, = DScan.
Taking into account also Lemma 2.28 (7), the IERODE can now be written as
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u = (DIequD ™) tt+ DIy G, ' BD™ u = DIl G, ' q, (2.74)

and, by Lemma 2.27, the subspace DS, is a time-varying invariant subspace for its
solutions, which means u(ty) € D(2))Scan(to) implies u(t) € D(t)Scqn(t) forallr € Z.
This invariant subspace also applies to the homogeneous version of the IERODE.
Here, the IERODE is unique, its coefficients are independent of the special choice
of the fine decoupling projector functions, as pointed out in the previous subsection.
With regard to the fine decoupling, Proposition 2.29 (6), and the fact that
vi=IL_1Q;v; holds true fori = 1,...,u — 1, the subsystem (2.62) simplifies slightly
to

u—1 u—1
vo=— Y Nu(Dv))' =Y Mo vi—HoD u+ Log, (2.75)
=1 1=2
u—1 u—1
vi=— Y Nu(Dvw) = Y, Myvi+Lqg, i=1,....u-3  (276)
I=i+1 I=i+2
Vy2 = —Nu_27u_1(Dvﬂ_1)/+£u_2q, 2.77)
vu—1 =Ly 14. (2.78)

By Theorem 2.30, the DAE (2.44) is equivalent to the system consisting of the
IERODE and the subsystem (2.75)—(2.78).

2.6.1 Fundamental solution matrices

The following solvability assertion is a simple consequence of the above.
Theorem 2.44. If the homogeneous DAE is fine, then,
(1) for each arbitrary x° € R™, the IVP

A(Dx)' +Bx=0, x(tg) —x° € Nean(to), (2.79)

is uniquely solvable in Cll) (Z,R™),
(2)  the homogeneous IVP

A(Dx)' +Bx=0, x(t9) € Nean(to),

has the trivial solution only, and
(3)  through each xo € Scan(to) there passes exactly one solution.

Remark 2.45. Sometimes is seems to be more comfortable to describe the initial
condition in (2.79) by an equation, for instance, as

I (t0) (x(t0) —x°) =0, (2.80)

and as
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C(x(t9) —x°) =0, (2.81)

by any matrix C such that kerC = ker IT.4,(f0) = Nean(fo). For instance, taking ar-
bitrary admissible projector functions Qy,...,Qy_1, one can choose C such that
C = CIL.4y (1) (cf. Theorem 3.66).

Proof. (2) The initial condition yields u(ty) = D(fo)ITeqn(t0)x(to) = 0. Then, the re-
sulting homogeneous IVP for the IERODE admits the trivial solution # = 0 only.
Therefore, the DAE solution x = I1.,,D~ u vanishes identically, too.

(1) We provide the solution u of the homogeneous IERODE which satisfies the ini-
tial condition u(ty) = D(tg)ITeqn(to)x°. Then we form the DAE solution
x = Il.,,D~ u, and check that the initial condition is met:

x(t()) —xO =11.,, (l‘o)D(t())_u(t()) — xo =11, (to)D(to)_D(lo)Hcan (l‘())xo —XO
= (I — Iean(10))x° € Nean(t0).

Owing to (2) this is the only solution of the IVP.
(3) We provide the IVP solution as in (1), with X0 replaced by xg. This leads to

x(IO) =114 (IO)D(IO ) u (IO) =1Il.4n (t0 )D(IO ) 7D(t0 ) Ian (l‘o))C() =114 <t0)x0 =0.
The uniqueness is ensured by (2). a

By Theorem 2.44, regular homogeneous DAEs are close to regular homogeneous
ODEs. This applies also to their fundamental solution matrices.
Denote by U(t,1) the classical fundamental solution matrix of the IERODE, that is,
of the explicit ODE (2.74), which is normalized at ty € Z, i.e., U (t,t9) = I.
For each arbitrary initial value ug € D(t)Scan(to), the solution of the homogeneous
IERODE passing through remains for ever in this invariant subspace, which means
U(t,10)ug € D(t)Scan(t) for all t € Z, and hence

U(t,10)D(t0) Hean(to) = D(t) Hean(t)D ()~ U (1,10)D(t0) ean(to),  t € L. (2.82)
Each solution of the homogeneous DAE can now be expressed as

x(t) =(I—=Ho(t))D(t) " U(t,t0)uo = Mean(t)D(t) " U (t,t0)uo, (2.83)
te I, Uy € D(tO)Scun(t())v

and also as

x(t) = Mg (£)D(2) U (1,20)D(t0) ean(10) x°, €T, with x°€R™. (2.84)

X(t,10)

If x € C,(Z,R™) satisfies the homogeneous DAE, then there is exactly one
uo € D(19)Scan(tp) such that the expression (2.83) is valid, and there are elements
x¥ € R™ such that (2.84) applies. Except for the index-0 case, x” is not unique.
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Conversely, for each arbitrary x* € R™, formula (2.84) provides a solution of the
homogeneous DAE. We know that the solution values of the homogeneous DAE lie
in the d-dimensional canonical subspace Sqy, in particular x(f9) € Sean(fo). There-
fore, starting from an arbitrary x* € R”, the consistency of x(fy) with x° cannot be
expected. What we always attain is the relation

)C(t()) = I, (tO)xoa

but the condition x(#y) = xg is exclusively reserved for xp belonging to Se4,(fo)-

The composed matrix function
X(t,t0) := Mean(t)D(t) " U (t,10)D(t0) Ipan(t0), t€Z, (2.85)

arising in the solution expression (2.84) plays the role of a fundamental solution ma-
trix of the DAE (2.44). In comparison with the (regular) ODE theory, there are sev-
eral differences to be considered. By construction, it holds that X (¢, %)) = IT.q, (%)
and

imX (t,20) C Sean(t), Nean(to) CkerX(t,t9), t€Z, (2.86)

so that X (¢,1) is a singular matrix, except for the case u = 0. X(., 1) is continuous,
and DX (.,f) = DITquD~U(.,10)D(29)I1.4n(to) is continuously differentiable, thus
the columns of X (.,19) are functions belonging to C}(Z,R™).

We show that X(z,7)) has constant rank d. Fix an arbitrary ¢ # fp and in-
vestigate the nullspace of X(¢,19). X(¢,%0)z = 0 means U (¢,t0)D(to)ean(to)z €
ker IT.,,(t)D(t)~, and with regard to (2.82) this yields U (¢,50)D(t9) [ qn(f9)z = 0,
thus D(19) I1.qx(f0)z = 0, and further IT4,(t9)z = 0. Owing to (2.86), and for reasons
of dimensions, it follows that

imX(¢,t0) = Sean(t), kerX(z,10) = Nean(tp), rankX(t,f9) =d, t€Z. (2.87)
Lemma 2.46. The matrix function
X(t,10)” = Myan(10)D(10) U (1,10) "' D()[Tan(t), t €,
is the reflexive generalized inverse of X (t,1y) determined by
XX X=X, XXX =X, X X=Iu), XX =I.
Proof. Applying the invariance (2.82), we derive

XX = M,y (t0)D(to) U™ "DI 4 IT,0n D~ UD(t0) oan(t0)
= Hcan (IO)D(tO) - U_l DHcanD_ UD(tO)Hcan (tO) = Hcan (tO) )

UD(’())H(ran <t0>

and X XX =X X)X =X, XX X=XX"X)=X.
Next we verify the relation
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U~'DI0,, = D(t9) a0 (t0)D(t9) "U ' DI1.4p, (2.88)
which in turn implies

XX~ = HcanD7UD(tO)Hcan(IO)Hcan(IO)D(tO)7U71DHcan
= HcanDiUD(IO)Hcan (ZO)D(IO)iUilDHcan = Llecan-

U~'DIgn

From
U’ — (DI;quD™)'U + DIeanG,,'BD"U =0,  U(ty) =0,

it follows that
UV 4+ U (DHeuD ™) — U™ DITtnGy 'BD™ = 0.
Multiplication by DII.,,D~ on the right results in the explicit ODE
V' =V(DIequD™)' +VDI0nG, ' BD™

for the matrix function V = U~ !'DII,,D~. Then, the matrix function
V := (I — D(tg).4n(to)D(to) ")V vanishes identically as the solution of the clas-
sical homogeneous IVP

V' =V(DHquD~)' +VDIanG,'BD~,  V(t9) =0,
and this proves (2.88). a

The columns of X(.,#) are solutions of the homogeneous DAE, and the matrix
function X (., o) itself satisfies the equation

A(DX) +BX =0, (2.89)
as well as the initial condition
X(0,t0) = Mean(t0), (2.90)
or, equivalently,
Iean(to) (X (t0,20) — 1) = 0. (2.91)

Definition 2.47. Let the DAE (2.44) be fine. Each matrix function
Y € C(Z,L(R*,R™)), d < s < m, is said to be a fundamental solution matrix of
the DAE, if its columns belong to C},(Z,R™), the equation

A(DY) +BY =0

is satisfied, and the condition imY = S, is valid.
A fundamental solution matrix is named of minimal size, if s = d, and of maximal
size, if s = m.
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A maximal size fundamental solution matrix Y is said to be normalized at ty, if
I, (lo)(Y(l‘()) —I) =0.

In this sense, the above matrix function X(.,#p) (cf. (2.85)) is a maximal size
fundamental solution normalized at #;.

Remark 2.48. Concerning fundamental solution matrices of DAEs, there is no com-
mon agreement in the literature. Minimal and maximal size fundamental solution
matrices, as well as relations among them, were first described in [9] for standard
form index-1 DAEs. A comprehensive analysis for regular lower index DAEs, both
in standard form and with properly stated leading term, is given in [7]. This analysis
applies analogously to regular DAEs with arbitrary index.

Roughly speaking, minimal size fundamental solution matrices have a certain ad-
vantage in view of computational aspects, since they have full column rank. For
instance, the Moore—Penrose inverse can be easily computed. In contrast, the ben-
efits from maximal size fundamental solution matrices are a natural normalization
and useful group properties as pointed out, e.g., in [11], [7].

If X (z,1) is the maximal size fundamental solution matrix normalized at 7y € Z, and
X (t,1p)” is the generalized inverse described by Lemma 2.46, then it holds for all
t,tg,t; € I that

X(t,n)X(n,t0) =X (t,10), and X(t,00)” = X(19,1),

as immediate consequences of the construction, and Lemma 2.46.

2.6.2 Consistent initial values and flow structure

Turning to inhomogeneous DAE:s, first suppose the excitation to be such that a so-
lution exists. Before long, we shall characterize the classes of admissible functions
in detail.

Definition 2.49. The function g € C(Z,R™) is named an admissible excitation for
the DAE (2.44), if the DAE is solvable for this g, i.e., if a solution x, € Cll) (Z,R™)
exists such that A(Dx,) 4+ Bx, = q.

Proposition 2.50. Let the DAE (2.44) be fine with tractability index L.
(1)  Then, g € C(Z,R™) is an admissible excitation, if and only if the IVP
A(Dx)'+Bx=gq, x(to) € Nean(to), (2.92)

admits a unique solution.
(2) Each q € C(Z,R™), which for wu > 2 fulfills the condition q =
GuP - -Pu_lG;lq, is an admissible excitation.



124 2 Linear DAEs

Proof. (1) Let g be admissible and x, the associated solution. Then the function
x(t) == x4(t) = X(1,10)x4(10), t € Z, satisfies the IVP (2.92). The uniqueness results
from Theorem 2.44 (2). The reverse is trivial.

(2) From the condition ¢ = G, Py --- P, _1G,, ' q it follows that

Lig=TIT;1QiPy1---Pu1Gy'q
=1L Qi1 Pu—1P "'Pu—lGﬁlq =0, i=1,...u-2,
Ly1g=Tly 20y 1Gy'q =y 2Qu 1Pi--Py1Gy'q=0.
In consequence, the subsystem (2.76)—(2.78) yields successively vy _1,...,vi = 0.

The IERODE (2.74) is solvable for each arbitrary continuous excitation. Denote by
u, an arbitrary solution corresponding to g. Then, the function

vo=—HoD u.+Log=—HoD u.+ Q()Gﬁlq
results from equation (2.75), and
x:=D"uy +vo = IeeD" us + QoGﬁlq
is a solution of the DAE (2.44) corresponding to this excitation g. a

For a fine index-1 DAE, all continuous functions g are admissible. For fine higher
index DAESs, the additional projector function Gy Py - -+ Py G;l cuts away the “dan-
gerous” parts of a function, and ensures that only the zero function is differentiated
within the subsystem (2.75)—(2.78). For higher index DAEs, general admissible ex-
citations have certain smoother components. We turn back to this problem later on.

Example 2.51 (A fine index-2 DAE). Consider the DAE

10 1a0 00 0
01 ({O 1 O]x)’Jr 00-1|x=gq.
00 010

Here, o is a continuous scalar function. Set and derive

1 -« la0 000 la O
D =10 1], Gy=1]010|, Qp=1(000|, Gi=1|01 —1],
00 000 001 00 0
and further
0—a0 10 a 0
01=10 1 0|, 0100=0, DHlD:[OO}, G,=|01-1
010 01 0

The projector functions Qp,Q; are admissible, G, is nonsingular, and hence the
DAE is regular with tractability index 2. The given property kerQ; =) = {z € R?:
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zp = 0} indicates that Qg,Q; already provide a fine decoupling. The DAE is fine.
Compute additionally

a0 1 0 —o 100
My = = [000]|, G,'=100 1|, GPG,'=1{010
000 0-1 1 000

A closer look at the detailed equations makes it clear that each admissible exci-
tation ¢ must have a continuously differentiable component g3. By the condition
q=GPG; 14, the third component of g is put to be zero. a

Theorem 2.52. Let the DAE (2.44) be fine. Let q € C(Z,R™) be an admissible exci-
tation, and let the matrix C € L(R™ R?*) have the nullspace kerC = N_gy(10).

(1)  Then, for each O eR™ the IVP
A(Dx)' +Bx=gq, C(x(to)—x")=0, (2.93)

admits exactly one solution.
(2)  The solution of the IVP (2.93) can be expressed as

x(t,10,x°) = X (t,10)x° +x,(t),
whereby x, € C)(Z,R™) is the unique solution of the IVP
A(Dx)' +Bx=¢q, Cx(ty)=0. (2.94)

Proof. (1) Itholds that C = CIL4,(to). Since g is admissible, by Proposition 2.50(1),
the solution x, exists and is unique. Then the function x, := X (.,#)x" +x, belongs
to the function space C},(Z,R"™) and satisfies the DAE. Further, x, meets the initial
condition

C(x:(t0) —x°) = Clegn (10) (x: (t0) — x°) = Cllen (t0) (Myan (10)x° + x4 (20) —x°) = 0,

and hence, x, satisfies the IVP (2.93). By Theorem 2.44, x, is the only I[VP solution.
This proves at the same time (2). a

We take a further look at the structure of the DAE solutions x, and x(., 7, x°). For
the given admissible excitation ¢, we denote

n—1 u—1
vi=vit v+ Log— Y, No(Dv) = Y, Moy, (2.95)
=1 =2

whereby vi,...,vy 1 € Ch(Z,R™) are determined by equations (2.76)—~(2.78), de-
pending on gq. All the required derivatives exist due to the admissibility of q.
If ¢ vanishes identically, so does v. By construction, v(f) € Neg,(t), t € Z, and
Dv = Dvj + -+ Dvy_y, thus v € C)(Z,R™). The function v is fully determined
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by ¢ and the coefficients of the subsystem (2.75)—(2.78). It does not depend either
on the initial condition nor the IERODE solution.
Introduce further the continuously differentiable function u, as

ug(t) : = totU(t,to)U(s,to)le(s)Hwn(s)G;l (8)q(s)ds

=U(t,1) /ttX(s,to)_Gﬁl(s)q(s)ds, teZ,

that is, as the solution of the inhomogeneous IERODE completed by the homoge-
neous initial condition u(fy) = 0. Now the solution X4 and, in particular, its value at
tog, can be expressed as

xq(t) = D(1) " uq(t) = Ho(1)D(1) " g (1) +v(t) = Iean(t)D(t) " ug(t) +v(1),
Xq(l‘o) = V(tO) S Ncan(t())-

The solution of the IVP (2.93) and its value at 7y can be written in the form

x(t,10,x°) = X (£,10)x° + Mg (£)D(1) "1y (£) +v(2), (2.96)
x(t0,10,6°) = I (20)x° +v(10), (2.97)
but also as
can(t)D(1) " U(t, to)D(to)Hm(to)xO + ITeon (1) D(2) " ug(t) +v(2)

x(t,10,x°) =11
= Ian (1)D(t) ™ {U (t,10)D(t0) Myan (10)x° + 1y (1) } +v(2).

u(t,to,D(t) Iean(ty )x())

The last representation

x(t,10,X°) = oan(1)D(1) ™ u(t, 10, D(t0) Man(t6)x°) + (1)

~—
T f T
wrapping inherent flow perturbation

unveils the general solution structure of fine DAEs to be the perturbed and wrapped
flow of the IERODE along the invariant subspace DS,,. If the wrapping is thin
(bounded) and the perturbation disappears, then the situation is close to regular
ODEs. However, it may well happen that wrapping and perturbation dominate (cf.
Example 2.57 below). In extreme cases, it holds that S.,, = {0}, thus the inherent
flow vanishes, and only the perturbation term remains (cf. Example 2.4).

From Theorem 2.52, and the representation (2.96), it follows that, for each given
admissible excitation, the set

Meang(t) :={z+v(t) :z€ Scan(t)}, te€TI, (2.98)
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is occupied with solution values at time ¢, and all solution values at time ¢ belong to
this set. In particular, for xg € M can 4(to) it follows that xo = zo+v(t0), 20 € Scan(0);
further I, (fo)xo = zo and

x(to,10,%0) = Mean(to)Xo + v(to) = 20 +v(to) = xo.
By construction, the inclusions

Sean(t) C So(t) = {z € R™: B(t)z € imA(r)} = ker Wy (1)B(¢),
Meang(t) S Mo(t) ={x e R" : B(t)x —q(t) € imA(r)}

are valid, whereby Wy (¢) is again a projector along imA(z) = im Gy (¢). Recall that
n—1 n—1

Scan(t) and So(¢) have the dimensionsd =m— Y, (m—r;) =ro— Y, (m—r;) and
j=0 j=1

ro, respectively. Representing the obvious constraint set as

Mo(t) ={x e R" : Wy(t)B(t)x = Wy(t)q(r)}
= {2+ Mo(1)B(1))" Wo(t)q(r) - 2 € So(r)}

we know that My(¢), as an affine space, inherits its dimension from Sy(z), while
M anq(t) has the same dimension d as Scan(t).

Sinced =rpif u =1, and d <rg if p > 1, Mcanq(t) coincides with Mo(t)
for index-1 DAEs, however, for higher index DAESs, Mcqp 4(f) is merely a proper
subset of M(t). Mcan,q(t) is the set of consistent values at time . Knowledge of
this set gives rise to an adequate stability notion for DAEs. As pointed out in [7]
for lower index cases, in general, M., 4 is a time-varying affine linear subspace of
dimension d.

2.6.3 Stability issues

As for regular time-varying ODE:s (e.g., [80]), we may consider the qualitative be-
havior of solutions of DAEs.

Definition 2.53. Let the fine DAE (2.44) with an admissible excitation g be given
on the infinite interval Z = [0, ). The DAE is said to be

(1)  stable, if for every € > 0, 1y € Z, a value 6(&,f) > 0 exists, such that the
conditions xg, Xy € Mecanq(t0), |Xo —Xo| < 8(€,19) imply the existence of so-
lutions x(.,70,X0), X(-,70,%0) € C5(Z,R™) as well as the inequality

|x(¢,t0,x0) — x(t,t0,%0)| < €, 1o <t,

(2)  uniformly stable, if 8(&,1y) in (1) is independent of #,,
(3) asymptotically stable, if (1) holds true, and
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|x(t,t0,x0) —x([,t(),)f())‘ t_)—QQ) 0 forall xp,xp € Mmmq(to), to €L,

(4)  uniformly asymptotically stable, if the limit in (3) is uniform with respect to
fo.

Remark 2.54. We can dispense with the explicit use of the set M 4(fo) Within the
stability notion by turning to appropriate IVPs (cf. Theorem 2.52). This might be
more comfortable from the practical point of view.

Let C € L(R™,R®) denote a matrix that has precisely N4, (f0) as nullspace, for in-
stance C = I, (to) or C = I 44 (10).

The DAE (2.44) is stable, if for every € > 0, fy € Z, there exists a value d¢(€,7) >0
such that the IVPs

A(Dx)' +Bx=¢q, C(x(to)
A(Dx) +Bx=¢q, C(x(t)

20)

0 07
) =0,

with 2%, & € R™ |C(x° —°)| < &¢c(g,10)), have solutions x(.,#0,x°), x(.,t,%°) €
CL(Z,R™), and it holds that |x(., 79, x°) —x(.,t0,%°)| < &, for t > 1.
This notion is equivalent to the previous one. Namely, denoting by C~ a generalized
reflexive inverse of C such that C~C = IT,,,(#), and considering the relation
CC(x" — ) = M0 (0)x° — Mg (1) °
= Ilean (IO)XO + V(tO) - (Hcan(tO)io + V(tO)) = Xo — Xo,
=xo€Mo(to) =XoeMo(1o)

we know that the existence of d(g,) in Definition 2.53 implies the existence of
oc(g,t9) = |C|S(€,19). Conversely, having Oc(€,tp) we may put O(g,tg) =
|C™[6c(€,10)-

Making use of the linearity,
x(t,to,xO)—x(l‘,lo,)fo) ZX(I,Z())(X()—X()) (2.99)

we trace back the stability questions to the growth behavior of the fundamental so-
lution matrices. Applying normalized maximal size fundamental solution matrices
we modify well-known results on flow properties of explicit ODEs (e.g., [80]) so
that they can be considered for DAE:s.

Theorem 2.55. Let the DAE (2.44) be fine and the excitation q be admissible. Then
the following assertions hold true, with positive constants K,,K and o:

(1) If|X(t,10)| < Ky, t > to, then the DAE is stable.
2) If|X(t,10)] - 0, then the DAE is asymptotically stable.
—o0
B) If|IX(t,10)X(s,00) 7| <K, to <5 <t, then the DAE is uniformly stable.
) If|X(1,10)X (s,10) | < Ke~®=9) tq <5 <t, then the DAE is uniformly asymp-
totically stable.
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Proof. (1) It suffices to put 8(fy, &) = €/K,.

(2) This is now obvious.

(4) Take xg,Xg € Mcan,q(to), Z0 := xp — Xo # 0 such that zg € S¢4, and X(l‘,t())ZO has
no zeros. For ¢t > s, we compute

[X(,10)20] _ |[X(2,20) Meanzo| _ |X(2,20)X (s,10)~ X (s,10)0]
X (s,10)z0] X (s,10)z0] X (s,10)20]
<X (t,10)X (5,10) | < Ke™*9),

This implies
x (2,10, x0) — x(t, 10, %0)| = |X (¢,10)20] < Ke™*"~|x(s, 10, x0) — x(s,10,%0)|.

(3) This is proved as (4) by letting o = 0. a

In the theory of explicit ODEs, for instance, in the context of boundary value prob-
lems, the notion of dichotomy plays its role. The flow of a dichotomic ODE accom-
modates both decreasing and increasing modes. The same can happen for DAEs.
As for explicit ODEs, we relate dichotomy of DAEs to the flow of homogeneous
equations. More precisely, we apply maximal size fundamental solution matrices
X (#,t0) normalized at a reference point 7). The following definition resembles that
for ODEs.

Definition 2.56. The fine DAE (2.44) is said to be dichotomic, if there are constants
K, > 0, and a nontrivial projector (not equal to the zero or identity matrix)
Pjici, € L(R™) such that Py;ep, = Iegn(t0) Paich = PaichIIean(f0), and the following in-
equalities apply for all ¢,s € Z:
X (t,10) PaicnX (5,10) | < Ke ®0179), 1 >3,
X (t,20) (I — Paicn) X (5,10) | < Ke PO 1 <.

If o, B > 0, then one speaks of an exponential dichotomy.

Sometimes it is reasonable to write the last inequality in the form
X (1,10) (Hean(t0) — Paica) X (s,00) "] < Ke P70, 1 <.

It should be pointed out that dichotomy is actually independent of the reference
point #o. Namely, for t; # to, with Pyicn s, := X (t1,t0)PaicnX (t1,10)~ we have a pro-
jector such that Pyjcp s, = Iean(t1)Paichy, = Paichg, Hean(t1) and

|X(t7t1)Pdich711X(s7tl)7| S Keia(tis% t Z s,
X (¢,01) (Tean(t1) — Paich s, )X (s,11) | < Ke P60 1<

Analogously to the ODE case, the flow of a dichotomic homogeneous DAE is
divided into two parts, one containing in a certain sense a nonincreasing solution,
the other with nondecreasing ones. More precisely, for a nontrivial xo € im Py, C
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Scan(to), the DAE solution x(¢,#,x0) = X (¢,%9)xo has no zeros, and it satisfies for
t > s the inequalities

\x(t,to,x0)| . |X(l,lo)X()| . |X(t7t0)Pd,-chHm(to)x0|
Ix(s,t0,x0)]  |X(s,20)x0| |X (s,0)x0]
X (t,10) PaicnX (s,10) X (s,10)%o|
X (s,20)xo]
<X (t,10) PaicnX (5,10) ™| < Ke™*=9),

For solutions x(z, 9, x9) = X (¢,19)xo with xg € im (I — Pyjep ) Iean € Sean(to) we show
analogously, for t <,

lx(t,t0,x0)| X (t,20)x0]  |X(2,20)(I = Pyicn) ean(t0)xo]

|x(s,t0,x0)|  |X(s,20)x0| |X (s,70)x0]
X (#,20) (I — Paicn)X (s,20) ~ X (s,20) X0
X (s,10)xo]
< |X(1,0) (I = Paicn)X (s,10) | < Ke PO,

The canonical subspace of the dichotomic DAE decomposes into
Sean(t) =imX (t,t0) = imX (t,20) Piich DimX (2,20) (I — Piich) =: Sogn(t) ® S, (1).

The following two inequalities result for ¢ > s, and they characterize the subspaces
S, and SF  as those containing nonincreasing and nondecreasing solutions, re-
spectively:

can’

Ix(t,10,%0)] < Ke™ =9 |x(s,10,x0)|, if xo€S

1 . .
Eeﬁ(’f“) |x(s,t0,%0)| < |x(t,t0,x0)|, if x0€SL,.

In particular, for s = 1y it follows that

x(t,t0,%0)| < Ke =) x|, if xo €S,

can’

1

geﬁ(’ﬂ‘))\xﬂ < |x(t,t0,x0)|, if xo €SL,.
If @ > 0, and Z = [fy,°0), then |x(¢,%,x0)| tends to zero for ¢ tending to oo, if X
belongs to S, (7). If B > 0 and xp € S, (f0). then x(z,79,x0) growths unboundedly
with increasing z.

As for explicit ODEs, dichotomy makes good sense on infinite intervals /. The
growth behavior of fundamental solutions is also important for the condition of
boundary value problems stated on compact intervals (e.g., [2] for explicit ODEs,
also [146] for index-1 DAESs). Dealing with compact intervals one supposes a con-
stant K of moderate size.
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Example 2.57 (Dichotomic IERODE and dichotomic DAE). Consider the semi-

explicit DAE
I r, |Bu Bia|
{0} ([10]x)+ {le Bzz] x=0,

consisting of three equations, m; = 2,my = 1,n = 2. Let By, have no zeros, and let
the coefficients be such that

Bi1+ B2 [}’1 }’2] = {g _Oﬁ} ) [7/1 Yz} = 732‘21321,

with constants o, > 0. Then, the canonical projector function and the [IERODE
have the form (cf. Example 2.32)

100 o 0
HCan: 010 y and M/+|:0 ﬁ:|u:O
N0

The IERODE is obviously dichotomic. Compute the fundamental solution matrix of
the DAE and its generalized inverse:

r efa(lft()) 0 0
X(1,10) = 0 ePl—10)  of
71 (t)e#1710) 5 (1)eP1=0) 0
r eoc(t—to) 0 0
X(t,10)" = 0 e Bl=0) ¢
71 (t0)e™=10) (1 )e=P=10) 0

The projector

1 00 0 0 O
Picn = 0 00 5 Hcan<t0) — Pyien = 0 1 0 3
Y (t0) 00 0 »(tH) 0
meets the condition of Definition 2.56, and it follows that
1 00 1
X (t,10)PyicnX (t,10) " =e %) | 0 00|,and S.,(t)=span| O |,
7i(1) 00 n()
0 0 O
X (t,10) (Iean (o) — Paicn) X (t,50) " =ePU=0) [0 1 0], and
0pn()0

0
St.(t) =span | 1
(1)
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If both 7, and 7, are bounded functions, then this DAE is dichotomic. If, addition-
ally, @ and 3 are positive, the DAE has an exponential dichotomy. We see that if
the entries of the canonical projector remain bounded, then the dichotomy of the
IERODE is passed over to the DAE. In contrast, if the functions 7y, » grow un-
boundedly, the situation within the DAE may change. For instance, if & = 0 and
B > 0, then the fundamental solution

1 0 0
X(t,i)=1| 0 &Pl ¢
N () pr)ef~0) o

indicates that each nontrivial solution will grow unboundedly though the IERODE
is dichotomic. O

The last example is too simple in the sense that DS.,, = imD = R" is valid, which
happens only for regular index-1 DAEs, if A has full column rank, and D has full row
rank. In general, DS, is a time-varying subspace of im D, and the IERODE at the
whole does not comprise an exponential dichotomy. Here the question is whether
the IERODE shows dichotomic behavior along its (time-varying) invariant subspace
DS.,,. We do not go into more details in this direction.

2.6.4 Characterizing admissible excitations and perturbation index

The fine decoupling of a regular DAE into the IERODE (2.74) and the subsystem
(2.75)—(2.78) allows a precise and detailed description of admissible excitations.
Remember that the equations (2.75)—(2.78), which means

Z No[ DV] Z Moy vi —HoD u+ Log, (2.100)

=— Z Ni(Dv) Z Myvi+Lig, i=1,...,u—3, (2.101)
I=i+1 I=i+2

V-2 = —./\/'“72’”71 (Dv”,1 ), +Ly 0q, (2.102)

Vu—1 = Eu_lq, (2.103)

constitute the subsystem (2.62) specified for fine decouplings. We quote once again
the coefficients
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Not :=—0001D",
Noj:=—QoPi-+-Pi_1Q;D™, j=2,...,0—1,
Niiy1 :=—IL_10i0i11 D",
Niji=—IT_1QiPiyy-P;,1Q;D", J=it2 o u—1 =1, -2,
Moj = QoP1 -+ Pu—1M;DII;_,Qj, J=1p—1,
Mij =TI |QiPiyy Py ftM;DIT;_Qj, j=i+1,...,u—1i=1,.. u-2,
Lo:= QP+ Pyu_1G,,
Li:=TL;_1QiPy1--Pu1Gy', i=1,..,0-2,

£u—1 = Hu—ZQu—lG;Lla
H() = Q()P1 -~~PIJ,1/CHH,1.

For the detailed form of X and M ; we refer to (2.54) and (2.55), respectively. All
these coefficients are continuous by construction.

The IERODE is solvable for each arbitrary continuous inhomogeneity, therefore,
additional smoothness requirements may occur only from the subsystem equations
(2.100)—(2.102).

This causes us to introduce the following function space, if u > 2:

Crdi(T,R™) = {q €C(Z,R™):

Va1 =Ly 14, Dv,_1 €C(Z,R"),

V,u_z = _N'u_lu_l(DVu_])/ +£#_2q, DV#_z € CI (I, Rn)7
u—1 u—1

V= — Z MI(DVI)/ — My vi+Liqg, Dv;e CI(I,Rn),

I=i+1 [=i+2

i:l,...,u—3}. (2.104)

Additionally we set for u = 1: C"?1(Z, R™) := C(Z,R™).

The function space C™? #(Z,R™) makes sense unless there are further smoothness
assumptions concerning the coefficients. It contains, in particular, all continuous
functions ¢ that satisfy the condition g = G P; - ~P,J,|G;L1q (cf. Proposition 2.50),
which implies vi =0,...,v;, | =0.

The function space C"¢ #(Z,R™) is always a proper subset of the continuous func-
tion space C(Z,R™). The particular cases £t =2 and u = 3 are described in detail
as

CM2(T,R™) = {q €C(Z,R™): vy :=Liq, Dv; €C'(Z, R”)} (2.105)

= {qEC(I,R’") :DHOQle_lqul(I,R’”)} —c! (Z,R™),

DIHQ,G, !

and
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cind3 (7, RM) 1= {q € C(Z,R™) : vs := Lag, Dv> € C1(Z,R"),
Vi i= —Nia(Dva) + L1g, Dv; € cl(z,Rn)} (2.106)
= {q eC(Z,R™):vy:= HleGglq7 Dv, € Cl(LR”),

Vi i=0010:D™ (DV:)' + Qi3G5 g, Dvi € C'(T,R") }.

We now introduce the linear operator L : C},(Z,R™) — C(Z,R™) by means of
Lx:=A(Dx) +Bx, x€CL(Z,R™), (2.107)

so that the DAE (2.44) is represented by the operator equation Lx = ¢, and an exci-
tation ¢ is admissible, exactly if it belongs to the range im L of the operator L.

Proposition 2.58. If the DAE (2.44) is fine with tractability index i € N, then the
linear operator L has the range

imL =C(Z,R"), if u=1,
imL =C™H(T,R™) C C(Z,R™), if u>2.

Proof. The index-1 case is already known from Proposition 2.50 and the definition
of L. Turn to the case (t > 2. By means of the decoupled version, to each excita-
tion ¢ € C™ K (Z,R™), we find a solution x € C},(Z,R™) of the DAE, so that the
inclusion C™¢#(Z,R™) C imL follows. Namely, owing to the properties of g (cf.
(2.104)), there is a solution vy, _; € CH(Z,R™) of equation (2.103), then a solution
vu—2 € CH(Z,R™) of (2.102), and solutions v; € C)(Z,R™) of (2.101), successively
fori=p —3,..., 1. Furthermore, compute a solution « of the IERODE, and vy from
equation (2.100). Finally put x := D~ u+vo+---+vy 1.

To show the reverse inclusion C™H(Z,R™) D imL we fix an arbitrary
x € C)(Z,R™) and investigate the resulting g := A(Dx)’ + Bx. We again apply the
decoupling. Denote vy := Qox, and v; := I;_1Q;x, for i = 1,...,u — 1. Since the
projector functions DIT;_1Q;D~, i =1,...,u — 1, and the function Dx are contin-
uously differentiable, so are the functions Dv; = DII;_1Q;D Dx,i=1,...,u — 1.
Now equation (2.103) yields v, 1 := Ly 19 € CH(Z,R™), equation (2.102) gives
Vua = —=Ny—2u—1(Dvy—1)' + Ly—2q € CH(Z,R™), and so on. O

At this point, the reader’s attention should be directed to the fact that the linear
function space C}(Z,IR"™) does not necessarily contain all continuously differen-
tiable functions. For instance, if D is continuous, but fails to be continuously dif-
ferentiable, then there are constant functions x.,,s such that Dx,,, fails to be con-
tinuously differentiable, and hence x..,s; does not belong to Cll) (Z,R™). In contrast,
if D is continuously differentiable and its nullspace is nontrivial, then the proper
inclusion

cY(Z,R™) c CH(Z,R™)



2.6 Fine DAEs 135

is valid. Similar aspects are to be considered if one deals with the space
Cd k(Z,R™) comprising the admissible excitations. For yt > 2, only if the involved
coefficients £;, \; ; and M;; are sufficiently smooth, does the inclusion

ChN(Z,R™) c CMH(T,R™),
hold true. Of course, the index-1 case is simple with
C(Z,R™) =C"™ ! (Z,R™).

To achieve more transparent estimates we introduce, for each function w being con-
tinuous on Z and fy,t; € Z, fy < t;, the expression

o] .—
Iwllot = max w(e)l,

which is the maximum-norm related to the compact interval [f,#;]. Moreover, for
q €CM I (T, R™) and to,1; € T, to < t;, we introduce

gl o) = g4+ | (v )[04 -+ [ (Dvy Y| o],

which means for the special cases 4t =2 and u = 3:

lgl1)s = gl + || (Dvy )|l lo1) = [lg)l o) + || (DIToQ1 G5 )| Eo,
gl ol .= glon] 41| (Dvy ) ||Eo] 4 || (Dvy )| o]
= |lgllfon] + | (DIT,0,G5 g | o]
+[(DIMyQ1 02D~ (DT, 02G5 ' )’ + DIy Q1 PG q) || 01

Theorem 2.59. Let the DAE (2.44) be fine with tractability index it € N. Lettg € T
and let C be a matrix such that kerC = Nygy (1) Let the compact interval [ty,f) C T
be fixed. Then the following assertions are true:

(1) The excitation q is admissible, if and only if it belongs to C"™ (T, R™).
(2)  For each pair g € C"™H(Z,R™), x° € R™, the solution x € C},(Z,R™) of the
1vP
A(Dx) +Bx=gq, C(x(to)—x") =0, (2.108)

satisfies the inequality

()] < 27 < ¢ {|Mean(t0)20] + gl ), o<t <7 2109)

whereby the constant c depends only on the interval. .
(3)  Ifthe DAE coefficients are so smooth that C*~'(Z,R™) c C" *(Z,R™), and
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[t0.1] [10.1] = (D) 1t01] n—1 m
lallimi e <coqllglo+ Y g2 ¢, for g et H(T,R™),
=1

then, for each pair g € C*~1(Z,R™), x° € R™, it holds that

u—1
el < K{ 1 ean ()" + g0+ X g0} @110)
=1

Proof. (1) is a consequence of Proposition 2.58, and (3) results from (2). It remains
to verify (2). We apply the solution representation (2.96). First we consider the func-
tion v defined by (2.95), for a given g € C"¢*(Z,R™). One has in detail
—r h [t0,1) [to.t]
V-1 p—1q, thus [jvy_q|s 1||q||md[.l7

[to.]

Vi-2 =£“,Zq—N”,2“,1(Dv”,1) ,thus gl <&y ollglty

and so on, such that

1o, .
vl < & Hq||”3dL, i—p—3,...1,

with certain constants ¢;. Then, with a suitable constant ¢, it follows that

1 t
)il < llq) Lo,

Now the representation (2.96) leads to the inequality

()] < 8019 < 1 [Hean(to)”] + 2 llg 20+ g%}, 10 <t <F,
with ¢; being a bound of the fundamental solution matrix X (¢,%), ¢3 := ¢ and ¢
resulting as a bound of the term X (¢,19)X (s,z‘o)’G;1 (s), whereby s varies between
fo and t. We finish the proof by letting ¢ := max{c;,c; + ¢3}. O

The inequality (2.110) suggests that the DAE has so-called perturbation index [t
(cf. [103, 105]). The concept of perturbation index interprets the index as a measure
of sensitivity of the solution with respect to perturbations of the given problem.
Applied to our DAE (2.44), the definition ([105, page 478]) becomes:

Definition 2.60. Equation (2.44) has perturbation index |1, along a solution x, on
the interval [to,7], if , is the smallest integer such that, for all functions & having a
defect

A(DX) +Bi—q=2§6

there exists on [y, 7] an estimate
(1) = . (1)] < C{|(t0) — x4 (10) [+ |80+ - 4 [[ 81~V Lo T},

whenever the expression on the right-hand side is sufficiently small.
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Owing to the linearity, the DAE (2.44) has perturbation index u, (along each
solution) on the interval [ty,7], if for all functions x = ¥ — x, having a defect
A(Dx)"+ Bx = 8 an estimate

lx(t)] < C{|x(10)| + || 8]0t + - - || § M= 1) Loy 2.111)

is valid.

The definition of the perturbation index does not specify function classes meant
for the solutions and defects, but obviously one has to suppose § € C*»~!, such
that the notion applies to sufficiently smooth problems only. In fact, the required
estimate (2.111) corresponds to the inequality (2.110), which is available for smooth
problems only. Therefore, we observe that a fine DAE with tractability index u and
sufficiently smooth coefficients has at the same time perturbation index .

All in all, the solution x = x(x", ) of the TVP (2.108) depends on the value x°
as well as on the function g. It is shown that x varies smoothly with x° such that,
concerning this aspect, the DAE solutions are close to the ODE solutions. How-
ever, solutions of higher index DAEs show an ambivalent character. With respect
to their variable g they are essentially ill-posed. More precisely, the linear operator
L:C)(Z,R™) — C(Z,R™) described in (2.107) has the range im L = C"H(Z,R™)
which is a proper nonclosed subset in C(Z,R™), if u > 2. This makes the IVP
(2.108) essentially ill-posed with respect to the excitations g. We recall of Exam-
ple 1.5 which clearly shows this ill-posed character.

2.7 Specifications for regular standard form DAEs

At present, most of the literature on DAEs is devoted to standard form DAEs
Et)X'(t)+F(t)x(t) =q(t), tel, (2.112)

where E and F are smooth square matrix functions. Here we assume E(¢) to have
constant rank on the given interval whereas points at which E(¢) change its rank are
considered to be critical.

As proposed in [96], one can treat (2.112) as

E(t)(P(t)x(1))' + (F(t) —E()P'(1))x(1) = q(t), t€T, (2.113)

by means of a continuously differentiable projector function P such that kerP =
ker E. The DAE (2.113) has a properly stated leading term, and all results of the
previous sections apply. In particular, we build the matrix function sequence begin-
ning with

A:=E,D:=P,R=P,B:=F—EP,Gy=E, By:=B,
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develop decouplings, etc. However, now the new question arises: which effects are
caused by a change from one projector function P to another one? Clearly, the matrix
function sequence depends on the projector function P.

Suppose P and P to be two continuously differentiable projector functions such that

kerE = ker P = ker P.
Besides (2.113) we consider
E(t)(P(1)x(1)) + (F (1) —E(0)P'(1))x(r) = q(1), €. (2.114)

Proposition 2.22 guarantees that the function spaces Cp(Z,R™) and (3113 (Z,R™) co-
incide. Furthermore, the DAE (2.114) results from the DAE (2.113) by a refactor-
ization of the leading term. Namely, set

A=E D:=P,R:=P,B:=F—EP, and H:=P,H :=P.

Then, condition (2.27) is satisfied with RHH™ R = PPP = P = R, and the refactor-
ized DAE (2.28) coincides with (2.114) because of (cf. (2.29))

A=AH=EP=E, D=H D=PP=P,
B=B—-ARH(H R)D=F —EP —EP'P

=F—EPP —EPP=F —E(PP)

=F—EP.

In consequence, by Theorem 2.21 on refactorizations, the subspaces imGj, S;, and
No+ -+ Ni, as well as the characteristic values r;, are independent of the special
choice of P. This justifies the following regularity notion for standard form DAEs
which traces the problem back to Definition 2.25 for DAEs with properly stated
leading terms.

Definition 2.61. The standard form DAE (2.112) is regular with tractability index
u, if the properly stated version (2.113) is so for one (or, equivalently, for each)
continuously differentiable projector function P with ker P = kerE.

The characteristic values of (2.113) are named characteristic values of (2.112).
The canonical subspaces S¢4, and N4, of (2.113) are called canonical subspaces of
(2.112).

While the canonical subspaces S.4, and N, are independent of the special choice
of P, the IERODE resulting from (2.113) obviously depends on P:

W' — (PI,_y)'u+PI,_G,'Bu=PII,_,G,'q, ucimPIl,_,. (2.115)

This is a natural consequence of the standard formulation.

When dealing with standard form DAEs, the choice Py := P, D~ = P suggests
itself to begin the matrix function sequence with. In fact, this is done in the related
previous work. Then the accordingly specialized sequence is
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Go=E, By=F —EP,=F — GoIl,
Gi+1 =G+ B0, Bi11 = BiP— Gip | RIT 1T, i>0. (2.116)
In this context, the projector functions Qy, ..., Qk are regular admissible, if
(a) the projector functions Gy, ..., Gy have constant ranks,
(b) therelations Q;Q; =0 are valid for j =0,...,i—1,i=1,...,K,
(¢) andIl,...,II; are continuously differentiable.

Then, it holds that PIT; = IT;, and the IERODE of a regular DAE (2.112) is
W =TI, yu+ID G,'Bu=1II, 1G,'q, ue€imlIl, ;. (2.117)

In previous papers exclusively devoted to regular DAEs, some higher smoothness is
supposed for Q;, and these projector functions are simply called admissible, without
the addendum regular. A detailed description of the decoupling supported by the
specialized matrix function (2.116) can be found in [194].

Remark 2.62. In earlier papers (e.g., [157], [159], [111], [160]) the matrix function
sequence

Git1 =Gi+BiQi, Bir1=BiP,— G Il I, i>0, (2.118)

is used, which is slightly different from (2.116). While [157], [159] provide solvabil-
ity results and decouplings for regular index-2 and index-3 DAEs, [111] deserves
attention in proving the invariance of the tractability index p € N with respect to
transformations (see also [160], but notice that, unfortunately, there is a misleading
misprint in the sequence on page 158). In these earlier papers the famous role of
the sum spaces Ny + - -- + N; was not yet discovered, so that the reasoning is less
transparent and needs patient readers.

In [167, Remark 2.6] it is thought that the sequence (2.116) coincides with the se-
quence (2.118); however this is not fully correct. Because of

Bit1 = BiP,— G\ R/ | IT; = BiP, — Gi I | IT; + Gi1 Qo IT, IT;
~—~—
(PoITiy1)

= B;P, — G[+1IT[/+1H1' + GH—]QOP(;HI'+17

both matrix function sequences in fact coincide, if QoP) = 0. One can always arrange
that Qo P} = 0 is locally valid. Namely, for each fixed ¢, € Z, we find a neighborhood
N, such that kerE(¢) @ kerE(t,)- = R™ holds true for all # € \,. The projector
function Qp onto ker E(t) along ker E (¢, )" has the required property

QoPy = Qo(Py(t)Py)' = QoPy(t.)Py = 0.

Owing to the independence of the choice of the projector function Py = P, the reg-
ularity notions for (2.112), defined by means of (2.116) or by (2.118), are actually
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consistent, and the sum subspaces, the canonical subspaces, and the characteristic
values are precisely the same.

Several papers on lower index DAEs use subspace properties rather than rank con-
ditions for the index definition. For instance, in [163], an index-2 tractable DAE is
characterized by a constant-dimensional nontrivial nullspace Nj, together with the
transversality condition Ny @ S; = R™. Owing to Lemma A.9, this is equivalent to
the condition for G to have constant rank lower than m, and the requirement for G,
to remain nonsingular.

Theorem 2.63. Let the DAE (2.112) be regular with tractability index | and fine.
Let the matrix C € L(R™,R*) be such that ker C = Negy(to)-

(1) Then, the IVP
ExX'+Fx=0, Cx(t)=0,

has the zero solution only.
(2)  For each admissible excitation q, and each O eR™ the IVP

EX +Fx=gq, C(x(to)—x")=0,

has exactly one solution in C}(Z.R™).
(3)  For each given admissible excitation q, the set of consistent initial values at
time ty is
Mcan,q(IO) = {Z+ V(IO) HVAS Scan(t())}a

whereby v is constructed as in (2.95) by means of fine decoupling projector
functions.

4) If the coefficients of the DAE are sufficiently smooth, then each
q € CH=Y(Z,R™) is admissible. If the interval T is compact, then for the IVP
solution from (2), the inequality

n—1
Il < K(nmao)x(’ et Y ||q<”|m) 2.119)
=1

is valid with a constant K independent of q and x°.

Proof. (1) and (2) are consequences of Theorem 2.44(2) and Theorem 2.52(1), re-
spectively. Assertion (4) follows from Theorem 2.59(3). Assertion (3) results from
the representations (2.95) and (2.98), with D =D~ = P. a

The inequality (2.119) indicates that the DAE has perturbation index p (cf. Def-
inition 2.60).
2.8 The T-canonical form

Definition 2.64. The structured continuous coefficient DAE with properly stated
leading term
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1
I d 5
O0MNo1 -+ Nou—i I, ,
-
SR ; < . x> (2.120)
/\7/1—2,;1—1 ..
L Imfr#,l_
W
HO II’Vlfr()
+| i=4,
7:[”_1 Im—ru,l

u—1
m=d+ Y. (m—rj),as well as its counterpart in standard form
j=0

L,ol, [W o], .
{Oﬂdx+[ﬁLan—q7 @.121)
with . .
0No1 -+ Nop—1
N o= L. ) : ’
"'Nu72,u71
0

are said to be in T(ractability)-canonical form, if the entries
NO)],...,N'u_Z”_l are full column rank matrix functions, that is rank./\/,'_lﬁi =
m—rifori=1,...,u—1.

The subscript ¢ indicates the tractability index u, and at the same time the uni-
form nilpotency index of the upper block triangular matrix function A'. N* van-
ishes identically, and NHT1 has the only nontrivial entry /\7071/\7 12" N, u—2,u—1 of
rank m — ry,_1 in the upper right corner. If the coefficients Ho, . .. ,7—2,1_1 vanish, the
T-canonical form (2.121) looks precisely like the Weierstral—Kronecker canonical
form for constant matrix pencils.

Generalizing Proposition 1.28, we show that a DAE (2.44) is regular with tractability
index p if and only if it can be brought into T-canonical form by a regular multi-
plication, a regular transformations of the unknown function, and a refactorization
of the leading term as described in Section 2.3. This justifies the attribute canoni-
cal. The structural sizes ry, ..., ry 1 coincide with the characteristic values from the
tractability index framework.

Theorem 2.65. (1) The DAE (2.44) is regular with tractability index U and char-
acteristic values ro < --- <ry_1 < ry =m, if and only if there are pointwise
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regular matrix functions L,K € C(Z,L(R™)), and a constant-rank refactor-
ization matrix function H € C'(Z,L(R*,R")), RHH™R = R, such that pre-
multiplication by L, the transformation x = KX, and the refactorization of the
leading term by H yield a DAE in T-canonical form, whereby the entry /\7,-_1,,5
has size (m—ri_1) X (m—r;) and

rankj\~/}_1,,-:m—r,-, for i=1,...,u—1.

(2) Ifthe DAE (2.44) is regular with tractability index |, and its coefficients are
smooth enough for the existence of completely decoupling projector functions,
then the DAE is equivalent to a T-canonical form with zero coupling coeffi-
cients ’FLO, ... ,’FL,J,I.

Proof. (1) If the DAE has T-canonical form, one can construct a matrix function
sequence and admissible projector functions in the same way as described in Sub-
section 1.2.6 for constant matrix pencils, and this shows regularity and confirms the
characteristic values.

The reverse implication is more difficult. Let the DAE (2.44) be regular with
tractability index p and characteristic values rg < --- < ry_y < ry = m. Let
Qo, . ..,0Qu—1 be admissible projector functions. As explained in Subsection 2.4.2,
the DAE decomposes into equation (2.49) being a pre-version of the IERODE and
subsystem (2.63) together

[DHualD /(\)/} ([Dﬂu(;lD g] m )’+ [HV;’ /?/J m - [ﬁﬁd} g. (2.122)

—_———
A D B

This is an inflated system in RMHHD | with W = DHH,IGEIBD’, further coeffi-
cients given in Subsection 2.4.2, and the unknown functions

DI,
y Qo
u = 0 = HOQ] X.
v’ : ’ )
. :
u-l H[J72Q,u7]

We condense this inflated system back to R™ in a similar way as in Proposition 1.28.
The projector functions DI, 1D~ and DIT;_;Q;D™ are continuously differentiable,
and so are their ranges and nullspaces. The C'-subspace im (DIT,_D™)* has di-
mension d = m — ):fl: _01 (m —r;), and it is spanned by continuously differentiable
basis functions, which means that there is a matrix function Iy € C'(Z,L(R",R%))
such that

im(DIT, D™ )" =imI}, kerI; = {0},

and hence
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imI; =R?, kerl; = (im(DIl,_1D")*)" =kerDIl,_D".

By Proposition A.17, there is a pointwise reflexive generalized inverse I;” €
CY(Z,L(RY,R")) such that [T}, =1, and I, I; = DII,_ D~ . Analogously we find
L;eCY(Z,L(R",R" ")) and I;” € C'(Z,L(R™"1,R")) such that fori=1,...,u—1

imI[; =R""", kerl; =kerDIl, 1Q;D~, LI,” =1I,,, I, I;=DI_1Q;D".
This implies
LD =ILDIL1Q;, D7I;” =IL,Q;D"I;7, LDD"I;” =LI;" =l
Finally we provide Iy € C(Z,L(R™,R™~"0)) and I, € C(Z,L(R™~"0,R™)) such that
imIp=R"", kerly=kerQo, Ioly =1Inr,, Iy Io= Qo.

Then we compose

IuD DI,
suchthat I'T'™ =1, Iyl = Iy—q, and

DH“,ID_
Qo
I'T = 110,

Additionally we introduce
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0 0
i I
Q= , Q7= ,
I 11;1
such that
0 0
DI,O\D™ Lu—r,
979 - . s 997 =
DHH,QQ”,1D7 Imfr“,l

For the coefficients of the inflated system (2.122) it follows that
I—A;;bl—s‘ub N=NQ Q= N7 E;bFYLth = MI—;;},Fmba D= Q_I—;uby

and further

- [I;DI1, D~ _ |1a _ |a L
1 LiwN| | LuNQ Q] | LuNQ~ Q)
F%_'Fdw 0 ]_[devrdrd 0 ]
_RubHD_ EubM Fsub,HD_l_;[D RubME;bRub
8 el
_EubIHDiri Eule—.;ub 0 I ’

o [l 0 J_[r 0)[mo]
| 0 QLw| [0 Q[0 L

Multiplying the inflated system (2.122) by the condensing matrix function I" and
introducing the new variables

gives
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oruve ][5 a)([% o]

—
N———

—_———
A D
LI 0 i [La
oy ] -1 2]

>

This last DAE lives in R™, but the border space of its leading term is R™*®+1)
Because of

I; 0 s . .
kerA = ker [0 Q} =kerR, imD =imR,

DI, D~ 0

with the border projector R = { 0 o- Q] the refactorization of the leading

term (cf. Section 2.3) by means of

v [52]-[i

suggests itself. H has constant rank d, and H~ is the reflexive generalized inverse
with

— s O _ _|DIDy4D~ 0 | 5 5,0-5_ 5
HH_{OQQ},HH _[ 0 QQ}_R,RHH R=R.
This way we arrive at the DAE
A(D%)' +Bx=Lg,
A 1 0 . I 0 _ (TawiL - o
0N QT D=1 00 LuwHDI; Byl
The entry

By : =ML, —LuNQ Q' Q"
- Auhr +I_;uh(M_I)1—.;‘uh_1—;ubN979/97 :I+M

sub

has upper block triangular form, with identity diagonal blocks. M is strictly upper
block triangular, and / + M remains nonsingular. Scaling the DAE by
diag (1,(1+M)~!) yields

[(I) /(\)/] ([é Q?z} B+ m (I)} i= [(I) (1+/(i>1)1} Lq, (2.123)

with coefficients
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N:=(I+M) "LuNQ ™, H:=(I+M)"'L,HD I,
W =WI, —IT; .

The DAE (2.123) has T-canonical form, if the entries J\N/',-J-H have full column rank.
Therefore, we take a closer look at these entries. Having in mind that M is strictly
upper block triangular, we derive

Niiv1 = (LGN Q)iip1 = GDNj i Iy = —=LDIL10i0i1 DI,

=—LI;";DQi DI = -IiDQ; DI .
Then, ./\7i,i+1z = 0means [DN;;1I; [,z =0, thus N; ;11 I}z = 0. Applying Propo-
sition 2.29 (3) we find that DHiQH_lD*Fi;lz = I;;lz € ker DIL;Q; 1D, and hence
I;,,z2=0, therefore z = 0. This shows that ./\7,<7,<+1 is injective for i = 1,...,u — 2.
The injectivity of N follows analogously. We obtain in fact a T-canonical form.

The resulting transformations are

EZDHM—I
IoQo

L= {(]) (I+/(i?l)l}r {Eﬁd] - {é (1+/(i?l)1} FIDI:TOQI Gy'

I, DIy 20y

and
DIT, DI,
Qo IoQo

kK=r| HO = I DI 0,

I, 20, 1 Iy (DITy 20
Both matrix functions K and L are continuous and pointwise nonsingular. This com-

pletes the proof of (1). 3
The assertion (2) now follows immediately, since H = 0 implies H = 0. O

2.9 Regularity intervals and critical points

Critical points per se attract much special interest and effort. In particular, to find
out whether the ODE with a so-called singularity of the first kind (e.g. [123])

2(0) = TM()x(0)+4(0),

has bounded solutions, standard ODE theory is of no avail, and one is in need of
smarter tools using the eigenstructure of the matrix M(0).
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In the case of DAEs, the inherent ODE might be affected by singularities. For in-
stance, the DAEs in [124] show inherent ODEs having a singularity of the first kind.
The following example is taken from [124].

Example 2.66 (Rank drop in G| causes a singular inherent ODE). The DAE

HEEI DR R FORD

has a properly stated leading term on [0, 1]. It is accompanied by the matrix functions

S L AT

such that the DAE is regular with tractability index 1 just on the interval (0, 1]. The
inherent ODE resulting there applies to u(z) = x| (t) —x2(¢), and it reads

(1) = =24 2ule) + (4 2)a1 (1)~ 242(0).

Observe that, in view of the closed interval [0, 1], this is no longer a regular ODE but
an inherent explicit singular ODE (IESODE). Given a solution u(-) of the IESODE,
a DAE solution is formed by

71 ) 1 —q (t)+q (t)
x(t) = 5 [ 5 }u(f)Jr_ {_qi(qu(t)} '

We refer to [124] for the specification of bounded solutions by means of boundary
conditions as well as for collocation approximations. a

One could presume that rank changes in G| would always lead to singular inherent
ODEs, but the situation is much more intricate. A rank drop of the matrix function
G is not necessarily accompanied by a singular inherent ODE, as the next example
shows.

Example 2.67 (Rank drop in G| does not necessarily cause a singular inherent
ODE). The DAE

H ([r ] x(0)) + {ﬁg) ﬂ x(1) = q(1),

with an arbitrary continuous real function 8, has a properly stated leading term on
(—o0,00). Put

Go(r) = Lt) (1)] , D(1)” = ﬁ m . 0olt) = ﬁ th t—zt] 7

and compute

Gi (1) 1 [ﬁ(l)+t+t3 1+12—1B(t)

— o - )
s , 2 ], (1) :=detG(t) =1(1+17).
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This DAE is regular with index 1 on the intervals (—eo,0) and (0,0). The point
t. = 0 is a critical one. The inherent ODE reads, with u(r) = tx(¢) + x2(¢),

t

t

u'(t)=—

All DAE solutions have the form

111 1 —q2 (t )
1) =- 1)+ - :
w0 = |o|uo 1 [
Obviously, if the function 8 has a zero at £, = 0, or if it actually vanishes identically,
then there is no singularity within the inherent ODE, even though the matrix G| (z,)
becomes singular. Remember that the determinant @; does not at all depend on the
coefficient f3.

We turn to a special case. Set ¢ identically zero, B(f) = ¢, with an integer y > 0.
The inherent ODE simplifies to

() + 1 (1) + —=q2(1).

W (1) = —1""u(r).

If y =0, this is a singular ODE, and its solutions have the form u(t) = %c. All
nontrivial solutions grow unboundedly, if ¢ approaches zero. In contrast, if ¥ > 1,

1
the ODE is regular, and it has the solutions u(¢) = e~ 7tyu(0) which remain bounded.
However, among the resulting nontrivial DAE solutions

there is no bounded one, even if y > 1. O

As adumbrated by the above example, apart from the singularities concerning the in-
herent ODE, DAEs involve further sources of critical points which are unacquainted
at all in explicit ODEs. In DAEs, not only the inherent ODE but also the associated
subsystem (2.62) which constitutes the wrapping up, and which in higher index
cases includes the differentiated parts, might be hit by singularities. In the previous
two examples which show DAEs being almost overall index 1, a look at the solution
representations supports this idea. The next example provides a first impression of
a higher index case.

Example 2.68 (Rank drop in G»). The DAE with properly stated leading term

10 0 0p(r)

100 !
01 x(¥))+ | 1 1 0 |x(r)=qr)
00 ({010} ) ¥6)0 0 !

yields
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100 000 10B(t) 100
Go(t)=|010], Qo(t)=1]000|, Gi(t)=|01 0 |, IL()=|010],
000 001 00 0 000

and further N, (t) =N (t)NNo(t) = {z€R3: 21 =0,20 = 0, B(¢)z3 = 0}. Supposing
B(t) # 0, for all ¢, we derive

1 00 100 1 0B(@t)
Qi(t)=| 0 001, IL(r)Qi(r)=[000|, G(t)=| 1 1 0 |,
—% 00 000 y#)0 0

and (1) :=detGy(t) = —B(¢)y(¢). The projector functions Qp, Q; are the widely
orthogonal ones. Taking a look at the following equivalent formulation of the DAE,

0 (e) = sastr)
(1) +32(r) = galr) ﬁqm

1 1 /
5(0) = 5o (@0~ Gasas).

we see the correspondence of zeros of the function ¥ to rank drops in G, and to
critical solution behavior.
Observe also that if we dispense with the demand that the function § has no zeros,

and allow a zero at a certain point #,, then the intersection N(¢.) is nontrivial,

Ny (t.) = No(t.), and the above projector function Q(¢) grows unboundedly, if ¢
approaches 7. Nevertheless, since by construction G, depends just on the product
I1; Q,, we can continue forming the next matrix function G, considering the product
IThQ; that has a continuous extension. Then a zero of the function f also leads to a
zero of detG,.

Apart from critical points, the resulting IERODE applies to

u=DIIlx= {O] ,
X2
and it reads
/ 00 _ 0
" {01 "o tas)
DIT,G, ' B\ D~ DIT,G;'q

Observe the coefficient DIT} G, 'BD~ to be independent of the functions 8 and 7,
while DI G, ! does not depend on f3. Therefore, the IERODE does not at all suffer
from zeros of 3.
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Notice that, if one restricts interest to homogeneous DAEs only, then one cannot see
the singular solution behavior in this example. O

Next we consider DAEs which fail to have a proper leading term on the entire given
interval.

Example 2.69 (Rank drop in A causes a singular inherent ODE). Consider the DAE

0o 00 I b11 b1z N
{o o] ({0 1] x) + Lm bzz} x=gq, (2.124)
—— N~ ——
A D B
given on the interval Z = [—1,1]. The function « is continuous. Let by; have no

zeros. This system yields

1

X = b—(612 —byxy)
21

b1y
oy = <b_21b11b22 —bp)x2+q1 —biiqa.
=M

For any t, € Z with o/(t,) # 0, there is an interval Z, around ¢, such that & has no
zeros on Z,, and the DAE has a proper leading term there. On intervals where the
function o has no zeros, one can write the ODE for x; in explicit form as

1 1
[l =—_M — —b . 2.125
0=y x2+a(€11 1192) ( )

Then, equation (2.125) is a well-defined continuous coefficient ODE on this interval
so that standard solvability arguments apply.

In contrast, if a(t,) =0, but o () # 0, for t € Z, t # t,, then equation (2.125) be-
comes a singular ODE, more precisely, an explicit ODE with a singularity at ¢,. For
those kinds of equations special treatment is advisable. We have to expect a singular
flow behavior of the component x; (). The component x; (¢) may inherit properties
of x(#) depending on the coefficient function by,. Let us glance over typical situa-
tions.

Let 7, = 0, M be a constant function, a(¢) =t, g(t) = 0 on Z. Then the solutions of
the singular ODE (2.125) are x,(¢) = ctM, with a real constant c. The behavior of
these solutions heavily depends on the sign of M. Figure 2.1 shows the different flow
behavior of the component x; () in the cases M =2, M = —2, M = 0, respectively:
If M = 2, then all solutions cross the origin, while no solution satisfies an initial
condition x,(0) # 0.

If M = —2, just the trivial solution passes the origin, and all other solutions grow
unboundedly if ¢ tends to zero. Again, there is no solution with x,(0) # 0.

If M = 0, then every constant function solves the ODE, and every IVP is uniquely
solvable. Derive, for t € [—1,0) and ¢ € (0, 1],
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Fig.21 M=2, M= -2, M =0

Gult) = g o] - @0 = g Gatr = [ ).

This shows the DAE to be regular with index 1 on both intervals [—1,0) and (0, 1].
O

Example 2.70 (Rank change in A causes an index change). Now we put the contin-
uous entry (cf. Figure 2.2)

a(r) = 0 forte[—1,0]
~ 43 forte(0,1]
into the DAE
0o 00 10
{o 0] ([0 J X))+ {0 1]x:q, (2.126)

which has a properly stated leading term merely on the subinterval (0, 1].
The admissible matrix function sequence

G0=[83‘}7%:{(1)8}3(?1:{(1)8‘],&:[81a],G1=[(1)ﬂ7

indicates the characteristic values rp = 1,71 = 1 and r, =2 on (0, 1]. The DAE is
regular with index 2 there.
For every q; € C((0,1],R), ¢2 € C'((0,1],R), there is a unique solution x €

Ch((0,1],R?). The particular solution corresponding to q;(t) = 0, ¢2(t) = 13,



152 2 Linear DAEs

t € (0,1], reads x| () = —%t’%, x(t) = 15,
On the subinterval [—1,0] the leading term is no longer properly stated, but we may
turn to a proper reformulation if we replace D by D = 0. Then, for ¢t € [—1,0], it
follows that

Go(t) =0, Qo(t) =1, Gi(t)=1,r0=0,r =2,

and the DAE is regular with index 1 on the interval [—1,0]. On this subinterval,
for every continuous g, the solution is simply x = g. In particular, for g;(¢) = 0,
@(t) = —|t|%, the solution on this subinterval is x1 () = 0, x,(¢) = —|t|%.
Altogether, combining now the segments, we have an excitation ¢ that is continuous
on the entire interval Z, and its second component is continuously differentiable
on (0, 1]. We have two solution segments. Can these segments be glued together to
form a solution on the entire interval? While the second component has a continuous
extension, the first has not, as shown in Figure 2.3.

Relaxing the minimal smoothness requirements for the excitation on the subinter-
vals, and assuming more generously g to be continuous with a continuously differ-
entiable second component on the whole interval Z, then, for every such ¢, there
exists a unique solution x € Cll) (Z, Rz). This means that, in the smoother setting, the
critical point does not matter. Those kinds of critical points which can be healed by
higher smoothness are said to be harmless. However, we stress once more that in a
setting with minimal smoothness, these points are in fact critical. Written as

0.8]
0.6]
0.4

0.2]

-0 -0.5 0.5 '

Fig. 2.2 Continuous function o of Example 2.70

Ooa| , (10|
{0 O}x + [O 1}x-q, (2.127)

the DAE (2.126) yields a special DAE in standard canonical form (SCF). To ensure
continuously differentiable solutions on the entire interval, one now has to suppose
not only that ¢ is continuously differentiable, but also that ¢tg> is so. O

Example 2.71 (Index drop in A yielding a harmless critical point). We replace the
function o in (2.126) by a different one and turn to

[8 ‘8‘] ([8 ﬂ x) + [(1) ?]xzq, (2.128)
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0.5 0.5

=10 =10

Fig. 2.3 Solution segments of x|, x, in Example 2.70

with

o) = { —|t|} forre[~1,0)

t3 forte0,1].

The DAE (2.128) has a properly stated leading term on the two subintervals [—1,0)
and (0,1], but on the entire interval [—1, 1] the leading term fails to be properly
stated. The point 7, = 0 is a critical one.

The matrix function sequence

Go=[88‘},%:Bg}Gl:{(l)g],le[g_la],Gl:[(l)?}

is admissible with characteristic values ry = 1,r; = 1 and r, = 2 on the intervals
[—1,0) and (0, 1] which indicates the DAE to be regular with index 2 there.

We apply the excitation g; =0, g = & on both subintervals. As in the previous ex-
ample, the first components of the solution segments cannot be glued together, as is
sketched in Figure 2.4. For smoother excitations, we again obtain solutions belong-
ing to Cé (Z,R?). Furthermore, if ¢ and otg, are smooth, then the SCF version (cf.
2.127) has C'-solutions. Those critical points which disappear in smoother settings
are said to be harmless. O

Equations (2.124), (2.126) and (2.128) possess the following property indepen-

dently of the behavior of the function o: There is a subspace Ny C R?, such that
Ny ®imD = Rz, N4 = span { L])} } C kerA.

This property motivates the following generalization of proper leading terms for

DAE:s (2.1) having continuous coefficients as before.

Definition 2.72. For the DAE (2.1), let the time-varying subspace imD be a C!-
subspace on Z, and let a further C'-subspace Ny exist such that
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=0.5) 0.5

=10 =10

Fig. 2.4 Solution segments of x1, x, in Example 2.71

Na(t)®imD(r) =R", Nu(t) CkerA(r), teT. (2.129)

(1) If Nx(r) = kerA(z) for all # from a dense subset of the interval Z, then we
speak of a DAE with an almost proper leading term.

(2) If dimkerD(¢) > 1, then equation (2.1) is called a DAE with a quasi-proper
leading term on Z.

DAEs with proper leading terms constitute a particular case of DAEs with almost-
proper leading terms, if N4 (¢) = kerA(¢) holds true for all z € Z.

The DAEs in Examples 2.69-2.71 have quasi-proper leading terms on the entire
given interval Z. Examples 2.69 and 2.71 show even almost proper leading terms.
Example 2.70 represents a simple case of a DAE in SCF. Large classes of DAEs
with those quasi-proper leading term, including the DAEs in SCF, are treated in
detail in Chapter 9.

To some extent, the quasi-proper DAE form is quite comfortable. However, we
should be aware that, in the general setting of quasi-proper DAEs, there is no way
of indicating basic level critical points as in Examples 2.69, 2.70, and 2.71. This is
why we prefer properly stated leading terms.

Our examples clearly account for the correspondence between singular solution
behavior and points at which the matrix function sequence loses one of the required
constant-rank properties. Roughly speaking, at all points where the matrix function
sequence determining regularity cannot be built, we expect a critical (in some sense)
solution behavior. We refer to [194] for a closer view of the relevant literature. As
in [194], we consider critical (in [194] named singular) points to be the counter-
parts of regular points. Therefore, in this section, we deal with square DAEs (2.1)
the coefficients A of which do not necessarily show constant rank. We recall Exam-
ples 2.69, 2.70, and 2.71 once more, which demonstrate critical solution behavior
corresponding to the rank changes of A.

The DAE in Example 2.70 fails to have a proper leading term on the subinterval
[—1,0). On this subinterval, the special matrix function A = 0 has constant rank 0
and kerA = R? is a C'-subspace on [—1,0). For this reason, in this special case,
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we could do with a proper refactorization to a proper leading term. Such proper
refactorizations apply also in general cases as the next proposition says.

Proposition 2.73. Let the DAE (2.1) have a quasi-proper leading term on the given
interval T. Let T C T be a subinterval such that kerA is a C l-subspace onT. Then
R := A*A is continuously differentiable on I and the DAE has there the reformula-
tion with a proper leading term

A(RDx) +(B—ARD)x=¢q, tcT. (2.130)

Proof. The matrix function R is continuously differentiable as an orthoprojector
function along a C'-subspace. We rewrite the leading term in the DAE (2.1) on the
subinterval as

A(Dx)' = AR(Dx)' = A(RDx)' — AR Dx,

which leads to (2.130).

Introduce R as the projector function onto imD along Ny so that imD = imR and
N4 = im (I — R). Owing to condition (2.129), R is well defined. Additionally, it
holds that im (I — R) = N4 C kerA = kerR, and hence R(I — R) = 0, thus R = RR.
This implies imRD = imRR = imR, which proves the spaces kerA = kerR and
imRD = imR to be transversal C 1—subspaces on Z. Therefore, the DAE (2.130) has
a proper leading term. a

Definition 2.74. Let the DAE (2.1), with m = k, have a quasi-proper leading term.
Then, t, € 7 is said to be a regular point of the DAE, if there is an open interval Z,
containing 7, such that either the original DAE is regular on Z := ZNZ, or kerA is
a C!-subspace on Z and the proper reformulation (2.130) is a regular DAE on Z.
Otherwise, 7, is said to be a critical point.

Each open interval on which the DAE is regular is called a regularity interval. De-
note by Z,,, the set of all # € T being regular points of the DAE.

In this sense, t, = 0 is the only critical point of the DAEs in Examples 2.66, 2.67,
2.69, 2.70, and 2.71, while in Example 2.68 the set of critical points is formed by
the zeros of the functions 8 and 7. The left boundary point in Example 2.66 is a
critical point while the right boundary point is regular.

By definition, Example 2.66 shows the regularity interval (0,1) but Z,,, = (0,1].
We find the regularity intervals (—oo,0) and (0,c) in Example 2.67, whereby the
characteristic values are on both sides ro = 1,7y =2 and u = 2.

In Example 2.68, regularity intervals exist around all inner points ¢ of the given
interval where 3(r)¥(¢) # 0, with uniform characteristics ro = 2,7, = 2,r, = 3 and
u=>2.

The peculiarity of Example 2.70 consists of the different characteristic values on the
regularity intervals (—1,0) and (0, 1).

Each regularity interval consists of regular points, exclusively. All subintervals
of a regularity interval inherit the characteristic values. If there are intersecting reg-
ularity intervals, then the DAE has common characteristic values on these intervals,
and the union of regularity intervals is a regularity interval, again ([173], applying
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widely orthogonal projector functions one can simplify the proof given there).

The set Z,., € 7 may be described as the union of disjoint regularity intervals, even-
tually completed by the regular boundary points. By definition, Z \ Z,,, is the set of
critical points of the DAE (2.1).

The regularity notion (cf. Definitions 2.6 and 2.25) involves several constant-
rank conditions. In particular, the proper leading term brings the matrix function
Gy = AD with constant rank ry = r. Further, the existence of regular admissible
matrix functions includes that, at each level k= 1,...,u — 1,

(A) the matrix function G; has constant rank ry, and
(B) the intersection Ny is trivial, i.e., Ny = {0}.

Owing to Proposition 2.7 we have ker Iy = No + - - - + N1, and hence
Ne=NeN(No+ - +Ne_1) = ker Gy Nker IT_ ;.

Then, the intersection Ny is trivial, exactly if the matrix function

Gy
[Hk—1:| (2.131)

has full column rank m. This means that condition (B) also represents a rank condi-
tion.

Suppose the coefficients A,D and B of the DAE are sufficiently smooth
(at most class ¢ will do). Then, if the algebraic rank conditions are fulfilled,
the requirements for the projector functions II; and DIT,D~ to be continuous re-
spectively continuously differentiable, can be satisfied at one level after the other. In
consequence (cf. [173, 174, 194]), a critical point can be formally characterized as
the location where the coefficient A has a rank drop, or where one of the constant-
rank conditions type (A) or type (B), at a level k > 1, is violated first.

Definition 2.75. Let the DAE (2.44) have a quasi-proper leading term, and 7, be a
critical point. Then, ¢, is called

(1) acritical point of type 0, if rank Gy (t,) < r := rank D(z,.),

(2) acritical point of type A at level k > 1 (briefly, type k-A), if there are admis-
sible projectors functions Qy, ..., Qx—1, and G changes its rank at ¢,,

(3) acritical point of type B at level k > 1 (briefly, type k-B), if there are admissi-
ble projector functions Qy, . .., Qx_1, the matrix function Gy has constant rank,
but the full-rank condition for the matrix function (2.131) is violated at z,.

It is worth emphasizing that the proposed typification of critical points remains in-
variant with respect to transformations and refactorizations (Section 2.3), and also
with respect to the choice of admissible projector functions (Subsection 2.2.2).
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The DAEs in Examples 2.66 and 2.67 have the type 1-A critical point 7, = 0.
In Example 2.68, the zeros of the function ¥ are type 2-A critical points, while the
zeros of the function f3 yield type 1-B critical points. Examples 2.69, 2.70 and 2.71
show different cases of type O critical points.

