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Foreword by the Editors

We are very pleased to write the Foreword of this book by René Lamour, Roswitha
März, and Caren Tischendorf. This book appears as the first volume in the recently
established series “FORUM DAEs”—a forum which aims to present different di-
rections in the widely expanding field of differential-algebraic equations (DAEs).

Although the theory of DAEs can be traced back earlier, it was not until the 1960s
that mathematicians and engineers started to study seriously various aspects of
DAEs, such as computational issues, mathematical theory, and applications. DAEs
have developed today, half a century later, into a discipline of their own within
applied mathematics, with many relationships to mathematical disciplines such as
algebra, functional analysis, numerical analysis, stochastics, and control theory, to
mention but a few. There is an intrinsic mathematical interest in this field, but this
development is also supported by extensive applications of DAEs in chemical, elec-
trical and mechanical engineering, as well as in economics.

Roswitha März’ group has been at the forefront of the development of the math-
ematical theory of DAEs since the early 1980s; her valuable contribution was to
introduce—with a Russian functional analytic background—the method now known
as the “projector approach” in DAEs. Over more than 30 years, Roswitha März
established a well-known group within the DAE community, making many funda-
mental contributions. The projector approach has proven to be valuable for a huge
class of problems related to DAEs, including the (numerical) analysis of models
for dynamics of electrical circuits, mechanical multibody systems, optimal control
problems, and infinite-dimensional differential-algebraic systems.

Broadly speaking, the results of the group have been collected in the present
textbook, which comprises 30 years of development in DAEs from the viewpoint of
projectors. It contains a rigorous and stand-alone introduction to the projector ap-
proach to DAEs. Beginning with the case of linear constant coefficient DAEs, this
approach is then developed stepwise for more general types, such as linear DAEs
with variable coefficients and nonlinear problems. A central concept in the theory
of DAEs is the “index”, which is, roughly speaking, a measure of the difficulty of
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vi Foreword by the Editors

(numerical) solution of a given DAE. Various index concepts exist in the theory
of DAEs; and the one related to the projector approach is the “tractability index”.
Analytical and numerical consequences of the tractability index are presented. In ad-
dition to the discussion of the analytical and numerical aspects of different classes
of DAEs, this book places special emphasis on DAEs which are explicitly motivated
by practice: The “functionality” of the tractability index is demonstrated by means
of DAEs arising in models for the dynamics of electrical circuits, where the index
has an explicit interpretation in terms of the topological structure of the intercon-
nections of the circuit elements. Further applications and extensions of the projector
approach to optimization problems with DAE constraints and even coupled systems
of DAEs and partial differential equations (the so-called “PDAEs”) are presented.

If one distinguishes strictly between a textbook and a monograph, then we con-
sider the present book to be the second available textbook on DAEs. Not only is it
complementary to the other textbook in the mathematical treatment of DAEs, this
book is more research-oriented than a tutorial introduction; novel and unpublished
research results are presented. Nonetheless it contains a self-contained introduction
to the projector approach. Also various relations and substantial cross-references to
other approaches to DAEs are highlighted.

This book is a textbook on DAEs which gives a rigorous and detailed mathemat-
ical treatment of the subject; it also contains aspects of computations and applica-
tions. It is addressed to mathematicians and engineers working in this field, and it
is accessible to students of mathematics after two years of study, and also certainly
to lecturers and researchers. The mathematical treatment is complemented by many
examples, illustrations and explanatory comments.

Ilmenau, Germany Achim Ilchmann
Hamburg, Germany Timo Reis
June 2012



Preface

We assume that differential-algebraic equations (DAEs) and their more abstract ver-
sions in infinite-dimensional spaces comprise great potential for future mathemat-
ical modeling. To an increasingly large extent, in applications, DAEs are automat-
ically generated, often by coupling various subsystems with large dimensions, but
without manifested mathematically useful structures. Providing tools to uncover and
to monitor mathematical DAE structures is one of the current challenges. What is
needed are criteria in terms of the original data of the given DAE. The projector
based DAE analysis presented in this monograph is intended to address these ques-
tions.

We have been working on our theory of DAEs for quite some time. This theory
has now achieved a certain maturity. Accordingly, it is time to record these devel-
opments in one coherent account. From the very beginning we were in the fortunate
position to communicate with colleagues from all over the world, advancing differ-
ent views on the topic, starting with Linda R. Petzold, Stephen L. Campbell, Werner
C. Rheinboldt, Yuri E. Boyarintsev, Ernst Hairer, John C. Butcher and many others
not mentioned here up to John D. Pryce, Ned Nedialkov, Andreas Griewank. We
thank all of them for stimulating discussions.

For years, all of us have taught courses, held seminars, supervised diploma stu-
dents and PhD students, and gained fruitful feedback, which has promoted the
progress of our theory. We are indebted to all involved students and colleagues,
most notably the PhD students.

Our work was inspired by several fascinating projects and long term cooper-
ation, in particular with Roland England, Uwe Feldmann, Claus Führer, Michael
Günther, Francesca Mazzia, Volker Mehrmann, Peter C. Müller, Peter Rentrop, Ewa
Weinmüller, Renate Winkler.

We very much appreciate the joint work with Katalin Balla, who passed away
too early in 2005, and the colleagues Michael Hanke, Immaculada Higueras, Galina
Kurina, and Ricardo Riaza. All of them contributed essential ideas to the projector
based DAE analysis.
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We are indebted to the German Federal Ministry of Education and Research
(BMBF) and the German Research Foundation (DFG), in particular the research
center MATHEON in Berlin, for supporting our research in a lot of projects.

We would like to express our gratitude to many people for their support in the
preparation of this volume. In particular we thank our colleague Jutta Kerger.

Last but not least, our special thanks are due to Achim Ilchmann and Timo Reis,
the editors of the DAE Forum. We appreciate very much their competent counsel
for improving the presentation of the theory.

We are under obligations to the staff of Springer for their careful assistance.

René Lamour Roswitha März Caren Tischendorf
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Introduction

Ordinary differential equations (ODEs) define relations concerning function values
and derivative values of an unknown vector valued function in one real independent
variable often called time and denoted by t. An explicit ODE

x′(t) = g(x(t), t)

displays the derivative value x′(t) explicitly in terms of t and x(t). An implicit ODE

f (x′(t),x(t), t) = 0

is said to be regular, if all its line-elements (x1,x, t) are regular. A triple (x1,x, t)
belonging to the domain of interest is said to be a regular line-element of the ODE,
if fx1(x1,x, t) is a nonsingular matrix, and otherwise a singular line-element. This
means, in the case of a regular ODE, the derivative value x′(t) is again fully deter-
mined in terms of t and x(t), but in an implicit manner.

An ODE having a singular line-element is said to be a singular ODE. In turn,
singular ODEs comprise quite different classes of equations. For instance, the linear
ODE

tx′(t)−Mx(t) = 0

accommodates both regular line-elements for t �= 0 and singular ones for t = 0. In
contrast, the linear ODE

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

x′(t)+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

x(t)−

⎡
⎢⎢⎢⎢⎣

0
0
0
0

γ(t)

⎤
⎥⎥⎥⎥⎦
= 0 (0.1)

has solely singular line-elements. A closer look at the solution flow of the last two
ODEs shows a considerable disparity.

xix
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The ODE (0.1) serves as a prototype of a differential-algebraic equation (DAE).
The related equation f (x1,x, t) = 0 determines the components x1

1,x
1
3,x

1
4, and x1

5 of
x1 in terms of x and t. The component x1

2 is not at all given. In addition, there arises
the consistency condition x5− γ(t) = 0 which restricts the flow.

DAEs constitute—in whatever form they are given—somehow uniformly sin-
gular ODEs: In common with all ODEs, they define relations concerning function
values and derivative values of an unknown vector valued function in one real in-
dependent variable. However, in contrast to explicit ODEs, in DAEs these relations
are implicit, and, in contrast to regular implicit ODEs, these relations determine just
a part of the derivative values. A DAE is an implicit ODE which has solely singular
line-elements.

The solutions of the special DAE (0.1) feature an ambivalent nature. On the
one hand they are close to solutions of regular ODEs in the sense that they de-
pend smoothly on consistent initial data. On the other hand, tiny changes of γ may
yield monstrous variations of the solutions, and the solution varies discontinuously
with respect to those changes. We refer to the figures in Example 1.5 to gain an
impression of this ill-posed behavior.

The ambivalent nature of their solutions distinguishes DAE as being extraordi-
nary to a certain extent.

DAEs began to attract significant research interest in applied and numerical math-
ematics in the early 1980s, no more than about three decades ago. In this relatively
short time, DAEs have become a widely acknowledged tool to model processes
subject to constraints, in order to simulate and to control these processes in various
application fields.

The two traditional physical application areas, network simulation in electronics
and the simulation of multibody mechanics, are repeatedly addressed in textbooks
and surveys (e.g. [96, 25, 189]). Special monographs [194, 63, 188] and much work
in numerical analysis are devoted to these particular problems. These two appli-
cation areas and related fields in science and engineering can also be seen as the
most important impetus to begin with systematic DAE research, since difficulties
and failures in respective numerical simulations have provoked the analysis of these
equations first.

The equations describing electrical networks have the form

A(d(x(t), t))′+b(x(t), t) = 0, (0.2)

with a singular constant matrix A, whereas constrained multibody dynamics is de-
scribed by equations showing the particular structure

x′1(t)+b1(x1(t),x2(t),x3(t), t) = 0, (0.3)
x′2(t)+b2(x1(t),x2(t), t) = 0, (0.4)

b3(x2(t), t) = 0. (0.5)
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Those DAEs usually have large dimension. Multibody systems often comprise hun-
dreds of equations and electric network systems even gather up to several millions
of equations.

Many further physical systems are naturally described as DAEs, for instance,
chemical process modeling, [209]. We agree with [189, p. 192] that DAEs arise
probably more often than (regular) ODEs, and many of the well-known ODEs in
application are actually DAEs that have been additionally explicitly reduced to ODE
form.

Further DAEs arise in mathematics, in particular, as intermediate reduced models
in singular perturbation theory, as extremal conditions in optimization and control,
and by means of semidiscretization of partial differential equation systems.

Besides the traditional application fields, conducted by the generally increasing
role of numerical simulation in science and technology, currently more and more
new applications come along, in which different physical components are coupled
via a network.

We believe that DAEs and their more abstract versions in infinite-dimensional
spaces comprise great potential for future mathematical modeling. To an increas-
ingly large extent, in applications, DAEs are automatically generated, often by cou-
pling various subsystems, with large dimensions, but without manifested mathe-
matically useful structures. Different modeling approaches may result in different
kinds of DAEs. Automatic generation and coupling of various tools may yield quite
opaque DAEs. Altogether, this produces the challenging task to bring to light and
to characterize the inherent mathematical structure of DAEs, to provide test crite-
ria such as index observers and eventually hints for creating better qualified model
modifications. For a reliable practical treatment, which is the eventual aim, for nu-
merical simulation, sensitivity analysis, optimization and control, and last but not
least practical upgrading models, one needs pertinent information concerning the
mathematical structure. Otherwise their procedures may fail or, so much the worse,
generate wrong results. In consequence, providing practical assessment tools to un-
cover and to monitor mathematical DAE structures is one of the actual challenges.
What are needed are criteria in terms of the original data of the given DAE. The
projector based DAE analysis presented in this monograph is intended to address
these questions.

Though DAEs have been popular among numerical analysts and in various appli-
cation fields, so far they play only a marginal role in contiguous fields such as non-
linear analysis and dynamical systems. However, an input from those fields would
be desirable. It seems, responsible for this shortage is the quite common view of
DAEs as in essence nothing other than implicitly written regular ODEs or vector
fields on manifolds, making some difficulties merely in numerical integration. The
latter somehow biased opinion is still going strong. It is fortified by the fact that
almost all approaches to DAEs suppose that the DAE is eventually reducible to an
ODE as a basic principle. This opinion is summarized in [189, p. 191] as follows:
It is a fact, not a mere point of view, that a DAE eventually reduces to an ODE on a
manifold. The attitude of acknowledging this fact from the outset leads to a reduc-
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tion procedure suitable for the investigation of many problems . . . . The mechanism
of the geometric reduction procedure completely elucidates the “algebraic” and the
“differential” aspects of a DAE. The algebraic part consists in the characterization
of the manifold over which the DAE becomes an ODE and, of course, the differential
part provides the reduced ODE. Also in [130] the explicit reduction of the general
DAE

f(x′(t),x(t), t) = 0, (0.6)

with a singular partial Jacobian fx′ , into a special reduced form plays a central role.
Both monographs [189, 130] concentrate on related reduction procedures which
naturally suppose higher partial derivatives of the function f, either to provide se-
quences of smooth (sub)manifolds or to utilize a so-called derivative array system.
The differential geometric approach and the reduction procedures represent pow-
erful tools to analyze and to solve DAEs. Having said that, we wonder about the
misleading character of this purely geometric view, which underlines the closed-
ness to regular ODEs, but loses sight of the ill-posed feature.

So far, most research concerning general DAEs is addressed to equation (0.6),
and hence we call this equation a DAE in standard form. Usually, a solution is then
supposed to be at least continuously differentiable.
In contrast, in the present monograph we investigate equations of the form

f ((d(x(t), t))′,x(t), t) = 0, (0.7)

which show the derivative term involved by means of an extra function d. We see
the network equation (0.2) as the antetype of this form. Also the system (0.3)–(0.5)
has this form

⎡
⎣

I 0
0 I
0 0

⎤
⎦
([

x1(t)
x2(t)

])′
+

⎡
⎣

b1(x1(t),x2(t),x3(t), t)
b2(x1(t),x2(t), t)

b3(x2(t), t)

⎤
⎦= 0 (0.8)

a priori. It appears that in applications actually DAEs in the form (0.7) arise, which
precisely indicates the involved derivatives. The DAE form (0.7) is comfortable; it
involves the derivative by the extra nonlinear function d, whereby x(t) ∈ R

m and
d(x(t), t) ∈R

n may have different sizes, as is the case in (0.8). A particular instance
of DAEs (0.7) is given by the so-called conservative form DAEs [52]. Once again,
the idea for version (0.7) originates from circuit simulation problems, in which this
form is well approved (e.g. [75, 168]).

However, though equation (0.7) represents a more precise model, one often trans-
forms it to standard form (0.6), which allows to apply results and tools from differ-
ential geometry, numerical ODE methods, and ODE software.

Turning from the model (0.7) to a standard form DAE one veils the explicit pre-
cise information concerning the derivative part. With this background, we are con-
fronted with the question of what a DAE solution should be. Following the classical
sense of differential equations, we ask for continuous functions being as smooth
as necessary, which satisfy the DAE pointwise on the interval of interest. This is
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a common understanding. However, there are different opinions on the meaning of
the appropriate smoothness. Having regular ODEs in mind one considers contin-
uously differentiable functions x(·) to be the right candidates for solutions. Up to
now, most DAE researchers adopt this understanding of the solution which is sup-
ported by the standard DAE formulation. Furthermore, intending to apply formal
integrability concepts, differential geometry and derivative array approaches one is
led to yet another higher smoothness requirement. In contrast, the multibody sys-
tem (0.8) suggests, as solutions, continuous functions x(·) having just continuously
differentiable components x1(·) and x2(·).

An extra matrix figuring out the derivative term was already used much earlier
(e.g. [153, 152, 154]); however, this approach did not win much recognition at that
time. Instead, the following interpretation of standard form DAEs (e.g. [96]) has
been accepted to a larger extent: Assuming the nullspace of the partial Jacobian
fx′(x′,x, t) associated with the standard form DAE (0.6) to be a C1-subspace, and to
be independent of the variables x′ and x, one interprets the standard form DAE (0.6)
as a short description of the equation

f((P(t)x(t))′ −P′(t)x(t),x(t), t) = 0, (0.9)

whereby P(·) denotes any continuously differentiable projector valued function such
that the nullspaces kerP(·) and ker fx′(x′,x, ·) coincide. This approach is aligned with
continuous solutions x(·) having just continuously differentiable products (Px)(·).
Most applications yield even constant nullspaces ker fx′ , and hence constant projec-
tor functions P as well. In particular, this is the case for the network equations (0.2)
and the multibody systems (0.8).

In general, for a DAE given in the form (0.7), a solution x(·) should be a contin-
uous function such that the superposition u(·) := d(x(·), ·) is continuously differen-
tiable. For the particular system (0.8) this means that the components x1(·) and x2(·)
are continuously differentiable, whereas one accepts a continuous x3(·).

The question in which way the data functions f and d should be related to each
other leads to the notions of DAEs with properly stated leading term or properly
involved derivative, but also to DAEs with quasi-proper leading term. During the
last 15 years, the idea of using an extra function housing the derivative part within
a DAE has been emphatically pursued. This discussion amounts to the content of
this monograph. Formulating DAEs with properly stated leading term yields, in par-
ticular, symmetries of linear DAEs and their adjoints, and further favorable conse-
quences concerning optimization problems with DAE constraints. Not surprisingly,
numerical discretization methods may perform better than for standard form DAEs.
And last, but not least, this approach allows for appropriate generalizations to ap-
ply to abstract differential- algebraic systems in Hilbert spaces enclosing PDAEs.
We think that, right from the design or modeling stage, it makes sense to look for
properly involved derivatives.

This monograph comprises an elaborate analysis of DAEs (0.7), which is ac-
companied by the consideration of essential numerical aspects. We regard DAEs
from an analytical point of view, rather than from a geometric one. Our main ob-
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jective consists in the structural and qualitative characterization of DAEs as they
are given a priori, without supposing any knowledge concerning solutions and con-
straints. Afterwards, having the required knowledge of the DAE structure, also solv-
ability assertions follow. Only then do we access the constraints. In contrast, other
approaches concede full priority of providing constraints and solutions, as well as
transformations into a special form, which amounts to solving the DAE.

We believe in the great potential of our concept in view of the further analysis of
classical DAEs and their extensions to abstract DAEs in function spaces. We do not
at all apply derivative arrays and prolongated systems, which are commonly used
in DAE theory. Instead, certain admissible matrix function sequences and smartly
chosen admissible projector functions formed only from the first partial derivatives
of the given data function play their role as basic tools. Thereby, continuity proper-
ties of projector functions depending on several variables play their role, which is
not given if one works instead with basises. All in all, this allows an analysis on a
low smoothness level. We pursue a fundamentally alternative approach and present
the first rigorous structural analysis of general DAEs in their originally given form
without the use of derivative arrays, without supposing any knowledge concerning
constraints and solutions.

The concept of a projector based analysis of general DAEs was sketched first in
[160, 171, 48], but it has taken its time to mature. Now we come up with a unique
general theory capturing constant coefficient linear problems, variable coefficient
linear problems and fully nonlinear problems in a hierarchic way. We address a
further generalization to abstract DAEs. It seems, after having climbed the (at times
seemingly pathless) mountain of projectors, we are given transparency and beautiful
convenience. By now the projector based analysis is approved to be a prospective
way to investigate DAEs and also to yield reasonable open questions for future
research.

The central idea of the present monograph consists in a rigorous definition of
regularity of a DAE, accompanied with certain characteristic values including the
tractability index, which is related to an open subset of the definition domain of the
data function f , a so-called regularity region. Regularity is shown to be stable with
respect to perturbations. Close relations of regularity regions and linearizations are
proved. In general, one has to expect that the definition domain of f decomposes
into several regularity regions whose borders consist of critical points. Solutions do
not necessarily stay in one of these regions; solutions may cross the borders and
undergo bifurcation, etc.

The larger part of the presented material is new and as yet unpublished. Parts
were earlier published in journals, and just the regular linear DAE framework (also
critical points in this context) is available in the book [194].

The following basic types of DAEs can reasonably be discerned:

� fully implicit nonlinear DAE with nonlinear derivative term

f ((d(x(t), t))′,x(t), t) = 0, (0.10)
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� fully implicit nonlinear DAE with linear derivative term

f ((D(t)x(t))′,x(t), t) = 0, (0.11)

� quasi-linear DAE with nonlinear derivative term (involved linearly)

A(x(t), t)(d(x(t), t))′+b(x(t), t) = 0, (0.12)

� quasi-linear DAE with linear derivative term

A(x(t), t)(D(t)x(t))′+b(x(t), t) = 0, (0.13)

� linear DAE with variable coefficients

A(t)(D(t)x(t))′+B(t)x(t) = q(t), (0.14)

� linear DAE with constant coefficients

A(Dx(t))′+Bx(t) = q(t), (0.15)

� semi-implicit DAE with explicitly given derivative-free equation

f1((d(x(t), t))′,x(t), t) = 0, (0.16)
f2(x(t), t) = 0, (0.17)

� semi-implicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

f1(x′1(t),x1(t),x2(t), t) = 0, (0.18)
f2(x1(t),x2(t), t) = 0, (0.19)

� semi-explicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

x′1(t)+b1(x1(t),x2(t), t) = 0, (0.20)
b2(x1(t),x2(t), t) = 0. (0.21)

So-called Hessenberg form DAEs of size r, which are described in Section 3.5,
form further subclasses of semi-explicit DAEs. For instance, the DAE (0.8) has
Hessenberg form of size 3. Note that much work developed to treat higher index
DAEs is actually limited to Hessenberg form DAEs of size 2 or 3.

The presentation is divided into Part I to Part IV followed by Appendices A, B,
and C.

Part I describes the core of the projector based DAE analysis: the construction of
admissible matrix function sequences associated by admissible projector functions
and the notion of regularity regions.



xxvi Introduction

Chapter 1 deals with constant coefficient DAEs and matrix pencils only. We re-
consider algebraic features and introduce into the projector framework. This can be
skipped by readers familiar with the basic linear algebra including projectors.

The more extensive Chapter 2 provides the reader with admissible matrix func-
tion sequences and the resulting constructive projector based decouplings. With this
background, a comprehensive linear theory is developed, including qualitative flow
characterizations of regular DAEs, the rigorous description of admissible excita-
tions, and also relations to several canonical forms and the strangeness index.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAEs, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. It is recommended to take a look to Chap-
ter 2 before reading Chapter 3.

We emphasize the hierarchical organization of Part I. The admissible matrix
function sequences built for the nonlinear DAE (0.10) generalize those for the linear
DAE (0.14) with variable coefficients, which, in turn, represent a generalization of
the matrix sequences made for constant coefficient DAEs (0.15).

Part IV continues the hierarchy in view of different further aspects. Chapter 9
about quasi-regular DAEs (0.10) incorporates a generalization which relaxes the
constant-rank conditions supporting admissible matrix function sequences. Chap-
ter 10 on nonregular DAEs (0.11) allows a different number of equations and of
unknown components. Finally, in Chapter 12, we describe abstract DAEs in infinite-
dimensional spaces and include PDAEs.

Part IV contains the additional Chapter 11 conveying results on minimization
with DAE constraints obtained by means of the projector based technique.

Part II is a self-contained index-1 script. It comprises in its three chapters the
analysis of regular index-1 DAEs (0.11) and their numerical integration, addressing
also stability topics such as contractivity and stability in Lyapunov’s sense. Part II
constitutes in essence an up-to-date improved and completed version of the early
book [96]. While the latter is devoted to standard form DAEs via the interpretation
(0.9), now the more general equations (0.11) are addressed.

Part III adheres to Part I giving an elaborate account of computational methods
concerning the practical construction of projectors and that of admissible projector
functions in Chapter 7. A second chapter discusses several aspects of the numer-
ical treatment of regular higher index DAEs such as consistent initialization and
numerical integration.

Appendix B contains technically involved costly proofs. Appendices A and C
collect and provide basic material concerning linear algebra and analysis, for in-
stance the frequently used C1-subspaces.

Plenty of reproducible small academic examples are integrated into the explana-
tions for easier reading, illustrating and confirming the features under consideration.
To this end, we emphasize that those examples are always too simple. They bring to
light special features, but they do not really reflect the complexity of DAEs.
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The material of this monograph is much too comprehensive to be taught in a stan-
dard graduate course. However different combinations of selected chapters should
be well suited for those courses. In particular, we recommend the following:

• Projector based DAE analysis (Part I, possibly without Chapter 1).
• Analysis of index-1 DAEs and their numerical treatment (Part II, possibly plus

Chapter 8).
• Matrix pencils, theoretical and practical decouplings (Chapters 1 and 7).
• General linear DAEs (Chapter 2, material on the linear DAEs of Chapters 10

and 9).

Advanced courses communicating Chapter 12 or Chapter 11 could be given to stu-
dents well grounded in DAE basics (Parts I and II) and partial differential equations,
respectively optimization.
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Projector based approach
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Part I describes the core of the projector based DAE analysis, the construction of ad-
missible matrix function sequences and the notions of regular points and regularity
regions of general DAEs

f ((d(x(t), t))′,x(t), t) = 0

in a hierarchical manner starting with constant coefficient linear DAEs, then turning
to linear DAEs with variable coefficients, and, finally, considering fully implicit
DAEs.

Chapter 1 deals with constant coefficient DAEs and matrix pencils. We recon-
sider algebraic features and introduce them into the projector framework. This
shows how the structure of the Weierstraß–Kronecker form of a regular matrix pen-
cil can be depicted by means of admissible projectors.

The extensive Chapter 2 on linear DAEs with variable coefficients characterizes
regular DAEs by means of admissible matrix function sequences and associated
projectors and provides constructive projector based decouplings of regular linear
DAEs.

Then, with this background, a comprehensive linear theory of regular DAEs is
developed, including qualitative flow properties and a rigorous description of ad-
missible excitations. Moreover, relations to several canonical forms and other index
notions are addressed.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAEs, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. Also local solvability assertions and pertur-
bation results are proved.

We emphasize the hierarchical organization of the approach. The admissible ma-
trix function sequences built for the nonlinear DAE (0.10) generalize those for the
linear DAE (0.14) with variable coefficients, which, in turn, represent a general-
ization of the matrix sequences made for constant coefficient DAEs (0.15). Part IV
continues the hierarchy with respect to different views.



Chapter 1
Linear constant coefficient DAEs

Linear DAEs with constant coefficients have been well understood by way of the
theory of matrix pencils for quite a long time, and this is the reason why they are
only briefly addressed in monographs. We consider them in detail here, not because
we believe that the related linear algebra has to be invented anew, but as we intend
to give a sort of guide for the subsequent extensive discussion of linear DAEs with
time-varying coefficients and of nonlinear DAEs.

This chapter is organized as follows. Section 1.1 records well-known facts on reg-
ular matrix pairs and describes the structure of the related DAEs. The other sections
serve as an introduction to the projector based analysis. Section 1.2 first provides the
basic material of this analysis: the admissible matrix sequences and the accompany-
ing admissible projectors and characteristic values in Subsection 1.2.1, the decou-
pling of regular DAEs by arbitrary admissible projectors in Subsection 1.2.2, and
the complete decoupling in Subsection 1.2.3. The two subsequent Subsections 1.2.5
and 1.2.6 are to clarify the relations to the Weierstraß–Kronecker form. Section 1.3
provides the main result concerning the high consistency of the projector based ap-
proach and the DAE structure by the Weierstraß–Kronecker form, while Section 1.4
collects practically useful details on the topic. Section 1.5 develops proper formula-
tions of the leading term of the DAE by means of two well-matched matrices. The
chapter ends with notes and references.

1.1 Regular DAEs and the Weierstraß–Kronecker form

In this section we deal with the equation

Ex′(t)+Fx(t) = q(t), t ∈ I, (1.1)

formed by the ordered pair {E,F} of real valued m×m matrices E,F . For given
functions q : I → R

m being at least continuous on the interval I ⊆ R, we are look-
ing for continuous solutions x : I → R

m having a continuously differentiable com-
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ponent Ex. We use the notation Ex′(t) for (Ex)′(t). Special interest is directed to
homogeneous equations

Ex′(t)+Fx(t) = 0, t ∈ R. (1.2)

For E = I, the special case of explicit ODEs is covered. Now, in the more general
setting, the ansatz x∗(t) = eλ∗t z∗ well-known for explicit ODEs, yields

Ex′∗(t)+Fx∗(t) = eλ∗t(λ∗E +F)z∗.

Hence, x∗ is a nontrivial particular solution of the DAE (1.2) if λ∗ is a zero of the
polynomial p(λ ) := det(λE +F), and z∗ �= 0 satisfies the relation (λ∗E +F)z∗ = 0.
Then λ∗ and z∗ are called generalized eigenvalue and eigenvector, respectively.
This shows the meaning of the polynomial p(λ ) and the related family of matri-
ces λE +F named the matrix pencil formed by {E,F}.

Example 1.1 (A solvable DAE). The DAE

x′1− x1 = 0,
x′2 + x3 = 0,

x2 = 0,

is given by the matrices

E =

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ and F =

⎡
⎣
−1 0 0
0 0 1
0 1 0

⎤
⎦ ,

yielding

p(λ ) = det(λE +F) = det

⎡
⎣
λ −1 0 0

0 λ 1
0 1 0

⎤
⎦= 1−λ .

The value λ∗ = 1 is a generalized eigenvalue and the vector z∗ = (100)T is a gen-
eralized eigenvector. Obviously, x∗(t) = eλ∗t z∗ = (et 00)T is a nontrivial solution of
the differential-algebraic equation. ��

If E is nonsingular, the homogeneous equation (1.2) represents an implicit regu-
lar ODE and its fundamental solution system forms an m-dimensional subspace in
C1(I,Rm). What happens if E is singular? Is there a class of equations, such that
equation (1.2) has a finite-dimensional solution space? The answer is closely related
to the notion of regularity.

Definition 1.2. Given any ordered pair {E,F} of matrices E,F ∈ L(Rm), the matrix
pencil λE +F is said to be regular if the polynomial p(λ ) := det(λE +F) does not
vanish identically. Otherwise the matrix pencil is said to be singular.
Both the ordered pair {E,F} and the DAE (1.1) are said to be regular if the accom-
panying matrix pencil is regular, and otherwise nonregular.
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A pair {E,F} with a nonsingular matrix E is always regular, and its polynomial
p(λ ) is of degree m. In the case of a singular matrix E, the polynomial degree is
lower as demonstrated in Example 1.1.

Proposition 1.3. For any regular pair {E,F}, E,F ∈ L(Rm), there exist nonsingular
matrices L,K ∈ L(Rm) and integers 0≤ l ≤ m, 0≤ μ ≤ l, such that

LEK =

[
I

N

]
}m− l
}l , LFK =

[
W

I

]
}m− l
}l . (1.3)

Thereby, N is absent if l = 0, and otherwise N is nilpotent of order μ , i.e., Nμ = 0,
Nμ−1 �= 0. The integers l and μ as well as the eigenstructure of the blocks N and W
are uniquely determined by the pair {E,F}.

Proof. If E is nonsingular, we simply put l = 0, L = E−1, K = I and the assertion is
true.
Assume E to be singular. Since {E,F} is a regular pair, there is a number c∈R such
that cE +F is nonsingular. Form Ẽ := (cE +F)−1E, F̃ := (cE +F)−1F = I− cẼ,
μ = ind Ẽ, r = rank Ẽμ , S = [s1 . . .sm] with s1, . . . ,sr and sr+1, . . . ,sm being bases of
im Ẽμ and ker Ẽμ , respectively. Lemma A.11 provides the special structure of the
product S−1ẼS, namely,

S−1ẼS =

[
M̃ 0
0 Ñ

]
,

with a nonsingular r× r block M̃ and a nilpotent (m− r)× (m− r) block Ñ. Ñ has
nilpotency index μ . Compute

S−1F̃S = I− cS−1ẼS =

[
I− cM̃ 0

0 I− cÑ

]
.

The block I− cÑ is nonsingular due to the nilpotency of Ñ. Denote

L :=
[

M̃−1 0
0 (I− cÑ)−1

]
S−1(cE +F)−1,

K := S, N := (I− cÑ)−1Ñ, W := M̃−1− cI,

so that we arrive at the representation

LEK =

[
I 0
0 N

]
, LFK =

[
W 0
0 I

]
.

Since Ñ and (I− cÑ)−1 commute, one has

Nl = ((I− cÑ)−1Ñ)l = ((I− cÑ)−1)l Ñl ,

and N inherits the nilpotency of Ñ. Thus, Nμ = 0 and Nμ−1 �= 0. Put l := m− r. It
remains to verify that the integers l and μ as well as the eigenstructure of N and
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W are independent of the transformations L and K. Assume that there is a further
collection l̃, μ̃ , L̃, K̃, r̃ = m− l̃ such that

L̃EK̃ =

[
Ir̃ 0
0 Ñ

]
, L̃FK̃ =

[
W̃ 0
0 Il̃

]
.

Considering the degree of the polynomial

p(λ ) = det(λE +F) = det(L−1)det(λ Ir +W )det(K−1)

= det(L̃−1)det(λ Ir̃ +W̃ )det(K̃−1)

we realize that the values r and r̃ must coincide, hence l = l̃. Introducing U := L̃L−1

and V := K̃−1K one has

U
[

I 0
0 N

]
= L̃EK =

[
I 0
0 Ñ

]
V, U

[
W 0
0 I

]
= L̃FK =

[
W̃ 0
0 I

]
V,

and, in detail,
[
U11 U12N
U21 U22N

]
=

[
V11 V12

ÑV21 ÑV22

]
,

[
U11W U12
U21W U22

]
=

[
W̃V11 W̃V12
V21 V22

]
.

Comparing the entries of these matrices we find the relations U12N =V12 and U12 =
W̃V12, which lead to U12 = W̃U12N = · · ·= W̃ μU12Nμ = 0. Analogously we derive
U21 = 0. Then, the blocks U11 =V11, U22 =V22 must be nonsingular. It follows that

V11W = W̃V11, V22N = ÑV22

holds true, that is, the matrices N and Ñ as well as W and W̃ are similar, and in
particular, μ = μ̃ is valid. ��

The real valued matrix N has the eigenvalue zero only, and can be transformed into
its Jordan form by means of a real valued similarity transformation. Therefore, in
Proposition 1.3, the transformation matrices L and K can be chosen such that N is
in Jordan form.

Proposition 1.3 also holds true for complex valued matrices. This is a well-known
result of Weierstraß and Kronecker, cf. [82]. The special pair given by (1.3) is said
to be Weierstraß–Kronecker form of the original pair {E,F}.

Definition 1.4. The Kronecker index of a regular matrix pair {E,F}, E,F ∈ L(Rm),
and the Kronecker index of a regular DAE (1.1) are defined to be the nilpotency
order μ in the Weierstraß–Kronecker form (1.3). We write ind{E,F}= μ .

The Weierstraß–Kronecker form of a regular pair {E,F} provides a broad insight
into the structure of the associated DAE (1.1). Scaling of (1.1) by L and transforming

x = K
[

y
z

]
leads to the equivalent decoupled system
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y′(t)+Wy(t) = p(t), t ∈ I, (1.4)
Nz′(t)+ z(t) = r(t), t ∈ I, (1.5)

with Lq =:
[

p
r

]
. The first equation (1.4) represents a standard explicit ODE. The

second one appears for l > 0, and it has the only solution

z(t) =
μ−1

∑
j=0

(−1) jN jr( j)(t), (1.6)

provided that r is smooth enough. The latter one becomes clear after recursive use
of (1.5) since

z = r−Nz′ = r−N(r−Nz′)′ = r−Nr′+N2z′′ = r−Nr′+N2(r−Nz′)′′ = · · ·

Expression (1.6) shows the dependence of the solution x on the derivatives of the
source or perturbation term q. The higher the index μ , the more differentiations
are involved. Only in the index-1 case do we have N = 0, hence z(t) = r(t), and
no derivatives are involved. Since numerical differentiations in these circumstances
may cause considerable trouble, it is very important to know the index μ as well as
details of the structure responsible for a higher index when modeling and simulating
with DAEs in practice. The typical solution behavior of ill-posed problems can be
observed in higher index DAEs: small perturbations of the right-hand side yield
large changes in the solution. We demonstrate this by the next example.

Example 1.5 (Ill-posed behavior in case of a higher index DAE). The regular DAE
⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

x′(t)+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F

x(t) =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

γ(t)

⎤
⎥⎥⎥⎥⎦
,

completed by the initial condition
[
1 0 0 0 0

]
x(0) = 0, is uniquely solvable for each

sufficiently smooth function γ . The identically zero solution corresponds to the van-
ishing input function γ(t) = 0. The solution corresponding to the small excitation
γ(t) = ε 1

n sinnt, n ∈ N, ε small, is

x1(t) = ε
∫ t

0
n2eα(t−s) cosns ds, x2(t) = εn2 cosnt,

x3(t) =−εnsinnt, x4(t) =−ε cosnt, x5(t) = ε
1
n

sinnt.

While the excitation tends to zero for n → ∞, the first three solution components
grow unboundedly. The solution value at t = 0,
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x1(0) = 0, x2(0) = εn2, x3(0) = 0, x4(0) =−ε , x5(0) = 0,

moves away from the origin with increasing n, and the origin is no longer a consis-
tent value at t = 0 for the perturbed system, as it is the case for the unperturbed one.
Figures 1.1 and 1.2 show γ and the response x2 for ε = 0.1, n = 1 and n = 100. ��

Fig. 1.1 γ and x2 for n = 1

Fig. 1.2 γ and x2 for n = 100

This last little constant coefficient example is relatively harmless. Time-dependent
subspaces and nonlinear relations in more general DAEs may considerably amplify
the bad behavior. For this reason one should be careful in view of numerical sim-
ulations. It may well happen that an integration code seemingly works, however it
generates wrong results.

The general solution of a regular homogeneous DAE (1.2) is of the form

x(t) = K
[

e−tW

0

]
y0, y0 ∈ R

m−l

which shows that the solution space has finite dimension m− l and the solution
depends smoothly on the initial value y0 ∈ R

m−l . Altogether, already for constant
coefficient linear DAEs, the solutions feature an ambivalent behavior: they depend
smoothly on certain initial values while they are ill-posed with respect to excitations.

The next theorem substantiates the above regularity notion.
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Theorem 1.6. The homogeneous DAE (1.2) has a finite-dimensional solution space
if and only if the pair {E,F} is regular.

Proof. As we have seen before, if the pair {E,F} is regular, then the solutions of
(1.2) form an (m− l)-dimensional space. Conversely, let {E,F} be a singular pair,
i.e., det(λE +F)≡ 0. For any set of m+1 different real values λ1, . . . ,λm+1 we find
nontrivial vectors η1, . . . ,ηm+1 ∈ R

m such that (λiE +F)ηi = 0, i = 1, . . . ,m+ 1,
and a nontrivial linear combination ∑m+1

i=1 αiηi = 0.
The function x(t) = ∑m+1

i=1 αieλitηi does not vanish identically, and it satisfies the
DAE (1.2) as well as the initial condition x(0) = 0. For disjoint (m+1)-element sets
{η1, . . . ,ηm+1}, one always has different solutions, and, consequently, the solution
space of a homogeneous initial value problem (IVP) of (1.2) is not finite. ��

Example 1.7 (Solutions of a nonregular DAE (cf. [97])). The pair {E,F},

E =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , m = 4,

is singular. In detail, the homogeneous DAE (1.2) reads

(x1 + x2)
′ + x2 = 0,

x′4 = 0,
x3 = 0,

x′3 = 0.

What does the solution space look like? Obviously, the component x3 van-
ishes identically and x4 is an arbitrary constant function. The remaining equation
(x1 + x2)

′+ x2 = 0 is satisfied by any arbitrary continuous x2, and the resulting ex-
pression for x1 is

x1(t) = c− x2(t)−
∫ t

0
x2(s)ds,

c being a further arbitrary constant. Clearly, this solution space does not have fi-
nite dimension, which confirms the assertion of Theorem 1.6. Indeed, the regularity
assumption is violated since

p(λ ) = det(λE +F) = det

⎡
⎢⎢⎣
λ λ +1 0 0
0 0 0 λ
0 0 1 0
0 0 λ 0

⎤
⎥⎥⎦= 0.

Notice that, in the case of nontrivial perturbations q, for the associated perturbed
DAE (1.1) the consistency condition q′3 = q4 must be valid for solvability. In prac-
tice, such unbalanced models should be avoided. However, in large dimensions m,
this might not be a trivial task. ��
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We take a closer look at the subsystem (1.5) within the Weierstraß–Kronecker
form, which is specified by the nilpotent matrix N. We may choose the transforma-
tion matrices L and K in such a way that N has Jordan form, say

N = diag [J1, . . . ,Js], (1.7)

with s nilpotent Jordan blocks

Ji =

⎡
⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦
∈ L(Rki), i = 1, . . . ,s,

where k1 + · · ·+ ks = l, μ = max{ki : i = 1, . . . ,s}. The Kronecker index μ equals
the order of the maximal Jordan block in N.

The Jordan form (1.7) of N indicates the further decoupling of the subsystem
(1.5) in accordance with the Jordan structure into s lower-dimensional equations

Jiζ ′i (t)+ζi(t) = ri(t), i = 1, . . . ,s.

We observe that ζi,2, . . . ,ζi,ki are components involved with derivatives whereas the
derivative of the first component ζi,1 is not involved. Notice that the value of ζi,1(t)
depends on the (ki−1)-th derivative of ri,ki(t) for all i = 1, . . . ,s since

ζi,1(t) = ri,1(t)−ζ ′i,2(t) = ri,1(t)− r′i,2(t)+ζ ′i,3(t) = · · ·=
ki

∑
j=1

(−1) j−1r( j−1)
i, j (t).

1.2 Projector based decoupling of regular DAEs

1.2.1 Admissible matrix sequences and admissible projectors

Our aim is now a suitable rearrangement of terms within the equation

Ex′(t)+Fx(t) = q(t), (1.8)

which allows for a similar insight into the structure of the DAE to that given by the
Weierstraß–Kronecker form. However, we do not use transformations, but we work
in terms of the original equation setting and apply a projector based decoupling
concept. The construction is simple. We consider the DAE (1.8) with the coefficients
E,F ∈ L(Rm).

Put G0 := E, B0 := F, N0 := kerG0 and introduce Q0 ∈ L(Rm) as a projector
onto N0. Let P0 := I −Q0 be the complementary one. Using the basic projector
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properties Q2
0 = Q0, Q0P0 = P0Q0 = 0, P0 +Q0 = I, G0Q0 = 0 and G0 = G0P0 (see

Appendix A), we rewrite the DAE (1.8) consecutively as

G0x′+B0x = q

⇐⇒ G0P0x′+B0(Q0 +P0)x = q

⇐⇒ (G0 +B0Q0︸ ︷︷ ︸
=:G1

)(P0x′+Q0x)+B0P0︸︷︷︸
=:B1

x = q

⇐⇒ G1(P0x′+Q0x)+B1x = q.

Next, let Q1 be a projector onto N1 := kerG1, and let P1 := I−Q1 the complementary
one. We rearrange the last equation to

G1P1(P0x′+Q0x)+B1(Q1 +P1)x = q

⇐⇒ (G1 +B1Q1)︸ ︷︷ ︸
G2

(
P1(P0x′+Q0x)+Q1x

)
+B1P1︸︷︷︸

B2

x = q (1.9)

and so on. The goal is a matrix with maximal possible rank in front of the term
containing the derivative x′.

We form, for i≥ 0,

Gi+1 := Gi +BiQi, Ni+1 := kerGi+1, Bi+1 := BiPi (1.10)

and introduce Qi+1 ∈ L(Rm) as a projector onto Ni+1 with Pi+1 := I−Qi+1. Denote
ri := rankGi and introduce the product of projectors Πi := P0 · · ·Pi. These ranks and
products of projectors will play a special role later on. From Bi+1 = BiPi = B0Πi we
derive the inclusion kerΠi ⊆ kerBi+1 as an inherent property of our construction.
Since Gi = Gi+1Pi, the further inclusions

imG0 ⊆ imG1 ⊆ ·· · ⊆ imGi ⊆ imGi+1,

follow, and hence
r0 ≤ r1 ≤ ·· · ≤ ri ≤ ri+1.

An additional inherent property of the sequence (1.10) is given by

Ni−1∩Ni ⊆ Ni∩Ni+1, i≥ 1. (1.11)

Namely, if Gi−1z = 0 and Giz = 0 are valid for a vector z ∈ R
m, which corresponds

to Pi−1z = 0 and Piz = 0, i.e., z = Qiz, then we can conclude that

Gi+1z = Giz+BiQiz = Biz = Bi−1Pi−1z = 0.

From (1.11) we learn that a nontrivial intersection Ni∗−1 ∩Ni∗ never allows an in-
jective matrix Gi, i > i∗. As we will realize later (see Proposition 1.34), such a
nontrivial intersection immediately indicates a singular matrix pencil λE +F .
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Again, we are aiming at a matrix Gκ the rank of which is as high as possible.
However, how can we know whether the maximal rank has been reached? Appropri-
ate criteria would be helpful. As we will see later on, for regular DAEs, the sequence
terminates with a nonsingular matrix.

Example 1.8 (Sequence for a regular DAE). For the DAE

x′1 + x1 + x2 + x3 = q1,

x′3 + x2 = q2,

x1 + x3 = q3,

the first matrices of our sequence are

G0 = E =

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦ , B0 = F =

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦ .

As a nullspace projector onto kerG0 we choose

Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ and obtain G1 = G0 +B0Q0 =

⎡
⎣

1 1 0
0 1 1
0 0 0

⎤
⎦ , B1 = B0P0 =

⎡
⎣

1 0 1
0 0 0
1 0 1

⎤
⎦ .

Since G1 is singular, we turn to the next level. We choose as a projector onto kerG1

Q1 =

⎡
⎣

1 0 0
−1 0 0
1 0 0

⎤
⎦ and arrive at G2 = G1 +B1Q1 =

⎡
⎣

3 1 0
0 1 1
2 0 0

⎤
⎦ .

The matrix G2 is nonsingular, hence the maximal rank is reached and we stop con-
structing the sequence. Looking at the polynomial p(λ ) = det(λE +F) = 2λ we
know this DAE to be regular. Later on we shall see that a nonsingular matrix G2 is
typical for regularity with Kronecker index 2. Observe further that the nullspaces N0
and N1 intersect trivially, and that the projector Q1 is chosen such that Π0Q1Q0 = 0
is valid, or equivalently, N0 ⊆ kerΠ0Q1. ��

Example 1.9 (Sequence for a nonregular DAE). We consider the nonregular matrix
pair from Example 1.7, that is

G0 = E =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B0 = F =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Choosing
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Q0 =

⎡
⎢⎢⎣

1 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ yields G1 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

The matrix G1 is singular. We turn to the next level. We pick

Q1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ which implies G2 = G0.

We continue constructing

Q2 j = Q0, G2 j+1 = G1, Q2 j+1 = Q1, G2 j+2 = G0, j ≥ 1.

Here we have ri = 3 for all i≥ 0. The maximal rank is already met by G0, but there
is no criterion which indicates this in time. Furthermore, Ni∩Ni+1 = {0} holds true
for all i ≥ 0, such that there is no step indicating a singular pencil via property
(1.11). Observe that the product Π0Q1Q0 = P0Q1Q0 does not vanish as it does in
the previous example. ��

The rather irritating experience with Example 1.9 leads us to the idea to refine
the choice of the projectors by incorporating more information from the previous
steps. So far, just the image spaces of the projectors Qi are prescribed. We refine the
construction by prescribing certain appropriate parts of their nullspaces, too. More
precisely, we put parts of the previous nullspaces into the current one.

When constructing the sequence (1.10), we now proceed as follows. At any level
we decompose

N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

�
Ni := (N0 + · · ·+Ni−1)∩Ni, (1.12)

where Xi is any complement to
�
Ni in N0 + · · ·+Ni−1. We choose Qi in such a way

that the condition
Xi ⊆ kerQi (1.13)

is met. This is always possible since the subspaces
�
Ni and Xi intersect trivially (see

Appendix, Lemma A.7). This restricts to some extent the choice of the projectors.
However, a great variety of possible projectors is left. The choice (1.13) implies the
projector products Πi to be projectors again, cf. Proposition 1.13(2). Our structural
analysis will significantly benefit from this property. We refer to Chapter 7 for a
discussion of practical calculations.

If the intersection
�
Ni = (N0 + · · ·+Ni−1)∩Ni is trivial, then we have

Xi = N0 + · · ·+Ni−1 ⊆ kerQi.
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This is the case in Example 1.8 which shows a regular DAE.

Definition 1.10. For a given matrix pair {E,F}, E,F ∈ L(Rm), and an integer κ ∈N,
we call the matrix sequence G0, . . . ,Gκ an admissible matrix sequence, if it is built
by the rule

Set G0 := E, B0 := F, N0 := kerG0, and choose a projector Q0 ∈ L(Rm) onto N0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1

Ni := kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi :=Πi−1Pi

The projectors Q0, . . . ,Qκ in an admissible matrix sequence are said to be admissi-
ble. The matrix sequence G0, . . . ,Gκ is said to be regular admissible, if additionally,

�
Ni = {0}, ∀ i = 1, . . . ,κ .

Then, also the projectors Q0, . . . ,Qκ are called regular admissible.

Admissible projectors are always cross-linked to the matrix function sequence.
Changing a projector at a certain level the whole subsequent sequence changes

accordingly. Later on we learn that nontrivial intersections
�
Ni indicate a singular

matrix pencil.
The projectors in Example 1.8 are admissible but the projectors in Example 1.9

are not. We revisit Example 1.9 and provide admissible projectors.

Example 1.11 (Admissible projectors). Consider once again the singular pair from
Examples 1.7 and 1.9. We start the sequence with the same matrices G0,B0,Q0,G1
as described in Example 1.9 but now we use an admissible projector Q1. The
nullspaces of G0 and G1 are given by

N0 = span

⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦ and N1 = span

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ .

This allows us to choose

Q1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,
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which satisfies the condition X1 ⊆ kerQ1, where X1 = N0 and
�
N1 = N0∩N1 = {0}.

It yields

G2 =

⎡
⎢⎢⎣

1 2 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Now we find N2 = span
[
−2 1 0 0

]T and with

N0 +N1 = N0⊕N1 = span

(
⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦
)

= span

(
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦
)
,

we have N2⊆N0+N1, N0+N1+N2 =N0+N1 as well as
�
N2 = (N0+N1)∩N2 =N2.

A possible complement X2 to
�
N2 in N0 +N1 and an appropriate projector Q2 are

X2 = span

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎣

0 −2 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

This leads to G3 = G2, and the nontrivial intersection N2∩N3 indicates (cf. (1.11))
that also all further matrices Gi are singular. Proposition 1.34 below says that this
indicates at the same time a singular matrix pencil. In the next steps, for i ≥ 3, it
follows that Ni = N2 and Gi = G2.

For admissible projectors Qi, not only is their image imQi = Ni fixed, but also a
part of kerQi. However, there remains a great variety of possible projectors, since,
except for the regular case, the subspaces Xi are not uniquely determined and further
represent just a part of kerQi. Of course, we could restrict the variety of projectors by
prescribing special subspaces. For instance, we may exploit orthogonality as much
as possible, which is favorable with respect to computational aspects.

Definition 1.12. The admissible projectors Q0, . . . ,Qκ are called widely orthogonal
if Q0 = Q∗0, and

Xi =
�
Ni
⊥ ∩ (N0 + · · ·+Ni−1), (1.14)

as well as
kerQi = [N0 + · · ·+Ni]

⊥⊕Xi, i = 1, . . . ,κ , (1.15)

hold true.

The widely orthogonal projectors are completely fixed and they have their advan-
tages. However, in Subsection 2.2.3 we will see that it makes sense to work with
sufficiently flexible admissible projectors.
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The next assertions collect useful properties of admissible matrix sequences
G0, . . . ,Gκ and the associated admissible projectors Q0, . . . ,Qκ for a given pair
{E,F}. In particular, the special role of the products Πi = P0 · · ·Pi is revealed. We
emphasize this by using mainly the short notation Πi.

Proposition 1.13. Let Q0, . . . ,Qκ be admissible projectors for the pair {E,F},
E,F ∈ L(Rm). Then the following assertions hold true for i = 1, . . . ,κ:

(1) kerΠi = N0 + · · ·+Ni.
(2) The products Πi = P0 · · ·Pi and Πi−1Qi = P0 · · ·Pi−1Qi, are again projectors.
(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi.
(4) Bi = BiΠi−1.

(5)
�
Ni ⊆ Ni∩kerBi = Ni∩Ni+1 ⊆

�
Ni+1.

(6) If Q0, . . . ,Qκ are widely orthogonal, then imΠi = [N0 + · · ·+Ni]
⊥, Πi = Π ∗i

and Πi−1Qi = (Πi−1Qi)
∗.

(7) If Q0, . . . ,Qκ are regular admissible, then kerΠi−1Qi = kerQi and QiQ j = 0
for j = 0, . . . , i−1.

Proof. (1) (⇒) To show kerΠi ⊆ N0 + · · ·+Ni for i = 1, . . . ,κ , we consider an
element z ∈ kerΠi. Then,

0 =Πiz = P0 · · ·Piz =
i

∏
k=0

(I−Qk)z.

Expanding the right-hand expression, we obtain

z =
i

∑
k=0

QkHkz ∈ N0 + · · ·+Ni

with suitable matrices Hk.
(⇐) The other direction will be proven by induction. Starting the induc-
tion with i = 0, we observe that kerΠ0 = kerP0 = N0. We suppose that
kerΠi−1 = N0 + · · ·+Ni−1 is valid. Because of

N0 + · · ·+Ni = Xi +
�
Ni +Ni

each z ∈ N0 + · · ·+Ni can be written as z = xi + z̄i + zi with

xi ∈ Xi ⊆ N0 + · · ·+Ni−1 = kerΠi−1, z̄i ∈
�
Ni ⊆ Ni, zi ∈ Ni.

Since Qi is admissible, we have Xi ⊆ kerQi and Ni = imQi. Consequently,

Πiz =Πi−1(I−Qi)z =Πi−1(I−Qi)xi =Πi−1xi = 0

which implies N0 + · · ·+Ni ⊆ kerΠi to be true.
(2) From (1) we know that imQ j = Nj ⊆ kerΠi for j ≤ i. It follows that
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ΠiPj =Πi(I−Q j) =Πi.

Consequently, Π 2
i =Πi and ΠiΠi−1 =Πi imply

(Πi−1Qi)
2 =Πi−1(I−Pi)Πi−1Qi =Πi−1Qi−ΠiΠi−1Qi

=Πi−1Qi−ΠiQi =Πi−1Qi.

(3) For any z ∈ N0 + · · ·+Ni−1, we know from (1) that Πi−1z = 0 and Πiz = 0.
Thus

Πi−1Qiz =Πi−1z−Πiz = 0.

(4) By construction of Bi (see (1.10)), we find Bi = B0Πi−1. Using (2), we get that

Bi = B0Πi−1 = B0Πi−1Πi−1 = BiΠi−1.

(5) First, we show that
�
Ni ⊆ Ni ∩ kerBi. For z ∈

�
Ni = (N0 + · · ·+Ni−1)∩Ni we

find Πi−1z = 0 from (1) and, hence, Biz = B0Πi−1z = 0 using (4). Next,

Ni∩kerBi = Ni∩Ni+1

since Gi+1z = (Gi +BiQi)z = Biz for any z ∈ Ni = imQi = kerGi. Finally,

�
Ni+1 = (N0 + · · ·+Ni)∩Ni+1 implies immediately that Ni∩Ni+1 ⊆

�
Ni+1.

(6) We use induction to show that imΠi = [N0 + · · ·+Ni]
⊥. Starting with i = 0,

we know that imΠ0 = N⊥0 since Q0 = Q∗0.
Since Xi ⊆ N0 + · · ·+Ni−1 (see (1.14)) we derive from (1) that Πi−1Xi = 0.
Regarding (1.15), we find

imΠi =Πi−1imPi =Πi−1([N0 + · · ·+Ni]
⊥+Xi) =Πi−1([N0 + · · ·+Ni]

⊥).

Using [N0 + · · ·+Ni]
⊥ ⊆ [N0 + · · ·+Ni−1]

⊥ = imΠi−1 we conclude

imΠi =Πi−1([N0 + · · ·+Ni])
⊥ = [N0 + · · ·+Ni]

⊥.

In consequence, Πi is the orthoprojector onto [N0+ · · ·+Ni]
⊥ along N0+ · · ·+

Ni, i.e., Πi =Π ∗i . It follows that

Πi−1Qi =Πi−1−Πi =Π ∗i−1−Π ∗i = (Πi−1−Πi)
∗ = (Πi−1Qi)

∗.

(7) Let
�
Ni = 0 be valid. Then, Xi = N0 + · · ·+Ni−1 = N0⊕·· ·⊕Ni−1 and, there-

fore,

kerΠi−1
(1)
= N0⊕·· ·⊕Ni−1 = Xi ⊆ kerQi.

This implies QiQ j = 0 for j = 0, . . . , i−1. Furthermore, for any z∈ kerΠi−1Qi,
we have Qiz ∈ kerΠi−1 ⊆ kerQi, which means that z ∈ kerQi.

��
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Remark 1.14. If the projectors Q0, . . . ,Qκ are regular admissible, and the Π0, . . . ,Πκ
are symmetric, then Q0, . . . ,Qκ are widely orthogonal. This is a consequence of the
properties

imΠi = (kerΠi)
⊥ = (N0⊕·· ·⊕Ni)

⊥, kerQi = imΠi⊕Xi for i = 1, . . . ,κ .

In more general cases, if there are nontrivial intersections
�
Ni, widely orthogonal pro-

jectors are given, if the Πi are symmetric and, additionally, the conditions QiΠi = 0,
Pi(I−Πi−1) = (Pi(I−Πi−1))

∗ are valid (cf. Chapter 7).

Now we are in a position to provide a result which plays a central role in the projec-
tor approach of regular DAEs.

Theorem 1.15. If, for the matrix pair {E,F}, E,F ∈ L(Rm), an admissible matrix
sequence (Gi)i≥0 contains an integer μ such that Gμ is nonsingular, then the repre-
sentations

G−1
μ E =Πμ−1 +(I−Πμ−1)G−1

μ E(I−Πμ−1) (1.16)

G−1
μ F = Q0 + · · ·+Qμ−1 +(I−Πμ−1)G−1

μ FΠμ−1 +Πμ−1G−1
μ FΠμ−1 (1.17)

are valid and {E,F} is a regular pair.

Proof. Let Gμ be nonsingular. Owing to Proposition 1.13 we express

F(I−Πμ−1) = F(Q0 +Π0Q1 + · · ·+Πμ−2Qμ−1)

= B0Q0 +B1Q1 + · · ·+Bμ−1Qμ−1

= GμQ0 +GμQ1 + · · ·+GμQμ−1

= Gμ(Q0 +Q1 + · · ·+Qμ−1),

therefore
Πμ−1G−1

μ F(I−Πμ−1) = 0. (1.18)

Additionally, we have Gμ = E +F(I−Πμ−1), thus I = G−1
μ E +G−1

μ F(I−Πμ−1)

and Πμ−1 =Πμ−1G−1
μ E = G−1

μ EΠμ−1. From these properties it follows that

Πμ−1G−1
μ E(I−Πμ−1) = 0, (1.19)

which proves the expressions (1.16), (1.17).
Denote the finite set consisting of all eigenvalues of the matrix −Πμ−1G−1

μ F by
Λ . We show the matrix λE +F to be nonsingular for each arbitrary λ not belonging
to Λ , which proves the matrix pencil to be regular. The equation (λE +F)z = 0 is
equivalent to

λG−1
μ Ez+G−1

μ Fz = 0 ⇐⇒
λG−1

μ EΠμ−1z+λG−1
μ E(I−Πμ−1)z+G−1

μ FΠμ−1z+G−1
μ F(I−Πμ−1)z = 0

(1.20)
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Multiplying (1.20) by Πμ−1 and regarding (1.18)–(1.19), yields

λΠμ−1z+Πμ−1G−1
μ FΠμ−1z = (λ I +Πμ−1G−1

μ F)Πμ−1z = 0,

which implies Πμ−1z = 0 for λ /∈ Λ . Using Πμ−1z = 0, equation (1.20) multiplied
by I−Πμ−1 reduces to

λ (I−Πμ−1)G−1
μ E(I−Πμ−1)z+(I−Πμ−1)G−1

μ F(I−Πμ−1)z = 0.

Replacing G−1
μ E = I−G−1

μ F(I−Πμ−1) we find

λ (I−Πμ−1)z+(1−λ )(I−Πμ−1)G−1
μ F(I−Πμ−1)(I−Πμ−1)z = 0.

If λ = 1 then this immediately implies z = 0. If λ �= 1 it holds that
(

λ
1−λ

I +(I−Πμ−1)G−1
μ F(I−Πμ−1)︸ ︷︷ ︸

Q0+···+Qμ−1

)
(I−Πμ−1)z︸ ︷︷ ︸

z

= 0.

Multiplication by Qμ−1 gives Qμ−1z = 0. Then multiplication by Qμ−2 yields
Qμ−2z = 0, and so on. Finally we obtain Q0z = 0 and hence z = (I−Πμ−1)z =
Q0z+ · · ·+Πμ−2Qμ−1z = 0. ��

Once more we emphasize that the matrix sequence depends on the choice of the
admissible projectors. However, the properties that are important later on are inde-
pendent of the choice of the projectors, as the following theorem shows.

Theorem 1.16. For any pair {E,F}, E,F ∈ L(Rm), the subspaces N0 + · · ·+Ni,
�
Ni

and imGi are independent of the special choice of the involved admissible projec-
tors.

Proof. All claimed properties are direct and obvious consequences of Lemma 1.18
below. ��

Theorem 1.16 justifies the next definition.