While the zero of the function o in Example 2.71 yields a harmless critical point,
in contrast, in Example 2.69, the zero of & causes a singular inherent ODE.
How do harmless critical points differ from the other critical points? As suggested
by Example 2.71, we prove the nonsingularity of the matrix function Gy, to indicate
harmless critical points in general.

Let the DAE (2.44) have an almost proper leading term. For simplicity, let DD*

be continuously differentiable such that the widely orthogonal projector functions
can be used. Assume the set of regular points Z,,, to be dense in 7.
Let Qp be the orthogonal projector function onto kerD =: Ny, which is contin-
uous on the entire interval Z, since D has constant rank r there. Set Gy = AD,
By = B, G| = Go+ BQy. These functions are also continuous on Z. For all t € Z,,,
it holds further that rank Go(f) = r. On each regularity interval, which is a regularity
region, we construct the matrix function sequence by means of widely orthogonal
projector functions up to G, whereby u denotes the lowest index such that G, (t) is
nonsingular for all ¢ € Z,,. In particular, ITy,...,I1, | are defined and continuous
on each part of Z,,,. Assume now that

IIy,...,II, ; have continuous extensions on Z, (2.132)
and we keep the same denotation for the extensions. Additionally, suppose
DILD™,...,DII; D~ are continuously differentiable on Z.

Then, the projector functions I, _1Q; =II,_; —II;, i =1,...,u — 1, have continu-
ous extensions, too, and the matrix function sequence (cf. (2.5)—(2.8), and Proposi-
tion 2.7)

B; =B, Il — G,D~ (DIL;,D")'DII;_;,
Gi+l:Gi+BiIIilei7 izl)"'v.u'_la

is defined and continuous on the entire interval Z. In contrast to the regular case,
where the matrix functions G; have constant rank on the entire interval Z, now, for
the time being, the projector functions Q; are given on Z,,, only, and

Ni(t) =imQ;(r) =kerGi(r), forall & ZL,,.

The projector function Ily = Py inherits the constant rank r = rank D from D. On
each of the regularity intervals, the rank ry of Gy coincides with the rank of D,
and hence we are aware of the uniform characteristic value ro = r on all regularity
intervals, that is on Z,,.

Owing to its continuity, the projector function IT; has constant rank on Z. Taking
into account the relations
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kerITi(r) = No(t) & N1 (t), dimNo(t) =m—ro, dimNi(t) =m—ri, t € Ly

we recognize the characteristic value r| = rank G, to be also uniform on Z,,.¢, and
so on. In this way we find out that all characteristics

rg<---<ry_1 <ry=m areuniform on Z..

In particular, the DAE has index {1 on Zy,.
Denote by G, (t)*/ the matrix of cofactors to G (t), and introduce the determinant
oy (1) := detGy (1), such that

Ou()Gu(t) ™" = Gu()*Y, 1€ Ly
By construction, it results that G, Q; = B;Q; = B;II; 1Q;,fori=1,...,u—1, thus

0u(1)Qi(t) = Gu ()" BT (1) Qi(t), i=1,...,p—1, €Ty (2.133)

The last expression possesses a continuous extension, and hence
@, Q; = GAB,IT;_, Q; is valid on T.
Observe that a nonsingular Gy(t.) also indicates that the projector functions
01,...,0u 1 have continuous extensions over the critical point #,. In this case, the
decoupling formulas (2.51), (2.62) keep their value for the continuous extensions,
and it is evident that the critical point is a harmless one.
In contrast, if G, has arank drop at the critical point ¢, then the decoupling formulas
actually indicate different but singular solution phenomena. Additionally, several
projector functions Q; may suffer discontinuities, as is the case in Example 2.68.
Next, by means of the widely orthogonal projector functions, on each regular-
ity interval, we apply the basic decoupling (see Subsection 2.4.2, Theorem 2.30)
of a regular DAE into the IERODE (2.51) and the subsystem (2.62). In order to
safely obtain coefficients that are continuous on the entire interval Z, we multiply
the IERODE (2.51) by @, the first row of (2.62) by o)/, the second by wﬁ‘l, and so
on up to the last line which we multiply by @,,. With regard to assumption (2.132)
and relation (2.133), the expressions a)uG;' and @, KC, wy M4 (cf. (2.54), (2.55))
are continuous on Z, and so are all the coefficients of the subsystem resulting from
(2.62). Instead of the IERODE (2.51) we are now confronted with the equation

@y’ — @y (DITy D™ ) u+ DIy Gy ByD u=DIl, 1Golg,  (2.134)

which is rather a scalarly implicit inherent ODE or an inherent explicit singular
ODE (IESODE). As is proved for regular DAEs by Theorem 2.30, the equivalence
of the DAE and the system decoupled in this way is given. We refer to [194, Sub-
section 4.2.2] for a detailed description in a slightly different way. Here we take a
look at the simplest lower index cases only.

The case u = 1 corresponds to the solution decomposition x = D™ u + Qopx, the
inherent ODE
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o1 — o R'u+DG'B\D~u= DG, (2.135)

and the subsystem
©1Qox = —00G ' BI D u+ 09G4 (2.136)

For u = 2, we apply the solution decomposition x = D~ u + IlyQ1x + Qopx. The
inherent ODE reads

i — @p (DI, D™ ) u+ DI, G3 BiD™u = DIT,G4% 4, (2.137)

and we have to add the subsystem

wonwleD(DHOle)'} { 3 Qox ]
2.138
0 T @ 0101x (2.138)
Qo PyanKIT) Du— Qoszngéj
I Q1 0 K11y Hleng"

A careful inspection of our examples proves that these formulas comprise a worst
case scenario. For instance, in Example 2.68, not only is DIT; ngj B D~ continuous
but already DI, G, 'B\D~ can be extended continuously. However, as in Exam-
ple 2.66, the worst case can well happen.

Proposition 2.76. Let the DAE (2.1) have an almost proper leading term, and
DD* be continuously differentiable. Let the set of regular points L., be dense
in I. If the projector functions I1,...,II, | associated with the widely orthogo-
nal projector functions have continuous extensions on the entire interval I, and
DILD™,...,DII,_ 1D~ are continuously differentiable, then the following holds
true:

(1) The DAE has on 1., uniform characteristics ro < -+ <ry_| <ry =m.
(2) If Gu(t.) is nonsingular at the critical point t., then the widely orthogonal

projector functions Qo,...,Qu 1 themselves have continuous extensions over
t.. If the coefficients A, D, and B are sufficiently smooth, then t, is a harmless
critical point.

(3)  If Gy(t.) is nonsingular at the critical point t., then Gy_1(t) has necessarily
constant rank ry 1 on a neighborhood including t..

(4)  Ifthe DAE has index 1 on L., then its critical points fail to be harmless.

(5) A critical point of type B leads necessarily to a singular Gy, and hence it can
never been harmless.

Proof. Assertion (1) is already verified. Assertion (2) follows immediately by mak-
ing use of the decoupling. If A, D, B are smooth, then the coefficients of the subsys-
tem (2.62) are also sufficiently smooth, and allow for the respective solutions.

Turn to (3). Owing to (2), Oy is continuous, and rankQy_1(tx) = m —ry_1,
Gu—1(t:)Qu-1(t,) = 0 are valid, thus rank G, (t.) < ry—1. The existence of a
zekerGy_1(t), Pu—1(t.)z =z # 0, would imply G, (+)z = 0, and hence would



160 2 Linear DAEs

contradict the nonsingularity of Gy _1(t.).
(4) is a direct consequence of (3).
For proving Assertion (5) we remember the relation

I (1) Qj(t) = I (1) Q(0)IT; -1 (1), 1 € Lreg.

These relations remain valid for the continuous extensions, that is, for ¢t € Z. Con-
sider a type k — B critical point ., and a nontrivial z € Ny (t,) N (No(t.) + - +
Nyu—1(t+)), which means Gy(t,)z = 0, ITy_; (t.)z = 0. This yields

12 = Gt e+ )T 0
4o+ By (6 )y o (8) Quei1 (8:) -1 (1) 2 = 0,

and hence, Gy, (t,) is singular. O

2.10 Strangeness versus tractability

2.10.1 Canonical forms

Among the traditional goals of the theory of linear time-varying DAEs are appro-
priate generalizations of the Weierstra3—Kronecker canonical form and equivalence
transformations into these canonical forms. So far, except for the T-canonical form
which applies to both standard form DAEs and DAEs with properly stated leading
term (cf. Subsection 2.8), reduction to canonical forms is developed for standard
form DAEs (e.g. [39], [25], [127]).

While equivalence transformations for DAEs with properly stated leading term in-
clude transformations K of the unknown, scalings L and refactorizations H of the
leading term (cf. Section 2.3), equivalence transformations for standard form DAEs
combine only the transformations K of the unknowns and the scalings L.
Transforming the unknown function by x = KX and scaling the standard form DAE
(2.112) by L yields the equivalent DAE

LEKZ +(LFK+LEK % = Lq.
LEKY + (LFK+LEK') X =Lq
fa

Therefore the transformation matrix functions K must be continuously differen-
tiable.

In the remaining part of this subsection we use the letters K and H also for special
entries in the matrix functions describing the coefficients of the canonical forms
below. No confusion will arise from this.

Definition 2.77. The structured DAE with continuous coefficients
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Ln.1 K| , (WO|
[ 0 N] X + {H IJ x=gq, (2.139)

0 <1 <m,is said to be in

(1) standard canonical form (SCF), it H=0, K =0, and N is strictly upper tri-
angular,

(2)  strong standard canonical form (SSCF), if H =0, K =0, and N is a constant,
strictly upper triangular matrix,

(3)  S-canonical form,if H=0,K =[0K] ...Ky], and

ONip -+ Nig M

N= ,
'_' NK_I,’K‘ }lel
0 |Hk
is strictly upper block triangular with full row rank entries N;; 41, i =1,...,
K—1,
(4) T-canonical form, if K =0 and N is strictly upper block triangular with full
column rank entries N;j11, i=1,...,k—1.

In the case of time-invariant coefficients, these four canonical forms are obviously
equivalent. However, this is no longer true for time-varying coefficients.

The matrix function N is nilpotent in all four canonical forms, and N has uniform
nilpotency index x in (3) and (4). N and all its powers N* have constant rank in (2),
(3) and (4). In contrast, in (1), the nilpotency index and the rank of N may vary with
time. The S-canonical form is associated with DAEs with regular strangeness index
¢ =K —1 (cf. [127]), while the T-canonical form is associated with regular DAEs
with tractability index u = x (cf. Subsection 2.8). The classification into SCF and
SSCF goes back to [39] (cf. also [25]). We treat DAEs being transformable into SCF
as quasi-regular DAEs in Chapter 9. Here we concentrate on the S-canonical form.
We prove that each DAE being transformable into S-canonical form is regular with
tractability index U = k, and hence, each DAE with well-defined regular strangeness
index { is a regular DAE with tractability index u = § + 1. All the above canonical
forms are given in standard form. For the T-canonical form, a version with properly
stated leading term is straightforward (cf. Definition 2.64).

The strangeness index concept applies to standard form DAEs (2.112) with suffi-
ciently smooth coefficients. A reader who is not familiar with this concept will find
a short introduction in the next subsection. For the moment, we interpret DAEs with
regular strangeness index as those being transformable into S-canonical form. This
is justified by an equivalence result of [127], which is reflected by Theorem 2.78
below.

The regular strangeness index ¢ is supported by a sequence of characteristic
values 7;,a;,5;, i =0,...,{, which are associated with constant-rank conditions for
matrix functions, and which describe the detailed size of the S-canonical form. By
definition, s = 0 (cf. Subsection 2.10.2). These characteristic values are invariant
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with respect to the equivalence transformations, however, they are not independent
of each other.

Theorem 2.78. Each DAE (2.112) with smooth coefficients, well-defined strange-
ness index { and characteristic values 7;,a;,s;, i =0,...,{, is equivalent to a DAE
in S-canonical formwithk ={+1,1=L+---+1l, m—1= re, and

h<-<lg, h=382=3c1,0b=353,....,lk_1 =350, lx =50+ ao.

Proof. This assertion comprises the regular case of [127, Theorem 12] which con-
siders more general equations having also underdetermined parts (indicated by non-
trivial further characteristic values ;). a

By the next assertion, which represents the main result of this subsection, we
prove each DAE with regular strangeness index { to be at the same time a regu-
lar DAE with tractability index pt = { + 1. Therefore, the tractability index concept
applies at least to the entire class of DAEs which are accessible by the strangeness
index concept. Both concepts are associated with characteristic values being invari-
ant under equivalence transformations, and, of course, we would like to know how
these characteristic values are related to each other. In particular, the question arises
whether the constant-rank conditions supporting the strangeness index coincide with
the constant-rank conditions supporting the tractability index.

Theorem 2.79. (1) Let the standard form DAE (2.112) have smooth coefficients,
regular strangeness index { and characteristic values ¥, d;, $;
i=0,...,8. Then this DAE is regular with tractability index 4 = { + 1 and
associated characteristic values

}"0:]707 rj:m_jj_l, ]:177“'

(2) Each DAE in S-canonical form with smooth coefficients can be transformed
into T-canonical form with H = (.

Proof. (1) We prove the assertion by constructing a matrix function sequence and
admissible projector functions associated with the tractability index framework for
the resulting S-canonical form described by Theorem 2.78.

The matrix function N within the S-canonical form has constant rank [ — /.. Ex-
ploiting the structure of N we compose a projector function Q([)N] onto ker N, which
is upper block triangular, too. Then we set

(V]
I, K I, K
Py = "z) ! P%,’] , suchthat kerPy=ker [ mO ! N} )

Py is a projector function. The DAE coefficients are supposed to be smooth enough
so that Py is continuously differentiable. Then we can turn to the following properly
stated version of the S-canonical form:
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In-1 K y o wol (b K] L,
[ OIN} (Pox) +(|:0 IJ _[ OIN} Py )x=gq. (2.140)

V]

)
0 1, —N@EMY

The product NP(gN], is again strictly upper block triangular, and I; — N (P(EN] )’ is non-
singular. Scaling the DAE by

L1 0
0 (L—NEMy!
yields

1 N
[1,,,0, 1\[4(0 ] (P + [W _KIIQO }x:q, (2.141)

The matrix function My has the same structure as N, and ker M, = kerN. For the
subsystem corresponding to the second line of (2.141)

Mo(PMV) +v = qn.

(V]
,l 9
Jj=0,...,k, and admissible projector functions ng], e Qgivjl such that this sub-

Proposition B.2 in Appendix B provides a matrix function sequence G

system is a regular DAE with tractability index /.L[N ] = k and characteristic values

(V]

Mot =0 k-1, V=1

Now we compose a matrix function sequence and admissible projector functions
for the DAE (2.141). We begin with D = D~ = R = Py, and build successively for
i=0,...,x

L, = 0 x* L, * W x
Gi= 0 G[[N]a Qi= OQl[N], II; = 0 Hi[zv]7 Bi= OBI[N].

The coefficients are supposed to be smooth enough so that the Il; are continuously
differentiable. It follows that the matrix functions G; have constant ranks

N

[N]

ri=m—Il+r; '=m—Il+l—Ilx_j=m—Ilc;, i=0,.... k=1, e=m—Il4+r," =m.
This confirms that the DAE is regular with tractability index u = k. Applying
again Theorem 2.78, we express ri =m —l_; = §;—1 fori=1,...,k — 1, further
ro =m— (8o +do) = Fo, and this completes the proof of (1).

(2) This is a consequence of assertion (1), and the fact that each regular DAE with
tractability index U can be transformed into T-canonical form (with ¥ = u, cf. The-
orem 2.65). a
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2.10.2 Strangeness reduction

The original strangeness index concept is a special reduction technique for standard
form DAEs (2.112)

E(0)X (1) + F(0)x(t) = q(0)

with sufficiently smooth coefficients on a compact interval Z. We repeat the ba-
sic reduction step from [127]. For more details and a comprehensive discussion of
reduction techniques we refer to [130] and [189].

As mentioned before, the strangeness index is supported by several constant-rank
conditions. In particular, the matrix E in (2.112) is assumed to have constant rank 7.
This allows us to construct continuous injective matrix functions 7, Z, and T such
that

imT =kerE, im7T = (kerE)*, imZ= (imE)*.

The columns of T, T, and Z are basis functions of the corresponding subspaces.
Supposing Z*FT to have constant rank @, we find a continuous injective matrix
function V such that

imV = (imZ*FT)".

If, additionally, V*Z*FT has constant rank §, then one can construct pointwise non-
singular matrix functions K and L, such that the transformation x = KX, and scaling
the DAE (2.112) by L leads to

I; 0F,0 1?1,4 1?1,5
1; 0 0 0F4flrs
0 ¥+10 0 I; 0 0 | x=Lg, (2.142)
0 s 0 0 0
0 0 0 0 0

]

o o

with d := 7 — 5.

The system (2.142) consists of m = §+d + a+ §+ i equations, it := m — 7 — @ — §.
The construction of K and L involves three smooth factorizations of matrix functions
and the solution of a classical linear IVP (see [130]).

The fourth equation in (2.142) is simply ¥; = (Lg)4, which gives rise to replacement
of the derivative ¥| in the first line by (Lg)/,. Doing so we attain the new DAE

0 0F,0 1?1,4 1?1,5 (Lq),
I; 00 0kh4bs 0
0 |¥+|0 0L 0 0|x=1g—] 0 |, (2.143)
0 I OO0 0 O 0
0 00 0O0 O 0
Ene‘w Fnew

which is expected to have a lower index since the mentioned differentiation of x; is
carried out analytically.
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This reduction step is supported by the three rank conditions
rankE =7, rankZ*FT =a, rankV*Z*FT =3. (2.144)

The following proposition guarantees these constant-rank conditions to be valid, if
the DAE under consideration is regular in the tractability sense.

Proposition 2.80. Let the DAE (2.112) be regular with tractability index | and
characteristic values ro < -+ < ry 1 < ry. Then the constant-rank conditions
(2.144) are valid,

r=ry, a=ry—ro, S=m-—ry,

so that the reduction step is feasible.

Proof. We choose symmetric projector functions Wy, Qp and W, and verify the
relations

rank Z*BT =rank WyBQy = r| —rg, rankV*Z*FT =rankW\B=m —r.
O

The reduction from {E,F} to {Esew,Frew} can be repeated as long as the
constant-rank conditions are given. This leads to an iterative reduction procedure.
One starts with {Ey, Fy }:={E, F } and forms, for each i > 0, a new pair {E;;1,Fi+1}
to {E;, F;}. This works as long as the three constant-rank conditions

7 =rankE;, a =rankZ FT;, §; =rankV;'Z FT, (2.145)

hold true.
The strangeness index § € NU{0} is defined to be

§:=min{i e NU{0}:5 =0}.

The strangeness index is the minimal index such that the so-called strangeness dis-
appears. { is named the regular strangeness index, if there are no so-called under-
determined parts during the iteration such that #; = 0 and 7; 4+ a; + §; = m for all
i=0,..C¢.

The values 7;, a;, §;, i > 0, and several additional ones, are called characteristic
values associated with the strangeness index concept.

If the original DAE (2.112) has regular strangeness index {, then the reduction
procedure ends up with the DAE

Ido = 00 z_ =
{0 0] x*[oza] =49,

with d :d_g, a=dg.

Remark 2.81. Turn for a moment back to time-invariant DAEs and constant matrix
pairs. If the matrix pair {E, F } is regular with Kronecker index u (which is the same
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as the tractability index u), and characteristic values ro < -+ <ry | <ry = m,
then this pair has the regular strangeness index { = u — 1. The characteristic values
associated with the strangeness index can then be obtained from the rg,...,ry by
means of the formulas

i
Fr=m— Z(m—rj),
j=0

a = Zl:(m—rj)—(m—ml),

j=0

S§=m—ri, i=0,...,0.

The same relations apply to DAEs with time-varying coefficients, too (cf. [139]).

2.10.3 Projector based reduction

Although linear regular higher index DAEs are well understood, they are not acces-
sible to direct numerical integration as pointed out in Chapter 8. Especially for this
reason, different kinds of index reduction have their meaning.
We formulate a reduction step for the DAE (2.44) with properly stated leading term,
ie.,

A(Dx)' +Bx =g,

by applying the projector function W, associated with the first terms of the matrix
function sequence. W projects along im G| = im G @ imWyBQ, and, because of
imA C im Gy C im G, multiplication of the DAE by W) leads to the derivative-free
equations

WiBx = Wq. (2.146)

We emphasize that these equations are just a part of the derivative-free equations,
except for the case YWy = W, which is given in Hessenberg systems, and in Exam-
ple 2.82 below. The complete set is described by

WoBx = Woq. (2.147)

We suppose the matrix function V; to have constant rank m — ry, which is at least
ensured in regular DAEs. For regular DAEs the subspace

S1 =kerW;B

is known to have dimension ry.
Introduce a continuous reflexive generalized inverse (W;B)~, and put

Z] =1— (W1B)_W13.
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Z, is a continuous projector function onto S;. Because of W, BQy = 0 the following
properties hold true:

2100 = Qo
DZ, =DZ,Py=DZ,D" D
DZ,D~ =DZ, D" DZ,D~
imDZ; D™ =imDZ; = DS = DS).
DZ,D™ is a priori a continuous projector function. Assuming the DAE coefficients

to be sufficiently smooth, it becomes continuously differentiable, and we do so. In
consequence, for each function x € C}(Z,R™) it follows that

DZx =DZ;D Dx € C'(Z,R"), D(I—Zi)x=Dx—DZxeC (Z,R"),
which allows us to write the DAE as
A(DZx) +A(D(I - Z))x) +Bx = q. (2.148)

Equation (2.146) is consistent, since, for reasons of dimensions, imW;B = imW}.
It follows that
(I -7 )x = (WlB)’qu. (2.149)

This allows us to remove the derivative (D(I —Z;)x)" from the DAE, and to replace
it by the exact solution part derived from (2.146). The resulting new DAE
A(DZyx) +Bx = q—A(DOW\B) Wiq)

has no properly stated lading term. This is why we express A(DZix) =
A{DZ,D~ (DZix)' + (DZ1D~)'DZ;x}, and turn to the new DAE with a properly
stated leading term

ADZ,D™(DZ; x)' + (A(DZ,D~)'DZ, + B)x = g —A(DOW,B) " Wiq)'  (2.150)
—_——

Anew Dpew Bpew

which has the same solutions as the original DAE (2.44) has, and which is expected
to have a lower index (cf. [138]).

Example 2.82 (Index reduction step). We reconsider the DAE (2.10) from Exam-
ple 2.4,

010 000 / 1
0—1 ( 010 x(t)> + 0
001 0
A(r) D B(r)

where an admissible matrix function sequence for this DAE is generated. This DAE
is regular with tractability index 3. Now compute
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000 0
Wi=[000], WiB(t) = |0
001 0

Since W B is already a projector function, we can set (W;B)~ = W, B. This implies

100 000
Zi=1010[, D@z (r)=1]010],
0r0 00

and finally the special DAE (2.150)

010 000 100 q1(t)
000 ( 010 x(t))+ 01 0|x(t)=|q20)—g5(r)|, t€eR,
000 070 0—r1 q3(1)
—— ——
Anew (t> Dnew (t) Bnew(t)
which is indeed regular with tractability index 2. O

For the special choice (W)B)~ = (W;B)™, the resulting Z; is the orthoprojector
function onto Sj. This version is the counterpart to the strangeness reduction step
from Subsection 2.10.2.

At first glance it seems to be somewhat arbitrary to figure out just the equations
(2.146) for reduction. However, after the explanations below it will be seen as a nice
option.

An analogous reduction step can be arranged by choosing the complete set of
derivative-free equations (2.147) as a candidate. For regular DAEs, the subspace
kerWyB = Sy has dimension rgp, and we again obtain consistency, as well as the
projector Zy := I — (WpB)~ Wy B onto Sy. From (2.147) it follows that

(I—Zp)x= WoB)" Wog.

Now we need a smoother solution x to be able to differentiate this expression. To
be more transparent we assume at least D and Z, as well as the solution x, to be
continuously differentiable, and turn to the standard form

/ /
éEQ/x —|—(B—FAD)x:q.
Here we express
X' = (Zox) + (WoB) Woq)' = Zox' + Zyx + (WoB) Woq)',
such that we arrive at the new DAE

EZox +(F +EZ))x = q—E((WoB) Woq)'. (2.151)
~ ——

EﬂL’W Ezew
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This kind of reduction is in essence the procedure described in [189]. The descrip-
tion in [189] concentrates on the coefficient pairs, and one turns to a condensed
version of the pair {EZy, (I — W) (F + EZ})}.

In the following we do not provide a precise proof of the index reduction, but ex-
plain the idea behind it. Assume the DAE (2.44) to be regular with tractability index
U and characteristic values ro < --- <ry_1 = ry = m, and take a further look to the
completely decoupled version consisting of the IERODE (2.51) and the subsystem
(cf. (2.63))

N (Dv) +Mv = Lq. (2.152)
This subsystem comprises the inherent differentiations. It reads in detail
0Nt -+ Nopu—i r 0
. : (DHlex)’
0 ’ . (2.153)
. Nu—z,p—l :
0 | (DITy—2Qy-1x)'
[ Moy Moy Qo Log
I . : I Q1 x Liq
+ . = .
. M;,L72./.171 . .
I IT,—20pu—1x Euflq

We see that if we replace the derivative term (DIT,_»Q,—1x)’ by its exact solution
part (DL, _1q)" we arrive at the system

0 I Mo Mo
s u—1
(DITHQ:x) , . HQOX
I . : bQ1x
Naew : + : (2.154)
DIT, 30, 2x) My :
P 3()Q# Y I Il 2Qu-1x

ﬁﬁ,zq —Nufz,ufl (ﬁuflqy
Lu-1q9

While the matrix function N has nilpotency index g, the new matrix function
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ON(),] No,u,2 0

0o . : 0

j\/new = N/J73,y72 0
0 0

0

has nilpotency index p — 1 (cf. Proposition 2.29). That means, replacing the deriva-
tive (DIT,_>Qy—1x)" by the true solution term reduces the index by one. Clearly, re-
placing further derivatives and successively solving the subsystem for (/ —IT, 1 )x =
Qox+I1yQx+- -+ 11, 20y 1xreduces the index up to one. We keep in mind that,
replacing at least the derivative (DIT,_>Qy—1x)" reduces the index by at least one.
However, in practice, we are not given the decoupled system. How can we otherwise
make sure that this derivative is replaced?

Consider for a moment the equation

Wy 1Bx=Wy 1q (2.155)

that is also a part of the derivative-free equations of our DAE. Since the subspace
Su—1=kerW,,_ has dimension r;_1, the matrix function W, _ B has constant rank
m — ry—1, and equation (2.155) is consistent, we obtain with Z, ;| :=
I— (W”,lB)’W,JqB a continuous projector function onto Sy 1, and it follows
that

(I =Zy1)x=Wu1B) Wy-14.

Since we use completely decoupling projector functions Qy, ..., Oy 1, we know that
II, >0, 1 is the projector function onto im I, »Q 1 along S, ;. Therefore, with
I—Z, yand I, »Q, 1 we have two projector functions along Sy, 1. This yields

1-Zy v =(I-Zy 1)y 20u—1, My2Qu-1=My20u1(I—Zyu1),

and therefore, by replacing (D(I — Zy,_1)x) we replace at the same time

(DII;»Qy—1x)". This means that turning from the original DAE (2.44) to
ADZy D~ (DZy 1x)' + (A(DZy 1D~ )'DZy_1+B)x = g—A(D(Wy_1B) Wy_1q)’

indeed reduces the index by one. However, the use of Z, | is rather a theoreti-
cal option, since W, | is not easy to obtain. The point is that working instead
with (2.146) and Z; as described above, and differentiating the extra components
D(I —Zy)x, includes the differentiation of the component D(I — Z;,_1)x as part of
it. In this way, the reduction step from (2.44) to (2.150) seems to be a reasonable
compromise from both theoretical and practical viewpoints.

At this point we emphasize that there are various possibilities to compose special
reduction techniques.
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2.11 Generalized solutions

We continue to consider linear DAEs
A(t)(D(t)x(t)) +B(t)x(t) = q(t), teT, (2.156)

with coefficients A € C(Z,L(R",R™)), D € C(Z,L(R™,R")), B€ C(Z,L(R™)).Z C
R denotes an interval. Here we focus on IVPs. Let 1y € Z be fixed. We state the
initial condition in the form

Cx(fy) =z, (2.157)

by means of a matrix C € L(R™,R?) which satisfies the condition
C =CD(ty) Dlty), (2.158)

and which is further specified below (cf. Theorem 2.52) where appropriate.

A classical solution of the IVP (2.156), (2.157) is a continuous function x which
possesses a continuously differentiable component Dx and satisfies the initial con-
dition as well as pointwise the DAE. Excitations corresponding to classical solutions
are at least continuous.

2.11.1 Measurable solutions

A straightforward generalization is now to turn to measurable solution functions
x such that the part Dx is absolutely continuous, the initial condition makes sense
owing to condition (2.158), and the DAE is satisfied for almost every r € Z. The
corresponding right-hand sides ¢ are also measurable functions.

DAEs with excitations g € Ly(Z,R™) result, e.g., from Galerkin approximations
of PDAEs (cf. [207], [203]). Furthermore, in optimization problems one usually
applies measurable control functions.

We point out that regularity of the DAE, its characteristic values and the tractabil-
ity index are determined from the coefficient functions A, D and B alone. Also the
decoupling procedure is given in terms of these coefficient functions. Therefore,
the regularity notion, the tractability index, characteristic values and the decoupling
procedure retain their meaning also if we change the nature of the solutions and
excitations.

We use the function space
H)(Z,R™) := {x € L,(Z,R™) : Dx ¢ H'(Z,R")}

to accommodate the generalized solutions. For x € H},(Z,R™) the resulting defect
q = A(Dx)" + Bx belongs to Lp(Z,R™). Conversely, given an excitation
q € Lr(Z,IR™), it seems to make sense if we ask for IVP solutions from H),(Z,R™).
The following proposition is a counterpart of Proposition 2.50. Roughly speaking,



172 2 Linear DAEs

in higher index cases, excitations are directed to the inherent regular ODE and the
nullspace component only, which is ensured by means of the filtering projector
GuPr--Py1G, '

Proposition 2.83. Let the DAE (2.156) be fine with tractability index W and char-
acteristic values 0 <rg < --- <y <ry=m Putd= m—Z?Zl(m— rj_l),
Let Qo,...,Qu—1 be completely decoupling projectors. Set Vi :=1 and V, =
GuPi--- Py Gyl if > 1

Let the matrix C in the initial condition 2.157 have the property kerC = Nogn (o).
Then, for every z € imC and q = Vyp, p € Lo(Z,R™), the IVP (2.156), (2.157) has
exactly one solution x € H)(Z,R™).

If, additionally, the component QP - - ~P,1_1Gﬁ1q = QoP; - -Pu_lGljlp is continu-
ous, then the solution x is continuous.

Proof. We refer to Section 2.6 for details. Applying the decoupling and regarding
condition g = Vy; p, we arrive at the inherent regular ODE

U — (DI equD ™) tt+ DI Gy ' BD ™t = DI1enG), ' p (2.159)
and the solution expression
x=D"u+QoP--Pu_1G,'p. (2.160)
The initial value problem for (2.159) with the initial condition
u(to) = D(to)C" z

has (cf. [79, pp. 166-167]) a continuous solution « with ' in L,(Z,R"), and which
satisfies the ODE for almost all ¢. Then, by (2.160), xis in H, ll) (Z,R™), and the initial
condition (2.157) is fulfilled:

Cx(ty) = CD(ty) u(to) = CD(to) D(tp)C z=CC z=z.

The second part of the assertion follows from the solution representation (2.160).
O

If the tractability index equals 1, then V| = [ is valid, and hence the operator
L:H)(Z,R™) — Ly(Z,R™), Lx:=A(Dx)'+Bx,

is surjective. The corresponding IVP operator L is then a bijection.

If the DAE (2.156) is regular with tractability index 2, then by means of com-
pletely decoupling projectors we obtain the solution expression

x=D u+I1H01G;' g+ QoPIG; ' g+ Q001D (DITH01G, 'q),

where u satisfies
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W' — (DILD™)'u+DIL G, 'BD u=DIT;G; 'q, u(to) = D(1)C "z,

for the IVP (2.156), (2.157). In this way, the excitation ¢ is supposed to be from the
function space

{q € Ly(Z,R™) : DITHQ:1 G, 'q € H'(Z,R")}.

Because of V, = G2P1G, I and DIThyO.\G;, 1Vz = 0, the excitation ¢ = Vop in the
above proposition belongs to this space for trivial reasons.

Dealing with piecewise smooth excitations ¢, the solution expression shows how
jumps are passed onto the solution.

We refer to Chapter 12 for a discussion of abstract differential equations, which also
includes related results.

In all the above cases, suitably posed initial conditions play their role. If one replaces
the initial condition (2.157) by the condition x(#p) = xo we used to apply for regular
ODEs, and which makes sense only for solutions being continuous, then the value xg
must be consistent. Otherwise solvability is lost. As discussed in Subsection 2.6.2,
a consistent value depends on the excitation.

2.11.2 Distributional solutions

The theory of distributional solutions allows us to elude the problem with incon-
sistent initial values and to consider discontinuous excitations g. We briefly address
DAESs having C*-coefficients and a distributional excitation. For facts on general-
ized functions we refer to [201], [215].

Let © denote the space of functions from C*(Z,R) with compact support in Z,
and ©’ its dual space. The elements of D’ are said to be generalized functions or
distributions. Denote by (-, -) the dual pairing between D’ and D.

Fory € [©]* and ¢ € [D]*, k € N, we define

k

30):=Y (v, 95

=1
For a matrix function M € C*(Z,L(R¥,R")), [,k € N, and y € [D']* we define the
product My € [®']! by

(My,9) = (y,M"9), Vo [D].

This product is well defined since M* ¢ belongs to [C‘D]k . For this, the C** property of
M is crucial.
Any distribution y € [D']¥ possesses the distributional derivative y' € [D']* defined
by means of

O, 0)=—0.¢), YoeDF
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The product rule (My)' = M’y + My is valid.

Now we are prepared to consider distributional solutions of the given DAE
(2.156) supposing its coefficient functions A,D,B have all entries belonging to
C*(Z,R).

Given a distributional excitation ¢ € [D']™, a distribution x € [D’]" is said to be a
distributional solution of the (generalized) DAE (2.156) if

(A(Dx)'+Bx,0) = (q,9), Vo <€[D]", (2.161)
or, equivalently,
(x,~D*(A*0) +B*9) = (q,0), Yo [D]". (2.162)

Since the entries of A,D,B belong to C*(Z,R), for regular DAESs, all admissible
matrix functions and admissible projector functions have those entries, too. And
hence the decoupling procedure described in Section 2.4 keeps its value also for the
distributional solution. Every regular DAE possesses distributional solutions.

2.12 Notes and references

(1) For constant coefficient DAEs
EX (t)+Fx(t) = q(1), (2.163)

the Kronecker index and regularity are well defined via the properties of the matrix
pencil {E,F}, and these characteristics are of particular importance in view of an
appropriate numerical treatment. From about 1970, challenged by circuit simulation
problems, numerical analysts and experts in circuit simulation begun to devote much
work to the numerical integration of larger systems of implicit ODEs and DAEs
(e.g., [86], [64], [202], [89]). In particular, linear variable coefficient DAEs

E(t)X (1) + F(t)x(t) = g(t) (2.164)

were tackled by the implicit Euler method
_ | _ _ B
E(t) 7 (= %i-1) + F(0)5 = (1)

Obviously, for the method to be just feasible, the matrix %E (1)) + F(t;) must be
nonsingular, but this can be guaranteed for all steps # and all sufficiently small
stepsizes h, if one requires the so-called local matrix pencils {E(t),F(t)} to be
regular on the given interval (we mention at this point, that feasibility is by far not
sufficient for a numerical integration method to work well). However, it was already
discovered in [84] that the local pencils are not at all relevant characteristics of more
general DAEs. Except for regular index-1 DAESs, local matrix pencils may change
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their index and lose their regularity under smooth regular transformations of the
variables. That means that the local matrix pencils {E(¢), F(¢)} of the DAE

E(t)X (1) +F(t)x(t) =q(t), te€Z, (2.165)

which result from transforming %(¢) = K (#)x(¢) in the DAE (2.164), with a pointwise
nonsingular continuously differentiable matrix function K, may have completely
different characteristics from the local pencils {E(¢), F(¢) }. Nevertheless, the DAEs
are equivalent, and hence, the local matrix pencils are irrelevant for determining the
characteristics of a DAE. The coefficients of equivalent DAEs (2.164) and (2.165)
are related by the formulas E(t) = E(t)K(t), F(t) = F(1)K(t) + E(¢)K'(t), which
gives the impression that one can manipulate the resulting local pencil almost arbi-
trarily by choosing different transforms K.

In DAEs of the form

A@6)(D()x(1))' + B(1)x(t) = 4(t), (2.166)
the transformation %(¢) = K (¢)x(¢) leads to the equivalent DAE
A(t)(D(1)x(t)) +B(t)x(t) = q(1). (2.167)

The coefficients are related by A(r) = A(t), D(t) = D(t)K(t) and B(t) =
B(t)K(t), and the local pencils {A(t)D(t),B(t)} and {A(t)D(t),B(t)} =
{A(t)D(t)K(t),B(t)K(t)} are now equivalent. However, we do not consider this
to justify the local pencils of the DAE (2.167) as relevant carriers of DAE essen-
tials. For the DAE (2.167), also so-called refactorizations of the leading term yield
equivalent DAEs, and any serious concept incorporates this fact. For instance, in-
serting (Dx)' = (DD Dx)' = D(D"Dx)’ 4+ D'D™ Dx does not really change the DAE
(2.167), howeyver, the local matrix pencils may change their nature as the following
example demonstrates. This rules out the local pencils again. The DAE

010 000 , 100
oot|(fo1o0 x(t)) +10 1 0| x(t)=q(r), t€R, (2.168)
000 0—r1 0—r1
A D(1) B(1)
has the local pencil {AD(t) } which is regular with index 3. However, deriving
000 000 , 000
(B()x(1)) = (D(r) |01 0 —p)(lot1o x(t)) +D@) [010|x()
001 001 001

yields the equivalent DAE
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010] [000 100
0-r1 ( 010 x(t)) +10 0 0|x(t)=q(t), t€R, (2.169)
000| |oo1 011
—_——— ——— —_———
A D B()

the local matrix pencils {A(z)D,B(t)} = {E(t),F(t)} of which are singular for all
teR.

We see, aiming for the characterization of a variable coefficient DAE, that it does not
make sense to check regularity and index of the local pencils, neither for standard
form DAESs nor for DAEs with properly stated leading term.

(2) Although in applications one commonly already has DAEs with proper lead-
ing term or standard form DAEs (2.165) the leading coefficient E of which has
constant rank, there might be a different view of the constant-rank requirement for
E seeing it as a drawback. In the early work on DAEs (cf. [39, 25]), the standard
canonical form (SCF) of a DAE plays its role. By definition, the DAE (2.165) is in
SCEF, if it is in the form

[(I) N(()t)] X (1) + [Wét) (,)] x(t) = q(1), (2.170)

where N(7) is strictly lower (or upper) triangular. We emphasize that N(z), and con-
sequently E(r), need not have constant rank on the given interval. Supposing the
excitation ¢ and the matrix function N are sufficiently smooth, this DAE has contin-
uously differentiable solutions, and the flow does not show critical behavior.

In contrast, in our analysis, several constant-rank conditions play their role, in
particular, each rank-changing point of A(#)D(¢) or E(t) is considered as a critical
point, that is, as a candidate for a point where something extraordinary with the
solutions may happen. We motivate this opinion by Examples 2.69-2.71, among
them also DAEs in SCF.

(3) The ambition to allow for matrix coefficients E with variable rank in a more
general DAE theory is closely related to the SCF as well as to the derivative array
approach (cf. [41]).

Given a DAE (2.165) with m = k and coefficients E,F € C*"(Z,L(R™)), one con-
siders the derivative array system (also, the prolongated or expanded system)

E(1) 0o . .. 0 x! F(1) q(t)
E't)+F@)E(t) 0 .. . x? F'(t) q(t)
* x E() . =— x+ ,
b e E(n)] [ FOm]  a®a)
Tk (1)
(2.171)

which results from (2.165) by formally differentiating this equation k times, collect-
ing all these equations, and replacing the derivative values x(/) (t) by jet variables x/.
The (K + 1)m x (x4 1)m matrix function Jy is said to be smoothly 1-full on T ([25,
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Definition 2.4.7]), if there is a smooth nonsingular matrix function R such that

raoso=[5 )

If Ji is smoothly 1-full, then an explicit vector field can be extracted from the
derivative array system (2.171), say

xl=Clt)x+ f D;(1)g"(r).
j=0

The solution set of the DAE (2.165) is embedded into the solution set of the explicit
ODE

Xy =C(nxn)+ ) Di(t)gY (1), (2.172)

which is called a completion ODE associated with the DAE, often also the underly-
ing ODE.

In this context, one speaks (cf. [25, 41]) about solvable systems (2.165), if for every
g € C™(Z,R™) there exists at least one solution x € C'(Z,R™), which is uniquely
determined by its value at any ¢+ € Z. Any DAE that is transformable into SCF is
solvable in this sense. For every such solvable system, there is an index k¥ < m such
that the derivative array matrix function [Jy has constant rank and is smoothly 1-full.
The reverse statement is true under additional assumptions (cf. [25, 41]).

If N in the SCF (2.170) is the zero matrix, then the leading coefficient of this
DAE has constant rank. Correspondingly, if the matrix function 7; has constant
rank and is smoothly 1-full on Z, then E has constant rank. Namely, we have here

E 0 10
R$74?+FE]bK}

The block K has constant rank since 7; has. Now, E has constant rank because of

®le] = k]

It becomes clear that the leading coefficient E of a solvable system (2.165) may
undergo rank changes only in so-called higher index cases, that is, if k¥ > 2 is the
lowest index such that J has constant rank and is smoothly 1-full.

To illustrate what is going on we revisit the simple SCF-DAE

0al , [10] _
ool Tlo1|*T4

given on the interval Z = [—1, 1]. The function « is a strictly positive on (0, 1] and
vanishes identically on [—1,0]. Suppose ¢ to be four times continuously differen-
tiable. Notice that, in contrast, in Example 2.70 we only need continuous o. We
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form the derivative array functions

00 0 00

0000 000 0 00
0000 10 a 00
IT=lwoal” 2010 0 00
0100 0oa"1d"+a" 0«
000 1 00

These matrix functions have constant-rank two, respectively four. Multiplication by
the smooth nonsingular matrix functions

001 —a' 0 —«

001 —a 000 1 00

000 1 100 —a¢ 0 0
Ri=1100-al” ®={010 0 0 0
010 0 000—-a"1 0

000 0 O 1

yields

100 0 00

100« 010 0 00
0100 000 0 00
Ridi=15000]" *%2= 000 0 00
0000 00la'+0"0a

000 1 00

The derivative array function J, is smoothly 1-full on the entire interval
Z = [—1,1] independently of the behavior of the function . On the other hand,
1-fullness on Z does not apply to 7. However, J; is smoothly 1-full on the subin-
terval [—1,0), where o vanishes identically. It becomes clear that the restriction
of the DAE onto a subinterval does not necessarily show the same characteristic.
A more rigorous characterization of the DAE would depend on the interval.

We stress once again that we aim for a DAE analysis including a regularity no-
tion, which meets the lowest possible smoothness demands, and that we have good
reasons for treating the rank-changing points of the leading coefficient as critical
points and for regarding regularity intervals.

From our point of view, regularity of linear DAEs comprises the following three
main aspects (cf. Definition 2.25):

(a) The homogeneous equation has a solution space of finite dimension d.

(b) Equations restricted to subintervals inherit property (a) with the same d.

(c) Equations restricted to subintervals inherit the further characteristics
ro <<y <ry=m

(4) Regularity is an often applied notion in mathematics to characterize quite di-
verse features. Also, different regularity notions are already known for linear DAEs.
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They refer to different intentions and are not consistent with each other. We pick up
some of them.

Repeatedly (e.g., [129, 130]) regularity of linear DAEs is bound to the unique
solvability of initial value problems for every sufficiently smooth excitation and
consistent initial conditions. Note that this property is named solvability, e.g., in
[41, 25].

In [25] the linear DAE is said to be regular, if the local matrix pencils remain regular,
a property that is helpful for numerical integration.

In [189] the ordered matrix function pair {E,F} is said to be regular, if E(r) has
constant rank r < m and E(¢)E(¢)* + F(¢)F(¢t)* is nonsingular, a property that is
useful for the reduction procedure. A DAE showing a regular coefficient pair is then
named reducible. So, for instance, the constant coefficient pair

100] [101
010],{010
000| {010

is regular in [189], but fails to be regular in [25].

Moreover, apart from higher smoothness demands, complete reducibility of the DAE
and complete regularity of the pair {E, F'} in [189] are consistent with our regularity
notion. Namely, it is proved in [189] by a careful inspection of all involved constant-
rank requirements that complete reducibility is in full agreement with the condi-
tions yielding a well-defined regular strangeness index (cf. Section 2.10). In turn, as
shown in Section 2.10, the rank conditions supporting regularity in the tractability
index context are also in agreement with those from the regular strangeness index.

(5) Distributional solutions of linear DAEs with constant coefficients were stud-
ied very early, e.g., [53]. Generalized (distributional) solutions of linear DAEs with
smooth variable coefficients have been worked out in [187] (also [189, Chapter I11]),
whereby so-called impulsive-smooth distributions play a central role. Recently, also
time-varying DAEs with discontinuous coefficients are on the agenda, see [208].

(6) Further solution generalizations such as weak solutions result from the special
settings of partial differential-algebraic equations (PDAEs) and abstract differential-
algebraic equations (ADAE:s), see, e.g., [207, 191] and references therein.

(7) There are simple interrelations between standard form DAEs (2.165) and
DAEs (2.167) with proper leading term.
If D is continuously differentiable, we rewrite the DAE (2.167) as

A()D(t)X (t) + (B(t) + A(t)D'(¢))x(t) = q(t), (2.173)

which has standard form. If equation (2.167) has a properly stated leading term,
the resulting matrix function £ = AD has constant-rank and the variable subspace
kerE = kerD is a C'-subspace.

Conversely, if a standard form DAE (2.165) with a constant rank matrix func-
tion E is given and, additionally, kerE is a C l—subspace, then, taking a contin-
uously differentiable projector valued function P, kerP = kerE, we may write
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Ex' = EPX' = E(Px)' — EP'x. In this way we obtain

E(t)(P(t)x(1))' + (F(t) = E()P'(1))x(1) = q(t), (2.174)

which is a DAE with properly stated leading term. Now it is evident that any DAE
(2.167) with a properly stated leading term and a continuously differentiable matrix
function D yields a standard form DAE (2.165) such that the leading coefficient E
has constant rank and kerE is a Cl—subspace, and vice versa.

Moreover, there are various possibilities to factorize a given matrix function E,
and to rewrite a standard form DAE as a DAE with proper leading term.
If the matrix function E itself is continuously differentiable and has constant rank,
then its nullspace is necessarily a C'-subspace, so that we may use equation (2.174).
Additionally in this case, by taking any continuously differentiable generalized in-
verse E~ and by writing Ex' = EE~Ex' = EE~ (Ex)' — EE~ E'x we form

which is also a DAE with properly stated leading term.

Furthermore, very often the original DAE consists of two kinds of equations, those
containing derivatives and those which are derivative-free. Then, the matrix function
E has the special form

E(t) = [Elo(t)] , rankFE(¢) =rankE(z),

or can be easily brought into this form. In this case, we can simply turn to

[(I)} (Ex(0)x(1)) + (F(t) - [E{O(t)} )x(t) =q(1).

We also point out the following full-rank factorization on a compact interval Z,
which is provided by a continuous singular value decomposition (e.g. [49]),

U () Un(0)] [E() 0] [Vir(r) Via()]*
E(t) = [U;(;) UZ(:)} [ 0 O] {V;(f) VZ(’)}

- o] =0 i i)
—_—

A0 D(r)
rank X(r) = rankE(¢) =: r, n = r. The factors U, £ and V are continuously differ-

entiable, supposing E is so. Then, A(¢) has full column rank n and D(¢) has full row
rank n.

As in the constant coefficient case, the special form of the factorization does
not matter for the nature of the solution. Only the nullspace ker D = ker E specifies
what a solution is. Namely, for every two matrix functions D € C'(Z,R") and D €
C'(Z,R™) with constant rank and the common nullspace N := ker D = ker D, it holds
that

CH(I,R™) =ChH(Z,R™).
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Since the Moore—Penrose inverses D1 and D are continuously differentiable, too,
for any x € C}(Z,R™) we find Dx = DD*Dx = DD Dx € C'(Z,R"), and hence
X € Cg(I,R'”).

(8) Our stability analysis of linear DAEs as well as the stability issues in Part
II concerning nonlinear index-1 DAEs carry forward the early ideas of [146, 96] as
well as fruitful discussions on a series of special conferences on stability issues. The
basic tool of our analysis is the explicit description of the unique IERODE defined
by fine decouplings. We emphasize that we do not transform the given DAE, but
work with the originally given data. In [17] they try another way of considering
DAEs via transformation into SCF and proposing Lyapunov functions.

(9) In Section 2.2 we provide the admissible matrix function sequences and ad-
missible projector functions together with their main properties. This part general-
izes the ideas of [167], [170]. While [167], [170] are restricted to regular DAEs, we
now give an adequate generalization for systems of k equations for m unknowns.
The new preliminary rearrangement of the DAE terms for better structural insight in
Subsection 2.4.1 is also valid for nonregular DAEs. We discuss this topic in Chapter
10 for over- and underdetermined DAEs. We emphasize once again that we only
rearrange terms in the given setting, but we do not transform the DAE at all.

The discussion of regular and fine DAEs renews the ideas of [170] and [169],
while the discussion of critical points reflects parts of [173, 174, 194], but we apply
a relaxed notion of regular points by the introduction of quasi-proper leading terms.
[194] is the first monograph offering a comprehensive introduction to the projector
based decoupling of regular linear DAEs, both in standard form and with proper
leading term. Moreover, this book considers critical points in the context of DAEs
having almost overall uniform characteristics.

(10) In the present chapter we describe harmless critical points somewhat loosely
as those which disappear in a smoother setting. A precise investigation on the back-
ground of the concept of quasi-regular DAEs (cf. Chapter 9) can be found in [59].



Chapter 3
Nonlinear DAEs

The objective of this chapter is a rigorous analysis of a large class of DAEs

F((d(x(t),1)) ,x(t),t) =0

on a low smoothness level by means of admissible projector functions. In contrast
to the usually applied derivative array approaches and reduction procedures, we do
without those derivative arrays. We also do without providing solutions prior to and
involving them into the characterization of the equation.

The chapter is organized as follows. We describe the basic assumptions, the set-

ting of DAEs with properly involved derivative, their constraints and what we con-
sider to be a linearization in Section 3.1. Section 3.2 provides admissible matrix
function sequences and admissible projector functions, as well as their essential
properties, as pointwise generalizations of the admissible matrix function sequences
and admissible projector functions already defined in Chapter 2 on linear DAEs. In
Section 3.3 we introduce regularity regions and provide necessary and sufficient
regularity conditions via linearizations. We consider this to be the main result of the
present chapter. It says that a DAE is regular with tractability index u and charac-
teristic values 0 <rg < --- <ry_| <1y = m, if all its corresponding linearizations
are regular with these characteristics, and vice versa. Characteristic values and regu-
larity regions are shown to be invariant under transformations in Section 3.4. In this
context, a DAE having a well-defined index, which is commonly supposed in the
literature, appears to be a DAE comprising just one single regularity region. There-
fore, the class of DAEs showing several regularity regions appears to be quite large.
Nevertheless, Section 3.8 addresses the need for a further generalization of the DAE
class by an advanced localization of regularity regarding the jet variables.
Section 3.5 deals with the special structure of Hessenberg form DAEs and verifies
the full agreement of the tractability index concept with the trusted knowledge on
Hessenberg DAEs. For DAE:s arising in circuit simulation which are studied in Sec-
tion 3.6, it is shown how the structure of the circuit can be exploited to reach useful
information and to build the admissible projector functions, and then to provide the
DAE characteristics.

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis, 183
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5_3,
© Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-27555-5_3

184 3 Nonlinear DAEs

We prove strong local solvability assertions in Section 3.7. In Section 3.9 we derive
perturbation results for DAEs having a linear derivative part by means of an oper-
ator setting. Section 3.11 offers hints to ease models. We discuss relations to the
differentiation index in Section 3.10.

3.1 Basic assumptions and notions

3.1.1 Properly involved derivative

In this chapter we investigate general nonlinear equations

f((d(x(t)’t))/’x(t)at):Ov (3.1

which satisfy the following assumption.

Assumption 3.1. The function f :R" x Dy x Ty — R* is continuous on the open
set R" x Dy x Iy CR" x R™ x R and has continuous partial derivatives fy, f, with
respect to the first two variables y € R", x € Dy.

The function d : Dy x Ly — R" is continuously differentiable.

DAEs in the form (3.1) arise, for instance, in circuit simulation by means of the
modified nodal analysis on a big scale (cf. Section 3.6).

Involving the derivative by means of an extra function into the DAE brings benefits
in view of solvability.

Definition 3.2. A solution x, of equation (3.1) is a continuous function defined
on an interval Z, C Zy, with values x.(t) € Dy, t € Z,, such that the function
u(.) :=d(x(.),.) is continuously differentiable, and x, satisfies the DAE (3.1)
pointwise on Z,.

In our context, the wording the DAE is solvable simply means the existence of a
solution in this sense. In contrast, mostly in the literature on DAEs, solvability of
a DAE means the existence of a continuously differentiable function satisfying the
DAE pointwise. As for linear DAEs, one can expect lower smoothness solvability
results also for nonlinear DAEs (3.1).

Example 3.3 (Solvability benefit). The DAE

(x1(t) +x2(t)x3(2)) —q1 () = 0,
x(t) —q2(t) =0,
() —qs(t) =0, teT,

has the form (3.1) withk=m=3,n=1,

1 0
fOo,x,0):= 0] y+ |x2| —q(r), d(x,t):=x1+xx3, xR} e, yeR.
0 X3
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For each given continuous ¢ and fixed 7 € Z, ¢ € R, this DAE has the solution
t.
x1(1) = =000 + ¢+ a7+ [ a1(5)ds,
T
x2(t) = q2(1),
x(t) =q3(t), te€T,

which satisfies x(7) = %, X} := ¢, &; := ¢q;(f), i = 2,3. Obviously, the second and
third solution components are not necessarily continuously differentiable. Later on
we refer to such a system as a regular index-1 DAE. Observe that ker f, = {0},
imd, = R.

In contrast, rewriting this DAE in standard form as

X1(1) +x3(1) X5 (1) +22(1) X5(0) — qu (1) = 0,
x2(t) = q2(t) = 0,
x3(t)—q3(t) =0, teZ,

we are led to solvability only for at least continuously differentiable g7, g3. a

Equation (3.1) covers linear DAEs (2.1) via

fO,x,t) =A(t)y+B(t)x—q(t), d(x,t)=D(t)x.

Semi-explicit systems

=
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=
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=
=
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=
=
=
\’N
=
I

0, (3.2)
by (x1(1),x2(),t) =0, (3.3)

where the unknown function is partitioned into the two components x;(.), x2(.),
and the derivative of the second component is absent, and, additionally, a part of the
equations is derivative-free, represent the special case with

f(y,x,t){(l)}erb(x,t), d(x,t)=x1, yeR" xeDy=:Dys, t €Iy=:1Iy.

Many authors restrict themselves to semi-explicit DAEs; often one deals with so-
called Hessenberg form DAEs which are particular cases of semi-explicit DAEs.
Semi-explicit systems yield

H,x,t) = {(I)] e LR, R™), dy(x,t) = [I O] e L(R™,R"),

ker fy(y,x,t) ®imd,(x,t) = {0} ®R" =R", (y,x,t) € R" x Dy x Iy,

which is typical for properly stated terms.
The following notion of a properly involved derivative generalizes this property.
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Definition 3.4. Let the DAE (3.1) satisfy Assumption 3.1. The DAE (3.1) has on
Dy x Iy a properly involved derivative, also called a properly stated leading term,
if imd, and ker f; are C I_subspaces in R”, and the transversality condition

ker fy(y,x,1) ®@imd,(x,1) =R", (y,x,t) € R" x Dy x Iy, (3.4)

holds.

Variable subspaces moving in R”, in particular C'-subspaces, are described in Ap-
pendix A.4. Any C'-subspace necessarily has constant dimension. Therefore, if the
DAE has a properly involved derivative, then the partial derivatives fy(y,x,?) and
dy(x,t) have constant rank on their definition domain. Denote

r:=rankd,(x,1). (3.5)

Due to the transversality condition (3.4), f, (y,x,1) has rank r, too.

From our point of view it makes good sense to figure out the term housing the
derivative in a rigorous way, i.e., to use an improved model (3.1) compared with a
so-called standard DAE

f(x'(1),x(1),1) =0 (3.6)

that leaves it undecided which derivatives are actually involved. Example 3.3 shows
a DAE with properly stated leading term and also any semi-explicit system has a
properly stated leading term, too. Both cases show trivial decomposition of R”.

The general first-order form of the equation describing the motion of a con-
strained multibody system is actually a special semi-explicit DAE. The circuit mod-
els described in Section 3.6 also yield DAEs with properly stated leading term. It
seems that properly involved derivatives in the mathematical sense reflect the phys-
ical nature in basic applications well.

Whereas in properly stated leading terms both matrix functions f,(y,x,7) and
dy(x,t) have necessarily constant rank, the matrix function f;(y,x,) is allowed to
change its rank in so-called quasi-proper leading terms in Chapter 9. Already in
Chapter 2 concerning linear DAEs, we threw some light on different views concern-
ing the constant-rank requirements, and of course, all arguments keep their value
for nonlinear DAEs, too. At this place we emphasize once more the role of properly
stated leading terms in detecting critical points on early stages. We demonstrate this
by the next two examples.

Example 3.5 (Critical point detection). The system

x1 (1) Xy (1) = x2(r) = 0,
x1(t) —xa2(t) =0

)

possesses the solutions x. () = x.2(f) =t + ¢, where ¢ denotes an arbitrary real
constant. Additionally, the identically vanishing function %, (t) = 0 is also a solution.
Through every point on the diagonal line x; = x», except for the origin, there passes
exactly one solution. However, two different solutions satisfy the initial condition
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x(0) = 0, which characterizes the origin as a critical point. Writing the DAE in the
form 3.1) withn=1, m=k=2,Dy=R? I; =R,

fouen) = [P 72]L o= ] =x. an =10,

X1 —Xx2

one arrives at a DAE which fails to have a properly stated leading term on the given
definition domain Dy x Zy. However, the leading term is stated properly on the open
set

{(x,t) S Df XIf 1X] # 0},

where f, keeps constant rank. This emphasizes the constant-rank condition (and the
proper leading term setting) to be helpful in indicating critical points. ad

So-called quasi-linear equations
A(x(1),)(d(x(t),1)) +b(x(1),1) = 0 3.7)

are accommodated in (3.1) with f(y,x,t) = A(x,t)y + b(x,t), d(x,t) = D(¢)x.
Quasi-linear DAEs have an extra term housing the derivative, and formally leading
the equation. This justifies the name properly stated leading term. In a more gen-
eral equation, we might not have a leading term. Then the notion properly involved
derivative is more appropriate. However, we also keep using the more traditional no-
tions properly stated leading term and proper leading term for the general nonlinear
case.

A generally quite favorable version of a properly involved derivative term is given
if

ker fy(y,x,t) = {0}, imd,(x,r) =R",

which means that the partial derivatives f,(y,x,t) and dy(x,t) have full column rank
and full row rank, respectively, as it is the case for semi-explicit systems.

3.1.2 Constraints and consistent initial values

In Example 3.3, all solution values at time  must belong to the set
Mo(t) ={x eR? 1 xy = q2(1),x3 = q3(1) }.

This is a typical feature of DAEs, which consists in the fact that the flow determined
by the DAE is restricted to certain lower-dimensional sets, the constraint sets (con-
strained manifold, if a manifold structure is given). This differs essentially from the
situation given for regular ODEs where no such restrictions are met. In DAEs, cer-
tain components are completely fixed by others and the excitations. Just for some
part of the components, if any, free integration constants allow for additional initial
or boundary conditions and an actual flow. If an IVP of the form
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S((d(x(1),1)) ,x(2),1) =0, x(10) = x0 (3.8)

should be solvable, the initial value xo must meet these constraints. For instance, for
getting an integration routine started, one needs suitable initial values. In general, as
we shall see later, one needs a deep knowledge of the DAE structure to be able to
formulate, e.g., initial conditions such that the IVP becomes solvable.

Definition 3.6. For a given DAE (3.1) and given 9 € Zy, the value xo € Dy is said
to be a consistent initial value if the IVP (3.8) possesses a solution.

Except for transparent academic examples and very special situations, one can pro-
vide consistent initial values just approximately. This is a difficult task that should
not be underrated.
For linear DAEs (2.1), all solution values at time ¢ € Z obviously belong to the
constraint set

Mo(t) ={x e R" : B(t)x —gq(t) € imA(¢)}.

However, the precise set of consistent values at time 7 is given by (2.98), that is
Meang(t) = {z+v(t) : 2 € Sean(t) } € Mo (2).

Recall that the function v vanishes identically if g does, which implies
Mc‘an,q (t> = Scan (t) .

We already know that M4, 4(t) = My(t) exactly if the linear DAE is regular with
index 1. In the case of higher index DAES, M cqn 4(t) is a lower-dimensional subset
of My (l‘ ) .

Not surprisingly, the situation is quite involved in nonlinear equations.

Example 3.7 (All values in My(t) are consistent). Consider the semi-explicit DAE

Xy (1) +x1 (1) = 0,
x1(t)2 +x(t) — 1 = y(1),

with two equations and two unknown functions on Dy = {x € R? : x, > 0}, Z; = R.
The real function Y is continuous on Zy. We may write this DAE in the form (3.1)
withn=1 m=k=2,

fonn) = 3 ] sowmn =[] dwn=x. amn=(10].

x%+x% -

yielding a DAE with properly stated leading term. Every solution value x. () must
lie in the set

Mo(t) = {x €Dy (x1)*+ (x2)* — 1 —y(t) = 0}.

Therefore, this set must be nonempty, which means the function Yy satisfies
1+ y(¢) > 0. Otherwise, the DAE has no solutions on those parts. The solution pass-

ing through x (0) = xo,1, x2(0) = /1 —x3 ; +7(0) can be expressed as
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xe1 (1) =€ "x01, xa(t)= \/1 - efztxal + ().

Through each point of the set M (0) there passes exactly one solution at time ¢ = 0,
hence, the points of M (0) are consistent. Furthermore, the component xq ; serving
as an integration constant can be chosen freely as long as 1 *x%,l + 7v(0) > 0 holds.
Figure 3.1 shows, for y(t) = 0 and for y(¢) = ¢, the path of the solution (x{ (¢),x>(t)),
t € [0,1], for the initial value x ; = 0.98, and the sets M(0) and My(1).

(]
X2 2
N . .
r—— .. P X Z
" o \\ My(1) / LN
L)
,,/ “\ // Moy _— ¥ 2 \\
/ LY - 3,
“ // .l
— \ / \,“ \
[ / V ’
' N T B b
[ I' ‘
. X
-p b —p(D) —p(0) e PO l
¥(H=0

Fig. 3.1 Solution for ¥(¢) = 0 and y(t) = ¢* in Example 3.7

Example 3.8 (Hidden constraint). The DAE

given on Dy = {x € R3 : x; > 0}, Zy =R, with y being continuously differentiable
and satisfying 1 + y(¢) > 0, looks quite similar to the previous one. We may write
this DAE in the form (3.1), wheren =2, m =k =3,

y1+x 10
f(yaxut) = x2)’2 —X3 ) fy(%x»f) = 0 X2 |,
a3 —y(t) -1 00
s 100
d(x,1) = [xz} ,  di(x,t) = {0 1 0} ,

yielding again a DAE with properly stated leading term. The solution values must
belong to the set

Mo(t) = {x €R?: x>0, x} +x3 — 1 —y(r) = 0}.

However, a closer look at this DAE makes it clear that there is another set the so-
lution values have to belong to. Namely, for any solution x,(.), differentiating the
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identity x,1 (¢)% 4+ x.2(t)? — 1 = y(t) and replacing the expressions for the derivatives
we obtain the new identity

—2x,1 (1)? 4 2x,3(t) = 7' (1).

Therefore, all solution values x.(¢) must also satisfy this hidden constraint, that is,
they must belong to the set

H(t) :={x €Dy : —2x7 +2x3—y/(t) = 0}.

In consequence, the obvious constraint set Mg(z) contains points which are no

longer consistent, but the proper subset M (¢) := Mo (t) NH(t) C Mo(z) consists

of consistent points. Figure 3.2 shows M;(t) for y(t) = —1coszt for t = 0 and
1

t=5. O
2

Fig.3.2 M att=0andr = % in Example 3.8

Turn back to general DAEs (3.1) with properly involved derivative. The function
d is continuously differentiable, and d, has constant rank. By definition, a solution
X, 1S a continuous function on a certain interval Z, which has there a continuously
differentiable part u(.) := d(x.(.),.). If x, were to belong to class C!, then the
identity
u (t) — dy (x,(1),1) = dy(x, (1), )X, (1), 1 € T,

would be given. Although we do not suppose the solutions to be from C!, the inclu-
sion

ul (t) —di(x,(t),1) € imdy(x.(t),1), t € L, (3.9)
remains to be valid for all solutions (cf. Proposition C.1), and there is a continuous
function (not necessarily unique) w, such that

U (t) = dy(x (1), ) Wi (t) + i (x, (1), 1), t € T,
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The inclusion (3.9) holds trivially, if d,(x,7) has full row rank. In general, for every
solution of the DAE (3.1) the two identities

f(u;(t)ax*(t)vt):()v tEI*,

and
f(dx(x*(t)vt)w*(t)+dl(x*(t)7t)’x*(t)7t) :07 t EI*,

are valid, and hence, for all solutions, their values x, (¢) must belong to the sets
Mo(t) :={xeD;: Iy eR": f(y,x,1) =0} (3.10)
and

Mo(t) ={x € Dy:Iw e R": f(dy(x,t)w+d(x,1),x,1) =0}
={xeD;:IyeR":y—d;(x,t) €imd,(x,1), f(y,x,t) =0}.

The sets My(z) and Mvo(t) are defined for all + € Zy. Eventually, they might be

empty. The inclusion My (z) C My(¢) is evident. For DAEs yielding a full row rank
matrix function d,, as is the case in Examples 3.7 and 3.8, these sets coincide. Both
sets are obviously restriction sets or constraints for the DAE solutions.

Definition 3.9. For a DAE (3.1) with proper leading term, the set
Mo(t) :=={xe€Dy: Iy e R" 1 y—d;(x,t) € imd,(x,t), f(y,x,t) =0}
is called the obvious restriction set or the obvious constraint of the DAE att € Zy.

Turn for a moment to the special, but large class of quasi-linear DAEs (3.7). Remem-
ber that this class covers at least DAEs arising in circuit simulation and multibody
systems. Denote by Wy (x,t) a projector matrix such that ker Wy (x,7) = imA(x,1).
We represent

Mo(t) = {x e Dy:Jy e R" : A(x,t)y+b(x,1) =0}
={x €Dy :b(x,r) €imA(x,t)} = {x € Dy : Wo(x,1)b(x,t) = 0},

and

Mo(t) ={x € Dy :Iw e R" : A(x,t)(dx(x,t)w +di(x,1)) + b(x,t) = 0}
= {x €Dy :b(x,1) € imA(x,1)} = {x € Dy : Wo(x,1)b(x,1) = 0} = Mo(t).

The sets My(t) and ./Wo(t) coincide, and they are described by means of an equation
which is more comfortable in some sense.

Observe that, for given # and x € M(¢), the corresponding y is uniquely determined,
if the leading term is properly stated. Namely, for fixed r € Zy,x € Mo(z), and
w,w € R™ with
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Ax,t) (dy(x,t)w+d; (x,8)) +b(x,1) =0,  A(x,t) (dy(x,6)w+d; (x,1)) +b(x,1) =0,

=y =y

we derive A(x,t)d;(x,t)(w—w) =0, and hence y — § = dy(x,7)(w —w) = 0 owing
to the property kerAd, = kerd,.
The latter property holds true in general as the next proposition states.

Proposition 3.10. If the DAE (3.1) has a properly involved derivative, then, for
each x € My(t) there exists exactly one y € R" such that y — dy(x,t) € imd,(x,1),
f(y,x,t) =0, which means,

Mo(t) ={xeDy: 3y e R" 1 y—di(x,t) €imdy(x,1), f(y,x,1) =0}, t € Zy.

Proof. Letf € Zy and ¥ € My(7) be fixed. Suppose there are two different values
¥,y € R” such that

Denote N := kerd,(%,7), and introduce the vectors

Wi=do( &0 (- di(%.1), Wi=di(50)T - di(X,0)),
thus w,w € N* = imd,(%,7)". It follows that § — 3 = d,(¥,7) (W — W), as well as
flde(x, D)W +di(%,1),%,7) =0, f(do(X,T)W+di(X,7),%,7) =0,
hence

0= f(d(X,D)W+d;(%,),%,7) — f(de(X,1)W+dy (%,),%,7)
1
:/Jg,(s(dx(x,t‘)w+d,(x,f))+(1—s)(dx(x,t‘)vi+d,(x,t‘)),x,t‘)dx(x,t‘)ds(w—fv).

’ M(s)

The matrix M(s) depends continuously on s. Since the DAE has a properly stated
leading term, the matrix functions fyd, and d, have common constant rank r, hence
rankM(s) = r, s € [0,1]. The inclusion N C kerM(s), s € [0, 1], together with rea-
sons of dimensions lead to the property N = kerM(s), s € [0, 1].

Then the inclusion N C fol kerM(s)ds is evident. Moreover, by applying a suffi-
ciently fine decomposition 0 = 7y < 7; < --- < Ts = 1 and considering the con-
tinuity of the matrix function M, one can successively verify that the rank of the
matrix ;' kerM(s)ds is greater than or equal to r, i = 1,...,S. Again, for reasons of
dimensions, it holds that N' = [ ker M(s)ds.

Now it follows that w —w € N, thus w —w = 0, and finally y —y = 0. a
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As we will see in Section 3.7, in the regular index-1 case, through each (x,1),
t € Iy, x € Mo(t), there passes exactly one solution. This is what we intended to
obtain for index-1 DAEs.

The question whether the set Mg () might be a proper subset of Mo(t) remains
unsolved. In most cases the sets coincide as the next lemma shows.

Lemma 3.11. Let the DAE (3.1) have a properly stated leading term and let the
nullspace ker f,(y, x,t) be independent of y. Let R(x,t) € L(R") denote the projector
matrix defined by

imR(x,t) = imd,(x,t), kerR(x,r) =Xker fy(y,x,t), for x& Dyt €Ly
(1)  Then the identities

F,x,t) = f(R(x,)y,x,1),  fy(nx,1) = fy(R(x,1),x,1) = fy(y,%,1)R(x,1)

become true,
(2) R s continuously differentiable on Dy x Ly,

(3)  and the set My(t) coincides with Mo(1) fort € Zy.
Proof. Forx € Dy, t € Zp,y € R", 1 := (I —R(x,1))y, it holds that

1
FO,x,t) — f(R(x,1)y,x,t) = /0 fsy+ (1 —s)R(x,t)y,x,t)nds =0,

since n € im (I —R(x,t)) =ker fy(sy+ (1 —s)R(x,1)y, x,1) independently of s, so the
identities in the first assertion are validated.
The function R is continuously differentiable as a projector function defined from
C'-subspaces.
For each fixed t+ € Iy, x € Mvo(t), and a corresponding ¥, such that
0= f(F,x,t) = f(R(x,1)¥,x,1), we define y := R(x,t)y+ (I — R(x,t))d; (x,t). It fol-
lows that

y—di(x,t) = R(x,t)(F — R(x,t)dy (x,1)) € imdy(x,1),

and
and hence x belongs to My (z). O

In the fully implicit case, if ker f,(y,x,) actually depends on y, the situation is less
transparent.

For solvability, the obvious constraint set and all hidden constraint sets must be
nonempty. Consistent values necessarily must belong to these sets.
Supposing the obvious constraint set is well accessible, all the following require-
ments concerning smoothness and constant ranks can be restricted to an open set
G C Dy x Iy being a neighborhood of the set {(x,7) € Dy x Ly :x € My(t), t € Zy}.
Also, Dy x Iy can be initially interpreted to be such a neighborhood.
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The constraint sets, the obvious as well as the hidden ones, are strongly fixed by
the given DAE. Providing a description of the set of consistent values of a given
DAE is close to generating the solutions of this DAE. Perturbations of the right-
hand side can essentially change the constraint sets, as we can observe already in
the easier case of linear DAEs. This motivates us not to place primary emphasis on
the constraints. We try to find another way to characterize DAEs and for persistence
under perturbation.

We close this subsection by introducing the two additional subspaces
S(y,)@l‘) = {Z € Rm : fx(yvxat)z € imfy(y,x,t)},
So(x',x,1) == {z € R™: fildy(x,0)x" +dy(x,1),x,)z
€ imfy(dx(x?t)xl +dl(x7t)7xat)}7

associated with the DAE (3.1). The subspaces are defined forx € Dy, t € Zy, y € R"
and x' € R, and they are closely related to each other. In most cases they coincide.
By definition, one has

So(x!,x,1) = S(dx(x,t)x] +d,(x,t),x,t) forallx € Dy, t € Iy, xl e R™,
and, on the other hand,

S(y,x,t) = So(x',x,1) forx €Dy, t €Ly,
and those y € R", x' € R™, which are related by y = d, (x,0)x' +d; (x,1).

It is evident that, if the partial derivative f;(y,x,7) and the subspace im f,(y, x,) are
independent of y, then S(y,x,?) is independent of y and So(x!, x,#) is independent of
x!, and both subspaces coincide, that is,

S(y,x,t) = So(xl,x,t), x€Dy tely, yeR", x' e R™,
This property reflects the special situation given in linear DAEs and in all semi-
explicit DAEs, and we write at times S(x,) := S(0,x,7) = So(0,x,7) =: So(x,?). For
linear DAEs only Sy(7) is used.

Turn once again to quasi-linear DAEs (3.7) and their obvious constraint
Mo(t) = {x € Dy : Wy(x,1)b(x,t) = 0}.
For these DAEs with f(y,x,t) = A(x,t)y + b(x,t) it follows that

S(yvxat) = kerWo(x,t)fx(y,x,t),
So(x',x,1) = ker Wo(x,1) fu(dx (x,0)x" +di (x,1),x,1)..

If, additionally, the matrix function A(x,t) has a constant range and W is a constant
projection along this range, then it holds that
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Mo(t) ={x € Dy : Wob(x,1) = 0},
S(yx,1) = ker Wobs(x,1) = So(x',x,1),

which indicates a certain affinity of the subspaces S(y,x,t), So(x!,x,¢) and the tan-
gent space T, My (1), if x € Mo (r) and the tangent space is well defined.

3.1.3 Linearization

Linearization plays an important role in various fields of nonlinear analysis. It is
a standard tool for obtaining information on smooth nonlinear problems. Here we
apply linearization for index determination in nonlinear DAEs. Roughly speaking,
below, we introduce regularity regions of a nonlinear DAE so that all linearizations
along sufficiently smooth reference functions residing in that region are regular lin-
ear DAEs with uniform characteristics.

For any reference function x, € C(Z.,,R™), Z, C Iy, with values in Dy, i.e.
x,(t) € Dy, t € I, such that d(x.(+),-) € C'(Z.,R"), we consider the linear DAE

Au(t)(Di(t)x(t)) + B (t)x(t) = q(t), t€e., (3.11)
the coefficients of which are given by

A1) = f((d(x(1),1)) xe
Di(1) := dx(x:(1),1),
B.(t) == fe((d(x.(),1)) .