Definition 1.17. For each arbitrary matrix pair {E,F}, E,F ∈ L(Rm), the integers

ri := rankGi, i ≥ 0, ui := dim
�
Ni i ≥ 1, which arise from an admissible matrix se-

quence (Gi)i≥0, are called structural characteristic values.

Lemma 1.18. Let Q0, . . . ,Qκ and Q̄0, . . . , Q̄κ be any two admissible projector se-
quences for the pair {E,F}, E,F ∈ L(Rm), and Nj, N̄ j, G j, Ḡ j, etc. the correspond-
ing subspaces and matrices. Then it holds that:

(1) N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj, for j = 0, . . . ,κ .

(2) Ḡ j = G jZ j, B̄ j = B j +G j
j−1
∑

l=0
QlA jl , for j = 0, . . . ,κ ,

with nonsingular matrices Z0, . . . ,Zκ+1 given by Z0 := I, Z j+1 := Yj+1Z j,
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Y1 := I +Q0(Q̄0−Q0) = I +Q0Q̄0P0,

Yj+1 := I +Q j(Π̄ j−1Q̄ j−Π j−1Q j)+
j−1

∑
l=0

QlA jl Q̄ j,

where A jl = Π̄ j−1 for l = 0, . . . , j−1.
(3) Ḡκ+1 = Gκ+1Zκ+1 and N̄0 + · · ·+ N̄κ+1 = N0 + · · ·+Nκ+1.
(4) (N̄0 + · · ·+ N̄ j−1)∩ N̄ j = (N0 + · · ·+Nj−1)∩Nj for j = 1, . . . ,κ+1.

Remark 1.19. The introduction of Ail seems to be unnecessary at this point. We
use these extra terms to emphasize the great analogy to the case of DAEs with
time-dependent coefficients (see Lemma 2.12). The only difference between both
cases is given in the much more elaborate representation of Ail for time-dependent
coefficients.

Proof. We prove (1) and (2) together by induction. For i = 0 we have

Ḡ0 = E = G0, B̄0 = F = B0, N̄0 = ker Ḡ0 = kerG0 = N0, Z0 = I.

To apply induction we suppose the relations

N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj, (1.21)

Ḡ j = G jZ j, B̄ j = B j +G j

j−1

∑
l=0

QlA jl (1.22)

to be valid for j ≤ i with nonsingular Z j as described above, and

Z−1
j = I +

j−1

∑
l=0

QlC jl

with certain C jl . Comparing Ḡi+1 and Gi+1 we write

Ḡi+1 = Ḡi + B̄iQ̄i = GiZi + B̄iQ̄iZi + B̄iQ̄i(I−Zi) (1.23)

and consider the last term in more detail. We have, due to the form of Yl , induction
assumption (1.21) and im(Yj− I) ⊆ N0 + · · ·+Nj−1 = kerΠ j−1 given for all j ≥ 0
(see Proposition 1.13) that

N0 + · · ·+Nj−1 ⊆ kerΠ j−1Q j, N̄0 + · · ·+ N̄ j−1 ⊆ kerΠ̄ j−1Q̄ j, j ≤ i, (1.24)

and therefore,
Yj+1− I = (Yj+1− I)Π j−1, j = 1, . . . , i. (1.25)

This implies
im(Yj− I)⊆ ker(Yj+1− I), j = 1, . . . , i. (1.26)

Concerning Z j = YjZ j−1 and using (1.26), a simple induction proof shows



1.2 Projector based decoupling 21

Z j− I =
j

∑
l=1

(Yl− I), j = 1, . . . , i,

to be satisfied. Consequently,

im(I−Zi)⊆ N0 + · · ·+Ni−1 = N̄0 + · · ·+ N̄i−1 ⊆ ker Q̄i.

Using (1.23), we get
Ḡi+1 = GiZi + B̄iQ̄iZi,

which leads to

Ḡi+1Z−1
i = Gi + B̄iQ̄i = Gi +BiQi +(B̄iQ̄i−BiQi).

We apply the induction assumption (1.22) to find

Ḡi+1Z−1
i = Gi+1 +Bi(Q̄i−Qi)+Gi

i−1

∑
l=0

QlAil Q̄i.

Induction assumption (1.21) and Proposition 1.13 imply kerΠ̄i−1 = kerΠi−1 and
hence

Bi = B0Πi−1 = B0Πi−1Π̄i−1 = BiΠ̄i−1.

Finally,

Ḡi+1Z−1
i = Gi+1 +Bi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i

= Gi+1 +BiQi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i = Gi+1Yi+1,

which means that
Ḡi+1 = Gi+1Yi+1Zi = Gi+1Zi+1. (1.27)

Next, we will show Zi+1 to be nonsingular. Owing to the induction assumption, we
know that Zi is nonsingular. Considering the definition of Zi+1 we have to show Yi+1
to be nonsingular. Firstly,

ΠiYi+1 =Πi (1.28)

since imQ j ⊆ kerΠi for j ≤ i. This follows immediately from the definition of Yi+1
and Proposition 1.13 (1). Using the induction assumption (1.21), Proposition 1.13
and Lemma A.3, we find

Π jΠ̄ j =Π j, Π̄ jΠ j = Π̄ j and Π jΠ j =Π j for j = 0, . . . , i.

This implies that
Πi−1(Yi+1− I) =Πi−1(Yi+1− I)Πi (1.29)

because
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Πi−1(Yi+1− I)
Prop.1.13(1)

= Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi)

= (Πi−1−Πi)(Π̄i−1Q̄i−Πi−1Qi)

= Πi−1(Q̄i−Qi) = Πi−1(Pi− P̄i)

= Πi−Πi−1Π̄i−1P̄i = Πi−Πi−1Π̄i

= Πi−Πi−1Π̄iΠi = (I−Πi−1Π̄i)Πi.

Equations (1.28) and (1.29) imply

Πi−1(Yi+1− I) =Πi−1(Yi+1− I)Πi =Πi−1(Yi+1− I)ΠiYi+1

and, consequently,

I = Yi+1− (Yi+1− I)
(1.25)
= Yi+1− (Yi+1− I)Πi−1

= Yi+1− (Yi+1− I)Πi−1{(I−Πi−1)Yi+1 +Πi−1}
= Yi+1− (Yi+1− I)Πi−1{Yi+1−Πi−1(Yi+1− I)}
= Yi+1− (Yi+1− I)Πi−1{Yi+1−Πi−1(Yi+1− I)ΠiYi+1}
= (I− (Yi+1− I){I−Πi−1(Yi+1− I)Πi})Yi+1.

This means that Yi+1 is nonsingular and

Y−1
i+1 = I− (Yi+1− I){I−Πi−1(Yi+1− I)Πi}.

Then also Zi+1 = Yi+1Zi is nonsingular, and

Z−1
i+1 = Z−1

i Y−1
i+1 = (I +

i−1

∑
l=0

QlCil)Y−1
i+1 = I +

i

∑
l=0

QlCi+1 l

with certain coefficients Ci+1 l . From (1.27) we conclude N̄i+1 = Z−1
i+1Ni+1, and, due

to the special form of Z−1
i+1,

N̄i+1 ⊆ N0 + · · ·+Ni+1, N̄0 + · · ·+ N̄i+1 ⊆ N0 + · · ·+Ni+1.

Owing to the property im(Zi+1− I)⊆ N0 + · · ·+Ni = N̄0 + · · ·+ N̄i, it holds that

Ni+1 = Zi+1N̄i+1 = (I +(Zi+1− I))N̄i+1 ⊆ N̄0 + · · ·+ N̄i+1.

Thus, N0 + · · ·+Ni+1 ⊆ N̄0 + · · ·+ N̄i+1 is valid. For symmetry reasons we have

N0 + · · ·+Ni+1 = N̄0 + · · ·+ N̄i+1.

Finally, we derive from the induction assumption that
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B̄i+1 = B̄iP̄i =
(
Bi +Gi

i−1

∑
l=0

QlAil
)
P̄i

= BiPiP̄i +BiQiP̄i +Gi+1

i−1

∑
l=0

QlAil P̄i

= BiPi +BiQiΠ̄i +Gi+1

i−1

∑
l=0

QlAil P̄i = Bi+1 +Gi+1

i

∑
l=0

QlAi+1,l

with Ai+1,l = Ail P̄i, l = 0, . . . , i−1, Ai+1,l = Π̄i, and therefore, for l ≤ i−1,

Ai+1,l = Ail P̄i = Ai−1,l P̄i−1P̄i = Al+1,l P̄l+1 · · · P̄i = Π̄l P̄l+1 · · · P̄i = Π̄i.

We have proved assertions (1) and (2), and (3) is a simple consequence. Next we
prove assertion (4). By assertion (1) from Lemma 1.13, we have N0 + · · ·+Ni =
kerΠi and

Gi+1 = G0 +B0Q0 + · · ·+BiQi = G0 +B0Q0 +B1P0Q1 + · · ·+BiP0 · · ·Pi−1Qi

= G0 +B0(Q0 +P0Q1 + · · ·+P0 · · ·Pi−1Qi)

= G0 +B0(I−P0 · · ·Pi) = G0 +B0(I−Πi).

This leads to the description

�
Ni+1 = (N0 + · · ·+Ni)∩Ni+1 = {z ∈ R

m : Πiz = 0, G0z+B0(I−Πi)z = 0}
= {z ∈ R

m : z ∈ N0 + · · ·+Ni, G0z+B0z = 0}
= {z ∈ R

m : z ∈ N̄0 + · · ·+ N̄i, Ḡ0z+ B̄0z = 0}
= (N̄0 + · · ·+ N̄i)∩ N̄i+1.

��

1.2.2 Decoupling by admissible projectors

In this subsection we deal with matrix pairs {E,F}, E,F ∈ L(Rm), the admissible
matrix sequence (Gi)i≥0 of which reaches a nonsingular matrix Gμ . Those matrix
pairs as well as the associated DAEs

Ex′(t)+Fx(t) = q(t) (1.30)

are regular by Theorem 1.15. They have the structural characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

The nonsingular matrix Gμ allows for a projector based decoupling such that the de-
coupled version of the given DAE looks quite similar to the Weierstraß–Kronecker
form.
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We stress that, at the same time, our discussion should serve as a model for a
corresponding decoupling of time-dependent linear DAEs for which we do not have
a Weierstraß–Kronecker form.

When constructing an admissible matrix function sequence (Gi)i≥0 we have in
mind a rearrangement of terms within the original DAE (1.30) such that the solution
components Πμ−1x(t) and (I−Πμ−1)x(t) are separated as far as possible and the
nonsingular matrix Gμ occurs in front of the derivative (Πμ−1x(t))′. Let the admis-
sible matrix sequence (Definition 1.10) starting from G0 = E, B0 = F be realized up
to Gμ which is nonsingular. Let μ ∈ N be the smallest such index.

Consider the involved admissible projectors Q0, . . . ,Qμ . We have Qμ = 0, Pμ = I,

Πμ = Πμ−1 for trivial reasons. Due to Proposition 1.13, the intersections
�
Ni are

trivial,
�
Ni = Ni∩ (N0 + · · ·+Ni−1) = {0}, i = 1, . . . ,μ−1,

and therefore

N0+ · · ·+Ni−1 =N0⊕·· ·⊕Ni−1, Xi =N0⊕·· ·⊕Ni−1, i= 1, . . . ,μ−1. (1.31)

From (1.31) we derive the relations

QiQ j = 0, j = 0, . . . , i−1, i = 1, . . . ,μ−1, (1.32)

which are very helpful in computations. Recall the properties

GiPi−1 = Gi−1, Bi = BiΠi−1, i = 1, . . . ,μ ,
GiQ j = B jQ j, j = 0, . . . , i−1, i = 0, . . . ,μ−1,

from Section 1.2 which will be used frequently.
Applying G0 = G0P0 = G0Π0 we rewrite the DAE (1.30) as

G0(Π0x(t))′+B0x(t) = q(t), (1.33)

and then, with B0 = B0P0 +B0Q0 = B0Π0 +G1Q0, as

G1P1P0(Π0x(t))′+B0Π0x(t)+G1Q0x(t) = q(t).

Now we use the relation

G1P1P0 = G1Π0P1P0 +G1(I−Π0)P1P0

= G1Π1−G1(I−Π0)Q1

= G1Π1−G1(I−Π0)Q1Π0Q1

to replace the first term. This yields

G1(Π1x(t))′+B1x(t)+G1{Q0x(t)− (I−Π0)Q1(Π0Q1x(t))′}= q(t).
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Proceeding further by induction we suppose

Gi(Πix(t))′ + Bix(t)

+ Gi

i−1

∑
l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t) (1.34)

and, in the next step, using the properties Gi+1Pi+1Pi = Gi, BiQi = Gi+1Qi,
GiQl = Gi+1Ql , l = 0, . . . , i−1, and

Pi+1PiΠi =ΠiPi+1PiΠi +(I−Πi)Pi+1PiΠi

=Πi+1− (I−Πi)Qi+1

=Πi+1− (I−Πi)Qi+1ΠiQi+1,

we reach

Gi+1(Πi+1x(t))′ + Bi+1x(t)

+ Gi+1

i

∑
l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t),

so that expression (1.34) can be used for all i = 1, . . . ,μ . In particular, we obtain

Gμ(Πμx(t))′ + Bμx(t)

+ Gμ
μ−1
∑

l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t).

(1.35)

Taking into account that Qμ = 0, Pμ = I, Πμ = Πμ−1, and scaling with G−1
μ we

derive the equation

(Πμ−1x(t))′+G−1
μ Bμx(t)+

μ−1

∑
l=0

Qlx(t)−
μ−2

∑
l=0

(I−Πl)Ql+1(ΠlQl+1x(t))′ =G−1
μ q(t).

(1.36)
In turn, equation (1.36) can be decoupled into two parts, the explicit ODE with
respect to Πμ−1x(t),

(Πμ−1x(t))′+Πμ−1G−1
μ Bμx(t) =Πμ−1G−1

μ q(t), (1.37)

and the remaining equation

(I−Πμ−1)G−1
μ Bμx(t)+

μ−1

∑
l=0

Qlx(t)

−
μ−2

∑
l=0

(I−Πl)Ql+1(ΠlQl+1x(t))′ = (I−Πμ−1)G−1
μ q(t).

(1.38)
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Next, we show that equation (1.38) uniquely defines the component (I−Πμ−1)x(t)
in terms of Πμ−1x(t). We decouple equation (1.38) once again into μ further parts
according to the decomposition

I−Πμ−1 = Q0P1 · · ·Pμ−1 +Q1P2 · · ·Pμ−1 + · · ·+Qμ−2Pμ−1 +Qμ−1. (1.39)

Notice that QiPi+1 · · ·Pμ−1, i = 0, . . . ,μ−2 are projectors, too, and

QiPi+1 · · ·Pμ−1Qi = Qi,

QiPi+1 · · ·Pμ−1Q j = 0, if i �= j,

QiPi+1 · · ·Pμ−1(I−Πl)Ql+1 = Qi(I−Πl)Ql+1 = 0, for l = 0, . . . , i−1,
QiPi+1 · · ·Pμ−1(I−Πi)Qi+1 = QiQi+1.

Hence, multiplying (1.38) by QiPi+1 · · ·Pμ−1, i = 0, . . . ,μ−2, and Qμ−1 yields

QiPi+1 · · ·Pμ−1G−1
μ Bμx(t)+Qix(t)−QiQi+1(ΠiQi+1x(t))′

−
μ−2

∑
l=i+1

QiPi+1 · · ·PlQl+1(ΠlQl+1x(t))′ = QiPi+1 · · ·Pμ−1G−1
μ q(t) (1.40)

for i = 0, . . . ,μ−2 and

Qμ−1G−1
μ Bμx(t)+Qμ−1x(t) = Qμ−1G−1

μ q(t). (1.41)

Equation (1.41) uniquely determines the component Qμ−1x(t) as

Qμ−1x(t) = Qμ−1G−1
μ q(t)−Qμ−1G−1

μ Bμx(t),

and the formula contained in (1.40) for i = μ−2 gives

Qμ−2x(t) =

Qμ−2Pμ−1G−1
μ q(t)−Qμ−2Pμ−1G−1

μ Bμx(t)−Qμ−2Qμ−1(Πμ−2Qμ−1x(t))′,

and so on, i.e., in a consecutive manner we obtain expressions determining the com-
ponents Qix(t) with their dependence on Πμ−1x(t) and Qi+ jx(t), j = 1, . . . ,μ−1−
i.

To compose an expression for the whole solution x(t) there is no need for the
components Qix(t) themselves, i = 0, . . . ,μ − 1. But one can do it with Q0x(t),
Πi−1Qix(t), i = 1, . . . ,μ−1, which corresponds to the decomposition

I = Q0 +Π0Q1 + · · ·+Πμ−2Qμ−1 +Πμ−1. (1.42)

For this purpose we rearrange the system (1.40), (1.41) once again by multiplying
(1.41) by Πμ−2 and (1.40) for i = 1, . . . ,μ − 2 by Πi−1. Let us remark that, even
though we scale with projectors (which are singular matrices) here, nothing of the
equations gets lost. This is due to the relations
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Qi = QiΠi−1Qi = (Πi−1 +(I−Πi−1))QiΠi−1Qi

= (I +(I−Πi−1)Qi)Πi−1Qi,

Πi−1Qi = (I− (I−Πi−1)Qi)Qi,

(1.43)

which allow a one-to-one translation of the components Qix(t) and Πi−1Qix(t) into
each other. Choosing notation according to the decomposition (1.42),

v0(t) := Q0x(t), vi(t) :=Πi−1Qix(t), i = 1, . . . ,μ−1, u(t) :=Πi−1x(t), (1.44)

we obtain the representation, respectively decomposition

x(t) = v0(t)+ v1(t)+ · · ·+ vμ−1(t)+u(t) (1.45)

of the solution as well as the structured system resulting from (1.37), (1.40), and
(1.41):
⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 N01 · · · N0,μ−1

. . . . . .
...

. . . Nμ−2,μ−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u′(t)
0

v′1(t)
...

v′μ−1(t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W
H0 I

...
. . .

...
. . .

Hμ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u(t)
v0(t)

...

...
vμ−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ld
L0
...
...

Lμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

q(t)

(1.46)

with the m×m blocks

N01 :=−Q0Q1,

N0 j := Q0P1 · · ·Pj−1Q j, j = 2, . . . ,μ−1,
Ni,i+1 :=−Πi−1QiQi+1, i = 1, . . . ,μ−2,
Ni j :=−Πi−1QiPi+1 · · ·Pj−1Q j, j = i+2, . . . ,μ−1, i = 1, . . . ,μ−2,

W :=Πμ−1G−1
μ Bμ ,

H0 := Q0P1 · · ·Pμ−1G−1
μ Bμ ,

Hi :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ Bμ , i = 1, . . . ,μ−2,

Hμ−1 :=Πμ−2Qμ−1G−1
μ Bμ ,

and
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Ld :=Πμ−1G−1
μ ,

L0 := Q0P1 · · ·Pμ−1G−1
μ ,

Li :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ , i = 1, . . . ,μ−2,

Lμ−1 :=Πμ−2Qμ−1G−1
μ .

System (1.46) almost looks like a DAE in Weierstraß–Kronecker form. However,
compared to the latter it is a puffed up system of dimension (μ +1)m. The system
(1.46) is equivalent to the original DAE (1.30) in the following sense.

Proposition 1.20. Let the DAE (1.30), with coefficients E,F ∈ L(Rm), have the
characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

(1) If x(.) is a solution of the DAE (1.30), then the components u(.),v0(.), . . . ,
vμ−1(.) given by (1.44) form a solution of the puffed up system (1.46).

(2) Conversely, if the functions u(.),v0(.), . . . ,vμ−1(.) are a solution of the sys-
tem (1.46) and if, additionally, u(t0) =Πμ−1u(t0) holds for a t0 ∈ I, then the
compound function x(.) defined by (1.45) is a solution of the original DAE
(1.30).

Proof. It remains to verify (2). Due to the properties of the coefficients, for
each solution of system (1.46) it holds that vi(t) = Πi−1Qivi(t), i = 1, . . . ,μ − 1,
v0(t) = Q0v0(t), which means that the components vi(t), i = 0, . . . ,μ−1, belong to
the desired subspaces.

The first equation in (1.46) is the explicit ODE u′(t) +Wu(t) = Ldq(t). Let
uq(.) denote the solution fixed by the initial condition uq(t0) = 0. We have uq(t) =
Πμ−1uq(t) because of W = Πμ−1W , Ld = Πμ−1Ld . However, for each arbitrary
constant c ∈ im(I−Πμ−1), the function ū(.) := c+uq(.) solves this ODE but does
not belong to imΠμ−1 as we want it to.

With the initial condition u(t0) = u0 ∈ imΠμ−1 the solution can be kept in the
desired subspace, which means that u(t) ∈ imΠμ−1 for all t ∈ I. Now, by carrying
out the decoupling procedure in reverse order and putting things together we have
finished the proof. ��

System (1.46) is given in terms of the original DAE. It shows in some detail the
inherent structure of that DAE. It also serves as the idea of an analogous decoupling
of time-varying linear DAEs (see Section 2.6).

Example 1.21 (Decoupling of an index-2 DAE). We reconsider the regular index-2
DAE

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦x′+

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦x = q

from Example 1.8, with the projectors
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Π1 = P0P1 =

⎡
⎣

0 0 0
0 0 0
−1 0 1

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , P0Q1 =

⎡
⎣

1 0 0
0 0 0
1 0 0

⎤
⎦ .

The DAE itself can be rewritten without any differentiations of equations as

(−x1 + x3)
′ = q2 +q3−q1, (1.47)

x′1 + x2 = (q1−q3), (1.48)

x1 +
1
2
(−x1 + x3) =

1
2

q3. (1.49)

Obviously, Π1x reflects the proper state variable −x1 + x3, for which an explicit
ODE (1.47) is given. P0Q1x refers to the variable x1 that is described by the algebraic
equation (1.49) when the solution −x1 + x3 is already given by (1.47). Finally, Q0x
reflects the variable x2 which can be determined by (1.48). Note, that the variable x1
has to be differentiated here. Simple calculations yieldW =Πμ−1G−1

2 B0Πμ−1 = 0,
H0 = Q0P1G−1

2 B0Πμ−1 = 0 and

H1 = Q1G−1
2 B0Πμ−1 =

⎡
⎣
− 1

2 0 1
2

0 0 0
− 1

2 0 1
2

⎤
⎦ .

This way the DAE decouples as

(Π1x)′ =Π1G−1
2 q, (1.50)

−Q0Q1(Π0Q1x)′+Q0x = Q0P1G−1
2 q, (1.51)

Π0Q1 +H1Π1x =Π0Q1G−1
2 q. (1.52)

These equations mean in full detail

(⎡
⎣

0
0

−x1 + x3

⎤
⎦
)′

=

⎡
⎣

0 0 0
0 0 0
−1 1 1

⎤
⎦q,

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦
(⎡
⎣

x1
0
x1

⎤
⎦
)′

+

⎡
⎣

0
x2
0

⎤
⎦=

⎡
⎣

0 0 0
1 0 −1
0 0 0

⎤
⎦q,

⎡
⎣

x1
0
x1

⎤
⎦+
⎡
⎣
− 1

2 0 1
2

0 0 0
− 1

2 0 1
2

⎤
⎦
⎡
⎣

0
0

−x1 + x3

⎤
⎦=

⎡
⎣

0 0 1
2

0 0 0
0 0 1

2

⎤
⎦q.

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form (1.47)–(1.49). ��
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1.2.3 Complete decoupling

A special smart choice of the admissible projectors cancels the coefficients Hi in
system (1.46) so that the second part no longer depends on the first part.

Theorem 1.22. Let {E,F}, E,F ∈ L(Rm), be a pair with characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

Then there are admissible projectors Q0, . . .Qμ−1 such that the coupling coefficients
H0, . . . ,Hμ−1 in (1.46) vanish, that is, (1.46) decouples into two independent sub-
systems.

Proof. For any given sequence of admissible projectors Q0, . . . ,Qμ−1 the coupling
coefficients can be expressed as H0 = Q0∗Πμ−1 and Hi = Πi−1Qi∗Πμ−1 for i =
1, . . . ,μ−1, where we denote

Q0∗ := Q0P1 · · ·Pμ−1G−1
μ B0,

Qi∗ := QiPi+1 · · ·Pμ−1G−1
μ B0Πi−1, i = 1, . . . ,μ−2,

Qμ−1∗ := Qμ−1G−1
μ B0Πμ−2.

We realize that Qi∗Qi = Qi, i = 0, . . . ,μ−1, since

Qμ−1∗Qμ−1 = Qμ−1G−1
μ B0Πμ−2Qμ−1 = Qμ−1G−1

μ Bμ−1Qμ−1

= Qμ−1G−1
μ GμQμ−1 = Qμ−1,

and so on for i = μ − 2, . . . ,0. This implies (Qi∗)2 = Qi∗, i.e., Qi∗ is a projector
onto Ni, i = 0, . . . ,μ − 1. By construction one has N0 + · · ·+ Ni−1 ⊆ kerQi∗ for
i = 1, . . . ,μ−1. The new projectors Q̄0 := Q0, . . . , Q̄μ−2 := Qμ−2, Q̄μ−1 := Qμ−1∗
are also admissible, but now, the respective coefficient H̄μ−1 disappears in (1.46).
Namely, the old and new sequences are related by

Ḡi = Gi, i = 0, . . . ,μ−1, Ḡμ = Gμ +Bμ−1Qμ−1∗ = GμZμ

with nonsingular Zμ := I +Qμ−1Qμ−1∗Pμ−1. This yields

Q̄μ−1∗ := Q̄μ−1Ḡμ−1B0Πμ−2 = Qμ−1∗Z−1
μ G−1

μ B0Πμ−2

= Qμ−1G−1
μ B0Πμ−2 = Qμ−1∗ = Q̄μ−1

because of
Qμ−1∗Z−1

μ = Qμ−1∗(I−Qμ−1Qμ−1∗Pμ−1) = Qμ−1,

and hence
H̄μ−1 := Π̄μ−2Q̄μ−1∗Π̄μ−1 =Πμ−2Q̄μ−1Π̄μ−1 = 0.

We show by induction that the coupling coefficients disappear stepwise with an
appropriate choice of admissible projectors. Assume Q0, . . . ,Qμ−1 to be such that
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Hk+1 = 0, . . . , Hμ−1 = 0, (1.53)

or, equivalently,
Qk+1∗Πμ−1 = 0, . . . , Qμ−1∗Πμ−1 = 0,

for a certain k, 0 ≤ k ≤ μ − 2. We build a new sequence by letting Q̄i := Qi for
i = 0, . . . ,k− 1 (if k ≥ 1) and Q̄k := Qk∗. Thus, QkP̄k = −Q̄kPk and the projectors
Q̄0, . . . , Q̄k are admissible. The resulting two sequences are related by

Ḡi = GiZi, i = 0, . . . ,k+1,

with factors

Z0 = I, . . . , Zk = I, Zk+1 = I +QkQk∗Pk, Z−1
k+1 = I−QkQk∗Pk.

We form Q̄k+1 := Z−1
k+1Qk+1Zk+1 = Z−1

k+1Qk+1. Then, Q̄0, . . . , Q̄k+1 are also admissi-
ble. Applying Lemma 1.18 we proceed with

Ḡ j = G jZ j, Q̄ j := Z−1
j Q jZ j, j = k+2, . . . ,μ−1,

and arrive at a new sequence of admissible projectors Q̄0, . . . , Q̄μ−1. The invertibility
of Z j is ensured by Lemma 1.18. Putting Yk+1 := Zk+1 and, exploiting Lemma 1.18,

Yj := Z jZ−1
j−1 = I +Q j−1(Π̄ j−2Q̄ j−1−Π j−2Q j−1)+

j−2

∑
l=0

QlΠ̄ j−2Q̄ j−1, j ≥ k+2.

Additionally, we learn from Lemma 1.18 that the subspaces N0 ⊕ ·· · ⊕ Nj and
N̄0⊕·· ·⊕ N̄ j coincide. The expression for Yj, j ≥ k+2, simplifies to

Yj = I +
j−2

∑
l=0

QlΠ̄ j−2Q̄ j−1 = I +
j−2

∑
l=k

QlΠ̄ j−2Q j−1

for our special new projectors because the following relations are valid:

Q jZ j = 0, Q̄ j = Z−1
j Q j, Π̄ j−2Q̄ j−1 = Π̄ j−2Z−1

j−1Q j−1 = Π̄ j−2Q j−1,

Q j−1(Π̄ j−2Q̄ j−1−Π j−2Q j−1) = Q j−1(Π̄ j−2Q j−1−Π j−2Q j−1) = 0.

We have to verify that the new coupling coefficients H̄k and H̄ j, j≥ k+1, disappear.
We compute Q̄kZ−1

k+1 = Q̄k− Q̄kPk = Q̄kQk = Qk and

Z j−1Z−1
j = Y−1

j = I−
j−2

∑
l=k

QlΠ̄ j−2Q j−1, j ≥ k+2. (1.54)

For j ≥ k+1 this yields

Q̄ j∗Π̄μ−1 = Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1
μ BΠ̄μ−1 = Z−1

j Q jY−1
j+1Pj+1 · · ·Y−1

μ−1Pμ−1Y−1
μ BΠ̄μ−1
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and, by inserting (1.54) into the last expression,

Q̄ j∗Π̄μ−1 =

Z−1
j Q j(I−

j−1

∑
l=k

QlΠ̄ j−1Q j)Pj+1 · · ·Pμ−1(I−
μ−2

∑
l=k

QlΠ̄μ−2Qμ−1)G−1
μ BΠ̄μ−1.

Rearranging the terms one finds

Q̄ j∗Π̄μ−1 = (Z−1
j Q jPj+1 · · ·Pμ−1 +C j, j+1Q j+1Pj+2 · · ·Pμ−1 (1.55)

+ · · ·+C j,μ−2Qμ−2Pμ−1 +C j,μ−1Qμ−1)G−1
μ BΠ̄μ−1.

The detailed expression of the coefficients C j,i does not matter at all. With analogous
arguments we derive

Q̄k∗Π̄μ−1 = (Qk∗Pk+1 · · ·Pμ−1 +Ck, j+1Qk+1Pk+2 · · ·Pμ−1 (1.56)

+ · · ·+Ck,μ−2Qμ−2Pμ−1 +Ck,μ−1Qμ−1)G−1
μ BΠ̄μ−1.

Next we compute

Π̄μ−1 =Πk−1P̄kP̄k+1 · · · P̄μ−1 =Πk−1P̄kPk+1 · · ·Pμ−1

=Πk−1(Pk +Qk)P̄kPk+1 · · ·Pμ−1 =Πμ−1−QkQ̄kΠμ−1,

and therefore

G−1
μ BΠ̄μ−1 = G−1

μ B(Πμ−1−Πk−1QkQ̄kΠμ−1) = G−1
μ BΠμ−1−QkQ̄kΠμ−1.

Regarding assumption (1.53) and the properties of admissible projectors we have

Qμ−1G−1
μ BΠ̄μ−1 = Qμ−1G−1

μ BΠμ−1−Qμ−1Q̄kΠμ−1 = Qμ−1∗Πμ−1 = 0,

and, for i = k+1, . . . ,μ−2,

QiPi+1 · · ·Pμ−1BΠ̄μ−1 = QiPi+1 · · ·Pμ−1BΠμ−1−QiQ̄kΠμ−1 = Qi∗Πμ−1 = 0.

Furthermore, taking into account the special choice of Q̄k,

QkPk+1 · · ·Pμ−1BΠ̄μ−1 = QkPk+1 · · ·Pμ−1BΠμ−1−QkQ̄kΠμ−1

= (Qk∗ − Q̄k)Πμ−1 = 0.

This makes it evident that all single summands on the right-hand sides of the for-
mulas (1.55) and (1.56) disappear, and thus Q̄ j∗Π̄μ−1 = 0 for j = k, . . . ,μ−1, that
is, the new decoupling coefficients vanish. In consequence, starting with any admis-
sible projectors we apply the above procedure first for k = μ−1, then for k = μ−2
up to k = 0. At each level an additional coupling coefficient is canceled, and we
finish with a complete decoupling of the two parts in (1.46). ��
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Definition 1.23. Let the DAE (1.30), with coefficients E,F ∈ L(Rm), have the struc-
tural characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m,

and let the system (1.46) be generated by an admissible matrix sequence G0, . . . ,Gμ .
If in (1.46) all coefficients Hi, i = 0, . . . ,μ −1, vanish, then the underlying admis-
sible projectors Q0, . . . ,Qμ−1 are called completely decoupling projectors for the
DAE (1.30).

The completely decoupled system (1.46) offers as much insight as the Weierstraß-
Kronecker form does.

Example 1.24 (Complete decoupling of an index-2 DAE). We reconsider once more
the regular index-2 DAE

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦x′+

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦x = q

from Examples 1.8 and 1.21. The previously used projectors do not yield a complete
decoupling. We now use a different projector Q1 such that

Q1 =

⎡
⎣

1
2 0 1

2
− 1

2 0 − 1
2

1
2 0 1

2

⎤
⎦ , G2 =

⎡
⎣

2 1 1
0 1 1
1 0 1

⎤
⎦ ,

and further

Π1 = P0P1 =

⎡
⎣

1
2 0 − 1

2
0 0 0
− 1

2 0 1
2

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , P0Q1 =

⎡
⎣

1
2 0 1

2
0 0 0
1
2 0 1

2

⎤
⎦ .

The DAE itself can be rewritten without any differentiations of equations as

(x1− x3)
′ = q1−q2−q3,

(x1 + x3)
′+2x2 = q1+q2−q3,

x1 + x3 = q3.

Obviously, Π1x again reflects the proper state variable −x1 + x3, for which an ex-
plicit ODE is given. P0Q1x refers to the variable x1+x3 that is described by the alge-
braic equation. Finally, Q0x reflects the variable x2. Simple calculations yieldW =
Πμ−1G−1

2 B0Πμ−1 = 0,H0 = Q0P1G−1
2 B0Πμ−1 = 0 andH1 = Q1G−1

2 B0Πμ−1 = 0.
In this way the DAE decouples completely as
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(Π1x)′ =Π1G−1
2 q,

−Q0Q1(Π0Q1x)′+Q0x = Q0P1G−1
2 q,

Π0Q1 =Π0Q1G−1
2 q.

These equations mean in full detail

(⎡
⎣

1
2 (x1− x3)

0
− 1

2 (x1− x3)

⎤
⎦
)′

=

⎡
⎣

1
2 − 1

2 −
1
2

0 0 0
− 1

2
1
2

1
2

⎤
⎦q,

⎡
⎣

0 0 0
1
2 0 1

2
0 0 0

⎤
⎦
(⎡
⎣

1
2 (x1 + x3)

0
1
2 (x1 + x3)

⎤
⎦
)′

+

⎡
⎣

0
x2
0

⎤
⎦=

⎡
⎣

0 0 0
1
2

1
2 −

1
2

0 0 0

⎤
⎦q,

⎡
⎣

1
2 (x1 + x3)

0
1
2 (x1 + x3)

⎤
⎦=

⎡
⎣

0 0 1
2

0 0 0
0 0 1

2

⎤
⎦q.

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form described above. ��

Example 1.25 (Decoupling of the DAE in Example 1.5). The following matrix se-
quence is admissible for the pair {E,F} from Example 1.5 which is regular with
index 4:

G0 = E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q0 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, B0 = F =

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

G1 =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q1 =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Π0Q1 =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

G2 =

⎡
⎢⎢⎢⎢⎣

1 −1 α 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1+α 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Π1Q2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 α 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,
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G3 =

⎡
⎢⎢⎢⎢⎣

1 −1 α −α2 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −1−α−α2

0 0 0 0 −1
0 0 0 0 1
0 0 0 0 −1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, Π2Q3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

G4 =

⎡
⎢⎢⎢⎢⎣

1 −1 α −α2 α3

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, Π3 =

⎡
⎢⎢⎢⎢⎣

1 0 1 −α −α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

and the characteristic values are r0 = r1 = r2 = r3 = 4,r4 = 5 and μ = 4. Addition-
ally, it follows that

Q3G−1
4 B0Π3 = 0, Q2P3G−1

4 B0Π3 = 0,

Q1P2P3G−1
4 B0Π3 = 0, Q0P1P2P3G−1

4 B0Π3 = 0,

and
Π3G−1

4 B0Π3 =−αΠ3. (1.57)

The projectors Q0,Q1,Q2,Q3 provide a complete decoupling of the given DAE
Ex′(t)+Fx(t) = q(t). The projectors Q0,Π0Q1,Π1Q2 and Π2Q3 represent the vari-
ables x2, x3, x4 and x5, respectively. The projector Π3 and the coefficient (1.57) de-
termine the inherent regular ODE, namely (the zero rows are dropped)

(x1+x3−αx4+α2x5)
′ −α(x1+x3−αx4+α2x5) = q1+q2−αq3+α2q4−α3q5.

It is noteworthy that no derivatives of the excitation q encroach in this ODE. ��

Notice that for DAEs with μ = 1, the completely decoupling projector Q0 is
uniquely determined. It is the projector onto N0 along S0 = {z ∈ R

m : B0z ∈ imG0}
(cf. Appendix A). However, for higher index μ > 1, there are many complete de-
couplings, as the next example shows.

Example 1.26 (Diversity of completely decoupling projectors). Let

E = G0 =

⎡
⎣

0 1 0
0 0 0
0 0 1

⎤
⎦ , F = B0 =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ,

and choose projectors with a free parameter α:
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Q0 =

⎡
⎣

1 α 0
0 0 0
0 0 0

⎤
⎦ , P0 =

⎡
⎣

1 −α 0
0 1 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 1+α 0
0 0 0
0 0 1

⎤
⎦ , B1 = P0,

Q1 =

⎡
⎣

0 −(1+α) 0
0 1 0
0 0 0

⎤
⎦ , Π1 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G2 =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦ ,

G−1
2 =

⎡
⎣

1 −1 0
0 1 0
0 0 1

⎤
⎦ , Q0P1G−1

2 B0 = Q0,

i.e., Q0 and Q1 are completely decoupling projectors for each arbitrary value α .
However, in contrast, the projector Π1 is independent of α . ��

1.2.4 Hierarchy of projector sequences for constant matrix pencils

The matrices Q0, . . . ,Qi are projectors, where Q j projects onto Nj = kerG j,
j = 0, . . . , i, with P0 := I − Q0, Π0 := P0 and Pj := I − Q j, Π j := Π j−1Pj,
�
N j := (N0 + · · ·+Nj−1)∩Nj, j = 1, . . . , i.

admissible (Def. 1.10)

(N0 + · · ·+Nj−1)�
�
N j ⊆ kerQ j, j = 1, . . . , i

Π j−1Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal (Def. 1.12)
Π j =Π ∗j , j = 0, . . . , i

regular admissible
�
N j = {0}, j = 1, . . . , i
Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal and regular

for regular index μ pencils

complete decoupling (Def. 1.23)
H0 = 0,H1 = 0, . . . ,Hμ−1 = 0
Πμ−1 = spectral projector (cf. Theorem 1.33)
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1.2.5 Compression to a generalized Weierstraß–Kronecker form

The DAE (1.30) as well as its decoupled version (1.35) comprise m equations. The
advanced decoupled system (1.46) is formally composed of m(μ + 1) equations;
however, it can be compressed back on an m-dimensional DAE without losing infor-
mation. The next lemma records essential properties to be used in the compression
procedure.

Lemma 1.27. The entries Ni j of the decoupled system (1.46) have the following
properties for i = 0, . . . ,μ−2:

Ni,i+1 =Ni,i+1ΠiQi+1,

Ni j =Ni jΠ j−1Q j, j = i+2, . . . ,μ−1,
kerNi,i+1 = kerΠiQi+1,

rankNi,i+1 = m− ri+1.

Proof. We use the additional subspaces Si := kerWiBi ⊆ R
m and the projectors

Wi ∈ L(Rm) with
kerWi = imGi, i = 0, . . . ,μ−1.

Let G−i be the generalized reflexive inverse of Gi with GiG−i Gi =Gi, G−i GiG−i = G−i ,
GiG−i = I−Wi and G−i Gi = Pi. We factorize Gi+1 as

Gi+1 = Gi +BiQi = Gi +WiBiQi +GiG−i BiQi = Gi+1Fi+1,

Gi+1 := Gi +WiBiQi, Fi+1 = I +PiG−i BiQi.

SinceFi+1 is invertible (cf. Lemma A.3), it follows that Gi+1 has rank ri+1 like Gi+1.
Furthermore, it holds that kerGi+1 = Ni∩Si. Namely, Gi+1z = 0 means that Giz =

0 and WiBiQiz = 0, i.e., z = Qiz and WiBiz = 0, but this is z ∈ Ni ∩ Si. Therefore,
Ni∩Si must have the dimension m− ri+1. Next we derive the relation

Ni∩Si = imQiQi+1. (1.58)

If z ∈ Ni ∩ Si then z = Qiz and Biz = Giw implying (Gi + BiQi)(Piw+Qiz) = 0,
and hence Piw+Qiz = Qi+1(Piw+Qiz) = Qi+1w. Therefore, z = Qiz = QiQi+1w.
Consequently, Ni ∩ Si ⊆ imQiQi+1. Conversely, assume z = QiQi+1y. Taking into
consideration that (Gi +BiQi)Qi+1 = 0, we derive z = Qiz and Biz = BiQiQi+1y =
−GiQi+1y, i.e., z ∈ Ni and z ∈ Si. Thus, relation (1.58) is valid.

Owing to (1.58) we have

rankQiQi+1 = dimNi∩Si = m− ri+1. (1.59)

If follows immediately that rankNi,i+1 = m− ri+1, and, since imPi+1 ⊆ kerNi,i+1,
rankPi+1 = ri+1, that imPi+1 = kerNi,i+1. ��
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We turn to the compression of the large system (1.46) on m dimensions. The
projector Q0 has rank m− r0, the projector Πi−1Qi has rank m− ri for i = 1, . . . ,μ−
1, and Πμ−1 has rank d := m−∑μ−1

j=0 (m− r j).
We introduce full-row-rank matrices Γi ∈ L(Rm,Rm−ri), i = 0, . . . ,μ − 1, and

Γd ∈ L(Rm,Rd) such that

imΓdΠμ−1 = Γd imΠμ−1 = R
d , kerΓd = im(I−Πμ−1) = N0 + · · ·+Nμ−1,

Γ0N0 = R
m−r0 , kerΓ0 = kerQ0,

ΓiΠi−1Ni = R
m−ri , kerΓi = kerΠi−1Qi, i = 1, . . . ,μ−1,

as well as generalized inverses Γ−d ,Γ−i , i = 0, . . . ,μ−1, such that

Γ−d Γd =Πμ−1, ΓdΓ−d = I,

Γ−i Γi =Πi−1Qi, ΓiΓ−i = I, i = 1, . . . ,μ−1,

Γ−0 Γ0 = Q0, Γ0Γ−0 = I.

If the projectors Q0, . . . ,Qμ−1 are widely orthogonal (cf. Proposition 1.13(6)), then
the above projectors are symmetric and Γ−d , Γ−i are the Moore–Penrose generalized
inverses. Denoting

H̃i := ΓiHiΓ−d , L̃i := ΓiLi, i = 0, . . . ,μ−1, (1.60)

W̃ := ΓdWΓ−d , L̃d := ΓdLd , (1.61)

Ñi j := ΓiNi jΓ−j , j = i+1, . . . ,μ−1, i = 0, . . . ,μ−2, (1.62)

and transforming the new variables

ũ = Γdu, ṽi = Γivi, i = 0, . . . ,μ−1, (1.63)

u = Γ−d ũ, vi = Γ−i ṽi, i = 0, . . . ,μ−1, (1.64)

we compress the large system (1.46) into the m-dimensional one
⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 Ñ01 · · · Ñ0,μ−1

. . . . . .
...

. . . Ñμ−2,μ−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ũ′(t)
0

ṽ′1(t)
...

ṽ′μ−1(t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W̃
H̃0 I

...
. . .

...
. . .

H̃μ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ũ(t)
ṽ0(t)

...

...
ṽμ−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

L̃d
L̃0
...
...

L̃μ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

q

(1.65)
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without losing any information. As a consequence of Lemma 1.27, the blocks Ñi,i+1
have full column rank m− ri+1 for i = 0, . . . ,μ−2.

Proposition 1.28. Let the pair {E,F}, E,F ∈ L(Rm) have the structural character-
istic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

(1) Then there are nonsingular matrices L,K ∈ L(Rm) such that

LEK =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 Ñ01 · · · Ñ0,μ−1

. . .
. . .

...
. . . Ñμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, LFK =

⎡
⎢⎢⎢⎢⎢⎢⎣

W̃
H̃0 I

...
. . .

...
. . .

H̃μ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

with entries described by (1.60)–(1.62). Each block Ñi,i+1 has full column
rank m− ri+1, i = 0, . . . ,μ−2, and hence the nilpotent part in LEK has index
μ .

(2) By means of completely decoupling projectors, L and K can be built so
that the coefficients H̃0, . . . ,H̃μ−1 disappear, and the DAE transforms into
Weierstraß–Kronecker form (1.3) with l = ∑μ−1

i=0 (m− ri).

Proof. Due to the properties

Hi =HiΠμ−1 =HiΓ−d Γd , i = 0, . . . ,μ−1,

W =WΠμ−1 =WΓ−d Γd ,

Ni j =Ni jΠ j−1Q j =Ni jΓ−j Γj, j = 1, . . . ,μ−1, i = 0, . . . ,μ−2,

we can recover system (1.46) from (1.65) by multiplying on the left by

Γ− :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γ−d
Γ−0

. . .

Γ−μ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ L(Rm,R(μ+1)m)

using transformation (1.64) and taking into account that u = Γ−d ũ = Πμ−1u and
Πμ−1u′ = u′. The matrix Γ− is a generalized inverse of

Γ :=

⎡
⎢⎢⎢⎣

Γd
Γ0

. . .
Γμ−1

⎤
⎥⎥⎥⎦ ∈ L(R(μ+1)m,Rm)
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having the properties ΓΓ− = Im and

Γ−Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ−d Γd
Γ−0 Γ0

. . .
. . .

Γ−μ−1Γμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Πμ−1
Q0

Π0Q1
. . .

Πμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦
.

The product K := Γ

⎡
⎢⎣

I
...
I

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Γd

Γ0
...

Γμ−1

⎤
⎥⎥⎥⎥⎥⎦

is nonsingular. Our decomposition

now means that

x = Πμ−1x+Q0x+Π0Q1x+ · · ·+Πμ−2Qμ−1x

= [I · · · I]Γ−Γ

⎡
⎢⎣

I
...
I

⎤
⎥⎦x = [I · · · I]

⎡
⎢⎢⎢⎣

u
v0
...

vμ−1

⎤
⎥⎥⎥⎦

and the transformation (1.63) reads

⎡
⎢⎢⎢⎣

ũ
ṽ0
...

ṽμ−1

⎤
⎥⎥⎥⎦= Γ

⎡
⎢⎢⎢⎣

u
v0
...

vμ−1

⎤
⎥⎥⎥⎦= ΓΓ−Γ

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

x = Γ

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

x = Kx = x̃.

Thus, turning from the original DAE (1.30) to the DAE in the form (1.65) means
a coordinate transformation x̃ = Kx, with a nonsingular matrix K, combined with a
scaling by

L := [I · · · I] Γ−Γ

⎡
⎢⎢⎢⎢⎢⎣

Πμ−1
Q0P1 · · ·Pμ−1

. . .
Qμ−2Pμ−1

Qμ−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

G−1
μ .

L is a nonsingular matrix. Namely, LGμz = 0 means that

Πμ−1z+Q0P1 · · ·Pμ−1z+Π0Q1P2 · · ·Pμ−1z+ · · ·
+Πμ−3Qμ−2Pμ−1z+Πμ−2Qμ−1z = 0,
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and multiplying by Πμ−1 yields Πμ−1z = 0. Multiplying by Qμ−1 implies Qμ−1z =
0, multiplying by Qμ−2Pμ−1 gives Qμ−2Pμ−2z = 0, and so on. Hence

(I−Πμ−1)z = Qμ−1z+Qμ−2Pμ−1z+ · · ·+Q0P1 · · ·Pμ−1z = 0.

The original DAE (1.30) and the system (1.65) are equivalent in the usual sense,
which proves the first assertion. Regarding the existence of completely decoupling
projectors (see Theorem 1.22), the second assertion immediately follows from the
first one. ��

1.2.6 Admissible projectors for matrix pairs in a generalized
Weierstraß–Kronecker form

Here we deal with the regular matrix pair {E,F} given by the m×m structured
matrices

E =

[
I 0
0 N

]
}m− l
}l , F =

[
W 0
H I

]
}m− l
}l , (1.66)

where W ∈ L(Rm−l), H =:

⎡
⎢⎣

H1
...

Hμ

⎤
⎥⎦ ∈ L(Rm−l ,Rl) and N is a nilpotent, upper trian-

gular l× l matrix, l > 0, of the form

N =

⎡
⎢⎢⎢⎢⎣

0 N1,2 · · · N1,μ
. . .

...
. . . Nμ−1,μ

0

⎤
⎥⎥⎥⎥⎦

}l1

}lμ−1
}lμ

(1.67)

with l1 ≥ ·· · ≥ lμ ≥ 1 and l1 + · · ·+ lμ = l. The blocks Ni,i+1 with li rows and li+1
columns are assumed to have full column rank, which means, kerNi,i+1 = {0} for
i = 1, . . . ,μ − 1. Then N has nilpotency order μ ; that is Nμ = 0, Nμ−1 �= 0, and li
equals the number of its Jordan blocks of order ≥ i, i = 1, . . . ,μ .

This special form of the nilpotent block is closely related to the tractability index
concept, in particular with the decouplings provided by admissible projectors (see
Proposition 1.28).

The Jordan form of such a nilpotent matrix N consists of l1− l2 (nilpotent) Jordan
chains of order one, l2− l3 chains of order two, and so on up to lμ−1− lμ chains of
order μ − 1, and lμ chains of order μ . Any nilpotent matrix can be put into the
structural form (1.67) by means of a similarity transformation. Thus, without loss
of generality we may suppose this special form.

The polynomial p(λ ) := det(λE +F) = det(λ I+W ) has degree m− l. This pair
{E,F} is regular and represents a slight generalization of the classical Weierstraß–
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Kronecker form discussed in Section 1.1 (cf. (1.3)), where the entries of the block
H are zeros.

In accordance with the structure of E and F in (1.66) we write z ∈ R
m as

z =

⎡
⎢⎢⎢⎣

z0
z1
...

zμ

⎤
⎥⎥⎥⎦ , z0 ∈ R

m−l , zi ∈ R
li , i = 1, . . . ,μ .

Now we construct a matrix sequence (1.10) by admissible projectors. Thereby, in
the following pages in the present section, the letter N is used in a twofold sense:
Ni, with a single subscript, indicates one of the subspaces, and Nj,k, with double
subscript, means an entry of a matrix.

Put G0 = E, B0 = F . Since N0 = kerG0 = {z ∈R
m : z0 = 0, zμ = 0, . . . ,z2 = 0}

we choose

Q0 =

⎡
⎢⎢⎢⎢⎢⎣

0
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎦

}l1
, Π0 = P0 =

⎡
⎢⎢⎢⎢⎢⎣

I
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎦

}l1
,

which leads to

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I N1,2 · · · · · · N1,μ

0
. . .

...
. . . . . .

...
. . . Nμ−1,μ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

, B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

W
H1 0
... I
...

. . .
Hμ I

⎤
⎥⎥⎥⎥⎥⎥⎦

}l1
,

and

N1 = {z ∈ R
m : z0 = 0, zμ = 0, . . . , z3 = 0, z1 +N1,2z2 = 0}, N1∩N0 = 0.

Choosing

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0 −N1,2

I
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

}l1
}l2

, P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
I N1,2

0
I

. . .
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

}l1
}l2

,
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Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
0

0
I

. . .
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

}l1
}l2

,

we meet the condition N0 ⊆ kerQ1, which means that Q1Q0 = 0, and find

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I N1,2 · · · · · · N1,μ

I N2,3
...

0
. . .

...
. . . Nμ−1,μ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1
}l2

, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
H1 0

0
... I

. . .
Hμ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1
}l2

,

N2 = {z ∈R
m : z0 = 0, zμ = 0, . . . ,z4 = 0, z2 +N23z3 = 0, z1 +N12z2 +N13z3 = 0},

(N0 +N1)∩N2 = (kerΠ1)∩N2 = {0}. Suppose that we are on level i and that we
have Q0, . . . ,Qi−1 being admissible,

Qi−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 ∗

. . .
...

0 ∗
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li
, Πi−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0

. . .
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li
,

Qi−1(N0 + · · ·+Ni−2) = Qi−1im(I−Πi−2) = imQi−1(I−Πi−2) = {0},

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I N1,2 · · · · · · · · · N1,μ

. . . . . .
...

I Ni,i+1
...

0
. . .

...
. . . Nμ−1,μ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li , Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
H1 0

. . .
... 0
... I

. . .
Hμ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li .

(1.68)
It follows that
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Ni = {z ∈ R
m : z0 = 0, zμ = 0, . . . , zi+2 = 0,

zi +Ni,i+1zi+1 = 0, . . . , z1 +N12z2 + · · ·+N1,i+1zi+1 = 0},
(N0 + · · ·+Ni−1)∩Ni = (kerΠi−1)∩Ni = {0}.

Choosing

Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 ∗

. . .
...

0 ∗
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li+1
, Pi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I ∗

. . .
...

I ∗
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li+1
,

Πi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0

. . .
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}l1

}li+1

,

we meet the admissibility condition (1.13), as Qi(I−Πi−1) = 0, and arrive at

Gi+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I N1,2 · · · · · · · · · N1,μ

. . . . . .
...

I Ni+1,i+2
...

0
. . .

...
. . . Nμ−1,μ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Bi+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
H1 0

. . .
... 0
... I

. . .
Hμ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This verifies that formulas (1.68) provide the right pair Gi, Bi at level i, i ≥ 1, for
{E,F} as in (1.66). Obviously, we obtain precisely a nonsingular matrix Gμ , but
Gμ−1 is singular. The characteristic values of our pair {E,F} are ui = 0, i≥ 1, and

ri = m−dimNi = m− li+1 < m, i = 0, . . . ,μ−1, rμ = m.

The next proposition records this result.

Proposition 1.29. Each admissible matrix sequence G0, . . . ,Gμ for the special pair
{E,F} given by (1.66), (1.67) consists of singular matrices G0, . . . ,Gμ−1 and
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a nonsingular Gμ . The characteristic values are ui = 0 f or i = 1, . . . ,μ , and
ri = m−dimNi = m− li+1 for i = 0, . . . ,μ−1, rμ = m.

For the associated DAE, and in particular for the DAE in Weierstraß–Kronecker
form (1.66) with its structured part N (1.67) and H = 0, the decoupling into the basic
parts is given a priori (cf. (1.4), (1.5)). The so-called “slow” subsystem

y′(t)+Wy(t) = p(t)

is a standard explicit ODE, hence an integration problem, whereas the so-called
“fast” subsystem

Nz′(t)+ z(t) = r(t)−Hy(t)

contains exclusively algebraic relations and differentiation problems.
The admissible projectors exhibit these two basic structures as well as a further

subdivision of the differentiation problems: The proper state variable is comprised
by Πμ−1 while I−Πμ−1 collects all other variables, where

Πμ−1 =

⎡
⎢⎢⎢⎣

I
0

. . .
0

⎤
⎥⎥⎥⎦ , I−Πμ−1 =

⎡
⎢⎢⎢⎣

0
I

. . .
I

⎤
⎥⎥⎥⎦ .

Those variables that are not differentiated at all and those variables that have to be
differentiated i times are given by

Q0 =

⎡
⎢⎢⎢⎢⎢⎣

0
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎦

}l1
and Πi−1Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

. . .
I

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
}li+1

,

respectively.

1.3 Transformation invariance

Here we show the structural characteristic values ri for i ≥ 0 to be invariant under
transformations. Given a matrix pair {E,F}, E,F ∈ L(Rm), and nonsingular matri-
ces L,K ∈ L(Rm), we consider the transformed pair {Ē, F̄}, formed by

Ē = LEK, F̄ = LFK. (1.69)

The DAEs associated to the pairs {E,F} and {Ē, F̄} are
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Ex′(t)+Fx(t) = q(t) and Ēx̄′(t)+ F̄ x̄′(t) = q̄(t).

They are related to each other by the transformation x = Kx̄ and premultiplication
by L where q̄ = Lq. In this sense, these DAEs are solution-equivalent.

How are the admissible matrix sequences (Gi)i≥0 and (Ḡi)i≥0 as well as the ad-
missible projectors (Qi)i≥0 and (Q̄i)i≥0 related for {E,F} and {Ē, F̄}? The answer
is simple.

Theorem 1.30. If two matrix pairs {E,F} and {Ē, F̄} are related via (1.69), with
nonsingular K,L ∈ L(Rm), then they have common structural characteristic values

ri = r̄i, i≥ 0, ui = ūi, i≥ 1.

If Q0, . . . ,Qκ are admissible projectors for {E,F}, then the matrices Q̄0, . . . , Q̄κ
with Q̄i := K−1QiK for i = 0, . . . ,κ are admissible projectors for {Ē, F̄}.

Proof. The transformations Ḡ0 = LG0K, B̄0 = LB0K, N̄0 = K−1N0 are given to be-
gin with, and Q̄0 := K−1Q0K is admissible. Compute Ḡ1 = Ḡ0 + B̄0Q̄0 = LG1K,
r̄1 = r1, then

N̄1 = K−1N1, N̄0∩ N̄1 = K−1(N0∩N1).

Put X̄1 := K−1X1 such that N̄0 = (N̄0∩ N̄1)⊕ X̄1 and notice that Q̄1 := K−1Q1K has
the property ker Q̄1 ⊇ X̄1 implying the sequence Q̄0, Q̄1 to be admissible. At level i,
we have

Ḡi = LGiK, N̄0 + · · ·+ N̄i−1 = K−1(N0 + · · ·+Ni−1), N̄i = K−1Ni, r̄i = ri,

and Q̄i := K−1QiK satisfies condition ker Q̄i ⊇ X̄i with

X̄i := K−1X , N̄0 + · · ·+ N̄i−1 = [(N̄0 + · · ·+ N̄i−1)∩ N̄i]⊕ X̄i.

��

Now we are in a position to state the important result concerning the consistency
of the projector based approach and the structure described via the Weierstraß–
Kronecker form.

Theorem 1.31. For E,F ∈ L(Rm) suppose the pair {E,F} to be regular with Kro-
necker index μ ≥ 0. Then the admissible matrix sequence (Gi)i≥0 exhibits singular
matrices G0, . . . ,Gμ−1, but a nonsingular Gμ , and vice versa.

Proof. (⇒) This is a consequence of the existence of the Weierstraß–Kronecker
form (cf. Proposition 1.3), Theorem 1.30 and Proposition 1.29.
(⇐) Let the pair {E,F} have the characteristic values r0 ≤ ·· · ≤ rμ−1 < rμ = m. By
Theorem 1.22 we can choose completely decoupling projectors. Applying the de-
coupling and compressing procedure for the associated DAE we arrive at an equiv-
alent DAE of the form [

I
Ñ

]
x̃′+

[
W̃

I

]
x̃ = q̃. (1.70)
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The matrix Ñ is nilpotent with index μ , and it has the structure

Ñ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 Ñ01 · · · · · · Ñ0,μ−1

0
. . .

...
. . . . . .

...
. . . Ñμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

}m− r0

}m− rμ−2
}m− rμ−1

, (1.71)

with full-column rank blocks Ñi,i+1, i = 0, . . . ,μ−2.
It turns out that {E,F} can be transformed into Weierstraß–Kronecker form with

Kronecker index μ , and hence {E,F} is a regular pair with Kronecker index μ . ��

1.4 Characterizing matrix pencils by admissible projectors

Each regular pair of m×m matrices with Kronecker index μ ≥ 1 can be transformed
into the Weierstraß–Kronecker form (cf. Section 1.1).

{[
I 0
0 J

]
,

[
W 0
0 I

]}
, J =

⎡
⎢⎣

J1
. . .

Js

⎤
⎥⎦ ,

where W is d× d, J is l× l, d + l = m, Ji is a nilpotent Jordan block of order ki,
1≤ ki ≤ μ , and maxi=1,...,s ki = μ .

As in Section 1.1, let li denote the number of all Jordan blocks of order ≥ i.
Then, J has lμ ≥ 1 Jordan blocks of order μ , and li− li+1 Jordan blocks of order i,
i = 1, . . . ,μ−1, l1 + · · ·+ lμ = l.

In the present section we show how one can get all this structural information as
well as the spectrum of−W , that is the finite spectrum of the given matrix pencil, by
means of the matrix sequence and the admissible projectors without transforming
the given pair into Weierstraß–Kronecker form.

Often the given matrix pair might have a large dimension m but a low Kronecker
index μ so that just a few steps in the matrix sequence will do.

The proof of Theorem 1.31, and in particular formula (1.71), show that the de-
tailed structure of the matrix pair can be described by means of admissible projec-
tors. This is the content of the next corollary.