The reference function x, € C(Z,,R™) is not necessary a solution of the DAE (3.1).

(2),1),
(t),1), tel,.

Definition 3.12. The linear DAE (3.11) is said to be a linearization of the nonlinear
DAE (3.1) along the reference function x.

We stress that here the linearization of the nonlinear DAE (3.1) along x, represents
the linear DAE (3.11) with unassigned general right-hand side g. In contrast, at
times in a different context one restricts a linearization to the equation with specific
right-hand side

Ac(O) (D4 (0)x(1)) + Bo(1)x(t) = —f((d(x.(1),1)) ,x(t),1), t €L,

supposing x, to be close to a solution of the original equation.

The smoothness demands (3.1) for the nonlinear DAE (3.1) ensure that the linear
DAE (3.11) is equipped with continuous coefficients. Moreover, if the DAE (3.1)
has a properly involved derivative, the decomposition

kerA.(t) ®imD,(r) =R", teZ,, (3.12)
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holds true with kerA, and imD, being C-subspaces, but not necessarily C L
subspaces. This is a direct consequence of the construction.

To be able to apply the linear theory from Chapter 2, we look for additional con-
ditions ensuring C'-subspaces and a continuously differentiable border projector
associated to the decomposition (3.12).

If the subspace ker fy(y,x,) does not depend on y at all, owing to Lemma 3.11,
we obtain C'-subspaces kerA, and D, by taking the linearization along a smoother
reference function x, € C'(Z,,R™).

If ker f,(y,x,t) depends on all its arguments, we can make do with x, € C'(Z,,R™),
and, additionally, d(x.(.),.) € C*(Z.,R"). As a sufficient requirement for the latter
we suppose d to have continuous second partial derivatives, and x, € C*(Z,,R™).

Before we extend the tractability index concept to general nonlinear DAEs, we
introduce some convenient denotations and consider some basic properties. We start
with

D(x,t) := dy(x,1), (3.13)
At x,1) == £(D(x,0)x" 4 dy (x,1),x,1), (3.14)
B(x'\x,t) == fu(D(x,0)x" +dy(x,1),x,1), (3.15)

forx! e R™, x € Dy, t € Iy, to be used throughout the whole chapter. D,A and B
are continuous matrix functions. The coefficients of the DAE (3.11) linearized at a
continuously differentiable reference function x, now look like

Au(t) = A (), (1)) = fy(D(x(£), ) (t) 4y (x. (1), 1), x4 (1), 1),

B.(t) = B(x,(t),x.(1),1) = fu(D(xu(1),1)x,(£) + i (x:(1),1),%:(2) 1), 1 € L.

Lemma 3.13. For a DAE (3.1) with a properly involved derivative, the decomposi-
tion

kerA(x',x,t) ®imD(x,1) =R", Vx' €R" x€ Dy, t €Iy, (3.16)
is true, and the subspaces kerA and im D are at least C-subspaces.

Proof. Because of the assumption, the transversality condition (3.4) is valid. For
each triple (¥!,%,7) € R™ x Dy x Iy we set j := D(%,7)x! +d,(%,7), which leads to
AL %T) = £(5.51), D(%1) =di(%,7),

hence
kerA(x',%,7) ©imD(%,7) = ker f,(5,%,7) ©imd,(%,7) = R".

The subspaces kerA and im D are at least C-subspaces, since A and D are continuous
matrix functions which have constant rank. O
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In general we have to expect the subspace kerA(x!,x,?) to depend on all its argu-
ments x!,x and ¢. If the subspace ker fy(y,x,1) is independent of y, then kerA(x', x,t)
is independent of x'. We emphasize the importance of the class of DAEs (3.1) whose
associate subspace ker fy (y,x,) is independent of y. This class covers quasi-linear
DAEs (3.7) and all applications we know.

Lemma 3.14. Let the DAE (3.1) have a properly involved derivative, and let
ker f,(y,x,1) be independent of y. Then the transversality conditions (3.4) and (3.16)
are equivalent,

Proof. Owing to Lemma 3.13 it remains to verify that (3.16) implies (3.4). Let
(3.16) be valid. Let t and x be fixed. For each y € R” we find a x! € R” such
that R(x,t)(y — d;(x,t)) = D(x,t)x!, thus R(x,t)y = R(x,t)(D(x,t)x' +d,(x,t)), and
hence

fy()’,X,l) = fy(R(x’t)yvx,l) = f)’<R(x7t>(D<x7t)xl +df(x7t>)7x7t)
= fy(D()c,t)x1 +di(x,1)),x,1) :A(xl,x,t).

O

We see that if the subspace ker f,(y,x,t) is independent of y then kerA(x!,x,t) =
kerR(x,7) is independent of x!, and both decompositions (3.4) and (3.16) de facto
coincide.

If ker f,(y,x,t) depends on y, then supposing condition (3.16) to be given, the def-
inition of the obvious constraint accompanying the DAE (cf. Definition 3.9) leads
to

ker fy(y,x,t) ®imd,(x,t) =R", VyeR", xec Moy(t), t € I;. (3.17)
Altogether, we have
ker fy(y,x,t) ®imdy(x,1) = R" kerA(x!,x,t) @imD(x,t) = R"
Vy€eR™ xe€ Dy, t €Iy ke pOrwt) Vxl eR™ x €Dy, t €Iy
or xe M(t)

The projector function R introduced in Lemma 3.11 plays its role in the further
analysis. The following definition of the border projector function generalizes this
projector function.

Definition 3.15. For a DAE (3.1) with properly involved derivative, the projector
valued function R defined by

imR(x',x,r) =imD(x,1), kerR(x' x,r) =kerA(x' x,7)

for x! € R™, x € Dy, t € Iy, is named the border projector function or briefly the
border projector of the DAE.

If kerA(x!, x, 1) is independent at all of x!, we set R(0,x,¢) =: R(x,?).

If kerA(x!,x,t) is independent at all of x' and x, and im D(x,?) does not depend on
x, we write R(z).
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Under the smoothness Assumption 3.1 for f and d we have agreed upon by now,
the border projector function R is continuous, but not necessarily continuously dif-
ferentiable. For the analysis later on, we will need this function R to be continu-
ously differentiable. Therefore, we want to provide assumptions about the origi-
nal system leading to a continuously differentiable border projector R. We know,
for a DAE with properly involved derivative, and ker f, being independent of y,
the border projector R = R(x,) is a priori continuously differentiable on D x Z¢
(cf. Lemma 3.11). On the other hand, if the subspace ker f,(y,x,7) depends on y
then kerA(x!,x,7) depends on x', and so does R(x',x,7). Then, if we require d to
have continuous second partial derivatives, then R is continuously differentiable on
R" XDy x1y.
We summarize the appropriate assumptions to be used later on.

Assumption 3.16. (Basic assumption for (3.1))

(a) The function f is continuous on R" x Dy x Ly together with its first partial
derivatives fy, fx. The function d is continuously differentiable on Dy x L.

(b) The DAE (3.1) has a properly involved derivative.

(c)  Ifker fy(y,x,t) depends on'y, then d is supposed to have additional continuous
second partial derivatives.

Having a continuously differentiable border projector R, we only need to choose
C2-functions x, as reference functions for the linearization in order to obtain lin-
ear DAEs (3.11) with C l-subspaces kerA., imD,, and hence with a properly stated
leading term.

Definition 3.17. (Reference function set) Let G C Dy X Iy be open. Denote by
CY(G) the set of all C™*(2.V) functions with graph in G. In other words, x, € CY(G)
if and only if x, € C™*2V)(Z, R™), with (x,(t),t) € G, 1 € T..

Under Assumption 3.16, all linearizations (3.11) of the general nonlinear DAE
(3.1) along reference functions x. € C2(G) have a properly stated leading term. This
provides the basis to applying the ideas from Chapter 2.

3.2 Admissible matrix function sequences and admissible
projector functions

In this section we construct an admissible matrix function sequence and associated
admissible projector functions for the general nonlinear DAE (3.1) emulating the
model of admissible matrix function sequences built for linear DAEs in Chapter 2.
The DAE (3.1) is supposed to satisfy Assumption 3.16.

We start with the matrix functions A, D, B defined in (3.13)—(3.15),

Ax x,1) € LR",RY),  D(x,r) € LR™R"), B(x',x,1) € L(R™,R)
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for x! e R™, x € Dy, t € Iy. Assumption 3.16 ensures that the matrix functions
A, D, B are continuous, and the border projector function R associated with the
decomposition (3.16) is continuously differentiable. Denote

No(x,t) :=kerD(x,1) forx € Dy, t € Iy,
and introduce Qo (x,¢) € L(R™) to be a projector onto Ny(x,7), i.e.,

Qo(x,t)2 = Qo(x,l‘), ion(x,t) ZN()()C,I).

Set the complementary projector to be Py(x,t) := I — Qo(x,t). Since D(x,7) has con-
stant rank r, its nullspace has constant dimension m — r. This allows for choosing Qy,
Py to be continuous, and we do so (see Lemma A.15). At this point we emphasize
the advantage of projector functions against bases. While globally defined smooth
bases might not exist, smooth projector functions do exist (see Remark A.16).

Next we introduce the generalized inverse D(x!,x,#)~ € L(R",R™) by means of
the four conditions

LA — Dl )
; () 0,0)” = D', x,1)7, (3.18)

xlx,t)” = R(x', x,1),
x',x,1)"D(x,t) = Py(x,1),

2

for x! € R™, x € Dy, t € Iy. By (3.18), D(x!,x,t)™ is uniquely determined, and it
is a continuous function (cf. Proposition A.17). Notice that D™, in general, depends
not only on (x,#) but also on x' since R = R(x!, x,1).
Denote (cf. Section 2.2)
Go(x',x,1) ;== A(x",x,0)D(x,1), y(x,1) := Po(x,1), Bo(xl,x,t) = B(x',x,1).
(3.19)
Since the derivative is properly involved, it holds that ker Go(x', x,t) = ker D(x,t) =
No(x,1).
Next we form
Gi(x',x,1) := Go(x",x,1) + Bo(x",x,1) Qo (x,1),
Ni(x!,x,1) :=ker Gy (x!,x,1), (3.20)
H] ('xla-xat) = H()(X,t)P] (XI,XJ),

with Q; (x!,x,t) being a projector onto Ny (x!,x,¢) and Py (x',x,¢) := T — Q; (x!,x,1).

From the case of linear DAEs in Section 2.1 we know of the necessity to incor-
porate the derivative of DIT; D™ into the expression for B;. Now, since DI} D™ may
depend on x!, x, t, we use the total derivative in jet variables, which means that

(DIT,D™ ) (x%,x', x,1) =: Diff; (x*,x', x,1)



200 3 Nonlinear DAEs

is defined to be the function of the variables (x?,x!,x,7) € R" x R"™ x Dy x I given
by

Diff; (x*,x!,x,£) = (DIT;D ™) 1 (x',x,£)x* + (DI D™ ) o (x", x,1)x
+ (DI, D7), (x', x,1).

The new jet variable x> can be considered as a place holder for x”. Indeed, for the
special choice x := x(¢), x! := ¥/(¢) and x> := x (1), we get

%((DHlD*)(x’(t),x(t),t)) = Diffy (x" (¢),x'(t),x(t),1).

In the following, we mostly drop the arguments. The given relations are then meant
pointwise for all arguments.

Next, we introduce

By := BoPy— GD™ (DIT\D~)' DIy,
Gy := G, +B10y,

N := ker Gy,

IL .= I P,

with @, being a projector function onto N and P, :=1— Q. Now, DILD™ is a
function of x%, x!, x, ¢, and, by taking the total derivative, a new jet variable x>
appears, standing as a place holder for x””.

As long as the expressions exist, we form the sequence for i > 0,

Git1:=G; + BiQ;,
Niy1:=kerGq,
i - (3.21)
IT = ILiPyy,
Biy1 := BiP,— G;i1D™ (DI, D™ )' DI,
with Q;11 being a projector function onto Ny, Py := I — Q;11. Here,

(DIT; D)’ =: Diff;, | is a function of x**2,... x!, x,¢ satisfying
) i+1 )
Diffi+1(x’+2,...,xl,x t Z DI D7) ’H ..,xl,x,t)x”l
=1
+(DI—I,+|D )x(xl+1 X ,x,t)xl + (DIIi+lD7)l(xi+17 s axl ,)C,f)-
On each level i, a new jet variable x’ appears as a place holder for the i-th derivative

x\_In this way, we have

d

3 (OIDT) (@), X (0),x(1), 1)) = Ditfi (x 1V (2),..... (1), x(0) 1)
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for the special choice x 1= x(1), x' := X/(¢),...,x'1 := xt+H1(p).
If the DAE (3.1) is linear with
JFOx,0) =A(1)y+B(1)x—q(t), d(x,1)=D(1)x,

the total derivatives Diff;(x(*1(r),...,x(t),x(r),t) simplify to time derivatives
(DITD™)'(t), and the matrix function sequence (3.19)—~(3.21) coincides with that
given in Section 2.2.

Example 3.18 (Sequence terminates at level 1). We continue to consider the semi-
explicit DAE from Example 3.7

xj (1) +x1(t) =0,
x1(1) +x2(0)* =1 = ¥(r),

given on Dy = {x € R? : x, > 0}, Z; = R. The real function ¥ is continuous on Z;.
We write the DAE in the form (3.1) withn =1, m =k =2,

f(y,X,t): |:x2 ya

1
1+X%—}/(t)—1:| ) fy(y’x’t): {0] ,odxt)=x1,  di(x,t) = [1 0]7

yielding a DAE with properly stated leading term and

10 10
Go=AD= {o o]’ Bo=1i= [le 2x2}

Letting
00 . 10
Qo = [0 J , vyields G;= [0 sz] .

The matrix function G remains nonsingular on the given definition domain, there-
fore, the matrix function sequence terminates at level 1. a

Example 3.19 (Sequence terminates at level 2). The DAE from Example 3.8

() +x1(t) = 0
x(t)34(1) —x3(1) = 0,
x1()2 + 32— 1 = 1),

is given on Dy = {x € R? : x, > 0}, Z; = R. We write this DAE in the form (3.1),
wheren=2, m=k=3,

yi+xi 10
f(y,X,t): X2Y2 — X3 ’ fy(y7x7t): 0 x; 5
B+ —yt) -1 00

d(x,1) = M d(on) = B ; 8} ,

X2
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yielding a DAE with properly stated leading term and

(100 1 0 0
Go=AD= [0x, 0|, Byp=|0 x} —1
_O 00 2)C1 2)(2 0.
Letting )
000 10 0
Qo=1000(, yields G;=|02x —1
001] 00 O

G, is singular but has constant rank. Since No NN} = {0} we find a projector func-
tion Qg such that Ny C ker Q. Later on those projector functions are named admis-
sible. We choose

000 1 0 0 100 10
0,=1010|, =00 0|, IL=|000], DHID:[OO]'
0lo 0-=L1 000
2 X2
We obtain B| = ByPyQ; and then
1 0 0
Gy = 02x2+xé —1
0 2x 0

which is nonsingular on the given definition domain such that the matrix function
sequence terminates. O

Not surprisingly, the matrix function sequence composed for nonlinear DAEs keeps
the algebraic properties stated for linear DAESs in Section 2.2. For instance, the con-
secutive inclusions

imGo C --- CimG; C Gy

remain valid. We are again interested in reaching a G that is nonsingular or showing
at least maximal possible rank.
With exactly the same arguments as used for Proposition 2.5, we obtain

Proposition 3.20. Let the DAE (3.1) satisfy Assumption 3.16. Let a matrix function
sequence (3.19)—(3.21) be given and, additionally, a projector valued function W;
such that pointwise kerW; = imGj, j > 0. Then, the following relations become
true:

(1) kerIl; CkerBjy1,

2y WinBiv1 =WinBi = =Wi1Bo = Wit1B, Win1Biv1 = Wi Boll,
(3) imGiy =imG; ©imW,;BQ;,

(4)  N;NkerB; = N;NNi1 € Niy1 NkerBiyy,

(5) Ni—-1NN; CN;NNiq1.

We keep in mind that the matrix function G; and the projector functions Q;, P;
and WW; may depend on the variables x/,... ,x! x,t, and that all the above relations
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are meant pointwise. While the original variables (x,7) vary in Dy x I, each jet
variable x’ varies in R".

Although G, may depend on the variables x' !, x’, ..., x!, x,¢ its rank ;| depends
at most on x', ..., x!, x,z. This is a consequence of Proposition 3.20 (3).

As in Section 2.2 we turn to a smarter choice of the projector functions ensuring
continuous matrix functions G; and discovering certain invariants of the DAE.

Definition 3.21. Let the DAE (3.1) satisfy the basic Assumption 3.16. Let G C D x
Z; be open connected.

Let the projector function Qg onto ker D be continuous on G, Py =1 — Q. Let D™
be determined on R” x G by (3.18). For the given level k € N, we call the sequence
Go, . .., Gk an admissible matrix function sequence associated to the DAE on the set
g, if it is built by the rule

Set Gy :=AD, By := B, Ny := ker Gy.
Fori>1:
Gi:=Gi-1 +Bi-10i-1,
B,’ = B,'_1P,'_1 — G,’D7 (DH,'Di)/DHi_l
Ni:=kerG;, Ni:=(No+--+Ni_1)NN,,
fix a complement X; such that Ny +-- -+ N;—; = ﬁi dX;,

choose a projector Q; such that im Q; = N; and X; C ker Q;,
set i :=1—Qi, Il := IT; 1 P;

and, additionally,
(a) the matrix function G; has constant rank r; on R" x G, i =0,...,x,

(b) the intersection N; has constant dimension u; := dim N; there,
(c) the product function IT; is continuous and DIL;D~ is continuously differen-
tiableon R™ x G,i=0,...,K.

The projector functions Qy, ..., Qk in an admissible matrix function sequence are
said to be admissible themselves.

An admissible matrix function sequence Gy, ..., Gy is said to be regular admissible,
if

Ni={0} Vi=1,... k.

Then, also the projector functions Qy, ..., Qy are called regular admissible.
The numbers ry :=rankGy),...,rc :=rankGx and uq,...,u, are named charac-
teristic values of the DAE on G.

The notion of characteristic values makes sense, since these values are indepen-
dent of the special choice of admissible projector functions (cf. Theorem 3.23), and
invariant under regular transformations (cf. Section 3.4).

To shorten the wording we often speak simply of admissible projector functions
having in mind the admissible matrix function sequence built with these admissible
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projector functions. Admissible projector functions are always cross-linked with
their matrix function sequence. Changing a projector function yields a new matrix
function sequence.

The following proposition gathers benefits of the smarter construction. We em-
phasize that now the products of projector functions II; are also projector valued.

Proposition 3.22. If Q,...,Q are admissible on G, then the following relations
become true (on G) fori=1,... k:

(1) kerll;=Ny—+---+N,

(2) theproductsII;=Py--- P, II;_1Q;, DII,D~, DII;_1Q;D~ are projectors again,
3) No+---+Ni1 Ckerll; 1Q;,

4)  B; =B,

(5) NiN(No+---+Ni-1) CNiNNiy1,

6) Gi110;=B;0;,0< <]

7) D(N() +-- +N,) =imDIL;_Q;®imDII; ,Q; | ®---®imDIQ;.

Proof. All relations are considered pointwise, and the same arguments as in the
proof of Proposition 2.7 are used. O

There is a great variety of admissible matrix function sequences left. Of course, also
the admissible matrix function sequences strongly depend on the special choice of
the involved projectors. However, fortunately, there are invariants.

Theorem 3.23. Let the DAE (3.1) satisfy the basic assumption (3.16). Let, for the
given x € N, an admissible matrix function sequence Gy,...,Gy associated to the
DAE exist. Then the subspaces

imG;, No+---+N;, Sj:=ketW;B, withj=0,...,kK+]1,

the numbers ry,...,rc and uy,...,ux as well as the functions

Il :=1ank Gyy1,  Ugy) :=dim Nyyq,
are independent of the special choice of the involved admissible projector functions.

Proof. We repeat the arguments from Theorem 2.8. Basically, the assertions of
Lemma 2.12 remain valid in our case. Inspecting the proof of this lemma we see
that all properties used there are now guaranteed by Proposition 3.22. Since the
product rule for the derivative

(DILD~ x DILLD™) = (DIL,D™)'DIL,D™ + DIL,D™ (DILD ™)’

used in the proof of Lemma 2.12 is also valid for the total derivative we may adopt
this proof. ad
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If the projector functions Qy,...,Q are admissible on G, then the nullspaces
Ny, ...,N and the sum spaces Ny + Ny,...,Ng + --- + N are C-subspaces on G,
since they represent the ranges of the continuous projector functions 7 — G;FG s
j=0,...,x,and I -1II;, j=1,...,K.
If all projector functions Qy, . . ., Q are also continuous, then the intersection spaces
ﬁl, e ]VK, as well as the complement spaces X1, ..., Xy, are C-subspaces on G, too,
owing to I/V\j =imQ;(I-II;_y)and X; =im(I - Q;)(I - 1II;_y), j=1,...,K.
There is a comfortable flexibility left within admissible projectors. We can fix

special projectors by choosing them to be orthogonal as far as possible. We start
with orthoprojectors Qp = Qg, and choose, fori > 1,

imQ; =N;, kerQi=(Ng+---+N) & X; (3.22)

with
X;:=(No+---+Ni_1) NN/ (3.23)

Definition 3.24. Admissible projector functions Qy,...,Q are called widely or-
thogonal, it Qg = @}, and the conditions (3.22), (3.23) are valid for i = 1,..., k.

Proposition 3.25. In the case of widely orthogonal projector functions Qy, ..., Qx,
the projectors I1;, Il;_1Q;, i = 1,...,K, are symmetric.

Proof. The same arguments as in Proposition 2.15 apply. a

Widely orthogonal projector functions which are uniquely determined provide the
associated matrix function sequence to be unique. This appears to be useful in the
theory below and is helpful for ensuring the required smoothness of practically cal-
culated projector functions.

The question whether the smoothness demands in Definition 3.21(c) are in agree-
ment with the orthogonality requirement has a positive answer supposing the matrix
function DD* is continuously differentiable. This reflects the situation in Proposi-
tion 2.16.

Proposition 3.26. Let an admissible matrix function sequence up to the level K as-
sociated to the DAE (3.1) exist. Let, additionally to the given basic assumptions,
the matrix function DD* be continuously differentiable. Then, the matrix function
sequence which meets the conditions (3.22), (3.23) is also admissible up to level K.

Proof. We show that if admissible projector functions Qy, ..., Oy are given, then we
can construct widely orthogonal ones, too. Let ry,...,rc and uy,...,u, denote the
associate characteristic values of the DAE.

First, we choose the orthogonal projector Qg = Q_(*) onto ker Gy and form G| = G +
ByQp. With the same arguments as in Proposition 2.16 we realize that

dile =uy, for N] Z=N1 ﬂNo.
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Put
1

XI:NOHM, imQ1:N17 kerle(No—&—Nl)L@Xl.

Since ITy := Pyand IT; := Iy P, are continuous, the projectors Qg, O; are admissible,
supposing DIT; D~ is continuously differentiable. Next, we show that DIT| D~ is
indeed continuously differentiable. As in Proposition 2.16,

ker DIT;D~ =kerDIT;D~ = D(Ny + N;) ©kerR

is already a C!-subspace. Denote M) := (D(Ny+ Ny))*. Then, M; is a C!-subspace
since D(No + Ny ) is so. We have to verify that

imDIT; D~ = imDITy = D(Ny +Ny)* = D(Ng +Ny)*
= DD*(D(No+Ny))* = DD*M,
is also a C!-subspace. Derive

Mit = D(Ng+Ni) =imDITyQ;D~ = im (R — DIT,D™)
= ker(I —R+DII;D”) =im (I — R* + (DIT,D~)*)*,

thus M; =im (I — R* + (DII}D~)*). Because of
kerDD* = ker D* = ker R*
it follows that
DD*M; = imDD*(DIT,D™)* = DD*im (DIT,D")*.
The subspace im (DIT;D~)* is a C'-subspace, too. Since
ker DD* Nim (DIT;D™)* = kerR* NimR*(DIL;D™)* =0,

a local C'-basis of im (DIT\D~)* multiplied by DD* yields a local C!-basis of
DD*Mj, i.e., DD*M; is in fact a C'-subspace (cf. Appendix A.4). Consequently,
im (DIT;D~)* and ker (DIT;D~)* are C'-subspaces, which implies that DIT; D~ is
continuously differentiable and Q, Q; are admissible.

On the further levels we proceed analogously (cf. Proposition 2.16), using for

M;:= (D(No+---+N;)) "
the representation

M;* =im(R—DIL,D™) =ker (I — R+ DIL,D™),

M; = im (I —R* + (DILD™)"), and
DD*M; = DD*im (DIT,D™)* = DD*imR*(DIT,D™)*.
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We close the present section with an assertion which reflects the main idea behind
the construction of admissible matrix function sequences: we take the opportunity
to make use of linearizations.

Lemma 3.27. Let Assumption 3.16 be given for the DAE (3.1), and let Qy,...,Qx
be admissible projector functions for the DAE (3.1) on the open connected set
GC Df X If.

Then, for each reference function x. € CX(G) (see Definition (3.17)), the resulting
linearization (3.11) is a DAE with properly stated leading term, and Q., ..., Oxx
defined by

Q*O(t) = Q()(x*(t),l‘),
Q.i(1) = Qi (1), () x(0)1), €T, i=1,...K

are admissible projector functions for the linear DAE 3.11). If Qo, . .., Qx are widely
orthogonal, then so are Q,q, ..., Q-

Proof. The properly stated leading term of the linear DAE (3.11) results from As-
sumption 3.16 and the smoothness of x,.. Denote

Nuo(t) :=kerD,(t), Dy(t):=D(x.(2),1),
R.(t) := R(X,(2),x:(2),1), Di(t)” :=D(X,(t),x:(t),2)”

and
Gao(t) ;= A (t)Di(t) = A(X(2),x4(),£)D(x4(t),1) = Go(x.(t),x4(2),1), t€E L.

It is evident that G,o(¢) has constant rank ry, and Q.o is admissible. We construct a
matrix function sequence for the linearized DAE (3.11), and indicate it by an asterix
index. The matrix function

G (t) := Gio(t) + Bs () Quo(t)
= Go(¥.(t),x:(1),1) + Bo(x. (1), x.(1),1) Qo (x:(1),1) = G1(x,(1),x.(t),1)

is continuous and has constant rank r; on Z,, and
N1 (1) :=ker Gy (t) = ker Gy (X, (1), x4 (1), 1) = Ny (¥, (1), x:(2),1)
has constant dimension m — r;, while the intersection
N1 (t) := N (1) NNy (2)
= Ny (0),2(0),1) O No(xa(£),1) = Ny (L (0),24(2), 1)

has the constant dimension u#; on Z,. With
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X1 (2) :=im Py (X, (), %, (1), 1) Qo (x4 (), 1)

we find the decomposition

Nio(t) = N (1) © X (1)

such that
Q*l(t)X*l(t) = Ql(x;(t)ax*(t)vt)x*l(t) :0, t EI*-

Finally for this stage,
IL(¢) = Iy (X, (t),x.(t),t) and (D.I1,D; )(t) = (DIT;D™)(x,(¢),x.(t),1)

are, as composed functions, continuously differentiable on Z,. Thus, Q.0, Q] are
admissible, and

(D.I1,1D; ) (t) = Diffy (X (),x. (), x.(1),1).
We proceed analogously on the next stages, whereby we put

Xoi(t) = im P (2 (0), . (1), xa (0),0) (T =TT (6 (0, xa(0),0).

3.3 Regularity regions

The regularity notion for linear DAEs in Section 2.6 is supported by several
constant-rank conditions and comprises the following three main aspects:

(a) The solution space of the homogeneous equation has dimension d < oe.
(b) Equations restricted to subintervals inherit property (a) with the same d.
(¢) Equations restricted to subintervals inherit the characteristic values r;, j > 0.

This feature is expressed in terms of admissible matrix functions and admissible
projector functions by Definition 2.25. Linear time-varying DAEs are considered
to be regular, if the time-dependent matrix functions G; have constant rank r;, and
there is a nonsingular G,.

Now the matrix functions G; not only depend on time but may also depend on x and
on the jet variables x!,...,x'. As in the linear case, we require constant rank r; of
the matrix functions G;. Points where these rank conditions fail will be handled as
critical ones.

The following regularity notion for the nonlinear DAE (3.1) comprises the above
three regularity aspects for all corresponding linearizations (3.11).

Definition 3.28. Let the DAE (3.1) satisfy Assumption 3.16 with k = m, and let
G C Dy x Iy be an open connected set. Then the DAE (3.1) is said to be
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(1)  regular with tractability index 0 , if ro = m,

(2)  regular with tractability index 1 on G, if on G an admissible matrix function
sequence exists such that ry_1 <ry =m,

(3) regular on G, if it is, on G, regular with any index (i.e., case (1) or (2) apply).

The constants 0 < rg < --- <ry | < ry are named characteristic values of the reg-
ular DAE.

The open connected subset G is called a regularity region or regularity domain.

A point (X,7) € Dy x Ly is a regular point, if there is a regularity region G > (%,7).

By Theorem 3.23, regularity itself as well as the particular values u and ro,...,7ry
are independent of the special choice of the admissible projectors, although the ma-

trix functions Gi, ..., Gy depend on it. In regular DAEs, all intersections N, ; are triv-
ial ones, thus u; = 0, i > 1. Namely, because of the inclusions (Propositions 3.22 (5),
3.20 (5))

N;i C©NiNNjt1 CNip1 NNppo -+ SNy 1 NN,

for reaching a nonsingular G,;, which means N, = {0}, it is necessary to have ﬁ,- =
{0}, i > 1. This is a useful condition for checking regularity in practice.

Definition 2.25 concerning regular linear DAEs and Definition 4.3 characterizing
special regular DAEs with tractability index 1 are in agreement with Definition 3.28.
Regularity intervals represent the specification of regularity regions for linear DAEs.

By definition, all points belonging to a regularity region are regular points, and
they must show uniform characteristics.

The union of regularity regions is, if it is connected, a regularity region, too.
Each open connected subset of a regularity region is again a regularity region, and
it inherits all characteristics.

Further, the nonempty intersection of two regularity regions is also a regularity
region. Only regularity regions with uniform characteristics yield nonempty inter-
sections.

Maximal regularity regions are bordered by critical points. To characterize a DAE
it is important to describe the maximal regularity regions with their characteristics.
It should be emphasized that, for this aim there is no need to compute solutions.

Example 3.29 (A regular index-1 DAE). We reconsider the DAE from Example 3.3

(a1 (1) +x3()x2(1)) = 1 (1),
x2(t) = q2(1),
X3 q3 ’

(1) = q3(1)

tel,
thatis 3.1) withk=m =3, n =1,

1 0
fOo,x,0):= |0 y+ |x2| —q(r), d(x,t):=x1+xx3, xR} 1eZ, yeR.
0 X3
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The leading term is properly stated because of ker f, = {0}, imd, =R. Observe that
ker D(x,t) = ker Go(x,t) varies with x. Gy has rank ry = 1. The obvious constraint is

M()(t) = {x eR? X2 :qz(t), X3 = q3(t)}, tel.

Choosing the projector function

0 —X3 —X)
Qo(x) =10 1 0
0 0 1
we find
1 x3 xp
Gi(x)=1(01 0|, ri=m,
001

that is, this DAE is regular with index 1 on the entire definition domain R3 x 7, that
is, there is a single maximal regularity region which coincides with the definition
domain. For each given continuous g and fixed 7 € Z, ¢ € R, the DAE has the solution

x1(t) = —qa(t)q3(t) + ¢+ q2 (T )q3(F) + /CII(S)dS»

x*z(t) = QZ(t)7
x3(1) = q3(t), 1€T,

which satisfies x, () = &, X :=¢, &; := q;(), i = 2,3, ¥ € My(F). It is evident that
there is exactly one solution passing through each given (7,%), X € My(f). Theo-
rem 3.53 below confirms and generalizes this property. We observe that the solution
X, 1s continuous with a continuously differentiable part x.; + x,2x.3, but the sec-
ond and third solution components are not necessarily continuously differentiable.
From this point of view the notation of this DAE in standard form is so to speak
misleading.

Taking the identically vanishing function x,.(t) = 0 as a fixed solution
on the compact interval [f,7] and considering g as a perturbation,
K :=max{|q(?)| : t € [f,T]}, we derive the inequality

s (1) = s ()| < e (F) | +{(T—f)+2K}[_I;1§SXIICI(S)I7

hence the problem possesses perturbation index 1 along the solution x.. (cf. [103]).
O

Example 3.30 (Two maximal regularity regions with index I). We consider the semi-
explicit DAE from Example 3.7 (see also Example 3.18)

xj (1) +x1(t) =0,
x1(1)* +x(0)* — 1 = ¥(t),
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but now we suppose the definition domain Dy = R?, Z; =R. As in Example 3.18

we compute
00 . 10
Qo = [0 1} , yields G;= {O 2x2] .

The matrix function G| remains nonsingular for x, # 0, but this leads to the two
maximal regularity regions, one region associated to x, > 0, the other one to x; < 0.
The border points between these regularity regions are those with x, = 0. A closer
look at the possible solutions confirms the critical behavior at these points.

Example 3.31 (Two maximal regularity regions with index 2). The DAE from Ex-
ample 3.8
Xy (1) +x () =0,
xa(O)¥(1) —xa(r) = 0,
21 () +x(1) =1 =1(1),

is now given on Dy = R3, Z; = R. We proceed as in Example 3.19 to obtain

10 O
G1: 02)62—1
00 O

G; is singular but has constant rank. We have
NoNN; = {Z S R?: 21=0,x2=0,z3 = O}-

If x; > 0 or x, < 0 it holds that No NNy = {0}, and we find an admissible projector
function Q; such that Ny C ker Q. We choose the same Q; as in Example 3.19 and
arrive in both cases at

1 0 0
Gy = |02x+x} —1
0 2x, 0

which is nonsingular for all x, > 0 and x; < 0. In this way we find two maximal
regularity regions bordered by critical points with x, = 0. O

An admissible matrix function sequence incorporates by definition the existence
of the first derivative of the projectors DIT;D~. This might need some additional
smoothness demands for the functions f and d besides Assumption 3.16. Consider
the following example to illustrate this fact.

Example 3.32 (Smoothness for Hessenberg size-2 DAEs).

Xy (1) + by (x1 (1), x2(2) 1)
bz(xl(t),l‘)

= 07 }ml
o (3.24)

with the product By Bi, being nonsingular on the domain Dy, X 7, B;j := b; ;. This
is a so-called Hessenberg size-2 DAE. With
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fO,x,t) :=Ay+b(x,t), d(x,t)=Dx, n=m, k=m=m+m

and
I _ I
A= M, D=110], D = M, R=1,
the DAE (3.24) appears to be a DAE with a very simple properly stated leading
term. We form

1o _ [Bu Bn2 _|0 —p—1-00=|!
GOAD[OO}yBO{BZI O}’QO[ I],HOPOI Qo[ O]

and

I B
G]:GO‘FBOQO:{O 62}7 ro=my, ri=mj.

This implies
Ni={zeR":z1+B122 =0}, NiNNg={z€R":z, =0, Bjpzo =0}.

From the nonsingularity of the product B,;Bj; it follows that kerBj, = {0} and,
consequently, No " N; = 0.

Choose a generalized inverse By, to Bjy (pointwise on Dj x Z;) such that
B12B},B12 = B2, and

. BIZBl_zo . BIZBTZO . . I_BIZBl_z
Ql—[_BIZO, oo =|"" "ol h=IbP= ol

Note that Q is, except for the smoothness of DIT;| D™, an admissible projector func-
tion since Q is a projector function onto Ny and we have

X = {ZGR’": 21 :0}:N0@ﬁ1:No@(NoﬁNl):NogkerQl.

This leads to DII} D™ = I — B12B7,. The matrix B1; has constant rank m; so that B},
can be chosen continuously. For a continuously differentiable DIT;D~, im B}, must
be a C'-subspace, but this is not necessarily guaranteed by the general Assump-
tion 3.16. A sufficient condition for that is the additional existence of continuous
second partial derivatives by x,x,, b1 x,x,» D1,x,r- However, if the subspace im By, is a
constant one, the projector DII} D~ can be chosen to be constant without any further
smoothness, and Assumption 3.16 is enough. Next we form
—\/
Bi =ByRy—GiD (DI,D”)'DIly = [B“ +1(91223]2) 8}

and
B |1+ (Bi1 + (B12B},) )Bi2By, Bi2
GZ*G] +BIQ1 — |: BZIB12B1_2 O .

Consider the homogeneous equation Gz = 0, i.e.,
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21+ (Bi1 + (B12B1,) ) B12B 21 + Bioza = 0, (3.25)
B21B12B571 =0. (3.26)

Since BBy, is nonsingular, (3.26) yields B},z; = 0, and (3.25) reduces to
21+ B2z =0.

Multiplying this equation by (I — B12B},) implies (I — B12B7,)z1 = 0, hence z; =0,
and further Bz =0, thus 2, = 0.

Consequently, the Hessenberg size-2 system is a regular DAE with tractability
index 2 on D, x 7. Its characteristics are ro = r; = my, r, = m. O

The demand for the projector functions DIT;D™ to be continuously differentiable
corresponds to the consecutive decomposition of the C!-subspace imR = im D into
further C'-subspaces by

R = DD~ = DIlyD~ = DIL,D~ + DIIyQ, D~
= DILD™ +DII,_1Q;D™ +DIL;2Q; 1D~ +---+DILhQ1 D™

Example 3.32 which is structurally very simple shows that, in the case of a constant
subspace im By, Assumption 3.16 is sufficient. For varying im By, using special
knowledge of the structure, we have specified somewhat mild sufficient conditions
for the C'-property of DIT;D~. From this point of view the requirement for b to
belong to C? or C"™ looks much too generous. However, to figure out the milder
sufficient smoothness conditions for more general DAEs needs hard technical work
and it does not seem to allow for better insights. This is why we do not go into those
details. Instead we use the phrasing f and d satisfy Assumption 3.16, and they are
sufficiently smooth. Let us stress that, owing to the structural properties, it may hap-
pen that Assumption 3.16 is sufficient. On the other hand, in this context it would
be greatly generous assuming f and d to belong to CH, if i < m is a known upper
bound of the index, or even to be from C™. In contrast, applying derivative array ap-
proaches, one has to suppose at least C**! functions to be able to form the derivative
array function £ on its own and to compute its Jacobian (cf. Section 3.10).

Theorem 3.33. (Necessary and sufficient regularity conditions)

Let the DAE (3.1) satisfy the Assumption 3.16, with k = m, and DD* €
CY(Dy x Iy, L(R")). Let f and d be sufficiently smooth on the open connected subset
G C Df X If.

(1)  Then, the DAE (3.1) is regular on G if all linearizations (3.11) along reference
functions x. € C"(G) are regular linear DAEs, and vice versa.

(2)  If (3.1) is regular with tractability index [, and characteristics rg, ..., ry, then
all linearizations (3.11) along reference functions x, € C (G) are regular lin-

ear DAEs with uniform index p and uniform characteristics ry, ..., ry.
(3)  If all linearizations (3.11) along x, € C"(G) are regular linear DAEs, then
they have a uniform index [, and uniform characteristics ro,...,ry, and the

nonlinear DAE (3.1) is regular on G with these characteristics and index.
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Proof. Assertion (1) is a consequence of assertions (2) and (3). Assertion (2) follows
immediately from Lemma 3.27. It remains to verify assertion (3).

If D is nonsingular, there is nothing to prove. So we suppose that ro < m. Let all
linearizations (3.11) along functions x. € C”(G) be regular. Introduce the matrix
functions

Go(x',x,1) ;== A(x",x,1)D(x,1), Bo(x',x,1) := B(x',x,1), No(x,t):=kerD(x,1),

and choose Qo (x,?) to be the orthoprojector onto No(x,). D(x',x,#)~ denotes the
corresponding generalized inverse (cf. Section 3.2). Due to Assumption 3.16, the
matrix function Gy is continuous on R™ x Dy x Ty and has constant rank rp, and
hence Qy is continuous and so is D~ . Compute further

Gi(x',x,1) = Go(x',x,1) + Bo(x',x,)Q0(x,1), Ni(x',x,1) =kerGy(x',x,1).

Obviously, G| is also a continuous matrix function.

We show the intersection Ny (x!,x,#) NNy (x,) to be trivial for all x' € R™, (x,t) € G,
and Gy (x', x,¢) to have constant rank. Assume that there is a point (¥!,%,7) € R" x G
such that Ny (&', %,7) NNy (%,7) # {0}. Consider the function x,,

Xi(t) =74 (1 —7)F', €T, =(f—¢&i+e),

with € > 0 small enough to ensure x, € CI*(G). The linearization along this func-
tion x, is regular because of the assumptions, and hence there are Qxo, ..., Quy, -1
being admissible for (3.11), and Gy, is nonsingular. Since D(x.(t),1)D(x.(t),1)* is
continuously differentiable with respect to ¢, we may consider Q.o, ..., Qxyu,—1 to be
widely orthogonal (cf. Proposition 2.16). In this way we arrive at

N (F)NNwo(F) = Nl(x;(t_)7x*(f),t_)ﬂNo(x*(t_),t_)
= Ny (&', %7)NNo(%,7) # {0},

but this contradicts the property of regular linear DAEs to have those intersections
just trivial (cf. also Section 2.6).
We turn to the rank of Gy (x!,x,t). Assume that there exist two points

Pii=(x},xi,t;)) ER" x G, i=1,2,

with rank G| (P;) > rank G (P,). We connect P and P, by a continuous curve lying
in R” x G, and move along this curve starting at P;. We necessarily meet a point
P3 where the rank changes. This means that rank G} (P3) < rank G| (P ), and each
neighborhood of Ps contains points P4 with rank G| (Ps) = rank G (P; ). Construct
a function x, passing through P3 and P4y, i.e.,
x(t) =x, X(4)=x!, i=34.

We may use the interpolation polynomial. Choosing P4 close enough to Pz, we
make sure that x, belongs to C”(G). In this way, for the DAE (3.11) linearized
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along x,, it holds that
rank G, (t4) = rank G (Py) > rank G1(P3) = rank G, (13),

but this contradicts the regularity of (3.11).
Next, since G is continuous with constant rank 71, we may construct Q; (pointwise
on R™ x G) to be the projector onto Ny along (Np+ Nj)* @ Ny. Q; is continuous
since the involved subspaces are C'-subspaces (cf. Appendix A.4). It is justified by
Proposition 3.26 that we can do this by considering widely orthogonal projectors
only. If DII} D™ actually varies with its arguments, due to the smoothness of f and
d, DITD~ is C! and Qy, Q, are admissible (widely orthogonal).
We continue to construct the matrix function sequence for (3.1) with widely or-
thogonal projectors. Let Qp,...,Q be already shown to be widely orthogonal
which includes admissibility. Form Gy = G + BxQ\ (pointwise for x e R™,
i=1,...,k+1, (x,t) € G), and consider its nullspace.
The existence of a point P := (¥+!,... &', %,7) in R”(**1) x G where the intersec-
tion

N1 (P) N (No+ -+ + Nie) (&%, &, %,T)

is nontrivial would contradict the regularity of the linearization along x,, with
x@)=x ()=, i=1,..k+1, te(f—eite),

€ > 0 small enough. Similarly as for G|, we show that G| has constant rank 7
on R™&+1) % G The next step is the construction of Q| such that

imQui1 =Ner1, kerQeir=(No+-++Nes1)" & (No+-+Ny).

Again, the involved subspaces are C'-subspaces, hence Q.| is continuous, and so
are Pyy1 =1—Qxy1, [+ 1 = Py 1. The smoothness of f and d makes DI 1D~
continuously differentiable, thus, Qy, ..., Q1 are admissible (widely orthogonal).

It follows also that all linearizations must have uniform characteristics
70, -.,Fcs1 (cf. Lemma 3.27). We continue to construct the admissible matrix func-
tion sequence for the nonlinear DAE up to level u using widely orthogonal pro-
jectors. It turns out that there must be a uniform index p such that 0 <rp <--- <
rpu—1 <ry=m. (|

The necessary and sufficient regularity conditions provided by Theorem 3.33 rep-
resent the main goal and result of the present chapter. We had this in mind when
we started to create the admissible matrix function sequence for the nonlinear DAE.
Now, various questions can be traced back to linearizations. The next example shows

that rank changes in the matrix functions G indicate in fact points where somewhat
unusual things happen with the solutions such that we have good reason for calling
these points critical.

Example 3.34 (Singularities at rank drop points of G1). The system
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x()(1 —x2(2)) — ¥
x1(t)x2(t) +x3(t) (1 —x2(2)) —

written as (3.1) withk=m =3, n=1, f(y,x,t) = Ay+ b(x,1),

)=0
) =0, (3.27)
t=0

1 —X3
A= 0|, bxt)=| x(1-x)—7y(1) |, xeR}reR,
0 X1X2+X3(]—)C2)—l‘

and d(x,t) = x satisfies Assumption 3.16. The function ¥ is supposed to be contin-
uous, y(t) < 1.
The obvious constraint is

Mo(t) = {x €R® 1 x2(1 —x2) = (1), x1x2 +x3(1 —x2) = 1}.

Compute
1 000
D=[100], D =1|0|, Qy=1[010|, R=1,
0 001
0 0 —1 1 0 —1
Bo(x,t)= |0 1—-2x, 0 |, Gi(xt)=|01-2x, O
X2 X1 —X3 1—X2 Oxl—X3 1—X2

Then, detG (x,¢) = (1 —2x2)(1 — x2) has the zeros x; = % and x, = 1. This splits
the definition domain Dy x Iy = R3 x R into the open sets

G = {(x,t) ERXR:x < %},

1
Gy = {(x,t)€R3xR: 5 <n< 1}7
Gy i={(x,)) eR*xR: 1 <x},

such that Dy x Z is the closure of G; UG, UG3. The DAE is regular with tractability
index 1 on each region Gy, £ = 1,2,3.

All linearizations along functions x, € C! (G;) are regular linear DAEs with tractabil-
ity index 1. Through each point (%,7) € G; such that ¥ € M () there passes exactly
one solution (cf. Theorem 3.53). This is what we expect. Solutions moving along the
borders of the regularity domains or crossing these borders may behave differently
as discussed below.

Inspecting solutions of the DAE (3.27) one realizes that different kinds of prob-
lems may actually happen if the solution approaches or crosses the critical point set.
We take a closer look at special situations.

Set y(t) =  —¢* and fix 7 =0 and ¥ = (0,3,0) € M(0) and M,(0) =
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{x € R¥:x, = 1,x; +x3 = 0}. There are two solutions passing through (7). One
solution x, has the second and third components

() =14 % 23 (0) (14200201 (1) — 20),

:2t—1

while the first component is the unique solution x,; € C! of the standard IVP

X (1)

=21 ((L+28)x1(¢) —2¢), x1(0)=0. (3.28)
If ¢ increases and tends to %, the component x,;(f) approaches the border plane
x» = 1 and the ODE for the first solution component undergoes a singularity. The
third component grows unboundedly.

The second solution through (X,7) has the components

1
2t 41

1
xo(t)=—t+=

X ((1—=2f)x41 (1) —21),

X43 (t) =

while the first component is the unique solution x,; € C! of the standard IVP

40 =~ 5 (1=20m(0) ~2), x1(0)=0.

This solution stays, for ¢ > 0, within the regularity domain G3.

The bifurcations observed at the border between G| and G, and the singularity in the
first ODE on the border between G, and G3 indicate that we are in fact confronted
with critical points.

Figure 3.3 shows the isocline field of x; related to the ODE of (3.28). Figures 3.4,
3.5 and 3.6 show the three components of further solutions of (3.27), which start

on the border between G; and G,. The initial values are

| o —

1

and % (solid
1 _1
and dashed lines). We have two solutions in every case. The left-hand side shows
the solutions that went to G;. The other side shows the solutions which enter G, and
then approach the border between G, and G3, and undergo bifurcations at the border.
Note that in numerical computations at this point the continuation of the solution is
quite arbitrary.

The linearization along a reference function x, lying on the border plane x, = 1,

with a, B arbitrary smooth functions, leads to
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Fig. 3.3 Isocline field of x; of (3.28)
100 000 0o 0 -1
Go=1000(, Qw=1010(, Byp=1|0 -1 0],
000 001 la—B 0
1 0 -1 100
Ga=10 -1 0|, 0.4=1000]|, 0.40.=0.
Oa—pB 0 100

Further, Il = I1,oP,; = 0, thus DIT,;D~ =0, and

0O 0 -1
Go=10 —1 0|, detGyp=-1.
la—B 0

This means that the DAE linearized along x, is regular with tractability index 2. It
is worth emphasizing that we do not call the original nonlinear DAE regular with
index 2 on the set {(x,7) € R? x R : x = 1} because this set is not open in R* x R.
In contrast, the linearization along functions

x(t) = 5
B(z)
leads to
0o 0 -1 1 0 -1
Bo=1(0 0 O0{, Gg=1|0 0 O
tap ) 0a-p }
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If a = B, then NygNNy = {z € R3:71=0,2z3 = 0} is nontrivial so that the lin-
earized DAE is no longer regular. If @ # 3, then we can choose

1 00
Qi1 = 2(5—1,(1)00 ;041040 =0.
1 00

It follows that I'T,; = IT,oP,; = 0, DII,; D~ = 0, which means, Q.9, Q. are admis-
sible. From

0o -1

0O o0
a—pB 3
and N,o+ N, =kerIT,; = R3 we see that (N« +Ny1) N2 = N2, i.e., the necessary
regularity condition fails again.

G*Z =

D= O =

Xy
B

10
12 L
038 e
L0 e
06 e
0.8 . 02 0.4 /—’ S0 e, 0.8 10 "
- 04 _ e
~ —_—— — N .
0.6 - “ N
— - 02 kY .
0.2 04 086 0.8 1.0 Y
0.4 — AN
I 0.0 .
Fig. 3.4 Solution component x; of the DAE (3.27)
Xz X2
§3
Gs
1 1
Gz G2
1 1
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Fig. 3.6 Solution component x3 of the DAE (3.27)

Remark 3.35. If one puts y = 0, the DAE (3.27) simplifies to

x1(1) —x3(7)
x2(1) (1 =x2(1))
x1()x(t) +x3(8) (1 —xp(2)) — ¢

System (3.29) was originally introduced in [5, p. 235-236] to demonstrate that an
index notion should be a local one. It has the only solutions

)

0
0, (3.29)
0

t %tz +c
x(t) =11 and  x,. (1) = 0
1 t

The solutions x,, with arbitrary ¢ € R, lie in the index-1 regularity region G;. The
other solution x, proceeds on the border between G, and G3. The linearization along
X, 1s a regular DAE with tractability index 2. However, there is no neighborhood of
the graph of x, representing a regularity region with tractability index 2.

By differentiating the second equation, and employing the solution property that
Xy % % one obtains (cf. [5]) from (3.29) the system

X) (1) —x3(t) = 0,
xX(t) =0,

x1(D)x2(t) +x3(8)(1 —x2(¢)) —2 = 0.

At a first glance, one could conclude that the index depends on the initial condition,
which means, x,(0) = 0 yields the index to be 1, and x,(0) = 1 yields the index to
equal 2. However, when trying to apply the corresponding notion of the (differentia-
tion) index along a solution to slightly perturbed problems, one comes into trouble.
In our opinion, in spite of practical models and numerical computations, a charac-
terization is wanted that is somehow stable with respect to perturbations. This is in
full agreement with the demand, e.g., in [25] that the statements concerning the dif-
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ferentiation index are taken to hold locally on open subsets of the respective spaces
(cf. also the discussion in Section 3.10).

In general we do not expect a DAE (3.1) to be regular on its entire definition domain
Dy x Iy asitis the case for the class of Hessenberg form DAEs. It seems to be rather
natural, as sketched in Figure 3.7, that Dy x Ty decomposes into several maximal
regularity regions the borders of which consist of critical points. In contrast to Ex-
ample 3.34, it may well happen that the characteristic values on different regularity
regions are different, as the next example shows. However, in each regularity region
there must be uniform characteristic values. A solution can enter a region with new
characteristic values only after passing a critical point.

Fig. 3.7 Regularity regions bordered by critical points

Example 3.36 (Regularity regions with different characteristics). Let the function
2
(oo oo . _J s fors>0
o € C'((—o0,0),R) be given as o(s) = {0 for s < 0,
Consider the DAE

X (1)

)

0
0, (3.30)
0

7)62(1‘) +X3(t)
x5 (1) +x1 (1)
3

x1 (1) + ot(x1 (1))x3(¢) — (sing)

I

which has the form (3.1) and satisfies Assumption 3.16 with

) Y1 —Xx2+Xx3
d(xvt): |:)C :| ’ f(yvx,t): Y2 +x1 ’
2 x5 + a(x1)x3 — (sinz)?

yER? xeD;=R? reJr=R

Compute
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1 0 -1 1
Gy = 1 , By = 1 0 0 ,
| 0] 3xf+ o/ (x1)x3 O ofxy)
0] (10 1
Qo = 0 |, Gi=(01 0
] 00 a(x)

This makes it clear that the DAE is regular with characteristics ro =2, rj =3, u =1
for x; > 0, i.e., on the regularity region G; := {(x,t) € Dy x Zy : x; > 0}.
For x; < 0, we obtain further

101 1 101
Gi=|[010l,00=| 0 |,Go=|0 10],
000 -1 0 3200

and hence the DAE is regular with characteristics ro =r; =2, r, =3, . =2 on the
regularity region G, := {(x,1) € Dy x Iy : x; < 0}.
For every given reference function x,, the linearization has the form

10 100 / 0 -1 1
01 ({O 1 0] x(t)) + 1 0 0 |x(t)=gq(). @31
00 32, 4+ @/ (xa1)xs 0 a(xi)

This linear DAE is regular with index 1 on intervals where x.;(¢) > 0, and it is
regular with index 2 on intervals where x,;(f) < 0. On intervals where x,;(t) =0
the linear DAE (3.31) is no longer regular, because then G| = G, and there does not
exist any admissible projector Q.
sin ¢
In particular, the reference function x, () = | cos ¢ | represents a periodic solution of
0

the original nonlinear DAE (3.30). It shuttles between G| and G,. The corresponding
linear DAE (3.31) reads

X1(1) —xa(1) +x3(1) = qu (1),
X(t) +x1(t) = 42 (t),
3(sint)%x; (¢) + a(sint)x3() — (sint)® = g3(¢).

This linear DAE is regular with index 1 on all intervals where sint is strictly positive,
and regular with index 2 on all intervals where sint is strictly negative. a

Theorem 3.37. (Stability with respect to perturbations)
If the DAE (3.1) is, on the open set G C Dy x Ly, regular with tractability index [
and characteristics rg, ..., ry, then the perturbed DAE

F((d(x(2),1)) ,x(2),1) = q(2), (3.32)
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with at least continuous perturbation q : Ty — R™, is also regular on G with the
same index and the same characteristics.

Proof. The assertion is evident since the admissible matrix function sequences are
constructed just from d, f; and f;. a

Theorem 3.33 provides the basis of practical index calculations and index mon-
itoring. The admissible matrix function sequence with the involved partial deriva-
tives of the projector functions is rather intended for theoretical investigations. Even
if the partial derivatives were available in practice, the amount seems to be far from
being reasonable. Owing to Theorem 3.33, one can choose reference functions and
then turn to linearizations involving time derivatives only. In this way, necessary
regularity conditions can be checked in practice, see Sections 7.4 and 8.1.

It is favorable if one can benefit from structural properties. For instance, so-called
Hessenberg form DAEs of arbitrary size are always regular DAEs (cf. Section 3.5).
Also the so-called MNA-DAE:s (cf. Section 3.6) show a very useful structure.

To check the regularity of a given DAE or to monitor its index and characteristic
values, one can save computations on the last level of the admissible matrix function
sequence. Instead of generating the admissible projector O, 1, the term By, _1 hous-
ing the derivative (DI, 1D~ )" and Gy, one can make do with cheaper expressions
due to the next proposition.

Proposition 3.38. (Modified regularity condition) Let the DAE (3.1) satisfy As-
sumption 3.16 with k = m. Let f and d be sufficiently smooth on the open connected
set G C Df X If.

Then the DAE (3.1) is regular on G with tractability index | > 2, precisely if there
are projector functions Qo, ..., Qy 2 admissible on G, the matrix function G, has
constant rank ry, 1 < m and one of the matrix functions

Gu—l +Wu—lBQu—1 = Gu—l +Wu—1Bu—2Qu—17 Gu—l +Bu—2pu—2Qu—17 (3.33)

which are built by an arbitrary projector function Qu_l onto ker Gy, _1, is nonsingu-
lar.

Proof. Let the DAE be regular with index u and let Qo,...,Qy 1 be admissible
projector functions. Let Oy, be an arbitrary projector function onto ker G, 1. Then
the relations

Gu = (Gu—1+By2Py20u—1)(I =Py 1D (DITy—1D™)' DIy 20y 1)
G,u—l +Bu—2P,u—2Qu—1 = (Gu—l +Bu—2Pu—2Qu—1)(Pu—1 + Qu—l)

show nonsingular factors on the furthermost right-hand side. By Proposition 3.20, it
holds that

Regarding
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Gu1+Wu1BOu1 = (Gu 1 + Wi 1BOu 1)(Pu1+Qu1),
Gu1 +Wu1Bu—20u—1=(Gu-1 + Wy-1Bu—20u—1)(Pu-1+ Ou-1),

altogether it follows that the matrix functions (3.33) are nonsingular simultaneously
with G,.

Conversely, let Qo,...,0Ou—> be admissible, and G,_| have constant rank
ry—1 < m. Introduce the subspace Sy, 1 = kerW, 1B = kerW,,_1BIl, ;. The in-
clusion No + -+ Ny 2 € 8§, 1 is evident. If the first matrix function Gy 1 +
Wﬂ_lBQ#_l is nonsingular, then N, NS, = {0} must be valid, thus No+- - -+
Nu—2 € Su—1 NNy = {0}. Therefore, we can choose a projector function Q1
such that Qy, ..., 0y are admissible. The resulting G, is nonsingular.

If the other matrix function Gy_1 + By 2P, 20y 1 is nonsingular, the
Gy—1+Wyu1BQy 1 is so, too, because of the representation

Gu-1+Bu 2Py 2041 =Gy 1 + Wy 1By 2Py 201
+ (I =Wy1)Bu 2Py 20y
=Gu_1 +Wu_1BOu_1+ Guflé;_13u72Pp72Qufl
= (Gu1 +Wyu-1BOu-1)(I+ G, By—2Py—20pu-1),

whereby G;q denotes the reflexive generalized inverse of G fixed by the four

properties Gy—1G,,_1Gy—1=Gyu-1,G, Gu1G, =G, |, G, Gy =Py,

Gy G;_l = (I =Wy _1). The above arguments apply again. O

3.4 Transformation invariance

What happens with the DAE (3.1) if we transform the unknown function
x(t) = k(%(¢),r) and turn to the transformed DAE

F(d(%(t),1))  %(2),1) =0? (3.34)

Has the new DAE a properly stated leading term, too? Do the characteristic values
change, and is regularity actually maintained? We shall find answers to these ques-
tions. It is already known by Theorem 2.18 that, in the case of linear DAEs and
linear transformations, the characteristic values do not change.

Let the basic assumptions 3.16 for the DAE (3.1) be satisfied, and let D x Z C
Dy x Iy be the open set on which we intend to realize a local transformation. Let
heCV(DxZ,R™), ke C¥(DxZ,R"), with v €N, be such that, for each t € Z,
h(-,¢) and k(-,¢) act bijectively from D onto D and from D onto D, respectively, and
h(-,1), k(-,1) are inverse to each other, i.e.,
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Then, the partial derivatives
K(%,1) :=kg(%,1), H(x,t):= hye(x,1),
remain nonsingular on their definition domains, and it holds that
K(%,1) = H(k(%,1),0)"Y,  H(x,1) = K(h(x,1),)"".

We speak then of regular local transformations. The transformed DAE (3.34) is now
given by

f,%,1) == f(y,k(%,1),t), yER" €D, 1T,
d(x,t) :=d(k(x,1),t), F€D,tcT.

The first partial derivatives to be used for the matrix function sequence are

f}'(yviat) = f.‘"(yak(fvt)ﬂt)a
fe(3 %,1) = foly k(%,0), 1)K (%,1),
(%) = de(k(%,1),0)K(%,1),
dy(%,1) = dy (k(%,1),1) + do(k(%,1) 1)k (%, 1)

Since k is continuously differentiable, the subspaces ker f) and imd, are C!-
subspaces on R" x D x Z. From the transversality of ker f, and imd, it follows
that

R" = fy(y,k(%,1),1) Dimd,(k(%,1),1) = f(y,%,1) Dimdz(%,1),

and hence the DAE (3.34) inherits the properly stated leading term from the original
DAE (3.1).

Theorem 3.39. Let the DAE (3.1) satisfy the basic assumptions 3.16. Let D x T C
Dy x Ly be open, and let the regular local transformations h, k be v times continu-
ously differentiable, v > 1. If ker f,(y,x,t) depends on y, then v > 2.

(1)  Then the basic assumption 3.16 holds true for the transformed DAE (3.34),
too. In particular, the DAE (3.34) has a properly stated leading term.

(2) If there are projector functions Qy,...,Qx admissible on D x I for the
original DAE (3.1), and v > K + 1, then there are also projector functions
0o, . ..,0x admissible on D x T accompanying the transformed DAE (3.34).
It holds that 7; = r;, i; = u;, i =0,...,K.

(3)  If the given DAE (3.1) is regular on D x T with index W, and if v > U, then
the transformed DAE (3.34) is regular on D x I. It has the same index | as
well as the same characteristic values as the DAE (3.1).

Proof. The first assertion is already verified. The third assertion is an immedi-
ate consequence of the second one. To prove the second assertion we form step-
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wise the matrix function sequence for the transformed DAE. Let the admissible
matrix function sequence Go,...,Gy be given for the DAE (3.1), Gy = Gy(x,1),
Gi=Gi(x',....x" x,t)ifi > 1.

The transformations / and k provide at the same time the following one-to-one cor-
respondence between the original and transformed jet variables up to level x:

A =KENS +kO (%),  kO(%1) =k (x0), (3.35)
V= Hx,0)x + 00 (x,0), 1O (x, 1) == by (x, 1),

=
I

and, for j=1,...,k—1,

I = K@ NF T k(@ E R,
= He ) R (L x ),

(&, 75 o= (K )&+ K@ 5 wn) &

H(KEOF AR R )+ YA @ w0
(=1
and an analogous AUl (x/,... xlx, t). Notice that v > k + | ensures that all functions
KO k1 are continuously differentiable. Denote

D(%,1) := dz(%,1) = d(k(%,1),t)K (%,1) = D(k(%,1),t)K(%,1),
QO()? ) K(i )7 QO(k(iJ)vt)K(ivt)'

—~
=

Qy is a continuous projector function onto ker D(%,t), thus 0y is admissible, and we
are done if k¥ = 0. Assume x > 1. Introduce further (cf. (3.14)-(3.15))

A5 1) = f(D(F,0)F +d,(%,1),k(%,1),1),
B(%',%,1) := fu(D(%,0)& +di(%,1),k(%,1),0)K(%,1),
Go(!,%,1) := A(F",%,1)D(%,1),

to begin the matrix function sequence with. By means of the correspondence (3.35)
we derive

D(%,0)&" +d(%,1) = D(k(Z, z) DK (%, t))?l—i-dt( (%,1),1) + ( ( 1),1)k(%,1)
=D(k(%,1),0){K(%,1)%" +k(%,1) } +d, (k(%,1),1)
= D(x, )x +dt(x 1), (3.36)

and this yields
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and, further, for the border projector R(#!,%,¢) which accompanies the decomposi-
tion (cf. (3.16), and Definition 3.15)

R" = kerA (%', %,1) ®imD(%,1)
we arrive at
R(F',%,1) = R(x' x,1) = R(K(%,0)2" + kO (%,1),k(%,1),1).
With (cf. (3.18))

D(,%5,1)" = K(%,1)"'D(K (&, 0)&" + kO (%,1),k(%,1),1) ",

a continuous generalized inverse of D(%,¢) is given, and

Compute
G (&,%,1) = Go(#',%,1) + B(x', %,1) Qo (%,1)
= Gi(K(%,1)& + KO (%, 1), k(%,1),0) K (%,1),
Fl=ri,
Ny (&, %,1) = K1) 'Ny (x! x, 1),
Ny (&', %,6) N No(%,1) = K(%,6) "1 (N1 (x!,x,£) NN (x, 1)),
i =uq
The choice

01 (&, %,1) := K(%,1) 101 (K(%,1)" + KO (%,0), k(%,1),1) K (%,7)

yields a continuous projector function Q; onto N; such that X; C kerQj,
X =KX (cf. Definition 3.21), and, moreover,

DIT,D~ = DKK 'R KK 'P.KK~'D~ = DP,P,D~ = DII,D",
ie.,
(DI, D™)(1,%,1) = (DILD™)(x',x,1) = (DI D7) (K (%,1)%" + kO (%,1),k(%,1),7),

hence, DIT; D~ inherits the C! property from DIT; D™, and 0o, O; are shown to be
admissible on D x Z. Compute further the total derivative
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(DI D™) = (DI D)2 & + (DI, D™ )3x' + (DIT; D7),
= (DI, D) o K&+ (DILD™) o (K& + k%) &' + (DI, D).k
+(DILD ™) (K& + 4% + (DI D7)k + (DITLD),
= (DI;D™) 1 x* + (DIL D™ ) x' + (DID™), = (DILD ™),

as well as B; = B K. To apply induction we assume Qy, . .., Q; to be admissible on
D xZ,and

Gi=GiK, 0j=K'Q;K, B;=BK, j=0,...,i.

Form G,H Gi+Bi0; = Gi+1K and choose Q~,+1 =K! 0ir1K. G~,-+1 has constant
rank 71 =riyq. Ql+1 is continuous and projects onto N1 =K ’1Ni+1. Due to

(No+---+N)NNiy1 =K~ (No+---+Ni) N Niy1)

it follows that i@; ;1 = u; 1. Further, it holds that

DI, 1D~ =DIL,P D~ = DIL,P,x\D~ = DIL; D™,
and in more detail,

(EII#ID?)()ZH»I’ s 7~f1,jat) = (DIL+1D7)(xi+17 s axlaxat)
= (DI D7) (K (%, )2kl (77 50), . KR )R+ KO (3,0),k(3,1),1).

Since DIT;, 1D~ is continuously differentiable so is DIT,. D™, thus Qy, ..., ;4| are
admissible. Compute the partial derivatives

(DIT; 1D )zin1 = (DI 1D ) i1 K,
i+1 (1]
(DD )z = ), (DI D7 )yukyy '+ (DI D7) K, j=1,...,1,
(=j+1
. B i+1 , .
(DI D)z = Y (DI D) o (K& + K1) 4+ (DITy 1 D7),
=1
L i+1 -
(DITi\D7), = Y (DITi D7) o (K& +KY) + (DIT D7 )ik + (DT D7),
=1

and then the total derivative
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-1

= (DITiJrlD_)x[{ A YR (k)
j=1

+ (K= +kV*”)t} + (DIT;1D7 ) (K& + k) + (DI D),

= Y (DIT D7) ux"™ + (DIT 1 D™ ) ox' + (DT D7),

Finally, B;y| = B+ 1K follows, and this completes the proof. O

Theorem 3.39 applies to general DAEs (3.1) comprising k equations but the un-
known function has m components.

3.5 Hessenberg form DAEs of arbitrary size

Hessenberg form DAEs are semi-explicit systems with a special structure

xll(t) +b1(x1(t)ﬂ'"7xr71(t)7xr(t)?t):0,
x(t) +by(x1(t),...,x_1(t),1) =0,
x5(t) +b3(x2(2),- -, x,—1(2),2) =0, 3.37)
Xy (6) byt (5 () 51 (£),8) = 0,
by(x,—1(t),t) =0,

with mq + - - - +m,_1 +m, = m equations, m, > 0, and a function b : Dy, x I, — R™
being at least continuous together with the partial derivative by. D;, C R™ is open,
I, C Ris an interval, r > 2 is an integer. The partial derivative

Bii ... Bi,_1 By }m
. }m2
by — Bs : 0
- Brfl,rfl }mrfl

Br.,rfl 0 }mr
with B;j := b x; shows the Hessenberg structure from which the name comes.

Definition 3.40. The system (3.37) is said to be a DAE in Hessenberg form of size
r, if the matrix function product

B,,_1---B21By, (3.38)
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remains nonsingular on Dy, X Zp,.
We put (3.37) into the general form (3.1) by means of n =mj +--- +m;,_q,
SO,x,t) =Ay+b(x,t), d(x,t)=Dx, x€Dp, teIy yeR,

and

10

such that kerA = {0}, im D = R". Then the DAE (3.37) has a properly stated leading
term, the border projector is simply R = I, and Assumption 3.16 applies.

At this point we call attention to the fact that in the present section the integer r
indicates the size of the Hessenberg structure. We do not use it here for rank D =
m — m,, but we use only rg = rank Gy = rank D so that no confusion can arise.

Hessenberg form size-2 DAEs were already considered in Section 3.3, Exam-
ple 3.32. It is shown there that any Hessenberg size-2 DAE is regular with tractabil-
ity index 2 on the definition domain D), x Z;,. Example 2.11 in Subsection 2.2.2 pro-
vides an admissible matrix function sequence for a linear Hessenberg size-3 DAE
and the characteristic values ro = r; =r, =m —m3 < m and r3 = m, thus u = 3.
This sequence further shows the impact of the time-varying subspaces imBj3 and
im By B3, which is responsible for the time derivatives of the projector functions
within the admissible matrix functions. In the case of nonlinear DAEs considered
now, these subspaces may additionally depend on x, so that the jet variables may
come in. The most important class of Hessenberg form DAEs are those of size 3,

among them the equations describing the motion of constrained multibody systems.

Example 3.41 (Constrained multibody system). After [63, Chapter 1] the general
first-order form of the equation of motion of a constrained multibody system reads

P =Z(p)v, (3.39)
MY = fu(t,p,v,5) = Z(p)*G(p)*A, (3.40)
s' = fi(t,p,v,5), (3.41)
0=2g(p), (3.42)

where p and s contain position coordinates, v velocities, and A is a Lagrange multi-
plier.

The constraint (3.42) defines a manifold of free motion. G(p) := g,(p) is the con-
straint matrix, and the generalized constraint forces G(p)*A are responsible for the
constraint to be satisfied. M denotes the given positive definite mass matrix, and f,
contains the applied forces. Equation (3.40) arises from Newton’s law completed by
d’ Alembert’s principle.
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Z(p) is a nonsingular transformation matrix. Equation (3.39) is the kinematic dif-
ferential equation. Equation (3.41) represents the influence of further components
(electromagnetic forces, hydraulic components, control devices, etc.).

The positions and velocities are expected to be continuously differentiable, while
the Lagrange multipliers are usually less smooth.

Multiply equation (3.40) by M~! and move the top equation (3.39) to the third place
so that the semi-explicit system

V=M fult,pv,s) — M Z(p)*G(p)A,

S/ :‘f:?(t7p7v7s)7
P =Z(p)v,
0=g(p),

results. Set x; := [:] , X2 = p, x3 := A, which allows us to write the system in
Hessenberg form (3.37) with size r = 3. The resulting partial Jacobian b, has the
particular entries

M—lz*G*
313—[ 0 ], By =[Z0], Bxn=gG,

yielding the product
B3:By|B13 = GZM ™' Z*G*.

The common demand for G = g, to have full row rank, which excludes redun-
dant constraints, ensures the product B3;B;1 B3 remains nonsingular (cf. [63], also
Lemma 3.44 below). a

Theorem 3.42. Any Hessenberg form DAE (3.37) with size r and sufficiently smooth
b : Dy x T, — R™ is regular on Dy, X I, with tractability index r and characteristic
values

ro=-"=FV—1=m—ny, Frr=mnm.

Theorem 3.42 attests to the structure of Hessenberg systems to be very special. In
particular, the nilpotent matrix A/ within the WeierstraB—Kronecker form (cf. Propo-
sition 1.3) of a linear constant coefficient DAE in Hessenberg size-r form consists
exclusively of nilpotent Jordan blocks of uniform order .

Proof. This statement is proved by providing an admissible projector function se-
quence yielding a nonsingular matrix function G,. We apply an inductive proof in-
cluding a certain amount of technical computations.

Since the product (3.38) remains nonsingular, the blocks

By, Bo1Byy, ..., B—1,—2- BBy, (3.43)

have full column rank m,. Then, the subspaces imB;,, imByBi,...,
imB,_1 ,—»--- B2 By, are at least C-subspaces. We suppose that b is smooth enough
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to make them C'-subspaces. Introduce continuously differentiable projectors
Qq,...,0, 1 onto imBy,, imByBy,,..., imB,_1 ,_3--- B2 By,, respectively. With

the use of generalized inverses we may represent

Q =B,B],, £2,=BBi,(BuBir) ...,
Q= Br717r72 o 'BZIBlr(Brfl,r72 o 'BZIBlr)_~

Since the blocks (3.43) have full column rank, it holds that

By By, =1,(By1By,) ByBi,=1,...,
B =1, (B Bir) " (3.44)
(Br—1,,—2--"B21B1,) By_1,—2---By1By, =1.
Then, for { = 1,...,r —2, it is easily checked that
imByy 1 Q2 =1mQ .

Now we compose a matrix function sequence (3.19)—(3.21) and admissible projector
functions for (3.37). We begin with Gy = AD, By = B = by,

1 0 1 B,

Go = B , Qo= - , Gi1= B )

Iy = Py = Go, and ry = m — m,, r; = ry. Describe the nullspace of G| by

N ={zeR":z1+B,z:=0,20=0,...,2-1 =0}
== {ZeRm: 21 :QIZI,Zr: _Bfr11722:07--~7zr—1 :O})

such that we immediately find a projector onto N, namely

2
0
0=
_Bfr 0
Observe that Q1Qp = 0 is true. Form
I1—Q 10
I I
I, =1)P, = , DILD™ = . )

/ .

0 1

and see that Qp, Q| are admissible. Next we compute
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B]] B]ﬁrfl 0 ‘Qi
_ _\/ le 0
B, =BRy—GD (DIT,D")'D = +
’ Brfl,rfl 0
Br,r—l 0 0
and
I Blr
By Q21
G2: +C27
1
0

where the matrix function C, has the single nontrivial entry Cy 11 = (B11 + £{)£2;.
All other blocks in C, are zero-blocks. G, has constant rank r, = rg, if r > 2, and
full rank r, = m, if r = 2. This can be verified by applying Proposition 3.20 (3), and
taking the projectors

0 0

Wo=W, = ..'O such that WyB =W,B = 0 ,

1 Brﬁrfl 0

and

00][Q 0O 0 0
WIBQ; =0 forr>2, W,BQ, = {le 0] [3112 0] = [32191 0] forr =2.

From rank G, =rank G| +rank W, BQ| we conclude r, = r; =rg =m—m, forr > 2,
and r, = r; +rank B»121 = m — my +my = m for r = 2. For r = 2 we are done.

Assume that r > 2. For an induction proof we assume the following: k+1 <r.

(1) Qo,-..,Q are admissible projectors, and Q; has the block structure

0 *

0

~.

*k
Q
00 , J=1,...k, (3.45)

o

* 0

whereby the nontrivial entries in column number j have the property
Qj,ij = Qj,,'j.Qj, i= 1,...,j— 1, andi=r.
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(2) The matrix function Gy has the structure

I Blr
By 2, 1

G = Bixo 191 1 + Cy, (3.46)
1

where C, =

0

is upper block triangular with nontrivial entries in the first K — 1 columns.
These entries satisfy the condition

Cij=CeijQj, j=1,.. k=1, i=j,... k=1, (3.47)

and Gy has constant rank ry = m —m,.
(3) The projector product I; has the structure

1—Q x ... T

I, = , (3.48)

L 0]
where the nontrivial entries indicated by stars have the properties
Hk,ij = (IfQ,-)Hk,iij, i=1,...,k—1, j=i+1,... k.