Corollary 1.32. If {E,F}, E,F ∈ L(Rm), has the structural characteristic values
r0 ≤ ·· · ≤ rμ−1 < rμ = m, then the nilpotent part in its Weierstraß–Kronecker form
contains altogether s = m− r0 Jordan blocks, among them ri− ri−1 Jordan chains
of order i, i = 1, . . . ,μ . It holds that li = m− ri−1, i = 1, . . . ,μ , d = m−∑μ

j=1(m−
r j−1).
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Besides the above structural characteristics the matrix sequence also provides the
finite spectrum of the matrix pencil as a part of the spectrum of the matrix W :=
Πμ−1G−1

μ B.

Theorem 1.33. Let the pair {E,F}, E,F ∈ L(Rm), be regular with Kronecker index
μ , and let the matrix

W :=Πμ−1G−1
μ BΠμ−1 =Πμ−1G−1

μ B

be generated by an admissible matrix sequence G0, . . . ,Gμ . Then the following as-
sertions hold:

(1) Each finite eigenvalue of {E,F} belongs to the spectrum of −W . More pre-
cisely, (λE+F)z = 0 with z �= 0 implies u :=Πμ−1z �= 0, and (λ I+W)u = 0.

(2) If (λ I+W)u = 0, Πμ−1u �= 0, then λ is a finite eigenvalue of the pair {E,F}.
(3) If (λ I +W)u = 0, (I−Πμ−1)u �= 0, then λ = 0 must hold. If, additionally,

Πμ−1u �= 0, then λ = 0 is a finite eigenvalue of the pair {E,F}.
(4) (λ I +W)u = 0, u �= 0, λ �= 0, implies Πμ−1u = u.
(5) If Q0, . . . ,Qμ−1 are completely decoupling projectors, thenW simplifies to

W = G−1
μ BΠμ−1 = G−1

μ Bμ ,

and Πμ−1 is the spectral projector of the matrix pair {E,F}.

Proof. Applying the decoupling procedure (see Subsection 1.2.2) we rewrite the
equation (λE +F)z = 0, with

z = u+ v0 + · · ·+ vμ−1, u :=Πμ−1z, v0 := Q0z, . . . , vμ−1 :=Πμ−2Qμ−1z,

as the decoupled system

λu+Wu = 0, (1.72)

λ

⎡
⎢⎢⎢⎢⎣

0 N01 · · · N0,μ−1
. . . . . .

...
. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v0
...
...

vμ−1

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

v0
...
...

vμ−1

⎤
⎥⎥⎥⎥⎦
=−

⎡
⎢⎢⎢⎢⎣

H0
...
...

Hμ−1

⎤
⎥⎥⎥⎥⎦

u. (1.73)

Equation (1.73) leads to the representations

vμ−1 = −Hμ−1u,

vμ−2 = −Hμ−2u+λNμ−2,μ−1Hμ−1u,

and so on, showing the linear dependence of u, vi = H̃iu, i = 0, . . . ,μ − 1. The
propertyHi =HiΠμ−1 implies H̃i = H̃iΠμ−1.

If z �= 0 then u �= 0 must be true, since otherwise u = 0 would imply vi = 0,
i = 0, . . . ,μ−1, and hence z = 0. Consequently, λ turns out to be an eigenvalue of
−W and u =Πμ−1z is the corresponding eigenvector. This proves assertion (1).
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To verify (2)–(4) we consider

(λ I +W)ũ = 0, ũ =Πμ−1ũ+(I−Πμ−1)ũ �= 0.

Because W(I−Πμ−1) = 0 and (I−Πμ−1)W = 0, our equation decomposes into
the following two equations:

λ (I−Πμ−1)ũ = 0, (λ I +W)ũ = 0. (1.74)

Next, if Πμ−1ũ �= 0 then we put ṽi := H̃iũ = H̃iΠμ−1ũ, i = 0, . . . ,μ − 1. Thus,
z̃ :=Πμ−1ũ+ ṽ0 + · · ·+ ṽμ−1 is nontrivial, and it satisfies the condition (λE+F)z̃=
0, and so assertion (2) holds true. Furthermore, if (I−Πμ−1)ũ �= 0, then the first part
of (1.74) yields λ = 0. Together with (2) this validates (3). Assertion (4) is a simple
consequence of (1.74).

It remains to show assertion (5). Compute

G−1
μ Bμ −Πμ−1G−1

μ Bμ = (I−Πμ−1)G−1
μ BΠμ−1

= (Qμ−1 +Qμ−2Pμ−1 + · · ·+Q0P1 · · ·Pμ−1)G−1
μ BΠμ−1

= Qμ−1Πμ−1 +Qμ−2Πμ−1 + · · ·+Q0Πμ−1 = 0.

For the proof that Πμ−1 is the spectral projector we refer to [164]. ��

The matrix W = Πμ−1G−1
μ B = Πμ−1G−1

μ BΠμ−1 resulting from the projector
based decoupling procedure contains the finite spectrum of the pencil {E,F}. The
spectrum of −W consists of the d finite eigenvalues of the pencil {E,F} plus
m−d = l zero eigenvalues corresponding to the subspace im(I−Πμ−1)⊆ kerW .
The eigenvectors corresponding to the nonzero eigenvalues ofW necessarily belong
to the subspace imΠμ−1.

Now we have available complete information concerning the structure of the
Weierstraß–Kronecker form without computing that form itself. All this informa-
tion is extracted from the matrix sequence (1.10). Notice that several numerical
algorithms to compute the matrix sequence and admissible projectors are addressed
in Chapter 7. Using the matrix sequence (1.10), the following characteristics of the
matrix pair E,F are obtained:

• d = m−∑μ
j=1(m− r j−1), l = m− d are the basic structural sizes and μ is the

Kronecker index,
• ri+1−ri is the number of Jordan blocks with dimension i+1 in the nilpotent part,
• m− ri is the number of Jordan blocks with dimension ≥ i+ 1 in the nilpotent

part,
• the finite eigenvalues as described in Theorem 1.33.

There is also an easy regularity criterion provided by the matrix sequence (1.10).

Proposition 1.34. The pair {E,F}, E,F ∈ L(Rm), is singular if and only if there is
a nontrivial subspace among the intersections
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Ni∩Ni−1,
�
Ni = Ni∩ (N0 + · · ·+Ni−1), i≥ 1. (1.75)

Proof. Owing to the basic property (1.11) and Proposition 1.13, each nontrivial sub-
space among (1.75) indicates a singular pencil. Conversely, let {E,F} be singular.
Then all matrices Gi must be singular, their nullspaces Ni have dimensions ≥ 1 and
the ranks satisfy the inequality

r0 ≤ ·· · ≤ ri ≤ ·· · · · · ≤ m−1.

There is a maximal rank rmax ≤ m− 1 and an integer κ such that ri = rmax for all
i≥ κ . If all above intersections (1.75) are trivial, then it follows that

N0 + · · ·+Ni = N0⊕·· ·⊕Ni, dim(N0⊕·· ·⊕Ni)≥ i+1.

However, this contradicts the natural property N0 + · · ·+Ni ⊆ R
m. ��

1.5 Properly stated leading term and solution space

Which kind of solutions is natural for the linear DAE

Ex′(t)+Fx(t) = q(t), (1.76)

with coefficients E,F ∈ L(Rm)? Let I ⊆ R denote the interval of interest, and let q
be at least continuous on I. Should we seek continuously differentiable solutions?
The trivial Example 1.35 below reveals that continuous solutions having certain con-
tinuously differentiable components seem to be more natural. How can we decide
which part of the solution should be continuous only?

By means of any factorization of the leading matrix E = AD with factors A ∈
L(Rn,Rm)), D ∈ L(Rm,Rn), the DAE (1.76) can be formally written as

A(Dx(t))′+Fx(t) = q(t), (1.77)

which suggests seek solutions x(.) having a continuously differentiable part Dx(.).
Introduce the function space of relevant functions by

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)}. (1.78)

We emphasize that the structural characteristic values as well as the admissible ma-
trix sequences (Gi)i≥0 in the previous sections are independent of the special fac-
torization of E since the initial guess of any matrix sequence is G0 := E = AD. The
trivial factorization A = E, D = I corresponds to the standard form DAE (1.76) it-
self and make sense, if E is nonsingular. Our goal is to find nontrivial factorizations
which reflect possible low-smoothness demands for the solutions.

Example 1.35. Consider the simple system
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x′1(t)+ x2(t) = q1(t),

x′2(t)+ x1(t) = q2(t),

x3(t) = q3(t),

x4(t) = q4(t),

that takes the form (1.76) with

E =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Choosing in the resulting equation (1.77) the factors A = E and D = diag(1,1,1,0),
we are led to the understanding that all first three components x1(.),x2(.),x3(.)
should be continuously differentiable. However, a look to the detailed DAE shows
that there is no reason to expect the third component to be so smooth. Observe that
this matrix D has rank three, while E has rank two, and kerD is a proper subspace of
kerE. Choosing instead A = I, D = E or A = E, D = E we obtain kerD = kerE, and
a further look at the detailed DAE confirms that now the space C1

D(I,Rm) reflects a
natural understanding of the solution.

As we can see in this example, aiming for lowest appropriate smoothness demands
and the notion of a natural solution, the rank of D has to be as low as possible, i.e.,
the dimension of the nullspace kerD has to be maximal, that is, we are led to the
condition kerD = kerE.

In general, if E = AD and kerD = kerE, then the intersection kerA∩ imD is
trivial, and the sum of these two subspaces is a direct sum. Namely, from z∈ kerA∩
imD, that is, Az = 0, z = Dw, we conclude Ew = ADw = Az = 0, and hence w ∈
kerE = kerD, thus z = Dw = 0.

Moreover, from E = AD, kerD = kerE, it follows that D and E join their rank
but A may have a greater one. The direct sum kerA⊕ imD may become a proper
subspace of R

n. In the particular case of Example 1.35 the choice A = I,D = E
leads to kerA⊕ imD = imE being a two-dimensional subspace of R4.

There is much freedom in choosing the factorizations E = AD. We can always
arrange things in such a way that kerD = kerE and imA = imE, and hence all three
matrices E, A and D have the same rank. Then, the decomposition

kerA⊕ imD = R
n (1.79)

is valid. Particular factorizations satisfying condition (1.79) are given by means
of reflexive generalized inverses E− and the accompanying projectors EE− ∈
L(Rk), E−E ∈ L(Rm) (cf. Appendix A.2). Namely, with A = EE−, D = E, n = k,
we have AD = EE−E = E and

kerA⊕ imD = kerEE−⊕ imE = kerEE−⊕ imEE− = R
n.
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Similarly, letting A = E, D = E−E, n = m, we obtain

kerA⊕ imD = kerE⊕ imE−E = kerE−E⊕ imE−E = R
n.

We refer to Chapter 7 for computational aspects to factorize E = AD. We mention
just the full rank factorization, that is, both A and D are full rank matrices, by means
of a singular value decomposition

E =

[
U11 U12
U21 U22

][
Σ 0
0 0

][
V11 V12
V21 V22

]∗
=

[
U11
U21

]
Σ

︸ ︷︷ ︸
A

[
V ∗11 V ∗21

]
︸ ︷︷ ︸

D

, (1.80)

rankΣ = rankE =: r, n = r. The matrix A has full column rank n and D has full
row rank n. Later on we shall understand the property kerA = 0, imD = R

n to be
preferable, in particular for numerical integration methods.

Definition 1.36. The matrices A ∈ L(Rn,Rk) and D ∈ L(Rm,Rn) are said to be well
matched if the subspaces kerA and imD are transversal so that decomposition (1.79)
is valid. Equation (1.77) is a DAE with properly stated leading term if A and D are
well matched.

Given a DAE (1.77) with properly stated leading term, we look for solutions belong-
ing to the function space C1

D(I,Rm). We might be interested in a different formu-
lation with AD = ĀD̄. Also, starting with a standard formulation we have to decide
on the factorization. So we are confronted with the question of whether the solu-
tion space C1

D(I,Rm) depends on the factorization. The following lemma shows the
independence.

Lemma 1.37. If the matrices D ∈ L(Rm,Rn) and D̄ ∈ L(Rm,Rn̄) have a common
nullspace N := kerD = ker D̄, then the corresponding function spaces coincide, that
is

C1
D̄(I,R

m) = C1
D(I,Rm).

Proof. The orthoprojector P ∈ L(Rm) onto N⊥ satisfies P = D+D = D̄+D̄ (cf. Ap-
pendix A.2). Therefore, for any x ∈ C1

D(I,Rm), we find D̄x = D̄D̄+D̄x = D̄D+Dx ∈
C1(I,Rn̄), and hence x ∈ C1

D̄(I,R
m). ��

1.6 Notes and references

(1) As we have seen in this chapter, the Weierstraß–Kronecker form of a regular
matrix pencil is very helpful for understanding the structure of a linear constant
coefficient DAE, and, obviously, DAEs and matrix pencils are closely related.

Ever since Weierstraß and Kronecker ([212, 126]) discovered the canonical forms
of matrix pencils, and Gantmacher ([81]) pointed out their connection with differ-
ential equations, matrix pencils have attracted much interest over and over again for
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many years. There are untold publications on this topic; we only mention a few of
them and refer to the sources therein.

(2) A large part of the developments concerning matrix pencils and the accompa-
nying differential equations can be found in the rich literature on control and system
theory, where the resulting differential equations are called singular systems and
descriptor systems rather than DAEs (e.g. [37, 56, 147, 150]).

On the other hand, there are important contributions coming from the area of
generalized eigenvalue problems and generalized matrix inverses in linear algebra
(e.g. [38, 21]). In particular, the Drazin inverse and spectral projections were applied
to obtain expressions for the solution (cf. also [96]). However, it seems that this was
a blind alley in the search for a possible treatment of more general DAEs.

(3) About half a century ago, Gantmacher ([81]) and Dolezal [60] first considered
models describing linear time-invariant mechanical systems and electrical circuits
by linear constant coefficient DAEs. Today, multibody systems and circuit simula-
tion represent the most traditional DAE application fields (e.g. [63, 78, 101]). In
between, in about 1980, due to unexpected phenomena in numerical computations
(e.g. [202, 180]), DAEs (descriptor systems) became an actual and challenging topic
in applied mathematics

(4) It should be mentioned that there are different perceptions concerning the
Weierstraß–Kronecker form of a regular matrix pencil. For instance, the version
applied here is said to be quasi-Weierstraß form in [18] and Kronecker normal form
in [191].

(5) Unfortunately, the transformation to Weierstraß–Kronecker form as well as
the Drazin inverse approaches do not allow for modifications appropriate to the
treatment of time-varying and nonlinear DAEs. A development with great potential
for suitable generalizations is given by the derivative array approach due to Camp-
bell ([41]). Following this proposal, we consider, in addition to the given DAE

Ex′(t)+Fx(t) = q(t), (1.81)

the extended system
⎡
⎢⎢⎢⎢⎣

E 0 . . . 0
F E 0 . . .
0 F E . . .
. . . . . .
. . . . F E

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Eμ

⎡
⎢⎢⎢⎢⎣

x′(t)
x′′(t)
.
.

xμ+1(t)

⎤
⎥⎥⎥⎥⎦
=−

⎡
⎢⎢⎢⎢⎣

F
0
.
.
0

⎤
⎥⎥⎥⎥⎦

x(t)+

⎡
⎢⎢⎢⎢⎣

q(t)
q′(t)
.
.

q(μ)(t)

⎤
⎥⎥⎥⎥⎦
, (1.82)

which results from (1.81) by differentiating this equation μ times and collecting all
these equations. If the (μ + 1)×m matrix Eμ is 1-full, or in other words, if there
exists a nonsingular matrixR such that
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REμ =

[
Im 0
0 K

]
,

then an explicit ODE, the completion ODE, can be extracted from the derivative
array system (1.82), say

x′(t) = Cx(t)+
μ

∑
j=0
D jq( j)(t). (1.83)

The solutions of the DAE (1.81) are embedded into the solutions of the explicit
ODE (1.83). If {E,F} forms a regular matrix pair with Kronecker index μ , then Eμ
is 1-full (cf. [40]). Conversely, if μ is the smallest index such that Eμ is 1-full, then
{E,F} is regular with Kronecker index μ . In this context, applying our sequence
of matrices built using admissible projectors, we find that the 1-fullness of Eμ im-
plies that Gμ is nonsingular, and then using completely decoupling projectors, we
obtain a special representation of the scaling matrixR. We demonstrate this just for
μ = 1, 2.

Case μ = 1: Let E1 be 1-full, and consider z with G1z = 0, i.e., Ez+FQ0z = 0,
and so [

E 0
F E

][
Q0z

z

]
= 0,

but then, due to the 1-fullness, it follows that Q0z = 0. This, in turn, gives Ez = 0
and then z = 0. Therefore, G1 is nonsingular. Taking the completely decoupling
projector Q0 such that Q0 = Q0G−1

1 F holds true, we obtain

[
P0 Q0

−P0G−1
1 F P0

][
G−1

1 0
0 G−1

1

]

︸ ︷︷ ︸
R

[
E 0
F E

]
=

[
I 0
0 P0

]
. (1.84)

Case μ = 2: Let E2 be 1-full, and consider z with G2z = 0, i.e. Ez + FQ0z +
FP0Q1z = 0. Because (E +FQ0)Q1 = G1Q1 = 0 we find that E(Q0 +P0Q1)z =
EQ1z =−FQ0Q1z, and therefore

⎡
⎣

E 0 0
F E 0
0 F E

⎤
⎦
⎡
⎣

Q0Q1z
(Q0 +P0Q1)z

z

⎤
⎦= 0.

Now, the 1-fullness of E2 implies Q0Q1z = 0, but this yields EP0Q1 = 0, so that
P0Q1z = 0, and therefore Q1z = 0 and FQ0z+Ez = 0. Finally, we conclude that
z = Q1z = 0, which means that G2 is nonsingular. With completely decoupling pro-
jectors Q0,Q1 we compute

⎡
⎣

P0P1 Q0P1 +P0Q1 Q0Q1
Q0P1 +P0Q1 Q0Q1 P0P1
−P0P1G−1

2 F P0P1 P0Q1

⎤
⎦
⎡
⎣

G−1
2 0 0
0 G−1

2 0
0 0 G−1

2

⎤
⎦=:R,
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R

⎡
⎣

E 0 0
F E 0
0 F E

⎤
⎦=

⎡
⎣

I 0 0
0 P0P1G−1

2 F P0P1
0 P0 0

⎤
⎦ .

The resulting completion ODE (cf. (1.83)) is

x′(t)+P0P1G−1
2 Fx(t) =

P0P1G−1
2 q(t)+(Q0P1 +P0Q1)G−1

2 q′(t)+Q0Q1G−1
2 q′′(t),

(1.85)

and it decomposes into the three parts

P0P1x′(t)+P0P1G−1
2 FP0P1x(t) =P0P1G−1

2 q(t),

P0Q1x′(t) =P0Q1G−1
2 q′(t),

Q0x′(t) =P0Q1G−1
2 q′(t)+Q0Q1G−1

2 q′′(t),

while the decoupling procedure described in Section 1.5 yields

(P0P1x)′(t)+P0Q1G−1
2 FP0P1x(t) =P0P1G−1

2 q(t),

P0Q1x(t) =P0Q1G−1
2 q(t),

Q0x(t) =P0Q1G−1
2 q(t)+Q0Q1(P0Q1G−1

2 q)′(t).

A comparison shows consistency but also differences. In order to recover the DAE
solutions from the solutions of the explicit ODE (1.85) one obviously needs con-
sistent initial values. Naturally, more smoothness has to be given when using the
derivative array and the completion ODE. Applying derivative array approaches to
time-varying linear or nonlinear DAEs one has to ensure the existence of all the
higher derivatives occurring when differentiating the original DAE again and again,
and in practice one has to provide these derivatives.

(6) The matrix sequence (1.10) for a DAE was first introduced in [156], and
part of the material is included in [97]. Completely decoupling projectors, formerly
called canonical projectors, are provided in [164], and they are applied in Lyapunov
type stability criteria, e.g., in [162, 165].

In these earlier papers, the sum spaces N0 + · · ·+Nj do not yet play their im-
portant role as they do in the present material. The central role of these sum spaces
is pointed out in [170] where linear time-varying DAEs are analyzed. In the same
paper, admissible projectors are introduced for regular DAEs only, which means

that trivial intersections
�
Ni are supposed. The present notion of admissible projec-

tors generalizes the previous definition and accepts nontrivial intersections
�
Ni. This

allows us to discuss also nonregular DAEs, in particular so-called rectangular sys-
tems, where the number of equations and the number of unknowns are different.

(7) The projector based decoupling procedure is not at all restricted to square
matrices. Although our interest mainly concerns regular DAEs, to be able to con-
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sider several aspects of nonregular DAEs one can construct the admissible matrix
sequences (Gi)i≥0 and accompanying projectors (Qi)i≥0 in the same way also for
ordered pairs {E,F} of rectangular matrices E,F ∈ L(Rm,Rk). We address these
problems in Chapter 10 on nonregular DAEs.

(8) The Kronecker index is, from our point of view, the most adequate character-
istic of a matrix pencil and the associated DAE. In contrast, the widely used struc-
tural index does not necessarily provide the Kronecker index. This structural index
may be arbitrarily higher and also far less than the Kronecker index (see [209, 18]).

(9) Complete decouplings are used to calculate the spectral projector for descrip-
tor systems in an efficient manner (see [213]).



Chapter 2
Linear DAEs with variable coefficients

In this chapter we provide a comprehensive analysis of linear DAEs

A(t)(D(t)x(t))′+B(t)x(t) = q(t), t ∈ I,

with properly stated leading term, by taking up the ideas of the projector based
decoupling described for constant coefficient DAEs in Chapter 1. To handle the
time-varying case, we proceed pointwise on the given interval and generate admissi-
ble sequences of matrix functions Gi(·) = Gi−1(·)+Bi−1(·)Qi−1(·) associated with
admissible projector functions Qi(·), instead of the former admissible matrix se-
quences and projectors. Thereby we incorporate into the matrix function Bi(·) an
additional term that comprises the variations in time. This term is the crucial one of
the generalization. Without this term we would be back to the so-called local matrix
pencils which are known to be essentially inappropriate to characterize time-varying
DAEs (e.g., [25, 96]). Aside from the higher technical content in the proofs, the pro-
jector based decoupling applies in precisely the same way as for constant coefficient
DAEs, and fortunately, most results take the same or only slightly modified form.

In contrast to Chapter 1 which is restricted to square DAE systems, that means,
the number of unknowns equals the number of equations, the present chapter is
basically valid for systems of k equations and m unknowns. Following the arguments
e.g., in [130], so-called rectangular systems may play their role in optimization and
control. However, we emphasize that our main interest is directed to regular DAEs,
with m = k by definition. Nonregular DAEs, possibly with m �= k, are discussed in
more detail in Chapter 10.

We introduce in Section 2.1 the DAEs with properly stated leading term and
describe in Section 2.2 our main tools, the admissible matrix function sequences as-
sociated to admissible projector functions and characteristic values. Widely orthog-
onal projector functions in Subsection 2.2.3 form a practically important particular
case. The analysis of invariants in Section 2.3 serves as further justification of the
concept.
The main objective of this chapter is the comprehensive characterization of regular
DAEs, in particular, in their decoupling into an inherent regular explicit ODE and
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a subsystem which comprises the inherent differentiations. We consider the con-
structive existence proof of fine and complete decouplings (Theorem 2.42) to be the
most important special result which describes the DAE structure as the basis of our
further investigations. This leads to the intrinsic DAE theory in Section 2.6 offering
solvability results, flow properties, and the T-canonical form. The latter appears to
be an appropriate generalization of the Weierstraß–Kronecker form. Several specifi-
cations for regular standard form DAEs are recorded in Subsection 2.7. Section 2.9
reflects aspects of the critical point discussion and emphasizes the concept of regu-
larity intervals.
In Section 2.10 we explain by means of canonical forms and reduction steps how
the strangeness and the tractability index concepts are related to each other.

2.1 Properly stated leading terms

We consider the equation
A(Dx)′+Bx = q, (2.1)

with continuous coefficients

A ∈ C(I,L(Rn,Rk)), D ∈ C(I,L(Rm,Rn)), B ∈ C(I,L(Rm,Rk)),

and the excitation q ∈ C(I,Rk), where I ∈R is an interval. A solution of this equa-
tion is a function belonging to the function space

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

which satisfies the DAE in the classical sense, that is, pointwise on the given inter-
val.

The two coefficient functions A and D are to figure out precisely all those com-
ponents of the unknown function, the first derivatives of which are actually involved
in equation (2.1). For this, A and D are supposed to be well matched in the sense
of the following definition, which roughly speaking means that there is no gap and
no overlap of the factors within the product AD and the border between A and D is
smooth.

Definition 2.1. The leading term in equation (2.1) is said to be properly stated on
the interval I, if the transversality condition

kerA(t)⊕ imD(t) = R
n, t ∈ I, (2.2)

is valid and the projector valued function R : I → L(Rn) defined by

imR(t) = imD(t), kerR(t) = kerA(t), t ∈ I,

is continuously differentiable.
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The projector function R ∈ C1(I,L(Rn)) is named the border projector of the lead-
ing term of the DAE.

To shorten the phrase properly stated leading term, sometimes we speak of proper
leading terms.
We explicitly point out that, in a proper leading term, both involved matrix functions
A and D have necessarily constant rank. This is a consequence of the smoothness of
the border projector R (see Lemma A.14).

Applying the notion of C1-subspaces (Definition A.19, Appendix A), a proper
leading term is given, exactly if imD and kerA are transversal C1-subspaces. Equiv-
alently (see Lemma A.14), one has a proper leading term, if condition (2.2) is satis-
fied and there are basis functions ϑi ∈ C1(I,Rn), i = 1, . . . ,n, such that

imD(t) = span{ϑ1(t), . . . ,ϑr(t)}, kerA(t) = span{ϑr+1(t), . . . ,ϑn(t)}, t ∈ I.

Having those basis functions available, the border projector R can simply be repre-
sented as

R := [ϑ1 . . .ϑn]

[
I

︸︷︷︸
r

0

]
[ϑ1 . . .ϑn]

−1. (2.3)

If A and D form a properly stated leading term, then the relations

imAD = imA, kerAD = kerD, rankA = rankAD = rankD =: r

are valid (cf. Lemma A.4), and A, AD and D have common constant rank r on I.
Besides the coefficients A,D and the projector R we use a pointwise generalized

inverse D− ∈ C(I,L(Rn,Rm)) of D satisfying the relations

DD−D = D, D−DD− = D−, DD− = R. (2.4)

Such a generalized inverse exists owing to the constant-rank property of D. Namely,
the orthogonal projector PD onto kerD⊥ along kerD is continuous (Lemma A.15).
If we added the fourth condition D−D = PD to (2.4), then the resulting D− would
be uniquely determined and continuous (Proposition A.17), and this ensures the
existence of a continuous generalized inverses satisfying (2.4).

By fixing only the three conditions (2.4), we have in mind some more flexibility.
Here D−D=: P0 is always a continuous projector function such that kerP0 = kerD=
kerAD. On the other hand, prescribing P0 we fix, at the same time, D−.

Example 2.2 (Different choices of P0 and D−). Write the semi-explicit DAE

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2,

with m1 +m2 = m equations in the form (2.1) with properly stated leading term as
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A =

[
I
0

]
, D =

[
I 0
]
, B =

[
B11 B12
B21 B22

]
,

such that kerA = {0}, imD =R
m1 and R = I. Any continuous projector function P0

along kerD and the corresponding generalized inverse D− have the form

P0 =

[
I 0
A 0

]
, D− =

[
I
A

]
,

with an arbitrary continuous block A. The choice A = 0 yields the symmetric pro-
jector P0. ��

2.2 Admissible matrix function sequences

2.2.1 Basics

Now we are ready to compose the basic sequence of matrix functions and subspaces
to work with. Put

G0 := AD, B0 := B, N0 := kerG0 (2.5)

and choose projector functions P0,Q0,Π0 ∈ C(I,L(Rm)) such that

Π0 = P0 = I−Q0, imQ0 = N0.

For i≥ 0, as long as the expressions exist, we form

Gi+1 = Gi +BiQi, (2.6)
Ni+1 = kerGi+1, (2.7)

choose projector functions Pi+1,Qi+1 such that Pi+1 = I−Qi+1, imQi+1 = Ni+1,
and put

Πi+1 :=ΠiPi+1,

Bi+1 := BiPi−Gi+1D−(DΠi+1D−)′DΠi. (2.8)

We emphasize that Bi+1 contains the derivative of DΠi+1D−, that is, this term com-
prises the variation in time. This term disappears in the constant coefficient case,
and then we are back at the formulas (1.10) in Chapter 1. The specific form of the
new term is motivated in Section 2.4.1 below, where we consider similar decoupling
rearrangements for the DAE (2.1) as in Chapter 1 for the constant coefficient case.
We are most interested in continuous matrix functions Gi+1,Bi+1; in particular we
have to take that DΠi+1D− is smooth enough.
Important characteristic values of the given DAE emerge from the rank functions

r j := rankG j, j ≥ 0.
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Example 2.3 (Matrix functions for Hessenberg size-1 and size-2 DAEs). Write the
semi-explicit DAE

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2,

with m1 +m2 = m equations in the form (2.1) as

A =

[
I
0

]
, D =

[
I 0
]
, B =

[
B11 B12
B21 B22

]
, D− =

[
I
0

]
.

Then we have a proper leading term and

G0 =

[
I 0
0 0

]
, Q0 =

[
0 0
0 I

]
, G1 =

[
I B12
0 B22

]
.

Case 1:
Let B22 be nonsingular on the given interval. Then G1 is also nonsingular. It follows
that Q1 = 0, thus G2 = G1 and so on. The sequence becomes stationary. All rank
functions ri are constant, in particular r0 = m1, r1 = m.
Case 2:
Let B22 = 0, but the product B21B12 remains nonsingular. We denote by Ω a pro-
jector function onto imB12, and by B−12 a reflexive generalized inverse such that
B12B−12 = Ω , B−12B12 = I. The matrix function G1 now has rank r1 = m1, and a
nontrivial nullspace. We choose the next projector functions Q1 and the resulting
DΠ1D− as

Q1 =

[
Ω 0
−B−12 0

]
, DΠ1D− = I−Ω .

This makes it clear that, for a continuously differentiable DΠ1D−, we have to as-
sume the range of B12 to be a C1-subspace (cf. A.4). Then we form the matrix
functions

B1 =

[
B11 0
B21 0

]
−
[
−Ω ′ 0

0 0

]
, G2 =

[
I +(B11 +Ω ′)Ω B12

B21Ω 0

]
,

and consider the nullspace of G2.
G2z = 0 means

z1 +(B11 +Ω ′)Ωz1 +B12z2 = 0, B21Ωz1 = 0.

The second equation means B21B12B−12z1 = 0, thus B−12z1 = 0, and hence Ωz1 = 0.
Now the first equation simplifies to z1 + B12z2 = 0. Multiplication by B−12 gives
z2 = 0, and then z1 = 0. Therefore, the matrix function G2 is nonsingular, and again
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the sequence becomes stationary.
Up to now we have not completely fixed the projector function Ω onto imB12. In
particular, we can take the orthoprojector function such that Ω = Ω ∗ and kerΩ =
kerB∗12 = imB⊥12, which corresponds to B−12 = B+

12 = (B∗12B12)
−1B∗12 and

kerQ1 = {z ∈ R
m1+m2 : B∗12z1 = 0}.

��
Example 2.4 (Matrix functions for a transformed regular index-3 matrix pencil).
The constant coefficient DAE

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ē

x̄′(t)+ x̄(t) = q(t), t ∈ R,

has Weierstraß–Kronecker canonical form, and its matrix pencil {Ē, I} is regular
with Kronecker index 3. By means of the simple factorization

Ē =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦=: ĀD̄

we rewrite the leading term properly as

Ā(D̄x̄(t))′+ x̄(t) = q(t), t ∈ R.

Then we transform x̄(t) = K(t)x(t) by means of the smooth matrix function K,

K(t) :=

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦ , t ∈ R,

being everywhere nonsingular. This yields the new DAE
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ã

(

⎡
⎣

0 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
D̃(t)

x(t))′+

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B̃(t)

x(t) = q(t), t ∈ R. (2.9)

Next we reformulate the DAE once again by deriving

(D̃(t)x(t))′ = (D̃(t)

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t))′ = D̃(t)

(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t)

)′
+ D̃′(t)

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t),

which leads to the further equivalent DAE
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⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A(t)

(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
D

x(t)

)′
+

⎡
⎣

1 0 0
0 0 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B(t)

x(t) = q(t), t ∈ R. (2.10)

Observe that the local matrix pencil {A(t)D,B(t)} is singular for all t ∈ R.
We construct a matrix function sequence for the DAE (2.10). The DAE is expected
to be regular with index 3, as its equivalent constant coefficient counterpart. A closer
look to the solutions strengthens this expectation. We have

A(t) =

⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦ , D(t) =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , B(t) =

⎡
⎣

1 0 0
0 0 0
0 −t 1

⎤
⎦ , G0(t) =

⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦ ,

and R(t) = D(t). Set D(t)− = D(t) and Π0(t) = P0(t) = D(t). Next we compute
G1(t) = G0(t)+B(t)Q0(t) as well as a projector Q1(t) onto kerG1(t) = N1(t):

G1(t) =

⎡
⎣

1 1 0
0 −t 1
0 0 0

⎤
⎦ , Q1(t) =

⎡
⎣

0 −1 0
0 1 0
0 t 0

⎤
⎦ .

This leads to

Π1(t) =

⎡
⎣

0 0 0
0 0 0
0 −t 1

⎤
⎦ , B1(t) =

⎡
⎣

0 0 0
0 1 0
0 −t 1

⎤
⎦ , G2(t) =

⎡
⎣

1 1 0
0 1− t 1
0 0 0

⎤
⎦ .

A suitable projector function Q2 and the resulting B2 and G3 are:

Q2(t) =

⎡
⎣

0 −t 1
0 t −1
0 −t(1− t) 1− t

⎤
⎦ , Π2(t) = 0, B2(t) =

⎡
⎣

0 0 0
0 0 0
0 −t 1

⎤
⎦ , G3(t) =

⎡
⎣

1 1 0
0 1− t 1
0 −t 1

⎤
⎦ .

The matrix functions Gi, i = 0,1,2, are singular with constant ranks, and G3 is
the first matrix function that is nonsingular. Later on, this turns out to be typical for
regular index-3 DAEs (cf. Definition 10.2), and meets our expectation in comparison
with the constant coefficient case (cf. Theorem 1.31). At this place it should be
mentioned that here the term B0P0Q1 vanishes identically, which corresponds to the
singular local matrix pencil. This fact makes the term G1D−(DΠ1D)′DΠ0Q1 crucial
for G2 to incorporate a nontrivial increment with respect to G1.
Observe that the nullspaces and projectors fulfill the relations

N0(t)∩N1(t) = {0}, (N0(t)+N1(t))∩N2(t) = {0},
Q1(t)Q0(t) = 0, Q2(t)Q0(t) = 0, Q2(t)Q1(t) = 0.

The matrix functions Gi as well as the projector functions Qi are continuous and it
holds that imG0 = imG1 = imG2 ⊂ imG3. ��



64 2 Linear DAEs

Any matrix function sequence (2.5)–(2.8) generates subspaces

imG0 ⊆ ·· · ⊆ imGi ⊆ imGi+1

of nondecreasing dimensions.
To show several useful properties we introduce the additional projector functions
W j : I → L(Rk) and generalized inverses G−j : I → L(Rk,Rm) of G j such that

kerW j = imG j, (2.11)

G jG−j G j = G j, G−j G jG−j = G−j , G−j G j = Pj, G jG−j = I−W j. (2.12)

Proposition 2.5. Let the DAE (2.1) have a properly stated leading term. Then, for
each matrix function sequence (2.5)–(2.8) the following relations are satisfied:

(1) kerΠi ⊆ kerBi+1,
(2) Wi+1Bi+1 =Wi+1Bi = · · ·=Wi+1B0 =Wi+1B,

Wi+1Bi+1 =Wi+1B0 =Wi+1B0Πi,
(3) Gi+1 = (Gi +WiBQi)Fi+1 with Fi+1 = I +G−i BiQi and

imGi+1 = imGi⊕ imWiBQi,
(4) Ni∩kerBi = Ni∩Ni+1 ⊆ Ni+1∩kerBi+1,
(5) Ni−1∩Ni ⊆ Ni∩Ni+1,
(6) imGi + imBi ⊆ im [AD,B] = im [G0,B0].

Proof. (1) From (2.8) we successively derive an expression for Bi+1:

Bi+1 =
(

Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1

)
Pi−Gi+1D−(DΠi+1D−)′DΠi

= Bi−1Pi−1Pi−
i+1

∑
j=i

G jD−(DΠ jD−)′DΠi,

hence

Bi+1 = B0Πi−
i+1

∑
j=1

G jD−(DΠ jD−)′DΠi, (2.13)

but this immediately verifies assertion (1).
(2) Because of imG j ⊆ imGi+1 for j ≤ i+1, we haveWi+1Bi+1 =Wi+1B0Πi due
to (2.13). Taking into account also the inclusion imB jQ j = imG j+1Q j ⊆ imG j+1 ⊆
imGi+1, for j ≤ i, we obtain from (2.8) that Wi+1Bi+1 =Wi+1BiPi =Wi+1Bi−
Wi+1BiQi =Wi+1Bi =Wi+1Bi−1Pi−1 =Wi+1Bi−1 = · · · =Wi+1B0, which proves
assertion (2).
(3) We rearrange Gi+1 as

Gi+1 = Gi +GiG−i BiQi +(I−GiG−i )BiQi = Gi((I +G−i BiQi)+WiBiQi.

Because of QiG−i = QiPiG−i = 0 the matrix function Fi+1 := I +G−i BiQi remains
nonsingular (see Lemma A.3) and the factorization
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Gi+1 = (Gi +WiBiQi)Fi+1 = (Gi +WiBQi)Fi+1

holds true. This yields assertion (3).
(4) z ∈ Ni ∩ kerBi, i.e., Giz = 0, Biz = 0, leads to z = Qiz and Gi+1z = BiQiz =
Biz = 0, thus z ∈ Ni∩Ni+1. Conversely, z ∈ Ni∩Ni+1 yields z = Qiz, Biz = BiQiz =
Gi+1z = 0, i.e., z ∈ Ni∩kerBi and we are done with assertion (4).
(5) From z∈Ni−1∩Ni it follows that z=Qi−1z and Biz=BiQi−1z=BiPi−1Qi−1z= 0
because of Bi = BiPi−1 (cf. (2.13)), hence z ∈ Ni∩kerBi = Ni∩Ni+1.
(6) follows from imG0 + imB0 = im [G0,B0] by induction. Namely, imGi +
imBi ⊆ im [G0,B0] implies imBiQi ⊆ im [G0,B0], hence imGi+1 ⊆ im [Gi,B0Qi] ⊆
im [G0,B0], and further imBi+1 ⊆ im [Gi+1,Bi]⊆ im [G0,B0]. ��

2.2.2 Admissible projector functions and characteristic values

In Chapter 1 on constant coefficient DAEs, useful decoupling properties are ob-
tained by restricting the variety of possible projectors Qi and somehow choosing
smart ones, so-called admissible ones. Here we take up this idea again, and we in-
corporate conditions concerning ranks and dimensions to ensure the continuity of
the matrix functions associated to the DAE. Possible rank changes will be treated as
critical points discussed later on in Section 2.9. The following definition generalizes
Definition 1.10.

Definition 2.6. Given the DAE (2.1) with properly stated leading term, Q0 denotes
a continuous projector function onto kerD and P0 = I−Q0. The generalized inverse
D− is given by DD−D = D, D−DD− = D−, DD− = R, D−D = P0.
For a given level κ ∈N, we call the sequence G0, . . . ,Gκ an admissible matrix func-
tion sequence associated to the DAE on the interval I, if it is built by the rule

Set G0 := AD, B0 := B,N0 := kerG0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1

Ni := kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi :=Πi−1Pi

and, additionally,

(a) Gi has constant rank ri on I, i = 0, . . . ,κ ,

(b) the intersection
�
Ni has constant dimension ui := dim

�
Ni on I,



66 2 Linear DAEs

(c) the product function Πi is continuous on I and DΠiD− is there continuously
differentiable, i = 0, . . . ,κ .

The projector functions Q0, . . . ,Qκ in an admissible matrix function sequence are
said to be admissible themselves.
An admissible matrix function sequence G0, . . . ,Gκ is said to be regular admissible,
if

�
Ni = {0}, ∀ i = 1, . . . ,κ .

Then, also the projector functions Q0, . . . ,Qκ are called regular admissible.

Examples 2.3 and 2.4 already show regular admissible matrix function se-
quences.
The matrix functions G0, . . . ,Gκ in an admissible sequence are a priori continuous
on the given interval.
If G0, . . . ,Gκ are admissible, besides the nullspaces N0, . . . ,Nκ and the intersection

spaces
�
N1, . . . ,

�
Nκ also the sum spaces N0 + · · ·+Ni, i = 1, . . . ,κ , and the comple-

ments X1, . . . ,Xκ have constant dimension. Namely, the construction yields

N0 + · · ·+Ni−1 = Xi⊕
�
Ni, N0 + · · ·+Ni = Xi⊕Ni, i = 1, . . .κ ,

and hence

dimN0 = m− r0,

dim(N0 + · · ·+Ni−1) = dimXi +ui,

dim(N0 + · · ·+Ni) = dimXi +m− ri, i = 1, . . . ,κ .

It follows that

dim(N0 + · · ·+Ni) = dim(N0 + · · ·+Ni−1)−ui︸ ︷︷ ︸
dimXi

+m− ri︸ ︷︷ ︸
dimNi

=
i−1

∑
j=0

(m− r j−u j+1)+m− ri =
i

∑
j=0

(m− r j)−
i−1

∑
j=0

u j+1.

We are most interested in the case of trivial intersections
�
Ni, yielding Xi =N0+ · · ·+

Ni−1, and ui = 0. In particular, all so-called regular DAEs in Section 2.6 belong to

this latter class. Due to the trivial intersection
�
Ni = {0}, the subspace N0 + · · ·+Ni

has dimension dim(N0+ · · ·+Ni−1)+dimNi, that is, its increase is maximal at each
level.

The next proposition collects benefits from admissible projector functions. Com-
paring with Proposition 1.13 we recognize a far-reaching conformity. The most im-
portant benefit seems to be the fact that Πi being a product of projector functions is
again a projector function, and it projects along the sum space N0 + · · ·+Ni which
now appears to be a C-subspace.
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We stress once more that admissible projector functions are always cross-linked
with their generating admissible matrix function sequence. Nevertheless, for brevity,
we simply speak of admissible projector functions or admissible projectors, drop-
ping this natural background.

Proposition 2.7. Given a DAE (2.1) with properly stated leading term, and an inte-
ger κ ∈ N.
If Q0, . . . ,Qκ are admissible projector functions, then the following eight relations
become true for i = 1, . . . ,κ .

(1) kerΠi = N0 + · · ·+Ni,
(2) the products Πi = P0 · · ·Pi and Πi−1Qi = P0 · · ·Pi−1Qi, as well as DΠiD− and

DΠi−1QiD−, are projector valued functions, too,
(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi,
(4) Bi = BiΠi−1,

(5)
�
Ni ⊆ Ni∩Ni+1, and hence

�
Ni ⊆

�
Ni+1,

(6) Gi+1Q j = B jQ j, 0≤ j ≤ i,
(7) D(N0 + · · ·+Ni) = imDP0 · · ·Pi−1Qi⊕ imDΠi−2Qi−1⊕·· ·⊕ imDP0Q1,

(8) the products Qi(I−Πi−1) and Pi(I−Πi−1) are projector functions onto
�
Ni

and Xi, respectively.

Additionally, the matrix functions G1, . . . ,Gκ , and Gκ+1 are continuous.
If Q0, . . . ,Qκ are regular admissible then it holds for i = 1, . . . ,κ that

kerΠi−1Qi = kerQi, and QiQ j = 0, j = 0, . . . , i−1.

Proof. (1) See the proof of Proposition 1.13 (1).
(2) Due to assertion (1) it holds that kerΠi = N0 + · · ·+Ni, which means ΠiQ j = 0,
j = 0, . . . , i. With 0 = ΠiQ j = Πi(I−Pj), we obtain Πi = ΠiPj, j = 0, . . . , i, which
yields ΠiΠi =Πi. Derive further

(Πi−1Qi)
2 = (Πi−1−Πi)(Πi−1−Πi)

=Πi−1−Πi−1Πi︸ ︷︷ ︸
=Πi−1Pi

−ΠiΠi−1︸ ︷︷ ︸
=Πi

+Πi =Πi−1Qi,

(DΠiD−)2 = DΠi D−D︸ ︷︷ ︸
=P0

ΠiD− = DΠiD−,

(DΠi−1QiD−)2 = DΠi−1Qi D−D︸ ︷︷ ︸
=P0

Πi−1QiD− = D(Πi−1Qi)
2D− = DΠi−1QiD−.

(3) See the proof of Proposition 1.13 (3).
(4) The detailed structure of Bi given in (2.13) and the projector property of Πi−1
(cf. (1)) proves the statement.
(5) z ∈ Ni∩ (N0 + · · ·+Ni−1) means that z = Qiz, Πi−1z = 0, hence

Gi+1z = Giz+BiQiz = Biz = BiΠi−1z = 0.
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(6) For 0≤ j ≤ i, it follows with (4) from

Gi+1 = Gi +BiQi = G0 +B0Q0 +B1Q1 + · · ·+BiQi

= G0 +B0Q0 +B1P0Q1 + · · ·+BiP0 · · ·Pi−1Qi

that

Gi+1Q j = (G0 +B0Q0 + · · ·+B jP0 · · ·Pj−1Q j)Q j = (G j +B jQ j)Q j = B jQ j.

(7) From kerΠi = N0 + · · ·+Ni it follows that

D(N0 + · · ·+Ni) = D im(I−Πi) = D im(Q0 +P0Q1 + · · ·+Πi−1Qi)

= D{imQ0⊕ imP0Q1⊕·· ·⊕ imΠi−1Qi}
= imDP0Q1⊕·· ·⊕ imDΠi−1Qi.

This proves assertion (7).
(8) We have (cf. (3))

Qi(I−Πi−1)Qi(I−Πi−1) = (Qi−QiΠi−1Qi)(I−Πi−1)︸ ︷︷ ︸
=0

= Qi(I−Πi−1).

Further, z=Qi(I−Πi−1)z implies z∈Ni,Πi−1z=Πi−1Qi(I−Πi−1)z= 0, and hence

z ∈
�
Ni.

Conversely, from z ∈
�
Ni it follows that z = Qiz and z = (I − Πi−1)z, thus

z = Qi(I−Πi−1)z. Similarly, we compute

Pi(I−Πi−1)Pi(I−Πi−1) = Pi(I−Πi−1)−Pi(I−Πi−1)Qi(I−Πi−1) = Pi(I−Πi−1).

From z=Pi(I−Πi−1)z it follows that Qiz= 0, Πi−1z=Πi(I−Πi−1)z= 0, therefore
z ∈ Xi.
Conversely, z ∈ Xi yields z = Piz, z = (I−Πi−1)z, and hence z = Pi(I−Πi−1)z. This
verifies (8).
Next we verify the continuity of the matrix functions Gi. Applying the representa-
tion (2.13) of the matrix function Bi we express

Gi+1 = Gi +B0Πi−1Qi−
i

∑
j=1

G jD−(DΠ jD−)′DΠi−1Qi,

which shows that, supposing that previous matrix functions G0, . . . ,Gi are continu-
ous, the continuity of Πi−1Qi =Πi−1−Πi implies Gi+1 is also continuous.
Finally, let Q0, . . . ,Qκ be regular admissible. Πi−1Qiz = 0 implies

Qiz = (I−Πi−1)Qiz ∈ N0 + · · ·+Ni−1, hence Qiz ∈
�
Ni, therefore Qiz = 0. It re-

mains to apply (3). ��
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As in the constant coefficient case, there is a great variety of admissible projector
functions, and the matrix functions Gi clearly depend on the special choice of the
projector functions Q j, including the way complements Xj in the decomposition of
N0 + · · ·+Nj−1 are chosen. Fortunately, there are invariants, in particular, invariant
subspaces and subspace dimensions, as shown by the next assertion.

Theorem 2.8. Let the DAE (2.1) have a properly stated leading term. Then, for a
given κ ∈ N, if admissible projector functions up to level κ do at all exist, then the
subspaces

imG j, N0 + · · ·+Nj, S j := kerW jB, j = 0, . . . ,κ+1,

as well as the numbers

r j := rankG j, j = 0, . . . ,κ , u j := dim
�
N j, j = 1, . . . ,κ ,

and the functions rκ+1 : I →N∪{0}, uκ+1 : I →N∪{0} are independent of the
special choice of admissible projector functions Q0, . . . ,Qκ .

Proof. These assertions are immediate consequences of Lemma 2.12 below at the
end of the present section. ��

Definition 2.9. If the DAE (2.1) with properly stated leading term has an admissible
matrix functions sequence up to level κ , then the integers

r j = rankG j, j = 0, . . . ,κ , u j = dim
�
N j, j = 1, . . . ,κ ,

are called characteristic values of the DAE.

The characteristic values prove to be invariant under regular transformations and
refactorizations (cf. Section 2.3, Theorems 2.18 and 2.21), which justifies this no-
tation. For constant regular matrix pairs, these characteristic values describe the
infinite eigenstructure (Corollary 1.32).

The associated subspace S0 = kerW0B has its special meaning. At given t ∈ I,
the subspace

S0(t) = kerW0(t)B(t) = {z ∈ R
m : B(t)z ∈ imG0(t) = imA(t)}

contains all solution values x(t) of the solutions of the homogeneous equation
A(Dx)′+Bx = 0. As we will see later, for so-called regular index-1 DAEs, the sub-
space S0(t) consists at all of those solution values, that means, for each element
of S0(t) there exists a solution passing through it. For regular DAEs with a higher
index, the sets of corresponding solution values form proper subspaces of S0(t).
In general, the associated subspaces satisfy the relations

Si+1 = Si +Ni = Si +N0 + · · ·+Ni = S0 +N0 + · · ·+Ni, i = 0, . . . ,κ .
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Namely, because of imGi ⊆ imGi+1, it holds that Wi+1 = Wi+1Wi, hence
Si+1 = kerWi+1B = kerWi+1WiB ⊇ kerWiB = Si, and Proposition 2.5 (2) yields
Si+1 = kerWi+1Bi+1 ⊇ kerBi+1 ⊇ N0 + · · ·+Ni.

Summarizing, the following three sequences of subspaces are associated with
each admissible matrix function sequence:

imG0 ⊆ imG1 ⊆ ·· · ⊆ imGi ⊆ ·· · ⊆ im [AD B]⊆ R
k, (2.14)

N0 ⊆ N0 +N1 ⊆ ·· · ⊆ N0 + · · ·+Ni ⊆ ·· · ⊆ R
m, (2.15)

and
S0 ⊆ S1 ⊆ ·· · ⊆ Si ⊆ ·· · ⊆ R

m. (2.16)

All of these subspaces are independent of the special choice of the admissible pro-
jector functions. In all three cases, the dimension does not decrease if the index
increases. We are looking for criteria indicating that a certain Gμ already has the
maximal possible rank. For instance, if we meet an injective matrix Gμ as in Exam-
ples 2.3 and 2.4, then the sequence becomes stationary with Qμ = 0, Gμ+1 = Gμ ,
and so on. Therefore, the smallest index μ such that the matrix function Gμ is in-
jective, indicates at the same time that imGμ is maximal, but imGμ−1 is a proper
subspace, if μ ≥ 1. The general case is more subtle. It may happen that no injective
Gμ exists. Eventually one reaches

imGμ = im [AD B]; (2.17)

however, this is not necessarily the case, as the next example shows.

Example 2.10 (Admissible matrix sequence for a nonregular DAE). Set m = k = 3,
n = 2, and consider the constant coefficient DAE

⎡
⎣

1 0
0 1
0 0

⎤
⎦
([

1 0 0
0 1 0

]
x
)′

+

⎡
⎣

1 0 1
0 1 0
0 1 0

⎤
⎦x = q, (2.18)

which is nonregular due to the singular matrix pencil. Here we have im [AD B] =R
3.

Compute successively

G0 =

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , W0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ ,

G1 =

⎡
⎣

1 0 1
0 1 0
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

1 0 0
0 0 0
−1 0 0

⎤
⎦ , W1 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , B1 =

⎡
⎣

1 0 0
0 1 0
0 1 0

⎤
⎦ ,

G2 =

⎡
⎣

2 0 1
0 1 0
0 0 0

⎤
⎦ , Π1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ .
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We read off N0 = {z ∈ R
3 : z1 = z2 = 0}, N1 = {z ∈ R

3 : z2 = 0,z1 + z3 = 0} and
N2 = {z ∈ R

3 : z2 = 0,2z1 + z3 = 0}. The intersection N0 ∩N1 is trivial, and the
condition Q1Q0 = 0 is fulfilled. We have further

N0 +N1 = {z ∈ R
3 : z2 = 0}, (N0 +N1)∩N2 =

�
N2 = N2 ⊆ N0 +N1,

thus N0 +N1 = N0 +N1 +N2 and N0 +N1 = N2⊕N0.

We can put X2 = N0, and compute

Q2 =

⎡
⎣

1 0 0
0 0 0
−2 0 0

⎤
⎦ , with X2 ⊆ kerQ2, B2 =

⎡
⎣

0 0 0
0 1 0
0 1 0

⎤
⎦ .

The projectors Q0, Q1, Q2 are admissible. It holds that B2Q2 = 0, G3 =G2, N3 =N2,
and Π2 =Π1, and further

S0 = {z ∈ R
3 : z2 = 0}, S0 = S1 = S2 = S3.

We continue the matrix function sequence by Q3 := Q2, B3 = B2, B3Q3 = 0, G4 =
G3, and so on. It follows that no Gi is injective, and

imG0 = · · ·= imGi = · · ·= R
2×{0} ⊂ im [AD B] = R

3,

S0 = · · ·= Si = · · ·= R×{0}×R,

N0 ⊂ N0 +N1 = N0 +N1 +N2 = · · ·= R×{0}×R,

and the maximal range is already imG0. A closer look at the DAE (2.18) gives

x′1 + x1 + x3 = q1,

x′2 + x2 = q2,

x2 = q3.

This model is somewhat dubious. It is in parts over- and underdetermined, and much
room for interpretations is left (cf. Chapter 10). ��

Our next example is much nicer and more important with respect to applications. It
is a so-called Hessenberg form size-3 DAE and might be considered as the linear pro-
totype of the system describing constrained mechanical motion (see Example 3.41
and Section 3.5).

Example 2.11 (Admissible sequence for the Hessenberg size 3 DAE). Consider the
system ⎡

⎣
x′1
x′2
0

⎤
⎦+
⎡
⎣

B11 B12 B13
B21 B22 0
0 B32 0

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦=

⎡
⎣

q1
q2
q3

⎤
⎦ (2.19)

with m = m1 +m2 +m3 equations, m1 ≥ m2 ≥ m3 ≥ 1, k = m components, and a
nonsingular product B32B21B13. Put n = m1 +m2,
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A =

⎡
⎣

I 0
0 I
0 0

⎤
⎦ , D =

[
I 0 0
0 I 0

]
, D− =

⎡
⎣

I 0
0 I
0 0

⎤
⎦ , B =

⎡
⎣

B11 B12 B13
B21 B22 0
0 B32 0

⎤
⎦ ,

and write this DAE in the form (2.1).
Owing to the nonsingularity of the m3×m3 matrix function product B32B21B13, the
matrix functions B13 and B21B13 have full column rank m3 each, and B32 has full row
rank m3. This yields im [AD B] = R

m. Further, since B13 and B21B13 have constant
rank, there are continuous reflexive generalized inverses B−13 and (B21B13)

− such
that (see Proposition A.17)

B−13B13 = I, Ω1 :=B13B−13 is a projector onto imB13,

(B21B13)
−B21B13 = I, Ω2 :=B21B13(B21B13)

− is a projector onto imB21B13.

Let the coefficient function B be smooth enough so that the derivatives used below
do exist. In particular, Ω1 and Ω2 are assumed to be continuously differentiable. We
start constructing the matrix function sequence by

G0 =

⎡
⎣

I 0 0
0 I 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 I

⎤
⎦ , B0 =

⎡
⎣

B11 B12 B13
B21 B22 0
0 B32 0

⎤
⎦ , G1 =

⎡
⎣

I 0 B13
0 I 0
0 0 0

⎤
⎦ .

It follows that

N0 = {z ∈ R
m : z1 = 0, z2 = 0}, N1 = {z ∈ R

m : z1 +B13z3 = 0, z2 = 0},
�
N1 = N0∩N1 = {0}, X1 = N0,

N0 +N1 = N0⊕N1 = {z ∈ R
m : z2 = 0, z1 ∈ imB13}.

The matrix functions G0 and G1 have constant rank, r0 = r1 = n. Compute the pro-
jector functions

Q1 =

⎡
⎣

Ω1 0 0
0 0 0

−B−13 0 0

⎤
⎦ , DΠ1D− =

[
I−Ω1 0

0 I

]
,

such that imQ1 = N1 and Q1Q0 = 0, that is kerQ1 ⊇ X1. Q1 is continuous, and
DΠ1D− is continuously differentiable. In consequence, Q0,Q1 are admissible. Next
we form

B1 =

⎡
⎣

B11 +Ω ′1 B12 0
B21 B22 0
0 B32 0

⎤
⎦ , G2 =

⎡
⎣

I +(B11 +Ω ′1)Ω1 0 B13
B21Ω1 I 0

0 0 0

⎤
⎦ .
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For z ∈ R
m1+m2+m3 with z1 ∈ kerΩ1 it holds that imG2 =

⎡
⎣

z1 +B13z3
z2
0

⎤
⎦, since

imB13 = imΩ1. This proves the inclusion

imG2 ⊆ R
n×{0}= {G2z : z ∈ R

m1+m2+m3 ,z1 ∈ kerΩ1} ⊆ imG2,

and we obtain imG2 = R
n×{0}, and r2 = rankG2 = m1 +m2 = n. Then we inves-

tigate the nullspace of G2. If z ∈ R
m satisfies G2z = 0, then

z1 +(B11 +Ω ′1)Ω1z1 +B13z3 = 0, (2.20)
B21Ω1z1 + z2 = 0. (2.21)

In turn, equation (2.20) decomposes into

(I−Ω1)z1 +(I−Ω1)(B11 +Ω ′1)Ω1z1 = 0,
B−13(I +B−13(B11 +Ω ′1))Ω1z1 + z3 = 0.

Similarly, considering that imB21B13 = imB21B13B−13 is valid, we derive from (2.21)
the relations

z2 =Ω2z2, B−13z1 =−(B21B13)
−z2.

Altogether this yields

N2 = {z∈R
m : z2 =Ω2z2, z1 = E1Ω2z2, z3 = E3Ω2z2},

�
N2 = {0}, X2 =N0+N1,

with

E1 : =−(I− (I−Ω1)(B11 +Ω ′1)Ω1)B13(B21B13)
−

=−(I− (I−Ω1)(B11 +Ω ′1))B13(B21B13)
−,

E3 : =−B−13(I +(B11 +Ω ′1))B13(B21B13)
−.

Notice that E1 = E1Ω2, E3 = E3Ω2. The projector functions

Q2 =

⎡
⎣

0 E1 0
0 Ω2 0
0 E3 0

⎤
⎦ , DΠ2D− =

[
I−Ω1 −(I−Ω1)E1

0 I−Ω2

]
,

fulfill the required admissibility conditions, in particular, Q2Q0 = 0, Q2Q1 = 0, and
hence Q0, Q1, Q2 are admissible. The resulting B2, G3 have the form:

B2 =

⎡
⎣
B11 B12 0
B21 B22 0
0 B32 0

⎤
⎦ , G3 =

⎡
⎣

I +(B11 +Ω ′1)Ω1 B11E1 +B12Ω2 B13
B21Ω1 I +B21E1 +B22Ω2 0

0 B32Ω2 0

⎤
⎦ .

The detailed form of the entries Bi j does not matter in this context. We show G3 to
be nonsingular. Namely, G3z = 0 implies B32Ω2z2 = 0, thus Ω2z2 = 0, and further
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B21Ω1z1 + z2 = 0. The latter equation yields (I−Ω2)z2 = 0 and B21Ω1z1 = 0, and
this gives Ω1z1 = 0, z2 = 0. Now, the first line of the system G3z = 0 simplifies to
z1+B13z3 = 0. In turn, (I−Ω1)z1 = 0 follows, and hence z1 = 0, z3 = 0. The matrix
function G3 is nonsingular in fact, and we stop the construction.
In summary, our basic subspaces behaves as

imG0 = imG1 = imG2 ⊂ imG3 = im [AD B] = R
m,

N0 ⊂ N0 +N1 ⊂ N0 +N1 +N2 = N0 +N1 +N2 +N3 ⊂ R
m.

The additionally associated projector functions Wi onto imGi and the subspaces
Si = kerWiB are here:

W0 =

⎡
⎣

0 0 0
0 0 0
0 0 I

⎤
⎦ , W0 =W1 =W2, W3 = 0,

and
S0 = {z ∈ R

m : B32z2 = 0}, S0 = S1 = S2 ⊂ S3 = R
m.