(4) The matrix function By has the structure
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such that

By Q) =

results.

Bir1x -

0"

*
. *
Br,rfl 0_
0

235

, (3.49)

(3.50)
k+1

We have to verify that assumptions (3.45)—(3.49) lead to the same properties for k

replaced by k+ 1. First we form

1
By Q) 1

Gry1 =

Blr

+Ck+17

where Cy | results to be upper block triangular with the entries from C; in columns
1 to k— 1 and entries from B;Qy in the kth column, i.e.,
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Ck+1,ij:Ck,ija j:17"'vk_17i:ja"~vk_la
Crr 1k = (BeQ) ik i=1,... .k
Since the nontrivial entries of Oy have the property O ix = OQr &2, i =1,...,k, it

follows that
Cir1ik = Crpr,in%, i=1,...,k,

and Gy, has the right shape.
Next we describe the nullspace of Gy 1. Gz = 0 implies in detail

k
2] +Berr+éZICk+l,l({Z(/, =0,

k
By i1z1+22 +422Ck+1’2m =0,

By 1824 12k—1 + 2k + Cr1 2k = 0, (3.51)
B 1 52k + 241 = 0,
Zkr2 = 0,
Z—1 =0.
Using the properties resulting from the nonsingularity of the product (3.38) which
are described at the beginning of this proof we realize that it makes sense to multi-

ply the first equation in (3.51) by I — Q; and By, the second one by (I —£2,) and
Bi1,(B21B1,)~, and so on, to obtain the equivalent system

(I-Q1)z +é§l(1_QI)Ck+1,1€QZU =0,

B, Q121 +Zr+z§ B .Ciy1,10820z0 = 0,

(I—2)n+ [)i:z(l —)Cry1208202¢ = 0,

Q121+ B1,(B21B1,) " 220 +ZézBlr(B2lBlr)7Ck+l,2£Q£Z€ =0,

(I =)z + (I — ) Cr 1 xSz = 0,

Qi 12k—1+Bi—1k—2-B21B1(Bij—1--B21B1,) " 2k
+Bj—1 k-2 B21B1,(Big—1---B21B1,)” Crq1 k21 = 0,

(I = 1)z =0,
Qzg+Bij—1 B B1r (B 1 k- BoiBir)” Qky12k+1 = 0,
k2 =0,

71 =0.
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From this new system we observe that 7z =0, ...,z,—1 =0, zx+1 = Qg 12k+1, and
all resulting components can be successively expressed as z; = E;Qy12x+1 (With
certain coefficients E;) i =1,...,k and { = r. Therefore,

0 *

Ory1 = 0 0 )

with the only nontrivial entries
Qk+1,i,k+1 = E,‘.QkJrl, i= 1,...,]{, i:r, (352)
Okt L+ k1 = t1,

is a continuous projector onto Ny = kerGyq, and it satisfies Qr1Q; = 0,
j=0,... k.

Notice that Gy, has constant rank ry| = m —m,, if k < r— 1. Now the projector
ITi ;1 has the structure

I =Py =

0

where the indicated nontrivial off-diagonal entries possess by construction the prop-
erties

Hk+1,ij: (I—Qi)Hk_;,_]’,'j.Qj, 1= 1,...,](, j:i-l-l,...,k-‘r-l.

I, is continuous, and DII; D™~ is continuously differentiable, if these off-
diagonal entries are so. Taking a closer look at these entries we know that they are
formed by the coefficients E; arising in (3.52), and resulting from the linear system
(3.51). This makes it clear that supposing the function b to be smooth enough we
may consider DI 1D~ to be continuously differentiable, and hence Qy, ..., Qk+1
to be admissible.
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The remaining matrix function By has the structure

Byt = BiPy — Gy D™ (DILy D™ )'DII,

X x* 0 T 7
* N %
Bit2 k41 0
x
L Br,rfl O_ - 0-
k+1
ET x 0]
*
= * y
Bit2 k+1
ok
L Br,rfl O_
which fits into (3.49) and completes the induction. It turns out that we may form
these admissible projectors Qy, ..., Ok as long as we reach k+1 =r.
Let Qo,...,,0,—1 be already given. We have ry = --- = r,_1 = m —m,, and
I Blr
le.Ql 1
Gr=Gr1+Br10r1 = +C;.
. 1
Br,rflgrfl 0

It remains to show that G, is nonsingular. Apply again Proposition 3.20 (3) and take
into account thatimG,_; =imG,_» = --- =im Gy such that we can use W,_| =W).
This leads to r, = rank G, = rank G,_| +rank W,_BQ,_1, and with

W,_1BQ,—1 = - 0 .
Br,r—l-Qr—l 0
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we find
rr=m—m,+rankB,,_1Q2,_1 =m—m, +m, = m.

This completes the proof. O

3.6 DAE:s in circuit simulation

Circuit simulation was one of the driving motivations to study differential-algebraic
equations. The behavior of circuits depends, on the one hand, on the kind of net-
work elements involved and, on the other hand, on the connection of the network
elements. Kirchhoff’s laws describe algebraic relations between branch currents and
branch voltages depending on the network structure. Additionally, the characteris-
tics of dynamic elements like capacitances and inductances lead to differential equa-
tions. Hence, one is always confronted with a differential-algebraic equation system
when modeling electrical circuits.

Due to their high complexity, integrated circuits need an automatic treatment
for generating the model equations. One of the most commonly used techniques is
Modified Nodal Analysis (MNA). Let us have a more detailed look into this analysis
in order to get information on the structure of the resulting equation system.

In this section we use the notation common in circuit theory (cf. [51], [58]) to make
things more transparent for readers from this area.

The transient behavior of the circuit is described by its branch voltages u = u(r) and
branch currents j = j(¢). Due to Kirchhoff’s voltage law, all branch voltages u can
be written as a linear combination of nodal potentials e,

u=ATe, (3.53)

where A, € R"? denotes the so-called incidence matrix with the entries

1 if branch k leaves node i
aj; = { —1 if branch k enters node i
0 if branch k is not incident with node i.

Here, n and b denote the number of nodes and branches of the circuit. Since the
number of nodes is usually much smaller than the number of branches, a network
description using nodal potentials instead of branch voltages is advantageous. The
modified nodal analysis (MNA) uses all node potentials and all branch currents of
current controlled elements as the vector of unknowns and describes the electrical
network as follows.

1. Fix one node as the datum node and set the potential of the datum node to be
Zero.
2. Express all branch voltages by nodal potentials using (3.53).
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3. Write the node equations by applying Kirchhoff’s current law (KCL) to each
node except for the datum node:

Aj=0. (3.54)

The vector j represents the branch current vector. Here, A is the reduced inci-
dence matrix that coincides with the incidence matrix A, apart from the fact that
the row corresponding to the datum node is neglected.

4. Replace the currents j; of voltage controlled elements by the voltage—current
relation of these elements in equation (3.54).

5. Add the current—voltage relations for all current controlled elements.

We want to demonstrate this with the following simple example circuit.

Example 3.43 (Small RCL circuit). We consider a circuit, consisting of a capaci-
tance, an inductance, a resistor and a voltage source (see Figure 3.8). We denote the

Fig. 3.8 Circuit with one capacitance, resistor, inductance and voltage source

branch currents and branch voltages of the voltage source, the resistance, the capac-
itance and the inductance by jy, jgr, jc, jr and vy, vg, ve, vi. First we fix the node
0 as the datum node. Then, we find

Vv =€, VgR=¢€—é€, Vc=—é€], VL=e.
In the third step, we write the KCL for the nodes 1 and 2, i.e.,

—Jjc+Jjr=0 (nodel),
—Jjr+jr+jv =0 (node 2).
The element characteristics are given by
jr=Gvg =Gle; —e3), jc=Cvp=—Cél, (3.55)

and
e =vy =Vippu(t), e2=vp= Lj;. (3.56)

Here, G denotes the conductance of the resistance, which means G = R~!. The
relations (3.55) are inserted into the KCL equations for node 1 and 2 which implies
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Cey+G(e1 —e2) = 0,
G(62—€1)+jL+jV =0.
It remains to add the characteristic equations (3.56) and we get the differential-
algebraic equation system
Ceé\+G(ey —ex) =0,
Glez—e1)+jL+jv =0,
./
Jp—€ = 0,
€y = Vinput(t)
in the variables e, e>, j; and jy. O

In general, the MNA results in quasi-linear DAEs of the form
A(d(x,t))' +b(x,t) = 0. (3.57)

What do the matrix A and the functions d and b look like? In order to see this, we
split the incidence matrix A into the element-related incidence matrices

A=[Ac AL Ag Av Af],

where Ac, AL, Ag, Ay and A; describe the branch—current relation for capacitive
branches, inductive branches, resistive branches, branches of voltage sources and
branches of current sources, respectively. Using the element characteristics

, d d d . T
= — =—q(A — =y, =A
Jc dtCI<VCat) dtCI( Ce?[)7 dt(p(]lnt) VL L€

for capacitances and inductances as well as
jR = g(Vth) = g(AEevt)v jI = iS(ATeijajVJ)avV = VS(ATeijvjV7t)

for resistances, current and voltages sources, we obtain

d : ) ) ..
ACEQ(AEEJ) +Arg(Age,t) +ApjL+Av jv +Aris(ATe, ji, jv,t) =0,

d
30Ut —ALe=0, (3.58)
Aye—vs(ATe, ji, jv,t) =0,

where i; and v are input functions. Next we aim to uncover beneficial DAE struc-
tures of the network system (3.58).

Supposing that the capacitance matrix C(v,¢) and the inductance matrix L(j,?)
are positive definite, which means passivity of capacitances and inductances, the
DAE (3.58) has a properly stated derivative term. In order to see this we formulate
a lemma which is also useful in the analysis later.
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Lemma 3.44. If M is a positive definite m x m matrix and A is a rectangular matrix
of dimension k x m, then we have

kerAMAT = kerAT and imAMAT =imA

and
kerA ®imMAT = RF.

Furthermore, the matrix AMAT + Q}QA is nonsingular for any projector Q4 onto
kerAT.

Proof. The first two equations of Lemma 3.44 follow immediately from the def-
inition of positive definite matrices. For the third equation we assume z to be an
element of kerA and imMAT. Then, we find an element y such that z = MATy,
thus AMATy = Az = 0. Since M is positive definite, we get ATy =0, i.e., z = 0.
Consequently, the intersection of kerA and im MAT is trivial. Consider now z as an
arbitrary element of R and choose a projector 04 onto kerA with imMAT C ker 0.
Then we have, due to the non-singularity of M,

rank (MAT) = rank (AT) = rank (A) = dimker Oy,
in other words im MAT = ker 0. This implies
2=0az+ (I —0p)z € imQy Dker Oy = kerA ®imMAT

and the third equation of the theorem is satisfied. It remains to show the nonsingu-
larity of the matrix AMAT + Q}QA. Assume z to belong to the kernel of this matrix.
Then,

0= Q4 (AMA™ + 0} 04)z = 0} Ouz,

which means Q4z = 0. This implies AMATz = 0 and, finally, z € kerAT =imQ,.
Since Q4 is a projector, we conclude that z = Q4z = 0. a

We rewrite the system (3.58) as

A(d(x,t))/ +b(x,t) =0, (3.59)
with
ACO T e
a=lotlamo=[yHed] =i,
0 O JL7 jV
and

Arg(ARe,t) +ALjL+Ay jv +Ais(ATe, ji, jv.t),
b(x,t) = —ATe
AVe - VS(A eu.]L>.]V>t)

We use the bar notation A in order to distinguish it from the incidence matrix intro-
duced before. By
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kerA =kerAc x {0}, imd,(x,1) =imC(ALe, )AL x imL(jr,t) (3.60)
Lemma 3.44 implies that
kerA ®imd,(x,1) = R"¢ x R",

with n¢, ny being the numbers of capacitances and inductances, respectively. Re-
membering that A represents a constant matrix, we find our general Assumption 3.16
to be satisfied, if d is continuously differentiable and b, is continuous.

The solutions of the network system (3.58) are expected to consist of continuous
nodal potentials and branch currents such that the charges and fluxes are contin-
uously differentiable. This makes sense from the physical point of view, and it is
consistent with the solution notion (Definition 3.2) for the DAE (3.59).

For the study of the regularity and index of (3.58), we introduce G(u,r) :=
d,8(u,t). Further, we denote projectors onto

kerAl, kerATQc, kerARQcQv_c, kerA¥, kerAc, ker QlAy,
by
Oc, Ov_c, Or—cv, Ov, Qc, Ovoc

respectively'. The complementary projectors shall be denoted by P := I — Q, with
the corresponding subindex. We observe that

imPe CkerPy_¢, imPy_c CkerPr_cy and imPc CkerPr_cvy,

and that thus QcQy ¢ is a projector onto ker (AcAy)T, and QcQv_cQr_vc is a
projector onto ker (AcAgAy)T. In order to shorten denotations, we use the abbre-
viation Qcry := QcQv-_cOr—cv. Note that the projector Pcgy, in general, does not
coincide with the projector Pr_cy .

We start our analysis with a lemma that describes certain network topological
properties in terms of the introduced incidence matrices and projectors.

Lemma 3.45. [206, 70] Given a lumped circuit with capacitances, inductances and
resistances as well as independent voltage sources and current sources, then, the
following relations are satisfied.

(1) The matrix [AC AL AR AV] has full row rank, because cutsets of current
sources are forbidden.

(2)  The matrix Ay has full column rank, since loops of voltage sources are forbid-
den.

(3) The matrix [Ac AR Av] has full row rank if and only if the circuit does not
contain cutsets consisting of inductances and current sources only.

4) The matrix QEAV has full column rank if and only if the circuit does not con-
tain loops with at least one voltage source and consisting of capacitances and
voltage sources only.

! An explicit description of such projectors is given in [67].
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For simplicity, we assume all current and voltage sources to be independent, which
means ig(ATe, j., jy,t) = is(t) and vy(ATe, j., ji,t) = vs(t). For the general case we
refer to [70]. In order to describe all possible DAE index cases for electric networks
we need the following lemma.

Lemma 3.46. Consider lumped electric circuits containing resistances, capaci-
tances, inductances, as well as independent voltage and current sources. Let the ca-
pacitance, inductance and conductance matrices of all capacitances, inductances,
and resistances, respectively, be positive definite.” Furthermore, assume that the
circuit neither contains a loop of voltage sources nor a cutset of current sources.”
Then, the auxiliary matrix functions

H(v,t) := AcC(v,1)AL + QL Qc,
Hy(j,1) := QlryALL™" (j.t)AL Ocrv + Plry Perv
Hy(v,1) == Oy_cAyH; ' (v1)AvQy c+Py_cPy ¢

are nonsingular.

Proof. Regarding Lemma 3.44, it remains to show the matrices C(v,¢), L™'(jj,¢)
and H, ! (v,7) to be positive definite and the projectors Q¢, Pcgy and Py_c to be
projectors onto the nullspaces kerAZ, kerAZQCRV and kerAy Qy _c, respectively.

First, the capacitance matrix C(v,t) is positive definite due to the assumption. The
relation im Q¢ = kerAE follows directly from the definition of Q¢; see the page be-
fore. Consequently, H, (v,7) is nonsingular. Furthermore, it is positive definite since

xTHy (v,1)x = (A&x)TC(v,1) (Agx) + (Qex) T (Qex) > 0.

Since the inverse of a positive definite matrix is always positive definite, we get
H; ' (v,1) to be positive definite. The assumption that the inductance L(j, ) is posi-
tive definite implies L~'(j,?) is also positive definite.

Since cutsets of current sources are forbidden, the incidence matrix [AcAgrAvAL],
containing all noncurrent source branches, has full row rank. This implies

AL
AR
AV
AL

= {0}

and, further,
kerAEQCRV = ker QCRV = imPCRv.

The matrix Al has full row rank since loops of voltage sources are forbidden. From
that we may conclude that

2 For capacitances and inductances with affine characteristics the positive definiteness implies that
they are strictly locally passive (cf. [77]).
3 Loops of voltage sources and cutsets of current sources would lead to a short-circuit.
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kerAVQV,C = ker Q_V,C = imp\/,c.
O

Now we can formulate the following theorem describing all possible DAE index
cases for electric circuits.

Theorem 3.47. Let the assumptions of Lemma 3.46 be satisfied. Furthermore, let
all current and voltage sources be independent.* Then, the following statements are
true.

(1)  If the network contains neither L-I cutsets nor C-V loops then the network
system (3.58) leads to a regular DAE system of index < 1. The index is 0 if
and only if there is a capacitive path from each node to the datum node and
the network does not contain voltage sources.

(2)  Ifthe network contains L-I cutsets or C-V loops then the network system (3.58)
leads to a regular index-2 DAE system.

(3)  Ifthe network system yields an index-1 or index-2 DAE system, then Gy := Ad,

has constant rank and

Oc00
Oo=10 00 (3.61)
007

is a projector onto the nullspace of Go. Further, the matrix function
G := Go+ b Qy also has constant rank, and

H'AvQv_cH; 'OV _AVPc QcrvHy 'OQfgyAL 0
0= 0 L7'ATQcrvHy ' QLpyAL O] (3.62)
—Qv_cH; ' 0} _-AVPc 0 0

is a projector onto the nullspace of Gy. Qo and Q1 are continuous and satisfy
the condition Q1Qy = 0.

Proof. First, we form

Ac O AcC()AY 0
oo [E ] 0 2[5 o
00 0 0 0

Regarding (3.60), we see that Gy has full row rank if and only if A¢ has full row rank
and the equations corresponding to the voltage sources disappear. Simple arguments
from graph theory show that A¢ has full row rank if and only if there is a capacitive
path from each node of the network to the datum node. Consequently, we have
shown the index-0 case.

In order to investigate the index-1 case, we use the projector Qg given by (3.61)
and form

4 For the general case we refer to [70].
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[AcC()AL 0 ARG(-)A} AL Ay| [Qc 00
G1 = Go+ByQo = 0 LHO|+| —-AF 0 0||000
.0 00 AL 0 001
[AcC(-)AL+ARG(-)ARQc 0 Ay
= —A7 Qc L(-) O
AT Oc 0 0

It is not difficult to verify that Q is a projector and G;Q; = 0 holds for Q; given by
(3.62) if one regards the relations
PE = AcC(-)ACH, (),

Olry = OlrvALL™ ()AL QcrvHy ' (),

Ov-c = Oy cAVH; ' ()AvQv-cHy ' ()
as well as

OcH; () =H{'()Q, OlAvOv-c =0, QcQcrv = Ocrv
and
AlQcrv =0, AxQcrv =0, Ay Qcry =0,

that follow directly from the definitions of the projectors Q. and the matrices
H;, i=1,2,3. Consequently, imQ; C kerGj. In order to show that kerG; C imQ1,
we assume z € ker Gy (+). Then,

AcC(-)A¢ze +ARG(-)ARQcze +Avzy =0, (3.63)
~ AT Qcze +L()zL = 0, (3.64)
AV Qcze = 0. (3.65)

Considering (3.65) we see that
Ze = Qv—CZe- (3.66)
Multiplying (3.63) by z2 OF_~OF yields
20 Qv cOLARG(-)ARQcQy —cze =0.

Since G(+) is positive definite, we find QcQy_cz. = 0. Taking into account (3.66),
we get
Ocz. = Ocrv Ze- (3.67)

Relation (3.64) leads to
22 =L ()AL Qcze = L™ (-)A] Qcrvze- (3.68)

Multiplying (3.63) by OF now yields QfAyzy = 0 and, hence,
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zv = Oc—czy- (3.69)

Regarding (3.67)—(3.69), we obtain Oz = z which implies z € im Q. Consequently,
imQ; = kerGj.
Obviously, we have Q10 = 0 for the projectors Qg and Q; given by (3.61) and
(3.62).
The matrix G is nonsingular if and only if Q1 = 0. The latter relation is satisfied if
and only if
OV _cAT =0 and Qg AL =0.

Since loops of voltage sources only are forbidden, the matrix A‘T, has full row rank.
Furthermore, the matrix [AcAgAyAy] has full row rank since cutsets of current
sources only are forbidden. Both relations allow the conclusion that G is nonsin-
gular if and only if

Q‘Tffc =0 and QE‘RV =0.

The first condition reflects the case that there is no C-V loop in the network. The sec-
ond one corresponds to the condition that the network does not contain L-I cutsets.
Consequently, the index-1 case has been completely proven.

Finally, applying the modified regularity condition given by Proposition 3.38,
and taking into account that, owing to the relation

G, := G1 +BPyQ) = (G| + WoBQ:)(I+ P Gy BRQ)),

the matrix functions G, and G| + WyBQ; must share their rank, it suffices to show
that the matrix function

Gy, = G1 + BP0,
AcC()AL+ARG(-)AROc 0 Ay ARG(-)ARPc AL O
= —f%{Qc L(:) 0|+ —f_xr{PC 0 0|0
AT Oc 0 0 AV 00

remains nonsingular. Let z be an element of ker G,. Then we have
0=1[0007 (] Grz=0}_cAyPcz.

and
0= [Q&ky 00] Gaz = OfgyALzL.

Both conclusions yield @1z =0, and hence Gz = G,z =0. In other words, z belongs
to ker Q1 and also to kerG; = imQ;. In consequence, z = 0 holds true and G, is
nonsingular. a

We want to finish this section with a summary of structural properties of circuit
systems. We have seen by (3.59) that circuit systems are given in quasi-linear form

A(d(x,1)) +b(x,1) =0 (3.70)
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with a constant matrix A. The subspace im QpQ; = Ny NSy is always independent
of the choice of projectors. From the decoupled versions of linear index-2 DAEs
we know that exactly the part of the solution belonging to im QyQ; describes the
index-2 components of the system. By an index-2 component we mean a compo-
nent which involves first derivatives of algebraically given components. Interest-
ingly, these components appear only linearly in circuit systems as the following
proposition shows.

Theorem 3.48. Let the assumptions of Theorem 3.47 be satisfied and let the index-1
or index-2 case be valid.

(1)  Then, the circuit systems (3.70) have the special structure
A(d(Pyx,t)) +b(Ux,t)+BTx =0 (3.71)

with constant coefficient matrix B and constant projectors

Pc00 Ocrv 0 0
p=|010|, T=| 0 0 0 |, U=I-T
000. 0 00y c.

(2)  The projectors Qo and Q1 described in (3.61) and (3.62) satisfy the relations
im7 =imQoQ; =imQcry X {0} ximQy_¢, Qo=1—PF.

Remark 3.49. Theorem 3.48 remains valid also for controlled current and voltage
sources if they do not belong to C-V loops or L-I cutsets and their controlling volt-
ages and currents do not belong to C-V loops or L-I cutsets. Using the results from
[70], the proof given here can also be applied to systems with controlled sources.

Proof. We start by proving (2). Using (3.61) and (3.62) we find

0 OcrvHy ' () QLryAL O
Q01 =| 0 0 0
—Qv_cH; ' (-)0F_ AT P 0 0

Obviously, im QyQ; C im Qcgy % {0} x imQy_¢. On the other hand, we have

—H; ' () AvQv_czv OcRvze
0001 | LTz | = | 0
0 Ov_czv

for any z, € R" and zy € R" which implies also imQpQ; 2 imQcgy X {0} X
imQy_c.

(1) Since we have assumed all voltage and current sources to be independent, the
function b(x,¢) in (3.71) has the form
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ARg(A£€7Z) +ALjL+Ay jv +Alis(t)
b(x,t) = —Ale
ATe—v,(t)

Defining

Arg(ARe,t) +ApjrL +Ay (I — Ov_c) jv +Aris(t)
b(x,t):= — AL (I—Qcrv)e )
A‘T,e — (1)

and _
0 0AvQy ¢

B = —AZQCRVe 0 0

0 0 0

we get b(x,t) = b(x,t) + BT x with the projector

Ocrv 0 O
T=[0 0 0
0 00v—c.

Notice that b(x,) = b(Ux,t) for U = I — T since AyQcrye = 0 and A} Qcgye = 0.
Owing to the properly stated leading term, the projector Qo = I — P is at the same
time a projector onto kerdy. This implies

1
d(x,t) —d(Pox,t) = /dx(sx + (1 —s)Pyx,t)Qoxds =0, for all arguments x and ¢.
0

O

Observe that here the intersection subspace Nop NSy =1im7T is even a constant one.
It is trivial that im 7 = {0} in the index-1 case, but it has dimension > 1 for index-2
DAEs. We close this section by discussing solvability.

Theorem 3.50. Let the function d in (3.71) be continuously differentiable, let b be
continuous together with by and let the underlying network system (3.58) satisfy the
assumptions of Theorem 3.47 which yield a regular index-1 DAE.

Then, to each point (xo,to) such that b(xo,ty) € imA, there exists at least one solution
X, of the DAE passing through x.(ty) = xo.

If d also has continuous second partial derivatives dy,d;x, then this solution is
unique.

Proof. The DAE satisfies Assumption 3.16 and it is regular with index 1. Addition-
ally, kerd, = ker Py is constant. The existence of the solution is now an immediate
consequence of Theorem 3.55.

The uniqueness follows from Theorem 3.53. a

The index-2 case is less transparent. The local solvability Theorem 3.56 applies only
to DAEs having a linear derivative part. For this reason we rewrite the DAE as
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Ad,(Pox,t)(Pox)' +Ady (Pox,t) + b(Ux,t) + BTx = 0. (3.72)

If d is continuously differentiable and also has continuous second partial derivatives
dyy,d;y, and b is continuous together with b,, then the DAE (3.72) meets Assump-
tion 3.16. Also the structural conditions demanded by Theorem 3.56 are fulfilled
by equation (3.72). The consistency condition for the initial point (xo,%) result-
ing from the obvious constraint reads b(Ux,y) € imA. A second much more subtle
consistency condition for (xg,#y) results from formula (3.99) in Theorem 3.56. Then,
supposing slight additional smoothness, Theorem 3.56 guarantees the existence and
uniqueness of a solution x, with x,(zy) = xo.

3.7 Local solvability

Each regular linear DAE with sufficiently smooth coefficients and excitations is
solvable. Nonlinear DAEs are much more complex. Regularity does not necessarily
imply solvability. For instance, if a nonlinear Hessenberg form DAE has size r on
its definition domain D;, x Zp, i.e., this DAE is regular with tractability index r (cf.
Theorem 3.42), then this does not at all mean that there is a solution passing through
a given point (xg,f) € Dy x I. For the existence of such a solution, xyp must be a
consistent value. The following two examples illustrate the situation.

Example 3.51 (Semi-explicit index-1 DAE). We consider once again the DAE

X (t)+xi(t) =0,

3.73
X112 400~ 1 = 700, G-73

given on Dy = {x € R? : x, > 0}, Zy = R from Example 3.7. As shown in Exam-
ple 3.18, it is a semi-explicit DAE being regular with index 1 on Dy x Z¢. Every
solution value at time ¢ must lie in the set

Mo(t) :={x € Dy : (x1)* + (x2)* — 1 —¥(r) = 0},

and, obviously, through points outside there are no solutions. Through each point
to € Iy, xo € My(to) passes through exactly one solution. O

Example 3.52 (Hessenberg size-2 DAE). Reconsider the DAE

X (1) +x () =0,
x2(t)x5 (1) —x3(1) = 0, (3.74)
002+~ 1 = ),
givenon Dy = {x € R? : x, >0}, Ty = R, which is investigated in Examples 3.8 and

3.19. The DAE is regular with tractability index 2. The solution values must belong
to the obvious constraint set
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Mo(t) := {x € R?: (x1)* + (x2)* — 1 — ¥(r) = 0},
and also to the hidden constraint set
H(r) = {xeDs: —2(x1)* +2x3 —y'(t) = 0}.

The obvious constraint set My(¢) contains points which are no longer consistent,
but the proper subset M (¢) := Mo(t) NH (1) C Mo(z) consists of consistent points,
that is, through each point #y € R, xo € M () passes through a solution. O

In the present section we prove that the obvious constraint set of a general reg-
ular DAE (3.1) with tractability index 1 is filled by solutions as it is the case in
Example 3.51.

Furthermore, we also prove the local solvability of a class of regular DAEs with
tractability index 2, which meets the structure of MNA DAEs and applies to Exam-
ple 3.52.

By definition, a function x, € C(Z,,R™) is a solution of the DAE (3.1), if
x:(t) € Dy, t € Ly, d(x.(.),.) € CY(Z,,R"), and the DAE (3.1) is satisfied point-
wise on Z,. In our basic setting, d is always a C! function, and D(x,t) = d,(x,t) has
constant rank. The inclusion

, (1) = dy (x:(1),1) € D(x:(1),1), 1 € L, (3.75)

is valid for all solutions (cf. Proposition C.1). Due to the constant rank of D(x,t)
there is a continuous functions w, such that

W (t) = di (x(t),1) = D(x (1), 0)ws (1), £ € L. (3.76)
In particular, for d(x,t) = D(¢)x it holds that

(1) = D/ (1)x.(1) = (D()Po(1)x. (1))

<
|
<
—~
[N
~—
=
*
—
~
—

with any C!-projector Qg onto kerD, Py = I — Q.

3.7.1 Index-1 DAEs

Let the DAE (3.1) be regular with tractability index 1 on the open set G C Dy x Iy.
All solution values have to remain within the obvious constraint set

Mo(t) :=={xeDs: Iy e R":y—d,(x,t) €imD(x,1), f(y,x,1) = 0}.
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We prove that through each (%,7) € G, X € M(f) passes through exactly one solu-
tion. This means that the obvious constraint is at the same time the set of consistent
values.

Theorem 3.53. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set G C Dy x Ly. Let d have the additional con-
tinuous partial derivatives dy,, dy.
Then, for each (%,7) € G, X € M (F), there is exactly one solution x, € C(Z,,R™) of
the DAE which satisfies x.(f) = %.

Proof. Suppose all assumptions to be given. Owing to the index-1 property, the
matrix function G; = Gy + BoQp remains nonsingular on R” x G independently of
the special choice of the continuous projector function Qg onto Ny = ker Gy = kerD.
Owing to the properly stated leading term the obvious constraint set is (cf. Proposi-
tion 3.10)

Mo(t) :=={xeDs: Iy e R": y—d,(x,t) € imD(x,1), f(y,x,t) = 0}.
We take use of the subspaces
S(v,x.1) :={z €R™: fe(y,x,1)z €im fy(y,x,1)D(x,1)},

and
So(x!,x,1) :={z € R"™: Bo(xl,x,t)z €imGo(x',x,1)},

defined (cf. Section 3.1) for (x,t) € Dy x Iy, y € R", and x' e R™,

For each (x,t) € G, the nonsingularity of Gy (x!,x,t), for all x' € R™, is equivalent
to the transversality condition (cf. Lemma A.9)

No(x,t) ®So(x!,x,t) =R™, x!' e R™. (3.77)

We fix an arbitrary ¥ € My(f), (%,7) € G. There is exactly one y € R" with
y—di(%,f) €imD(x,7), f(3,%,F) =0.
Denote by ! € R™ the value that is uniquely determined by the conditions

Qo(x,7)x' =0, D(x )i =7—d,(%,7).
Then it holds that S(7,%,7) = So(%!,%,7). The index-1 property (3.77) yields

No(%,7) ®S(y,%,7) =R"™,

and further, if N(z7) C G denotes a suitable neighborhood of (%,7),

No(x,t) ®S(7.5F) =R™,  (x,1) € Nizz)- (3.78)

This allows us to choose Qy(x,¢) in accordance with the decomposition (3.78), such
that

imQo(x,1) = No(x,1), kerQo(x,t)=S(y,%,7), imPy(x,1)=S(7,x%,7)
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Denote

and further,

and emphasize that this construction leads to the property
ker Qo(t) = ker Qo(x,1) = S(¥,%,7), (x,1) € Nizp)-

Since the projectors Qo (x,#) and Qy(t) have the common nullspace S(5, %,7 ), it fol-
lows that

Qo(x,7) = Qo(x,1)Qo(t),  Qo(t) = Qo(r)Qo(x,1), Po(x,1) = Po(t)Po(x,1).
Because of
D(x',x,t)” = Py(x,0)D(x",x,1)™ = Py(¢)Po(x,1)D(x' , x,1) ",
we obtain the useful property
Oo(t)D(x',x,t)” =0, (x,t) € Njzp), x' €R™

Introduce the additional values

After these preparations we apply the standard implicit function theorem twice. In
the first step we define the function

D(p,u,w,t) == R(t){u—d(D(t)" u+Qo(t)w, 1)} —(I—R(t))u (3.79)

for (W, u,w,t) € R" X R" x R™ x R from a neighborhood of (i, i, w, 7 ) The function
D is continuous, and has the continuous partial derivatives Dy, Dy,
Due to

) = R(){a—d(%1)} - (1 - R())D({)E =0,

N|

D(f,d,w,

and . . .
Dy (i, w,f) = RO{—R()} — (I =R(7)) = —1,

the equation D(u, u, w, t) 0 implicitly defines a unique function y = h(u,w,t) on a

neighborhood /\f(,;’w_’,— f (i1, w, 7). This function A is continuous and has continuous
partial derivatives h,, h,,. Its values belong to a neighborhood of ji. It holds that
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h(a,w,7) = i and, for (u,w,1) € Nz 7)s
D(h(u,w,t),u,w,t) =0, h(u,w,t) = R(t)h(u,w,t), h(u,w,t) = h(u,Qo(t)w,t).
As the second step we denote
E(u,w,t) :=D(t) h(u,w,t) + Qo(t)w, (u,w,t) € /\[(ﬁﬁf)’
and define the function F on J\/’(,;,W,,—) by
F(u,wyt) := f(D(E(u,w,t),0)w+dy (& (u,w,1),1),& (u,w,),1). (3.80)

Observe that & (i, w,7) = ¥, and

The functions £ and F are continuous. &, respectively F, have continuous partial
derivatives &, &,, respectively F,,, F,. We show the nonsingularity of the partial
Jacobian F,, (i, w, ). Consider the equation F,,(iZ,w,7)z =0, i.e.,

.fy{DZ'i‘Dx‘EwZW + d_tx‘EwZ} + .fxé_wz =0 (3.81)
(the accent bar indicates that the functions are to be evaluated at the arguments
i, w, I, X, ). Recall that h(u,w,t) = h(u, Qo(t)w,t), which leads to &(u,w,t) =
&(u,Qo(t)w,t), and hence
Ew(u,wyt) = & (u,w, 1) Qo(t).
That means that we have &,z = &,0(t)z in (3.81). Rearrange (3.81) to
(AD+ f:00)z+ f{Dibzw + dinyz} + fi(Ew — 1) Qoz = 0.

A closer look at the first matrix in front of z shows that

SH
wll
+
poud]
Qi
S
Il

6
-
=1
=
S5
Ral
=
+
oy
<
Ral
s
©
S
B
=

is nonsingular. It follows that
2+ G A{DEow + di &z} + Gy Bo (€ — 1) 0oz = 0. (3.82)

Since G, 'A = G;'GoD~ = ByD~, multiplication of (3.82) by Qp cancels out the
second term such that

Qoz+ QoG 'Bo(&, —1)Q0z = 0. (3.83)

Because of imQy = Ny(%,7), kerQp = S(7,%,7), it holds that Oy = QoG; ' By (cf.
Lemma A.10). Compute
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00(&w—1)00 = 00&yw — Qo = Qo{D hy+Qo} — Qo = Qo — Qo = 0

We then obtain from (3.83) that Qpz = 0, thus sz = EWQ_()Z = 0. Finally, (3.82)
yields z = 0. In consequence, the partial Jacobian JF,, (i1, w,7 ) is nonsingular. Again,
by the implicit function theorem, the equation J (u, w,¢) = 0 defines a solution func-
tion w = ®(u,t) on a neighborhood N(;7 of (%,7). The function @ is continuous
with a continuous partial derivative @,.

Use the shorter expressions

K( ) :D(t 7h(an0(t o(u, ) )+Q0(t)w<u7t):5(u7w(u>l)7t)7
D(x(u,t),t)@(u,t) +di(k(u,t),1),  (u,t) € Ngy)

<
[

These two functions are continuous with continuous partial derivatives K, ¢y,.

Now we are ready to construct a solution of the DAE (3.1) which satisfies the
condition x(7) = . First we solve the IVP

W(t)=0u),t), u(f)=i, (3.84)

and denote by u, € C 1(I*,R") its solution, € Z,. The interval Z, is sufficiently
small so that all values (u.(t),t) remain in the definition domain N z7) of ¢. The
solution u, exists and is unique owing to the continuity of ¢ and ¢,.

In the final step we set

W*(t) :w(”*(t)7t)ﬂ
1 (2) := R (), w4 (1), 1),
xo(t) 1= K(ui(1),1) = E(ue(t), wi(t) 1), t €L,

and prove that x, solves the DAE, possibly on an interval Z,, C Z, containing 7. By
construction, it hold that x.(f) = k(i&,7 ) = %, i.e., the function x, passes through the
given point.

For t € Z, compute

P00 6).0) = £ (0 ue0),), (u(1),1). 1)
= 1 (D(E 1) (1)), (1) - (& (1), w- 1), 1),0),
é(u*(t),w*(t),t),t) —0.

If we succeed in proving the relation u,(r) = d(x.(t),t) we obtain, with x,, the
required DAE solution. Remember that x,. and w, are just continuous functions, and
it holds that

W () +di(x(2),1), t €L, (3.85)

<

*

—

~|

I

:I

&.

—

Ral \/
~|
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The construction further yields D (. (¢),us(t),w«(t),) =0, t € Z,, and hence
R(Hu.(t) = R(t)d(x«(t),t), teL.. (3.86)

This implies, in particular, that the function R(.)d(x.(.),.) is continuously differen-
tiable. We derive

(R(£)d(x.(1),1)) = R (6)d (x,(£),1) + R()dy (x, (¢), 1) + £(t), (3.87)

with
/ 1
L£(t) = %ig(l)/]é(t);D(x* (£) +5(xu(t +7) — x4 (1)), 1 +5T) (0 (1 + T) — x.(£))ds.
0

The limit £(¢) is well defined and continuous with respect to ¢ since the derivative
on the left side of (3.87) exists and is continuous. By means of (3.85) and (3.86) we
find the expression

— R (t)u. () + RO, 1)
— R (0)u. (1) + RO (D (), )i (1) £y (. 1), 1)),

The difference quotient

%(d(x*(t+r)7t+r) —d(x(1),1)) = R(1,T) +dy (5. (1), ),

with

1

R(t,7) ::/

0

D (x, () +5(x (£ 4 7) —x:(2)),1 4 5T) (2 (f + T) — x.(1) )ds,

Q-

possesses a limit for 7 — 0, if £(¢,7) does. To prove the latter, we recall that R()
projects onto im D(x, ). Denote N4 (¢) := ker R(¢) such that

imD(x,1) BNs(t) =R", teZ.
In a sufficiently small neighborhood of (,7), say for x € N;, t € T, the decompo-
sition
imD(x,t) DN (t) = R"

is valid, too. Denote by R(x,) the projector onto im D(x,¢) along N4 (t). Since R(¢)
and R(x,t) share their nullspace Ny (¢), it holds that R(x,z) = R(x,t)R(t), and hence
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D(x,t) = R(x,t)D(x,t) = R(x,t)R(t)D(x,t), x € Nzt € L.

By this means we obtain the limit £(¢) := lirr(l)ﬁ(t7 7) = R(x.(1),1)£(t), and conse-
T—

quently, the derivative d(x,(r),t)’ exists. Compute further

d(x.(1),1)" =d; (x,(t),1) + K(t)
s (5. (0),1) + Rx, (1), OR(WOD e 1), 1) 1)

=d;(x,(t),1) + D(x(2),1)wi(t)
=il (1) + ROx(0), )R (1) (= (1) = d(x.(1),1)).

Now it is evident that the function J; := u, —d(x.(.),.) is the solution of the standard
homogeneous IVP &’ + RRS = 0, §(F) = 0, and therefore J, vanishes identically.
This completes the proof of the relation u,(t) = d(x.(¢),t), t € Lss, thus, x, is in
fact a solution of the DAE. The uniqueness of the solution x, is a consequence of
the related properties of the implicitly given functions, and of the solution of the
IVP (3.84). O

Considering the assumptions in detail we see that they are in fact appropriate, and
in general problems they cannot be weakened without losing, e.g., uniqueness.

Having local solutions, one can extend these solutions as long as the solution does
not leave the domain of regularity with index 1. Till now, such characterizations of
the maximal existence intervals as they are known for explicit regular ODEs are
not available. And there is no general answer to the question of whether there are
extensions through critical points and what they look like. This highly interesting
topic needs future research.

In particular, the general Theorem 3.53 applies to the DAE (3.88) in Exam-
ple 3.54 which is not covered by the theory in Part II.

Example 3.54 (ker f, varies with'y). Put n = m = m +mjy, k = m, and

1t ebn,xt) _|n B! m
Flonxt)i= [xz—‘l’(xl’f) } R [Yz} T [xz} cR" 1eR,

L X |1 oy, |10 10
d(X,l).— |:ll/(x17t):|7 fy—{o 6}}7 dx_[le O:|7 dz—{wt:|>

where ¢ and y are smooth functions such that the matrix I + @,, Y, remains non-
singular. The leading term of the resulting DAE (3.1) is properly stated: f, and d;
have constant rank m1, and ker f, ®©imd, = R™ is valid. This special DAE (3.1) can
be written in detail

X () +o((wx(1),1) ,x1(t),xa(t),1) = 8’ (3.88)
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The nonsingularity of 7+ @,, Y, is responsible for the fact that the implicit equation
for x| (r), namely,

X () + (W, (et (1), )21 (1) + i (1 (1),2), 31 (1), W (£),1),6) =0, (3.89)

is regular, that is, it contains a uniquely defined expression for x/ (), if any.
The matrix function Gy, as well as an admissible Qg and the resulting G| = Go +

SfxQo, are

g — [T Pn¥ 0 _|0 _ (It oYy ¢y
GO_Ad)C—|: 0 07 QO_ 17 Gl_ 0 I .

Since the matrix function G remains nonsingular, by definition, the DAE is regular
with tractability index 1. Compute the constraint sets

Mo(1) = {x eR" :xp = y(x1,1)},
and

Mo(t) = {x eR™ : xz = y(xy,1),
B ER" 1 y1+@(y2,x,1) = 0,y2 — Wi (x1,1) = Yy, (x1,0)y1}
={x eR" :xy = y(x1,1),3y2 € R™ 130 — i (x1,1) = =y, (x1,)9(y2,x,1) }
= {x eMo(r) : Iz € R™ tyy + i, (x1,0)9(v2,x,1) = Wy (x1,1)}.

The set My(t) is seemingly a proper subset of Mo(t), however, we are not aware
of a concrete case where this actually happens.

For a very large class of DAEs the subspace ker D(x, ) is a C'-subspace independent
of x or even a constant subspace, and we may denote

kerD(x,t) =:No(t), forxe Dy, teZy. (3.90)

For instance, the MNA-DAEs discussed in Section 3.6 and the DAEs describing
constrained mechanical motion show a constant leading nullspace. Also, this prop-
erty is given in Example 3.54.

Let Qp be any continuously differentiable projector function onto Ny, Py = I — Qy.
The property (3.90) implies

1
d(x,t) —d(Py(t)x,t) = /dx(sx—i— (1 —s)Py(t)x,t)Qo(t)xds =0, x€& Dyt €Ly,
0

supposing that the definition domain Dy contains Py (¢)x together with x. Now the
following identities result:
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The fact that d(x,t) is independent of the nullspace component Qg(#)x allows us
slightly to reduce the smoothness requirement for d in the local solvability assertion.

Theorem 3.55. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set G C Dy x Ly. Additionally, let kerD(x,t) be
a C'-subspace independent of x.

Then, for each (%,f) € G, X € My(f), there exists at least one solution x, € C(Z.,R™)
of the DAE passing through x,(f) = X.

Proof. We repeat the arguments of the previous proof. The special property of d
leads to

D(u,u,w,t) =D(U,u,0,1),
h(u,w,t) = h(u,0,1),

E(u,w,t) = D(t) h(u,0,t) + Qo(t)w,
F(u,w,t) = f(D(D(t) " h(u,0,1),0)(I+Po(t)Qo(t))w

+d,(D(t)"h(u,0,1),t),D(t) " h(u,0,1) + Qo (t)w,1).

This makes it clear that the partial derivative JF,, exists without assuming d to have
the second partial derivatives. However, now the resulting function o(u,7) is just
continuous. For the existence of @, second derivatives of d would be needed. O

3.7.2 Index-2 DAEs

In higher index DAESs, new difficulties arise from hidden constraints and inherent
differentiations. We restrict our interest to regular DAEs with tractability index 2
and provide a solvability result which meets, in particular, the situation in circuit
modeling. For transparency we recall and modify some relevant facts from Chap-
ter 2.

3.7.2.1 Advanced decoupling of linear index-2 DAEs

Any regular DAE
A(Dx)' +Bx =q, (3.91)

with tractability index two and fine decoupling projector functions Qgp, Q1, decom-
poses into the system
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W' — (DILD™)'u+ DI G, 'BD u = DI, G, 'q,
—0001D" (DPRyQ1x)'
+Q0x+ (QoPiG, 'B+ Qo1 D~ (DPy0 D™ ) D)IT1x = QyP G, ',
RQix= P0G, g,
where u = DI x, and the DAE solution is x = IT{) D™ u+ PyQ1x + Qox.
Notice that 01 G, IBIT, = 0 is true for fine decoupling.
Here the matrix function D is supposed to be continuously differentiable. This
allows us to choose a continuously differentiable projector function Qp. In con-
sequence, all D™, ITj, PyQ; are continuously differentiable, too. The subspace
imQopQ = NgN Sy is a C-subspace of dimension m — ry. The matrix function QyQ;

has constant rank m — r;. We introduce the additional continuous projector functions
T and U =1—T such that

im7 =imQoQ1, TQo=T=0QT, RU=P=UR

is fulfilled. With the help of these projectors we advance the splittings of the DAE
solution and the DAE itself to x = I} D~ u+ PyQ1x+ U Qox + Tx and
W' — (DIID™)'u+ DI G, 'BD u=DIL,G, 'q,
—00Q1D™ (DRyQ1x)'
+Tx+ (TG, 'B+ Q001D (DPyQ1D ™)' D)ITix = TQyP G, 'q,
UQox+UQoPiG,'BD u=UQyG,q,
PQix=PR01G; 'q.
Since Z := PyQ1 + UQy is also a projector function, it is reasonable to write
x=IL1D " u+Zx+Tx and
W' — (DILD™)'u+ DI G, 'BD u=DIL, G, 'q,
—0001D™ (DPyQ1x)’
+Tx—+ (TGEIB-‘,- 001D~ (DPleDf)/D)Hlx = (T - Q()Ql)Gzilq7
Zx+UQoG, 'BITix = ZG, 'q.

It is worth mentioning that this system could also be obtained by splitting the
original DAE (3.91) via (IT; + Z+T)G, .
Our construction is accompanied by the properties

kerZGz_1 =1imA,
G,'BT =T,
ZG,'B=2ZG,'BIT, + PO, +UQo = ZG, 'BIT, + Z,
DZG, 'BIT; = DRyQ1G, 'BIT, =0,
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which play their role in the nonlinear case later on, too.
The obvious constraint of the linear DAE (Definition 3.9 and Proposition 3.10) is

Mo(t) ={xeR™: Iy eR":y—D'(t)x€imD(t), A(t)y+B(t)x = q(t)}
={xeR":B(t)x—q(t) € imA(r)}
= {x € R": Z(1)Ga (1) (B(r)x— q(r)) = 0}
= {xeR": Z(t)x = Z(t)Ga(1) ' (q(t) — B(t)Ti (1)x)},

which shows the component Z(¢)x to be fixed in terms of IT; (¢)x. We also use the
description

Mo(r) = {x € R : 3ID(1)x" 2" € R+ A(1)(D(e)x! + D' (1)x) + B(t)x = q(1)},

where the symbol 3!D(¢)x! indicates that x' is not necessarily unique, but the im-
age D(t)x! is so. The above decoupled system unveils in its second line the hidden
constraint which additionally fixes the component T (¢)x. This allows us to describe
the set of consistent values as

Mi(t) = {x eR": Z(t)x=Z(1)Ga(t) " (q(r) — B(1) [Ty (1)x),
—Qo( )01 (1)D(1)” (D(1)Po(1)Q 1(t) ) 1f1(t))’+T(t)x
+(T(1)Ga2(t)~'B(r) + Qo(1) Q1 (1)

It is not difficult to check that the more transparent description

M (t) = {x e R" : ID(t)x' ,x' e R : A(t)(D(t)x" +D'(t)x) + B(t)x = q(t),
D(1)Py(1)Q1(t)x" = (D(t)Po(1) Q1 (1)Ga (1)~ q(1)) — (D (1) Po(1) Q1 (¢))'x}

is true by an analogous decoupling of the equation

A1) (D(t)x" + D' (t)x) + B(t)x = ¢(t).
This new description does not explicitly determine the hidden constraint as the pre-
vious version does, but instead fixes the corresponding part of the jet variable x!.
This understanding appears to be helpful in the nonlinear case.

3.7.2.2 Nonlinear index-2 DAEs

We consider the nonlinear DAE with linear derivative term

F(UD(0)x(t)),x(t),1) =0, (3.92)



262 3 Nonlinear DAEs

which is supposed to satisfy Assumption 3.16 and to be regular with tractability
index 2 on the open set G € Dy x Z¢. The obvious constraint set is

My(t) ={xeDy:3yeR":y—D'(t)x €imD(¢), f(y,x,t) =0}
={xeD;:ID)x" x' €R™: f((D(t)x" +D'(t)x,x,1) = 0}.

We apply the subspaces
No(t) =kerD(r) and S(y,x,t) ={z€R": fi(y,x,t)z € im f,(y,x,1)},

and notice that the intersection Ny(f) N S(y,x,¢) has the dimension m — r; for all
yEeR" (x,1) € G, x € My(r).

Consider a fixed point (¥,7) € G such that ¥ € My(7), and denote by y € R",
i € R™ associated values with

y—D/(f))E:D(f>fl7 f()_),)f,f) =0.

We intend to take use of the above advanced decoupling of linear index-2 DAEs
applying it via linearization. For this aim we construct a reference function ¥ €
C?(Z,R™) such that its values lie in G, i.e., (X(t),t) € G, for ¢t € Z, and X(f) = &,
(D£)'(f) = y. We can take, for instance, ¥(t) = ¥+ (t — 7)x'. Then we apply lin-
earization along the function ¥ and arrive at the linear DAE

A(Dx) +Bx=gq (3.93)
with coefficients

A(t) = f,(DO)x(1)), x(1),1), B(t) = £ ((D(O)X(1))',%(1).1), 1 € T.

The linear DAE (3.93) inherits regularity with tractability index 2 and the character-
istic values rg, r1, > from the nonlinear DAE (3.92) as guaranteed by Theorem 3.33.
Choose the projector function Qg onto Ny to be continuously differentiable. This is
possible owing to the continuous differentiability of D.

Without loss of generality (cf. Proposition 3.79) we suppose the subspace
ker fy(y,x,t) to be independent of the variables y and x, such that ker f,(y,x,7) =
kerR(z) holds true. Since D, R and P, are continuously differentiable, so is D~

The following condition restricts the possible structure of the DAE (3.92), but it
is valid, for instance, in the MNA DAE in the previous section:

im £y (y,x,1) and No(r) N S(y, x,1) are independent of y and x. (3.94)

Assuming this structure to be given, T'(¢t) € L(R™) denotes an additional projector
such that
imT(¢t) = No(t)NS(y,x,2), y€eR" (x,1)€g. (3.95)

We choose T as in the linear case so that the relations
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TQo=T=00T, U:=1-T, UPh=Py=PFRU

become true. Supposing the intersection subspace to be a C'-subspace we may ar-
range T to be continuously differentiable.

Next, starting with Qg, we form an admissible matrix function sequence and admis-
sible projector functions for the linear DAE (3.93). We indicate by a tilde, if they
may depend on the function %, e.g., Ql, etc. The resulting projector functions I,
and Z = PyQ; + UQy are also continuously differentiable.

Denote

= D(t_)ﬁl (F)x,

= Z(f) _7

w =T (f)X,

i' = D(0)IT ()x' + (DIT,) ()%,

' = D()Py ()01 (X' + (DPyOy) (7)x,
so that

F=IL{ODF) a+z+w, j=a +7v'".
Since the subspace im f,(y, x,) does not vary with y and x, it holds that
kerZ(1)Gy(t) ' =imfy(y,x,1), y€ER" x€Dsr€T. (3.96)
Moreover, the condition (3.94) yields
Z(0)Ga(t) " fe(x,t)T(t) =0, y€ER",x€ Dyt 1. (3.97)

Namely, for each & € R™, T (1) belongs to S(y,x,t), thus fi(y,x,2)T(¢)&
€ im f;(y,x,t), and hence Z(t)G2 ()~ fe(y,x,£) T (t)& = 0.
Further, we derive for y € R",x € Dy,t € 1 that

()" roxt) = O, (T (1) +Z(1))x.1) }

1
_ / 2(1)Ga(t) ™ { fy(syysx+ (1 — ) (ITy (1) + Z(t))x, 1)y
0

+ felsy,sx+ (L —s)(ITy (£) + Z(t))x, )T (t)x }ds = 0.

This yields the identities

Z(1)Ga(1) ™' f(vx,1) = Z(1) G (1) f(O, (T (1) + Z(1) ), 1),
Z(1)Ga(1) ™ fulyw,1) () 2() 7 fe(0, (I (1) + Z(1))x,0) (T () + Z(1)),
eR”

,x€Dys, t €L
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Define the auxiliary function g on a neighborhood -M(E,Zﬂ of (i1,z,) in R**m+! by
g(u,z,1) = Z(1)Go () " £(0, 1Ty (1)D(1) " u+Z(t)z,1), (u,z,1) € Mazp- (3.98)

This gives g(i1,z,7) = Z(7)G2(f) "' f(7,%,7) = 0. The function g plays its role in our
solvability assertion, which takes up the idea of applying the structural condition
(3.94) from [205] and [211]. A priori, g is continuous together with its partial deriva-
tives g, and g,.

Now we are in a position to formulate the solvability assertion.

Theorem 3.56. Let the DAE (3.92) satisfy Assumption 3.16 and be regular with
tractability index 2 on the open set G. Let the structural restriction (3.94) be given,
and the intersection Ny S be a C'-subspace.
Let (%,7) € G be fixed, ¥ € My(f), and let y € R", §' € R™ denote associated values
with

j—D'(D)i=D([z', f(5,%f) =0.
Let the linearized DAE (3.93) have the fine decoupling projector functions Qq, Q.

Let the function g (see (3.98)) continuously differentiable.
Let the consistency condition

D(7)Ry (1) 01 (1) + (DPy Q1) (7) (I — Z(F))% + (D) (D(D)IT ()%, Z(7)%,7) = 0
(3.99)
be satisfied.

(1)  Then there exists at least one solution x, € Cé(I*,R”‘) of the DAE passing
through x,(f) = %.
(2) ThelVP
F((D(O)x(1)) ,x(1),t) =0,  D(O)IT1(7)x(F) = D(F) Ty ()T + 9,
is solvable for all sufficiently small § € imD(F)IT, (f).

) If, additionally, g has second partial derivatives g,,,8::, 8w, &tu, &tz then the
DAE solutions in items (1) and (2) are unique.

The idea behind the proof is to benefit from the structural restrictions and to decom-
pose the original DAE in the following way.

Because of IT) +Z +T = I and the nonsingularity of G, we may turn from the given
DAE (3.92) to

(I () + Z(6) + T (1)) Ga(6) ' F((D(0)x(2))'x(2) 1) = 0.
Owing to the projector properties, the latter equation decomposes into the three parts

IT (1) Ga ()~ F((D(1)x(1)),x(1).1) = 0,
Z(1)Ga(e) ' f((D(
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which is the basic idea of the following investigation.
Lemma 3.57. Let g have the additional continuous partial derivative g;.
(1)  Then there is a unique continuously differentiable function h : ./\/(,;,,-) — R™
such that h(ii,7) = 7, h,(i,7) = Z(7) G () "' B(7) T, (), and g(u,h(u,t),t) =0,
h(u,t) = Z(t)h(u,t) = h(D()IL (1)D(1) 1), (u,1) € Nz )-

(2)  IfQq, Q1 provide a fine decoupling of the linearized DAE (3.93), then it follows
that D(f)h, (i,f) = 0.

(3)  If g has the additional continuous partial derivatives gy, 8z, 8uz, 8tz> Stu» then
the function h has the continuous second partial derivatives hy,,, hy,.

Proof. Introduce the continuously differentiable function

H(M,Z,t) = g(u,z,t) + (I*Z(t))z, (u,z,t) € Mﬁ.z,f)'

H(i,2,7) = 8:(,2,7) + (I = Z(1)) = Z(1) (1) "' B(1) Z(t) + (I = Z(1)) = 1.

The first and third assertions are now direct consequences of the standard implicit
function theorem, and the fact that H(u,h(u,t),r) = 0 implies g(u,h(u,t),t) = 0.
The second assertion follows from

D([H)Z(1)G2 (1) ' B(O)IT (7) = D) Po(7)01(7) Ga(7) ' B(F)IL1 (7) = 0.

Define the further auxiliary function
vl(u,t,ul) = D'(t)h(u,t) —I—D(t){hu(u,t)u1 +hy(u,)}, u' € R, (u,t) € ./\/'(ﬁ",—).

If g is continuously differentiable, then the function v! is continuous together with

its partial derivative Vil (u,t,u') = D(t)h,(u,t). If g has additional second partial
derivatives, then v! also has the continuous partial derivative v.. Compute
vi(a,7,a") = D' (f)z+ D(7)h, (i)
and
ht(ﬁaf) = _Ht(ﬁaz7t_) = _gt(’z7z7f) +Z/(_)Za
D(1)h(,7) = —D(7)g: (,Z,7) + D(1)Z'(1)z = — d
It follows that

S
~
S~—
e

—
=i
Bl

vi(a,7,a') = (DR Q1) (F)z— D(7)g: (1,7, 7). (3.100)

Assume for the moment that there is already a solution x. € C},(Z.,R") passing
through x, () = X, with Z, a small neighborhood of 7. Then
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Z(t)x.(1) = h(D()IT1 (1)x. (1), 1),
D(t)Po(1) 01 (t)x:(r) = D(t)h(D(0) IT1 (1)x. (1), 1),
(D(O)R ()01 ()x, () = v (D(O)TT (1) (£), £, (D()ITy (1)x. (1)) fort € L.,

vl =v(a,z,al). (3.101)
The last condition (3.101) reads in detail (cf. (3.100))
D()Py(7) 01 (7)x' + (D01 ) (1) = (DR Q1) (7)Z — D(T)gr (,Z,7).
Taking into account that
D(7)g:(i1,7,7) = (Dg):(@,2,7) — D'(F)g(#,Z.7) = (Dg): (i,7,7)
we obtain the equivalent condition (3.99), namely
D()Po(7)Q1(F)x' + (DR Q1) (D) (I = Z(F))x+ (Dg)(D(D)IT (N7, Z(1)%,7) = 0.
For a linear DAE (3.91), the condition (3.99) simplifies to the demand

D(7)Py(7) 01 (D)% + (DRyQ1) (F)Z = (DPyQ1G; 'q) (7)

already known in this context and used to describe the set of consistent values M ()
in the linear case.

Proof (of Theorem 3.56). We verify assertion (2) first. We introduce the function IC
on a neighborhood N ;; 1 7 of (@,w,a',7) by

MWM f

K(u,wyu' 1) := (I —D(t)ITy (t)D(t) ") (u' — (D)1, (1)D(t) ") u)
+D()IT (0)Go (1) f (" + " (u,t,ub), T (£)D(t) " u+h(u,t) + T (t)w, 1).

The function K is continuous and has continuous partial derivatives K1 and K,,. We
obtain /C(it,w, ' ,7) = 0 and K, (i1,W, i’ ,7) = I. Then the implicit function theorem
provides a unique continuous functlon k: N (aw,5) — R" such that k(a,w,i) = ii';
further (cf. (3.97)) k,, (&1, w,f) = 0 and

K(u,w, k(u,w,t),t) =0,

k(u,w,t) — (D) (1)D~ (1)) 'u

v (u,t,k(u,w,t)), I (1)D(t) “u+h(u,t) + T (t)w, t) =0,
k(u,w,t) = k(D(t)ITy (£)D~ (t)u,w,t) = k(u, T (t)w,1), (u,w,t) € ./\/'(,;’W’,-)
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The composed function y(u,w,t) := k(u,w,t) +v! (u,t,k(u,w,t)) is continuous to-
gether with its partial derivative y%,. We have y(i@,w,7) = a' +7' = 5 and
')/W(IZ,VT/,ZT) =0.

We build the last auxiliary function £ on a neighborhood -/\/(um of (&, w,7) by

Nl

L(u,w,t) == —T(1))w
F TG0 F (W), T (D) "+ h(ae) + T (1) ).

L is continuous and has a continuous partial derivative L,. It holds that
L(id,w,7)=0and L, = (I - T)+TG, " (fy% + fiT), and hence
L, (i, w,f) =1 —T(F) + T(F)G2(7) "' B(f)T (f) = I. The implicit function theorem
yields a continuous function [ : N'(ﬁf) — R™ such that [(i,f) = w and, for
(MJ) € jV.(ﬁ.f)?

L(u,l(u,2),t) =0, L(u,t)="T()(u,t)=1D@)I()D(t) u,z1),

T(1)Ga(t) ™ f(y(u, 1 (u,1) 1), T (1)D(1) "u+h(u, ) +1(u,1), 1) = 0.

Now we are prepared to construct a solution of the IVP in assertion (2). Owing to
Peano’s theorem, the standard IVP

W (t) = k(u(t),l(ut),t),t) = o(u(t),t), ul)=i+é (3.102)

possesses at least one solution u, € C ! (Z.,R™).
Multiplying the identity

0

o (1) = K (1), 1 (6),1).0)

by I —D(t)IT; (t)D(t)~ we prove that the function @ := (I — DIT; D~ )u is the solu-
tion of the IVP o’ = (I — DIT\D~ ), a/(f) = 0. Therefore, . vanishes identically,
which means that u, = DIT| D u, is true.

We compose the continuous function

X (1) :=IL (6)D(t) " i (1) + h(us(2),1) + 1 (us(2),1), tE€L,
such that
T(t)x(t) = Lue(t),t), Z()x:(t) = h(us(t),1), DI (£)x.(t) = ui(2).

The part Dx, = uy + Dh(u.(.),.) is continuously differentiable.
The initial condition D(7)IT, (f)x.(f) = i+ 0 is fulfilled. Finally, due to the construc-
tion of the auxiliary functions £,[ and k, we have the three identities on Z,:
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Altogether this yields for ¢t € Z,
F((D(@)x. (1)) 2. (1), 1)
= Go(1)(Z(1) + T(1) +D(1) D)1 (1)) Ga (1)~ F((D(t)x:(2))' x4 (1) 1) = 0.

Assertion (1) is a consequence of (2). Namely, we put 6 = 0 in the initial condition.
Then, for the solution provided by (2) it follows that

X, (F) := Iy ())D(7) " ai + h(i,t) +1(i1,t) = %.

Assertion (3) follows immediately since now the function ¢ in (3.102) possesses the
continuous partial derivative @,. O

3.7.2.3 Index reduction step

The smoothness demands for g (see (3.98)) in the previous part require only parts
of the function f to be smoother than is supposed in the basic Assumption 3.16.
A generous overall assumption would be that f is twice continuously differentiable.

Theorem 3.56 provides the following local description of the constraint sets:
for (x,t) € Nz it holds that

XEM(t) <= Z()+T(t))x= h(D( ) 1(t)x,0) +1(D(e) T (¢)x, ).

Agreeing upon the meaning of the projectors Q1 and IT; as given via linearization
and fine decoupling we can describe the set of consistent initial values as

M (7) = {x € Mo(?) : D(E)Po(7)Q1())X' = (DPyO1)' (F)z — (Dg): (i1,2,7) }.
With the background of Theorem 3.56, we can write
FUD@)x(1)),x(t),1) =f((DITyx)' (1) + (DPyQ1x)' (t),x(1),1)

=f((DIT,D™)(¢)(DIx) (1)
+ (DI, D™)' (1) (DI x) (t) + (DPy01x) (1), x(t), 1),

for all functions x € C},(Z,R™) with values in Dy. In the above analysis we learned
that the term DIl x corresponds to the inherent ODE while the term DPyQ1x is to
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be differentiated. The function v! defined via Lemma 3.57 as
v(u,t,ut) == D' (Oh(u,t) + D) {hy(u, ) + by (1)}, u' €R, (u,1) € N

represents the tool to carry out the inherent differentiation in the given index-2 DAE,
that is, for each solution x, it holds that

(D(t)Po(1) 01 (1)x: (1)) = v (D() 1 (1)x (1) 1, (D) [T (1), (1))

Inserting such an expression into the original DAE, we arrive at the new DAE

FUD@)x(1)),x(t),t) =0, (3.103)
with functions
D(t) :=D(0)I1, ()
y,x 1) f((DH (@)Y
+ (DI D )() (O (O)x+v! (D) (1)x,1,¥),x,1),

defined for y € R”, x € Nj, t € N;.

We expect this procedure to provide a local index reduction by one. In fact, the new
DAE is regular with tractability index 1 as we show by Theorem 3.58.

Recall the function g playing its role in Lemma 3.57, and in the definition of the
function A, in turn used to obtain the function v!:

g(u,z,1) = Z(1)Go (1) " £(0, ITy (1)D(2) "u+Z(t)z,1), (u,z,1) € N s 2050

We stress once more that the function g inherits its smoothness from the function f.

Theorem 3.58. Let the DAE (3.92) satisfy Assumption 3.16 and be regular with
tractability index 2 on the open set G. Let the structural restriction (3.94) be given,
and the intersection Ny NS be a C'-subspace.

Let (%,7) € G be fixed, & € My (f), and let j € R", &' € R™ denote associated values
such that

j—D'(D)i=D([)z', f(5,%f) =0.

Let the linearized DAE (3.93) have the fine decoupling projector functions Qq, Q.
Let the function g be continuously differentiable and have continuous second partial

derivatives guu, 8z, §zus 8tus 8tz-
Let the consistency condition (3.99) be satisfied.

(1)  Then the DAE (3.103) is regular with tractability index 1 on a neighborhood
of (8',%,7), and % belongs to the obvious constraint set Mo (f) of this DAE.
(2) The DAEs (3.92) and (3.103) are locally equivalent in the following sense:
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If x. € C5(Z,R™) is a solution of the index-2 DAE (3.92) passing through
the reference point (%,f), then x, belongs to the function space Céﬁl (Z.,R™)

and solves the index-1 DAE (3.103). If x. € CI]3171 (Z,R™) is a solution of

the index-1 DAE (3.103) passing through the reference point (%,f), then x,
belongs also to the function space C}) (Zy,R™) and solves the index-2 DAE
(3.92).

To be more precise, regularity with tractability index 1 on a neighborhood of
(x',%,7) is meant in the sense of Definition 3.62 while the previous Definition 3.28
explains regularity with index 1 only if there is no restriction on the jet variable x'.
Definition 3.62 allows a localization also of the jet variables.

In the simpler particular case, if f(y,x,7) =A(t)y+b(x,1), the resulting DAE (3.103)
is regular with index 1 on a neighborhood -N(x,r‘) of (x,7) in the sense of Defini-
tion 3.28. In the context of the more general Definition 3.62 this is regularity with
tractability index 1 on R” x N(z7).

Proof. Owing to Lemma 3.57, the function % is continuously differentiable and has
the continuous second partial derivatives h,, and h;,. In consequence, the function

v! is continuous with a continuous partial derivative vllt, and it depends linearly on

ul

Moreover, the property h,, = h,DIT,D™ is given, and hence vllt ,=Dh, = v'lll DIT,D—.
The matrix function D is continuously differentiable, the function f is continuous
and has continuous partial derivatives with respect to ¥ and x,

fy=H{DIMD™ +v!,} = f,(I+Dh,)DIT, D™,

fe = £,{(DILD™)'DITy +viDIT\ } + f.
We show that ker fy = im (I — DIT;D™) is valid, but then the derivative term of

(3.103) is properly involved and the DAE satisfies the basic Assumption 3.16. Con-
sider a w € ker fy, which means

(I+Dh,)DIT;D™w € ker f, NimD = {0}.
Due to Dh, = DP0Q1huI:11 (cf. Lemma 3.57), the matrix function
I+ Dhy, =1+ DPyQ1h,IT;
is nonsingular, but this implies DIT;D~w = 0. 5 .
Next we verify the index-1 property. Choose Q¢ = I — II; and indicate in the same

way the members of the matrix function sequence associated with the DAE (3.103).
Compute
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AR x,0) = f(DO)x + D (0)x%,%,7) = f,(a" +7',%,7) = A7),
B(@,%,7)00(f) = /(D([D)F +D'(7)%,%,7)(1 - 11(7))
= feli' +9",%,1)(I— (7)) = B(F) (I — T (7)),
Gi(3,x,7) = AR, %,1)D(7) + B(z',%,7) Qo (7)
= A(f)D(0)IT1(7) + B(7)(I - I1, (7))
= A(ODOIT, (7) + B({)(Z(7) + T (7))

It follows that

Gy (1)71Gy (&, %,7) = IT) () + G () ' B(7)

N
=
+
N
=

Let ¢ belong to the nullspace of Gy (!, %,7), that is

{AODO T () +BE)(Z(0) + ()} =0,
Multlphcatlon by Z(f)G,(7)~! yields Z(f)¢ = 0. Then, set Z(7){ = 0 and multiply

by G»(7)~! so that
IL (¢ +T([0)§ =0

results. Finally, this implies { = 0, and the matrix G (&', %,7) is nonsingular. It is
clear that the matrix function G preserves nonsingularity on a neighborhood of our
reference point (%', %,7), and therefore the DAE is regular with tractability index 1
on a neighborhood of this point.

Notice that, for the special case f(y,x,7) = A(t)y + b(x,), the matrix function G is
independent of the variable x', and therefore it remains nonsingular uniformly for
all x! € R™.

Next we show that the reference point X belongs to the obvious constraint set asso-
ciated with the DAE (3.103) at time 7, that is

M) :={x e Nz : I e R™: f(D(D)x' + D (f)x,x,7) = 0}.
We set ¥! := x! and show that, in fact, f(D(7)x! + D' ()%, %) = 0 is valid. We have
D' +D'(H)x = D()IT, ()5 + (DITy) (Nx =i’

and, taking the condition (3.99) into account, which means v! (D (7)IT, (7)%,7,i') =
L, it follows that
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Now the proof of our first assertion is complete. We turn to the second assertion.
Let x, € Cll) (Z.,R™) be a solution of the DAE (3.92) with values in the definition
domain of the functions 4 and v'. Then it necessarily holds that

Z(0x.(0) = hD(O T (1)x.(1),1),
D(0)Po(1)01 (1), (1) = D(R(D(O) Ty (1)x. (1), 1),
(DR 01 (1)x. (1)) = v (DO (0. (1), 1, (DO (1)x.(1))))  for € T,

Because of DIIjx, = DIT;D~ Dx,, the component DIT,x, inherits its smoothness
from that of DII} D~ and Dx.,. Inserting the above expression into the identity

0= F(D()x. (1)) 3. (1).1) = F((DILx.) (1) + DR O1x.) (1), .(1).1)
— F((DILD)(1)(DINx.) (1) + (DILD™Y (D) T (1)x. (1)
+(DP01x.) (1), x.(1),1)

we see that the new DAE (3.103) is satisfied.
Conversely, let x, € 6113171 (Z,,R™) be a solution of the DAE (3.103), i.e.,

0= f((DIMx.) (1),x.(1), 1)
= f((DITx,)' (t) +v! (D() T (1), (1), 1, (DIT1xe) (1)), 64 (1), 1).
The structural restrictions (3.96), (3.97) lead to
0=Z(1)Ga(t) ™" (0. ITy (1) (1) + Z(1)x. (1), 1) = (DO Ty (1)x.(1), Z(1)x. (1), 1),
and, with regard to Lemma 3.57, we find the relation
D(1)Po(1)Q1 (t)x.(1) = D(t)h(D(1)IT1 (1)qx. (t) 1)

Since & and DIT,x, are continuously differentiable, the component DPyQ1x, on the
left side is so, too. We derive

(DRQ1x.)' (1) = v (D() T (. 1), 1, (DI, (1))

and insert this expression into the above identity. This makes it clear that x, solves
the DAE (3.92). O

3.8 Advanced localization of regularity: including jet variables

The class of nonlinear DAEs that are regular on their entire definition domain, which
means that there is just a single maximal regularity region, comprises, for instance,
the MNA-DAE and the Hessenberg form DAEs of arbitrary size. A different situa-
tion is given in Example 3.34, where the definition domain Dy X Zy is split into three
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maximal regularity regions G;, i = 1,2,3, whose borders consist of critical points.
The special DAE (3.27) is regular with tractability index 1 locally on each region
Gi; however, neither of the regions G; covers the obvious constraint set, and there
are solutions crossing the borders. The class of DAEs which show several maximal
regularity regions represents a straightforward generalization of the DAEs having
just a single maximal regularity region. However, also this notion needs a further
generalization.

The regularity notion given in Section 3.3 is local with respect to the basic vari-
ables (x,t) € Dy x Zy. Admissible projectors Q, ...,y —1 may depend not only on
(x,t) € Dy x I but also on jet variables x',...,x*~! € R™. The demands yielding
regularity on a region G C Dy x Zy are meant to hold true for all (x,7) € G and
globally for all x!,... . x*~1 € R™, as well.

There are quite simple nonlinear problems where the regularity Definition 3.28 does
not apply. It is natural to advance the localization to apply to jet variables, too.

Example 3.59 (rank G| depends on x').Setk=m=2,n=1,acRisa parameter,
and B : R — R is a continuous function. The DAE
(1 () +x2(0)) > —a =0,

x1 (1) (x1(t) +x2(1)) = B(1) = 0, (3.104)

has the solutions

B(1)

T 2+a’

X1 (1) X1 (1) +x2(t) =20+t — 1) + %(ﬁ —-8), teT,
which satisfy the initial condition x.(ty) + x.2(f0) = 20, 20 € R. The initial time
point 7 as well as the existence interval Z, are bound with the requirement for the
expression 12 4 o not to have zeros.

If @ > 0, then #p € R can be chosen arbitrarily, and Z, = R. If oo < 0, then
fo # ++/—a is allowed, but the interval Z, is restricted. If o« = 0, then o # 0 is
allowed, and it results that Z,, = (0,00) for 7y > 0, and Z,, = (—o0,0) for #y < 0.

We put the DAE (3.104) into the general form (3.1) by

L 1 12 +o L 2
F,x,1) = L‘J y— [ B(1) } , dx,t):=x1+x, xeR° yeR teR.
Assumption 3.16 is valid with Dy = R?, Z; = R, and ker f, = 0. The DAE has a
properly stated leading term. The obvious constraint

Mo(t) = {xeR?: (a+1*)x; = B(1)}

is well-defined and nonempty for all + € R with >+« # 0. For 7 € R with
a+72=0 and B(7) = 0 it follows that My(7) = R?. To each fixed 7 € R,
X0 € Mo(tp), with toz + o # 0, there is exactly one solution x, (given on its indi-
vidual interval Z,) passing through it. That is, the DAE (3.104) behaves as a regular
index-1 DAE. Derive
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1 _ o
A__m} D=][11], D _L} R=1,
(10 00 0 0
QO__—lJ’ %_J%_{lJ’ B_{ﬁ+@0}
IR B 1 1 PR
G() = _x1 .X']:| s G] = |:.X'] +x} +x§ )C]:| N detG] = —(xl +X2).