The last relation is typical for the large class of DAEs named Hessenberg form
DAEs (cf. Section 3.5). While imG3 and S3 reach the maximal dimension m, the
dimension of the resulting maximal subspace N0 +N1 +N2 is less than m.
Notice that the relation W0BQ0 = 0 indicates that imG0 = imG1 holds true, and
we can recognize this fact before explicitly computing G1 (cf. Proposition 2.5(3)).
Similarly, W1BQ1 = 0 indicates that imG1 = imG2. Furthermore, we know that
r3 = r2 + rank(W2BQ2) = n+m3 = m before we compute G3. ��

Now we come to an important auxiliary result which stands behind Theorem 2.8,
and which generalizes Lemma 1.18.

Lemma 2.12. Given the DAE (2.1) with properly stated leading term, if there are
two admissible projector function sequences Q0, . . . ,Qκ and Q̄0, . . . , Q̄κ , both ad-
missible on I, then the associated matrix functions and subspaces are related by the
following properties:

(1) kerΠ̄ j = N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj = kerΠ j, j = 0, . . . ,κ ,
(2) Ḡ j = G jZ j,

B̄ j = B j−G jZ jD̄−(DΠ̄ jD̄−)′DΠ j +G j
j−1
∑

l=0
QlA jl , j = 1, . . . ,κ ,

with nonsingular matrix functions Z0, . . . ,Zκ+1 given by
Z0 := I, Zi+1 := Yi+1Zi, i = 0, . . . ,κ ,

Y1 := I +Q0(Q̄0−Q0) = I +Q0Q̄0P0,

Yi+1 := I +Qi(Π̄i−1Q̄i−Πi−1Qi)+
i−1

∑
l=0

QlAil Q̄i, i = 1, . . . ,κ ,

and certain continuous coefficients Ail that satisfy condition Ail = AilΠ̄i−1,
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(3) Zi(N̄i∩ (N̄0 + · · ·+ N̄i−1)) = Ni∩ (N0 + · · ·+Ni−1), i = 1, . . . ,κ ,
(4) Ḡκ+1 = Gκ+1Zκ+1, N̄0 + · · ·+ N̄κ+1 = N0 + · · ·+Nκ+1,

Zκ+1(N̄κ+1∩ (N̄0 + · · ·+ N̄κ)) = Nκ+1∩ (N0 + · · ·+Nκ).

Proof. We have G0 = AD = Ḡ0, B0 = B = B̄0, kerP0 = N0 = N̄0 = ker P̄0, and
hence P0 = P0P̄0, P̄0 = P̄0P0.
The generalized inverses D− and D̄− of D satisfy the properties DD− = DD̄− = R,
D−D = P0, D̄−D = P̄0, and therefore D̄− = D̄−DD̄− = D̄−DD− = P̄0D−,
D− = P0D̄−.
Compare G1 = G0 +B0Q0 and

Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 +B0Q̄0 = G0 +B0Q0Q̄0

= (G0 +B0Q0)(P0 + Q̄0) = G1Z1,

where Z1 :=Y1 := P0 + Q̄0 = I+Q0Q̄0P0 = I+Q0(Q̄0−Q0). Z1 is invertible; it has
the inverse Z−1

1 = I−Q0Q̄0P0.
The nullspaces N1 and N̄1 are, due to Ḡ1 = G1Z1, related by N̄1 = Z−1

1 N1 ⊆N0+N1.
This implies N̄0 + N̄1 = N0 +(Z−1

1 N1) ⊆ N0 +N1. From N1 = Z1N̄1 ⊆ N0 + N̄1 =
N̄0 + N̄1, we obtain N̄0 + N̄1 = N0 +N1.

Since the projectors P0P1 and P̄0P̄1 have the common nullspace N0 +N1 = N̄0 +
N̄1, we may now derive

DP̄0P̄1D̄− = DP̄0P̄1

=P0P1P0︷︸︸︷
P0P1 P̄0D− = DP̄0P̄1P0P1D− = DP̄0P̄1D̄−DP0P1D−,

DP0P1D− = DP0P1D−DP̄0P̄1D̄−.

Taking into account the relation 0 = Ḡ1Q̄1 = G1Q̄1 + G1(Z1 − I)Q̄1, thus
G1Q̄1 =−G1(Z1− I)Q̄1 we obtain (cf. Appendix B for details)

B̄1 = B1−G1Z1D̄−(DP̄0P̄1D−)′D.

This gives the basis for proving our assertion by induction. The proof is carried out
in detail in Appendix B. A technically easier version for the time-invariant case is
given in Chapter 1, Lemma 1.18. ��

2.2.3 Widely orthogonal projector functions

For each DAE with properly stated leading term, we can always start the matrix
function sequence by choosing Q0 to be the orthogonal projector onto N0 = kerD,
that means, Q0 = Q∗0, P0 = P∗0 . On the next level, applying the decomposition
R

m = (N0 ∩N1)
⊥ ⊕ (N0 ∩N1) we determine X1 in the decomposition N0 = X1⊕

(N0∩N1) by X1 = N0∩(N0∩N1)
⊥. This leads to N0+N1 = (X1⊕(N0∩N1))+N1 =

X1⊕N1 and R
m = (N0 +N1)

⊥⊕ (N0 +N1) = (N0 +N1)
⊥⊕X1⊕N1. In this way Q1

is uniquely determined as imQ1 = N1, kerQ1 = (N0 +N1)
⊥⊕X1.



76 2 Linear DAEs

On the next levels, if Q0, . . . ,Qi−1 are admissible, we first apply the decomposition

R
m = (

�
Ni)

⊥⊕
�
Ni, and choose

Xi = (N0 + · · ·+Ni−1)∩ (
�
Ni)

⊥. (2.22)

The resulting decompositions N0 + · · ·+Ni = Xi⊕Ni, and
R

m = (N0 + · · ·+Ni)
⊥⊕ (N0 + · · ·+Ni) = (N0 + · · ·+Ni)

⊥⊕Xi⊕Ni allow for the
choice

imQi = Ni, kerQi = (N0 + · · ·+Ni)
⊥⊕Xi. (2.23)

Definition 2.13. Admissible projector functions Q0, . . . ,Qκ are called widely or-
thogonal if Q0 = Q∗0 and both (2.22) and (2.23) are fulfilled for i = 1, . . . ,κ .

Example 2.14 (Widely orthogonal projectors). The admissible projector functions
Q0, Q1 built for the Hessenberg size-2 DAE in Example 2.3 with Ω =Ω ∗ are widely
orthogonal. In particular, it holds that

kerQ1 = {z ∈ R
m1+m2 : B∗12z1 = 0}= (N0⊕N1)

⊥⊕N0.

��
Widely orthogonal projector functions are uniquely fixed by construction. They
provide special symmetry properties. In fact, applying widely orthogonal projector
functions, the decompositions

x(t) =Πi(t)x(t)+Πi−1(t)Qi(t)x(t)+ · · ·+Π0(t)Q1(t)x(t)+Q0(t)x(t)

are orthogonal ones for all t owing to the following proposition.

Proposition 2.15. If Q0, . . . ,Qκ are widely orthogonal, then Πi, i = 0, . . . ,κ , and
Πi−1Qi, i = 1, . . . ,κ , are symmetric.

Proof. Let Q0, . . . ,Qκ be widely orthogonal. In particular, it holds that Π0 = Π ∗0 ,
kerΠ0 = N0, imΠ0 = N⊥0 .
Compute imΠ1 = imP0P1 = P0 imP1 = P0((N0 +N1)

⊥⊕X1) = P0(N0 +N1)
⊥

= P0(N⊥0 ∩N⊥1 ) = N⊥0 ∩N⊥1 = (N0 +N1)
⊥.

To use induction, assume that imΠ j = (N0 + · · ·+Nj)
⊥, j ≤ i−1.

Due to Proposition 2.7 (1) we know that kerΠi = N0 + · · ·+ Ni is true; further
Πi−1Xi = 0. From (2.23) it follows that

imΠi =Πi−1imPi =Πi−1((N0 + · · ·+Ni)
⊥⊕Xi)

=Πi−1(N0 + · · ·+Ni)
⊥ =Πi−1((N0 + · · ·+Ni−1)

⊥ ∩N⊥i )

= (N0 + · · ·+Ni−1)
⊥ ∩N⊥i = (N0 + · · ·+Ni)

⊥.

Since Πi is a projector, and kerΠi = N0 + · · ·+Ni, imΠi = (N0 + · · ·+Ni)
⊥, Πi

must be the orthoprojector.
Finally, derive (Πi−1Qi)

∗ = (Πi−1−Πi−1Pi)
∗ =Πi−1−Πi−1Pi =Πi−1Qi. ��
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Proposition 2.16. If, for the DAE (2.1) with properly stated leading term, there exist
any admissible projector functions Q0, . . . ,Qκ , and if DD∗ ∈ C1(I,L(Rn)), then also
widely orthogonal projector functions can be chosen (they do exist).

Proof. Let Q0, . . . ,Qκ be admissible. Then, in particular the subspaces N0+ · · ·+Ni,
i = 0, . . . ,κ are continuous. The subspaces imDΠ0Q1, . . . , imDΠκ−1Qκ belong to
the class C1, since the projectors DΠ0Q1D−, . . . ,DΠκ−1QκD− do so. Taking Propo-
sition 2.7 into account we know the subspaces D(N0 + · · ·+Ni), i = 1, . . . ,κ , to be
continuously differentiable.
Now we construct widely orthogonal projectors. Choose Q̄0 = Q̄∗0, and form
Ḡ1 = G0 + B0Q̄0. Due to Lemma 2.12 (d) it holds that Ḡ1 = G1Z1,
N̄0 + N̄1 = N0 +N1, Z1(N̄0 ∩ N̄1) = N0 ∩N1. Since Z1 is nonsingular, Ḡ1 has con-
stant rank r1, and the intersection NU1 = N̄1 ∩ N̄0 has constant dimension u1. Put
X̄1 = N̄0 ∩ (N̄0 ∩ N̄1)

⊥ and fix the projector Q̄1 by means of im Q̄1 = N̄1, ker Q̄1 =
X̄1 ⊕ (N̄0 + N̄1)

⊥. Q̄1 is continuous, but for the sequence Q̄0, Q̄1 to be admis-
sible, DΠ̄1D̄− has to belong to the class C1. This projector has the nullspace
kerDΠ̄1D̄− = D(N̄0 + N̄1)⊕ kerR = D(N0 +N1)⊕ kerR, which is already known
to belong to C1. If DΠ̄1D̄− has a range that is a C1 subspace, then DΠ̄1D̄− it-
self is continuously differentiable. Derive imDΠ̄1D̄− = imDΠ̄1 = D(N̄0 + N̄1)

⊥ =
D(N0 +N1)

⊥ = DD∗(D(N0 +N1))
⊥. Since D(N0 +N1) belongs to the class C1, so

does (D(N0 +N1))
⊥. It turns out that DΠ̄1D̄− is in fact continuously differentiable,

and hence, Q̄0, Q̄1 are admissible.
To use induction, assume that Q̄0, . . . , Q̄i−1 are admissible and widely orthogonal.
Lemma 2.12 (d) yields Ḡi = GiZi, N̄0 + · · · + N̄i−1 = N0 + · · · + Ni−1,
N̄0 + · · ·+ N̄i = N0 + · · ·+Ni, Zi(N̄i∩ (N̄0 + · · ·+ N̄i−1)) = Ni∩ (N0 + · · ·+Ni−1).
Since Zi is nonsingular, it follows that Ḡi has constant rank ri and the intersection
NU i = N̄i∩ (N̄0+ · · ·+ N̄i−1) has constant dimension ui. The involved subspaces are
continuous. Put

X̄i = (N̄0 + · · ·+ N̄i−1)∩ ((N̄0 + · · ·+ N̄i−1)∩ N̄i)
⊥

and choose Q̄i to be the projector onto N̄i along (N̄0 + · · ·+ N̄i)
⊥⊕ X̄i.

Q̄0, . . . , Q̄i−1, Q̄i would be admissible if DΠ̄iD̄− was continuously differentiable.
We know kerDΠ̄iD̄− = D(N0 + · · ·+Ni)⊕ kerR to be already continuously differ-
entiable. On the other hand, we have imDΠ̄iD̄− = D imΠ̄i = D(N0 + · · ·+Ni)

⊥ =
DD∗(D(N0 + · · ·+Ni))

⊥, hence imDΠ̄iD̄− belongs to the class C1. ��

The widely orthogonal projectors have the advantage that they are uniquely de-
termined. This proves its value in theoretical investigations, for instance in verifying
Theorem 3.33 on necessary and sufficient regularity conditions for nonlinear DAEs,
as well as for investigating critical points. Moreover, in practical calculations, in
general, there might be difficulties in ensuring the continuity of the projector func-
tions Πi. Fortunately, owing to their uniqueness the widely orthogonal projector
functions are continuous a priori.
By Proposition 2.16, at least for all DAEs with properly stated leading term, and
with a continuously differentiable coefficient D, we may access widely orthogonal
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projector functions. However, if D is just continuous, and if DD∗ fails to be continu-
ously differentiable as required, then it may happen in fact that admissible projector
functions exist but the special widely orthogonal projector functions do not exist for
lack of smoothness. The following example shows this situation. At this point we
emphasize that most DAEs are given with a smooth D, and our example is rather
academic.

Example 2.17 (Lack of smoothness for widely orthogonal projectors). Given the
DAE ⎡

⎣
1 0
0 1
0 0

⎤
⎦
([

1 α 0
0 1 0

]
x
)′

+

⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦x = q,

with a continuous scalar function α , the DAE has the coefficients

A =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ , D =

[
1 α 0
0 1 0

]
, B =

⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦ , R =

[
1 0
0 1

]
.

First we construct an admissible matrix function sequence. Set and derive

D− =

⎡
⎣

1 −α
0 1
0 0

⎤
⎦ , G0 =

⎡
⎣

1 α 0
0 1 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 α 0
0 1 −1
0 0 0

⎤
⎦ , (2.24)

and further

Q1 =

⎡
⎣

0 −α 0
0 1 0
0 1 0

⎤
⎦ , Q1Q0 = 0, DΠ1D− =

[
1 0
0 0

]
, G2 =

⎡
⎣

1 α 0
0 1 −1
0 1 0

⎤
⎦ .

The projector functions Q0,Q1 are admissible, and G2 is nonsingular, such that Q2 =
0. This sequence is admissible for each arbitrary continuous α; however it fails to
be widely orthogonal. Namely, the product Π0Q1 is not symmetric.
Next we construct widely orthogonal projector functions. We start with the same
matrix functions Q0, D− and G1 (see (2.24)). Compute further

N0⊕N1 = span
{⎡
⎣

0
0
1

⎤
⎦ ,
⎡
⎣
−α
1
1

⎤
⎦
}
, (N0⊕N1)

⊥ = span

⎡
⎣

1
α
0

⎤
⎦ .

The required projector function onto N1 along N0⊕ (N0⊕N1)
⊥ is

Q1 =
1

1+α2

⎡
⎣
α2 −α 0
−α 1 0
−α 1 0

⎤
⎦ , and it follows that DΠ1D− =

[
1 0
α

1+α2 0

]
.
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We recognize that, in the given setting, DΠ1D− is just continuous. If we addition-
ally assume that α ∈ C1(I,R), then Q0,Q1 appear to be admissible. Notice that in

this case DD∗ =
[

1+α2 α
α 1

]
is continuously differentiable, which confirms Propo-

sition 2.16 once more.
Let us stress that this special DAE is solvable for arbitrary continuous α . From this
point of view there is no need to assume α to be C1. Namely, the detailed equations
are

(x1 +αx2)
′ = q1,

x′2− x3 = q2,

x2 = q3,

with the solutions

x1(t)+α(t)x2(t) = x1(0)+α(0)x2(0)+
t∫

0

q3(s)ds,

x2(t) = q3(t),

x3(t) = q′3(t)−q2(t).

It turns out that widely orthogonal projectors need some specific slightly higher
smoothness which is not justified by solvability. ��

2.3 Invariants under transformations and refactorizations

Given the DAE (2.1) with continuous coefficients and properly stated leading term,
we premultiply this equation by a nonsingular matrix function
L ∈ C(I,L(Rk)) and transform the unknown x = Kx̄ by means of a nonsingular
matrix function K ∈ C(I,L(Rm)) such that the DAE

Ā(D̄x̄)′+ B̄x̄ = q̄ (2.25)

results, where q̄ := Lq, and

Ā := LA, D̄ := DK, B̄ := LBK. (2.26)

These transformed coefficients are continuous as are the original ones. Moreover,
Ā and D̄ inherit from A and D the constant ranks, and the leading term of (2.25) is
properly stated (cf. Definition 2.1) with the same border projector R̄ = R as ker Ā =
kerA, im D̄ = imD.
Suppose that the original DAE (2.1) has admissible projectors Q0, . . . ,Qκ . We form
a corresponding matrix function sequence for the transformed DAE (2.25) starting
with
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Ḡ0 = ĀD̄ = LADK = LG0K, B̄0 = B̄ = LB0K,

Q̄0 := K−1Q0K, D̄− = K−1D−, P̄0 = K−1P0K,

such that D̄D̄− = DD− = R, D̄−D̄ = P̄0, and

Ḡ1 = Ḡ0 + B̄0Q̄0 = L(G0 +B0Q0)K = LG1K.

This yields N̄0 = K−1N0, N̄1 = K−1N1, N̄0 ∩ N̄1 = K−1(N0 ∩ N1). Choose
Q̄1 := K−1Q1K which corresponds to X̄1 := K−1X1. Proceeding in this way at each
level, i = 1, . . . ,κ , with

Q̄i := K−1QiK

it follows that Π̄i = K−1ΠiK, D̄Π̄iD̄− = DΠiD−, X̄i = K−1Xi, NU i = K−1 �
Ni, and

Ḡi+1 = LGi+1K, B̄i+1 = LBi+1K.

This shows that Q̄0, . . . , Q̄κ are admissible for (2.25), and the following assertion
becomes evident.

Theorem 2.18. If the DAE (2.1) has an admissible matrix function sequence up
to level κ ∈ N, with characteristic values ri, ui, i = 1, . . . ,κ , then the transformed
equation (2.25) also has an admissible matrix function sequence up to level κ , with
the same characteristic values, i.e., r̄i = ri, ūi = ui, i = 1, . . . ,κ .

By Theorem 2.18 the characteristic values are invariant under transformations of
the unknown function as well as under premultiplications of the DAE. This fea-
ture seems to be rather trivial. The invariance with respect to refactorizations of the
leading term, which we verify next, is more subtle.

First we explain what refactorization means. For the given DAE (2.1) with prop-
erly stated leading term, we consider the product AD to represent a factorization
of the leading term and we ask whether we can turn to a different factorization
AD = ĀD̄ such that ker Ā and im D̄ are again transversal C1-subspaces. For instance,
in Example 2.4, equation (2.10) results from equation (2.9) by taking a different
factorization.

In general, we describe the change to a different factorization as follows:
Let H ∈ C1(I,L(Rs,Rn) be given together with a generalized inverse
H− ∈ C1(I,L(Rn,Rs)) such that

H−HH− = H−, HH−H = H, RHH−R = R. (2.27)

H has constant rank greater than or equal to the rank of the border projector R.
In particular, one can use any nonsingular H ∈ C1(I,L(Rn)). However, we do not
restrict ourselves to square nonsingular matrix functions H.
Due to AR = ARHH−R we may write

A(Dx)′ = ARHH−R(Dx)′ = ARH(H−RDx)′ −ARH(H−R)′Dx

= AH(H−Dx)′ −AH(H−R)′Dx.
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This leads to the new DAE
Ā(D̄x)′+ B̄x = q (2.28)

with the continuous coefficients

Ā := AH, D̄ := H−D, B̄ := B−ARH(H−R)′D. (2.29)

Because of ĀD̄ = AD we call this procedure that changes (2.1) to (2.28) a refactor-
ization of the leading term. It holds that

ker Ā = kerAH = kerRH, im D̄ = imH−D = imH−R;

further (H−RH)2 = H−RHH−RH = H−RH. It becomes clear that
H−RH ∈ C1(I,L(Rs)) is actually the border projector corresponding to the new
DAE (2.28), and (2.28) has a properly stated leading term.
We emphasize that the old border space R

n and the new one R
s may actually have

different dimensions, and this is accompanied by different sizes of the involved
matrix functions. Here, the only restriction is n,s≥ r := rankD.

Example 2.19 (A simple refactorization changing the border space dimension). The
semi-explicit DAE

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2,

comprising m1 and m2 equations can be written with proper leading term in different
ways, for instance as

[
I 0
0 0

]
(

[
I 0
0 0

]
x)′+

[
B11 B12
B21 B22

]
x = q (2.30)

as well as [
I
0

]
(
[
I 0
]

x)′+
[

B11 B12
B21 B22

]
x = q. (2.31)

The border projector R of the DAE (2.30) as well as H and H−,

R =

[
I 0
0 0

]
, H =

[
I
0

]
, H− =

[
I 0
]
,

satisfy condition (2.27). The DAE (2.31) results from the DAE (2.30) by refactor-
ization of the leading term by means of H. The border projector of the DAE (2.31) is
simply R̄ = H−RH = I. The dimension of the border space is reduced from m1+m2
in (2.30) to m1 in (2.31). ��

Example 2.20 (Nontrivial refactorization). The following two DAEs are given in
Example 2.4,
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⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ã

(⎡
⎣

0 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
D̃(t)

x(t)

)′
+

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B̃(t)

x(t) = q(t), t ∈ R

and ⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A(t)

(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
D

x(t)

)′
+

⎡
⎣

1 0 0
0 0 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B(t)

x(t) = q(t), t ∈ R.

The border projector of the last DAE is simply R = D. The nonsingular matrix func-
tion

H(t) =

⎡
⎣

1 0 0
0 1 0
0 t 1

⎤
⎦ , H(t)− = H(t)−1 =

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦

fulfills condition (2.27). Comparing the coefficients, one proves that the first DAE
results from the refactorization of the second DAE with H. Conversely, one obtains
the second DAE by refactorization of the first one with H−1.
Observe that the matrix pencil {ÃD̃(t), B̃(t)} is regular with Kronecker index 3,
while {A(t)D,B(t)} is a singular pencil. This confirms once more the well-known
fact that local matrix pencils are inapplicable to characterize time-varying DAEs.

��

Theorem 2.21. Let the DAE (2.1) have a properly stated leading term and an admis-
sible matrix function sequence up to level κ ∈N and characteristic values r0, . . . ,rκ ,
u1, . . . ,uκ .
Let the matrix functions H ∈ C1(I,L(Rs,Rn) and H− ∈ C1(I,L(Rn,Rs) satisfy con-
dition (2.27).

(a) Then the refactorized DAE (2.28) also has a properly stated leading term and
an admissible matrix function sequence up to level κ . Its characteristic values
coincide with that of (2.1).

(b) The subspaces imGi, N0 + · · ·+Ni, i = 0, . . . ,κ , are invariant.

Proof. Put F1 := I.
We use induction to show that the following relations are valid:

Ḡi = GiFi · · ·F1, (2.32)

Q̄i := (Fi · · ·F1)
−1QiFi · · ·F1, Π̄i−1Q̄i =Πi−1Qi, Π̄i =Πi, (2.33)

B̄i = Bi−GiD−H(H−R)′DΠi +Gi

i−1

∑
j=0

Q jZi jΠi−1, (2.34)

with nonsingular
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Fi := I +Pi−1

i−2

∑
j=0

Q jZi−1 jΠi−2Qi−1, i = 1, . . . ,κ .

The coefficients Z� j are continuous matrix functions whose special form does not
matter at all.
Since Ḡ0 = ĀD̄ = AD = G0 we may choose D̄− = D−H, Q̄0 = Q0. It follows
that Π̄0 = Π0, B̄0 = B̄ = B− ARH(H−R)′D and B̄0Q̄0 = BQ0 = B0Q0, hence
Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 +B0Q0 = G1 = G1F1. Choose Q̄1 = Q1 = F−1

1 Q1 such that
Π̄1 =Π1, Π̄0Q̄1 =Π0Q1, D̄Π̄1D̄− = H−DΠ1D−H, and further

B̄1 = B̄0P̄0− Ḡ1D̄−(D̄Π̄1D̄−)′D̄Π̄0

= B0P0−ARH(H−R)′D−G1D−H(H−DΠ1D−H)′H−DΠ0

= B0P0−G1D−(DΠ1D−)′DΠ0 +G1D−(DΠ1D−)′DΠ0

−ARH(H−R)′D−G1D−H(H−RDΠ1D−RH)′H−DΠ0

= B1 +G1D−(DΠ1D−)′DΠ0−ARH(H−R)′D−G1D−H{(H−R)′DΠ1D−RH

+H−R(DΠ1D−)′RH +H−RDΠ1D−(RH)′}H−D

= B1−ARH(H−R)′D−G1D−H(H−R)′DΠ1−G1Π1D−(RH)′H−RD

= B1−G1D−H(H−R)′DΠ1−ARH(H−R)′D+G1Π1D−RH(H−R)′D.

In the last expression we have used that

D−(RHH−R)′D = D−R′D = 0.

Compute G1Π1D−RH(H−R)′D−ARH(H−R)′D=G1(Π1−I)D−RH(H−R)′D and

G1(Π1− I) = G1((I−Q0)(I−Q1)− I) = G1(−Q0−Q1 +Q0Q1)

= G1(−Q0 +Q0Q1) =−G1Q0P1.

This yields the required expression

B̄1 = B1−G1D−H(H−R)′DΠ1 +G1Q0Z10Π0

with Z10 :=−Q0P1D−RH(H−R)′D.
Next, supposing the relations (2.32)–(2.34) to be given up to i, we show their validity
for i+1. Derive

Ḡi+1 = Ḡi + B̄iQ̄i = {Gi + B̄i(Fi · · ·F1)
−1Qi}Fi · · ·F1

= {Gi + B̄iΠi−1(Fi · · ·F1)
−1Qi}Fi · · ·F1,

and, because of Πi−1F−1
1 · · ·F−1

i =Πi−1, we obtain further
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Ḡi+1 =
{

Gi +BiQi−GiD−H(H−R)′DΠiQi +Gi

i−1

∑
j=0

Q jZi jΠi−1Qi

}
Fi · · ·F1

=
{

Gi+1 +Gi

i−1

∑
j=0

Q jZi jΠi−1Qi

}
Fi · · ·F1

= Gi+1

{
I +Pi

i−1

∑
j=0

Q jZi jΠi−1Qi

}
Fi · · ·F1

= Gi+1Fi+1Fi · · ·F1,

with nonsingular matrix functions

Fi+1 = I +Pi

i−1

∑
j=0

Q jZi jΠi−1Qi, F−1
i+1 = I−Pi

i−1

∑
j=0

Q jZi jΠi−1Qi.

Put Q̄i+1 := (Fi+1 · · ·F1)
−1Qi+1Fi+1 · · ·F1, and compute

Π̄iQ̄i+1 =ΠiQ̄i+1 =ΠiF−1
1 · · ·F−1

i+1Qi+1Fi+1 · · ·F1

=ΠiQi+1Fi+1 · · ·F1 =ΠiQi+1ΠiFi+1 · · ·F1 =ΠiQi+1Πi =ΠiQi+1,

Π̄i+1 = Π̄i− Π̄iQ̄i+1 =Πi−ΠiQi+1 =Πi+1.

It remains to verify the expression for B̄i+1. We derive

B̄i+1 = B̄iP̄i− Ḡi+1D̄−(D̄Π̄i+1D̄−)′D̄Π̄i

= B̄iΠi−Gi+1Fi+1 · · ·F1D−H(H−DΠi+1D−H)′H−DΠi,

and

B̄i+1 =
{

Bi−GiD−H(H−R)′DΠi +Gi

i−1

∑
j=0

Q jZi jΠi−1

}
Πi

−Gi+1(Fi+1 · · ·F1− I)D−H(H−DΠi+1D−H)′H−DΠi

−Gi+1D−H{(H−R)′RDΠi+1D−RH +H−R(DΠi+1D−)′RH

+H−RDΠi+1D−(RH)′}H−DΠi,

and

B̄i+1 = BiPi−GiD−H(H−R)′DΠi +Gi

i−1

∑
j=0

Q jZi jΠi

−Gi+1D−H(H−R)′DΠi+1−Gi+1D−(DΠi+1D−)′DΠi

−Gi+1Πi+1D−(RH)′H−RDΠi

−Gi+1(Fi+1 · · ·F1− I)D−H(H−DΠi+1D−H)′H−DΠi,
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and

B̄i+1 = Bi+1−Gi+1D−H(H−R)′DΠi+1−Gi+1PiD−H(H−R)′DΠi

+Gi+1Πi+1D−H(H−R)′DΠi +Gi+1Pi

i−1

∑
j=0

Q jZi jΠi

−Gi+1(Fi+1 · · ·Fi− I)D−H(H−DΠi+1D−H)′H−DΠi.

Finally, decomposing

Pi

i−1

∑
j=0

Q jZi jΠi =
i−1

∑
j=0

Q jZi jΠi−Qi

i−1

∑
j=0

Q jZi jΠi,

and expressing

Fi+1 · · ·F1− I =
i

∑
j=0

Q jAi+1, j,

and taking into account that

Gi+1{Πi+1−Pi}D−H(H−R)′DΠi = Gi+1

i

∑
j=0

QiBi+1, jD−H(H−R)′DΠi

we obtain

B̄i+1 = Bi+1−Gi+1D−H(H−R)′DΠi+1 +
i

∑
j=0

Q jZi+1, jDΠi.

��

By Theorem 2.21, the characteristic values and the tractability index are invariant
under refactorizations of the leading term. In this way, the size of A and D may
change or not (cf. Examples 2.4 and 2.19).

It is worth mentioning that also the associated function space accommodating the
solutions of the DAE remains invariant under refactorizations as the next proposition
shows.

Proposition 2.22. Given the matrix function D ∈ C(I,L(Rm,Rn)) and the projec-
tor function R ∈ C1(I,L(Rn)) onto imD, let H ∈ C1(I,L(Rs,Rn)) be given to-
gether with a generalized inverse H− ∈ C1(I,L(Rn,Rs)) such that H−HH− = H−,
HH−H = H, and RHH−R = R. Then, for D̄ = H−D, it holds that

C1
D̄(I,R

m) = C1
D(I,Rm).

Proof. For any x ∈ C1
D(I,Rm) we find D̄x = H−Dx ∈ C1(I,Rs), and hence

x ∈ C1
D̄(I,R

m). Conversely, for x ∈ C1
D̄(I,R

m), we find Dx = RDx = RHH−Dx =

RHD̄x ∈ C1(I,Rs), and hence x ∈ C1
D(I,Rm). ��
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2.4 Decoupling regular DAEs

The main objective of this section is the characterization of regular DAEs by means
of admissible matrix function sequences and the projector based structural decou-
pling of each regular DAE (2.1) into an inherent regular ODE

u′ − (DΠμ−1D−)′u+DΠμ−1G−1
μ BμD−u = DΠμ−1G−1

μ q

and a triangular subsystem of several equations including differentiations
⎡
⎢⎢⎢⎢⎣

0 N01 · · · N0,μ−1

0
. . .