Inspecting the matrix function G; and their determinant we see that Definition 3.28
does not apply here, since G| becomes singular for x% = —x%. Therefore we are
led to extend the regularity notion for suitable sets concerning the jet variables,
too. It makes sense to say that the DAE (3.104) is regular with tractability index
1 on the two open sets g[_” = D(_l) x Dy x Iy and QE] = Dg_l) x Dy x Iy, with
D= {x! e R?:x! 42} > 0}, DV := {x! € R2: x! +-x} < O}.

Points belonging to the border set {(x!,x,7) € R? x Dy x Ty : x} +x} = 0} are con-
sidered to be critical ones. These points correspond to zeros of the expression ¢ + &
in the solutions, that is, they are in fact critical.

If one linearizes the DAE (3.104) along a smooth reference function with values
only in QE] or only in QE], then the resulting linear DAE (3.11) is regular with
tractability index 1. In contrast, if one linearizes along a reference function x, with
X () +x ,5(t) =0, t €L, that is, along a function with values on the border be-

tween the sets g[_” and QE], then the resulting linear DAE (3.11) fails to be regular
onZ,. O

Example 3.60 ([125], rank G3 depends on x and xl). Setn=2,k=m=3,n€Ris
a parameter, Dy = R3, 7y =R, g € C'(R,R?), g3 € C*(R,R). The DAE

10 , xi (1) —t
L (Jos5]0) + | mom@em-1 | -0
——

1 0 (3.105)
00 XQ(I)(I—%XQ(I))-‘,-)Q(Z‘)

D
A

has a properly stated leading term and satisfies Assumption 3.16. The obvious con-
straint is

1
Mo(t) = {x eR3 :x2(1 - Exz) +x3= q3(t)}.
The DAE has the only solutions

X1 (1) = —xn(t) + 1 +q1 (1),

xor(t) = 14+q2(1) — ¢5(1)
2 t+n+qi(t)

xi3(t) = —x*z(t)(l — %x*g(z‘)) +q3(t), tel,,
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given on intervals Z, such that t + 1 +¢q;(t) # 0, t € Z,. The solutions satisfy the
relations

X (O +N+Xo () =t+n+q1(1), x2(0)(+n+q1(t))=1+q2(t) —g5(t), t€L..

We construct an admissible matrix function sequence starting with

(010 100 1 0 O
Go=1|011|, Qp=1000|, Byp= |xxx1+mn0]|,
1000 000 01-x1
[00 000 110
D™ = 107 P()ZH(): 0107 G]Z )C211
101 001 000
Choose further
0 a B
0:=|0 -« -B , o= (l=-x)B—1,
0 (1—)62)05 (1—)(2)[3

B € C'(R? x R, R) an arbitrary function, such that Qg, Q; are admissible projectors.
It holds that Q;Qp = 0, and

1+ o B

DILD™=1_ _ o 1—(1-x)B|"

It follows that (cf. [125])

1 1—ofx} —B2x}
Gy=|x1l—ax+n —HCé) - aﬁxzxé 1—B(x1+n —I—xé) —ﬁzxzxé
0 0 0
000
Since, with W, := |0 0 0], it holds that W, ByQ; = 0, we conclude that imG, =
001

imGj, and hence W, = W),
Sy =kerWiBy = {z € R®: (1 —x2)z5 + 23 = 0}.
Consider z € S, N N,, that is

(1-x2)z2+2z3 =0,
a1+ (1— aﬁxi)zz — ﬁ2x§z3 =0,
xut+(1—-—alx+n +x§) - aﬁxzxi)@ +(1=B(x1+n +x§) - Bzxzx%)a =0,

or, equivalently, the system
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23 =—(1—x)z,
71+ (1 +Bx£)zz =
%021+ (14 (xp + 1 4x0) — (1 —x2) + Broxd)zo =

)

)

that is

3 =—(1-x)z,
21 = —(14Bx))z,
(x1 + 1 +x))z =0.

Because of Ny + N C S5, the relation S, NN, = {0} implies (Np +N;) NN, = {0}.
At the same time, without computing a particular projector O, we know the matrix
function G3 (cf. Lemma A.9) remains nonsingular, supposing x; + 1 +x£ #0. In
consequence, the DAE (3.105) is regular with tractability index 3 on the open sets

G = {(@x'x,1) ERPxR¥x R xR :x; + 1 +xb >0}

and
QLZ] ={(®x'x1) eR*xR3 xR xR :x; + 1 +x} <0}

If one takes a smooth reference function x, with values in just one of these sets,
then the linearized DAE (3.11) is regular with index 3. In contrast, for a reference
function x. that satisfies x, 1 (t) + 1 +x ,(¢) =0, 1 € Z,, the resulting linear DAE
(3.11) fails to be regular. All corresponding matrix functions G,; are singular.
Furthermore, letting

q1(t) = —1%, @2(1) =0, q3(1) =0, fort € Z, =[0,2), andn =2,
the function x, given by
X (1) = =X (0)+1 -1,

1
W=

1
x3(t) = —x0(t) + Ex*z(t)z, t €T,

is a solution of the original DAE and has values (x//(¢),x,(¢),x.(),) € QE]. How-
ever, if ¢ approaches 2, x.(¢) grows unboundedly, which indicates the singularity at

the border between QE] and 7. 0

We call those open connected sets g[_” and QE] regularity regions, too. In the previ-
ous two examples, linearizations along reference functions with values belonging to
the border of such a maximal regularity region fail to be a regular DAE. In different
cases it may also happen that regularity is maintained, but the index changes. We
refer to Example 3.34 which shows three regularity regions; on one border the lin-
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earized DAEs are regular (with changed index), while they fail to be regular on the
other border. As before, to allow for small perturbations without losing regularity
we tie regularity to open sets of the corresponding spaces. The following two defi-
nitions generalize the Definition 3.21 of admissible matrix function sequences and
the Definition 3.28 of regular DAEs.

By construction (cf. Section 3.2), for i > 1, the matrix function G; depends on the
variables x,7 and x', ..., x%, and so does the nullspace projector function Q;. On the
next level, the additional variable x'*! comes in, and Gi+1 depends on the variables
x,t,x!',...,x1, and so on. Of course, it may happen in more special cases, e.g.,
the last examples, that these matrix functions do not actually vary with all these
variables.

For an easier description, if we deal with the level k, we now suppose that all matrix
functions of the lower levels depend on all jet variables up to x*. The lower level
matrix functions are constant functions with respect to the jet variables coming in
later.

We first extend the previous Definition 3.21 of admissible projector functions.

Definition 3.61. Let the DAE (3.1) satisfy the basic Assumption 3.16. Let kK € N
be the given level and let the sets G C Dy x Zr and gkl ¢ rmx « Dy x Ly be open
connected.

Let the projector function Qg onto ker D be continuous on G Kl py=1—Qp, and D~
be determined there by (3.18).

We call the sequence Gy, ..., G an admissible matrix function sequence associated
with the DAE on the set Q[K] , if it is built by the rule

Set Gy := AD, By := B, Ny := ker Gy.
Fori>1:
Gi:=Gi_1 +Bi_10i-1,
B;:=B;_P,_i —G;D~ (DII,D”)'DII;_,
Nii=kerG;, N;:=(No+---+Ni-1)NN,
fix a complement X; such that Ny +---+ N, = ]V,- e X,

choose a projector Q; such that imQ; = N; and X; C ker Q;,
set P:=1—Q;, IT; :==IT,_ P,

and, additionally,

(a) the matrix function G; has constant rank r; on G ["], i=0,...,K,

(b) the intersection N; has constant dimension u; := dim N; there,
(c) the product function IT; is continuous and DIL;D~ is continuously differen-
tiable on GI¥, i =0,... k.

The projector functions Qy,...,Q in an admissible matrix function sequence are
said to be admissible themselves.



278 3 Nonlinear DAEs

The numbers ry :=rankGy,...,r, :=rankGx and up,...,u, are named charac-
teristic values of the DAE on G¥.
The matrix functions Gy, ..., Gy are said to be admissible on G, if they are admissi-

ble on Gkl = R » G.

Having this more general notion of admissible matrix function sequences, which
maintains the algebraic properties figured out in Section 3.2, we are ready to extend
also the regularity notion correspondingly.

Definition 3.62. Let the DAE (3.1) satisfy Assumption 3.16, k = m, and let the sets
glul CR™ xDyxZyand G C Dr x Ly be open connected.

(1) If ro = m, then equation (3.1) is said to be regular with index 0.

(2) The DAE is said to be regular with tractability index u € N on G [“], if there
is a matrix function sequence admissible on GI*l such that ry_j < r, = m.
Then G| is named a regularity region of the DAE, with characteristic values
ro <--- <ry 1| <ry=mand tractability index .

(3)  Ajet (x*,...,x x,1) € R x Dy x Ly is named a regular index | jet, if
there is a neighborhood in R”™* x R™ x R which is a regularity region with
tractability index U.

(4) If the DAE is regular with tractability index y on GI*/ = R”* x G, then we
say simply the DAE is regular on G, and G is called a regularity region.

(5) The point (x,7) € Dy x Iy is called a regular point, if it has a neighborhood
N(rs) € Dy x Ly such that R™ x N,y is a regularity region.

Definition 3.62 is consistent with the previous Definition 3.28. Examples 3.59 and
3.60 provide actual regularity regions with index 1 and index 3, respectively.
By construction, if a nonlinear DAE (3.1) is regular with tractability index u on
g[ﬂ] , then all linearizations along smooth reference functions x, with values in G (] s
ie.,

o (0),. X (),x(t),0) G e,

are regular with uniform tractability index tt, and uniform characteristics 0 < ry <
«++ < ry—1 < ry = m. The linearizations may behave differently, if the reference
function crosses critical points. A systematic study of possible coherences needs
future research.

Next we reconsider the local solvability assertion in Subsection 3.7.1 and adapt
Theorem 3.53 to the advanced localization.

Theorem 3.63. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set Gl c r™ x Dy x Ly. Let d have the additional
continuous partial derivatives dyy, dy.

Then, for each (3',%,7) € GlY, % € My(f), there exists exactly one solution
X« € C(Z,R™) such that x,(f) = &.

Proof. In contrast to Theorem 3.53, now a value s already given, and D(X, f))?l =
v —di(%,7).
The matrix functions have the following special property:
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For each arbitrary X' € R with D(%,7)x! = D(x,7)x!, it follows that Gl (¥, x%,7) =
G (x',%,7). This allows us to select the ! in such a way that Qq(%,7)x' = 0. Then
we apply the former proof starting with (X', %,7) instead of (&', %,7).

O

We emphasize that here the solutions are not necessarily continuously differentiable.
Moreover, even if they are, the relation x, (f) = ! cannot be expected to be valid, as
the following example shows.

Example 3.64 (Inconsistency of #'). Set k = m = 3,n = 2, and turn to the special
DAE of the form (3.1) given by

y1i—
fox)=1 ym—x—-t |, d(x7t)=m, yER* xeR teR.
X3y2 —X1x3 +x2 2

This DAE has a properly stated leading term and satisfies Assumption 3.16. In more
detail, it reads

X (t) —x3(t) =0,
x5 (t) —xi(t) =1 =0, (3.106)
x3 ()5 (1) —x1 (1)x3(1) +x2(1) = 0,

and in compact formulation,

1 0 Of [x(r)—x3() 0
0 1 0] [X5@)—xi(t)|—|t]|=0
OX3(Z‘) 1 )C2(t) 0

The last version suggests that this would be a regular index-3 DAE. However, this
is wrong. Actually the DAE (3.106) is regular with tractability index 1 on the two
open sets

U= x ) eRm b x50y, G ={(x! x, ) eR™7 i) —x) <0},

To show this we provide the matrix function sequence

100 00 -1 000 10 -1
Go=1010(,Bp=|—-10 O ,Qo=1000[,G;=(01 O
0x30 —X3 lxé—xl 001 0 x3 xé—xl

The matrix Gy (x!,x,t) is nonsingular, exactly if x} # x;, which proves regularity

with index 1 on the open sets gﬂ” and QE].
The obvious constraint set of the DAE (3.100) is given as

Mo(t) = {x e R® : x3(x; +1) —x1x3 +x2 =0} = {x € R* : xp +1x3 = 0}.

For each fixed 7 € R, & € My(7) such that 7 # 0, there is a unique solution passing
through it. In fact, the first two components of this solution are given by means of
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the explicit IVP

[xig;] - {(t) _01] [Xl(t)] + m o () =31, x(7) = x, (3.107)

X t x2(t)

while the third component is x3(f) = —1x,(t).

This is exactly what we expect for a regular index-1 DAE. The condition 7 # 0 en-
sures that this solution proceeds in Q[_l] or QE]. If > 0, the condition f (D)E1 ,%5,1)=0
defines the first two components of ! uniquely, and )Eé — X1 =1 > 0 holds true. We
get (¥, %,7) € QE], for all ¥} € R.

Each linearization (3.11) along a smooth reference function with values in just
one of the regularity regions is regular with tractability index 1, however, lineariza-
tion along a function lying on the border of these regions yields a regular DAE with
tractability index 3. Namely, let x, denote an arbitrary smooth reference function
with values on the border set, i.e., ¥',(t) —x,1(t) = 0, t € Z... The DAE (3.11) lin-
earized along this function has the coefficients

10 0 0-1
A, =10 11, D:B?S}, B,=|-100
Ox*3 —x*31 0

The following matrix function sequence for this DAE shows singular matrix func-
tions G, G,1, and G5, but ends up with a nonsingular G, 3:

(100 (000 10 —1 100
Go=101 0], Q.0=1000|, G4=1|01 0|, Q,=1(000],
0x,30 1001 10x3 0 100
1 01 [0 —-10 (1 0 1
Go=|-1 10|,0.,=1(010|,Gs=|—1 1 0], detGy=—1,
|—x,3%30 10-10 |—x,31+x30

which proves in fact that the linearized DAE is regular with tractability index 3. For
instance, the special reference functions

a
x(t) = at+b |,
1

with certain parameters a,b € R, have values x,(t) € My(t), but, because of
x5 (t) —x.1(t) =0, they are located on the border between the regularity regions.

Nowweputi=1,5=1,H=1,G5=-1,8=-1,8 =23 =17
The condition ¥ € M(f) is fulfilled, since %, + %3 = 0. Further, (&', %,7) belongs
to QE]. Taking a look at the corresponding solution of the explicit IVP (3.107), one
recognizes that x/ | (1) = &}, x|, 5 (1) = %}. The third solution component is
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1 1 1
xu3lt) = = x2(0), thus (1) = +3w2(0) — 4 0(0)

Finally it follows that x| 5(1) = —1 # &3, which proves the inconsistency of ;.

Notice further that we could choose an arbitrary x/, 5(1) # )Eé, and we would come
to the same conclusion. a

Why does it happen that Theorem 3.63 works, though &' may fail to be consistent?
In general, the matrix function sequence is determined from the coefficients

A(x1 X,t) —fy(D(x,z‘))c1 +d(x,1),x,t)
B( 1 ) _fx(D( 7t)x1+dt(x7t)7x’t)
D( x,1) i= dx(x,1),

and x! is involved exclusively via the term D(x,¢)x!. Therefore, it follows that
Gi(x',x,1) =G (x' 4 z,x,) forall zekerD(x,1),
and (¥!,%,7) € Gl implies (' 4 z,%,7) € Gl for all z € kerD(x,t). This explains

why the consistency of x! and x.(7) cannot be expected even if the solution is
smooth.

3.9 Operator settings

In the present section we restrict our interest to IVPs in DAEs comprising an equal
number of equations and unknowns, k = m. The DAE is now specified as

FU(D@)x(t)) ,x(1),t) = 0. (3.108)

It is assumed to satisfy Assumption 3.16. In particular, the derivative is properly
involved and D is continuously differentiable.

Let Z C Zy be a compact interval. Let D denote an open set in the function space
Ch(Z,R™) such that x € Df implies x(t) € Dy,t € T. Define the operator F acting
on Ch(Z,R™) by

(Fx)(t) :== f(D(t)x(t)) ,x(t),t), t€ZL, x€Dp, (3.109)
so that the range im F' resides in the continuous function space,
F:Dp CCH(Z,R™) — C(Z,R™).
Since D is continuously differentiable, the inclusion

CY(Z,R™) C CH(T,R™)
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is valid for each v € N . Equipped with the natural norm
xlley = Ilxlloo + [1(Dx)'|so ,  x € CH(Z,R™),

the linear function space C},(Z,R™) becomes a Banach space and the DAE (3.108)
is represented as the operator equation

Fx=0 (3.110)

in a Banach space setting. At this point it is worth emphasizing that the opera-
tor equation (3.110) reflects the classical view on DAEs: the solutions belong to
Ch(Z,R™) and satisfy the DAE pointwise for all ¢ € Z.

For each arbitrary x,, € Df we continue to denote

Ax(t) = f((D(0)x« (1)), 2 (0),1), - Bu(t) 1= £o((D()x.(1)) 2 (1) 1), t €L

Next, for arbitrarily fixed x. € Dr and any x € C},(Z,R™) the directional derivative

1
Fo(x,)x = lim = (F (x, + tx) — F(x,)) = A« (Dx)' + B.x
=0T
is well defined. In fact, the resulting map Fy(x.) : C}(Z,R™) — C(Z,R™) is linear
and bounded. Moreover, F,(X) varies continuously with respect to X. This means
that the linear bounded map

Fi(x.)x = A (Dx) +B.x, x€CL(Z,R™),

is the Fréchet derivative of F at x,. The linear operator equation Fy(x,)x = ¢ stands
now for the linearization of the original DAE, that is, for the linear DAE

A.(Dx) +B.x=gq. 3.111)

While in the context of differential equations, one usually speaks about linearization
along the function x,, in the context of operator equations one rather applies the
wording linearization at x..

The linearizations (3.111) inherit from the nonlinear DAE (3.108) the properly
stated leading term. The function space C},(Z,R™) accommodates also the solutions
of the linearized DAE.

Based on Theorem 3.33, we state that the DAE operator F is regular with charac-
teristics ro < -+ < ry—1 < ry = m, exactly if all linearizations F;(x,)x = ¢, with
x. € DrNC™(Z,R™) are so.

We complete the DAE (3.108) by the initial condition

Cx(1o) = 20, (3.112)

with fixed #o € Z and a matrix C € L(R™,R¢) to be specified later. The composed
operator associated with the IVP (3.108), (3.112),
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F:Dp CCL(Z,R™) = C(Z,R™) xRY, Fx:=(Fx,Cx(ty) —z), x€ Dr,

is as smooth as F. The equation Fx = 0 represents the IVP (3.108), (3.112), whereas
the equation Fx = (g, 8) is the operator setting of the perturbed IVP

F(D@)x()) ,x(t),t) =q(t), teZ, Cx(to)—2z20=20. (3.113)

3.9.1 Linear case

The linear case, if f(y,x,t) = A(t)y + B(t)x, is of particular interest, and we intro-
duce the extra symbol L for the linear mapping given by

Lx:=A(Dx) +Bx, x&C)(Z,R™). (3.114)
The linear operator equation Lx = g now stands for the linear DAE
A(t)(D(t)x(t)) +B(t)x(t) = q(t), teT. (3.115)

The linear operator L which maps C},(Z,R™) into C(Z,R™) is bounded, since the
inequality

[1Lxlleo < [|Alel (D) lleo + [1Blolxlleo < max{[|A]les , |Blos} ]l o3

holds true for all x € C}(Z,R™).
We complete the DAE (3.115) with the initial condition (3.112) and compose the
map

L:CHT,R™) = C(Z,R™)xR?, Lx:=(Lx, Cx(ty)), x€Ch(Z,R™),
so that the operator equation Lx = (g,zo) represents the IVP (3.115), (3.112). The

operator L is bounded simultaneously with L.

For operators acting in Banach spaces, the closure or nonclosure of the range is
a very important feature. To apply, e.g., Fredholm theory and generalized inverses
one needs to have closed range operators. Therefore, to know the precise range of
the linear DAE operator L would be helpful. We take a look at a simple special case
and figure out the range.

Example 3.65 (Nonclosed range). The operator L given by

o1 /[00] L [
“_{00]([01])‘) H_[ xz }
—— N —

A D
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x € CH(T,R?) = {x € C(Z,R?) : x, € C'(Z,R)} has the range imL = C(Z,R) x
C'(Z,R), which is a nonclosed subset in C(Z,R?). Note that the equation Lx = ¢
represents a regular index-2 DAE.

The basic assumption on the DAE coefficients to be just continuous is mild. If neces-
sary, certain additional smoothness of the coefficients is required to obtain regularity
and solvability results. One needs the technical machinery of Chapter 2 to describe
the requirements in detail. In this section, we do not give a rigorous description of
the smoothness demands concerning the coefficients of the DAE, but instead we use
the vague formulation sufficiently smooth. However we are precise in view of the
right-hand sides. The following theorem is a consequence of Proposition 2.58 and
Theorem 2.59.

Theorem 3.66. Let the DAE (3.115) be regular with tractability index L € N and
characteristic values 0 < rg < --- < ry | <ry = m on the compact interval 1L,
d:=m-— Z’}l:l (m—rj_1), and let the data of the DAE be sufficiently smooth.

Let the matrix C which forms the initial condition (3.112) satisfy
kerC = kerIl,_i(ty). Then the following assertions are true:

(1) The map L has a d-dimensional nullspace, and the map L is injective.

(2) If =1, then L is surjective and L is a bijection.

(3) If u > 2, then the ranges imL and im L are nonclosed proper subsets in
C(Z,R™), respectively C(Z,R™) x R,

(4)  The inverse map L™ is bounded for u = 1, but unbounded for u > 1.

(5) Forevery zo € R? and g € C*~1(Z,R™), the IVP (3.115), (3.112) is uniquely
solvable, and there is a constant K such that the inequality

u—1

Ielley, < K(leol + lgll+ ¥ g1
j=1

is valid for all these solutions.

Remember that, for a linear operator £ : X — Y acting in the Banach spaces X,Y,
the equation £x = y is said to be a well-posed problem in the sense of Hadamard, if
£ is bijective and there is a continuous inverse £!. Otherwise this linear equation
is called an ill-posed problem. If the range of the operator £ is a nonclosed subset
in Y, then the linear equation is said to be essentially ill-posed in Tikhonov’s sense.

Owing to Theorem 3.66, the IVP (3.115), (3.112) is a well-posed problem solely
for u < 1, but otherwise this IVP is ill-posed. The typical solution behavior of ill-
posed problems can be observed in higher index DAEs: small perturbations of the
right-hand side yield large changes of the solution. Already the simple constant
coefficient DAE in Example 1.5 gives an impression of this ill-posedness. We take
a further look to this DAE.

Example 3.67 (A simple index-4 DAE). The operator L associated to the DAE
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!

10000 10000 —a—1000
00100|[]00000 0 1000
00010 ]00100|x(t)| +] 0 0 100|x(t)=q(t),
00001 00010 0 0010
00000| \|00001 0 0001

is given on the function space
CH(T,R%) = {x € C(Z,R%) : x1,x3,x4,x5 € C'(Z,R)}
and its image is
imL={q€C(Z,R%):qs € C(ZR),qs — g5 € C'(Z,R),
93— (g4 —q5)' €C(T,R)} = C"'H(Z,R).

Namely, it is easily checked that for each x € CL(Z,R®) it follows that
Lx € C"?4(T,R™). Conversely, g € C"?4(Z,R™) appears to be an admissible ex-
citation such that the equation Lx = ¢ is solvable.

Obviously the inclusion

C3(Z,R%) c C™*(Z,R%) c C(Z,RY)
is valid. Introducing the norm

glling 4 = lllloe +11g5lee + 1| (g4 — g5) [l + | (g3 — (g4 — 45)")' [l
on the linear function space C"?*(Z,R) we obtain a further Banach space. More-
over, owing to the inequality
1Zxllina 4 = [1Lxlloo + 5 loo + 165 1o+ 165 10 < Kl cy, - x € CH(Z,R?),
the operator L is bounded and surjective in the new setting
L:CH(Z,R%) — CMY(T,R),
which implies that the respective operator corresponding to the IVP,
L =C5(T,R%) — CM*(Z,R%) ximC,

is bounded and bijective. In turn, in this setting, the inverse £~ is continuous,
and hence the IVP is well-posed. However, we keep in mind the actual enormous
error amplification shown by the figures of Example 1.5, a fact that is completely
independent of the mathematical setting.

O

Confronted with the nonclosed range of the operator L in the original setting, we
are led to consider the map L in the new advanced setting, namely in the spaces
CH(Z,R™) and C™4H(Z,R™), where C"¥ H(Z,R™) is defined to be the linear space
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im L equipped with a natural stronger norm ||. ||;,q . such that one creates a Banach
space. L is surjective in this advanced setting. Provided the inequality

ILlind < Kelixlley,  x € Cp(Z,R™), (3.116)

is valid with a constant K, the operator L and the accompanying IVP operator £
are bounded in the advanced setting. Then, as a bounded map acting bijectively on
Banach spaces, £ has a bounded inverse.

In Example 3.65, it holds that ||Lx||;,s2 = ||x|| c1» and hence the operator L is con-
tinuous in the advanced setting.

In Example 1.5 the inequality (3.116) is also given, but in the general case, the
procedure to provide a suitable stronger norm as well as to check whether L becomes
bounded is somewhat cumbersome. The advanced setting, both the function space
and its norm, depends strongly on the special DAE. Nevertheless it seems to work.
However, we do not advance far in this direction and restrict our further interest to
the index-2 case. We think that although there is a couple of interesting perturbation
results, this road has rather a dead end.

Proposition 3.68. Let the DAE (3.115) be fine with tractability index 2, and let
Qo, Q1 denote completely decoupling projector functions. Then, the operator L has
the range

imL = {g € C(Z,R™) : DIL)Q1G, 'q € C'(Z,R™)}.

The linear space im L equipped with the norm

Iqllina2 = llq]le+ |(DIIQ1G5 ' q)/ ||, g € imL,

yields the Banach space C™?2(I,R™), and L : C)(Z,R™) — C™2(Z,R™) is
bounded.

. . l
Proof. The inclusion CDHoQ|G;'

ments in Section 2.6. We verify the reverse implication. Consider an arbitrary
x € C)(Z,R™) and the resulting continuous ¢ := Lx = A(Dx)’ + Bx. Compute

(Z,R™) C imL follows from the solvability state-

DIL01G, 'q = DIhQ,G; ' Bx = DII)Q,G, ' B1 Q1x = DII)Q1x = DITyQ;1 D™ Dx

which shows DITH01G;, !4 to be continuously differentiable together with Dx and
DIIyQ, D™, and hence the assertion concerning imL is valid.
By standard arguments, one proves the function space C?¢2(Z,R™) to be complete.
Furthermore, because of
(P10, G, ' L)' ||, = || (DTToQ: D~ Dx)'|| .
< max{[|(DITQ1 D" )'D||es, [|DTToQ1 D [|os [l

the operator L is bounded in the new setting. O
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3.9.2 Nonlinear case

We turn back to the nonlinear DAE (3.108) and the accompanying nonlinear map
F (3.109) acting from the space Ch(Z,R™) into the continuous function space
C(Z,R™).

Denote now by x, € C)(Z,R™) a solution of the DAE (3.108), and put
20 := Cx4(1p) so that Fx, = 0, Fx, = 0. Is then the perturbed IVP (3.113), respec-
tively the operator equation Fx, = (g, 0) solvable, and how does the solution depend
on the perturbations? Does the implicit function theorem answer these questions?
We have a continuously differentiable map JF, and Fx, = 0 is satisfied. If the deriva-
tive Fy(x,) were a homeomorphism, then we would obtain the good answers by
means of the Banach fixed point theorem. From Theorem 3.66 it is known that
Fy(x4) is bijective provided the index is 1 and the initial condition is such that
d = m— ry, kerC = kerIT(to). Regarding the relation kerITy(ty) = kerD(zp) the
following theorem results immediately.

Theorem 3.69. Let the DAE (3.108) satisfy Assumption 3.16. Let x, be a solution
of the DAE (3.108), zo := Cx.(to), and let the linearization (3.111) at x, be regular
with tractability index 1.
Let the matrix C satisfy kerC = ker D(ty), imC = R¢, d = rank D(ty).
Then, for every sufficiently small perturbation (q,8) € C(Z,R™) x RY, the perturbed
IVP (3.113) possesses exactly one solution x(q,0) in the neighborhood of x., and
the inequality

Ix(q:8) .y, < K181+ 1)) G.117)

is valid for all these solutions, whereby K\ is a constant.
x(q,8) is defined on a neighborhood of the origin in C(Z,R™) x R? such that
x(0,0) = x.. Furthermore, x(q,0) is continuously differentiable with respect to

(4,9).

In particular, in the index-1 case, the function value (x(0,6))(r) =: x(¢;0) depends
continuously differentiably on the initial data & for r € Z. The IVP

F(D@)x()) ,x(t),t) =0, te€Z, C(x(ty)—x«(to)) =30,

is uniquely solvable for all sufficiently small § € R?, the solution x(¢;§) is con-
tinuously differentiable with respect to 8, and the sensitivity matrix X (#;8) :=
x5(t;8) € L(RY,R™) satisfies the variational system

5 ((D(O)x(1;8)) ,x(t;8),1) (D(1)X (1;6))'
+£:((D(1)x(t;8)) , x(1:6),1)X (1:6) =0, 1€,
CX(10:8) =1I,.

The columns of the matrix function X (.; 8) belong to the function space C},(Z,R™).
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Similarly, IVPs and BVPs in regular index-1 DAEs, whose data depend smoothly
on additional parameters, have solutions that are continuously differentiable with
respect to these parameters, and the sensitivity matrix satisfies the corresponding
variational system.

Evidently, with these properties, regular index-1 DAEs are very close to regular
ODE:s.

Higher index DAEs are essentially different. Let x, again denote a solution of the
nonlinear DAE (3.108). Let the linearized equation (3.111) be regular with tractabil-
ity index g > 1, and let the matrix C in the initial condition be such that unique
solvability of the linear IVP F(x.)x = (g, 0) is ensured for every g from im F;(x)
(cf. Theorem 3.66). Then the linear mapping

Fulxs) : CH(Z,R™) = C(Z,R™) x RY
is injective but has an unbounded inverse. In the advanced setting
Felxe) : CH(T,R™) — CMHM(T,R™) x RY,

a bounded inverse exists, where Ci"d " (Z,R™) denotes the function space that arises
from imF(x,) by introducing a suitable norm to reach a Banach space. If the
nonlinear operator F also maps into this space, i.e.,

Fxe MU R™), xeDp, (3.118)

and if the Fréchet differentiability is not lost in the new setting, then the implicit
function theorem yields a perturbation result analogous to Theorem 3.69, but now
instead of the inequality (3.117) it follows that

1¥(q,8) =xulley < Ku(I8]+llgllina -

In particular, for g being 1 — 1 times continuously differentiable, and for sufficiently
smooth DAE coefficients, the inequality

p=t
(g, 8) —xile < |lx(g,8) —xilley < Ku(I8]+ gl Y llgV]l) ~ (3.119)
j=1
follows.
The above only seemingly solves the perturbation problem, since there are seri-
ous difficulties concerning condition (3.118). This condition can only be forced by
means of strong structural restrictions, for instance

Wio(0){f(y,x,2) — f(0,Py(t)x,t)} € imWio(t)Bi(1)Q0(t), y€R".x€Dst €,
(3.120)

where W,o(r) := I — A, (t)A; (¢) denotes a projector along imA.(z). At least Hes-

senberg form size-2 DAEs meet this condition.

If the DAE (3.111) linearized at x, is regular with tractability index 2, then the actual



3.9 Operator settings 289
Banach space is given by (cf. Proposition 3.68)

Cid2(T,R™) := {q € C(Z,R™) : DI,0Q.1G ., q € C'(Z,R™)},
Igll+ina2 := llgllee + | (PTL0Q1G 3 @) ||, g € CI?(Z,R™).

Proposition 3.70. Let the DAE (3.108) satisfy Assumption 3.16. Let x, be a solu-
tion of (3.108), zo := Cx.(ty), and let the linearization (3.111) at x. be fine with
tractability index 2 and characteristic values ro <ry <r,=m, d=ro— (m—ry).
Let Q.,0«1 be completely decoupling projector functions to the linearized DAE
(3.111).

Let the matrix C satisfy the conditions ker C = ker I, (tp), imC = R%.
Additionally, let all data be sufficiently smooth and let the function f satisfy the
structural condition (3.120) at least in a neighborhood of the extended graph of x.
Then, for all sufficiently small perturbation (q,8) € C"2(T,R™) x RY, the per-
turbed IVP (3.113) possesses exactly one solution x(q, 8) in the neighborhood of x.,
and the inequality

1%(9,8) = xcllcy < Ka(|8] + llgllina 2) (G121

is valid for all these solutions, where K, is a constant.
x(q,8) is defined on a neighborhood of the origin in C(Z,R™) x R such that
x(0,0) = x4. Furthermore, x(q,0) is continuously differentiably with respect to

(g, 96).

Proof. The assertion is proved in [163] for perturbed index-2 DAEs in modified
standard form f(P(¢)x(¢))" — P'(¢)x(t),x(t),1) = q(¢). The same arguments apply to
the DAE (3.108). O

One should pay attention to the fact that d and C in Proposition 3.70 differ from
those in Theorem 3.69.

In consequence of Proposition 3.70, similar to those of Theorem 3.69, the func-
tion value (x(0,0))(¢) =: x(¢;6) again depends continuously differentiable on the
initial data 6 for r € Z. The IVP

F(D)x(t)) ,x(t),t) =0, t€Z, C(x(ty)—x.(ty)) =26,

is uniquely solvable for all sufficiently small § € R?, the solution x(z; §) is continu-
ously differentiable with respect to 8, and the sensitivity matrix X (¢;6) :=x4(#;8) €
L(RY,R™) satisfies the variational system

HUDOx(t:8)) x(1:8).0) (D(1)X (1:6))
+A(D(0)x(1:8)) x(1:8),0)X (1:8) =0, 1€,
CX (10;8) = Iy.

The columns of the matrix function X (.; §) belong to the function space C},(Z,R™).
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Theorem 3.70 confirms once again the ambivalent character of higher index
DAEs, and the conflicting nature of their solutions: On the one hand they behave
as we would expect coming from regular ODE theory. On the other hand they be-
have as solutions of ill-posed problems.

As adumbrated in the previous sections of this chapter, we hope to reach new
transparent solvability assertions without somewhat artificial structural restrictions
as in Proposition 3.70 by applying the theory of regularity regions and linearizations.
We emphasize the uniform structural characteristics of all linearizations within a
regularity region. It is hoped to verify the following conjecture which would perti-
nently generalize Theorem 3.69.

Notice at this place only that the term I~L7mn in the conjecture below stands for the
canonical projector function associated with the linearization of the DAE at a close
smooth approximation ¥, of x,. If x, itself is smooth enough, we put &, = x,.

Conjecture 3.71. Let the DAE
FUD@)x(1))x(1),1) =0, 1€,

satisfy Assumption 3.16 and have the regularity region G with tractability index
u. Let the data be sufficiently smooth. Let x, € C}) (Z,R™) be a solution with val-
ues in G, Z be compact and 7z := Cx,(fp). Let the matrix C satisfy the condition
kerC = kerﬁ*_ymn(to), imC=R4, d= rankI:I*7can (t0).

Then, for every sufficiently small perturbation (¢, 8) € C*~1(Z,R™) x R?, the IVP

F((D@)x(t)) x(1).t) = q(t), €L, C(x(t)) =20+, (3.122)

possesses exactly one solution x(g,8) € C},(Z,R™) in the neighborhood of x,, and
the inequality

p=1
1x(4,8) —x:lley < Ku(18] + gl + Zl lg"]-») (3.123)
]:

is valid for all these solutions, where K, is a constant.

x(q,8) is defined on a neighborhood of the origin in C¥~(Z,R™) x R such that
x(0,0) = x,.. Furthermore, for fixed g, the function x(g, 6) is continuously differen-
tiable with respect to §.

3.10 A glance at the standard approach via the derivative array
and differentiation index

The derivative array approach aiming at a so-called completion ODE associated with
the standard form DAE
f(x'(2),x(t),1) =0 (3.124)
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works for smooth nonlinear systems in a similar way as for linear ones (cf. [44, 50]).
In this way, the rank of the partial Jacobian f. (x', x,7) is allowed to vary except for
the index-1 case (cf. Note (3) in Section 2.12).

To begin, one provides, for a certain index x € N, the prolongated system or
derivative array system

Ec(x® % xx ) =0, (3.125)

where the derivative array function

f('xl"x7t)
fo (b o, 1) 4+ o (b, x 1)t + 5 (x x,7)
Ee(x™ L xhxlx ) = ,
fo (b )Rt e f o (6 xt)
K
is defined for ¢ € Z;, x € Dj and xb, . x®tL e R™ It results from the given function

f by taking the total derivatives in jet variables up to order x and collecting all these
expressions row-wise into the array. Then it is asked whether the prolongated system
(3.125) determines on D; x Z; (or on an open subset) a continuous function S such
that

M =8(x1), (x,1) €Dy xT;

holds true. Then one solves the resulting explicit ODE

The basic tool for deciding whether a vector field description S can be extracted
from equation (3.125) consists in the fullness property (e.g. [25]). In particular, one
has explicitly to prepare at each level k the Jacobian

jK = [gK,xl EK.,WL wi= [x27 e ,.XK+1}

and to check whether it has constant rank and is smoothly 1-full. If there is no such
function S, one tries again on the next level k¥ + 1. This procedure needs highly
smooth data. The amount increases enormously with k and the dimension.

The commonly used index characterization of general standard form DAEs (3.124)
is the differentiation index, at the beginning called merely the index without an ep-
ithet, and sometimes named the differential index (e.g. [25], [44], [45], [105]). The
differentiation index supposes derivative array systems (3.125).

Definition 3.72. Let § be sufficiently smooth.

If . (x',x,t) remains nonsingular, equation (3.124) is called a DAE with differenti-
ation index 0, as well as a regular ODE.

Otherwise, if there is an index g € N such that the prolongated system
Eu(x* 1. x2 x! x,t) = 0 determines the variable x! as a continuous function S
in terms of x and 7 on (an open set in) Dj X Z;, and if y is the smallest such index,
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then U is named the differentiation index of the DAE (3.124). The resulting explicit
ODE
X (1) =S(x(1),1)

is called a completion ODE (e.g. [45]) as well as an underlying ODE (e.g. [105]).

Example 3.73 (Consistency with regularity regions). The equation & (x',x,t) =0
for the DAE in Example 3.34 reads

X} —x3=0,
x(1—x2) —y(t) =0,
xx0+x3(1—x)—1=0,

x% —xé =0,
x5 (1=x2) —xox) —y'(t) =0,
xix + x4+ xi(1—x0) —x3x) —1=0.
Looking for a function x! = S(x,1) one is led to the system
X} —x3 =0,
0(1=2x) = 7'(t) =0,
x (1 —x2) +xtwy + (x) —x3)xh — 1 =0,

which provides the required functions x! = S(x,) precisely on each of the regularity
regions

1
g = {(x,t) ER3XxR:x < 5}’
1
Gy = {(x,t) eR*xR: 5<% < 1},
Gy i={(x,)) eR*xR: 1< x,},

given in Example 3.34. It follows that the DAE has differentiation index 1 on the
(tractability-) index-1 regularity regions. a

For a large class of DAEs the constant-rank conditions supporting the tractability
index and regularity regions are exactly the same as needed to determine the dif-
ferentiation index and completion ODE. This indicates a certain consistency. We
highlight the essential differences later on in this section.

Index-1 DAE:s are those whose solutions fill up the obvious constraint
Mo(t) = {x € Dy : Ix" : §(x',x,1) =0}

as in the particular case of Example 3.7. In general, one has to expect further con-
straints that are not so obvious, but hidden in the DAE formulation as in Exam-
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ple 3.8. The general expectation is a sequence of constraint sets
Mo(t) DM(t) D DMy _1(t) = My(t), tel;,

becoming stationary at level it — 1, and just the set M, _; () is filled up by solutions.
This idea is incorporated, e.g., in the notion of geometrical solvability (cf. [44, 50])
of standard form DAEs (3.124) saying that there is a well-behaved manifold of so-
lutions and a given solution is uniquely determined by an appropriate initial condi-
tion. The DAE solutions are embedded into the flow of the completion ODE. More
precisely, the DAE solutions are those solutions of the completion ODE which are
located at the final constraint set M, _;(t), that is,

X (1) =8(x(1),1), x(r) € My_1(t). (3.126)

The framework of the completion ODE is taken to hold on open sets so that, with
wise foresight in view of a numerical treatment, perturbations by excitations can be
incorporated. The solution of the IVP

X (1) =8(x(r),1), x(to) =x0 € My_1(to),

proceeds in M, _;(t), however, in numerical computations it drifts away from this
constraint set. This phenomenon is caused by the stability behavior of the completed
flow in the neighborhood of the constraint set. It is well known that, in general,
completion ODEs are not uniquely determined by their original DAEs.

Example 3.74 (Different completion ODEs). Supposing the real functions «, 8 and
7 are sufficiently smooth, the autonomous Hessenberg size-2 DAE

x’z = X3, (3.127)

leads to the following two specific autonomous completion ODEs
= (a(x1) —x2) B (x1) + ¥(x1),
X3, (3.128)

= o (x1) (1) —x2) B ) + 7)) = o (x1) B x1)es + @' (1) (& (1) B (1)
+ (0t(x1) —x2) B (x1) + 7" (x1)) (0t (x1) B (x1) = x2B (x1) + ¥(x1)),

!
X1
X

!
X3

and
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1= (a(xr) =x2)B(x1) +y(x1),
xy =o' (x1) (e(xr) B(x1) —x2B(x1) +¥(x1)), (3.129)
b= o () (o) —x2)Bxn) + (1)) — o () B (er s + @ () (@ (1 )B (1)
+(a(x) —x2) B (x1) +7"(x1)) (@(x1)B (x1) = x2B (x1) + ¥(x1)).-

The constraint sets also being independent of ¢ are
Mo={xeR :xx=a(x)} DM ={xeR:x=a(x),xs = y(x1)}.

Assume y(c) = 0,7’ (c) # 0, for a certain fixed ¢ € R, and consider the stationary
solution x, of the DAE given by x, | = ¢, x.2 = ¢(c), x,3 = 0. Owing to Lya-
punov’s theorem the eigenstructure of the corresponding Jacobian matrix Sy(x,) is
responsible for the stability behavior of the reference solution x.. In the first case,
these eigenvalues are

l] = ’)//(C), )Lz = 0, )Lg = 0,

and the two zero eigenvalues belong to a second-order Jordan chain. In the second
case, the eigenvalues are

M =7'(c), =0, 4 = —a'(c)B(c).

This explains why numerical solutions often drift away from the constraint set they
should remain on. Even if y/(c¢) < 0, the stationary solution x, fails to be asymptot-
ically stable as a solution of the completion ODE.

Setting (&) = —&, B(E) =5 and y(&) = 1 — &2 then we obtain ¢ = 1. The resulting
stationary solution is x,, = (1,—1,0). The DAE (3.127) is now

xll =51 +x)+1 —x%,

with the obvious constraint set Mo = {x € R3:x14x = 0} and the set of consistent
values M = {x € R® : x; +x, =0, x3 :x%— 1}.
The completion ODEs (3.128) and (3.129) simplify to
Xp = —5(x1 +x2) + 1 —x7,
Xy = x3, (3.130)
x5 =5x3+ (54 2x1)(=5(x1 +x2) + 1 fx%),

respectively to

Xy = =5(x;+x2)+1—x3,
Xy =5(x1 +x2) — 1422, (3.131)
Xy =5x34 (54 2x1) (=5(x1 +x2) + 1 —x3).
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The solution x, is asymptotically stable as a solution of the DAE, that is, [IVPs with
slightly perturbed but consistent initial values have solutions on the entire interval
[0,0) tending to x.

Notice that solutions of the completion ODEs which start from points in M| behave
in exactly the same way. However, if the initial value of a solution of the completion
ODEs does not exactly belong to M, then the solution fails to approach x., but
drifts away.

Figure 3.9 shows the solution (solid line) of the DAE starting at + = 0 in
(1.1,—1.1,0.21) € M, which solves at the same time the completion ODEs, and
the solutions of the ODEs (3.130) (dashed line) and (3.131) (dot-dashed line) start-
ing from the initial value (1.1,—1.101,0.21) which is close to the previous one but
does not belong to M. While the solution of (3.131) (dot-dashed line) moves away
quickly the solution of (3.130) (dashed line) drifts slowly. a

X

X2

L10

1.00

[ ——— t
0.0 0.5 Lo 15

Fig. 3.9 Solution components xj,x,x3 related to Example 3.74

It is not at all a simple task to extract the description of the completion ODE and the
constraint manifold from equation (3.125). Even if the full information about the
completion ODE is available, i.e., the vector field S is given, and the constraint set
is described by an equation, say M, _(t) = {x € Dy : h(x,r) = 0}, and h,(x,7) has
full row rank, then in view of the numerical treatment, it is proposed ([87], cf. [25])
to change to the Hessenberg size-2 DAE

whereby the new variable A has the size rank /.
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There are various special approaches to DAEs, which are based in a similar
way on derivative array functions, such as reduction techniques (e.g., [95, 189])
and transformations into special forms (e.g., [130]). In any case one has to provide
derivative array functions with all their included derivatives. We refer to the mono-
graph [130] which is devoted to derivative array approaches for a further discussion.
To avoid the shortcomings of the completion ODE, e.g., in [130], one sets stronger
priority in regarding the constraints and tries to extract from equation (3.125) an
index-1 DAE of the special form

x| () = L(x1(2),t), xa(t) = R(x1(¢),1), (3.132)

whereby the given components of the unknown x are suitably partitioned into x; and
x3. It should be pointed out that the ODE in (3.132) is not the same as an IERODE.
To see the difference we turn to the simple constant coefficient DAE in Example 1.5
(cf. also Example 3.67).

Example 3.75 (Different resulting ODEs). For the regular index-4 DAE

10000 —a—1000
00100 0 1000
00010[X(t)+| 0 0 100]x(r)=q()
00001 0 0010
00000 0 0001

E F

the corresponding equation &4 (Jcs,)c“,)c3,)c2,)cl ,x,t) = 0 comprises 25 equations,
from which a completion ODE as well as an index-1 DAE (3.132) can be extracted,
namely

Xy =ox;+x+qi,

3 4
b=gh—gi+4q) -,
x5 = —x2+q2,
Xy = —x3+¢s,
x5 = —x4+4qa,
and
2 3
X =oxi+qi— g+ ds—aP +4f, (3.133)

2 3
xz:qz—CIHqg)—qg )»

2
X =q3—dh+4",
X4 =q4—qs,
X5 =gs.

In contrast, the projector based decoupling given in Example 3.67 leads to
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(x14+x3—axs+ 062)65)/: o(x) +x3—otxa + OCZX5) +q1+qg2—0qg3+ 0626]4 — 0636]5,
(3.134)
x=q—(q5—(q4—q5)"),
x3=q3— (94— qs)’,
X4 = qa— s,
X5 =(s.

The ODE (3.133) and the IERODE (3.134) have the same dimension. We recognize
that the IERODE 3.134 precisely reflects the smoothest part of the unknown x, being
independent of the derivatives of the excitation. This part is captured by means of
the projector Il which is the spectral projector associated with the matrix pencil
AE + F. In general, one cannot expect standard basis vectors like (1,0, ... ,O)T to
belong to the finite eigenspace of a given regular matrix pencil. a

We turn to another example to highlight further differences.

Example 3.76 (Campbell’s DAE). Consider the system of m = m3 + m + mo,
my > myp, equations

Ay (8),0)x) () + @ (x1 (1), 1) +x3(t)
1(1) =)

x5 (1) + W (xi (1),x2(2),x3(2), 1)

)

0
0,
0

=

)

where A, @, v, v are sufficiently smooth on the domain R” x R. The matrix function
A(xy,t) € L(R™ R™) is assumed to have different rank on different subdomains.
We assume in detail

A(x1,1) =0, ifx; € DEI], and rank A(x;,7) =my, ifx; € Dgz],

with open connected sets DEI] , Dgz] in R™1. This DAE can be easily solved. It serves
as a special case to emphasize the advantages of the derivative array approach
(e.g., [46]). To apply this approach we form the array functions

A, 0+ @ (1) +x3

X1 — }/(t)

X3+ y(x,1)
e
ELOT XX ) = A ey 003 4 Ay (e 1)xded + A, er 1))

+(Px1 (xlat)x% + (P[(X],t) +xf£
X —v'(0)
L3 -+ e (0, 1)x] Wy (4,1)3 4 Y (4, 1) + i ()

and
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A(x; ,t)x} +@(x1,1) +x3
x1— (1)
X5+ y(x,1)
A(xht)x% +‘AX1 (xl »t)x{x{ J'_‘At(xht)x%
+(Px1 (xlat)x} + (P[(Xl 7t) —i—Xé
X —v'(0)
23+ Yy (0,0)x] + iy (x,0)0) + W (0, 1)23 + i (v, 1)

&3, 2 xx 1) =

X —y"(1)
L x%Jrl//x,(x,t)x%+~~+l//,,(x,t)

First we check whether the equation
S xx1)=0

contains a relation x! = S(x,¢) with an at least continuous function S defined on an
open set in R™ x R. This happens in fact if A(xy,#) vanishes identically, for instance,

if x; € Dgl]. Therefore, the DAE has differentiation index 1 on the corresponding
region
Gy := Dgl] x R™ x R™ x R.

A look at the DAE system itself shows that then the solution does not depend on the
derivative of the function 7.

If A(x1,t) does not vanish identically, but if it disappears just on a lower-dimensional
subset 2 C R™ x R, then the prolongated system & (x%,x!,x,7) = 0 determines a
vector field Sq just on this subset €2, that is, S is no longer given on an open set
in R™ x R, and the definition of the completion ODE does not apply.

Therefore, if A(x,7) does not vanish identically, we must turn to the equation

52(x3,x2,x17x,t) =0
and ask again for a relation x! = S(x,¢). Now we actually attain such a relation
globally and independently of the behavior of A(x;,#). We obtain a completion
ODE x/(r) = S(x(r),t) and the DAE has differentiation index 2 on its definition
domain R"” x R.
On the other hand, since the rank of A varies, this DAE cannot be rewritten as a
DAE with a properly leading term. However writing the above system as

.A(Xl(l‘),l) 0 100 (P(Xl(t),l)+X3(l‘)
0 0 (|:O It 0:| x(t))/+ xl(t) —’)/(I) =0, (3.135)
0o I y(xi(1),%2(t),x3(),)

D
Axy (1))
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we arrive at a DAE with quasi-proper leading term (cf. Section 3.12 and Chapter 9).
Therefore it does not matter if the matrix .A(x,) changes its rank. Observe that the
leading term in (3.135) becomes even properly stated if the matrix function A has
full column rank, for instance, if x; € Dg].
We form a matrix function sequence from only the first partial derivatives of the

coefficients A, @, v, y starting with

A00 @+ (A 0 1
G()Z:AD: 000 s B()Z: 1 0 0
070 Vi Vi Vs

We first compute a projector Qg onto ker D, and then G := Go + By Qy, that is

000 A0 1
Qo= [000|, Gi=|00 0
001 01wy;

Next we ask whether G is nonsingular. This is not the case, but G| has constant
rank. We compute the continuous projector function Q; onto ker Gy,

I 00
01=|ysA00
-A 00

Next we set Py :=1— Qop, P| :=1— Q and compute

~ A+ 01
Gy :=G1+BoP Q1 = 1 00
Vi + VeV Al ys
The matrix function G, is everywhere nonsingular, which means that the DAE is
quasi-regular on the definition domain R” x R (cf. Chapter 9).

At the same time, on open sets where A(x;,7) has full column rank, a regular index-
2 DAE results. In particular,

Go:= DI x R™ x R™ x R

is a regularity region with index 2.
On open sets where A identically vanishes, by replacing D in (3.135) with

Doy = 8 (I) g a proper reformulation results and there is a regularity region with
index-1. For instance, G is such an index-1 regularity region. a

The notion of quasi-regularity (see Chapter 9) is somewhat close to the differential
index. It allows rank changes but it is weak in the sense that the restrictions of the
given DAE to subdomains do not inherit the global characteristics.
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3.11 Using structural peculiarities to ease models

A more comfortable version of a DAE with proper leading term is the equation
FUD(E)x(1))',x(1),1) = 0, (3.136)

in which the derivative term is linear. This special form arises in the general DAE
(3.1) for d(x,t) = D(t)x. It might be easier to handle than the fully nonlinear DAE.
In particular, there is a linear function space, C},(Z,R"), which accommodates the
solutions. Therefore, sometimes it is reasonable to turn from equation (3.1) to an
equivalent auxiliary enlarged system which possesses such a simpler structure. The
following proposition ensures the change.

Let the DAE (3.1) satisfy Assumption 3.16 and let ker f, (y,x,7) be independent of y
and x. Then a projector valued function R4 € C!(Zy,L(R")) is available such that

kerR4(r) =ker fy(y,x,1), y€R" x€ Dyt €Iy

For instance, the orthoprojector function along ker fy (y,x,7) can be chosen. Because
of the identity

1

f(yvxat)_f(RA(t)yaxvt) :/f)'(sy"i'(l _S)RA(t)y>xat)(I_RA(t))yds:0 (3.137)
0

we can rewrite the DAE (3.1) as

FRA()(d(x(1),0))",x(t),1) =0,

and hence as
FRAW(x(0),0)) Ry (1)d(x(1), 1), (1), 1) = 0. (3.138)

The latter equation suggests we turn to a slightly weaker solution notion.

Definition 3.77. Let the DAE (3.1) satisfy Assumption 3.16 and show the nullspace
ker f,(y,x,1) to be independent of y and x. Each function x, € C(Z,,R™) with values
in Dy and a continuously differentiable term Ra(.)d(x4(.),.), which satisfies the
DAE pointwise on the interval Z,, is said to be a solution of this DAE.

One can check immediately that this solution notion is invariant with respect to the
special choice of the projector function R4. Of course, if (I —Ry(.))d(x.(.),.) is also
continuously differentiable, then we attain a solution in the previous sense.

The enlarged system

f((RA(t)u(t))/ —Rg(t)d(x(t),t),x(t),t) =0, (3.139)
0, (3.140)

actually has the required form (3.136). We have
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FU(D()2(t)),4(t),1) =0, (3.141)

_ pl
£= {u], fn,1) = {f(y I;{(Zéi,)t)yx,t) , yeR"ueR" xeDy el

D(t) = [Ra(1) 0].

Since the original DAE (3.1) satisfies the Assumption 3.16 so does the enlarged
version (3.141). In particular, it holds that

kerfy =kerfy =kerR4 and imD = imRy,

so that ker ﬁ and im D are actually transversal C!-subspaces.
If even ker f, = {0}, then R4 = I and the enlarged system (3.141) simplifies to

x(1),t) =0,
0

Proposition 3.78. Let equation (3.1) satisfy Assumption 3.16 and ker f, be indepen-
dent of y and x.

(1)  Then the enlarged system (3.141) is a DAE of the form (3.136) and satisfies
Assumption 3.16, too.

(2) If x4 is a solution of the DAE (3.1) in the sense of Definition 3.77, then
Ko i= (U, i), s :=d(x4(.),.), is a solution of the enlarged DAE (3.141), and
vice versa.

(3) If fy has full column rank, then Ry = I, and the enlarged DAE comprises also
a full-column-rank partial derivative f} If x, is a solution of (3.1), then the
pair u, :=d(x(.),.), X« is a solution of the enlarged system, and vice versa.

Proof. (1) and the first part of (3) are evident and are shown before Proposition 3.78.
It remains to show (2) and the second part of (3).

If x, is a solution of (3.1) in the sense of Definition 3.77, u, := d(x.(.),.), then the
second row (3.140) of the enlarged DAE is satisfied. Furthermore, the component
Ry u, is continuously differentiable and

S((Ra()us (1)) = Ry (0)d (x.(1),0),x:(2) 1) = f(Ra (1)l (1), (1) 1
= f(u(1),x:(t),1) =0.

Conversely, if £, := (u,x,) is a solution of the enlarged DAE, then R4u, is contin-
uously differentiable and

)
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(1) —d(x: (1), 1),
((RA(I)M*(t)) Ry (t)d (x.(¢),1),x.(1) 1)
= f(RA(1)(d(x.(1),1)) = Ry (1)d (x4 (),1),x4(2), ).
This proves the assertion. a

The analysis simplifies if one has subspaces which do not at all depend on y and x. In
the standard applications—circuit simulation and mechanical motion simulation—
the partial Jacobian f; is a constant matrix such that ker f; is constant. We are not
aware of any applications resulting in subspaces ker f,, imd, that actually depend
on y and x. Of course, theoretically, such a dependence is imaginable.

If just one of the two relevant subspaces has the desired property, then the DAE can
be slightly modified to acquire the property for the other subspace, too. This fact is
worth considering in the modeling process at the very beginning.

More precisely, let DAE (3.1) satisfy Assumption 3.1, let imd, be a C'-subspace.
Assuming imdy(x,?) to be independent of x, we find a projector function Rp €
CY(Zs,L(R™)) such that imRp(t) = imd,(x,t), for all x € Dy,t € Zy. In particu-
lar, the orthoprojector onto imd,(x,#) can serve as Rp(z). Then, we turn from (3.1)
to the modified DAE

F((d(x(r),1)) ,x(t),1) = 0, (3.142)
where

f(yaxat) ::f(R (t)er(I ([)) (xv[)axvt)v
HOuxt) = fy(Rp(t)y+ (I —Rp(t))d(x,1),x,t)Rp(t), yER",x € Dyt € Iy.
In contrast, in the opposite case, if imd,(x,?) depends on x, but ker f;(y,x,7) is inde-

pendent of (y,x), supposing that ker f isa C I_subspace, we take a projector function
R4 € CY(Zs,L(R™)) such that ker Ry (t) = ker f;(y,x,t), and modify the DAE as

F((d(x(2),0))":x(2),1) = 0, (3.143)
with
d(x,t) :=Ra(t)d(x,1),
f(yvx t) f(R (t)y_R/AU)d(x?t)vxvt)»
H0ux,1) = fy(Ra(t)y — Ry (t)d(x,1), x,t)Ra(t), y€ER",x€ Dy t €Iy,

Proposition 3.79. Let the DAE (3.1) satisfy Assumption 3.16.

(1) If imdy(x,t) is independent of x, then the DAE (3.142) satisfies Assumption
3.16, too, and it holds that

ker fy(y,x,t) =kerRp(t), imd(x,t) =imRp(t).
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Moreover, the DAEs (3.1) and (3.142) are equivalent.
(2)  Let ker fy(y,x,t) be independent of y and x. Then the DAE (3.143), satisfies
Assumption 3.16, too, and it holds that

ker fy(v,x,1) = kerRa(t), imd,(x,t) =imR4(t).

The solutions of the DAE (3.1) are at the same time solutions of the modified
DAE (3.143), whereas the solutions of (3.143) are solutions of (3.1) in the
sense of Definition 3.77.

Proof. (1) For each arbitrary function x € C(Z,R™), with values in Dy, such that
d(x(.),.) € C'(Z,R"), Proposition C.1 provides the expression

(d(x(t),1))" = dx(x(t),)w(t) +di (x(2),1), t € T,

with a certain continuous function w. This yields

(I=Rp(1))(d(x(t),1))" = (I = Rp(1))di (x(t) 1),

and hence

FUd(x(@),0)) x(t).1) =f (Rp(1)(d(x(1).0))" + (I = Rp(t))d (x(t).1), x(t). )
=f((d(x(t),1)) x(t),1).

Consequently, each solution of (3.1) also solves (3.142), and vice versa.

Since the DAE (3.1) has a properly stated leading term, its transversality condi-
tion implies ker f,(y,x,t) NimRp(¢) = {0}, thus ker f,(y,x,t) = ker Rp(t), and hence
ker f,(y,x,1) @ imd,(x,t) = kerRp(t) ®imRp(t) = R".

(2) Choosing a projector function Ry € C'(Zy,L(R")), kerRa(t) C ker fy(y,x,1)
we apply relation (3.137). For each arbitrary x € C(Z,R™), with values in Dy,
d(x(.),.) € CY(Z,R"), we derive

F((@dx(t),0)) x(2),0) =f (Ra(r)(d (x(t

This shows that each solution of (3.1) also solves the modified DAE (3.143). If x, is
a solution of the modified DAE, then just Rad (x.(.),.) is continuously differentiable,
so that Definition 3.77 applies.

Since (3.1) has a properly stated leading term, it holds that ker R4 () Nimdy(x,1) =
{0}. This yields imd, (x,t) = imRA(¢)dx(x,t) = Ra(t)imdy(x,); further imd,(x,t) =
imR, (1), and ker £y (y,x,1) @ imd, (x,1) = ker Ra(t) @ imR4 (t) = R". O
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3.12 Regularity regions of DAEs with quasi-proper leading terms

It may well happen that a given DAE (3.1) satisfies the Assumption 3.1, and it
actually shows a regular behavior, but fails to have a properly involved derivative.
To capture this situation we relax the constant-rank condition for f, and apply local
reformulations.

Definition 3.80. Equation (3.1) which satisfies Assumption 3.1 is said to be a DAE
with quasi-proper leading term, if imd, is a C 1-subspace, kerd, is nontrivial, and
there exists a further C'-subspace N4, possibly depending on y,x,7, such that the
inclusion

Na(y,x,t) Ckerfy(y,x,1), y€eR" xeDy, t ey, (3.144)

and the transversality condition
Na(y,x,t) ®imdy(x,t) =R", xe€Dy, 1t €1y, (3.145)

are valid.

For what concerns the solution notion, we continue to apply Definition 3.2.

There is a simple idea to create a DAE with quasi-proper leading term: One
arranges things in such a way that d, is rectangular and has full row rank r =n <
m — 1. In this case, the trivial subspace Ny = {0} satisfies both conditions (3.144)
and (3.145).

Often the substitution of a singular square matrix Dj, into a standard form DAE

f(x/(t)vx(t)vt) =0,

such that ker Dj,. NimD;,. = {0} and §(x!,x,7) = f(Dj,x",x,t) holds for all argu-
ments, will do. Having such an incidence matrix, its entries are mostly zeros and
ones, and the standard form DAE can be rewritten as

F((Dinex(t))',x(1),1) = 0.

One attains a quasi-proper leading term by letting N4 := ker Djj..

Example 3.81 (Quasi-proper leading term by an incidence matrix). Consider the
nonlinear system

o (x2(1),x3(2),1) x5 () +-x1 (£) — q1 (1) =0
B(x3(1),1) X5(t) +x2(1) — q2(¢) =0,
x3(t) — q3(t) =0

)

)

with smooth functions & and 3. Assume the function ¢ (x;,x3,¢) vanishes identi-
cally for x, < 1 and remains positive elsewhere. The function 8 has no zeros at all.
This system cannot be written globally as a DAE with proper leading term. How-
ever, choosing D;, = diag(0,1,1) we obtain the DAE with quasi-proper leading
term
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0 ou(xa(),x3(2),1) 0 000 !
0 0 B(x3(1),1) ( 010 x(t)) +x(1)—q(t)=0, (3.146)

0 0 0 001
—_——
Dinc
with
0 (X(XQ7)C37t) 0 0
f,x,r)= {0 0 B(xz,2) | y+x—q(t), d(x,t)= |x2| = Dipex,
0 0 0 X3

and Ny = ker D;,.. We introduce the open connected sets
Gy ={(x) eR*xR:x; > 1}, G- ={(x,1) eER*xR:xp < 1},

and consider the DAE on these sets separately. On G, this is a DAE with properly
stated leading term. Further, computing an admissible matrix function sequence,
one knows the DAE to be regular with index 3 and characteristics ro = r; =1, =
2, r3 = 3.

In contrast, on G_, the leading term of the DAE is no longer properly stated
and N, is a proper subspace of ker f,. Observe that f; has constant rank on G_,
and Ry, := diag(0,0,1) is the orthoprojector along ker f,. Replacing in the DAE
(3.146) the function d by dyeyy = Ryewd = RyewDinex we arrive at the DAE

00 0 000

00 Blas(r).1) | (000 x(t))l—l—x(t)—q(t):O, (3.147)
00 0 001
D;,.

with properly stated leading term, and which is regular with index 2 and character-
istic values ro = 1,r; = 2,r, = 3. That means that the reformulated DAE (3.147) is
regular on G_ in the sense of Definition 3.28, whereas this definition does not apply
to the original quasi-proper DAE (3.146). a

Similarly as in this example, the leading term in a quasi-proper DAE is often lo-
cally somewhat too generously stated and could be reformulated locally in a proper
version. Nevertheless we agree to speak of regularity regions also in those cases.

Definition 3.82. Let the DAE (3.1) satisfy Assumption 3.1 and have a quasi-proper
leading term. The open connected set G C Dy x Iy is said to be a regularity region
of this DAE, if f, has constant rank on G and the DAE can be reformulated on G
such that the resulting DAE has a properly stated leading term and is regular on G
in the sense of Definition 3.28.

We emphasize at this point that, as in the above example, a proper reformulation
comes along with a lower level smoothness demand concerning the solution. The
following proposition provides sufficient conditions for proper reformulations.
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Proposition 3.83. Let the DAE (3.1) satisfy Assumption 3.1 and have a quasi-proper
leading term. Let ker f, be a C l-subspace on the open set R" x G, G C Dy x Iy. Let
ker fy be independent of y and x there,

ker fy(y,x,1) =: N¢(t), (y,x,t) e R"xG.
Let Ryey(t) € L(R") denote the orthoprojector along Ny (t), and further
dpew(x,1) := Rpew(t)d(x,1), (x,2) €G.

Then the DAE

f(dnew(x(1),1))" = R, (£)d (x(1), 1), x(1),£) = O (3.148)

is a reformulation of equation (3.1), which has a properly involved derivative on
R" x gG.

Each solution of the DAE (3.1) that resides in G is also a solution of the new
DAE (3.148). Conversely, if x, is a solution of (3.148) with values in G and
u, :=d(x.(.),.), then x. is a solution of the DAE (3.1), supposing the part (I —
Ryew s is also continuously differentiable.

Proof. Owing to the quasi-proper leading term it holds that Ny @imd, = R”". Denote
by R the projector function onto imd, along N4. On R” x G the relations

m (I —R) = Na C Ny =ker f, = kerRyew
are valid, and therefore Ry, (I —R) = 0, Ryeyy = RpewwR. It follows that
imdyey x = IMRyeydy = iM Ry R = im Ry,

and hence R" = ker Rye,y ® 1M Ry, = ker fy @ imdyery x.

Let x, be a solution of the DAE (3.1) with path in G. Then u, := d(x.(.),.) is con-
tinuously differentiable. R, is also continuously differentiable since ker f; is a C L
subspace. Then, ey « := Ryewd(x4(.),.) = Ryewtts is continuously differentiable,
too. We derive

f((dnew(x*(t)’ )) new() (x*(t)at x*(t)?t)
= F((Ruew(1)us (1)) = Ripeyy (1)1 (), x4 (1) 1)
:f( new( )M (t)ax*(t)vt) ( (t)vx*(t)at) :Oa
so that x, solves the reformulated DAE (3.148).
Solutions x, of (3.148) are continuous with Ry.,u, being continuously differen-

tiable. The extra smoothness demand ensures the continuous differentiability of u,.
O
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3.13 Notes and references

(1) The material of this chapter is to a large extent new. In constructing the admis-
sible matrix function sequences it follows the lines of [168, 171], which consider
DAE:s of the form

A(d(x(1),1)) +b(x(t),1) =0,

and
Ax(1),1)(D(1)x(1)) +b(x(t),1) = 0,

respectively. Now we consider fully implicit equations including both previous ver-
sions.

The tractability index concept is fully consistent with the knowledge of Hessen-
berg DAEs. Section 3.5 generalizes the special index-3 results obtained in [200] to
Hessenberg form DAEs with arbitrary size.

The achievements concerning DAE:s in circuit simulation in Section 3.6 reflect ideas
from [70] and [207].

The local solvability assertions in Section 3.7 take up the decoupling ideas of [96],
[205] and [211] and put them in a more general context.

(2) There are various interrelations between standard form DAEs and DAEs with

proper or quasi-proper leading terms. We believe in the general possibility of for-
mulating DAE models in applications at the very beginning with properly stated
derivative terms, as is the case in circuit simulation. That is, one creates more pre-
cise models than standard form DAEs can be.
It seems that till now, owing to the well-developed theory on standard form DAEs
(including numerical integration methods), one often transforms models that are
originally in a properly stated version into standard form (e.g., [118]). This means
that supposing continuously differentiable solutions and taking the total derivative
in (3.1) one turns from (3.1) to the standard form DAE

Fde(x(2),0)x'(t) +d; (x(2),1), x(t),) = 0. (3.149)

However this form again hides the precise information on how the derivative is
packet in. We do not recommend turning from the precise model (3.1) to (3.149) for
numerical integration, etc. In circuit simulation, it is a well-known experience that
numerical integration performs better when using the precise model. Furthermore,
often the dimensions are very large and the functions f,d, respectively f, satisfy low
smoothness requirements only. From these points of view, it is rather worse to turn
from equation (3.1) to the standard form version (3.149) in practice.

The opposite question of whether a given standard form DAE
fd' (1), x(),1) =0, (3.150)

where §: R" x Dy x Iy — R* is continuous with continuous partial derivatives
f«, x> can be reformulated as a DAE with a properly stated leading term or at least
with a quasi-proper leading term is less simple.
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If there is a nontrivial, possibly time-varying C'-subspace N in R™ such that
N(r) Ckerfy (¥, x,1), (¥ x,1) € R" x Ds x I, (3.151)

we find (cf. Appendix A.4) a continuously differentiable projector valued function
P such that ker P = N = im (I — P). It holds that

fo (', x,0)I—=P(1)) =0, (x,x,1) € R" x Dy x I,
and hence
F(Xx,t) — f(P(t)x ,x,t) = /01 fo (sx' + (1 —8)P(t)x',x,¢)(I — P(t))x'ds = 0,
thus §(x',x,1) = §(P(¢)x, x,t), and equation (3.150) is the same as
f(P(t)X (),x(t),t) = 0. (3.152)
In the next step we turn to

F((P()x(t)) = P'(t)x(t),x(),t) =0, (3.153)

and this latter form suggests that solutions should be in C}(Z,R") instead of
C'(Z,R"). The DAE (3.153) has at least a quasi-proper leading term.

The DAE (3.153) has a proper leading term, if N and ker f,» coincide. We emphasize
that the latter requires kerf, (y,x,7) to be a subspace independent of the variables x’
and x, as it is supposed, e.g., in [96], [160].

If §» has a constant nullspace—as it is often the case in applications—also a constant
projector P can be chosen, and equation (3.153) simplifies to

f((Px(t)),x(t),t) = 0. (3.154)

Often a standard form DAE can be changed into a DAE with at least quasi-proper
leading term by substituting an incidence matrix (see Section 3.12).

The question of whether a general standard form DAE (3.150), whose leading
nullspace kerf,: depends on (x',x), can be reformulated to a DAE with properly
stated leading term is unsolved. No general rules are in sight for this task. How-
ever, if it works, one can expect advantages concerning solvability and numerical
treatment as in Example 3.3.

(3) Geometric methods, treating systems of smooth differential equations—
among them DAEs—such as jet varieties, avoid the difficulties concerning drift and
perturbation by consequently working just on related manifolds. The particular geo-
metric reduction procedure in [ 189, Chapter IV] (also [145]), uses local parametriza-
tion and the subimmersion theorem for providing a sequence of (sub)manifolds

MoDMlD'--DMu_leu
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as well as a vector field defined just on the final manifold. Thereby, certain constant-
rank requirements are to support the manifold structure. Then the flow given on
the final manifold is studied, in particular singularities of this flow are addressed.
A local version of this geometric reduction procedure is developed in [194], and it
is pointed out how additional singularities may occur in every step on the way to a
final manifold.

In contrast, we aim for an analysis of DAEs which persists in view of arbitrarily
small perturbations, similarly as it is done with the completion ODEs; however,
we proceed without any derivative array functions. We emphasize several aspects
concerning perturbations.

Perturbations may force the solutions to leave the constraint set of the unperturbed
DAE. In particular, for linear constant coefficient systems Ex'(¢) + Fx(t) = 0 the
flow is restricted to the finite eigenspace of the matrix pencil, that is, to the range of
the spectral projector im I, 1. The subspace imII,, _; is at the same time the set of
consistent initial values for the homogeneous DAE. A nontrivial excitation g may
force the flow of the DAE Ex/(¢) + Fx(t) = q(t) to spread out over all in R™. The
sets of consistent values strongly depend on g.

Following the idea of characterizing linear DAEs by characterizing just the coef-
ficient pair {E,F} independently of the particular right-hand side g, our goal is a
perturbation invariant characterization of general DAEs. In this context we are not
interested in working out the particular constraint sets. In our view, generating the
obvious and hidden constraint of a DAE is then an essential part of the particular
solution procedure.

The DAE:s arising from applications are nothing else than models describing physi-
cal phenomena just approximately. They are partly derived from physical laws, but
other parts are created by means of quite voluntary ansatz functions and parame-
ter calibrations. Having this in mind we aim for a structural characterization that is
invariant with respect to perturbations rather than for an explicit description of the
solution varieties of special DAEs.

(4) In essence, in the present chapter we preclude rank changes of the matrix
function f,. We want to emphasize again that rank changes in f,(y,x,) lead to
somewhat critical problems. As pointed out in various case studies (e.g., in Sec-
tion 2.9), the resulting critical points may have very different natures. There are
quite harmless critical points which could be healed by means of smoother data, but
there are also serious critical points, yielding singularities in the flow. We do not go
here into further detail in this direction. We refer to Chapter 9 for a discussion of
quasi-regular problems including harmless critical points. Our goal in the present
chapter is just to discover the basic regularity conditions. As explained to a large
extent already in Section 2.9 on linear DAEs, with the object of an analysis which
meets rigorous low smoothness requirements, we have to put up with constant-rank
requirements and critical points which are no longer visible in smoother systems.
These arguments keep their value also for nonlinear DAEs. In general we see the
constant-rank condition as a useful tool to detect critical points on early stages of
the investigation.
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(5) Properly stated leading terms were applied first in [10] (report, revised as
[11]), in the context of a unified approach to linear DAEs and their adjoints, but not
yet marked by this special name. Slightly later, in [113] (report, revised as [114]),
the quasi-linear DAE

A(x(2),1)(d(x(1),1))" + b(x(1),1) =0,

which has a separate leading term housing the derivative, was defined to have a
properly formulated leading term on Dy x Iy, if

kerA(x,t) @imd,(x,r) =R™, forall (x,1) € Dy x Iy,
and there is a projector function R € C!(Z,L(R")) such that
kerA(x,t) =kerR(t), imd,(x,t) =imR(t), d(x,t) = R(t)d(x,t), (x,t) € Dy x Ly

(cf. [114, Definition 5.1]). A comparison makes clear that Definition 3.4 generalizes
this former notion considerably. Equation (3.1) is not necessarily quasi-linear and,
moreover, the conditions concerning the projector function R are now exchanged for
the demand that the two subspaces ker f,, imd, have to be transversal C I_subspaces.
This is much less restrictive. In particular, now these subspaces may depend also on
y and x. We dispense with the condition d(x,7) = R(t)d(x,1).

Although the wording properly stated leading term sounds somewhat strange for
fully implicit equations which do not show a separate leading term housing the
derivative, we keep this traditional notion also for fully nonlinear DAEs. At the
same time we also speak of DAEs with properly involved derivatives.

(6) The question of whether the set My (#) might actually be a proper subset of
M () remains unsolved in the fully implicit case, if ker f, (y,x,7) depends on y. In
Example 3.54 we have illustrated this situation.

(7) There are open questions concerning the extension of solutions. Having a
local solutions of an index-1 DAE, one can extend these solutions as long as the
solution does not leave the regularity region. Till now we do not see results on
the maximal existence intervals as they are known for explicit regular ODEs. And
there is no general answer to the question of whether there are extensions through
critical points and what they look like. This highly interesting topic needs future
research. We refer just to Examples 3.34, 3.36, 3.59, 3.64, and 3.60 for some typical
situations.

Moreover, also maximal regularity regions and their borders need further investiga-
tion.

(8) As shown in Section 3.8, the regularity regions depend also on the jet co-
ordinates. One could ask whether this is a technical deficit of the tractability index
concept. This is not the case. For instance also the quest for a completion ODE is ac-
companied by the same problem. Revisit Example 3.59. The derivative array system
of size 1 for the special DAE (3.104) is
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x%—i—x%—tz—a =0,
x1(x} +x3) = () = 0,

x%—l—x%—Zt =0,
1,1 1 2 2 1 _
Xy ()C1 +X2) +X1(.X1 +X2) _ﬁ (t) =0.

The search for a completion ODE leads to the system

1 1] [ 2+a
24+a0| [x]  |B(1)=2tx |’
as well as to the equivalence of the conditions > + o = 0 and x} +xé = 0. Evidently,

one is confronted with the same necessity for an advanced localization including
the jet variables as it is the case for the regularity regions. We realize differentiation

index 1 on the open sets g[}] and QE].

(9) The basic ill-posedness due to the nonclosed range of the operator represent-
ing the linear IVP in a higher index DAE was pointed out in [155], and much work
was done to apply methods known for ill-posed problems (cf. [110], [106], [107]).
Most of the resulting regularization methods for DAEs consist of a singular pertur-
bation of the original problem. Although deep results could be proved, except for a
few cases having a nice physical background, these regularization methods did not
earn much resonance in practice because of the numerical difficulties in solving the
singularly perturbed problems.

(10) For a long time (e.g., [163], [205]) it was hoped that appropriate structural
restrictions can be found for f to guarantee the structural condition (3.118), that is

Fxe MM (I R™), xeDr,

for the operator setting. Certain conditions were in fact posed. An improved ver-
sion of Proposition 3.70 is obtained in [205] by means of an advanced decoupling.
Although a quite interesting class of index-2 DAEs satisfies the structural condi-
tion (3.120), this condition remains somewhat synthesized. It is not satisfied, e.g.,
in MNA equations arising in circuit simulation. Moreover, the search for further
structural conditions, in particular those for index-3 DAEs, did not yield sufficient
success. The proposals have been too cumbersome and partly dependent on compu-
tational procedures (cf. [200]), and hence, this way seems to have no future.

The background of the difficulties in this context is the fact that, if a certain lineariza-
tion to a given nonlinear DAE has index ¢ > 1, then this does not say anything about
the neighboring linearizations (see, for instance, Example 3.34). The structural con-
dition (3.118) was also used to ensure the same characteristics of the neighboring
linearizations (e.g., [161]). In the present chapter, nonlinear DAEs are approached
anew via the concept of regularity regions and linearizations. This time we dispense
with structural restrictions.
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(11) The most natural formulation of a network system in circuit simulation is
the physically reasonable system (3.58), that is

d ) : : ..
ACECI(AE&I) +Arg(Age,t) +ArLji +Av jv +Arig(ATe, ji, jv,t) =0,

d . 3.155
E‘P(]LJ) _A{e:()v ( )
Ave—vs(ATe, jr, jv,t) =0.

Supposing continuously differentiable solutions and applying the chain rule to the
network system (3.58), i.e., expressing

d d . . . ,
Ta(Ade,t) =C(Ale,NALE +aqi(Ale.r),  —0(jL1) = L(jL1)j,+ 6 (jL.1),
with
Cnt) = Lqvt), LGt = 2-9(i)
V. = =—g\V. = —
) avq ) ) J7 aj J7 b
one obtains a DAE in standard formulation, namely
AcC(ALe,1)ALe + Acq(Ate,t) + Arg(Ane,t) + AL jr
+Ay jv +Asis(ATe, ji, jv,t) =0,
L(jp,1)ji,+ ¢ (jr.t) —Are = 0,
Ave—vi(ATe, j1, jv,1) = 0.

This resulting DAE is considered as the conventional MNA formulation. It is com-
monly used to apply results and software given for standard form DAEs.
On the other hand, introducing the charges and fluxes

q:=q(Ate,r) and @ :=@(jL,1)
as additional variables, we obtain the equation system

Acq' Arg(ARe,t) +ALjL+Av jv +Arig(ATe, ji, jv,t)
!

o —Aze

0 |+ AVe—vs(ATe, jL, jv,t) =0
0 q—q(Age,t)

0 (pf‘P(jLat)

b(q,9,e,jL,jv )

which is regarded as the charge/flux oriented MNA formulation. It also represents a
DAE in standard form and at the same time a DAE with quasi-proper leading term
and linear derivative term,



3.13 Notes 313

AcO q

017 -l o
10000 ..

00 e +b(q,(P7€7]L7]V,t):O~
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a
The solution understanding of the last equation adopts that for (3.155) as it stands.
The charge/flux-oriented MNA formulation is well established as intermediate for

contracting and analyzing numerical integration methods to solve the original DAE
(3.155). The last system has the useful proper reformulation

/

Ac O q

01 9
Pc000OO o

00 ¢ e +b(q,(Pae;]L7.]V7t):0’
07000

00 JL

00 v

which is responsible for the fact that integration methods applied to this formulation
behave quite well. Furthermore, this represents one of the origins of the idea of
turning to DAEs whose derivative term is housed by an extra function (e.g., [114,
168]).

(12) We know from [25] that the index 1 of a DAE is the smallest integer y such

that the derivative array system &1 = 0 (cf. Section 3.10) determines the variable
x! as a continuous function of x, 7. To this end it is emphasized that the statement is
taken to hold locally on an open subset in the basic space.
In contrast, at times the differentiation index is introduced without the explicit de-
mand for open sets. From [105] we learn that the DAE has differential index U,
if p is the minimal number of analytical differentiations such that the prolongated
system &,41 = 0 can be transformed by algebraic manipulations into an explicit
ODE system. No further comments on the nature of the set on which the vector
field S should be given are added, but this may lead to diverging interpretations. In
particular, in Example 3.76, one could think of accepting the equation

X (t) = Sa(x(t),t), (x(t),t) € 2,

as an underlying ODE and to say that the DAE has differential index 1 on the lower-
dimensional subset £2.

We adopt the original intention of [25], [45] to apply open sets in the basic spaces.
In contrast, a different view comes from geometrical approaches which, supposing
manifold structures, consequently work on the (sub)manifolds.
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(13) Concerning the practical use of the underlying ODEs, the drift phenomenon
needs careful compensation when applying numerical integration methods. This is a
particular feature in the simulation of constrained mechanical motion. Several con-
straint stabilization methods and projection techniques have been developed, forcing
the numerical solution to stay close to the constraint. We refer to [63] for a compre-
hensive survey.

(14) The derivative array approaches including the various reduction procedures

are approved definite solution procedures rather than a characterization of the given
DAE. They apply to smooth problems in standard form.
Our goal is a different one. We look for criteria characterizing the given DAE with-
out solving this DAE in advance or supposing solvability. Since we do not at all use
derivative array functions, we can do with low smoothness requirements. We use lin-
earizations and the projector based structural decomposition of the originally given
DAE. To our knowledge, this is the only such treatment. In this framework, not only
the constant-rank condition concerning the proper statement of the derivative term,
but also the additional constant-rank requirements on further levels of the admissi-
ble matrix function sequences are welcome tools to figure out regular problems as
well as different kinds of critical points.

(15) We emphasize the great benefit of working with projectors against the use
of basis functions. Given is an at least continuous matrix function M : Dy; C R¥ —
L(R™ RK) which has constant rank on the open set Dy;. We would like to describe its
nullspace. With I — M1 M, a continuous projector function globally defined on Dy,
is available. Thereby the size of s does not matter at all. If ker M is a C'-subspace,
then this projector function is continuously differentiable.

In contrast, we can expect the existence of basis functions globally defined on Dy,
which span the C!-subspace kerM if s = 1 only. Otherwise there are merely local
basis functions. We refer to Remark A.16 in the appendix for an illustrative example.



Part I1

Index-1 DAEs: Analysis and numerical
treatment
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Part II constitutes a self-contained script on regular index-1 DAEs. It constitutes in
essence an up-to-date improved and completed version of the early book [96]. While
the latter is devoted to standard form DAEs, we now address DAEs of the form

with properly involved derivative.

This part starts with a chapter on the structural analysis of index-1 DAEs. It is
shown that each solution of a regular index-1 DAE is actually a somewhat wrapped
solution of an inherent explicit ODE. A certain decoupling function @, resembling
that in [96], plays its role. This inherent ODE is only implicitly given, but it is
uniquely determined by the problem data. With this background, local solvability
and perturbation results are proved.

In the chapter on numerical integration, backward differentiation formulas and
certain classes of Runge—Kutta methods and general linear methods that are suitable
for DAEs are discussed. Then we concentrate on the question of whether a given in-
tegration method passes the wrapping unchanged and is handed over to the inherent
explicit ODE. The answer appears not to be a feature of the method, but a prop-
erty of the DAE formulation. If the subspace im D(¢) is actually time-invariant, then
the integration method reaches the inherent explicit ODE unchanged. This makes
the integration smooth to the extent to which it may be smooth for explicit ODEs.
Otherwise one has to expect additional serious stepsize restrictions.

The third chapter addresses stability topics. Contractivity and dissipativity of
DAEs are introduced, and it is discussed how integration methods reflect the respec-
tive flow properties. Again, one can benefit from a time-invariant subspace imD(¢).
Finally, stability in the sense of Lyapunov is addressed and the related solvability
assertions on infinite intervals are allocated.



Chapter 4
Analysis

This chapter is devoted to the analysis of nonlinear regular index-1 DAEs of the
form

FUD@)x(t)),x(1),1) =0,

which contains m equations and m unknown functions. We want to introduce the
analysis of such DAEs explaining their inner structure. In particular, in the follow-
ing chapter, this serves as helpful background for understanding how numerical in-
tegration methods work.

The present chapter is self-contained. Neither the general analysis in Chapter 3
devoted to fully nonlinear arbitrarily high index DAEs

f((d(x(t)7t))/7x(t)at) =0,

nor the general linear theory given in Chapter 2 are supposed to be known. Of
course, the presentations are consistent.

The chapter is organized as follows. The basic assumptions and notions are col-
lected in Section 4.1. Section 4.2 provides solvability and perturbation results by
means of a structural decoupling of the DAE into the inherent explicit ODE and
a certain part wrapping up the ODE solutions to become DAE solutions. Then we
describe in Section 4.3 how one can compute consistent initial values.

4.1 Basic assumptions and notions

Looking at the formulation of the DAE

F((D(0)x(1)),x(t),1) =0, 4.1

it is natural to search for continuous solutions x with a continuously differentiable
part Dx. Therefore, we introduce

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis, 317
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© Springer-Verlag Berlin Heidelberg 2013
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CHZ,R™) :={xeC(Z,R™): DxcC'(Z,R")}

as the solution space of the DAE (4.1). The same function space was already used
for linear DAEs in Chapter 2 (cf. Section 2.6.1, also Definition 3.2).
Throughout the whole chapter, we assume the following assumption to be satisfied.

Assumption 4.1. Let f be a continuous function mapping R" x Dy x Iy to R™ and
having continuous partial derivatives fy(y,x,t) and f.(y,x,t). Dy C R" is assumed
to be an open domain and Iy C R an interval. Let D be a continuous matrix function
with constant rank that maps Ly to L(R™,R"). Let the subspaces ker f, and imD
form C'-subspaces (see Definition A.19).

Let the transversality condition

ker fy(y,x,t) ®imD(t) =R", VyeR" xe€ Dy, t €Iy, 4.2)

be valid, and finally, let ker f,(y, x,t) be independent of y and x.

By Definition 3.4, the DAE (4.1) now has a properly involved derivative on
R" x D¢ x Iy, except for the fact that Definition 3.4 requires a continuously dif-
ferentiable matrix function D, while here as in Chapter 2 we accept also functions
D being just continuous.

It is useful to operate with the border projector R(t) € L(R") realizing the decom-
position of R” given by the transversality condition (4.2), such that

imR(t) =imD(r), kerR(r) =ker f,(y,x,t) Vy€eR", x€ Dy, t €Ly.

The function R is continuously differentiable as a projector function acting on C'-
subspaces.

Lemma 4.2. Assumption 4.1 implies the identities

f,x,t) = f(R()y,x,1),  fi(v,x,1) = f(R()y,x,1) = fy(y,x,1)R(t).

Proof. Forx € Dy, t € I,y € R", 1= (I — R(1))y, we get

100~ S RO 50) = [ oy + (1 ROyx )1 ds =0,

since ) € im (I — R(t)) = ker f,(sy+ (1 —s)R(t)y,x,t) independently of s. O

For obvious reasons, if x, € Cé (Z,R™) is a solution of (4.1), then the function values
x,(¢) must belong to the set

Mo(t) :={xeD;: Iy eR": f(y,x,1) =0}, 4.3)

and hence, in contrast to regular ODEs, the solution values of a DAE are restricted
to a certain subset of R”. Supposing Assumption 4.1, for DAEs (4.1) with continu-
ously differentiable D, the obvious restriction set or obvious constraint is given (cf.
Definition 3.9, Lemma 3.11) as
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Mo(t) :={x€Ds: Iy eR":y—D'(t)x €imD(¢), f(y,x,t) = 0} = Mo(t),
for all t € Zy. Regarding Lemma 4.2, we can check the representation
Mo(t) = {xeDs: Iy eR" :yeimD(t), f(y,x,1) =0} = Mo(1),  (4.4)

and this makes sense also in the case of D being just continuous. In consequence,
speaking of the obvious restriction set or obvious constraint of a DAE (4.1) under
Assumption 4.1 we have in mind the formula (4.4). Following the lines of Proposi-
tion 3.10, one can show that, to each x € M (¢) there is always exactly one corre-
sponding y, which means

Mo(t) ={xeDs:3lyeR":yeimD(r), f(y,x,t) =0}.

Below we see, for regular index-1 DAEs, and just for those, the obvious constraint
exclusively consists of solution values, that is, through each 7 € Zy, % € M(f), there
is a solution x,(-) such that x,(f) = . For the moment, we refer to Example 3.7
which shows this property.

We introduce the subspace

Sy, x,t) :={zeR": fi(y,x,r)z€im fy(y,x,1)}
which plays its role in the following characterization of regular DAEs of index 1.

Definition 4.3. We call a nonlinear DAE (4.1) which satisfies Assumption 4.1 a
regular DAE with tractability index 1 on the open set G C Dy x Zy, or more briefly,
a regular index-1 DAE on G, if

kerD(t)NS(y,x,t) = {0} forall yeR" (x,7)€g.

If G is open and connected, and the DAE is regular with index 1 on G, then G
is said to be a regularity region of the DAE, also an index-1 regularity region. If
G =Dy x Iy, we speak of a regular DAE with (tractability) index 1.

This definition is consistent with the previous ones concerning regular index-1
DAE:s (see Definitions 2.25, 3.28, regarding the nonsingularity of the matrix func-
tion (4.8) below). A more subtle concept arises, if one is content with intersections
kerD(t) N S(y,x,) being trivial on an open set in R” x Dy x Iy, only. We refer to
Section 3.8 which addresses those questions.

In this chapter, we exclusively deal with regular index-1 DAEs, but often we omit
the epithet regular as is common in the literature.

By Lemma A.9, the index-1 condition ker D(¢) N S(y,x,t) = {0} is equivalent to
kerD(t) ®S(y,x,t) = R™, 4.5)

and, in turn, the decomposition (4.5) holds true, exactly if the matrix pencil
(cf. Definition 1.4)
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Afy(3,x,0)D(t) + fr(y,x,t)  is regular with Kronecker index 1. (4.6)

Corresponding to Chapter 2, we denote the uniquely given projector realizing de-
composition (4.5) by IT.,,(y,x,t), which means

im I, (y,x,t) = S(y,x,t) and kerIl,(y,x,t) =kerD(z). 4.7)

Introducing a projector Qo(¢) € L(R™) onto N(r) := kerD(¢) and again applying
Lemma A.9, we know that the condition (4.5) is equivalent to the regularity of the
matrix

Gy x,1) == fy(3,x,0)D(t) + fe(y,x,1) Qo 1), (4.8)
independently of the special choice of projector Qp(f).

Further, for all # € Zy, we introduce Py(r) := I — Qo(t) and, additionally, D(t)
to be the reflexive generalized inverse of D(¢) with the properties

D(t)D(t)” = R(z), D(t)"D(t) = Ry().

Since the matrix function D(-) is supposed to be continuous and to have constant
rank we are allowed to assume, in the following, that Qo(-), Py(-) and D(-)~ are
continuous as well (see Proposition A.17).

4.2 Structure and solvability of index-1 DAEs

In this section we analyze the inner structure of regular index-1 DAEs and provide
results about the existence of solutions. First, we extract the inherent ordinary differ-
ential equation from the DAE (4.1). In contrast to the linear case, we do not expect
to get it globally. However, a smart separation of components allows an elegant
extraction locally as follows. For any vector x, we can write

x = Py(t)x+ Qo(t)x = D(t) " D(t)x + Qo (t)x.
If we regard Lemma 4.2 then equation (4.1) can be expressed as
FR@)(D(t)x(t)),D(t)”D(t)x(t) + Qo(t)x(t),t) = 0. 4.9)
Assuming, for a moment, that there is a solution x, € Cp(Z,R™), we introduce two
new functions by u,(r) := D(t)x.(r), and w(¢) := D(t) " (D(t)x(t)) + Qo (t)x, (),
for all 1 € Z, such that x, (1) = D(t) " u.(t) + Qo(f)w« (1), and
D(t)wi (1) =R(1)(D(1)x(1)),  Qo(t)w(t) = Qo(t)x.(1), t € L,

and hence the identity coming from (4.9) can be rewritten as

FUD@W(6), D) u(t) + Qo()w.(1).1) =0, t€L.  (410)
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The last expression suggests that we ask whether the equation in R™, with unknowns
w e R™ ueR", given by

FD@E)w,D(t)"u+Qo(t)w,t) =0 4.11)

implicitly determines a continuous solution function w = @(u, ), such that w,(¢) =
©(u.(t),t). For linear regular index-1 DAEs, i.e., in the case of

fOx,1) = A(t)y+B(1)x—q(t), G(r) =A()D(t) +B(t)Qo(7),
equation (4.11) simplifies to
(A@)D(1) + B(1)Qo(1))w +B(1)D(t) u—q() = 0,

which uniquely determines the function w = —G(t)~"'(B(t)D(t) " u — q(t)) =:
o(u,t).

The next lemma provides such a desired function @(u,t) yielding the local equiv-
alence of (4.10) with w, (1) = @(u.(t),t). As one can see later by Theorem 4.5, the
function @(u,t) enables us to decouple the entire dynamic part of the DAE (4.1)
from the constraint part.

Lemma 4.4. Let equation (4.1) be regular of index 1. For givent € Ly, X € My(F),
y € imD(7) such that f(3,%,1) = 0, we introduce

i:=D()X, w:=D() 5+ Qo(i)x

and define
Fw,u,t) := f(D(t)w,D(t) " u+ Qo(t)w,1)

for (w,u,t) within a neighborhood N(;; 57 C R™ x R" x R of (W, @,f). Then, we find
a neighborhood /\f(,m CR" xR of (i,f) and a continuous function

o: Ngp—R"
satisfying @ (i,f) = w and
F(o(u,t),u,t) =0, forall (u,t) € Ngp).
Furthermore, ®(u,t) = 0(R(t)u,t), ® has the continuous partial derivative
ou(u,t) = —(G™' f;) (D(t) @ (u,t),D(t)"u+ Qo(t)®(u,t),t) D(t)~
Jor (u,t) € J\/’(,;7l—) and, in particular,
o,(@,7) = —(G' f) (5.%,1) D(7)
with G defined in (4.8).

Proof. First, we have
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is nonsingular since the DAE was assumed to be regular of index 1. Now, the as-
sumption follows from the implicit function theorem. a

Knowledge about the implicitly given function ® allows us to state the following
theorem describing the inner structure of regular index-1 DAEs (4.1).

Theorem 4.5. Each solution x, € C),(Z,R™) of a regular index-1 DAE (4.1) can be
represented as

X (1) = D(t) ", (t) + Qo (1) 0 (u.(1),1),

with the continuously differentiable function u.(-) := D(-)x.(-) satisfying the inher-
ent ODE
u' (1) =R (1)u(t) + D(t)o(u(t),1), (4.12)

whereby the continuous function @ mapping from a neighborhood Dy, of the set
{(D(t)x.(2),t) : t € T} into R™ is implicitly given by

F(D@)o(u,t),D(t) " u+ Qo(t)@(u,t),t) =0, (u,t) € Dg.
The function @ has the continuous partial derivative
@, (u,1) = =(G™' £) (D) @ (u,1),D(t) u+ Qo(1)@(u,1),1) D(t) ™.

Proof. For any solution x, € Cé(l' ,R™) of the regular index-1 DAE (4.1) we know
all solution values x,(¢) to be elements of My(t). Therefore, Lemma 4.4 can be
applied to all points (%,7), ¥ := x,(f), f € Z, and y = R(f)u (7). By uniqueness and
continuity arguments, we find a continuous function @ mapping from a neighbor-
hood Dy, of {(D(f)x.(f),f) : T € T} to R™ with the properties

F(D@)o(u,t),D(t)"u+Qo(t)o(u,t),t) =0, (u,t) € De,

O, (t),t) = wi(t) :=D(t) Ul (t) + Qo(t)x:(t), u«(t):=D(t)x.(t) (4.13)

and there is the continuous partial derivative
ou(u,t) = —(G™' ) (D(t) @ (u,t),D(t) " u+ Qo(t) @ (u,t),t) D(t)~.
Consequently,

D(t) @ (us(t),1) = R(t)u (1) = (Ruw.)'(t) — R (t)us (1) = (t) — R'(1)u (1)
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since (Ru)(t) = (RDx,)(t) = (Dx,)(t) = u«(t). In this way, we know u, satisfies
the ODE
u' (1) =R (t)u(t) + D(t)o(u(t),1).

Furthermore, expression (4.13) implies
Qo) (us(t),t) = Qo(t)x.(t) and D(z) u.(t) = Po(t)x(2),
and hence, the solution representation

(1) = Po(t)x (1) + Qo(1)x () = D(t) " u(t) + Qo (1) @(u (1), 7).
O

The solution representation given by Theorem 4.5 explains the inner structure of
an index-1 DAE (4.1): The inherent ODE (4.12) describes the flow, the dynamic
part, of the DAE in terms of the component u, (t) = D(¢)x.(t), while the remaining
component Qg (#)x(¢) is determined by the implicitly given function @ as

Qo(1)x:(t) = Qo (1) @(u(1),1),

which reflects the constraint.

For a given index-1 DAE (4.1), the function @, and so the ODE (4.12), is lo-
cally provided by Lemma 4.4, without supposing any solution. We emphasize the
importance of this structure by the following definition.

Definition 4.6. For the regular index-1 DAE (4.1), we call the ordinary differential
equation (4.12) the inherent explicit regular ODE, and we use the abbreviations
inherent ODE and IERODE.

Proposition 4.7 below justifies this definition saying that the IERODE is uniquely
determined by the index-1 DAE itself. One might think that the function Dw de-
pends on the choice of the projector function Qy, but it does not.

For linear regular index-1 DAEs (2.1), the ODE (4.12) is nothing else than the
IERODE introduced in Definition 2.26, and we already know (see Proposition 2.33
or Theorem 2.39 in the more general context of fine decouplings) that the [IERODE
coefficients are independent of the projector choice. This is now confirmed once
more.

Proposition 4.7. Let the DAE (4.1) be regular of index 1.

(1)  Then, the inherent ODE (4.12) is uniquely determined by the problem data
functions f and D, which means it is independent of the choice of the projector
Qo.

(2)  Furthermore, the time-varying subspace imD(t) of R" is an invariant sub-
space of the inherent ODE (4.12), such that, if a solution u(-) exists on the
interval T C Ly, and starts in u(ty) € imD(to) for some ty € Z, then the solu-
tion value u(t) belongs to imD(z) for all t € T.
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(3)  If the subspace imD(t) is actually time-invariant, then the solutions u(-) of
the ODE (4.12), having a certain value u(ty) € imD(ty), satisfy the simpler
ODE

u'(t) =D(t)o(u(t),t). (4.14)

Proof. (1) We show that the vector field of the ODE (4.12) does not depend on the
choice of the projector function Qy. We assume Qg(r) and Qy(¢) to be two projec-
tors onto ker D(t). Correspondingly, we get generalized inverses D(t)~ and D(r)~.
According to Lemma 4.4, we find two functions @ and @ satisfying

F(D@)o(u,t),D(t) u+ Qo(t)®(u,t),r) =0

and
F(D@)@(u,1),D(t) " u+ Qo(t)d(ut),t) = 0.

Let Dy, ¢ be their common definition domain. Regarding (4.12), we have to show
that the corresponding vector fields coincide, which means

R'(t)yu+D(t)o(u,t) = R (t)u+D(t)®(u,t) (4.15)

for all (u,t) € Dy 4. Since imQy = kerD(t) = imQp, we know that (cf. Lemma
A3)

Oo(t) = Qo(t)Oo(t)

as well as

D(t)” = Py(t)D(t)” +Qo(t)D(t)” =D(t) " R(t) + Qo(t)D(t)~
=D(t)" +Qo(t)D(1)~

and we may conclude
F(D@)@(u,t),D(t) "u+Qo(t)(D(t) "u+ Qo (t)d(u,t)),t) = 0.

Introducing @ (u,t) := Py(t)®(u,t) + Qo (t)(D(t) "u+ Qo(t)®(u,t)), we see that
F(D()@(u,t),D(t) " u+ Qo(t)@(u,t),1) =0

is satisfied. Since @ is the locally uniquely defined function satisfying
F(D@)o(u,1),D(t) u+Qo(t)o(u,1),t) =0,

we obtain

o(u,t) = ®(u,t) = Po(t) ®d(u,t) + Qo (t)(D(t) “u+ Qo(t)d(u,1)).

This implies
D(t)w(u,t) = D(t)D(u,t)
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and, consequently, (4.15) is true. In other words, the inherent ODE (4.12) is inde-
pendent of the choice of the projector Qp. It is uniquely defined by f and D.

(2) We show that im D(t) is an invariant subspace for the ODE (4.12). If u(-) is a
solution existing on the interval Z, then the identity

(I=R(0)u'(t) = (I = R(0))(R'(t)u(t) + D(t) o (u,1)) = (I = R(t))R (t)u(t), t€T,
is true. Using v(¢) := (I — R(¢))u(t), we see that

vi(t) = (I—=R(0))u (1) =R (t)u(t) = (I = R(1))R'(t)u(t) — R (t)u(r)
= —R(O)R' (t)u(t) = — R (t)u(t) + R (t)R(t)u(t) = — R (t)v(1).

For u(tp) € imD(p), which means v(fp) = 0, the function v(-) vanishes identically
and it holds that
u(t) =R(t)u(t) €imD(t), forall t € T.

(3) Since the subspace imD(z) does not vary with #, the orthoprojector R, onto
imD(¢) is also independent of ¢, and R(f)R. = R,.. For the solutions under consider-
ation, due to assertion (2), it holds that u(z) = R.u(t), thus R'(t)u(t) = R'(t)R.u(t) =
(R(1)R.) u(t) = (R.)'u(t) = 0, and hence the respective term in (4.12) disappears.
O

Example 4.8 (Decoupling function and regularity regions). Consider the semi-
explicit DAE (cf. Example 3.7)

xll(t)+ﬁx1(t) :Oa
x1(t) 2 +x (1) — 1 = y(1),

on Dy =R?, I; = [0,0). 3 is a real parameter. The real function ¥ is continuous on
Zr,and 14 7(t) > 0. We write this DAE in the form (4.1) withn =1, m =2,

_ y+Bxi _ |1 _
f(y7x7t)_ |:x%_|_x%_,y(t)_1:|a fy()’:xat)— |:0:| ) D(t)_ [1 0])
as a DAE with properly stated leading term. Derive further

Mo(t) = {x €Dy :x}+x3 —1—y(r) =0},

S(y,x,1) = {z € R? : 2x121 + 2220 = 0}, kerD(r) = {z € R? : z; =0},

and
00

- eiea- 2]

It becomes evident that G(y, x, ) is nonsingular exactly if the intersection S(y,x,#) N
kerD(r) is trivial, and this happens if x; # 0. In consequence, the DAE has index 1
on the open connected sets
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G i={x€R*:xy >0} xZs, G :={xcR*:x;<0}xZy,

being maximal index-1 regularity regions. The subspace x, = 0 constitutes the bor-
der between the regularity regions G and G_.
The canonical projector function

1 0
Hcan(yaxvt) = l:_ﬂ 0:|
X2

is defined for all y € R, (x,¢) € G := G, UG_. It grows unboundedly, if x; tends to
zero. The decoupling function related to G now reads

—Bu
o(u,t) = |::t(1+'}’(/j) —uz)i} , (u,t) € domg
with domg = {(u,t) € R? : +u < (1 + y(t))%,t € Iy}, The IERODE is linear,
u'(t) = —Pu(r). The function Dw has a smooth extension onto R x Zy, and we
put D(¢)w(u,t) = —Pu, (u,t) € dompg :=R x Zy.
To each arbitrary (xo,7) € G, xo € My(to), the IERODE has a unique solution such
that u(f9) = xo,1, and a unique DAE solution results such that x(¢y) = xo. The living
interval of this solution may be finite or infinite, depending on the parameter 3 and
the function 7.
For instance, if B > 0 and ¥ vanishes identically, the solution exists on the infinite
interval, and x(¢) tends to (0, 1)7, if # — oo. Notice that in this case, from each border
point between G and G_, two solutions emerge, one turns to G, and the other to
g-.
If B < 0, the solutions go the other way round, and there are no solutions emerging
at the border points. In contrast, a solution starting in G ends up in finite time at
a border point. Because of this critical flow behavior at the border, we call those
border points critical. ad

local d li
DAE ocal decoupling IERODE

i solve ODE
wrap up

for DAE solution

Fig. 4.1 Transfer of solvability results for ODEs to DAEs via local decoupling

The knowledge concerning the inner structure of nonlinear regular index-1 DAEs
provided by Lemma 4.4 and Theorem 4.5 allows us to derive solvability results as
well as error estimations, and also perturbation results. Mainly, we apply standard
results for ODEs to the inherent ODE (4.12) and extend them to the DAE solution
regarding the properties of the implicitly given function w (see Figure 4.1).
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Before presenting the results we formulate a useful lemma that provides us with
a locally uniquely determined function P which plays the role of @ for slightly
perturbed DAEs

FUD(0)x(0)) ,x(1),1) = q(t), (4.16)

with a perturbation ¢(z) € R™. Applying Definition 4.3 we see that the original
equation (4.1) is a regular index-1 DAE if and only if its perturbed version (4.16) is
regular of index-1.

Lemma 4.9. Let the DAE (4.1) be regular of index 1.

(1) For givent € I C Iy ¥ € My(f), y € imD(f) such that f(y,%,f) =0, we
introduce
i:=D()x, w:=D(F) y+Qo()x

and define
FPw,u,t,q) := f(D()w,D(t) " u+Qo(1)w,1) —¢q (4.17)

Jor (w,u,t,q) within a neighborhood Ny 770y € R"™ x R" x R of (w,,,0).
Then, we find a neighborhood N ;7 0y € R" x R of (i,,0) and a unique con-
tinuous function

WP : Ml‘,f,()) — R"

satisfying @P"(i,f,0) = w and
FP (P (w1, q),u,1,q) =0 for all (u,t,q) € Nzz0)-

Furthermore, "™ (u,t,q) = @P*"(R(t)u,t,q), O has the continuous par-
tial derivatives

of"(u,t,q) = —(G ' f) 00 )D() ", 0™ (u.1,q) = Gy (1)

with
y:=D(1)o"" (u,1,q), x:=D(t) u+Qo(t) @™ (u,1,q)

for (u,t,q) € ./\/(,;.;’0) and, in particular,
o (,7,0) = — (G, ) 5.5 D(F)~,  @f(a,7,0) = G, ' (7,%,7).

(2)  Suppose 1. C 1Ly is a compact interval and % : . — R"™, y: I, — Dy CR"
are continuous functions satisfying

f()_)(t),)f(l‘),t):() VZ‘EIC.

Define

and
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Fil(w,u,q) .= F(D@)w,D(1) " u+ Qo(t)w,t) —gq (4.18)

for all (w,u,q) belonging to a neighborhood /\/(w(z),a(z),o) CR"xR" xR of
(w(t),i(t),0). Then, we find a radius p independent of t and a continuous
function

ol B, (a(t),0) — R™

satisfying o' (ii(t),0) = w(t) for all t € T, and
F (o (u,q),u,q) =0 forall (u,q) € Bp(i(r),0) and t € T,..

The function @ : {(u,t,q)|t € Z.,(u,q) € Bp(ii(t),0)} — R defined
by 0" (u,t,q) = oll(u,q) is continuous with respect to t. Furthermore,
@ (u,1,q) = @P"(R(t)u,t,q) for all t € I. and (u,q) € By (i(t),0). Addi-
tionally, @™ has the continuous partial derivatives

of*(u,1,q) = —(Gy ' f) (x,1)D(1)
wgert(uvtaq) = G]_l(yvxat)

with
y:=D(t)0P™" (u,t,q), x:=D(t) u+ Qo(t)®*" (u,t,q)
for (u,q) € Bp(ii(t),0) and t € I.. In particular,

ol (a(1),0) = —(Gy ' f) (3(),%(1),7) D(F)
) (i(1),0) = G | (3(¢), (1), D).

Notice that the function FP*"* extends the function F by the additional perturbation
term g. More precisely,

FP(wyu,t,q) = F(w,u,t) —q.

Proof. (1) This follows from the implicit function theorem analogously to the proof
of Lemma 4.4. The function @P®"* extends the previous function @ in the sense

@™ (1,1,0) = 0 (u,1).

(2) The main work here is to show the existence of such a radius p that is indepen-
dent of t € Z.. We show the existence of o’ by constructing a fixed point map as
follows. Let 6 > 0 be so small that

Nissy = {(510) +-D0)w5.0) +-D(0) gor) |t € T | < 8.[us| < 5
CR"x Df X If.

Since y(-), X(-), D(-) and D(-)~ are continuous on Z. we get N5 z) to be a compact
set and, thus, f,(-) as well as fi(-) is uniformly continuous on N; 5. Therefore, we
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find an o such that 0 < & < § and for all 7 € 7., ws € B (0) and us € By(0) one
has

[(A(50) + Dlews. 20+ D) 1) — /50, 5(0),0)DL0)| @.19)
+ [ (A(10) + DO, 50+ DIO) s.1) = F(5(0).5(0).0)) Q0(1)] < 5.
with
cr = max (G (5(0)5(0).1)) .
Define the fixed point map
HY(w.2) i=w— (B (900, 20) " FY (w.2)
for w € Bo(W(t)) and z € By (Z(r)) with
—(wa), )= (@0),0), pi=amin{l o}

and

= max (G5 + D0)wa,5(0) + D) g 0D |+ 1),

teZe|wsl|<o|ug| <o

Next, we show that H (.,z) is a contractive mapping from By ((z)) into By, (w(r)).
By definition of Fll and (4.19) we have

FU(w(1),2(0)) = F(5(1),%(t),1) =0, (4.20)
(F 0w (0),200)) | < e, (4.21)

R (w(1),2(0)) — B (w.2)| < é 4.22)

IF (w(1),2(0)) — F (w,2)| < e (4.23)

for all # € Z,, w € B (w(t)) and z € B, (Z(t)). The contractivity of H"l(-,z) can be
concluded from (4.21), (4.22) and

|HM(W17Z)_H[[](W1’Z)|
1
= |wy —wa — (F9 (w(2),2(t) ))*1/0 F (swy + (1= s)wa,z) ds (wy —wa)|
<c1/ |F F[f](swl—I—(l—s)wz,z)|ds|w1—wz\

<6‘12—|W1 wa| |W1 wa|
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for all wi,wy € Ba(W(t)), z € Bp(Z(t)) and t € Z.. We see that H)(-,z) is a self-
mapping on By (w(t)) by (4.20)—(4.23) and

HE (w,2) = w(7)|
=|w—w<r>—<F[’]<w<r> z(r)))*‘[ Fw,2) = FU(i(e), (1))
<a|FP e / FI (s (15052 (1-5)2(0)) ds| [w — 9 (2)|

+cl\/ F (swH (1 =s)w(z),sz+ (1 —15)z(t))ds| |z—z(2)|

1
<o [ IRN(0).20) ~ B ovra-990) sera-z0) | ds b = 5(0)
+ciea|z—7z(1)|

1
sO+ciop <o

[w—w(t)| +ciea|z—z(f)]| < 3

N =

forallt € Z., w € Bo(w(t)) and z € B, (Z(¢)). The Banach fixed point theorem pro-
vides a fixed point w of H'(-,z). This means that there is a unique w = wl'l(z) €
By (w(t)) such that H(wll(z),z) = wll(z) for all € Z.. and z € B, ((t)). Conse-
quently,

Fllwll(z),2) =0,  VteZ.VzeBy(Z(1)).

By standard arguments one obtains w!’ () to be continuously differentiable having
the derivative

wile) = — (B (2),2) EI Wl (2),2),  VieZ.vzeBy(E()).

Defining
o (u,q) == w(z) = wH (u,q)

it remains to show that the function @**"(u,,q) := ®!"/(u,q) is continuous with
respect to ¢. Since the locally defined function @P*"(u,z,q) from part (1) of this
lemma is unique, we can conclude that the function @ (u, 1, q) equals @P*"(u,1,q)
on a neighborhood Nz) 7,0y for all 7 € Z.. Since @P*"*(u,t,¢) is continuous with
respect to ¢, also (ope“(u,t,q) is continuous with respect to . Removing the tilde
notation in @P*"(u,z,q), the assertion (2) is proven. O

Corollary 4.10 below is an extension of Theorem 4.5, and it can be proven analo-
gously to the proof of Theorem 4.5.

Corollary 4.10. Let the DAE (4.1) be regular with index I and 1. C Ly be a compact
interval. Then, each solution x € C}(Z.,R™) of the perturbed DAE

F((Dx)' (1), x(1),1) = q(t)

with |(Dx)(to) — D(t9)x°| and ||q||- being sufficiently small, can be represented as

x(t) = D) u(t) + Qo(t) @"" (u(t),t,q(t)), t€I.



4.2 Solvability 331

with the continuously differentiable function u := Dx satisfying the (perturbed)
IERODE

W (1) = R (1)u(t) + D(1) &P (u(r),1,q(1)),  u(to) = D(to)x’ (4.24)

and FPY(@P*"(u,t,q),u,t,q) = 0 for FP" defined in (4.17).

Now we are prepared to state the main solvability and perturbation results.
Theorem 4.11. (Solvability) Let the DAE (4.1) be regular of index 1.

(1) Through each xog € Mo(ty) there passes exactly one solution of the DAE (4.1).
More precisely, we find an open interval T C Iy and a solution x € Cll) (Z,R™)
satisfying x(to) = xo € Mo(to).

(2) LetZ. CIfbeacompactinterval, ty € L. If x, € Cb (Z.,R™) is a solution of
the DAE (4.1), then all perturbed IVPs

FUDx)'(1),x(1),1) = 4(t),  Dl(to)(x(t0) =x") =0, 2"€R", geC(Z,R")

are uniquely solvable on C}(Z.,R™) supposing ||q|l~ and the deviation
ID(t0) (x° — x4 (t0))| of the initial value x° are sufficiently small. The solution x
of the perturbed system satisfies

[[x = x:leo < C(1D(t0)x(t0) = D(t0)x+(10)] + [l |--)
while its differential component Dx satisfies

max |D(s)x(s)—D(s)x.(s)]

1o <s<t

< A1) (|D(t)x(to) = D(t)x.(10)| + & max \q(s)l)’

€l g <s<t
with certain constants C, c1,c3 > 0.

Proof. (1) Since xo € My (o), we may apply Lemma 4.4 (1) for f = #p and X := xo
in order to obtain a function o satisfying

F(D(t)o(u,t),D(t) " u+ Qo(t)(u,t),t) =0 (4.25)
and Qo (79)x0 = Qo®(D(to)xo,%0). Consider the inherent regular ODE (4.12)
u' (1) =R (1)u(t) + D(t)w(u(t),1)

and notice that (D(1y)xo0,%) € Dg. Since @ is continuously differentiable with re-
spect to u, the Picard—Lindelof theorem provides a unique continuously differen-
tiable solution function u(-) existing on a certain neighborhood Z,, C Iy of ty such
that u(ry) = D(f9)xo, and (u(t),t) € Dy, for all € Z,. Since R is a projector function
we find RR'R =0 and
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which means x € C},(Z,,R™). Furthermore,
x(to) = D(to) D(t0)x0 + Qo(to) @(D(to)x0,t0) = Po(to)xo + Qo(to)x0 = Xo,

and hence x(-) passes trough xy. It remains to verify that x(-) satisfies the DAE (4.1).
Inserting the definition of x(-) into (4.1) and using (4.26) we find

FUD@)x(2)) x(t),1) = f(u' (1), x(t),1) = F(R(t)u (1),x(2),1)
= f(D(t)o(u(t),1),D(t) u(t) + Qo(t)@(u(t),1),1)
=0, teZ,.

(2) We define u,(t) := D(t)x,(t). Since x,(-) solves the unperturbed DAE (4.1)
we get a continuous function y,(r) := (D(1)x.(r))’ satisfying f(y«(¢),x«(¢),t) = 0.
Then, Lemma 4.9 (2) provides a radius p > 0 and a function @P*"*(u,,q) defined
on {(u,t,q)|t € L, (u,q) € Bp(u.(t),0)} such that

FP (P (u,t,q),u,t,q) =0 ¥ (u,q) € Bp(u.(1),0) Vt € L.
This implies
F(D() 0P (u,1,q),D(t) " u+ Qo(t)@P" (u,t,q),1) —q =0
for all (u,q) € Bp(u.(r),0) and t € Z.. We consider the IVP
W (1) = R (t)u(t) + D(1)0” (u(t),1,q(1)), ulto) = Dl(to)x°.

Using Peano’s theorem we obtain a continuously differentiable solution u(-) on Z,
for sufficiently small perturbations g. With the same arguments as in the proof of
part (1), we see that

u(t) =R(t)u(t), Vtel,
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and the function
x(t) = D(t) u(t) + Qo(t) @™ (u(r),1,q(1)), tE€L,
satisfies the perturbed IVP
FUDx) (6),x(1),1) = q(t),  Dl(to)x(t0) = R(to)ulto) = u(to) = D(1o)x".
It remains to prove the perturbation estimations. We know that
W (1) =l (8) = R (1) (u(t) — us (1))
+D(1)(@P (u(t),1,q(1)) — 0P (u(r),1,0))
and
u(to) — us(to) = D(to) (x(to) — x.(10))-
Taking the mean value we conclude

W () =, (t) = R (1) (u(t) — u.(t))
+D(¢ / OP" (su(t) + (1 — s)us(t),2,5q(t)) ds (u(t) — u.(t))
/ @ (su(r) + (1 —s)u(1),1,5q(1)) dsq(z).

Since Z, is assumed to be compact, also the set

{(su(t) + (1= s)u(t),1,5q(t)) |t € Lo, s € [0,1] }
is compact and we obtain unlform bounds for the continuous functions R, Do} =
—-DGy fxD and Da)gert = —DG1 . Hence, we find constants ¢; > 0 and ¢, > 0 such
that
/(1) =l ()] < cr|u(t) —ue ()| +c2lq()], V€L,

and Gronwall’s lemma implies

ma, (2) <. (5) < e Qo) 00| + £ max [a(2)]).

to<t<t <

Regarding u(t) = D(7)x(7) for all T € [y, ¢], the assertion for the differential com-
ponents is proven. Additionally, we find a constant ¢3 > 0 such that

et = 0| = maxfu(e) —u(1)] < e3(|D(t0) (x(t0) — 2 (00)) + llgllee). - (4:27)

Taking into consideration the solution representation, we derive
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xX(t) =x.(t) = D) (u(r) — u(t))
1
+Qo(t)/0 o (su(t) + (1 = )u.(t),1,5q(1)) ds (u(t) — (1))

+000) [ @ sule) + (1~ (1),154()) ).

Again, we find uniform bounds on Z, for the continuous functions D, Qoa),fert =

—Q0Gy ' ;D™ and Qo™ = QyG !, thus
x(t) —x. ()] < cafu(t) —ue(t)| +cslqt)] Vi€ L.

Together with (4.27), this leads to the perturbation estimation of the theorem. a

4.3 Consistent initial values

This section describes a way to compute consistent initial values yg,x( for a fixed #y
such that

f(yo,x0,70) =0. (4.28)

This task is relevant for starting integration methods (see Chapter 5). The value yg
reflects the expression R(r)(Dx)’(1p). By definition, an initial value xo is consistent
for

FUDx)'(1),x(1),1) = 0 (4.29)

if there is a solution of (4.29) through x(. As seen in the section before, all values
X0 € My(to) are consistent initial values for index-1 DAEs of the form (4.29). A pair
(y0,xp) is called a consistent initialization if xq is a consistent value and y satisfies
(4.28).

We recall Assumption 4.1 and the property f(y,x,t) = f(R(t)y,x,t) resulting
from Lemma 4.2. The system (4.28) is underdetermined with m equations and the
n+m unknowns (Yo, o). Therefore, we aim to complete the system to a regular one.
Before doing so, we notice that one sometimes seeks a so-called operation point xq
satisfying

f(O,xO,l()) =0.

This is possible by means of Newton-like methods supposing f, to be nonsingular.
An index-1 IVP is described by the DAE (4.29) and the initial condition

Py(10)(x(0) —x°) =0, or equivalently, D(o)(x(t9) —x°) = 0.

We consider the system of equations
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(y()vx()vt()) 0
Py(to)(xo —x°) =0,
(I=R(t))yo =0,
which can be condensed to the square system
f(y0,%0,%0) =0, (4.30)
(I—R(t0))yo + D(t0) (xo —x") = 0. (4.31)

Lemma 4.12. The left-hand side of the system (4.30), (4.31) has a nonsingular Ja-
cobian
3 — fy fx
I —R(t) D(to)
with respect to yo,xo if (4.29) has tractability index 1. The inverse of JJ is given by

- [D(to)G—l I—R(to)—D(to)G_lfxD_(to)}
Qo(t))G™" D™ (to) = Qo(to)G~' fiD~ (t0) |
We omit the arguments of fy = fy(y0,%0,t0), fx = fx(Yo,%0,%0) and G = G(yo,Xo,1)-

Proof. The Jacobian of the left-hand side of (4.30), (4.31) with respect to yp,xp is
given by
3 — |: f} fx ]
I—R(t) D(to)| "

The nonsingularity of j is investigated by looking for nontrivial solutions of

ale
I—=R(19) D(to) | [z«
Multiplying the second equation by R(ty), it leads to D(fy)z, = 0 and, consequently,
also (I —R(tp))zy, = 0. Using this, the first equation reads

fR(t0)zy + frQo(to)zx =0 or  (f,D(t0) + fxQo(t0)) (D™ (t0)zy + Qo(t0)zx) = 0.

=G,

From the nonsingularity of G| one can conclude D™ (f9)z, = 0 and Qo (f))zx = O.
Altogether, zy, = 0 and z, = 0. This means J is nonsingular. The form of the inverse
of J can be confirmed by direct multiplication. O

The regularity of the nonlinear system (4.30), (4.31) to determine (yp,xo) makes it
possible to apply Newton-like methods to solve the system. System (4.30), (4.31)
has dimension m + n, which might be large. The introduction of a new variable
N := D (t9)yo + Qo(fo)xo reduces the dimension of the nonlinear system. We con-
sider the system
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F(D(to)1,Po(t0)x" + Qo(to) 1, t0) = 0 (4.32)

of dimension m with respect to 7. It has a nonsingular Jacobian matrix for index-
1 DAEs (4.29). As one can easily verify, consistent initializations (yo,xo) can be
computed by calculating an 1 satisfying (4.32) and assembling y( and xy by

yo = D(to)7, xo = Py(t0)x" + Qo (to)n.

4.4 Notes and references

(1) To a large extent, our presentation follows the lines of [96, 114]. In [96], similar
decoupling functions w are applied to investigate DAESs in standard form, whereas
[114] comes up with a modification of this approach to quasi-linear DAEs of the
form A(x(t),2)(D(t)x(¢)) + b(x(z),t) = O with properly stated leading term.

(2) The demand for the nullspace ker fy(y,x,7) to be independent of the variables
y and x is not really a restriction in the given context. Each DAE that meets all other
conditions in Assumption 4.1 can be easily modified to satisfy this requirement, too.
Namely, choosing a C'-projector function onto imD, R:Z +— R", the equivalent,
modified DAE

J(D@)x(1)),x(1),1) =0,

with f(y,x,t) := f(R(t)y+ R (1)D(t)x,x,t), kerfy(y,x,t) = kerR(z), satisfies As-
sumption 4.1 in all detail.

(3) Definition 4.3 generalizes the corresponding index-1 definitions given for
linear DAEs in Chapters 1 and 2.
In the present chapter, dealing exclusively with index-1 DAEs, we apply the notation
G(y,x,t), while in Chapters 1 and 2, where also higher level matrix functions come
in, the corresponding special cases are Gy, respectively G (7). We mention, that in
Chapter 3, to handle fully nonlinear DAEs (4.1) of arbitrary index, we use the further
generalization Gy (x!,x,t) of G1(t) which is slightly different from G(y,x,t).

(4) As addressed in detail in Chapter 3, almost all DAE literature is devoted to
standard form DAEs (3.150), i.e.

(X' (),x(),t) =0, (4.33)

given by a smooth function f, and one usually applies the differentiation index (cf.
Remark 3.72). As pointed out in Chapter 3, there are good reasons for supposing a
constant-rank partial Jacobian § i (x!,x,7), such that kerf,i1 becomes a C!-subspace.
By [25, Proposition 2.5.2], the standard form DAE (4.33) has differentiation index 1,
exactly if the so-called local pencil

Afa (x',x,) +f(x',x,r) has Kronecker index 1 (4.34)
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uniformly for all arguments x!, x, 7.

As discovered by Ch. Lubich (cf. Example 9.3), if the subspace kerf,i (x',x,t) ac-
tually varies with (x!,x), then it may happen that the DAE (4.33) has differentiation
index 1, but its perturbation index is higher. We avoid this situation by supposing
the nullspace kerf,i(x!,x,t) to be independent of (x!,x). Note that in applications
one usually has such a constant nullspace. Then we put

N(t) :=kerf (x',x,1)

choose a C ]—projector function P along N, and turn, as described in Section 3.13,
from (4.33) to the DAE (3.153), that is to

FP@Ox(@))x(),0) = F((P(1)x(t)) = P (6)x(1),x(t) 1) = 0, (4.35)
which has a properly involved derivative. The matrix pencil (cf. (4.6))
A’f)P—i_fx = leIP—F (fX - fle,) = z’fxl + (fx - fle/)

is regular with Kronecker index 1, exactly if the matrix pencil (4.34) is so (see
Lemma A.9). This shows that in this context the tractability index 1 coincides with
the differentiation index 1, and hence the results given in this chapter for DAEs of
the form (4.1) apply at the same time via (4.35) to the standard form DAEs (4.33).

(5) As an immediate consequence of Theorem 4.11, each DAE (4.1) being regular
with index 1 has perturbation index 1.



Chapter 5
Numerical integration

Index-1 DAEs with properly involved derivative have the advantage that there exists
a uniquely determined (by the problem data) inherent explicit ODE, which is not the
case for standard form DAEs. Investigating numerical integration methods applied
to DAEs with properly stated leading term, the central question is how the given
method performs on this inherent ODE. We discuss backward differentiation for-
mulas (BDFs), Runge—Kutta methods, and general linear methods (GLMs). In each
case, it turns out to be reasonable, to seek a numerically qualified DAE formulation,
which means a DAE with im D(¢) being independent of 7, since then the integration
method is passed unchanged to the inherent ODE. In this way, additional restric-
tions on the integration stepsize, which arise when using DAEs in standard form,
are avoided.

Section 5.1 communicates the basic idea by means of an example. Section 5.2
collects material on the methods applied to ODEs and standard form DAEs. Then
Section 5.3 describes how these methods can be applied to DAEs with properly
leading term. We provide in Section 5.4 a condition which ensures that the given
integration method arrives unchanged at the inherent ODE. Then, Section 5.5 pro-
vides error estimations and convergence results. We mention that the next chapter
on stability issues adds respective results concerning infinite intervals.

In the present chapter, the number n is used for two different quantities. On the
one hand, as throughout this monograph, n denotes the dimension of the space where
D(r) is mapping into (D(f)x € R" for x € R™). On the other hand, n describes the
current numerical discretization (cf. x,, #,). We keep this common notation for dis-
cretizations. It should always be clear from the context which meaning of # is sup-
posed.

In the present chapter we use the acronym ODE for explicit ODEs, as is quite
common in numerical analysis.
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© Springer-Verlag Berlin Heidelberg 2013
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340 5 Numerical integration

5.1 Basic idea

We apply several well-known ODE methods to DAEs. We start by means of special
cases and examples to point out distinctive features.

First, consider the explicit Euler method as a prototype for explicit step by step
integration methods. Applied to the explicit linear ODE

X (1) = C(1)x(1) +q(t), (5.1

it reads
Xp = Xp—1+ h(C(tn—l )xn—l + Q(tn—l ))7

with the stepsize h. Clearly, for given x,,_;, the Euler formula uniquely determines
the current approximation x,. Rewriting the Euler method as

1
_(xn _xn—1> = C(tn—l)xn—l +q<tn—1)

h
we see that the derivative is approximated by the backward difference quotient
whereas the right-hand side is evaluated at the previous time point #,_;. Following
this idea also in the case of linear DAEs in standard form

E ()X (t) +F(t)x(t) = q(t) (5.2)

we get the method

1
E(tnfl)z(xn _xnfl) +F(tnfl)xn71 :CI(tnfl)y

and for DAEs with a proper leading term
A()(D(0)x(1)) +B(1)x(1) = q(1), (5.3)

it follows that

Altn-1)3 (Dl )5n — Dl 1) 501) + Bty 1)1 = gl ).

In the case of DAEs, the matrices E(f,—1) and A(f,—1)D(t,—1) are singular and,
obviously, in both cases the current value x,, is no longer uniquely determined. In
consequence, the explicit Euler method does not work for DAEs. The same difficulty
arises when applying any other explicit method directly. So, if no special structure
can be exploited, one is obliged to use implicit integration methods. As a prototype
we consider the implicit Euler method. For linear explicit ODEs (5.1), the numerical
solution x;, is given by

%(xn 7xn,1) = C(tn)xn + q(t,,).
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The derivative is again approximated by the backward difference quotient, but the
right-hand side is evaluated at the new time point #,,. For linear DAEs (5.2) and (5.3),
this idea results in the formulas

1
E(tn)ﬁ(xn —Xn—1) + F (tn)xn = q(tn), (5.4)

and
A(tn)%(D(ln)xn —D(ty—1)Xn—1) +B(ty)xn = q(t,). (5.5)

This time, in each case, we obtain a unique solution x,, if the matrices E (t,) + F (t,)
and }A(t,)D(t,) + B(t,), respectively, are nonsingular. It is not difficult to verify
that both matrices are nonsingular if the local matrix pencils AE(t,) + F(t,) and
AA(t,)D(t,) + B(t,), respectively, are regular (see Definition 1.2) and the stepsize
h is sufficiently small. As pointed out in Section 4.4, Note (4), index-1 DAEs, both
standard form DAEs and DAEs with properly stated leading term, have regular ma-
trix pencils. In the present chapter, we show that large classes of implicit integration
methods work well for index-1 DAEs. For the moment we would like to empha-
size, that also higher-index DAESs often exhibit regular local matrix pencils. Conse-
quently, implicit numerical integration methods are often formally feasible, but they
may generate values far away from the exact solution (cf. Chapter 8).

Before turning to general index-1 DAEs, we consider an example showing a
surprising behavior of the implicit Euler method for DAEs. It causes unexpected
extra stepsize restrictions compared to its behavior for explicit ODEs. Recall that
A-stability is an important feature of numerical ODE methods which allows us to
avoid stepsize restrictions caused by stability reasons. The explicit and implicit Eu-
ler method applied to the scalar ODE x’(r) = Ax(t), with A < 0, generate the recur-
sions

Xp = (1 —&—hl)xn,l, and Xp = man.

In order to reflect the solution property |x,| < |x,—1| appropriately, the stepsize re-
striction |1+ AA| < 1 or, equivalently, h < _%L is required for the explicit Euler
method. For the implicit Euler method, the corresponding condition 0 < ﬁ <1
is satisfied for any stepsize, which is much more comfortable.

Example 5.1 (The impact of the DAE formulation). Let A be any real parameter
A <0, A # 1. Consider the DAE

(A —1)x} + Atxy =0, (5.6)
(A—Dx1+ (At —1)x =0, (5.7)

which has the smooth solutions

_A =1 )

n(0) =—7— x2(to), x2(r) = e0)x, (1g). (5.8)

The DAE can be written in standard form (5.2) as
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A—1Ar 0 0
[ 0 O}x/(t)—i- [Al ltl] x(t) =0.
Turning to the slightly reformulated equivalent version of the given DAE
(A = 1D)x] + (Atxy) — Axp =0, (5.9
(ﬁ,—])xl—i-(ll—l))@:o (5.10)

one has a DAE with properly stated leading term (5.3),

Ll)] ([L—1 1] x(1)) + [/1 0 X M‘fJ x(t) =0.

Choosing

we obtain the decoupling function

t—1

o) = — PT] u, D)o(ut) = Au.

Then, the IERODE associated to the DAE version with properly stated leading term
applies to the variable u = Dx = (A — 1)x; 4+ Atxy, and it reads
u' = Au. (5.11)
Further, observe that, turning from the variables x1, x5 to « and v with
u:=(A—1)x; + Atxy, Vi=x,
the system (5.6)—(5.7) is equivalent to

u = Av, (5.12)
U= (5.13)

Next, the implicit Euler method applied to the DAE (5.6)—(5.7) in standard form
reads

A - 1)%(%” —X{p—1) +7Ltn%(x27n —x2,-1) =0, (5.14)
(A —=Dx1+ Aty —1)x2,, =0. (5.15)
In terms of the transformed variables
Uy = (A — l)xl,n Jrltnxz,m Vn = X2,

this leads to
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(Un —ttp—1) = Avn_1, (5.16)

S| =

Up = Vn, 5.17)

and the recursion |

Z(M" —Up_1) = Alp_j.
Surprisingly, this represents the explicit Euler method for the ODE ' = Au involved
in (5.12)—(5.13) although we have applied the implicit Euler method to the DAE
(5.6)—(5.7). Consequently, the implicit Euler method applied to the DAE (5.6)—(5.7)
provides stability preserving solution approximations only if /& < —%. Such extra
stepsize restrictions have already been observed in [3]. Figure 5.1(a) shows the nu-
merical solution x, for A = —100 and # = 0.0202 for the implicit Euler method
applied to (5.6)—(5.7). This is not what one expects from an A-stable method. In
this sense, the A-stability gets lost when the method is applied to a DAE in standard
form. In light of this observation one could think that the implicit Euler method is

numerical
2 exacl |

)
=] =
o

[ 02 04 06 LE:] 1 o 02 04 0.6 08 1
1 t

(a) DAE formulation (5.6)—(5.7) (b) DAE formulation (5.9)—(5.10)

Fig. 5.1 Solution x; of the implicit Euler method with the stepsize & = 0.0202 and A = —100

not well suited for integrating problems like (5.6)—(5.7). However, the situation be-
comes much nicer if one applies the same implicit Euler method to the same DAE
written with properly stated leading term. Then we get

1 1
(A— 1)E(x1,n — X1 1)+ E(/llnxz,n — Aty 1xo0-1) = Ax2,y =0,
(A —=Dx1p+ Aty —1)x2,, =0.
Using the transformed variables
Up = ()v - l)xl,n +A.lnx2,n, Vn = X2.n,

the implicit Euler method for (5.6)—(5.7) implies
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(thy — ttp—1) = Ay, (5.18)
Uy =V, (5.19)

> —

and the resulting recursion has the form

%(un - un—l) = Auty,
which is exactly the implicit Euler method for the inherent ODE. In this case, the
inherent dynamical system of the DAE with a properly stated leading term is solved
by the same numerical method as the one applied to the original DAE. Figure 5.1(b)
shows the solution x; for the same values as chosen previously. No stepsize restric-
tion for stability reasons occur. O

The preceding example makes it clear that the way we formulate the DAE may have
a significant influence on the numerical solution behavior. DAEs with a properly
involved derivative seem to have an advantage in contrast to standard form DAE:s.
The following pages are devoted to a detailed analysis of numerical methods applied
to DAEs with a properly involved derivative. Our special interest is directed to the
question of how numerical methods applied to DAEs (4.1) act on the inherent ODE
(4.12).

The theoretically ideal way of deriving a suitable numerical method for DAEs
would be to formulate the method for the inherent ODE and then to compose a nu-
merical solution x;, of the DAE from this ODE solution u, (see Figure 5.2). However,

local d 1i
DAE ocu Cecoupne IERODE

solve ODE numerically

wrap up

T
for numerical DAE solution

Fig. 5.2 Ideal construction of numerical methods for DAEs via local decoupling

this is not a realistic way to solve DAEs since the local decoupling function @ is
usually not known. Even, if a decoupling is known, it is often very costly to com-
pute. What we can do—and we should do it—is to investigate to what extent the
numerical methods, being applied to the DAE, generate a correct integration of the
IERODE, and whether the constraints are correctly reflected. In general, both con-
cerns might be missed. On the other hand, as we point out in this chapter, there are
numerical methods that fulfill the desired properties if they are applied to DAEs in
a suitable way. To be precise, we formulate sufficient conditions guaranteeing that
the numerical method applied to the DAE (4.1) generates exactly the same method
for the IERODE (4.12). Thereby, knowledge of the inner structure of the nonlinear
regular index-1 DAE described in Theorem 4.5 plays its role.
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As prototypes of linear multistep methods and one-step methods, we discuss the
BDF and Runge—Kutta methods. Afterwards we consider general linear methods.
First we recall how these methods look for explicit ODEs, and then we consider
modification for DAEs in standard form and for DAEs (4.1) with a properly involved
derivative.

5.2 Methods applied to ODEs and DAEs in standard form

5.2.1 Backward differentiation formula

The backward differentiation formula (BDF) is an implicit linear multistep method
that generalizes the implicit or backward Euler method by approximating the deriva-
tive by an eventually more accurate k-step backward difference quotient. This for-
mula has been introduced in [55]. It is widely used, in particular in circuit simula-
tion, on the basis of [86]. For explicit ODEs

the BDF method is formed by

1 k
h_ Z OlpiXpn—i = g(xnvtn)~
n =0

Here, x;, denotes the numerical solution at the time point #,,. The stepsize ,, —#,—1 is
denoted by #,. The coefficients ¢,; are derived from a polynomial interpolation of
the ODE solution through the interpolation points t,, ..., t,_x. As is well-known, in
the case of constant stepsizes, the BDF satisfies the root criterion of Dahlquist for
k < 6, but it does not for k > 6 (see, e.g., [86, 105]). For this reason, it is strongly
recommended to apply the BDF just with k < 6, since otherwise dangerous error
accumulations may appear. The BDF is feasible in the sense that the nonlinear equa-
tion system to be solved, in order to generate the actual value x,,, has the nonsingular
Jacobian I — % g if the stepsize h,, is sufficiently small. To ensure a smooth numer-
ical integration, one has to consider quite nontrivial aspects concerning the stepsize
arrangement (e.g., [99, 96, 100, 34]).

The BDF has a natural extension to DAEs in standard form (4.33) (e.g., [86, 90,
96, 25])

1 k
f(/’l— Z O‘nixn—iaxnatn) =0.
n =0
1
Now the system to be solved for x, has the Jacobian

060
ot 5
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As pointed out in Section 4.4 Note (4), for index-1 DAEs, the local matrix pencil
(4.34) is regular with Kronecker index 1, and therefore the Jacobian is nonsingular,
supposing the stepsize is sufficiently small.

The BDF is implemented in several well-known DAE solver packages such as
DASSL [182] and DASPK [181, 148]. The BDF is applied very successfully in
many applications, which use in essence index-1 DAE:s. In contrast, for higher index
DAE:s, one has to expect the failure of the method ([90], see also Chapter 8).

5.2.2 Runge—Kutta method

More than a hundred years ago, Runge and Kutta ([196, 136]) introduced their one-
step methods, called explicit Runge—Kutta methods today. Implicit Runge—Kutta
methods for ODEs

X (t) = g(x(t),1)
were promoted in the 1960s (cf. [32, 33, 104, 29]). An s-stage Runge—Kutta method
is a one-step method of the form

s
Xp = Xn—1+hy Z biX;iia
i=1

where one has to compute the stage derivatives X/,,..., X  as a solution of the

nl>-
equation system

S

Xr/li:g(xnf]+hnzain,,,j,tni)7 i=1,...,s,
=1

with stages t,; := t,—1 + ¢;hy, and coefficients a;;, b;, c; which are usually collected
in a Butcher tableau

If the Runge—Kutta matrix A is strictly lower triangular, one speaks of an explicit
Runge—Kutta method. Otherwise, it is called an implicit one. In case the Runge—
Kutta matrix is nonsingular, we denote the entries of its inverse by «;;, that is

A7 =1 ())ijt s -

As before, x, denotes the numerical solution at the current time point ¢,, and #,
is the stepsize t, —t,—1. The stage derivatives X, are thought to approximate the
derivative values x/ (z,;) of the solution, and the resulting expressions
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S
Xni = Xp_1+hy Za,‘jX,/lj,izl,...,S, (5.20)
j=1
are called stage approximations for the solution values x.(,;) at the stages #,;.

Extensions of Runge—Kutta methods to DAEs in standard form

f'(£),x(1),1) = 0

are not as evident as in the case of BDF methods. At first glance, one can formulate
them as ([183, 96, 25, 103])

s
X =Xn-1+hn Y biXy, (5.21)
i=1

with stage derivatives X, to be determined from the system

S
F(XniXno1+hn Y aijXyiitni) =0, i=1,....s. (5.22)
j=1

One has to be aware of the fact that the existence of stage derivatives X/; is not
assured, if one uses an explicit method. This becomes evident by a look at the fol-
lowing simple DAE, with x = (u, w):
W=w 1= u2+w2,

for which, for instance, any two-stage explicit Runge—Kutta method fails to de-
termine unique stage derivatives X/, = (U},,W,,) and X/, = (U/,,W/,) from the
respective system (5.22), that is, from

U/

n

U;{lz = Wn—1 +hna2]Wr:13 1= (unfl +hna21Uy/11)2+ (anl +hna2]Wy:1)2~

2 2
1 = Wn-1, 1:un71+wn71

On the one hand, W,ﬁz is not defined at all. On the other hand, the system is solvable
only if the previous solution (u,—1,w,—1) satisfies the constraint

g+ Wy = 1.
The situation described above is typical of all explicit Runge—Kutta methods, and we
simply decide not to use them. Analogous problems arise for Runge—Kutta methods
having a singular Runge—Kutta matrix .A, which also rules out these methods. To
explain the circumstance we turn, for a moment, to the linear constant coefficient
DAE

EX'(t)+Fx(t) = q(1), (5.23)

and the respective system of equations (5.22)
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S
EXyi+F(Xn 14 Y aijX;) = q(tw), i=1,....s. (5.24)
=1

We are led to inspect the linear system

X,é] —Fx, +Q(tn])
|| = : . U=, OE+hyASF,
X,/,S —Fx, +Q(tns)

whereby the symbol @ means the Kronecker product. Clearly, for a feasible method,
the coefficient matrix 2, should be nonsingular for all sufficiently small stepsizes.
For the simplest index-1 DAE, if E is the zero matrix and F is nonsingular, we
arrive at 2, = hA ® F. Therefore, both matrices 2(,, and .4 are nonsingular at the
same time. In consequence, in order to ensure the feasibility of the method, we have
to assume the Runge—Kutta methods to have a nonsingular coefficient matrix A.

From now on, suppose the matrix A to be nonsingular. Since the DAE (5.23)
has index 1, the matrix pair {E,F'} is regular with Kronecker index 1, and we find
nonsingular real valued matrices (cf. Proposition 1.3) L, K such that

10

00

LEK:[ 01

| wrx=[5 Y.

/
Multiplying system (5.24) by L, and forming X, = K Ki’,”} s X1 =K Bt"_l} , im-
ni n—1

plies that the system (5.24) is decoupled into two parts, the first one
N
Upi+ha Y, aijUp; = ptwi) = Wip_1, i=1,....s,
J=1

being uniquely solvable with respectto U, ,...,U,

5o i the stepsize i, > 0 is small,
and the second one

s
/ .
hnZaUan =r(tni) —Va—1, i=1,...,s,

J=1

which is uniquely solvable, since .4 is nonsingular. Thus, the coefficient matrix 2,
is also nonsingular.

Runge—Kutta methods having a nonsingular coefficient matrix A exhibit a re-
markable property: they provide a one-to-one correspondence between the stage
derivatives and the stage approximations via the relation (5.20). Clearly, formula
(5.20) fixes the stage approximations X,,. .., X, to be uniquely determined by the
stage derivatives X/ ,...,X, . Conversely, if the stage approximations Xy1, ..., Xug
are already known, then (5.20) determines the stage derivatives as the solution of
the linear system
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> 1
Zalj _l’l— Xni — Xn— 1) i=1,...,s.

The coefﬁcient matrix of this linear system is .4 & I,,, and is thus nonsingular, and
(A®1,)~' = A~ ®1,,. The system solution is given as

1 N
X,;,_h—z —xp1), i=1,...,s. (5.25)

For all Runge—Kutta methods, we can write
F(X0i, Xnisti) =0, i=1,....s, (5.26)

instead of (5.22). This shows that the stage approximations X1, ..., X, always sat-
isfy the obvious constraint.

The assumption of a nonsingular Runge—Kutta matrix .4 allows us to replace
the stage derivatives in the description (5.21), (5.22) by the stage approximations,
and to use exclusively the stage approximations. In this way we arrive at another
description of the given Runge—Kutta method, namely

s s
Xn = Xp—1 +h Zb Z al] nj — Xn— l) 1 - Z biaij)xnfl + Z biainnja
i=1 i,j=1 i,j=1

~—_—————
(5.27)

Za,, i = Xn—1)s Xnirtni) =0,  i=1,...,s. (5.28)

There is an extensive literature providing stability, convergence and order results for
Runge—Kutta methods applied to standard form index-1 DAEs (e.g., [183, 96, 25,
103]). Here we mention the condition |p| < 1 for stability reasons. Additionally,
schemes with |p| = 1 are not recommended for the numerical integration of fully
implicit DAEs ([25, p. 100]). Consequently, the Gauss methods are excluded. It is
worth mentioning that, in the context of the collocation solution of boundary value
problems for index-1 DAEs, also Gauss methods prove their value. Concerning the
orders, one has to be aware of certain order reductions when comparing it with the
explicit ODE case.

We stress once again that all stage approximations satisfy equation (5.26) which
reflects the solution property

f(x;(tni)ﬂx*(tni)7tni):0, iil,...,s.

In contrast, the value x, generated by the Runge—Kutta method via (5.21), or
(5.27), does not necessarily satisfy the constraint. There might be no counter-
part X, such that §(X,x,,7,) = O although the true solution satisfies the DAE
F(x,(t1), %« (), 1) = 0. No doubt, it would be to the best advantage, if x, were to
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satisfy the DAE, too. This is a question concerning the choice of the coefficients b;.
Luckily, we are able to solve the problem by assuming c¢; = 1 and b; = ay; for all
i=1,...,s. Then, we have p =0, #, = t,,; and x,, = X,;5. Hence x,, satisfies the DAE
and, in particular, the constraint.

Another idea is to apply formula (5.21) or (5.27) afterwards to provide a projec-
tion onto the constraint set, and then to use the resulting value as the new x,. The
idea of projections back to a constraint has been proposed in [4] for Hessenberg
index-2 DAEs. This approach might work for DAEs with special structure, but for
index-1 DAEs in general the benefit does not compensate the extra costs.

In the following, an IRK(DAE) is an implicit Runge—Kutta method that is par-
ticularly suitable for DAEs because of the nonsingular .4, and the conditions ¢; = 1
andbi:asi,i: 1,...75.

The Radau ITA methods serve as examples for IRK(DAE) methods [105]. The
Radau ITA method with stage number s = 3 is implemented in the well-known DAE
solver package RADAUS [102]. It has order 5 for ODEs and semi-implicit index-1
DAEs.

An IRK(DAE) method simplifies (5.21), (5.22) to

X = Xng, (5.29)

1 g :
f(h— Y 04X —x1) Xoistni) =0, i=1,....s. (5.30)
nj:1

5.2.3 General linear method

Both integration schemes, linear multistep and one-step methods, are well-
established numerical methods with their particular advantages and disadvantages.
Linear multistep methods can be implemented efficiently for large problems, but
the stability properties are not always satisfactory. One-step methods have superior
stability properties but they do suffer from high computational costs.

Several attempts have been made in order to overcome difficulties associated
with each class of methods while keeping its advantages. We quote some of them,
only. Hybrid methods allow more than one function evaluation in a linear multistep
scheme [85]. Using cyclic compositions of multistep methods it became possible
to break Dahlquist’s barriers [19]. On the other hand, Rosenbrock methods aim at
reducing the costs for a Runge—Kutta scheme by linearizing the nonlinear system
and incorporating the Jacobian into the numerical scheme [105, 122].

In order to cover both linear multistep and Runge—Kutta methods in one unifying
framework, Butcher [28] introduced general linear methods (GLMs) for the solution
of ordinary differential equations
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As for linear multistep methods, a general linear method uses r input quantities

x[lnfl], ... ,xL’Fl] from the past when proceeding from f,_; to t, =t,_1 +h with a
stepsize h. For simplicity, we restrict the discussion to constant stepsizes here. Sim-
ilarly to Runge—Kutta methods, s internal stages #,; =t,_1 +cjh, j=1,...,s, are
introduced, and the quantities X,,1, ..., X, have to be calculated from the system
s r [ 1]
n— .
X,,i:hZa,-jg(an,tnj)+Zu,~jxj , i=1,...,s.
j=1 J=1

Then, the new solution vector x! is given by

xl[-n] =h Z

1

S r
-1 .
bijg(an,l‘nj)JrZ’Vijxg1 }, i=1,...,r
= j=1

J
Using the more compact notation

X1 g(anytnl) X

Xo=1| " |, G(X,) = , =1 — :

Xyus g(an s tns) x[rrh 1]

a general linear method can be written as
Xo = (A® Ln)hG(X,) + (U D L )"V,
" = (B@ 5)hG(X,) + (V& L)1,

The integer m denotes the problem size and & represents the Kronecker product for
matrices (cf. [117]). It is only a slight abuse of notation when the Kronecker product

is often omitted, i.e.,
X, | [AU] [hG(X,)
x[n] BV x[nfl] :

This formulation of a GLM with s internal and r external stages from the past is
due to Burrage and Butcher [27]. The matrices A, U, 13 and V contain the method’s
coefficients.

The internal stages X,,; estimate the exact solution values x. (,;), but the external

stages xl["_l] are fairly general. Commonly adopted choices are approximations of
the form
X ([,171) X (tn—l)
(a1 —h hx, (th_1
PP *e(tn .1 ) or =1 ('n ) ;

Xy (ta—1 — (r—1)h) P (4, )
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the former representing a method of multistep type while the latter is a Nordsieck
vector. Notice that, compared to Nordsieck’s original formulation [179], factorials
have been omitted for convenience. General linear methods with Nordsieck type
external stages are considered, among other references, in [120, 31, 214, 211]. Dif-
ferent choices of the vector x"~!I are often related by linear transformations. In this
sense the representation of a method using the matrices A, I/, 3 and V is not unique
as two different methods may be equivalent owing to such a transformation [29].

A modification of GLMs to apply to index-1 DAE:s in standard form

f'(£),x(1),1) = 0
is given by [199]:

f(X;zia Ilivtni):07 iil,...,s,
X, = (A® L)hX 4 (U @ L)x 1,
x[n] — (B®Im)hX,§ + (V@]m)x[n_l].

For the same reasons as in the case of Runge—Kutta methods, the matrix A is as-
sumed to be nonsingular.

5.3 Methods applied to DAEs with a properly involved derivative

Again, as prototypes of linear multistep methods and one-step methods, we discuss
the BDF and Runge—Kutta methods. Afterwards we turn to general linear methods.

5.3.1 Backward differentiation formula

A self-evident extension of the BDF to DAEs with a properly involved derivative
“4.1)
f(Dx)'(1),x(1),1) =0

is given by

1 k

f(h— Y D (tn—i)xn—is Xn,1a) = 0. (5.31)

ni—(
Here, just the derivative term (Dx)’ is approximated by a backward difference quo-
tient. By construction, the resulting estimate x, belongs to the constraint set M(#,)
which reflects the true solution property x.(t,) € Mo(z,). The Jacobian of the sys-
tem to be solved for x,,, which means ﬁa,lo SyD + fx, is nonsingular for all suffi-
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ciently small stepsizes, since the related matrix pencil (4.6) is regular with Kro-
necker index 1.

5.3.2 Runge—Kutta method

IRK(DAE) methods, given by a Butcher tableau

E‘—f}r, A nonsingular, A~!=: ()i j=1,.s »

are applicable to DAEs in standard formulation (cf. Section 5.2.2). How can we
extend these methods to nonlinear DAEs

F((Dx)'(£),x(t),1) =0,

with a properly involved derivative? The equation itself suggests that we adapt the
method in such a way that only approximations for (Dx)’(z,;) are needed. There-
fore, we compose the method by means of stage approximations X,...,X,s for
estimating the solution values x,(,,1),...,x«(tns) and stage derivatives [DX]) for
approximating (Dx)'(t,;), i = 1,...,s (cf. (5.26)). Naturally,
F(DX )i Xnistni) =0, i=1,....s

is satisfied. In order to obtain a reasonable formula containing stage approxima-
tions only, we follow the idea behind the Runge—Kutta formula in terms of stage
approximations (5.28). We introduce

1 ¢ ;
[DX];,; == - Y 0 (D(taj)Xj — D(ta-1)xa—1),  i=1,....s,
n j=1
which is equivalent to

S
D(ti)Xni = D(tn—1)Xn—1 +hn ¥, aij[DX]};, i=1,...,s. (5.32)
j=1

This yields
1 S
f(h— Y 0 (D(t0)Xj — D(tn—1)%n—1), Xir tui) = 0, i=1,....s, (533)
n j:1

for computing the stage approximations X1, ..., Xys.

In order to answer the basic question of whether the Jacobian of the system re-
mains nonsingular, we turn for a moment, for simplicity, to linear constant coeffi-
cient DAEs
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A(Dx(t)) + Bx(t) = q(1),

and the corresponding system
1 N
Ah—Za,'j(Dan—Dxn_l)—I—BXm':q(l‘m'), i=1,...,s. (5.34)
n j=1

The coefficient matrix 2, of this linear ms x ms system with respect to the unknowns
Xut,- .., X,s reads
A, = A® (AD) + h,I; @ B.

Due to the index-1 property of the matrix pencil {AD,B}, the matrix G :=
AD + BQp is nonsingular with Qy being the projector onto kerAD along
{z € R™: Bz € im AD}. Letting Py = I — Qy it holds that G'AD = Py, G"'BQy =
Qo, and, additionally, Qg = QOG_IB. Derive

(LG A, = A2 Py +h,I;@ (G 'B),
and consider the homogeneous equation
(A®Py+hads@ (G 'B))Z=0.

Multiplying the homogeneous system by /; ® Qp, and taking into account the rela-
tion (I, ® Qp)(A®Py) = AR (QoPy) =0, we find

(holy @ (Q0G ™ 'B)Z = (huly ® Q0)Z =0, thus (I, Q0)Z =0, (I, @ P))Z = Z.
Writing A® Py = (A®1,)(I; ® Py) we arrive at
(A® 1Ly +huly® (G'B))Z =0,

and hence, if the stepsize A, is sufficiently small, Z = 0 follows. This shows that the
coefficient matrix 2, is nonsingular for sufficiently small stepsizes &, > 0. In the
case of general index-1 DAEs (4.1), feasibility can be proved in a similar way, but
by stronger technical effort.

Observe that, by construction, the stage approximations lie in the obvious con-
straint set,
X, € Mo(lm'), i=1,....s,

which reflects the corresponding solution property X, (f,;) € Mo(tui), i =1,...,s.
Consequently, x, € My(z,) for IRK(DAE) methods due to x,, = X,,q.
Finally, the IRK(DAE) methods applied to DAEs (4.1) are given by
Xy 1= Xps, (5.35)

.
f(h— Z Ot,-j(D(tnj)an—D(tn,l)xn,l),Xni,tm-) :O, 1= 1,...,5‘. (536)
n j—1
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5.3.3 General linear method

We apply a general linear method to the DAE (4.1),

F((Dx)'(t),x(1),1) =0,

as given by
f([DX]vanlatnl):O i=1,...,s, (5.37)
DXy = h(A® L) [DX], + U @ I,) [Dx]" 1, (5.38)
DX = h(B®1,)[DX], + (V@ 1,)[Dx" 1. (5.39)
The stages X,,; are approximations to the exact solution values x.(%,;) at the interme-
diate time points #,1, .. . ,Z,s. The super-vectors [DX], and [DX]/, are given by
D(tnl)an [DX]:,I
[DX]H = ) [DXM = )
D(tns)Xns [DX]ps

where [DX|),; approximates (Dx.)’ (t,;). The input vector

(Dx..) (tn—1)
Dot | PR )
=1 (Dx*)'(r—l) (tnfl)

is assumed to be a Nordsieck vector. Observe that only information regarding the
solution’s D-component is passed on from step to step. Hence errors in this compo-
nent are the only ones that are possibly propagated.

Again we rule out all methods having a singular coefficient matrix A.

Because of the nonsingularity of A, the relation (5.38) is equivalent to
1
DX = ; (A" @L,)([DX], — (U 1,)[Dx]" ). (5.40)

The same arguments as used for Runge—Kutta methods apply now to show that this
method is feasible.

The quantity x,, that estimates the true solution value x,(,), t, = f,—1 + h has to
be obtained by means of a linear combination of the internal stages X;,;. Every stage
X,,; satisfies the obvious constraints, such that

Xpi € Mo(twi), i=1,....s

It is a desirable feature for the numerical solution to satisfy x,, € My (#,) as well. As
we know from the previous section, IRK(DAE) (stiffly accurate) methods guaran-
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tee this situation. We will therefore restrict our attention to stiffly accurate general
linear methods, which means

M= ["é Zﬂ with A nonsingular , el A=e|B =elV, =1,
such that the last row of [A4,U] coincides with the first row of [B,V)]. This implies
that x,, coincides with the last stage X,,; and hence x;, to belong to Mo(#,).

Similarly as in the case of Runge—Kutta methods, since the matrix A is nonsin-
gular, making use of the relation (5.40) we may reformulate the GLM (5.37)—(5.39)
as

] S
f(ZZa,-j( ()X Zu,er[" ”),Xm-ﬁm»):m i=1,....5, (541)
j=1

and [Dx]" is given recursively by

[Dx] "
= (BRL)(A' @L)([DX]s — (URL) D" ) + (V& I,)[Dx]" .

[Dx]}"
(5.42)
The coefficients otj; and i, are the entries of the coefficient matrices A~ land U.

5.4 When do decoupling and discretization commute?

In contrast to index-1 DAEs in standard formulation, a DAE (4.1) with properly
involved derivative holds a natural inherent ODE, the IERODE, which is uniquely
determined by the problem data (Proposition 4.7). It is reasonable to ask whether nu-
merical methods being applied to the DAE reach the IERODE unchanged. It would
be quite favorable to know which kind of method works on the inner dynamical
part. As Example 5.1 demonstrates, it may actually happen that a method arrives at
the inner dynamic part just in an essentially converted version, and this may cause
serious additional stepsize restrictions.

As before, equation (4.1) is assumed to be an index-1 DAE. We consider BDF
methods, IRK(DAE) methods, and GLMs as described in Section 5.3. Recall that x;,
generated by the BDF method, by an IRK(DAE) method or by a stiffly stable GLM
satisfies the obvious constraint x, € My(#,). Despite the different approaches, we
are able to merge all methods into one framework

F([DA],, %0, 10) =0, (5.43)

by introducing the expressions
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. X, for BDF,
Xy =
X, i=1,...,s, for RK and GLM,
) t,, for BDF,
i ti, i=1,...,s, for RK and GLM,
as well as
7 Li o 0D (b )X i, for BDF,
[D£]!, := h Y51 @i (D(tnj)Xnj — D(ta—1)Xn—-1), i=1,...,s, forRK,
Ly o (D)) Xy — Ty e DA ), i=1,....s, for GLM
with

Df)" = (Bo1,) DR, + (V&) D"

for GLMs. Along with equation (5.43), we give special attention to the perturbed
equation

FUDR 5, B) = g, (5.44)
with
. X,, for BDF,
X, =
"% i=1,....s, for RK and GLM,
and
e Lh 0Dty )% for BDF,
[l/)\}]; = ;LZ _10;(D (tl’lj)an D(ty—1)%n—1), i=1,...,s, for RK,
EZj:laij(D(tn]) - Y- 1Hjé[Dx][ 1]), i=1,...,s, for GLM,
with .
X | _|AU h[DX]!,_,
(D]l — | B V| | D]Vl

for GLMs. The perturbation ¢, stands for rounding errors, and for possible errors
from a nonlinear solver. It is supposed to be sufficiently small. The tilde symbol
indicates possible errors in the quantities under consideration. Furthermore, form

ln = D)%, fn:=D@{)%,, [4],:=[D5]., & :=[D5],. (5.45)

Aiming to achieve better insight, we make use of the decoupling procedure de-
scribed in Section 4.2, in particular of the implicitly defined function @P*". Assume
the definition domain of this function to be as spacious as needed and the time in-
terval to be Z, = [to, T|. Applying Lemma 4.9 for (&,q,) € Bp (u«(#),0), we derive
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the expression
Ol . gn) = OP (R} iin. i, 4u) = D)D), + Qolfn)in (5.46)
from (5.44). Multiplying (5.46) by D(f,) and Qo(#,) yields
D(i) " (G, gn) = R0 IDS, = () (a1},

and y
Q0 (7n) O (G En, Gn) = Qo (F) %,

respectively. In consequence, the solution £, of (5.44) can be represented as

xAn = D(fn)iD(fn)xxn + QO(fn)x;n = D(fn)iﬁn + QO(fn)wpen(ﬁnjnv ‘Zn)a

with &, satisfying
D() 0" (din, B, gn) = R(E, ) [@2]-

By introducing the quantities U,; := D(t;i)Xui, fn—i := D(ty_i)%,—i» and
@ = Dy, we may rewrite [4], as
t ZI'(—() Oty —i, for BDF,
], = ]1 Z ]alj( ﬂnfl), i=1,...,s, for RK, (5.47)
1 .
i 5101 (U, Zf | Wjelit }[n ]), i=1,...,s, for GLM.

To obtain the corresponding relations concerning the case g, = 0 we simply drop
the tildes, in particular,

hl YX o ity for BDF,
[a], = e Z —104j(Unj—un—1), i=1,...,s, forRK, (5.48)
Iys | a,-,»(U,,J Yo el "), i=1,...,s, for GLM.
For later use, the following proposition summarizes the last lines.

Proposition 5.2. Let equation (4.1) be an index-1 DAE and x, : Z. — R™ be a solu-
tion of (4.1). Then, the solution X, of (5.43) can be represented as

£n = D(fn) " iy + Qo (fn) 0P (1, £, 0),
with ii,, satisfying the equation
R(#n) (], = D(Ey) 0" (tn, £, 0) (5.49)
supposing iy € Bp((Dx.)(ty)). The solution %, of (5.44) can be represented as

x:n = D(fn)_’jn + QO(fn)wPen(ﬁnvtA}uqn)a
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with fi, satisfying the equation
R(n) (], = D(fn) " (itn, b, 4n) (5.50)

supposing (lin,qn) € Bp((Dx)(1,),0). The function @ is a continuous function
provided by Lemma 4.9 in the neighborhood {(u,t,q)|t € I., (u,q) €

Bp((Dx)«(1),0)}.
Next we reconsider, for a moment, the perturbed DAE
F((Dx)'(2),x(1),1) = q(1),
and its decoupled form (cf. Theorem 4.5)
x(t) = D(t) u(t) + Qo(t) 0P (u(r),1,4(1)),
with u(-) being a solution of the IERODE (4.24)
W (1) =R (t)u(t) + D(t) 0P (u(t),1,4(1))-

Applying the given integration method to this [IERODE, we obtain the discretized
inherent ODE
(], = R (7))t + D(#0) @ (i1, T, g (1)) (5.51)

Here, the quantity &, describes the numerical approximation of u(#,), and [i]’, esti-
mates u/(7,) in accordance with formula (5.48). Obviously, formula (5.50) coincides
with (5.51) if and only if

R(#y)[a], = [4], — R (f.)d,  and  q(fy) = gn. (5.52)

In other words, discretization and decoupling commute if and only if (5.52) is satis-
fied (see Figure 5.3).

decoupling perturbed DAE

(1) = D)™ (1), 1,9(1)) |

\Lsolve DAE numerically, g,:=q() solve ODE numerically \L

local decoupling ~ N x A
(]}, = D(in) 0°" (itn, Fn, 4n)

f([/D\/ﬂ;vfn-,fn) =dqn

Fig. 5.3 For an index-1 DAE with a properly involved derivative, discretization and local decou-
pling commute if and only if (5.52) is satisfied. A time-invariant subspace imD(¢) is a sufficient
condition for (5.52) to be fulfilled.

The commutativity of discretization and decoupling in this sense is of great im-
portance: it ensures that the integration methods approved for explicit ODEs retain
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their essential properties if applied to DAEs. The following theorem provides a suf-
ficient condition which guarantees commutativity.

Theorem 5.3. Let the index-1 DAE (4.1) have a subspace imD(t) independent of
t and x, : T, — R™ be a solution of (4.1). Suppose the components [Dx| l[o] of the
starting vector [Dx]\% for the GLM belong to imD(ty) for all i = 1,...,r. Then, the

discretization and the decoupling procedure commute for BDF, IRK(DAE) and stiffly
accurate GLM. The discretized IERODE has the form

[ﬁ]l/‘l = D(fn)wpert(’jn»fn,ch) (5.53)

with [d)!, defined in (5.47) and q,, := q({,), independently of the order, decoupling
before discretization or discretization before decoupling. Additionally, in both cases,
the estimate %, of x(f,) is given by

Zn = D(fa) ™ lin + Qo (1) 0P (dn s Gn)-

Thereby, ®P*" is a continuous function in the neighborhood
{(uwt,9) |t € Ic, (u,q) € Bp((Dx)«(1),0)}
for a fixed radius p > 0, provided by Lemma 4.9.
Proof. If imD(¢) is constant then we find a constant projector R, with
imD(t) =imR, =imR(¢), R(t)R.=R., forallzel.

Since [4]}, € imR,. by (5.47), we conclude

R(t)[a], = R(fa)Re[d], = Re[a], = [a,

in formula (5.50). On the other hand, the values 7, appearing in (5.51) also belong
to im R, due to (5.45). This implies

R'(#,)it, = R (£,)Rcity = (RyR.) ity = RLG, = 0
in formula (5.51). Consequently, (5.53) follows and the proof is complete. a

The discretized IERODE in Theorem 5.3 reflects the special form of the IERODE
given by Proposition 4.7 for the case of a time-invariant im D(¢).

Fortunately, DAEs can often be reformulated such that im D(¢) is independent of
t. It is even so that one usually finds a formulation with a full row rank matrix D(z),
imD(t) =R".
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5.5 Convergence on compact intervals and error estimations

We continue analyzing the BDF, IRK(DAE) methods and stiffly stable GLMs ap-
plied to DAEs (4.1) with a properly stated derivative and time-invariant imD(z). In
this section we make use of Theorem 5.3 which allows us easily to transfer conver-
gence and stability properties known for these methods, when they are applied to
explicit ODEs, to the case of DAE:s.

It should be mentioned that the numerical integration methods may show conver-
gence also for the case that im D(¢) varies with 7. However, one is then not aware of
the method which actually integrates the IERODE. Additional stepsize restrictions
might be a consequence.

5.5.1 Backward differentiation formula

We apply the BDF to the DAE (4.1) on a partition 7 of the compact interval Z, =
[to,T] € Zy. Regarding rounding errors and defects in the nonlinear equations, the
BDF methods are given by (cf. (5.44))

1 &
f(/’l_n Zi:o aniD(tn—i)xn—hxnvtn) =qn, n=>k (5.54)
The partitions 7 are assumed to have the following properties:
T: o<ty <---<ty=T, (5.55)

Ryt
0< hmin Shn =l — 1 < hmam K < 2 < K, n > 1,
n

where K, K, hyin and hy,,, are suitable constants such that the BDFs are stable for
explicit ODEs, see [99, 100, 34].

Theorem 5.4. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of t. Let x. € C}(Z.,R™) be a solution of the DAE (4.1).

If the deviations in the starting values |D(ty)x, — D(ty)x+(tn)|, 0 < n < k, and the
perturbations q,, k < n < N, are sufficiently small, then the k-step BDF method
(k < 6) is feasible for all partitions (5.55) with hygy being sufficiently small. There
exist numerical solution values x, fulfilling (5.44) for each n with k < n < N. Fur-
thermore, there is a constant ¢ > 0 such that

_ < _
max, |, —x. ()] < e max |D(6n) 3 — D(t)x. ()| + max g + max| L,

with L, being the local error

L":f([Dx*Mqvx*(tn)atn)a kSHSN,
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and

1 k
D, = 5 3 (D) o)

Proof. From Corollary 4.10 we know that the solution x, can be written as

(1) = D(1) "us (1) + Qo(1) 0" (. (1),1,0), 1€, (5.56)
with u, being the solution of the IVP

Ul (t) = D(t) @ (u.(t),t,0), us(to) = D(t9)x«(t0).

The term R'(t)u,(t) vanishes since we have assumed imD(¢) to be time-invariant,
cf. Proposition 4.7(3). The continuous function @P*" is implicitly defined on

{(u,1,9) | (u,9) € Bp((Dx:)(1),0), 1 € I}

by Lemma 4.9. It has continuous partial derivatives @b and a)Bm. Proposition 5.2
and (5.53) tell us that

Xn = D(ty) tp + Qo(tn) O"" (ttn, 0, qs), k<n<N, (5.57)
is the solution of (5.54), if u,, is the solution of
[u]l, = D(t,) 0P (tp,tn,qn)y, k<N <N, uy:=D(ty)x,, 0<n<k, (558)

with

= _Zamun i

"i

Introducing
Gy = D(tn)wpen(“m[naQn) - D(tn)wpen(unatnv 0),

we see that u, solves equation (5.58) if and only if it satisfies the equation

a,,,u,, i = D(t;) "™ (u,,1,,,0) + ¢

||Ma~

1
hy,
however, this is the BDF for the explicit ODE
u'(t) = D(t) 0P (u(t),t,0), t€Z,,

with a perturbation ¢4 of the right-hand side in each step. Standard ODE theory
ensures the existence of the approximate BDF solutions u,, supposing the errors in
the starting phase |u, —u.(#,)], 0 <n <k, and |¢"|, k <n < N are sufficiently small.
Both demands are satisfied since

|t — i (t0)| = |D(tn)Xn — D(tn)x:(t)], for0<n <k,
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and there is a constant ¢; > 0 such that
|qm = |D(tn)wpen(unatnaQn) _D(tn)wpert(umtnaoﬂ <ci |Qn‘ (5.59)

for k < n < N. The existence of a continuous partial derivative w}"" ensures that
(5.59) is valid. Consequently, the existence of a BDF solution x,, satisfying (5.54) is
ensured as long as u, € Bp (u«(t,)). Applying standard arguments, we find the error
estimation

max i, — . (1) < CQ(TE?W,Z — (1) -+ max g +Hn1§]§\LZ|> (5.60)

with a constant ¢; > 0, L being the local error

Ly = (], = D(ta) 07" (s (1), 10, 0) = ]y, — (1), k<n<N

and
;1
[Lt*]n = hf Z Ol U (tnfi)-
n =0
Defining
LY :=D(t,) " [us]}, + Qo(tn)x:(ta) = D(ty)” [Dx.]}, + Qo ()X (tn), (5.61)
we get

FD( LY D) 10 t) + Qo(ta) Ly s1a) = F(IDX e (1)) = Lo,
thus, by means of the function @P°",
LY = @ (us(tn) 1y, Ln)-

Regarding (5.61), we see that

D(1) 0P (10 (tn) tn, Ln) = D(ta) Ly = R(tn) us];, = [t1]-
Here, we again used that im D(¢) is time-invariant. We have

LY = D(t,) 0" (s (1) , 10, L) — D (1) ©P" (4 (23,2, 0).
Since a)};m exists and is continuous, we find a constant ¢3 > 0 satisfying

Ly < c3lLy|, k<n<N. (5.62)

Inserting (5.62) and (5.59) into (5.60), there is a constant ¢4 > 0 such that

max u, — 0 1)| < ea (max| (e )5y — Dt} ()| +max g |+ max L, ).
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Obviously, u, € By (u«(t,)) is always satisfied if the deviations in the initial values,
the perturbations g, and the local error are sufficiently small. The latter condition
can be fulfilled by sufficiently small stepsizes. Hence, the existence of a BDF so-
lution x,, satisfying (5.44) is proved. Regarding the solution representations (5.56),
(5.57) and the fact that co,ﬂJert and wgert exist and are continuous, we obtain the de-
sired estimation

max 1, —x.(12)] < ¢ max|D(t, )5, — Dltn)x. ()| + max g |-+ max L, ).

with a constant ¢ > 0. O

Corollary 5.5. (Convergence) Let the assumptions of Theorem 5.4 be satisfied. Sup-
pose the errors in the initial values and the perturbations qy, for k < n < N, have
order O(hk,,.). Assume Dx, to be k-times continuously differentiable. Then, the k-
step BDF method (5.43) is convergent and globally accurate of order O(hk ).

Proof. Following the proof of Theorem 5.4, we see that the error estimation
max o0 — X (1) | < c(rzlgg |D(tn)xn — D(t)x(tn) | + max |qn| + max \LZI)

is satisfied for a constant ¢ > 0 and

1 &
Ly = [ua]y — i (tn) = W Y it (tn—i) — 1l (tn) = O(Hy).
n =0

Now, the assertion is clear. O

5.5.2 IRK(DAE) method

Before formulating perturbation estimates for IRK(DAE) methods applied to DAEs
we present estimations for IRK(DAE) methods applied to ODEs regarding the in-
fluence of perturbations caused by rounding and linear/nonlinear solvers.

An IRK(DAE) method for ODEs

u' (1) = f(u(t),r) (5.63)
can be formulated as
1 S
EZaij(Unj_unfl):f(Uni7tlzi)+Qni7 i=1,...,s, (5.64)
j=1

with ¢;; being the coefficients of A~!, Abeing the Runge—Kutta coefficient matrix
and g,; reflecting perturbations caused by rounding errors and defects of nonlinear
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solvers. The numerical solution u,, at time #, is given by U, since c¢; = 1 and b; = ay;
fori=1,...,s for IRK(DAE) methods.

Lemma 5.6. Let u, € C'(Z.,R™) be a solution of the ODE (5.63). Assume f to
have the continuous partial derivative f,. If the deviation in the starting value |ug —
u.(to)], ; and the local errors

S

Z (1 (tnj) — s (ty—1)) — u, (tni), i=1,...,5, 1<n<N,

are sufficiently small, then the IRK(DAE) methods provide numerical solutions Uy,;
Sfulfilling (5.64). Furthermore, there is a constant ¢ > 0 such that

max, iy — 1 (6)] < e Juo — 0. (1)] + max max (g +[Lui))-

Proof. Regarding (5.64), we get

18
E Z — Up— 1 Z al] Us tnj (tn—l))

f( nutm) + Gni — Lyi _f(u*(tni);tni)

fori =1,...,s since u, is a solution of (5.63). Regarding f, to be continuous, the
implicit function theorem ensures the existence of solutions U,; in a neighborhood
of uy (t;) if qui» Ly and h are sufficiently small for all i = 1,.. ., s. Furthermore,

% il o ((Un/ — Usx (tnj)) - (un—l - M*(tn—l))) = Hni(Uni - u*(tni)) + qni — Lyi
j=

for |
H, ::/0 FultUpi+ (1= D (1) i) 4T, i=1,...5.
Introducing
Uni (tn1) qn! Ly
Uy = y U= y Gn = , Ly= )
Uns (tns) Gns L
we get

%(A71 ®I)[(Un - U*n) -1® (unfl — Uy (tnfl))] = Hn(Un - U*n) +qn —L,

with a bounded
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Hnl 0
H, = .
0 Hys
for g, L, and h being sufficiently small. Rearranging this equation yields

(I=h(ARDH,)(Up — Uin) = 1@ (un—1 — s (tn-1)) + H(AT)(gn — Ln).

Since H,, is bounded, the matrix I — h(A®1I)H, is nonsingular for sufficiently small
stepsizes h and we find constants ¢; > 0, ¢, > 0 such that

H}aX |Um _u*(tm)| < (1 +Clh)|un71 _u*(tn71)| +h02i£}axs(|qni| + ‘Lni|)~

i=1,...,

By standard arguments, this implies the existence of a constant ¢ > 0 satisfying

N < _ . . .
[0 0)] < ¢ (oo =0 0)] + s, max (1l L)

Since u,, = U,s and t,, = t,,5 the assertion is proven. O

Using the commutativity of the diagram in Figure 5.3, we may conclude feasi-
bility, error estimations and convergence of IRK(DAE) methods for index-1 DAEs
with a properly involved derivative and time-invariant im D(¢). They are given by

f([DX]mathtni) = 4ni; i= 17"'73' (565)

with
e |
24 =,,—Z D(ta))Xnj — D(ta—1)%n1),  i=1,..05,

o;; being the coefficients of A~!, A being the Runge—Kutta coefficient matrix
and g,,; reflecting perturbations caused by rounding errors and defects of nonlin-
ear solvers. Again, the numerical solution x,, at time ¢, is given by X, since ¢; = 1
and b; = a4 fori = 1,...,s for IRK(DAE) methods.

Theorem 5.7. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of . Let x,. € C}(Z.,R™) be a solution of the DAE (4.1).

If the deviation in the starting value |D(to)xo — (Dx.)(10) |,
turbations qy; and the local errors

1 S
m.—zz ((Dx:)(tnj) — (Dx,) (ta—1)) — (Dx) (tni), i=1,...,s, 1<n<N,

are sufficiently small, then IRK(DAE) methods provide numerical solutions X; ful-
filling (5.65). Furthermore, there is a constant ¢ > 0 such that

max [x, — X, (in)| < C(ID(fo)XO— (Dx:)(to)| + max —max (\qm\ + ILmD)
1<n<N <Ni=1,....s
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Proof. From Corollary 4.10 we know that the solution x, can be written as

(1) = D(t) us (1) + Qo (1) 0" (us(1),1,0), 1 €L, (5.66)
with u, being the solution of the IVP

ul(t) = D(t) @"" (u.(t),t,0), u, (1) = D(t9)x«(t0)-

The term R’(t)u,(t) vanishes since we have assumed imD(¢) to be time-invariant,
(cf. Proposition 4.7 (3)). The continuous function @P*" is implicitly defined on

{(u,1,9)[ (u,q) € Bp((Dx.)(1),0), 1 € Tc}

by Lemma 4.9. It has continuous partial derivatives o

tion 5.2 and (5.53), we may conclude

Tt .
and wge . From Proposi-

Xni:D(tl’ll‘)iUni_FQ(tni)wpert(Univtniaqni); 1 STISN, l: 17"'asa (567)

are the stage solutions of (5.44) if U,; are the stage solutions of

[u]l; = D(t;) 0" (Unistuisqni), 1<n<N, i=1,....s, up:=D(ty)xo, (5.68)
with

1 .
m*zg — Up— 1) lzl,...,S.
Introducing
C]Z,' = D(tni)wpert(Unia [ qm) - D(tni)wpert(Unh Ini, O);

we see that Uy, i = 1,...,s, solve equations (5.68) if and only if they satisfy the
equation

1 S
3o &, 0 (Unj = 1) = D{tai) 0P Uy 1 0) + .
j=1
This is exactly the IRK(DAE) method for the explicit ODE
u'(t) = D(t) 0P (u(t),2,0), te€Z,,

with the perturbations g, of the right-hand side in each step. Lemma 5.6 ensures
the existence of the approximate IRK(DAE) solutions U,,; supposing the initial error
|up — u«(9)], the perturbations |g%|, 1 <n < N,i=1,...,s, and the local errors

1< .
Ly = E Z ij u* tn] (tnfl))_ui(tni)a i=1,...,5, 1<n<N,

are sufficiently small. All three demands are satisfied due to the assumptions of the
theorem since
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|uo — u(10)| = [D(t0)xo — D(10)x+(t0) ],
and there is a constant ¢; > 0 such that
|gnil = 1D (tni) 0P (Uni i, Gi) — D (tni) P (Upi 1i, 0)| < €1ini (5.69)

for 1 <n < N. The existence of a continuous partial derivative @}°" ensures (5.69) to
be valid. Consequently, the existence of a IRK(DAE) solution Xj,; satisfying (5.65)
is ensured as long as U,; € By (ux(ty)). Applying standard arguments, we find the
error estimation

max Ji — 1. (1)| < 2 (1o = . (1) +max, max (g + Lal))  (570)

with a constant ¢y > 0. Defining
Ly = D(ti) ™ [l + Qo(ti)xe (tn) = D(tni) ~ [Dxi]pi + Qo (tni) s (1), (5.71)
we get

f(D(tni)Lx}iy (tni)iu*(tni) + QO(tni)L;v;;'7tni) = f([Dx*]:qﬁx*(tni)atni) = Lﬁp

and thus, by means of the function @P®",

lefl = wpert(u* (tni);tniaLii)'
Regarding (5.71), we see that
D(tni)wpert(u* (tni)’tnivl‘ﬁi) = D(tﬂl')l‘yi = R(t’l)[u*uu' = [u*}:u

Here, we again used that im D(¢) is time-invariant. We have

L.rfi = f([DX*]:”-,X*(Im),tni) 7f((Dx*)/(tni)ax*(tm')ytni)
= f(Lni + (Dx*)/(tni)ax*(tni)7tni) _f((Dx*)/(tni);x*(tni)atni)-

Since f is continuously differentiable with respect to its first argument, we find a
constant ¢z > 0 satisfying

|L£i‘§C3|Lm~|, 1<n<N, i=1,...5s. (5.72)
Inserting (5.72) and (5.69) into (5.70), there is a constant ¢4 > 0 such that

max, max [Uni = (tai)| < ¢4 (ID(t0)x0 — D(10)x:(10)

eeesS
max max i| +|Lni]))-
+1§n§Ni=1,...,s(|qm|+| nil))
Obviously, Uy; € Bp (u«(t,;)) is always satisfied if the deviations in the initial values,
the perturbations ¢, and the local error are sufficiently small. Hence, the existence
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of an IRK(DAE) solution x,, satisfying (5.65) is proven. Regarding the solution rep-
resentations (5.66), (5.67) and the fact that @} and @} exist and are continuous,
we obtain the estimation

max X —x (ti)] < c(ID(to)xo — D(to)x..(10)| + jmax max (gl + |Lnil))

with a constant ¢ > 0. Since x,, = X, and 1,, = t,,5, the proof is complete. O
As a direct consequence of Theorem 5.7 the following results:

Corollary 5.8. (Convergence) Let the assumptions of Theorem 5.7 be satisfied. Sup-
pose the errors in the initial values, the perturbations q,; and the local errors L,;,
1 <n<N,i=1,...,s have order O(h*). Then, the IRK(DAE) method (5.65) is
convergent and globally accurate of order O(h¥).

We mention further that if the method coefficients satisfy the C(k) condition (see
(29D

N

1

Zaijcf;—lzch, i=1,....s, (=1,...k, (5.73)
j=1

and Dx, is k-times continuously differentiable, then the local errors L,; are of order
O(Hr).
5.5.3 General linear method

We consider the formulation (5.41) of a stiffly stable general linear method applied
to index-1 DAEs (4.1):

13 r - ‘
f(ﬁ Z aij (D(ti’lj)Xn] - Z IU“JZ[D‘X]L 1]> 7Xni»tni) = 4ni, 1= 17 <y S, (574)
Jj=1 (=1

and [Dx]" is given recursively by

D}
= (BoL)(A' @L)([DX], — (URL)[Dx"") + (V& 1,)[Dx]l" !
[Da)”
(5.75)
with D)o
[DX]n = :
D(tys) Xns

The coefficients oy and ;, are the entries of the coefficient matrices A land U.
The perturbations g,; reflect the rounding errors and defects caused by nonlinear
solvers.
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Theorem 5.9. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of t. Assume x. € C(Z.,R™) to be a solution of the DAE
(4.1) and x,, = X5 to be the numerical solution of a stiffly stable GLM. Suppose the
GLM has stage order p for explicit ODEs with perturbations and deviations in the
starting values of magnitude O(hP).

If [Dx)%) — [Dx, ) = O(h?) and q,; = O(h?) forall | <n <N andi=1,...,s then
there is a constant ¢ > 0 such that |x, — x(t,)| < ch? forall 1 <n <N.

Proof. From Corollary 4.10 we know that the solution x, can be written as

x(t) = D(t) " ua (1) + Qo(t) 0P (us(1),£,0), 1€, (5.76)
with u, being the solution of the IVP

u.(t) = D(t) P (u.(t),t,0), u, (1) = D(t9)x«(t0)-

The term R'(¢)u.(¢) vanishes since we have assumed imD(¢) to be time-invariant,
(cf. Proposition 4.7 (3)). The continuous function @P*" is implicitly defined on

{(u,1,9) | (u,9) € Bp((Dx:)(1),0), 1 € .}

by Lemma 4.9. It has continuous partial derivatives o

tion 5.2 and (5.53), we may conclude

and a)pert From Proposi-

Xni:D(Z‘nl’)iUni_'_Q(tni)wpert(Unhtf’li7qni)) 1 Sn SNa l: 17"'asa (577)

are the stage solutions of (5.44) if U,; are the stage solutions of

[u]ili:D(tn)wpen(Univtni;qni)a 1 SI’ZSN, i= 1,...,S, (578)
with
1 ¢ n 1] .
zz ZIJ][ , 1:1,...,S
and
]~ ] = O().
Introducing

CIZ[ = D(tni)wpert(Uniatnhqm) - D(tni)wpert(Unhtnia O),

we see that Up;, i = 1,...,s, solve the equations (5.78) if and only if they satisfy the
equation

Nl'—‘

s
Z 17 (Unj Zﬂ]/ [n l]) D(tyi) 0P (Upi 1ni 0) + ;-

This is exactly the GLM for the explicit ODE
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u'(t) = D(t) 0" (u(t),t,0), t€T,

with the perturbations ¢; of the right-hand side in each step. The existence of a

continuous partial derivative @} provides a constant ¢; > 0 satisfying

‘QZil = |D(tni)wpen(Uniatniaqm) _D(tni)wpert(UniatnhO” <c |Qni|

for 1 < n < N. Consequently, g% = O(h”). Since the GLM has stage order p for
explicit ODEs, we obtain Uy; — u. (t,;) = O(hP), i = 1,...,s. Regarding the solution
representations (5.76), (5.77) and the fact that @} and )" exist and are continu-

ous, we obtain a constant ¢ > 0 such that
‘Xni_x*(tni)‘gd’lp, i=1,...s.

Since the GLM is stiffly stable, we have x,, = X,; as well as t,, = t,,; and the proof is
complete. a

5.6 Notes and references

(1) We do not at all reflect the enormous amount of literature concerning numerical
integration methods for explicit ODEs and index-1 DAE:s in standard formulation.
We have mentioned merely several sources in the corresponding subsections.
Convergence results and perturbation estimations for multistep methods and Runge—
Kutta methods applied to index-1 DAEs in standard form have been well-known for
a long time (e.g., [90, 96, 25, 103, 105]).

(2) To a large extent, concerning BDF and Runge—Kutta methods applied to
index-1 DAEs with properly stated leading term. Our presentation follows the lines
of [96, 114, 115]. First convergence proofs and error estimations for quasilinear
DAEs can be found in [114, 113, 115], which, in turn, follow the lines of [96].

For general linear methods, we summarize the results of [211, 198, 197].

(3) More detailed results including the existence of numerical solutions, consis-
tency and stability of GLMs for DAEs are given in [211].
In [199, 211], general linear methods have been extended to linear DAEs with prop-
erly stated leading term, and to implicit nonlinear DAEs of the form

with I — f, g, being nonsingular. Such a nonlinear DAE has differentiation index 1,
but perturbation index 2. Notice that this DAE does not meet the form (4.1) we are
interested in. The slightly modified version
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meets the conditions discussed in Chapter 3, and it is a regular DAE with tractability
index 1 (cf. Example 3.54, Definition 3.28). Here, we follow the approach of [199,
211], and apply it to the general index-1 DAE of the form (4.1)

f((Dx)'(t),x(1),1) = 0.

(4) Runge—Kutta methods with ¢y = 1 and b; = ag for i = 1,...,s, are known
as stiffly accurate methods [29] since they are well suited for stiff explicit ODEs.
DAEs are frequently considered as infinitely stiff systems since one can describe
them, under certain conditions, as a limit of singular perturbed systems with a small
parameter € tending to zero. However, the solutions of the resulting DAE need not
have a stiff behavior. As a simple example, we regard the system

X () = —x2(t), 0=23x(t) —x2(¢).
It can be considered as a limit of the singular perturbed system
X (1) = —xa(t),  exa(t) =3x1(t) —x2(t)

for € — 0. Whereas the singular perturbed system is stiff if 0 < € < 1, the DAE
solution
x1(1) =0 x (1), xa(r) =330 xy (1)

does not show any stiffness. Nevertheless, stiffly accurate Runge—Kutta methods
are particularly suited for DAEs for the reasons explained before. The solution x,, is
enforced to fulfill the constraints of the system. Since we want to stress this essential
property, we follow here the notation of [96] and call them IRK(DAE) methods. An
IRK(DAE) is an implicit Runge—Kutta method that is particularly suitable for DAEs
because of the nonsingular 4, and the conditions ¢, =1 and b; = ag, i =1,...,s.

(5) A first implementation of the BDF method for DAEs with a properly involved
derivative in C++ is presented in [76]. Furthermore, it is used in commercial soft-
ware packages, for instance in the in-house simulator TITAN of Infineon Technolo-
gies and in the multiphysics network simulator MYNTS developed at the University
of Cologne together with the Fraunhofer Institute SCAI

(6) Special GLMs described in Subsection 5.3.3 are implemented in FORTRAN
as the software package GLIMDA, see [210].

(7) Often DAEs can be reformulated such that imD(¢) is independent of ¢. It is
even so that one finds a formulation with a full row rank matrix D(¢), imD(z) = R".
For a detailed discussion of possible reformulations, we refer to [115] (see also
Section 3.11). Some benefits of certain constant subspaces were already observed
in [96, 83] for DAEs in standard form, and in particular, contractivity results are
obtained in this way.

(8) In [96], dealing with standard form DAE:s, it is pointed out that one can benefit
from a constant leading nullspace kerf,i, such that the given integration method
arrives unchanged at an inherent ODE and one obtains, for instance, B-stability.
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Applying modified Runge—Kutta methods to linear standard form DAEs, in [83,
112] similar advantages are obtained from a time-invariant range imE(¢) of the
leading coefficient. Altogether, these properties led us to the notion of numerically
qualified formulations of index-1 DAEs. A regular index-1 DAE

F((D@)x(1)),x(t),1) =0,

with properly stated leading term is said to be in numerically qualified form, if
imD(¢) is actually time-invariant, see [115].



Chapter 6
Stability issues

Here we consider DAEs and their numerical approximations on infinite time inter-
vals. We discuss contractivity, dissipativity and stability in Lyapunov’s sense. With
the help of this structural insight, we show that it is reasonable to formulate the
DAE itself in a numerically qualified manner, which means, one should have a DAE
with properly stated leading term with, additionally, im D(¢) being independent of 7.
Then the integration methods are passed unchanged to the inherent ODE, and the
numerical approximations reflect the qualitative solution behavior as well as in the
case of explicit ODEs and one avoids additional stepsize restrictions.

Section 6.1 describes the basic notions for explicit ODEs. Sections 6.2 and 6.3
comprise the notions of contractivity and dissipativity, as well as flow properties
of contractive and dissipative DAEs. Then, it is discussed how these properties are
reflected by numerical approximations. Section 6.4 presents a stability criterion by
means of linearization, also including solvability results on the infinite time interval.

6.1 Preliminaries concerning explicit ODEs

Stable systems play their role in theory and applications. As a stable system one
usually has in mind a linear ODE

X (t) =Cx(t) +4q(t), 6.1)

the coefficient matrix C of which has exclusively eigenvalues with nonpositive real
parts, and the purely imaginary eigenvalues are nondefective. Each pair of solutions
x(+), X(-) of such an ODE satisfies the inequality

x(t) — %(1)| < e BU=0) |x(t) — x(t9)|, forall > 1o, (6.2)

in a suitable norm, and with a nonnegative constant 3. The norm as well as the
value of f3 are determined by the coefficient matrix C (cf. Appendix C, Lemma C.3).
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Namely, to each arbitrary m x m matrix C with real entries, which has the prescribed
properties, there exist a value § > 0 and an inner product (-, -) inducing the R”-norm
| -| such that

(C(x—%),x—%) < —Blx—x?* forallx,iecR™ (6.3)

In other words, the function | - |2 is a Lyapunov function for the homogeneous ODE
X (1) = Cx(¢).

If C has no eigenvalues on the imaginary axis, then the constant f3 is strictly positive,
and the system is said to be asymptotically stable.

Each arbitrary solution of a stable ODE (6.1) is stable in the sense of Lyapunov (e.g.,
Definition 6.3 below), and each arbitrary solution of such an asymptotically stable
homogeneous ODE is asymptotically stable in Lyapunov’s sense.

Given a stepsize h > 0, as well as grid points ¢, =ty + nh, each solution pair of a
stable ODE (6.1) satisfies the inequalities

Ix(tp) — %(tn)| < e PM|x(ty_1) —%(tn_1)|, foralln>0, (6.4)

no matter how large the stepsize is chosen. Among the step-by-step numerical in-
tegration methods, the absolutely stable (A-stable) ones (e.g., [104], [29]) are in-
tended to reflect this solution property devoid of restrictions on the stepsize & for this
reason.

There are various popular generalizations of stability (e.g. [204]) for nonlinear
ODEs
X (1) = g(x(1),1). (6.5)

Typically, the function g is continuous, with the continuous partial derivative gy
on R™ x [0,0). In particular, contractivity and dissipativity generalize stability as
global properties of the ODE, applying to all solutions. In contrast, (asymptotical)
stability in the sense of Lyapunov applies just locally to a reference solution.

Definition 6.1. The ODE (6.5) is named contractive, if there are a constant 8 > 0
and an inner product (-, ), such that

(g(x,1) —g(%,1),x—x) < —B|x—x|*, forallx,x,e R™, 1>0. (6.6)
If B > 0, then we speak of strongly contractive ODEs.

Contractivity means a contractive flow, although the formal definition is given in
terms of g via the so-called one-sided Lipschitz condition. All solutions of a con-
tractive ODE exist on the infinite interval, and for each pair of them, the inequality
(6.2) holds true. A strongly contractive ODE has at most one stationary solution (see
Proposition C.2). For linear ODEs, contractivity is equivalent to stability, and strong
contractivity is the same as asymptotical stability.

Regarding numerical integration, so-called B-stable Runge—Kutta methods (e.g.,
[104], [29]) reflect contractivity devoid of stepsize restrictions by
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|xp — Xn| < |xp—1 —Xn—1]|, foralln>0.

Dissipative ODEs (6.5) are those which possess an absorbing set, i.e., a bounded,
positively invariant set sucking in all solutions. A large class of dissipative ODEs is
characterized in terms of g by the dissipativity inequality below that ensures that the
solutions exist on the infinite interval, and to be absorbed in balls around the origin,
with radius € + ot/ 3, for any € > 0.

Definition 6.2. The ODE (6.5) satisfies the dissipativity inequality, if there are con-
stants 3 > 0, o > 0, and an inner product (-, -), such that

(g(x,1),x) <oa—PBx]>, forallxeR™ ¢>0. 6.7)

Notice that asymptotically stable homogeneous linear ODEs (6.1) satisfy the in-
equality (6.7) with a = 0. The origin is the only stationary solution of these systems,
and balls around the origin serve as absorbing sets.

In contrast to the previous global system properties, the next stability notion is
tied up with a reference solution.

Definition 6.3. A solution x, € C!(]0,),R™) of the ODE (6.5) is said to be

(1) stable in the sense of Lyapunov, if for every € > 0, tp > 0, there is a
0(€&,t9) > 0 such that
[x.(to) — xo| < 8(€,t0)

implies the existence of a solution x(-;#p,x0) on the entire infinite interval as
well as the estimation

|x.(¢) = x(t;t0,x0)| < € fort > 19,
(2)  asymptotically stable, if for each € > 0, 1y > 0, there is a §(€,#) > 0 such that
[x.(t0) —x0| < 8(€,10)

implies the existence of a solution x(-;7y,Xo) on the infinite interval as well as
the limit
. () — x(¢520,X0) | —=0

Making use of the inherent structure of index-1 DAEs, as provided in Section 4.2,
we modify the stability notions to become reasonable for nonlinear index-1 DAEs
(4.1) in the next section. Here we add slight generalizations of contractivity and
dissipativity for this aim.

Definition 6.4. Let the ODE (6.5) have the possibly time-dependent invariant sub-
space &(¢) C R™ ¢t > 0, that is, if for an ODE solution x, () there is a #y > 0 such
that x.(f9) € &(f), then x,(r) belongs to &(r) all time.

(1) The ODE is named contractive on &(-), if there are a constant § > 0 and an
inner product (-, -), such that
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(g(x,t) —g(%,1),x—%) < —Blx—|?, forall x, 7 € &(r) CR™, ¢ >0. (6.8)

If B < 0, then we speak of strong contractivity on &.
(2) The ODE satisfies the dissipativity inequality on &(-), if there are constants
B >0, o > 0, and an inner product (-, ), such that

(g(x,1),x) <a—PBlx|*, forallxe &(r), r>0. (6.9)

All solutions of an ODE being contractive on &(-), which start in &(zy) at time
to > 0, exist on the infinite interval, and for each pair of them, the inequality (6.2) is
valid.

6.2 Contractive DAEs and B-stable Runge-Kutta methods

In this part, the definition domain of the index-1 DAE (4.1) is assumed to be such
that Zy = [0,e0), and the function D is supposed to be given on the domain
dompgy =R" x Iy.

The flow of an explicit ODE (6.5) takes over the entire space R, and this state

space is, trivially, independent of 7. In contrast, the flow of a DAE is restricted to the
obvious constraint set My(¢), which in turn may move with time (e.g., Examples
3.7, 4.8). This is the view from outside. The inner structure of an index-1 DAE, as
described in Section 4.2, shows the IERODE flow within imD(-) that is somehow
wrapped up to become the DAE flow. In the case of linear DAEs, the wrapping
is given by means of the canonical projector function Il.,,. In the light of Exam-
ple 2.57, we direct our interest to the contractivity of the IERODE, as well as to a
wrapping which does not amplify the IERODE flow unboundedly.
In the nonlinear index-1 case, the canonical projector function I, projects onto
N =ker fyD =kerD along S = {z € R" : fyz € im f, =im f,D} (cf. page 320). By
Lemma A.10, I1.,, can be described as IT.q, = I — QoG ™! fr. We make use of this
representation, when calculating the difference of two solutions.

Applying the solution representation provided by Theorem 4.5, for any two so-
lutions x(-), ¥(-) € C)(Z,R™), defined on an interval Z C Zy, and u(-) := D(-)x("),
i(+) := D(-)x(-), we describe the difference

(1) = (1) = D(O)™(u(t) ~ 7(0)) + Qol0) (@(u(0).1) ~ (a().1))
- / " Q{0 su(r) + (1 = )7 (e).0)] s (u(r) ~ (1))
= [ D6~ 006 £t $)PE) s () ()
= [ a1 00 (6P A )70, (6.10)

with
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Ny, (8) = (D) O(su(r) + (1 —s)a(t),1),
D(t)™ (su(t) + (1 —s)ia(r)) + Qo (1) (su(t) + (1 —s)i(t) 1), 1),

which suggests that we trace back the contractivity question for the DAE to that for
the IERODE
u'(t) =R (t)u(t) +D(t)o(u(t),?) (6.11)

on its invariant subspace im D(+), but then to suppose that the product IT..,(-)D(-)
remains bounded.

One could believe that the matrix function IT.,,(-)D(-)~ depends on the choice
of the projector function Py(-), however this is not the case. Namely, if there are
two different Py and B, as well as the corresponding D and D, one can compute
Hcanﬁ_ = HcanPOD_ = HcanD_DD_ =I.anD™ R = 0y D™

The IERODE (6.11) is contractive on imD(-) (Definition 6.4), if there exist an
inner product and a constant > 0 such that

(D(t)(@(u,t) — @(i,t)) +R () (u—it),u—i) < Blu—il|*, foru,icimD(r),1>0.

(6.12)
Since the inherent ODE is given implicitly only, we look for a criterion in terms of
the original DAE.

Definition 6.5. The regular index-1 DAE (4.1) is said to be contractive if there are
an inner product (-, -) and a value 8 > 0 such that

{y=3,D(t) (x = 2)) + (R (1)D(1) (x — %), D(1) (x = 7)) < = BID(1)(x— D), (6.13)

for all x,x € My(t), y,7 € imD(t), t > 0, satisfying f(y,x,t) =0, f(,%,¢) =0.
If B > 0, then we speak of strong contractivity.

The next theorem confirms this definition in view of reasonable solution properties.
We mention at this point that Definition 6.5 is a straight generalization of Definition
6.1 given for explicit ODEs. Namely, letting f(y,x,t) =y —g(x,7), n=m, D(t) =1
it results that R = I, My(¢) = R™, and the inequality (6.13) says nothing but (6.6).

A straightforward check makes it clear that an index-1 DAE (4.1) is (strongly) con-
tractive, if its IERODE is so on im D.

For a linear constant coefficient index-1 DAE

A(Dx(1))" + Bx(t) = q(t)
the condition (6.13) simplifies to
(-=DG7'BD"z,z) < —B|z|?, forall z€imD.

This DAE is contractive, if the finite eigenvalues of the matrix pair {AD,B} have
nonnegative real parts, and the eigenvalues on the imaginary axis are nondefective.
It is strongly contractive, if the finite eigenvalues of {AD, B} have positive real parts
(cf. Section 1.4).
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In the theory of (explicit) ODEs and dynamical systems, stationary solutions
play an important role. From the viewpoint of DAEs, it seems to be reasonable to
consider also solutions having a stationary IERODE component only. A particular
such case can be found in Example 4.8, with ¢ = 0.

Definition 6.6. A solution x, € C,(J,R™) of the index-1 DAE (4.1) is called a
solution with stationary core, if it has the form

x:(t) =D(t) ¢+ Qo(t)o(c,t), t €T,
where ¢ € imD(t), t € Z, is a stationary solution of the IERODE.

Theorem 6.7. A contractive index-1 DAE (4.1), with Ty = [0,00), dompg = R" X Iy,
features the following:

(1) The IERODE (6.11) is contractive on im D.
(2)  Foreach arbitrary ty € Ly, xo € Mo(to), the DAE has a unique solution satis-
fying the condition x(ty) = xo. This solution exists on the entire infinite interval

I=1.
(3)  Any pair of solutions fulfills the inequalities

ID(6) (1) — (1))] < e P (1) (x(t0) — F(10))|, 1> 10,
and
[x(2) = %(t)| < Kixr) () [D(0) (x(1) = %(2))[, 1 =10,
with

Kip():= Iean X X D(t)~
9 (1) Sfell[gf]zeimflglﬁf‘z‘:]| (M) (1), (D) (1)) (5))D(2) 2]

< max T ean (M((Dx) (), () (0)1) (5))D(2) -

4)  If the matrix function Il.,,D~ is uniformly bounded by the constant K, then it
follows that

[x(t) = %(0)] < K|D(1) (x(0) = %(1))]
< Ke P D) (x(t0) — E(10))], 1> 10,

(5) If B > 0, then the DAE possesses one solution with a stationary core at the
most.

Proof. (1) We show the contractivity of the IERODE (6.11) on imD. For ¢t > 0,
u,i €imD(t), we form
x:=Qo(t)o(u,t) +D(t) " ue My(t), y:=D()o(u,t) €imD(r),
X:=Qo(t)w(a,t)+D(t) ua e My(t), y:=D(t)w(a,t) € imD(z),
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which implies D(¢)x = u, D(t)x = i, f(y,x,t) =0, f(,%,¢) = 0 due to the construc-
tion of the function ®. The contractivity assumption (6.13) gives

(D(e)(@(u,1) — (@, 1)) u— &) + (R (1) (u — @),u— @) < —Blu—il?,
and hence, the inherent ODE (6.11) is contractive on im D with the same inner prod-
uct and constant 8 as in (6.13).

(2) Theorem 4.11, item (1), provides the local existence of a unique solution
passing through xq at time fy. Due to the contractivity of the IERODE on im D, this
solution can be continued to the entire infinite interval.

(3) Let two solutions x(-) and x(-) be given. The components u(-) := D(-)x(-) and
i(-) := D(-)x(-) satisfy the IERODE, such that

1d

§a|“(f) (1)

= (R(e)(u/ (1) = (6)) + R (t) (u(t) — a(t)), u(r) — a(r))
= 7 t

I
T~
<

~
—
~
—
|
<
L
—
-~
—
<
—
~
N
|
<
—
~
N
gt

and regarding the contractivity we conclude that

S o) a0 < —Blutr) ~ ()

Now the Gronwall lemma leads to the first inequality in assertion (3), that is
Ju(t) = a(t)] < e P u(tg) —a(to)|, 1> 1.

The second inequality follows from (6.10), since (6.10) provides us with the esti-
mate

(0 =501 < [ W00 (DP) () 0
< K (0|(22)(0) = (DD

(4) If 4y (-)D(-)~ is uniformly bounded by the constant K, then assertion (4) re-
sults from (3).

(5) If ¢ and ¢ are stationary solutions of the IERODE, then it follows from contrac-
tivity that |c — &| < e B0 |c — |, therefore ¢ = ¢. Since the IERODE has at most
one stationary solution, due to Theorem 4.5 describing the structure of the DAE so-
lution, the DAE has at most one solution with a stationary core. O

Example 6.8 (Contractive DAE). We continue to investigate the DAE from Exam-
ple 4.8,
xi(t) +Bxi(t) =0,
x1 (1) +x2(1)* =1 = (1),
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which is contractive for § > 0. The inner product is the usual product of real num-
bers, and the given 3 applies.
The solutions of the DAE related to the region G, are

xi(1) = e‘ﬁ(’_’(’)xm,
1

x(t) = (1+y(r) +e 2PU0,2 )2,

Using the canonical projector function Il.,, given in Example 4.8 we find that

M0 = | L]

X2

is not globally bounded. Compute, additionally, the difference of the second com-
ponents of two solutions corresponding to the initial data xo and X1,

1 1

%) = F2(1) = (14 7(1) +e 2PU0G,)2 — (14 y(1) +ePU0)55) )2

(14 y(1) + e 2P00)e) 3e2Bun0) (2 2 ),

1
2
with any ¢ € [x(z)l,igl], which confirms the preciseness of the estimations given by
Theorem 6.7 (3). One can benefit from a bounded product I1.,,D~, if both solutions
reside on a bounded set with respect to x1, as well as bounded away from the border
xp = 0. It strongly depends on the function y whether this is possible or not. In
general, a disadvantageous function y might force the solutions, and the differences
of solutions, to grow. O

Next, we discuss to what extent numerical solutions generated by Runge—Kutta
methods reflect the contractive behavior of the DAE solutions. For explicit ODE:s,
this question is well-known to be answered by the B-stability concept. In particular,
algebraically stable Runge—Kutta methods are B-stable ([30], [54]), which means
that every two sequences of numerical solutions generated step-by-step along a
given grid

o<t < - <ty| <ty <---

by an algebraically stable Runge—Kutta method, if applied to a contractive explicit
ODE (6.5) satisfy the inequality

|xp — Xn| < |xp—1 —Xy—1|, forall n>1, (6.14)
and this inequality is a correct counterpart of the true solution property
|x(tn) — %(tn)| < |x(th—1) —X(ty—1)|, forall n>1. (6.15)

The point is here that (6.14) reflects this contractivity behavior independently of the
chosen stepsizes of the grid. No stepsize restrictions whatsoever are caused by this
reason. For instance, the implicit Euler method and the RADAU IIA methods are
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algebraically stable. At the same time, these methods belong to the class IRK(DAE).

Turn back to DAEs. As we have seen in Example 5.1, in general, we cannot ex-
pect that algebraically stable Runge—Kutta methods, in particular the implicit Euler
method, preserve the decay behavior of the exact DAE solution without strong step-
size restrictions, not even when we restrict the class of DAEs to linear ones. This
depends on how the DAE is formulated. If the DAE has a properly involved deriva-
tive formulated in such a way that the image space of D(¢) is independent of ¢, then
we already know (cf. Section 5.4) that the IRK(DAE) applied to the index-1 DAE
reaches the IERODE unchanged. If the IRK(DAE) is algebraically stable, and the
DAE is contractive, then we are sure to reflect the true solution properties

|D(1,)x(tn) — D(tn)%(tn)| < |D(tn—1)x(ta—1) — D(ty—1)%(ts—1)|, (6.16)

[e(tn) — (ta)| < K(xfi) () |D(tn)x(tn) — D(tn)X(t)|
< Kiix) (tn)[D(ta—1)x(tn—1) — D(tn—1)X(ta-1)|,  (6.17)
with no restrictions on the stepsizes. The next theorem confirms this fact.
At this point, we emphasize once again the specific structure of DAE solutions that
leads to (6.16), (6.17) instead of (6.15) given in the case of explicit ODEs. For

DAEs, one cannot expect an inequality (6.15), and so one should no longer try for
the strong condition (6.14).

Theorem 6.9. Assume the index-1 DAE (4.1), with Zy = [0,00), dompg = R" X Zf,
to be contractive, and imD(t) to be independent of t.

Then, an algebraically stable IRK(DAE) method starting with any two values
X0,%0 € Mo(to) yields sequences of numerical solutions x, and X, satisfying

|D(ty)xn — D(t5)%n| < |D(ty—1)%n—1 — D(tn—1)%n—1|, foralln>1, (6.18)

|t — | < K(x,l,x,.)(tn) |D(tn)xn — D(tn) |
< K(xn,xn)(tn) |D(tn71)xn71 _D(tnfl)fnflh n>1,

where

K. (1) := Iean(Niy D(t,) "z,
) P )00
Ntsin,t) (8) 7= (D)@ (5105, + (1 = 5)iy, 1),

D(t,)” (sup+ (1 —8)iy) + Qo(tn) O (suy + (1 — )iy, ty), [n).
If K is a global bound of the matrix function I, (-)D(-)~, then it holds further that

|xn _-’En| <K |ann _ann‘
<K |Dy—1xp—1 —Dp_1Xn—1|, foralln>1. (6.19)
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Proof. By Theorem 6.7, the IERODE (6.11) is contractive on imD(¢). Since this
subspace does not depend on 7, we know (cf. Theorem 5.3, Proposition 5.2) that the
numerical solutions satisfy

Xn = D(ty) uy + Qo(tn) @(un,tn), Xn=D(ty) iy + Qo(ty) @ (iin,t,)
with u, = D(t,)x, and i, := D(t,)%, fulfilling the discretized [ERODE
[u]:’l :an(un7tn)7 [lz]il :an(ﬁn;tn)-

Therefore, u, and i, are at the same time the numerical solutions generated by the
given algebraically stable IRK(DAE) method being directly applied to the contrac-
tive IERODE (6.11). Algebraically stable Runge—Kutta methods are B-stable and,
thus,

|un - I/_ln| < ‘unfl —Up—1 |7

which proves the first inequality of the theorem.
Analogously to (6.10), we derive the second inequality from

=D(tn) (un — itn) + Qo (tn) (@ (ttn, tn) — O (iln, 1))
7/ ean(Muy ) (8))D ()~ ds (16 — ).

Xn — Xy
If the matrix function IT.,,(-)D(-)~ is bounded by the constant K, then we get the
remaining part of the assertion:

10 — T < K D)0 — D(tn)%] < K [D(ty—1)%n—1 — D{ty—1)Tn_1]-
O

We emphasize once more that the solutions of a contractive DAE with bounded
product IT.,,(-)D(-)~ are not expected to satisfy the inequality (6.15) as the solu-
tions of a contractive explicit ODE do. Instead, the inequality (6.17) is natural for
DAEs. Also, the numerical solutions generated by an algebraically stable IRK(DAE)
applied to the DAE do not fulfill the inequality (6.14), as for explicit ODEs, but in-
stead (6.19).

6.3 Dissipativity

A further popular qualitative property of dynamical systems described by explicit
ODE:s is dissipativity, where an absorbing set sucks up all solutions. First, we have to
clarify what this could mean for DAEs (cf. [115]). In contrast to an explicit ODE the
flow of which extends within its entire constant state space R, the flow correspond-
ing to a regular index-1 DAE (4.1) is restricted to the proper subset My(¢) C R™,
which in turn may move in R with time 7. We think, then, that it makes sense to
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allow the absorbing set itself to vary with time, also.

As in the previous subsection, we assume the DAE (4.1) to be regular with index 1,
T =[0,00) and dompg = R" x Z;. We denote the solution of the index-1 DAE (4.1)
passing at time ¢ through x; € My(z}) by x(¢;14,x4).

Definition 6.10. Consider a regular index-1 DAE (4.1) the solutions of which exist
on the entire infinite interval Z = [0, o).

(1) A possibly time-dependent set B3(t) C My(t), r > 0, is called a positively
invariant set of the DAE if x; € B(t;) implies x(¢;74,x1) € B(t) for all
>t

(2) A positively invariant set B(¢), t > 0, is called an absorbing set of the DAE, if,
for any z,. € [0,0) and any bounded set E C M/t ), there is a time #(g ) >
t4 such that x; € E implies x(¢,1;,x;) € B(t) fort > t(g ).

(3) The DAE (4.1) is said to be dissipative if it has a bounded absorbing set.

In the next proposition we formulate an inequality in terms of the DAE (4.1) gen-
eralizing the well-known dissipativity inequality for explicit ODEs (Definition 6.2).
This is actually a sufficient dissipativity condition for the IERODE on its invariant
subspace imD(+), and also for DAEs with bounded matrix functions ITq,(-)D(-)~
and Qp(-)®(0,-). In the case of an autonomous DAE, Qy(-)®(0,-), Qp and @ are
independent of 7, and this expression is trivially bounded.

Proposition 6.11. Assume (4.1) to be a regular index-1 DAE with Ty = [0,c0) and
dom pgp = R" X Iy. Let an inner product (+,) and constants o > 0, > 0 exist such
that the inequality

(v, D(1)x) + (R'(1)D(1)x, D(t)x) < o — B|D(¢)x|? (6.20)

is satisfied for all x € My(t), y € imD(¢), f(y,x,1) =0, > 0.
(1) Then the IERODE (4.12) is dissipative on imD(t), and

Bigrope(?) := {V €imD(t) : ‘V‘z < %—1—8}

is an absorbing set for each € > 0.

(2) All DAE solutions can be continued to exist on the infinite interval.

(3) If, additionally, I 4,(-)D™(+) is uniformly bounded by a constant K and
Qo(-)w(0,-) is bounded by a constant Ky, then the DAE (4.1) is dissipative
with the absorbing sets

B(t) = {xe./\/lo(t) x| gK(%+s)l/2+KQ},t20, €>0.

Proof. Recall that the function @(u,t) in (4.12) is implicitly given by means of

FD@)o(u,t),D(t)"u+Qo(t)o(u,t),t) =0 uecR"t€[0,00).
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For each arbitrary ¢+ > 0, u € imD(r), we introduce y := D(r)o(u,t),
x:=D(t) " u+ Qo(t)w(u,t), which gives f(y,x,#) = 0, and hence, by (6.20),

(D(t)o(u,1),u) + (R'(t)u,u) < o — Blul. (6.21)

The IERODE (4.12) satisfies the dissipativity inequality on the invariant subspace
imD(+). For any solution u(-) of the IERODE that belongs to imD(+), (6.21) yields

2 o) P = (0 (0),u0)) = (R (ule) + D0 (u(e) 1), ()

< o — Blu(r).

For any ¢ > 0, uy € D(t;), the solution u(-) of the corresponding IVP exists on a
certain interval Z, > ¢, and satisfies there the inequality

o o
mmﬁs3+fm“m0mﬁ——)zzueaﬁ

B

Since the solution u(-) is bounded, it can be continued, and hence it exists on the
entire interval [t; ,o0). Then,

x(t) == D(1) " u(t) + Qo(t)o(u(t),1), 1€ [ty,%),

is the related DAE solution on the infinite interval, and assertion (2) is verified.
Furthermore, the inequality

1/2
|MMSmw{mm(%) }tzm

results, and this shows the set Bigropg(?) to be positively invariant for the [IERODE.
We check if it absorbs the solutions. Let a bounded set E, C imD(z;) be given.
Denote r := sup{|v| : v € E, }. For all uy € E,, the resulting IVP solutions satisfy

lu(r)| < % e 2Pl (r2 — %), >0y

Choosing 7 = 7(E,, ) so that e~ 2P=1+) (42 — %) < &, we obtain |u(t)| < % + ¢ for
allu; € E, andt > 7. In other words, the set Bigropk (#) indeed absorbs the solutions.
Consider now an arbitrary bounded set E C My(t1), - > 0, and put E,, := D(t; )E.
For each arbitrary x; € E, we know that the IVP solution x(¢) = x(;7, x4 ) has the
representation
x(t) = D(1) " u(t) + Qo(t) o (u(t),1),

whereby u(t) = D(t)x(¢) satisfies the IERODE (4.12) as well as the initial condition
u(ty) =uy :=D(t;)xy € E,. Due to (1), it holds that |u(z)| < , /% +eforallt >7,
and uniformly for all u;. € E,,. In consequence,
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1) = D()"u(r) + Qo) (u(1).1) = Qolt) @(0.1) + Qo(r)0(0.1)
1

<| [ (1= 0u(0)l(outt) 1)) dsDle) u(t)| +1Q0()(0.0)
0

o 1/2
<Klu(t)|+7y < K(E—i—g) +Kg fort>7

O

For what concerns numerical integration methods, we refer once more to the fact
that the integration method reaches the IERODE unchanged, if the index-1 DAE
(4.1) is given in such a way that imD(¢) does not at all vary with ¢. Then, the re-
sults about the numerical integration of dissipative explicit ODEs can be carried
over to hold for the DAE (4.1), too. For instance, [204] shows that the backward
Euler method reflects dissipativity without any stepsize restriction, whereas general
algebraically stable Runge—Kutta methods reflect the dissipative flow under certain
stepsize restrictions. We adopt the result for the implicit Euler method here.

Proposition 6.12. Let the conditions of Proposition 6.11 be given, and, addition-
ally, let imD(-) be constant. Then the implicit Euler method reflects the dissipativity
behavior properly without any stepsize restriction. The absorbing sets of the dis-
cretized DAE are the same as described in Proposition 6.11.

Proof. Since imD(t) is constant, discretization and decoupling commute (see Sub-
section 5.4). If we apply the corresponding result for explicit ODEs (e.g., [204,
Theorem 5.5.3]) and match the components as in Proposition 6.11, we obtain the
desired result. a

6.4 Lyapunov stability

If we want to apply Lyapunov stability to DAEs then we have to consider the neigh-
boring solutions of a reference solution. More precisely, we have to identify these
neighboring solutions by consistent initial values or by appropriate initial condi-
tions. For regular index-1 DAEs we know (see Theorem 4.11) that the set of consis-
tent initial values at time #g is given by

Mo(to) ={xeDy: IyeR": f(y,x,10) =0}.

If we are given a reference solution x.(-), and in particular the value x,(f) €
Mo (1p), the values of all neighboring solutions have to belong to M (1), too. Since
xp € Mo(fp) can be expressed as

X0 = D(l())iD(l())X() + Qo(to)a)(D(lo)xO,l‘o),
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an consistent value xo of an index-1 DAE is fully determined by its component
Py(to)xo or equivalently by D(zo)xo.
In contrast, Theorem 4.11 states the initial condition as

D(t0)x(to) = D(t0)x°,  withx® € R™.

Thereby, x is not necessarily consistent, and it simply holds only that D(#o)x(ty) =
D(to)x". No information regarding the component Qg (#)x” slips in. This leads to the
following equivalent possibilities to figure out the neighboring solutions by means
of initial conditions.

(@) xp € Mo(to), [x0 —x.(t0)| < Ta, x(to) = X0,

b) X eR™ [D(to)(x° —x.(10))| < T, D(tg)(x(tg) —x°) =0,

© xXXeR™ |D(ty)(x° —x.(1))] < T, x(to) —x° € kerD(tp),

@ X eR™ X0 —x(to)| < 14, x(to) —x° € kerD(to).

In essence, the definition below coincides with the one already given in [96] for

standard form index-1 DAEs. While [96] applies version (d), we now make use of
version (a).

Definition 6.13. Let the DAE (4.1) be regular with index 1, and Zy = [0, ).
The solution x, € C},(Z,R™) is said to be

(1)  stable in the sense of Lyapunov if, for each € > 0, to € Z, there is a 6(&,19) > 0
such that
[xi(f0) —xo| < 8(€,20), %0 € Mo(to)

imply the existence of a solution x(7;y,xg) on [to, ) as well as the estimation
|x () — x(#320,%0)| < € fort > 19,

(2)  asymptotically stable if for every € > 0, 1y € Z, there is a 6(€,#9) > 0 such
that
[ (f0) —xo| < 8(€,10), %0 € Mo(to)

imply the existence of a solution x(¢;#p,xg) on [fy, o) as well as the limit
() =x(£310,%0)[ > 0.

By Theorem 6.7, each solution of a strongly contractive index-1 DAE, with bounded
product Il.,,D~, is asymptotically stable. However, a general index-1 DAE (4.1)
may have stable and unstable solutions at the same time.

Example 6.14 (Stable periodic solution). Consider the index-1 DAE given by m =
3.n=2,

100 Y1 +x1 —x2 —x1x3+ (x3 — 1) sinz
D= |:000:| 7f(y7x7t): y2 +X1 +x2_x2x3+(x3_1)COSt
¥+ +a—1
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There is the asymptotically stable solution (see [141] for a proof via Floquet theory)
X.1(t) = sint, x.(t) = cost, x,3(t) =0,

as well as the unstable stationary solution
X1(1) =0, x:0(t) =0, x,3(t) = 1.

This example is rather too simple with its time-invariant constraint set My =
{x € R?:x? +x3 =1 —x3}. Figure 6.1 shows the flow on the constraint set. O

X3

X

Fig. 6.1 Flow on the constraint set

The situation in the next example is less transparent although the DAE is also semi-
explicit and has the same dimensions m = 3,n = 2.

Example 6.15 (Voltage doubling network). The DAE

(0 =~ gEn(o) + F<_<X1<21+x3<r>>> |
x(1) = CleQ (e2(t) +x3(t) +E(1)),

0= RIQ(xz(t) +x3() +E(1)) + F (= (01 (1) +x3(0))) = F(x3(1)),

describes the voltage doubling network from Figure 6.2, where

E(f) = 3.95 sin (27:%) KV, T=0064, F(u)=>5-10"5(c"_1)mA
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[
2 Voltage x1 = node 1 - node 0
R C2
Q Voltage x2 = node 2 — node 3
DI —IE D2 ! Voltage x3 = node 0 — node 2
E() C1
||
i 1
0
1
Rp

Fig. 6.2 Voltage doubling network

and
1
Ci=C,=2.75nF, Gp= R Rp=0.1MQ, Ry €[l,).
L

For Ry = 10, there is an asymptotically stable T-periodic solution, which is dis-
played in Figure 6.3. It can be provided numerically, only. In [141], stability is
checked via the eigenvalues of the monodromy matrix X, (7',0), where X, (-,0) de-
notes the fundamental solution of the linearized DAE normalized at t = 0. In our
context, this Floquet procedure consists of an equivalent periodic reduction to a

strongly contractive constant coefficient DAE. a
1 X
A A
6.710 3.360
3.355
6.705
3.350
6.700
3.345
6.695 >t 3340 -t
0.00 001 002 003 004 005 0.00 001 002 003 004 005

Y

Fig. 6.3 T-periodic solution

Theorem 6.16. Let the DAE (4.1) be regular with index 1, and T = [0,e0). Addi-
tionally to the basic assumptions (cf. Assumption 4.1, Definition 4.3) we suppose f
to feature continuous second partial derivatives fyy, fyx, fix
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Let x, € C}([0,00),R"™) be a solution of the DAE, and let the DAE linearized along
X

A (t)(D(t)x(t)) + B.(t)x(t) = 0, (6.22)
with
A*(t) = ﬁ‘((D(t>x*(I))/7x*(t)’t)v B*(t) ::fx((D([)x*(t))l’x*<t)7t)7 te [va)a

be strongly contractive.

Let the given first and second partial derivatives as well as G~' be bounded in a
neighborhood of the graph of the reference solution. Then u, := Dx, is an asymp-
totically stable solution of the IERODE with respect to im D.

If, additionally, the product Il .,,D~ remains bounded, then x. is asymptotically
stable.

Proof. The linear DAE (6.22) has, as its origin (4.1), a properly involved derivative,
and it is regular with index 1, thus, G.(t) = A..()D(t) + B.(¢)Qo(¢) remains nonsin-
gular. Moreover, due to the strong contractivity, there are a value 8 > 0 and an inner
product such that, for all [0, ),

(y=3,D(t)(x— %)) + (R ()D(t) (x — %),D(1) (x — %)) < —BID(1) (x = D),
Vx, X € R™, with A, (1)y+ B« (t)x =0, A(t)y+B.(1)x =0, y=R(t)y, y = R(t)¥.

This implies
y=3==D(t)G.(t)"'B.(1)D(t)D(1)(x ),

and therefore the inequality
((R'(1) = D(1)G (1) 'B.(1)D(t) " )D(1)(x =), D(1) (x = %)) < —B|D(1) (x — ) %,
holds for all x, ¥ € R™, and, equivalently
((R(t) = D(t)G.(t) " 'B.(t)D(t) " )v,v) < —B|v|?>, forallv €imD(r). (6.23)
Turn to the IERODE, and to the explicit ODE
V(1) = (R'(t) + D(t) @ (us(2),0))v(t) +h(v(t),1) (6.24)

resulting from the IERODE by the translation v(r) = u(t) — u.(¢). The function A is
defined to be

h(vvt) = D(t) (O)(V—I-M*(t),l) - w(”*(t)’t) - wu(”*(t)7t))'
Lemma 4.4 provides us with

D(1)o(u,t) = —(DG™ £:D™)(D(t)(u,1), D(t) "u+ Qo(t) @ (u,1), 1),
D(t)@(u.(t),1) = —D(t)G.(t) 'B.(t)D(t)".
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The function @ has a continuous second partial derivative ®,,, due to the smoothness
of f. Then, the function 4 is continuous, and has continuous partial derivatives h,
and h,,, in particular, it holds that

h(0,¢) =0, hy(0,1) =0, hyy(v,t) = D(t) @y (v + i (2),1).
Let K, be a bound of the second partial derivative 4,,, such that
|h(v,1)| < Kp|v|?,  for all sufficiently small |v|.

Such a K}, is available, since the involved partial derivatives of f and G ! are
locally bounded around the reference solution. Choose a value € > 0 such that
B —e€kK, =: ﬁ > 0, and fix a tyg > 0. The IVP for (6.24), and the initial condition
v(fo) = vo € imD(1y), |vo| < €, has a unique solution v(-), say on the interval
[fo,20 + T). With regard to (6.23) we derive

= 2((R (1) ~ DG (1)~ B.(O)D() W (e), (1)) +2(h(v(1),1),v(1)
< —2BIv(t) P+ 2| (v(e), 1) 1)
< (2B +eKy)v(t) = —2BIv(t). fort € [to,10+T).

By Gronwall’s lemma, it follows that
v(t)] < P u(1g)| = PU—0)|vg| < &, 1 € [t0,10+T).
Now it is evident that v(-) can be continued to exist on the entire interval [fy, o), and
V(0)] < PO u(ag)] = PO vo| < e 1 € fig,00)

The existence of v(-) corresponds to the existence of the function u(-) = u.(-) +
v(-) which satisfies the IERODE, and meets the condition u(ty) = u.(f9) + vo. In
summary, we have the following: To each 7y > 0 and € > 0, there is a (¢&,1)) :=
€ > 0 such that, for each ug € imD(1y), |up — us(to)| < 8(€,1), the IERODE has
a solution on the infinite interval, that meets the initial condition u(#y) = ug. The
difference |u(t;t0,u0) — u(t)| tends to zero, if ¢ tends to infinity. This means, that
in fact, u.(-) is an asymptotically stable solution of the I[ERODE with respect to
imD(-).

For ty > 0 and € > 0, we consider the initial condition

D(10)(x(10) —x°) =0, x° € R™, |D(10) (x° — x.(t0)| < 8(&,10),

for the nonlinear DAE (4.1). By means of the IERODE solution u( - ; 9, D(t)x°) we
build

x(t;10,x°) 1= D(t) "u(t;10,D(16)x°) + Qo (1) @ (u(t;19, D(£6)x°), ), t € [t9, ),
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which is a solution of the DAE, with D(t)x(to:t0,x°) = D(to)D(to) " D(to)x" =
D(to)x". Regarding the expression (6.10) for differences of DAE solutions, and the
boundedness of the product I1.,,D~ by the constant K, we obtain

(#5120, %) —x,. ()| < K|u(t;10, D(10)x°) — s (£)| < Ke PU=0)|D(16)x° — D(t0)x. (10)].
This proves the assertion. a

Example 6.17. We turn once again to the DAE in Example 4.8. Assume 3 > 0. We
consider the reference solution

=14 yiopt]

which has a stationary core. The DAE (6.22) linearized along x, reads

[(1)} ([1 0] x(x)) + [g 2<1+(;/(t));]x(t) =0.

This linear DAE is strongly contractive with the constant 8 and the standard product
in R. If additionally, the function y fulfills the condition

1+y(t)>a>0, forall € ][0,00),

then, by the above theorem, x, is asymptotically stable.
If ¥ vanishes identically, the nonlinear DAE is autonomous, the reference solution
becomes a stationary one, and the linearized DAE has constant coefficients. The

related matrix pencil is
10| [BO
0oo|"|02|["

The pencil has the only finite eigenvalue —f3 < 0, and hence asymptotical stability
is once more confirmed by the next corollary. a

Corollary 6.18. Let the autonomous DAE
F((Dx(1)),x(1)) =0 (6.25)

be regular with index 1, and let f belong to class C>.

Let x,.(t) = ¢ be a stationary solution. If all finite eigenvalues of the matrix pair
{£4(0,¢)D, £:(0,c)} are strictly negative, then c is an asymptotically stable station-
ary solution.

Proof. Since the finite spectrum of the matrix pair { f,(0,¢)D, f:(0,c)} =: {As, By}
lies in C~, the linear constant coefficient DAE A, (Dx(t))" + B.x(¢) = 0 is contrac-
tive, and the assertion follows from Theorem 6.16. O

Having an appropriate stability notion with regard to the exact solutions of the DAE
(4.1), the question arises, to what extent do numerical methods generate stable nu-
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merical solutions if the exact DAE solution is stable. What about A-stable integra-
tion methods?

The DAE given by (5.6)—(5.7) shows that a general positive answer for DAEs
cannot be expected. Recall that also in the case of explicit ODEs, A-stable methods
show the required property without stepsize restrictions just for linear time-invariant
systems and autonomous ODEs with weak nonlinearities. Already in the case of
time-varying explicit ODEs extra stepsize restrictions for stability reasons may oc-
cur. Expecting better results for DAEs would be naive as DAEs incorporate explicit
ODEs. In general, the situation in the case of DAEs is worse. The time dependencies
play their role.

An A-stable integration method preserves its benefit, if it is applied to a DAE which
has a linear constant coefficient IERODE and a time-invariant im D(¢) such as the
DAE in Example 4.8.

6.5 Notes and references

(1) To a large extent, the presentation concerning contractivity and dissipativity fol-
lows the lines of [96, 115]. In particular, the contractivity and dissipativity notions
as well as Theorem 6.7 take up corresponding results given in [115] for quasi-linear
DAE:s. The presentation of stability in the sense of Lyapunov generalizes and mod-
ifies those in [96] given there for standard form DAE:s.

(2) It seems that also Floquet theory can be appropriately adapted following the
lines of [141], see Example 6.15.

(3) Stable and asymptotically stable linear DAEs are introduced in Chapter 2,
Definition 2.53, as generalizations of the respective notions for explicit ODEs,
which exploits the DAE structure in a reasonable manner. Looking back once again
at Example 2.57, we recognize the role of the IERODE and that of the canonical
projector function I, wrapping up the IERODE flow to the DAE flow. Choosing
there o > 0, B = 0, the IERODE becomes stable. However, taking a look at the
fundamental solution matrix we see that, even if the IERODE is stable, the DAE
may have unbounded solutions. This happens in fact, if certain entries of the canon-
ical projector function Il.,, grow unboundedly. In contrast, if all entries of I1.,, are
bounded, then the stability of the IERODE is passed over to the DAE. In our view,
the dominance of the wrapping over the [IERODE flow is somewhat beside the point.
In the present chapter, regarding nonlinear DAEs, we concentrate on problems fea-
turing uniformly bounded canonical projector functions. For an extended discussion
of the boundedness conditions see [178].

Roughly speaking, if the canonical projector function remains bounded, then an
index-1 DAE is contractive or dissipative, if its [IERODE is so. Moreover, in essence,
numerical integration methods preserve their A- and B-stability for the DAE suppos-
ing the matrix function D(+) has a constant range. In this case, the integration meth-
ods reaches the IERODE unchanged (cf. Example 5.1). Otherwise, serious stepsize
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restrictions are necessitated.

(4) The following is worth mentioning: If in the standard form DAE

E(t)x'(t) + F(1)x(t) = q(1),

the matrix function E has a time-invariant nullspace, ker E(¢) = Ng, taking a projec-
tor Pg, with ker P = Ng, the DAE can be written as

E(1)(Pex(1)) +F (t)x(t) = q(1).

If ker E(¢) varies with time, but E(z) has a constant range, imE(f) = Rg, then we
can write

Vi (E(1)x(1))" +F (1)x(t) = q(1),

where Vg is a projector such that im Vg = Rg. In both cases, the reformulation is a
DAE with properly involved derivative, and the subspace corresponding to im D(t)
is independent of ¢. This confirms and explains the former contractivity results in
[96, for nonlinear DAEs, with constant nullspace] and [83, linear DAEs, with con-
stant range]. Of course, a Runge—Kutta method applied to the different formulations
provides different results, for instance, the implicit Euler method reads in the first

case
1

E(tn)ﬁ(xn _xn—l) +F(tn)xn = ‘](tn)a

and in the second case

1

Z(E(t,,)x,, —E(ty—1)xn—1) + F(tn)x, = q(tn).
However, we would not like to speak here of different methods, but we emphasize
that the same given method is applied to different DAE forms. And we emphasize
the benefit of trying to find a numerically qualified DAE formulation which features
a constant subspace imD(t).
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Part III is mainly devoted to computational aspects of the practical preparation of
all ingredients of admissible matrix function sequences and the associated projec-
tors. In particular one has to carry out matrix factorizations, rank calculations, and
determinations of generalized inverses. Chapter 7 provides several versions to ac-
complish the basic step of the matrix function sequence from one level to the next.
Moreover, a special more involved algorithm is developed for regular DAEs. The
characteristic values arise as byproducts of matrix factorizations. From the numeri-
cal viewpoint, the widely orthogonal projector functions are favorably.

The second chapter sheds light on aspects of the direct numerical treatment of
higher index DAEs, index monitoring, consistent initialization and numerical in-
tegration. Not surprisingly, the integration methods approved for regular index-1
DAEs not longer perform well or fail, if they are applied in the same way to gen-
eral higher index DAEs, for instance to time-varying linear index-3 DAEs. This is
due to the ill-posed character of the DAE solutions with respect to perturbations.
Fortunately, exploiting special structural peculiarities, one can often create special
methods for restricted classes of DAE.



Chapter 7
Computational linear algebra aspects

Originally, the tractability index concept was designed rather for the theoretical
investigation of DAEs. However, the resulting clear index criteria by rank condi-
tions let us trust that it also has practical meaning. Moreover, the projectors prove
their value when characterizing the different solution components, when looking for
consistent initial values and formulating appropriate initial conditions as well. And
these are good arguments to implement the associated matrix function sequences.
The algorithmic realization of a matrix function sequence (2.5)—(2.8), (see also
(3.19)-(3.21))

Git1 = Gi+ B0,
Biy| =BiP,— Gy 1D (DIIj;\D™)' DI

requires the computation of the involved generalized inverse D~ and the admissible
projectors Q; (cf. Definitions 1.10, 2.6, 2.25, 3.21).
For a DAE that has the leading term A(¢)(D(¢)x(r))’, it is also important to check
whether this leading term is actually properly stated by testing the transversality
condition

kerA(t) ®imD(r) = R".

The last question is considered in Section 7.2, whereas the basics of the compu-
tation of nullspace and image projectors associated with matrices are collected in
Section 7.1. At this point we also bring to mind the detailed Appendix A on linear
algebra issues. Methods of computing a suitable generalized inverse D~ are de-
scribed in Section 7.1. In Section 7.3 we deal with the basic step of the construction
of admissible matrix functions, that is, with the step from level i to level i + 1 by the
computation of an appropriate projector. After that, in Section 7.4, sequences of ma-
trices with admissible projectors are delivered, first level by level on the background
of Section 7.3, and then by a strongly involved version only for the regular case.
We stress that all the computation are more or less related to matrix decomposi-
tions and rank calculations, and, naturally, one has to expect to inherit all the related
numerical problems.
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7.1 Image and nullspace projectors

For a given G € R* with rank G = r, any matrix Q € R”*"™ that satisfies
GO=0, 0°=0, rankQ=m—r

is a projector onto ker G. Any matrix W € R**K that satisfies
WG=0, W?=W, rankW =k—r

is a projector along imG.

Clearly, having a basis of the subspace in question, a required projector can
immediately be described by these basis elements (cf. Lemma A.7). In partic-

ular, if ny,...,nu_r € R™ form a basis of kerG and I" := [ny -+ npu_,], then
Q = I'(I'*I")~'I"* represents the orthogonal projector onto this nullspace. If the
ni,...,n,—, form an orthonormal basis, the expression simplifies to
m—r
Q=IT"=Y nnj.
i=1

In other words, knowledge of an orthonormal basis can immediately be used to form
an orthogonal projector as the sum of the dyadic product of the basis vectors. For
problems of limited dimension a formula manipulation system like Mathematica®
or Maple® can be used to compute a basis. The command in Mathematica is
NullSpace[G] and in Maple nullspace(G).

However, to provide a basis of the nullspace of a given matrix one usually has to
carry out a factorization, for instance a singular value decomposition (SVD).

If a generalized reflexive inverse G~ (cf. Appendix A.2) is known, we gain at the
same time the nullspace projector Q = I — G~ G and the projector along the image
W =1—- GG . To compute a generalized inverse of the given matrix G, again a
factorization of that matrix serves as an appropriate tool.

Each decomposition

|5 [y
G—U[ O]V , (7.1)

with nonsingular § € R™", U =: [U1 Uz] € Rk and Y =: [Vl Vﬂ € R™™ and
U, € R¥7, v, € Rmx(m=r) immediately delivers the bases kerG = spanV, and
imG = spanU; as well as (7.1) the family of reflexive generalized inverses of G

by
_ st M 1
G _V[Ml MlSMJu ’ (7.2)

with the free parameter matrices M| and M, (see Appendix A.13). The resulting
projectors are
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_ 0 . L 0=SMy |,
Q—V[MISI}V and W—L{[ ] }L{ .

If we are looking for orthogonal projectors, we have to ensure symmetry, that is
U =V '=V* M =0and M, =0.

There are different ways to generate matrix decompositions (7.1). Applying the
SVD one delivers orthogonal matrices ¢/ and V, and the orthogonal projector Q is
given by

0=V V] [0 1] Bﬂ =WV;. (7.3)

Also the Householder method is suitable for computing a decomposition (7.1). The
Householder decomposition needs less computational work than the SVD. For a
singular matrix G, a Householder decomposition with column pivoting is needed.

We obtain

_ [Ri Ry
her=u [

with a column permutation matrix /,,, an orthogonal matrix U and a nonsingular
upper triangular matrix R. The required decomposition (7.1) then has the structure

—1
G=U [Rl 0] [1 R, IRZ} Lo, (7.4)

=yl

and hence the nullspace projector

_ p-1 -1
01 I —R;'Ry 0 IR 'R2) .
I —MR, I [ | e

and the projector
W=U {O R‘Mz} U

1

along the image of G results. The free parameter matrices M; and M, can be used
to provide special properties of the projectors as, for instance, we do in Section 7.4.
Since the Householder method provides an orthogonal matrix U, choosing M, =0
we arrive at an orthoprojector W. If we apply the Householder method to G* instead
of G, we also deliver an orthogonal nullspace projector for G.

In principle also an LU decomposition of G using the Gaussian method with
scaling and pivoting yields a decomposition (7.1). With a row permutation matrix

Ier We obtain
[V 1 Ri Ry
IporG = LU — [Lz 1] { 0}

and the decomposition
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Gr L ][R ][IR 'R
rer LI |0 1

—— —
=U —p-1
It is well-known that rank determination by the Gaussian method is not as robust
as it is by the Householder method or SVD (cf. [93]), which is confirmed by our
practical tests. We do not recommend this method here.

7.2 Matters of a properly stated leading term

Having a pair of matrices A and D one might be interested in making sure whether
they are well matched in the sense of Definition 1.36. For instance, if a DAE with
a quasi-proper leading term is given, one can check pointwise if the DAE even has
a proper leading term (see Definitions 2.72, 3.2). In this way critical points can be
indicated and eventual programming errors in handwritten subroutines as well.
Moreover, when generating the basic matrix function sequences starting pointwise
from the given coefficients A, D, and B, the reflexive generalized inverses D~ and
the border projector R play their role.

Let the two matrices A € R¥*" and D € R™™ be given and G := AD. Then the
inclusions imG C imA and ker D C ker G are valid. Owing to Lemma A.4, A and D
are well matched, exactly if

rank A = rank G = rank D, (7.5)
imG =1imA, (7.6)
kerD = kerG. 7.7

The failure of one of these three conditions indicates that A and D miss the mark.
Since, in turn, (7.6), (7.7) imply the rank condition (7.5), these two conditions al-
ready ensure the well-matchedness.

Let G~ denote a reflexive generalized inverse of G, e.g., provided by a decom-
position (7.2). Then the conditions (7.6), (7.7) can be written as
(I-GG)A=0, (7.8)
D(I-G G)=0, (7.9)
and these conditions are also useful for testing the well-matchedness.

Next we suppose A and D to be well matched, and hence (7.8) and (7.9) to be
valid. Then
D™ =G A, A :=DG” (7.10)

are reflexive generalized inverses of D and A, and

R:=DD" =DG A=A"A
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is nothing else than the projector matrix onto im D along ker A. Namely, it holds that

DD D =DG AD =DG G =D,
D DD =G ADG A=G A=D",
AA"A=ADG A=GG A=A,
A"AA~ =DG ADG  =DG =A".

It turns out that, decomposing G delivers at the same time a reflexive generalized
inverse G~ such that one can first check the conditions (7.8) and (7.9), and then,
supposing they hold true, form the generalized inverses D~, A~ and the border pro-
jector R.

We stress at this point that an orthogonal projector is often preferable. It can be
reached by a SVD applied to G or a Householder factorization applied to G* (Sec-
tion 7.1).

An alternative way to test well-matchedness of A and D and then to provide
D™ and R uses factorizations of both matrices A and D. This makes sense, if the
factorizations of A and D are given or easily available.

Suppose the decompositions (cf. (7.1)) of A and D are

A=U, {SA 0] VAlandD:UD{ 0} vyl (7.11)

We can now check the rank conditions rankS4 = rank Sp which are necessary for
well-matchedness (see (7.5)). Also AD = G has to have the same rank. The decom-
positions yield

AD = Uy, [SA 0} v, 'Up {SD o} vy! (7.12)

and, denoting VA_IUD —H— {Zl Zz
3 Hy

} , the necessary rank condition is satisfied iff
H, remains nonsingular.

The generalized inverses of D and A are not independent of each other, but they
have to satisfy the relation DD~ = A~ A. Using the given decompositions (7.11) the
reflexive generalized inverses are immediately found (see (A.13)) as

- S, Moy } i - [S—l M p } i
A==V, |24 : U and D~ =Vp | 2P : Ul
A [MI,A MiaSaMy 4| 4 b My p My pSpMap| P

which leads to

o [rspMapl, 0 o, I 0],
DD —UD[O 0 }UD, AA—VA{MLASAOVA.

Using again the notation Up = V4 H, the relation DD~ = A~ A becomes equivalent
to
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1 SDMzD 1 0
H = H.
[0 0 Mi 4S84 0

This fixes two of the free parameter matrices, namely
Myp=Sp'H 'H, (7.13)

and
M4 =HH; 'S,

The other two parameter matrices My p and M 4 can be used to ensure further prop-
erties.

Finally in this section, we briefly turn to standard form DAEs given with a leading
term of the form Gx/(r). A factorization (7.1) is then adjuvant in determining a
properly stated leading term version (cf. Section 1.5). We can define A and D as

(a) AM{SO}, D=V
(b) A=U, D= [S 0] y-1L
. . 1. V=
and with U =: [Uy,U] and V™! = [(V')J
(©) A=US, D= (V1 eR™™",
(d) A=U,, D=SWVY),.

The cases (c) and (d) provide the splitting with full rank matrices A and D, which is
advantageous, e.g., because the border projector is simply R = 1.

Analogously one can proceed in the case of time-varying term coefficients G(t), but
then one needs a continuous matrix decomposition and a continuously differentiable
D(-) as well as its derivative.

Notice that often standard form DAEs are given with separated derivative-free equa-
tions such that a continuous projector function 7 — W () onto im G() is available at
the beginning. Then one can make use of this situation and put A(¢) :=1—W(¢),
D(t) := G(t) (cf. Chapter 2, Note (7)).

7.3 The basic step of the sequence

Now we consider the basic part of the determination of an admissible matrix func-
tion sequence, that is the step from G; to Gi; (cf. for the constant coefficient case
(1.10), for variable coefficients (2.6)—(2.8), and in the nonlinear case (3.21)). Let a
projector IT; := Py - - - P; be already computed. We are looking for the next admissi-
ble projector Q;+1. An admissible projector must satisfy the required properties (cf.
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Definitions 1.10, 2.6, and 3.21). Not only its image ker G;; 1, but also a part of the
kernel is fixed such that ker I'l; C ker I';Q; is valid.

If we are dealing with matrix functions, the determinations are carried out point-
wise for frozen arguments.

In the following we suppress the step index i. G complies with G;;1(z) and IT
with IT;(z), where z is an arbitrary frozen argument.

For a given matrix G € R**" with rank G = r and a given projector IT € R"™*™
with rank IT = p, we seek a new projector matrix Q such that

imQ = kerG,
kerQ D X (cf. (1.13)),

and X is any complement of ﬁ :=kerII Nim Q in kerIT (cf. (1.12)), which means
that Q has to satisfy (cf. Proposition 1.13 (3)) the conditions

GQ =0, rankQ =m—r, (7.14)
Q(I—1IT) =0. (7.15)

Owing to Lemma A.7 such a projector Q exists. Denote N := kerG and K :=
ker IT = im (I — IT). Condition (7.14) implies imQ = N. If N and K intersect only
trivially, i.e., KN N = {0}, which we call the regular case, we can form Q to satisfy
X = K C kerQ, and then condition (7.15) holds. In general the computation of a
representation of X is needed. We have to fix a set X C K such that K =X § N.
Notice that X is not uniquely defined. An example illustrates the situation.

0-11
Example 7.1. For I1 = [00 1] and G = {0 1 —Ol},m:3, we obtain K = ker Il =
10 10 1
span [8 (IJ and N = kerG = span [8 ﬂ, further K NN = span [8} and KGN =

cos o 0

R™. Any plane given by (KNN) := span [sir(l)a —cgsa] , with fixed o € (0, 7), and

B # 0, is a complement of K NN in R™. A possible subspace X can be given as
X =KN(KNN)¢ = span Fﬁgg} . As we can see by the different choices of ¢ and

B, the complement (K NN)¢ as well as X are not unique. For reasons of dimensions,
in this example, since dim(K + N) = m, the projector onto N along X is uniquely
determined as

__cosax cosa
sin¢  sinQ

0=
1

Figure 7.1 shows this case. In general, R” = N® X &(K + N) holds with a non-
K+N

trivial complement (K + N)¢, which shows that fixing X does not completely fix

the projector. It is worth mentioning that always restricting the choice to orthogonal

complements we arrive at the so-called widely orthogonal projectors, and those are

uniquely determined. This case corresponds here to the choice o = 7 and 8 = 1.
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Fig. 7.1 Decomposition of R3

Now we start to discuss several methods of constructing projectors Q.

7.3.1 Basis representation methods

If a basis ny,...,n,—, of N and a basis ¥i,...,Xs of a suitable X are available,
X NN =0, we immediately form a projector Q onto N satisfying X C ker Q we are
looking for as (cf. Lemma A.7)

1 _

whereas N' = [n1...nu—], X = [X1...Xo| and H := [N, X] have full column
rank, and H~ is any reflexive generalized inverse of H. Consider different ways of
generating suitable bases, and at the same time, a suitable subspace X.

A basis of N is delivered by decomposition (7.1). We have to provide a basis of
a suitable subspace X. Recall that for any matrix 2 the relation ker2A*2 = ker® is
true. Therefore, because of

N =NNK = ker [g

] =ker(G*G+1IT*IT),
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by means of a decomposition of L(_;I] € R or of (G*G + IT*IT) € R™™ we

can design a projector Z onto N. The choice of this projector also fixes a possible

complement N¢:=imZ of N. By means of Z we compute a basis of X by one of
the relations

Z
ker [ I

] =ker(Z*Z+IT"IT) = (NNK)°NK =X.
This method of providing the projector Q needs three decompositions including
those of matrices with k + m, respectively 2m rows as well as the computation of
expressions like (G*G + IT*II).

An alternative possibly cheaper way to construct an admissible projector Q is
suggested by Lemma A.5. Decomposing

S -
G=Ug { G o} Vol Vo =:[Vea1,Vea) (7.16)

we obtain N = kerG = imV», that is, a basis of N. Then, in order to apply Lem-
ma A.5, we decompose

S _
Vg, = Uny [ T O] VH]%N Vv =: Vw1, Vin 2},

and hence kerIIVg, = imVpy, is valid. Then, owing to Lemma A.5,
Y := V2V 2 € R™*4 represents a basis of kerGNkerII = NN K. Having the
basis ¥ of NN K we could, as before, compute a projector Z onto NN K, and put
(NNK)¢ =kerZ, but here we actually do not compute Z, but provide a basis of the
nullspace of Z in a different way. We decompose

S
Y ="Uy m . Uy =:[Ura,Ural,

with nonsingular Uy, Sy. Now, Uy, € R™*(m=4) gerves as a basis of a complement
(NNK)¢ =kerZ, which means kerZ = im Uy ». To apply Lemma A.5 once more we
compute a basis of ker I1Uy » by the further decomposition

Sx

HUY,2=UX{ 0} Vi, Ve=t [V Vaal,

yielding ker IIUy = imVy ». This finally leads to
X=(NNK)*NK =kerZNkerIT =imUy,Vx .

Here, four lower-dimensional matrix decompositions are needed to compute the
admissible projector Q.
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7.3.2 Basis representation methods—Regular case

In the regular case (cf. Definition 2.6), if

KNN = {0}, (7.17)
equation (7.15) simplifies to

QI —1II) =0. (7.18)

Condition (7.17) implies m — p < r. With the background of the decomposition
(7.16) of G, each projector onto N has the form

_ 0 0|,
0=Vg {_MISG Im_J vl (7.19)

A basis of im (I — IT) = ker IT can be computed by means of the decomposition
I1=Ug |:SH 0:| VH], S € RP*P nonsingular, Vg =: [VH’hVH,z}
yielding im (I — IT) = im Vg2, rankVp» = m — p. Now condition (7.18) means

OViip =0, 0r Vi 2 = PVpp o, with P:= I — Q. This leads to

I 0, _ I 0|V
Viip =PV =Vg |:MlSG 0} VeV, =Vs [Ml Se I] {01] ; (7.20)

_

=y,
which shows that rank V| = rank Vi, = m— p, ie., Vi € R" P has full column
rank.

The requirement QVr7 > = O results in the condition —M;SgV; +V, = 0, which de-
termines M. The choice

My =WV, 8! (7.21)
satisfies this relation with an arbitrary generalized reflexive inverse V|, since
Vf V=1

If IT is symmetric, Vpy is orthogonal and Vf is the Moore—Penrose inverse, then the
choice

My =WV Sg! (7.22)

generates the widely orthogonal projector Q, which is shown at the end of Subsec-
tion 7.3.3.



7.3 Basic sequence step 409

7.3.3 Projector representation method

Now we build the projector Q without using subspace bases. We again apply the
decomposition (7.16) and the general projector representation (7.19), that is

_ 0 0 |1
Q=Va |:_MISG Imr:| Vo -

Introducing IT := Ve TV we derive the expression

| 1 My o] )
VG_ H _ VG_ HVG . H21 sz
{ VGI:| [1— Q} Vo= [IVGlQVG} =l o . (7.23)
MSg O
From ker -0 =KNN = N and u = dim N it follows that dimker -0 —

m— u. Regarding this we conclude from (7.23) that the rank condition rank [glz} =
22
m —u—r1is valid.

Lemma 7.2. Given a projector I1 and the decomposition (7.1) of a matrix G,
rank G = r, then the projector Q defined by (7.19) satisfies the properties (7.14)
and (7.15), supposing one of the following three conditions is satisfied:

M) [ -
) M =-|4 =SS
® =] |5
2 M = —ﬁz_zﬁngal, and the reflexive generalized inverse ﬁ2_2 satisfies
Iy, = 1712172_21722. o
(3) M =II* Vg is orthogonal, and My = —IL,, T S;".
Moreover, the special choice of the Moore—Penrose inverse in case (3),
M, = —ﬁ;ﬁﬁz]S&l,
provides a symmetric I1Q and a widely orthogonal Q .

Proof. (1) Condition (7.14) is always given by the construction and it remains to

verify (7.15). We let M := M Sg = — [glz} [gll} and compute
22 21
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VI3~ IT)Vg = _1:711 ﬁn] { 0 0} [l—ﬁu —1732]

Ly I | |-M 1| | =1y I—1In

[1T,> 1-1IT; —Ip,
=22 =M1 o 1

_sz] [ ] |:_H21 I—sz}

el
| U2 I =1Ly 1—-1In|’
The relation 0 = IT(I — IT) provides

A= ) == [ (- - ).

I I,
and hence
~ ~ ]~ [ ~ ~
MI|I—11; —1II;5| = | & ~ IV ES IR
1=y i) = 2] 2] (-1t 1)

Regarding this we finally find

I - - 1T - -
ﬁ;j M [I—TII;, —Iy] + {ﬁ;j [Ty 1 — I

= o) (] ([t -20)

+ {I:Ilz] [—1:[21 1—1:122]

Ve QU1 — Vg = [

I,
=0.
(2) If we are aware of a (m — r) X (m — r) submatrix of [glz] € R™<(m=r) "which
22
has rankm — r — u, a generalized reflexive inverse of {11%12} can be computed,
22

i.e., by a Householder decomposition. We assume without loss of generality that
rank I, = m — r — u. If the submatrix is distributed over the rows of the matrix, a
row permutation leads to the same assumption but at the end the factor U contains
row permutations.

II;;

Decompose | ~ =
roe ]

—1
thogonal U, and fix the reflexive generalized inverse IT,, = U* {522,1 8} . Below
we show that a generalized reflexive inverse is given by
ﬁ]z B . ~_
[ﬁzj = [0 IT,] . (7.24)
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Applying (1) and this special structure of the inverse provides

ﬁ12 - ﬁll 1 . ﬁll o - »
Ml = — |:I~T22:| |:ﬁ21:| SG = [0 —H22:| |:ﬁ21:| SG — _H22H21SG ,

which verifies the assertion. It remains to verify that (7.24) in fact serves as a reflex-
ive generalized inverse. The condition

Jo i) - [M2] [

2] -1 2] = 22
is valid because of our assumption concerning the generalized inverse 1:12’2, namely
Iy, = M2 115, I or equivalently im (I — Iy, ITs) = ker Iy C kerITj,.  (7.25)

(3) The symmetry of IT and IT (with orthogonal V) yields

= ~ = [ )" [,
Iy, = [T Iy, [ﬁzz] = [ﬁzz] [1722}

and therefore rank Il = m — r — u and ker Iy, = ker [glz] ,i.e., kerITh, C ker 5.
22
Considering (7.25), assertion (3) is shown to be a consequence of (2).

Finally we have to verify that taking the Moore—Penrose inverse in case (3) one
delivers a widely orthogonal projector Q. By Definition 1.12 a widely orthogonal

projector Q projects onto N along (K +N)* @ X with X = N- NK. Lemma A.7 (7)
describes sufficient conditions. Put M = H2J5H21 and derive

o Ak 0 0] . 1:1121:[;31721 My .

HQ - VGHVGVG |:—M I:| VG - VG [ﬁzzﬁi’iﬁZI ﬁzz G

The symmetry of a implies the symmetry of I, , Iy, and [}, = I:IZ* 1~ The Moore—
Penrose inverse of a symmetric matrix is symmetric itself, therefore I:IZQH;Z =
121231722. We consider the matrix blocks of ITQ which seemingly derange the sym-
metry,

(ﬁ]gﬁiﬁg])* = ﬁz*l (ﬁﬁ)*ﬁl*z = ﬁ]zﬁiﬁzl and

e sy s e L (725) o
HZZHZ-EHZ] - (HZZHZ-S)*HI*Z = (H]2H22H2-E) = (lenz_gnzz) ( p— ) le = H217
but this shows the symmetry of ITQ and naturally I1P with P =1— Q.

The last properties we have to show are the symmetry of P(I —IT) and the condition
QIIP = 0 as well. Derive
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further

—
I 11y
M, = — L5 [Ty, = —I1L5 o (I — Ihhy)
which shows the symmetry of P(I — IT). Next we compute

0 0].,. 7 N I10].,.
QHP— VG |:—M 1:| VGVG |:ﬁ21 ﬁ22:| VGVG |:M O:| VG

=V 0 0 VE
~ O =MITy + Iy + (—MTTp + Tip)M 0] 7%
and
~MIT + Iy + (—MITip + Iy )M = I (— I Ty + IhiITn I50h) =0,
SN—— — T~
—I, (I-Ihy)Ihy  Ihy(I-TI)
and hence QITP = 0. Now the assertion follows from Lemma A.7 (7). a

We are especially interested in the regular case, where N = {0}. Lemma 7.2 sug-
gests a practical way to compute a widely orthogonal projector for that case. Since

N= {0} and u = dim N = 0 the matrix [glz} in (7.23) has full column rank. Then
22

~ ﬁ12 * ﬁ12 . . ~ ~_1 =~
I, = L:IZJ [ﬁzz is nonsingular and I'IZJE = IL,, . Moreover, ID; is not only

nonsingular but positive definite as the following lemma proves.

Iy Iy,

Lemma 7.3. Let the symmetric projector I1 =
Iy Iy

} have a nonsingular block
ITy;. Then this block Iy, is positive definite.

Proof. 11 is a projector and therefore I, = I I1}; + H222. It holds that Iy = ITf,
and I, = IT},. We consider (ITx,x) for x # 0.

(szx,x> = (H21H12 + szz)x,x>
I Ij>x, x) + (I3, x)
ITiox, IT2x) + (Iox, Ihox)

I, H22x> > 0.

o~ o~~~

>
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Lemma 7.3 suggests to decompose IT>, by Cholesky decomposition when comput-
ing

My = —IT,' T S (7.26)

for widely orthogonal projectors.

Next we show that, in the regular case, formula (7.22) provides exactly the same M
as formula (7.26), and hence an additional way to compute the widely orthogonal
projectors.

The projector IT is symmetric and has the decomposition

I 1 ] [VE
-l oo (]

with an orthogonal matrix V. We obtain IT = I — Vig 5V} 5, which leads to
O =Vi' Vg =1-V;'VioVi Ve (cf. (7.20))
I Vil i’
B | [ V2
|- Vi VlT -V VZT
o —VzVIT I— V2V2T ’

Applying (7.26) we obtain

My = (I-VV) " WVIsc =v, W)~ s, (7.27)
—_———— —————
=V,(VI'v)-! =V

which coincides with (7.21).

7.4 Matrix function sequences

7.4.1 Stepping level by level

The admissible sequences of matrix functions are constructed pointwise. We start
with matrices (standing for matrix functions with frozen arguments) A,D and B.
We compute a generalized inverse of Gg := AD and fix in that way a projector
Qo :=1— Py =1— Gy Gp onto kerGy. The starting matrices of the sequence are
Go, G, ,By := B,Ily := P.

Let us assume that we have determined the sequence up to level i, which means,
G;, the admissible projectors Q;, j = 1,...,i, and the projectors Il; = F,...P; are
already computed. Since they are admissible, the condition (cf. (7.15))
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;1 Q;(I = Ij1) =0

holds for every level j =1,...,i. We have to build G;;; = G;+ B;Q; and a nullspace
projector Q;;1 onto ker G, satisfying

Xiv1 = (No+-++N;))© N; CkerQyy (7.28)
(cf. (2.45)), or equivalently,
I5,Qi1 (I —I1;) = 0. (7.29)

The decomposition
Sit1 -1
Giv1 =Uip [ 0} Vi (7.30)
provides the reflexive generalized inverse

—1
- V'+1 SH,] MZ-,I'+1 Z/[71
— =V :

i+l My i1 My i1 SipiMo i | !

and the nullspace projector

0 0

Qi1 =Viy1 [—M1,i+1Si+1 1} -
The entry M ;4 can be computed by means of one of the proposals in Section 7.3
and M, ;11 can be set to zero.
Since we proceed pointwise with frozen arguments, to ensure continuity of the
nullspace projector and then that of the next matrix function, it is recommended
to apply widely orthogonal projectors. For widely orthogonal projectors we need
an orthogonal matrix Vi (see Lemma 7.2 (3)), which requires a decomposition
of Gi+1 by an SVD or by the Householder method (decomposition of G, ). After
having generated G;. and the nullspace projector Q;1 we have to provide also the

next
Biy1 = BiP,— Gy D™ (DITy ;D™ )'DIT; (cf. (2.8))

or, in the invariant case,
Biy1 = Bih.

The latter case does not present any difficulty; however, in general the involved
derivative of DII; 1D~ represents a serious challenge. In [137] finite differences are
used to approximate this derivative, which delivers quite accurate results in lower in-
dex cases and if the relevant subspaces are invariant. A more accurate approximation
of the derivative by automatic differentiation (cf. [98]) is done in [143]. The appli-
cation of automatic differentiation needs higher smoothness assumptions as needed
for the tractability index concept itself. In Section 8.1 the index determination for
nonlinear DAEs is discussed.
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7.4.2 Involved version for the regular case

A complete new decomposition of G, at each level appears to be expensive. In the
regular case, a possibility to make better use of results obtained in previous steps is
developed in [137]. We use the representation

Giy1 =G +BiQi = (Gi +W:BoQ;)Fi 11

with the projector W; along imG; and the nonsingular matrix F;yy = I + G; B;Q;
(cf. Proposition 2.5 (3)). For the matrix G;, j =0,...,i we already have the decom-
position
G;=U; [Sf } V!
J J 0 J

with U}, §; and V; nonsingular matrices. The other components are given for
j=0,...,iby

_ st My } O
G. = V J 2] N
s {M 1j M SiMa |
W;=1-G,G; =l [0 S"?lz’j} Ut =Ut, [O 1] U, (7.31)

0

Q; :Ifcfcj =V {_Ml.ij

_ [
1} vjlv,[ 1] 7'V (7.32)

with the upper and lower triangular matrices

18;M; ; I
I and 7 ; := MiS; 1|

Using the detailed structure of the various matrices we find

Tutj = [

o TS 01, 0 e
G =UT;! [ 0}+[ I]ul. IBOVI[ 1} T,V iy

B;

By, B,
L L

. .. B21 B22_ .

this decomposition and obtain

If we write B; = [ and decompose B, = Uiy {S”l

0] \71:&, W€ can use

1 Si I
Gip1 =UT,}! m] Sit1 [ V_l} T,V P (133)
L 0 i+1
N————
=Uit] ::Vijrll

Defining Siy := [Si §'+1] we now have the required decomposition of
l
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S; _
Giv1 =Uip [ a O} Vi (7.34)
and |
_ S M, ; ~1
o=V i+1 5] u-t.
i1 T {Ml.,iJrl Ml,i+ISi+1M2,i+l] i+l
The projector
_ 0 of,,—
OQiv1 =1-G;1Git1 =Vin |:M1 Si 1} i+11-

is a nullspace projector for each M ;1.

To fix the projector, the different entries M1 ;1 can be determined as described in
Section 7.3, where I1 is replaced by I1;. The computation of M; by (7.21) goes bet-
ter with the step-by-step computation. Widely orthogonal projectors are computed
using the Moore—Penrose inverse of V) (see (7.27)).

The advantage of the involved step-by-step computation of the sequence is that, at
each step, we decompose only the matrix Bgz, whose dimension reduces from step
to step.

After having computed G;+; and Q;1 we have to provide

Biy1 = BiP,— Gy 1D~ (DIT, D™ )'DIL; (cf. (2.8)).

Here again, the challenge is the differentiation of DIT;{ | D~.

7.4.3 Computing characteristic values and index check

The characteristic values of the DAE under consideration, which are (see Defini-
tion 2.9) the values

T IT;_ II;_
r; =rank G;, u; =dim N;, N; =ker [1 ’Ql] =ker [ (’; 1} =ker [G?Gi—&—I"IitlH,-_l]
% i
are rank values arising as byproducts within the factorizations when generating the
matrix sequences as described in the previous subsection.
If one meets a nonzero value u;, the given DAE fails to be regular, which makes the

question
“ui — 0 ?’7

serve as a regularity test.

The determination of the tractability index of a regular DAE requires the determi-
nation of the matrix sequence up to a nonsingular matrix G,. We concentrate on the
regular case.

At every level G;, i =0,1,..., the characteristic value r; = rank G; is determined
by checking the nonsingularity of G;. The step-by-step algorithm of Section 7.4.2
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delivers the characteristic values successively starting from ry = rank Gy and ri4 | =
ri4rh i=0,1,..., with 7 := rank B,.

The regularity is implicitly checked by computing an admissible projector at every
level. In the case of a critical point, we are faced with a rank drop of V; if we use
(7.21) or a singular block I, if we apply (7.26).

The computation of B;, i > 0, needs the differentiation of DII;D~. The factoriza-
tion Giy1 = (G; + W;BoQ;) (I+ G; B;Q;) allows us to determine r;| = rank (G; +

—_——

nonsingular
W;BoQ;), which is easier, since one can do without computing the derivative of
DII;D~. The first level where the derivative of DIT;D™ may influence the sequence
matrix occurs for i = 2. The check of the index-3 property needs only one differen-
tiation, which is accurately realizable by finite differences.
Algorithmic differentiation (AD) to compute the derivative of DII;D™ is applied in
[144]. Using an AD tool all computations are made by Taylor polynomials and a
derivative is reduced to a shift of the Taylor series. The application of this technique
requires higher smoothness assumptions.
For time-invariant linear DAEs the tractability index coincides with the Kronecker
index (cf. Theorem 1.31), i.e., the numerical determination of the characteristic val-
ues discloses the inner structure of the DAE.
For a further discussion of the numerical index determination of nonlinear DAEs
see Section 8.1.



Chapter 8

Aspects of the numerical treatment of higher
index DAEs

At the beginning of the numerical treatment of DAEs, several experiments with
the integration of initial value problems of higher index DAEs were done. The re-
sults were usually not satisfactorily. One could observe instabilities and numerical
difficulties, in particular when integrating index-3 DAEs arising from rigid body
mechanics (cf. [63]). Meanwhile several stabilizing techniques (see, e.g., [88], [23])
have been introduced for problems with a special structure (e.g., DAEs in Hessen-
berg form) to counteract these problems. Reading only the titles of papers (e.g., [S0],
[132]) one could think that it is no longer a challenge to solve higher index DAEs.
But one should be aware that derivative arrays of DAEs are used there to reduce the
higher index DAE to an index-0 or index-1 DAE before performing any integration
method.

This chapter advises the reader of various troubles arising when numerical meth-
ods are applied directly to higher index DAEs. Before demonstrating this, we present
a procedure for the practical calculation of the index and make a few remarks on
consistent initialization in the higher index case. This is of importance for users of
DAE solver packages since they usually require knowledge about the DAE index.

8.1 Practical index calculation

The calculation of the index of a DAE now coincides, in the fully nonlinear case,
with the determination of a regular point of the DAE. Two ways are appropriate. The
theoretical index investigation using structure, smoothness and maybe additional
assumptions determining the resulting index for a class of problems as it is done,
e.g., for Hessenberg systems in Section 3.5 or for DAEs simulating electrical circuits
in Section 3.6. The other way is a pointwise numerical determination. We choose a
time point ¢ and a jet (x,x',x%,...,x) with v < u < m. At this point we compute
the matrix sequence (cf. Section 3.2) and determine the index of the DAE.

The tractability index depends on the jet (see Definition 3.28). The fact that different
solutions of a DAE may indicate different values of the differentiation index (cf. [5],
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p- 235) or the structural index (cf. [186], Example 2.3) is a known property, as we
will see in the example where we compare the differentiation, the structural, and the
tractability index.

Example 8.1 (Index dependence on jet variables (cf. [144])). We consider the DAE

Xh+x —t=0, (8.1)

x’2 +x/3 +yx1x+nx—1=0, (8.2)
X

nﬂf§H%Fﬂ. (8.3)

The proper formulation reads

10 010 X1 / X —t
11 ([ ] X2 )+ Yxix2+nNx2—1{ =0. (8.4)

001
00| \ | x x(1—=3)+x3

D
A

The differentiation index is based upon the derivative array, which is given up to
order 2 by (8.1)—(8.3), and the differentiated equations (8.5)—(8.8)

4 —1=0, 8.5)
Xy 4 x5 + yY(xjx2 4+ x1x5) + Nxy = 0, (8.6)
(1 —xp)+x5 =0, (8.7)

x5 +x =0,
0 25+ YR + 2202 - x10) + 110 = 0,
Xy + x4 —xyxy — (xh)* =0. (8.8)
The differentiation index requires us to filter an ODE system from the derivative
array.
We form the ODE system by (8.1) (for x}), (8.7) (for x5) and (8.6) (for x}). Replacing

xJ +x% in (8.6) we use (8.8) and, finally, replacing x and x, we need (8.5) and (8.1).
The system we thus obtain reads

(Y= 1) +xo+ (t—x1)(t —xi +yx +1) =0,
x’2+x1 —t=0, (8.9)
x5+ (t—x1)(1—x2) =0.
Hence, the DAE (8.1)—(8.3) has differentiation index u; = 2 if and only if the con-
dition x2(y— 1) # 0 is satisfied.

The structural index is based on quantities deduced from the DAE. We apply the
definition given in [186]. We have to compute the signature matrix X, the equation
offsets c, the variable offsets d, and the system Jacobian J with
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of; . . e .o

Jyj = 3((d,—<;)th derivaiive of ;) if this derivative is present in f;
0 otherwise incl. d; —¢; <0,

which has to be nonsingular. In this case the structural index is defined by

0 ifall d;>0

Hs = mpxeit { I if some d; = 0.

For the DAE (8.1)—(8.3) we obtain

¢
— | 0
r= 1110
— 1
d 01
and the related system Jacobian matrix

1 1 0

J=|y2 1 1

0 1-x1

J is nonsingular if x,(1 — ¥) # 0 and the structural index p; = 2.

The tractability index matrix sequence as defined in (3.21) starts for (8.4) with
the matrices

010 1 0 0
Go=AD= |011|,B= |y yx1+1 0],
000 0 1-x 1

where (x,x’) denotes the chosen point in the jet space. A nullspace projector Qg
onto ker Gg and the next sequence matrix Gy, and a nullspace projector Q; with
010 onto ker G are given by

1 010 0O -1 0
Oo=1| 0 [,GI=Go+BQg= |yx2x11|,01=(0 1 0
0 000 Oyx,—10

From (3.21) it follows that By = BRy— G| D~ (DP,D~)'D with

00
D =110 ,DP]D—{1 O],
01 ’)/XQO

and we obtain

0 0 0 1 1 0
Bi= [0y(xi+x5)+n0|,G=G1+B1Q1= |y 1 +y(x1+x5)+n 1
0 x(y—1) 0 0  xmy-1) 0
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det G, = xp(7y— 1) and the DAE has tractability index g, = 2 iff the point belongs to
aregion where x;(y—1) #0.

This shows that, in the considered index definitions, the DAE (8.4) has the same
index under the same restriction. If we assume that y = 1, then the DAE has a critical
point at x, = 0 or, more precisely, x, = 0 separates two regularity regions. There-
fore, the index obviously depends on the chosen point.

DAE (8.4) was considered for ¥ = 1 in Example 3.60. Unfortunately, in that case
the structural index is not defined, because the matrix J becomes singular.

However, the DAE has tractability index 3 if additionally x; +n —i—xé # 0 (cf. Exam-
ple 3.60). The determination of the differentiation index requires the same condition
and leads to the index-3 property. a

The complete characterization of a DAE, that is to figure out all regularity regions
including the characteristic values by numerical methods, seems to be too extensive
in the general case. What we can do is to check several necessary regularity condi-
tions (cf. Theorem 3.33), e.g., monitoring the index in the points computed during
an integration of an IVP.

In Example 3.34 a solution of DAE (3.27) crosses in = % a critical point leading
to bifurcations (see Figure 3.4) which might not be discovered by the integration
method.

An index monitor should supervise the characteristic values (which includes the in-
dex) and properties of the sequence matrices G;, i =0,..., 1. During an integration
we may pass a critical point only. Here a monitoring of the condition of G, is help-
ful. This could be done by a check of pivot elements of the applied decompositions
when the characteristic values are computed.

We now sketch an algorithm to calculate and test the characteristic values by
means of the matrix sequence (3.21):
Fix a time point # and a jet (x,x',...,x"), v <u —1 <m, or choose a linearization

function x(-), which is sufficiently smooth to compute the required derivatives at 7.

1. Compute the initialization matrices A,D,B (cf. (3.13)—-(3.15)), check the well-
matched condition of A and D (cf. Section 7.2), compute D—, set i = 0.
2. fi==0
set Go =AD, By =B, Qo =1— D™D, ryp =rankGy.
else
compute G; = Gj_1 + B;_10;_ (cf. (3.21) and Section 7.4), r; = rank G;.
If r; == m = tractability index y = i, SUCCESS.
If i == m = no regular matrix sequence = critical point, STOP.
5. If i > 0 compute an admissible projector Q; projecting onto ker G; (cf. Defini-
tion 3.21).
If no projector exists,
i.e., My ; (cf. Section 7.3) not calculable =- critical point, STOP.
6. Compute P, =1—Q;,
ifi==
set [T = Py

Ll
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else
compute IT; = IT,_1P,, (DIT;D~)’ (cf. Section 7.4.3) and B; (cf. (3.21)).
7. Seti:=i+1, GOTO 2.

This algorithm is implemented using widely orthogonal projectors and the differ-
entiation of (DIT,D™)’ is done by algorithmic differentiation using the MATLAB
AD-tool INTLAB (cf. [195]).

Example 8.2 (Robotic arm ([57])). The DAE describes a prescribed path control of
a two-link, flexible-joint, planar robotic arm as presented in [43].

- - ’ - -

X1 X4
X2 X5
X3 X6
|:I6] (15 0] X4 | fa(x2,x3,x4,%6) +a(xs)(ur — u2) —0
0 X5 S5(x0,x3,x4,%6) —a(x3)(u; —up) +up
X6 Jo(x2,x3,x4,%6) — (a(x3) + b(x3)) (1) — uz)
u cosx; +cos(x; +x3) — p1(¢)
| u2 | | sinxy +sin(x; +x3) — pa(t)

Set + = 1. We determine the index and characteristic values r; at x =
(—=1.72,0.39, 1.718, —2.72, 4.29, 1.72, 13.59, 14.33). The QR decomposition of
G; provides the diagonal elements R,, ,, of the upper triangular matrix for a rank de-
cision. We observe in the next table that the gap between R,, ,, > threshold= 10-12
and the next diagonal element R, 1,11 allows a robust rank determination. We
obtain

i detG; ri=1ankG; |Ry .|  |Rrt1r41
0 0 6 1 0
1 0 6 1 0
2 0 6 9.6556e—1 4.0164e-17
3 —5.3724e-17 7 1.0968e~1 3.2092e-17
4 —1.0724e-15 7 1.3430e~1 6.7654e—17

5 —2.4783e+00 8 5.4233e-2

The same DAE was investigated by other authors using different index concepts (cf.
[42, 185]).

dimension index

differentiation ([42]) 40Q27) 5
structural ([185]), derivatives of 2nd order 5 3

manually modified 9 5
tractability 8 5

The differentiation index needs to investigate a derivative array of dimension 40 or,
if one knows in advance which equations are to be differentiated, at least dimension
27. The determined index equals 5, (cf. [42]).

The structural index applied to a modified DAE version with second derivatives de-
termines the index 3. A manually modified DAE of dimension 9 delivers the index
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5, (cf. [185]).

The DAE has no degrees of freedom, i.e., there is no dynamics within the system,
which leads to Iy = 0. We can use this property to check the accuracy of the nu-
merical results. We obtain

max |(DIT4D™);j| = 1.005e-15, max|(DIL4D™);;| = 1.354e-15.
irj ij

Also the accuracy of the projector calculation lies near the machine precision:

Projector property max |Q? — Q| = 4.022e-15
Admissibility max |Q;Q;| =3.075e-15
1>]
O
8.2 Consistent initialization

An initial value problem of a nonlinear DAE of index u is described by
f((d(x,1)) ,x,t) =0, €L, (8.10)
C(x(to) —x°) = 0. (8.11)

The choice of the matrix C is in the nonlinear higher index case a nontrivial task.
In the linear case we can take any matrix C with kerC = N4, (fy) or equivalently
C = CII,;_(t9) (cf. Theorem 3.66). In the nonlinear case the projector IT,_| may
depend on the solution in fy up to its (1 — 1)th derivatives (cf. Section 3.2) and is
therefore in general not available. But in most cases taking advantage of the structure
of the given DAE or using numerical computations of IT,;_; a matrix C is available.
It is important to fix with (8.11) directly or indirectly the components of the inherent
ODE only.

To start an integration of an index-yt DAE we have to compute consistent initial
values (cf. Definition 3.6) at #o. The IT,_1x(fp) component is fixed by the initial
condition (8.11), e.g., we have to compute the (I — IT,_;)x(fo) component, which
is fixed by the obvious constraint and in the case of higher index p > 1 additionally
the hidden constraints and we have to compute a value yo = d’(x(to),#) such that
F(3vo,x(t0),10) = 0. The pair yg, x is also called consistent initialization.

We illustrate the situation by the next examples.

Example 8.3 (Consistent initialization of an index-1 DAE). Let us consider the DAE
Xy (1) —x1(t)t—1=0, (8.12)
x1(1)> +x2(1)> =1 =0. (8.13)
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The proper formulation is realized by A = (1)} ,D= [1 O] and we have AD = G =:

Py. This DAE has index 1 for x, # 0. If we choose C := Py we can established the
DAE with the initial condition

Po(x(l()) —xo) =0.

At 1o we have equations (8.12), (8.13) and the initial condition

xj(to) —x1(t0) 1o — 1 =0, (8.14)
x1(10)* +x2(19)> =1 =0, (8.15)
x1(t) = 7. (8.16)

This leads directly to x; (fp) = x(l) and with (8.14) we obtain X/ (fo) = x(l) to+ 1 and

from (8.15) also the last component x; (f9) = 1/ 1 — (x{)?2 is determined. We discover
that x(#9) € Mo(1). O

For a general procedure for index-1 DAEs we refer to Section 4.3.

Example 8.4 (Consistent initialization of an index-2 DAE). We consider the DAE

Xj(t)—x1(t)t—1=0, (8.17)
x2(1)x(1) = x3(r) =0, (8.18)
x1 (1) +x(t)> =1 =0. (8.19)
1 100 —t 00
The matrix sequence starts withA = x| , D = ,B=10 xé 1| . This
010
0 le ZX2 0
leads to the sequence
(10 0] (000
Go=|0x0|, Qp=1000]| ifxp #0
100 0] 001
(1 0 0] [0 0 0 1 0 O
Gi=1|0x1|, 01=1{0 1 0|,Ga=|0x2+x} 1| with detG, = —2x,.
100 0] 10 —x2 0 2xp O

The DAE (8.17)—(8.19) has index 2 if x, # 0. We choose

1
CZZH]ZP()P]Z(I*Q())(I*Q]): 0
0

While Q; depends on x; the projector IT; is constant which is advantageous for the
choice of C. We establish the DAE with the initial condition
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IT; (x(t()) —xo) =0.

x1(to) = xY is given by the initial condition, from (8.19) we obtain x> (#), and we
compute X/ (f9) = x? to+ 1 from (8.17). But we need an additional equation to de-
termine x3(fp) and x}(f9). The projector W; = diag (0,0, 1) along im G; tells us (cf.
also Section 2.10.3) that we have to differentiate (8.19) and obtain, after replacing
the derivatives in the point ¢ = #o,

X3 (l‘o) + X1 (to)(x1 (t()) to+ 1) =0.

This equation describes the hidden constraint #(z), see Figure 8.1, and we have
x3(to) = —x1(to) (x1(f0) o + 1) and also x5 () can be determined. It is obvious that
x(to) € M (to) as discussed also in Example 3.8. O

8.3 Numerical integration

Here, we discuss the direct integration of higher index DAEs without performing
any preliminary index reduction steps. In contrast, the integration procedures for
higher index DAESs as proposed in [50], [132] use derivative arrays and reduce the
original DAE to DAEs of index 0 or index 1 previous to the integration steps.

IVPs resulting from higher index DAEs above all are ill-posed problems (see Ex-
ample 1.5 and Theorem 3.66), and hence, in view of numerical integration, we have
to look out for serious difficulties. In particular, it may well happen that an inte-
gration code seemingly works; however, it generates wrong results. For this reason,
tools for monitoring the DAE structure would be very useful.

Essentially, we demonstrate various troubles associated with a direct integration
of higher index DAEs. The difficulties are mostly method independent but prob-
lem dependent. This motivates us to restrict our demonstrations to BDF methods.
Analyzing other methods in the same manner will show the same trouble. First we
demonstrate by a simple example which is a slight generalization of a linear Hessen-
berg size-3 DAE, that even the direct numerical integration of linear index-3 DAEs
with variable coefficients is somewhat hopeless; not only order reductions but also
fatal error accumulations happen.

Example 8.5 (Index-3 example, [160]). Consider the DAE

010 1 0 O
0m 1| X))+ [0n+10]|x(r)=q() (8.20)
000 0 m 1

with a right-hand side g such that the solution is given by

—2i

x1(t) =e 'sint, xp(t) =e “'sint, x3(t) =e 'cost.
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Fig. 8.1 Obvious and hidden constraint of Example 8.4 with x;(0) = 0.9
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The leading coefficient matrix in (8.20) has constant nullspace and constant image
space and a properly stated representation is given by

POl 10 , |1 00
el ([001]“”) +10n+10]x(r) = q(r). (8.21)
00 0 m 1
D N——
A B

An admissible matrix function sequence for (8.21) is given by

010 1 110 0-10
Go=|0m 1|, Q=| 0 |, G =|0m1], Q1=10 10
000 0 100 0] 0-m 0
00 [0 0 0] 11
(DHID_)’_{ 0]’ Bi=101 0], G,=1|014m1],
n 0m 1] 0 0 0
0 m 1 1 1 0
0= 10 - ~1 |, Gi=1|01+m1}|, detGs = 1.
0m(l1+tm) 1+ 0 m 1

The DAE, in both versions, is regular with index 3 independent of 7.

Here, the BDF applied to the standard form DAE (8.20) and the BDF applied to
the properly formulated version (8.21) result in the same formulas.

Table 8.1, taken from [160], shows the error accumulation for different parameter
values 7). For the starting phase in each case consistent values are used. Except for
the case 7 = 0 (constant coefficient DAE) the results are no longer acceptable. The
results in Table 8.1 were rechecked with different methods in standard and properly
stated form with consistent initial values but starting values computed as usual, but
the results were worse than those presented in the table. Notice that the subspaces
N; =kerGy, Ny = ker G, and im PyQ; Q> move with time (cf. [158]). O

We now investigate linear index-y DAEs with constant coefficients
X (1) + Fx(t) = q(t). (8.22)

Applying BDF methods of order k < 6 with constant stepsize & yields
1 k
; l;) OYEX,_1+Fx, =g, — &, (8.23)

with g, := ¢(t,) and 8, summarizing the rounding errors and possible defects when
solving (8.23) by a linear iterative solver. We introduce the local discretization error
T, 1int, as

1 k
—Z QUEX(ty,_)) + Fx(ty) — qn =: T (8.24)

3‘
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n=-05 n=0 n=20
h P()x | Q()x P()x | Q())C P())C | Q()x
BDF-2
2.5e-02 3e-02 3e+00 3e-04 4e-03 le-04 5e-02
3.1e-03 3e+07 2e+10 5e-06 6e-05 1e-05 2e-05
7.8e-04 le+43 3e+46 3e-07 4e-06 1e-06 2e-06
3.9¢-04 - - 8e-08 1e-06 2e-07 5e-07
1.9e-04 - - 2e-08 2e-07 6e-08 le-07
9.7e-05 - - 5e-09 9e-09 1e-08 3e-08
BDEFE-3
2.5e-02 - - 1e-05 2e-02 1e-03 8e-02
3.1e-03 - - 3e-08 le-07 3e-04 le-02
7.8e-04 - - 4e-10 2e-09 le-01 le+02
3.9e-04 - - Se-11 1e-08 3e+03 4e+06
1.9e-04 - - Se-12 3e-08 6e+12 2e+16
9.7e-05 - - 9e-13 1e-07 le+32 le+36
BDF-6
3.1e-03 - - 2e-13 3e-09 - -
7.8e-04 - - Se-13 2e-08 - -
3.9e-04 - - 4e-12 3e-08 - -
1.9e-04 - - 2e-12 2e-07 - -
9.7e-05 - - 4e—-12 4e-06 - -
Table 8.1 Error of the BDF solution of (8.20) for different stepsizes
The difference of (8.24) and (8.23) results in
1 k
A Z G E (x(ty—1) —xp—1) + F (x(ty) — xn) = Ty + 0. (8.25)
=0

Performing a complete decoupling of (8.25) as presented in Section 1.2.3 we obtain,
as a version for (8.25), the decoupled system

with

! X0 0 (u(tn_r) = tn_1)
0Not -+ Nop—1 0
A : FX10 0 (vi(ta1) = Vin-i) (8.26)
NN*Z#*l |k .
0 3 2i=0 % (Vu—1(ta—1) = Vu—10-1)
w u(ty) — uy Ly
0|7 vo(tn) — Vo Lo
+ = (T, + &)
O I Vufl(tn) _Vu717n 5#71
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Vo <= QOXn, Vin = i*lQixnv = 17 RN 1, Uy == HlJflxn,

and
Xn =Von+tVip+-- '+Vp71,n + uy.

Consider the stepwise integration on the compact interval [ty, T]. For sufficiently
small stepsizes & > 0, we find a constant ¢ > 0 such that

lu(t,) —un| < L0<I}l<a]3( l(|u(t1) —uy| —+-kr21a§xn|’t1—1—51\)7 forn >k
Vu—1(tn) = vu—1a] < c|ta+ 8|, forn >k

1
[Vu—2(tn) —vu— 2"|<Cﬁn max |t + &, forn > 2k

max |t + &, for n > k.

vo(t,) — v <c——r
|0( n) 0,n|— h”flnf(yfl)kglgn

We can conclude the following proposition.

Proposition 8.6. The BDF (8.23) apphed to the regular index-y DAE (8.22) on
[to, T generates values x,, ik < n < L0 \which satisfy

1x(t) — % gc(

pu—1 1
max |x(#) — x|+ max |5+ 8|+ ) — max_ 1'—|-5)
ogzgk—1|x(l) &l kglgn‘ 146 E{ W |7+

with a constant C > 0, supposing h is sufficiently small.
If all errors & vanish and the starting values are exact x(t;) = x;, [ =0,...,k—1,
then the estimation
u-2 1
x(t,) —x, <C(maxf+ — max ‘L’)
)l <C(max ol + X g5 may 7]

becomes valid.

Proof. It remains to verify the second estimation. First, we note that £, 17, =0
because

1 & 1 & .
Ty = ZE(')OQEX(Z"_Z) + Fx(ty) —qn = El;)alEx(tn—l) —EX(ty) € imE.

O

The amplifying factors - are caused by the differentiations involved in higher index

problems. In the worst case, parts of the defects §; are amplified by W for index-u
DAE:s.
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The estimations of Proposition 8.6 are somewhat coarse; however they remain
valid in the case of variable stepsize BDFs, if the ratio of the adjacent steps is kept
bounded and the stability for explicit ODEs is preserved. Then, neglecting the errors
&, and supposing appropriate starting values one obtains approximations

X =x(t,) +O(hL,.), n> pk,

with the order ¢ := min{k,k — y + 2}. This confirms well-known results, see
[25, p. 45]. In particular, the numerical integration of an index-3 DAE by the im-
plicit Euler method may lead to O(1) errors!

Example 8.7 (Variable stepsize integration problem). We consider the simplest
index-3 DAE

x| —x, =0,
X, —x3=0,
X1 :g(t)a

which has the only solution

The implicit Euler method (with dropped errors §;) yields, after three integration
steps,

X1,n :g(tn)v
o= - (8(0) — ¢(t1).
X3n = /’lin (h]_n(g(tn) _g(tn—1>) - /’l,,lfl (g(tn—l) _g(tn—2))> :

If by, = hy,_1, the solution component x3 ,, converges to g”(1,,) with an error of O(h;,),
but it blows up as h, — 0 and h,—; fixed. For instance, if h,_; = 2h, then the
resulting x3,, = 3g"(t4) + O(hy) fails to approximate x3(t,) = g” (t,).

This phenomenon was already described in [25, p. 57]. It is closely related to the
fact that the implicit Euler method is not suitable to start an integration of DAEs
with index u > 3. Namely, even with a consistent initial value,

x10=2g), x0=2¢"(t0), x30=2¢"(10),

one arrives at
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x1,1=g(h),
1
h

(g(11) — 8(10)),

. (h%(g(rl) () _g/(m))

X2,1 =

- h_12 (g(to+h1) — g(to) — g (10)) = %gﬁ(e)’
1

with a mean value 6. Obviously, % £"(0) cannot be seen as an approximation of
g(t1), evenif g is a second-degree polynomial. O

The bad results in the previous example reflect that derivatives of order higher than
1 are not correctly approximated by BDF methods with variable stepsize.

On the other hand, Example 8.7 indicates order preservation in the case of con-
stant stepsizes. In fact, again neglecting the errors §; we obtain from (8.26) that

Vufl(tn)_vufl,n :Cyflfn =0, n>k,
V‘u,72(tn) —Vu-2n= ‘CufZTna n > 2k,
k
vu—3(th) = vu—3, =Ly 37, —/\/ufmfzﬁ Y oLy st n > 3k.
=0

Supposing a sufficiently smooth solution, we have
1 & '
E ZZOOCIAC“_Q‘L'",[ = O(l’l )

and hence vy, _3(t,) — vu—3, = O(h*). The further rigorous analysis of the recursion
(8.26) and of the starting phase yields (cf. [25, Theorem 3.1.1])

x(ty) — Xy = O(H), n > pk— (k—1).

The last order result remains also valid in the case of nontrivial defects § =
O(hk+“‘1); however, we emphasize that neither the errors §; can be neglected or
supposed to be smooth in practical computations—see the case ) = 0 in Table 8.1—
nor the starting steps can be skipped. Therefore, these order results are of limited
meaning.

Next we investigate the direct numerical integration of linear index-2 DAEs. Al-
ready in [84], it has been shown that the BDF methods may fail completely for
standard form index-2 DAEs

E(0)x (1) + F(1)x(t) = (1),

as the next example illustrates.
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Example 8.8 (Standard form index-2 DAE with variable coefficients). The DAE
from [84]
xp+nexh+(1+1n)x =0,
x|+ ntxp = g(t)
is regular with index 2 independent of the value of the parameter 7). It has the unique
solution

(8.27)

!/
X2=-8,

(8.28)
X =g — Nixa.

Figure 8.2 shows the numerical solution for g = g(¢) = e~ for different methods
and parameter values. One can see that all the tested methods fail for certain pa-

1=-0.20 n=-0.26
1 1
— exact — exact
08 — |Euler 0.8 — |Euler
—— BDF2 —— BDF2
06 — Radaulla 0.6 — Radaulla
04 0.4
02 0.2
0
0 1 2 3 00 1 2 3
n=-0.28 n=-0.52

1 T TR pene ey

— exact —— exact
08 — |Euler 0.8 — |Euler

~—— BDF2 —— BDF2
06 — Radaulla 06 — Radaulla
04 04 ™

\ N,
\1‘ |
02 0.2 '
T ‘I
0
0 1 2 3 00 1 2 3

Fig. 8.2 The solutions (second component) of (8.27) for various parameter values 1, the constant
stepsize & = 107! and the consistent initial value x° = (1,1)7. The different curves represent
the exact solution of the problem (exact) and the numerical solutions by the implicit Euler method
(IEuler), by the two-step BDF method (BDF2) and by the two-stage RADAU IIA method (RADAU
IIa).

rameter values. For instance, the BDF methods are no longer feasible for n = —1.
They are feasible but unstable and nonconvergent for 1 < —0.5 (see [90]). This
is really an alarming behavior since all the methods used (implicit Euler, two-step
BDF, RADAU ITA) are approved for explicit ODEs and index-1 DAEs. a
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However, the situation becomes better when reformulating the previous example
for a DAE with a properly stated leading term

A(t)(D(t)x(t)) + B(t)x(t) = q(1). (8.29)

The BDF now applied to (8.29) yields the recursion
| &
A(tn)ﬁ Y D (tn) x4+ B(tw)xn = (1) — 8, (8.30)
I=0

Again, the term J, represents rounding errors and defects. Fortunately, BDF meth-
ods and IRK(DAE) methods (see Chapter 5) work quite well for index-2 DAEs with
properly stated leading term.

Example 8.9 (Properly stated index-2 DAE with variable coefficients). The index-2
DAE

x|+ (ntx2) +x2 =0,

(8.31)
X1+ ntxy = g(t),

or in compact form

o (o)« [} 2 s = [ 0]

has, obviously, the same unique solution (8.28) as in Example 8.8. Figure 8.3 shows
the numerical approximation. In contrast to the integration of the problem in stan-
dard formulation, one can see that now all tested methods work well for all param-
eter values. a

To formulate a convergence result for general linear index-2 DAEs, we introduce
the local discretization error

k
= All) X @Dl )xC-1) Bl )<() )

1 k
- A(t,,){ﬁ Y. oDty )x(tn 1) — (Dx)’(t,,)}, n>k,
=0

and set for the starting phase

8 1= Go(t))(xy —x(0)), 1=0,....k—=1.

Proposition 8.10. Let the DAE (8.29) be regular with index 2 on [ty,T), then:

(1)  For sufficiently small stepsizes h > 0, the BDF (8.30), k < 6, generates values
X, k<n< %, which satisfy the estimation
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n=-0.20 n=-0.26
1 1 ———
— exact — exact ‘
08 — IEuler 0.8 — |Euler
— BDF2 —— BDF2
06 — Radaulla 0.6 — Radaulla
04 0.4
0.2 0.2
0 0
0 1 2 3 Q 1 2 3
1=-0.28 n=-0.52
1 1
— exact — exact
08 — |Euler 0.8 — |Euler
~—— BDF2 —— BDF2
06 — Radaulla 0.6 — Radaulla
04 0.4
0.2 0.2
0 0
0 1 2 3 0 1 2 3

Fig. 8.3 The solutions (second component) of (8.31) for various parameter values 7, the constant
stepsize & = 107! and the consistent initial value x° = (1,1)”. The different curves represent
the exact solution of the problem (exact) and the numerical solutions by the implicit Euler method
(IEuler), by the two-step BDF method (BDF2) and by the two-stage RADAU IIA method (RADAU
IIa).

1X(t) — x| < c{ _max_[D()(x(1) )|+ max |5, 48| (8.32)

1 _
+ max [2(DQ1G3 ) ()8 |
1=0,...,n h
with a constant C independent of the stepsize h.
(2) If, additionally, the errors &,, | > k, vanish and the starting values are exact,
x;=x(t7), 1 =0,...,k—1, then it follows that

|x(t,,)fxn|§C{ max |1:n|}.
I=k—1,..n

yeen

Proof. Assertion (1) is obtained in [116] by simultaneous decoupling of the index-2
DAE (8.29) and the BDF recursion (8.30).
Assertion (2) is an immediate consequence of (1). a
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The last proposition implies convergence of order k; however in practical computa-
tions parts of the errors are amplified by % Owing to the index-2 structure and the
linearity these errors are not propagated.

Similar results apply to IRK(DAE)s (see, e.g., [59]).

In Subsection 5.4,it is shown that one can benefit from a time-invariant imD(¢).
If a regular index-1 DAE is in numerically qualified form, in this sense, then the
integration is as smooth as for explicit ODEs. This means that the given method
arrives at the IERODE unchanged and there are no additional stepsize restrictions
for stability reasons. An analogous situation can be observed in the index-2 case.
Now the two subspaces im DI1,,, and imD(I — I1.,,) have to be time-invariant to
ensure that the integration method reaches the IERODE unchanged (see [116]). At
this point we mention that the DAE (8.31) is in numerically qualified formulation.
The associated canonical projector is IT.,, =0, and im DIT,, =0, imD(I — I1.4,) =
imD = R are constant. This explains why the integration methods perform so well
for the relatively large stepsize # = 10~ (see Figure 8.3).

The following example illustrates the impact of time-varying subspaces. Note
that the refactorization into a numerically qualified (index-2) DAE does no longer
show those errors (see [116]).

Example 8.11 (Index-2 DAE with varying D(I — Il.a,), [109]). Consider the Hes-
senberg index-2 DAE

1 A -1 -1
1 [ X(O)+ | nt(1—=nt)—n A —nt | x(t)=0
0 1 —nt 1 0

where 4,71 € R are constant parameters. If xo € R? is a consistent initial value at
t=0(.e,x+x9=0, xJ +x9 = 0), the solution of the DAE is

x()=xe ., x@)=mi-Dx@), x)=-x@).

Taking the proper formulation with

10
afor] o= [0
00
and the admissible projector sequence
000 1—nt 10
Qo= 1000, Q1= |-ntnt—1)nt0f,
001 1—nt 10
we obtain
1—nt 10

imDQ; =im —ni(ni—1) 0t 0
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to be dependent on ¢ for 1 # 0. Notice that
imDQ; = DN, = D(No EBN]) = imD(I— Hcan)-

For different values of n, Figure 8.4 shows the first component of the numerical
solutions calculated using the different integration methods.

n=0 n=-25
1 = 1 =
exact solution — exact solution
- Implicit Euler Method i Implicit Euler Method
0.8 === BDF2 0.8} ==~ BDF2
- RadaullA-Method \ --- RadaullA-Method

0 0.2 0.4 0.6 0.8 1 1
n=-375
10 = : 10 " . e
—— exact solution H —— exact solution
< Implicit Euler Method 1 o Implicit Euler Method
--- BDF2 I BOF2
5 --- RadaullA-Method 5 /i - RadaullA-Method
W o - = RO,
i -5 }
i T _ :
1% 0.2 0.4 0.6 0.8 1 1% 0.2 0.4 0.6 0.8 1

Fig. 8.4 Numerical solutions (first component) for A = 10 and & = 10~ and the consistent initial
value x° = (1,—1,1)T

8.4 Notes and references

(1) The integration of higher index DAEs—i.e., the approximate solution of an
ill-posed problem (cf. Theorem 3.66)— leads in general to unsatisfactory results.
Therefore the formulation of a DAE model should, if ever possible, result in an at
most index-1 DAE.

(2) A large number of papers have investigated the behavior of ODE methods di-
rectly applied to DAEs with an index greater than 1, beginning with the monographs
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[25] and [103]. Higher index DAESs mostly are restricted to autonomous Hessenberg
form DAEs of size 2 or 3.

If the DAE has higher index but a very special structure, suitable methods can be
developed. This is especially the case if the relevant DAE components are separated,
as it is the case for Hessenberg form DAEs. We mention here [103], [24], [23],

(3) The DAE:s of rigid body mechanics have index 3. A huge number of particular
methods to compute consistent initial values and to solve IVPs and BVPs have been
developed. Often index reduced DAEs of index 0 or 1 are finally solved.

For a comprehensive overview we refer to [119] and [63].

(4) Example 8.4 emphasizes that the computation of consistent initial values, in

the higher index case, additionally needs information about the hidden constraints.
Compared with (4.30), (4.31) for the index-1 case, the extension to index-2 DAEs
comprises an additional equation which contains information about the hidden con-
straint.
This idea was realized for index-2 DAEs in standard formulation in [68] and [69],
for DAEs with properly stated leading term in [137] and [14], and for special struc-
tured large dimensional DAEs in [108]. The index-3 case is discussed in [142]. The
necessary differentiations are realized numerically by generalized backward differ-
entiation formulas (GBDFs) on nonuniform meshes.

(5) Proposition 8.10 is slightly generalized for linear index-2 DAEs with harm-
less critical points and possible index changes in [59]. In this paper, one finds an
elaborate description of the corresponding decoupling.

(6) In the case of higher index constant coefficient DAEs the errors %5; are local,
they are not propagated. This situation is also given in the case of linear variable
coefficient index-2 DAEs with properly stated leading term.

Unfortunately, already in the case of linear index-3 DAEs those bad error terms
can be propagated, see Example 8.20. No doubt, in the case of nonlinear DAEs, the
situation is even worse.

Only for quite special classes of nonlinear index-2 DAEs we can handle the error
term %5;. To our knowledge, the class of index-2 DAEs of the forms

AWK (1) +b(x(t),1) =0 and
A(t)(D(t)x(1)) +b(x(t),1) =0

are the richest ones for which respective proofs are given, see [205]