...
. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
(Dv1)

′

...
(Dvμ−1)

′

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

I M01 · · · M0,μ−1

I
. . .

...
. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
...

vμ−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

H0
H1

...
Hμ−1

⎤
⎥⎥⎥⎦D−u =

⎡
⎢⎢⎢⎣

L0
L1
...

Lμ−1

⎤
⎥⎥⎥⎦q.

This structural decoupling is associated with the decomposition (see Theorem 2.30)

x = D−u+ v0 + v1 + · · ·+ vμ−1.

2.4.1 Preliminary decoupling rearrangements

We apply admissible projector functions Q0, . . . ,Qκ to rearrange terms within the
DAE (2.1) in a similar way as done in Chapter 1 on constant coefficient DAEs
for obtaining decoupled systems. The objective of the rearrangements is to place a
matrix function Gκ in front of the derivative component (DΠκx)′, the rank of which
is as large as possible, and at the same time to separate terms living in N0+ · · ·+Nκ .
We emphasize that we do not change the given DAE at all, and we do not transform
the variables. We work just with the given DAE and its unknown. What we do are
rearrangements of terms and separations or decouplings of solution components
by means of projector functions. We proceed stepwise. Within this procedure, the
special form of the matrix functions Bi appears to make good sense.
This part is valid for general DAEs with proper leading term, possibly with less or
more variables than equations (m �= k). The rearranged DAE versions serve then as
the basis for further decouplings and solutions in the present chapter and also in
Chapter 10.

First rewrite (2.1) as
G0D−(Dx)′+B0x = q, (2.35)
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and then as
G0D−(Dx)′+B0(Q0x+P0x) = q

and rearrange this in order to increase the rank of the leading coefficient to

(G0 +B0Q0)(D−(Dx)′+Q0x)+B0P0x = q,

or
G1D−(Dx)′+B0P0x+G1Q0x = q. (2.36)

Compute

P1D−(Dx)′ = P0P1D−(Dx)′+Q0P1D−(Dx)′

= D−DP0P1D−(Dx)′+Q0P1D−(Dx)′

= D−(DP0P1x)′ −D−(DP0P1D−)′Dx+Q0P1D−(Dx)′

= D−(DP0P1x)′ −D−(DP0P1D−)′Dx− (I−P0)Q1D−(Dx)′

= D−(DΠ1x)′ −D−(DΠ1D−)′Dx− (I−Π0)Q1D−(DΠ0x)′,

and hence

G1D−(Dx)′ = G1D−(DΠ1x)′ −G1D−(DΠ1D−)′DP0x−G1(I−Π0)Q1D−(DΠ0x)′.

Inserting this into (2.36) yields

G1D−(DΠ1x)′ + (B0P0−G1D−(DΠ1D−)′DP0)x

+ G1{Q0x− (I−Π0)Q1D−(Dx)′}= q,

and, regarding the definition of the matrix function B1,

G1D−(DΠ1x)′+B1x+G1{Q0x− (I−Π0)Q1D−(Dx)′}= q. (2.37)

Note that, if N0 ∩N1 = 0, then the derivative (DΠ1x)′ is no longer involved in the
term

Q1D−(Dx)′ = Q1D−DP0Q1D−(Dx)′ = Q1D−(DP0Q1x)′ −Q1D−(DP0Q1D−)′Dx.

In the next step we move a part of the term B1x in (2.37) to the leading term, and so
on. Proposition 2.23 describes the result of these systematic rearrangements.

Proposition 2.23. Let the DAE (2.1) with properly stated leading term have the ad-
missible projectors Q0, . . . ,Qκ , where κ ∈ N∪{0}.

(1) Then this DAE can be rewritten in the form

GκD−(DΠκx)′+Bκx+Gκ
κ−1

∑
l=0
{Qlx+(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′}= q.

(2.38)
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(2) If, additionally, all intersections
�
Ni, i = 1, . . . ,κ , are trivial, then the DAE (2.1)

can be rewritten as

GκD−(DΠκx)′+Bκx

+Gκ
κ−1

∑
l=0
{Qlx− (I−Πl)Ql+1D−(DΠlQl+1x)′+VlDΠlx}= q,

(2.39)

with coefficients

Vl = (I−Πl){PlD−(DΠlD−)′ −Ql+1D−(DΠl+1D−)′}DΠlD−, l = 0, . . . ,κ−1.

Comparing with the rearranged DAE obtained in the constant coefficient case (cf.
(1.35)), now we observe the extra terms Vl caused by time-dependent movements of
certain subspaces. They disappear in the time-invariant case.

Proof (of Proposition 2.23). (1) In the case of κ = 0, equation (2.35) is just a trivial
reformulation of (2.1). For κ = 1 we are done by considering (2.37). For applying
induction, we suppose for i+1≤ κ , that (2.1) can be rewritten as

GiD−(DΠix)′+Bix+Gi

i−1

∑
l=0
{Qlx+(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′}= q. (2.40)

Represent Bix = BiPix+BiQix = BiPix+Gi+1Qix and derive

GiD−(DΠix)′ = Gi+1Pi+1PiD−(DΠix)′

= Gi+1{Πi+1PiD−(DΠix)′+(I−Πi)Pi+1PiD−(DΠix)′}
= Gi+1{D−DΠi+1D−(DΠix)′+(I−Πi)Pi+1PiD−(DΠix)′}
= Gi+1D−(DΠi+1x)′ −Gi+1D−(DΠi+1D−)′DΠix

+Gi+1(I−Πi)(Pi−Qi+1Pi)D−(DΠix)′).

Taking into account that (I − Πi) = Q0P1 · · ·Pi + · · · + Qi−1Pi + Qi and
GiQl = Gi+1Ql , l = 0, . . . , i−1, we realize that (2.40) can be reformulated to

Gi+1D−(DΠi+1x)′+(BiPi−Gi+1D−(DΠi+1D−)′DΠi)x

+Gi+1Qix+Gi+1

i−1

∑
l=0
{Qlx+(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′}

+Gi+1(I−Πi)(Pi−Qi+1Pi)D−(DΠix)′ = q.

We obtain in fact

Gi+1D−(DΠi+1x)′+Bi+1x+Gi+1

i

∑
l=0
{Qlx+(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′}= q

as we tried for.
(2) Finally assuming

�
Ni = {0}, i= 1, . . . ,κ , and taking into account Proposition 2.7,
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we compute the part in question as

F :=
k−1

∑
l=0

(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′ =
k−1

∑
l=0

(I−Πl)(Pl−Ql+1)D−(DΠlx)′

=
k−1

∑
l=0

(I−Πl)
{

PlD−(DΠlx)′ −Ql+1D−DΠlQl+1D−(DΠlx)′
}
.

Applying the relations

(DΠlx)′ = (DΠlD−)′(DΠlx)+DΠlD−(DΠlx)′,

(I−Πl)PlD−DΠlD− = (I−Πl)PlΠlD− = 0,

DΠlQl+1D−(DΠlx)′ = (DΠlQl+1x)′ − (DΠlQl+1D−)′DΠlx,

Ql+1(DΠlQl+1D−)′DΠl = Ql+1(DΠlD−)′DΠl−Ql+1(DΠl+1D−)′DΠl

=−Ql+1(DΠl+1D−)′DΠl ,

we obtain, with the coefficients Vl described by the assertion,

F =
k−1

∑
l=0

(I−Πl)
{

PlD−(DΠlD−)′DΠlx+Ql+1D−(DΠlQl+1D−)′DΠlx

−Ql+1D−(DΠlQl+1x)′
}
=

k−1

∑
l=0

{
VlDΠlx− (I−Πl)Ql+1D−(DΠlQl+1x)′

}
,

and this completes the proof. ��

How can one make use of the rearranged version of the DAE (2.1) and the structural
information included in this version? We discuss this question in the next subsection
for the case of regular DAEs, that is, if m = k and a nonsingular Gμ exists. We study
nonregular cases in Chapter 10.

For the moment, to gain a first impression, we cast a glance at the simplest sit-
uation, if G0 already has maximal rank. Later on we assign the tractability index 0
to each DAE whose matrix functions G0 already have maximal rank. Then the DAE
(2.35) splits into the two parts

G0D−(Dx)′+G0G−0 B0x = G0G−0 q, W0B0x =W0q. (2.41)

Since imG0 is maximal, it holds that imB0Q0 ⊆ imG1 = imG0, hence
W0B0 =W0B0P0. Further, since DG−0 G0 = D, we find the DAE (2.35) to be equiv-
alent to the system

(Dx)′ −R′Dx+DG−0 B0D−Dx+DG−0 B0Q0x = DG−0 q, W0B0D−Dx =W0q,
(2.42)

the solution of which decomposes as x = D−Dx+Q0x. It becomes clear that this
DAE comprises an explicit ODE for Dx, that has an undetermined part Q0x to be
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chosen arbitrarily. The ODE for Dx is accompanied by a consistency condition ap-
plied to Dx and q. If G0 is surjective, the consistency condition disappears. If G0 is
injective, then the undetermined component Q0x disappears. If G0 is nonsingular,
which happens just for m = k, then the DAE is nothing other than a regular implicit
ODE with respect to Dx.

Example 2.24 (Nonregular DAE). The DAE
[

t
1

]
(
[
−1 t

]
x(t))′+

[
1 −t
0 0

]
x(t) = q(t)

leads to

G0(t) =
[
−t t2

−1 t

]
, Q0(t) =

[
0 t
0 1

]
, B0(t) =

[
1 −t
0 0

]
, G1 = G0.

Compute further

D−(t) =
[
−1
0

]
, R = 1, G−0 (t) =

[
0 −1
0 0

]
, W0(t) =

[
1 −t
0 0

]
,

DG−0 B0D− = 0, B0Q0 = 0, DG−0 =
[
0 1
]
.

For the second equation in formula (2.42) we obtain

W0B0x =W0q⇔−x1 + tx2 = q1− tq2

and the inherent explicit ODE in formula (2.42) reads

(−x1 + tx2)
′ = q2.

In this way the consistency condition (q1− tq2)
′ = q2 follows. The solution is

x(t) = D−(−x1 + tx2)+Q0x

=

[
x1− tx2

0

]
+

[
tx2
x2

]
,

with an arbitrary continuous function x2. ��

Of course, if the tractability index is greater than 0, things become much more sub-
tle.

2.4.2 Regularity and basic decoupling of regular DAEs

We define regularity for DAEs after the model of classical ODE theory. The system
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A(t)x′(t)+B(t)x(t) = q(t), t ∈ I, (2.43)

with continuous coefficients, is named a regular implicit ODE or an ODE having
solely regular line-elements, if the matrix A(t) ∈ L(Rm) remains nonsingular on the
given interval. Then the homogeneous version of this ODE has a solution space of
dimension m and the inhomogeneous ODE is solvable for each continuous excita-
tion q. No question, these properties are maintained, if one turns to a subinterval. On
the other hand, a point at which the full-rank condition of the matrix A(t) becomes
defective is a critical point, and different kinds of singularities are known to arise
(e.g. [123]).
Roughly speaking, in our view, a regular DAE should have similar properties. It
should be such that the homogeneous version has a finite-dimensional solution space
and no consistency conditions related to the excitations q arise for inhomogeneous
equations, which rules out DAEs with more or less unknowns than equations. Ad-
ditionally, each restriction of a DAE to a subinterval should also inherit all charac-
teristic values.

In the case of constant coefficients, regularity of DAEs is bound to regular pairs
of square matrices. In turn, regularity of matrix pairs can be characterized by means
of admissible matrix sequences and the associated characteristic values, as described
in Section 1.2. A pair of m×m matrices is regular, if and only if an admissible ma-
trix sequence shows a nonsingular matrix Gμ and the characteristic value rμ = m.
Then the Kronecker index of the given matrix pair results as the smallest such index
μ . The same idea applies now to DAEs with time-varying coefficients, too. How-
ever, we are now facing continuous matrix functions in distinction to the constant
matrices in Chapter 1. While, in the case of constant coefficients, admissible pro-
jectors do always exist, their existence is now tied to several rank conditions. These
rank conditions are indeed relevant to the problem. A point at which these rank
conditions are defective is considered as a critical point.

We turn back to the DAE (2.1), i.e.,

A(t)(D(t)x(t))′+B(t)x(t) = q(t), t ∈ I. (2.44)

We are looking for solutions in the function space C1
D(I,Rm). Recall that the ranks

ri = rankGi in admissible matrix function sequences (see Definitions 2.6, 2.9, The-
orem 2.8) give the meaning of characteristics of the DAE on the given interval. The
following regularity notion proves to meet the above expectations.

Definition 2.25. The DAE (2.44) with properly stated leading term and m = k is
said to be, on the given interval,

(1) regular with tractability index 0, if r0 = m,
(2) regular with tractability index μ ∈N, if there is an admissible matrix function

sequence with characteristic values rμ−1 < rμ = m,
(3) regular, if the DAE is regular with any tractability index μ (i.e., case (1) or

(2) apply).
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This regularity notion is well-defined in the sense that it is independent of the special
choice of the admissible projector functions, which is guaranteed by Theorem 2.8.

Since for a regular DAE the matrix function Gμ is nonsingular, all intersections
�
Ni = Ni∩ (N0 + · · ·+Ni−1) are trivial, as a consequence of Proposition 2.7. Then it
holds that

Xi = (N0 + · · ·+Ni−1)�
�
Ni = N0 + · · ·+Ni−1 = N0⊕·· ·⊕Ni−1 ⊆ kerQi,

i = 1, . . . ,μ−1, thus Qi(I−Πi−1) = 0, and, equivalently,

QiQ j = 0, 0≤ j ≤ i−1, i = 1, . . . ,μ−1. (2.45)

Additionally, Proposition 2.7 (4) yields GμQ j = B jQ j, thus

Q j = G−1
μ B jΠ j−1Q j, j = 1, . . . ,μ−1. (2.46)

While, in the general Definition 2.6, only the part Π j−1Q j = Π j−1−Π j of an ad-
missible projector function Q j is required to be continues, for a regular DAE, the
admissible projector functions are continuous in all their components, as follows
from the representation (2.46).
We emphasize once again that, for regular DAEs, the admissible projector functions
are always regular admissible, and they are continuous in all components. At this
place, we draw the readers attention to the fact that, in papers dealing exclusively

with regular DAEs, the requirements for trivial intersections
�
Ni and the continuity of

Qi are usually already incorporated into the admissibility notion (e.g., [170]) or into
the regularity notion (e.g., [167], [137]). Then, the relations (2.46) are constituent
parts of the definitions (see also the recent monograph [194]).

Here is a further special quality of regular DAEs: The associated subspaces (cf.
Theorem 2.8)

Si = kerWiB = {z ∈ R
m : Biz ∈ imGi}= Si−1 +Ni−1

are now C-subspaces, too. They have the constant dimensions ri. This can be imme-
diately checked. By Lemma A.9, the nonsingularity of Gμ implies the
decomposition Nμ−1⊕ Sμ−1 = R

m, thus dimSμ−1 = rμ−1. Regarding the relation
ker(Gμ−2 +Wμ−2Bμ−2Qμ−2) = Nμ−2∩Sμ−2, we conclude by Proposition 2.5 (3)
that Nμ−2 ∩ Sμ−2 has the same dimension as Nμ−1 has. This means
dimNμ−2 ∩ Sμ−2 = m− rμ−1. Next, the representation Sμ−1 = Sμ−2 +Nμ−2 leads
to rμ−1 = dimSμ−2 +(m− rμ−2)− (m− rμ−1), therefore dimSμ−2 = rμ−2, and so
on.

We decouple the regular DAE (2.44) into its characteristic components, in a
similar way as we did with constant coefficient DAEs in Subsection 1.2.2. Since
Gμ is nonsingular, by introducing Qμ = 0, Pμ = I, Πμ = Πμ−1, the sequence
Q0, . . . ,Qμ−1,Qμ is admissible, and we can apply Proposition 2.23. The DAE (2.44)
can be rewritten as
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GμD−(DΠμ−1x)′+Bμx (2.47)

+Gμ

μ−1

∑
l=0
{Qlx− (I−Πl)Ql+1D−(DΠlQl+1x)′+VlDΠlx}= q.

If the coefficients were constant, we would have D−(DΠμ−1x)′ = (D−DΠμ−1x)′ =
(Πμ−1x)′, further D−(DΠlQl+1x)′ = (ΠlQl+1x)′, and Vl = 0. This means that for-
mula (2.47) precisely generalizes formula (1.35) obtained for constant coefficients.
The new formula (2.47) contains the extra terms Vl which arise from subspaces
moving with time. They disappear in the time-invariant case.

In Subsection 1.2.2, the decoupled version of the DAE is generated by the scaling
with G−1

μ , and then by the splitting by means of the projectors Πμ−1 and I−Πμ−1.
Here we go a slightly different way and use DΠμ−1 instead of Πμ−1. Since Πμ−1
can be recovered from DΠμ−1 due to Πμ−1 = D−DΠμ−1, no information gets lost.
Equation (2.47) scaled by G−1

μ reads

D−(DΠμ−1x)′+G−1
μ Bμx (2.48)

+
μ−1

∑
l=0
{Qlx− (I−Πl)Ql+1D−(DΠlQl+1x)′+VlDΠlx}= G−1

μ q.

The detailed expression for Vl (Proposition 2.23) is

Vl = (I−Πl){PlD−(DΠlD−)′ −Ql+1D−(DΠl+1D−)′}DΠlD−.

This yields DΠμ−1Vl = 0, l = 0, . . . ,μ−1, and multiplying (2.48) by DΠμ−1 results
in the equation

DΠμ−1D−(DΠμ−1x)′+DΠμ−1G−1
μ Bμx = DΠμ−1G−1

μ . (2.49)

Applying the C1-property of the projector DΠμ−1D−, and recognizing that
Bμ = BμΠμ−1 = BμD−DΠμ−1, we get

(DΠμ−1x)′ − (DΠμ−1D−)′DΠμ−1x+DΠμ−1G−1
μ BμD−DΠμ−1x = DΠμ−1G−1

μ q.
(2.50)

Equation (2.50) is an explicit ODE with respect to the component DΠμ−1x. A sim-
ilar ODE is described by formula (1.37) for the time-invariant case. Our new ODE
(2.50) generalizes the ODE (1.37) in the sense that, due to D−DΠμ−1 = Πμ−1,
equation (2.50) multiplied by D− coincides with (1.37) for constant coefficients.

Definition 2.26. For the regular DAE (2.44) with tractability index μ , and admissi-
ble projector functions Q0, . . . ,Qμ−1, the resulting explicit regular ODE

u′ − (DΠμ−1D−)′u+DΠμ−1G−1
μ BμD−u = DΠμ−1G−1

μ q (2.51)

is called an inherent explicit regular ODE (IERODE) of the DAE.
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It should be pointed out that there is a great variety of admissible projector func-
tions. In consequence, there are various projector functions Πμ−1, and the IERODE
(2.51) is not unique, except for the index-1 case. So far, we know the nullspace
N0 + · · ·+Nμ−1 of the projector function Πμ−1 to be independent of the choice
of the admissible projector functions Q0, . . . ,Qμ−1, which means the subspace
N0 + · · ·+Nμ−1 is unique; it is determined by the DAE coefficients only (Theo-
rem 2.8). Later on we introduce advanced fine decouplings which make the corre-
sponding IERODE unique.

Lemma 2.27. If the DAE (2.44) is regular with index μ , and Q0, . . . ,Qμ−1 are ad-
missible, then the subspace imDΠμ−1 is an invariant subspace for the IERODE
(2.51), that is, the following assertion is valid for the solutions u ∈ C1(I,Rn) of the
ODE (2.51):

u(t∗) ∈ im(DΠμ−1)(t∗), with a certain t∗ ∈ I ⇔ u(t) ∈ im(DΠμ−1)(t) ∀ t ∈ I.

Proof. Let ū ∈ C1(I,Rn) denote a solution of (2.51) with
ū(t∗) = (DΠμ−1D−)(t∗)ū(t∗). We multiply the identity

ū′ − (DΠμ−1D−)′ū+DΠμ−1G−1
μ D−ū = DΠμ−1G−1

μ q

by I−DΠμ−1D−, and introduce the function v̄ := (I−DΠμ−1D−)ū ∈ C1(I,Rn).
This gives

(I−DΠμ−1D−)ū′ − (I−DΠμ−1D−)(DΠμ−1D−)′ū = 0,

further,

v̄′ − (I−DΠμ−1D−)′ū− (I−DΠμ−1D−)(DΠμ−1D−)′ ū = 0,

and
v̄′ − (I−DΠμ−1D−)′v̄ = 0.

Because of v̄(t∗) = 0, v̄ must vanish identically, and hence ū = DΠμ−1D−ū holds
true. ��

We leave the IERODE for a while, and turn back to the scaled version (2.48) of
the DAE (2.44). Now we consider the other part of this equation, which results from
multiplication by the projector function I−Πμ−1. First we express

(I−Πμ−1)D−(DΠμ−1x)′+(I−Πμ−1)G−1
μ Bμx

= (I−Πμ−1)G−1
μ {GμD−(DΠμ−1x)′+Bμ−1Pμ−1x

−GμD−(DΠμ−1D−)′DΠμ−1x}
= (I−Πμ−1)G−1

μ {Bμ−1Pμ−1x+GμD−DΠμ−1D−(DΠμ−1x)′}
= (I−Πμ−1)G−1

μ Bμ−1Πμ−1x,
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and then obtain the equation

(I−Πμ−1)G−1
μ Bμ−1Πμ−1x+

μ−1

∑
l=0
{Qlx+VlDΠlx} (2.52)

−
μ−2

∑
l=0

(I−Πl)Ql+1D−(DΠlQl+1x)′ = (I−Πμ−1)G−1
μ q,

which is the precise counterpart of equation (1.38). Again, the extra terms Vl com-
prise the time variation. By means of the decompositions

DΠlx = DΠl(Πμ−1 + I−Πμ−1)x = DΠμ−1x+DΠl(I−Pl+1 · · ·Pμ−1)x

= DΠμ−1x+DΠl(Ql+1 +Pl+1Ql+2 + · · ·+Pl+1 · · ·Pμ−2Qμ−1)x

= DΠμ−1x+DΠl(Ql+1 + · · ·+DΠμ−2Qμ−1)x,

we rearrange the terms in (2.52) once more as

μ−1

∑
l=0

Qlx−
μ−2

∑
l=0

(I−Πl)Ql+1D−(DΠlQl+1x)′+
μ−2

∑
l=0
Ml+1DΠlQl+1x (2.53)

+KΠμ−1x = (I−Πμ−1)G−1
μ q,

with the continuous coefficients

K : = (I−Πμ−1)G−1
μ Bμ−1Πμ−1 +

μ−1

∑
l=0

VlDΠμ−1 (2.54)

= (I−Πμ−1)G−1
μ Bμ−1Πμ−1 +

μ−1

∑
l=0

(I−Πl)
{

PlD−(DΠlD−)′

−Ql+1D−(DΠl+1D−)′
}

DΠμ−1

= (I−Πμ−1)G−1
μ Bμ−1Πμ−1 +

μ−1

∑
l=1

(I−Πl−1)(Pl−Ql)D−(DΠlD−)′DΠμ−1

and

Ml+1 : =
l

∑
j=0

VjDΠlQl+1D− (2.55)

=
l

∑
j=0

(I−Π j){PjD−(DΠ jD−)′ −Q j+1D−(DΠ j+1D−)′}DΠlQl+1D−,

l = 0, . . . ,μ−2.

The coefficientsMl+1 vanish together with the Vj in the constant coefficient case.
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Next we provide a further splitting of the subsystem (2.53) according to the de-
composition

I−Πμ−1 = Q0P1 · · ·Pμ−1 + · · ·+Qμ−2Pμ−1 +Qμ−1

into μ parts. Notice that the products QiPi+1 · · ·Pμ−1 are also continuous projec-
tors. To prepare the further decoupling we provide some useful properties of our
projectors and coefficients.

Lemma 2.28. For the regular DAE (2.44) with tractability index μ , and admissible
projector functions Q0, . . . ,Qμ−1, the following relations become true:

(1) QiPi+1 · · ·Pμ−1(I−Πl) = 0, l = 0, . . . , i−1,
i = 1, . . . ,μ−2,

Qμ−1(I−Πl) = 0, l = 0, . . . ,μ−2,
(2) QiPi+1 · · ·Pμ−1(I−Πi) = Qi, i = 0, . . . ,μ−2,

Qμ−1(I−Πμ−1) = Qμ−1,

(3) QiPi+1 · · ·Pμ−1(I−Πi+s) = QiPi+1 · · ·Pi+s, s = 1, . . . ,μ−1− i,

i = 0, . . . ,μ−2,
(4) QiPi+1 · · ·Pμ−1Ml+1 = 0, l = 0, . . . , i−1,

i = 0, . . . ,μ−2,
Qμ−1Ml+1 = 0, l = 0, . . . ,μ−2,

(5) QiPi+1 · · ·Pμ−1Qs = 0 if s �= i, s = 0, . . . ,μ−1,
QiPi+1 · · ·Pμ−1Qi = Qi, i = 0, . . . ,μ−2,

(6) M j =
j−1
∑

l=1
(I−Πl−1)(Pl−Ql)D−(DΠ j−1Q jD−)′DΠ j−1Q jD−,

j = 1, . . . ,μ−1,
(7) Πμ−1G−1

μ Bμ =Πμ−1G−1
μ B0Πμ−1, and hence

DΠμ−1G−1
μ BμD− = DΠμ−1G−1

μ BD−.

Proof. (1) The first part of the assertion results from the relation
QiPi+1 · · ·Pμ−1 = QiPi+1 · · ·Pμ−1Πi−1, and the inclusion im(I −Πl) ⊆ kerΠi−1,
l ≤ i−1. The second part is a consequence of the inclusion im(I−Πl)⊆ kerQμ−1,
l ≤ μ−2.
(2) This is a consequence of the relations Pi+1 · · ·Pμ−1(I −Πi) = (I −Πi) and
Qi(I−Πi) = Qi.
(3) We have

QiPi+1 · · ·Pμ−1Πμ−1 = 0, thus QiPi+1 · · ·Pμ−1(I−Πμ−1) = QiPi+1 · · ·Pμ−1.

Taking into account that Q j(I−Πi+s) = 0 for j > i+ s, we find
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QiPi+1 · · ·Pμ−1(I−Πi+s) = QiPi+1 · · ·Pi+sPi+s+1 · · ·Pμ−1(I−Πi+s)

= QiPi+1 · · ·Pi+sPi+s+1 · · ·Pμ−1(I−Πi+s)

= QiPi+1 · · ·Pi+s(I−Πi+s) = QiPi+1 · · ·Pi+s.

(4) This is a consequence of (1).
(5) This is evident.
(6) We derive

M j =
j−1

∑
l=1

(I−Πl)PlD−(DΠlD−)′DΠ j−1Q jD−

−
j−2

∑
l=0

(I−Πl)Ql+1D−(DΠl+1D−)′DΠ j−1Q jD−

=
j−1

∑
l=1

(I−Πl)PlD−
{
(DΠ j−1Q jD−)′ −DΠlD−(DΠ j−1Q jD−)′

}
DΠ j−1Q jD−

−
j−2

∑
l=0

(I−Πl)Ql+1D−
{
(DΠ j−1Q jD−)′

−DΠl+1D−(DΠ j−1Q jD−)′
}

DΠ j−1Q jD−

=
j−1

∑
l=1

(I−Πl)PlD−(DΠ j−1Q jD−)′DΠ j−1Q jD−

−
j−2

∑
l=0

(I−Πl)Ql+1D−(DΠ j−1Q jD−)′DΠ j−1Q jD−

=
j−1

∑
l=1

(I−Πl−1)PlD−(DΠ j−1Q jD−)′DΠ j−1Q jD−

−
j−1

∑
l=1

(I−Πl−1)QlD−(DΠ j−1Q jD−)′DΠ j−1Q jD−.

(7) Owing to Pμ = I, it holds that

Bμ = Bμ−1Pμ−1−GμD−(DΠμD−)′DΠμ−1

= Bμ−1Pμ−1−GμD−(DΠμ−1D−)′DΠμ−1.

We compute

Πμ−1G−1
μ Bμ =Πμ−1G−1

μ {Bμ−1Pμ−1−GμD−(DΠμ−1D−)′DΠμ−1}
=Πμ−1G−1

μ Bμ−1Πμ−1−Πμ−1D−(DΠμ−1D−)′DΠμ−1︸ ︷︷ ︸
=0

.

The next step is
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Πμ−1G−1
μ Bμ−1Πμ−1 =Πμ−1G−1

μ {Bμ−2Pμ−2−Gμ−1D−(DΠμ−1D−)′DΠμ−2}Πμ−1

=Πμ−1G−1
μ Bμ−2Πμ−1−Πμ−1Pμ−1D−(DΠμ−1D−)′DΠμ−1︸ ︷︷ ︸

=0

,

and so on. ��
As announced before we split the subsystem (2.53) into μ parts. Multiplying by

the projector functions QiPi+1 · · ·Pμ−1, i = 0, . . . ,μ − 2, and Qμ−1, and regarding
Lemma 2.28 one attains the system

Qix−QiQi+1D−(DΠiQi+1x)′ −
μ−2

∑
l=i+1

QiPi+1 · · ·PlQl+1D−(DΠlQl+1x)′ (2.56)

+
μ−2

∑
l=i

QiPi+1 · · ·Pμ−1Ml+1DΠlQl+1x

=−QiPi+1 · · ·Pμ−1KΠμ−1x+QiPi+1 · · ·Pμ−1G−1
μ q, i = 0, . . . ,μ−2,

as well as
Qμ−1x =−Qμ−1KΠμ−1x+Qμ−1G−1

μ q. (2.57)

Equation (2.57) determines Qμ−1x in terms of q and Πμ−1x. The i-th equa-
tion in (2.56) determines Qix in terms of q, Πμ−1x, Qμ−1x, . . . ,Qi+1x, and so
on, that is, the system (2.56), (2.57) successively determines all components of
I−Πμ−1 = Q0 +Π0Q1 + · · ·+Πμ−2Qμ−1 in a unique way. Comparing with the
constant coefficient case, we recognize that, the system (2.56), (2.57) generalizes
the system (1.40), (1.41).
So far, the regular DAE (2.44) decouples into the IERODE (2.51) and the subsystem
(2.56), (2.57) by means of each arbitrary admissible matrix function sequence. The
solutions of the DAE can be expressed as

x =Πμ−1x+(I−Πμ−1x) = D−u+(I−Πμ−1)x,

whereby (I − Πμ−1)x is determined by the subsystem (2.56), (2.57), and
u = DΠμ−1D−u is a solution of the IERODE, which belongs to its invariant sub-
space.

The property
kerQi = kerΠi−1Qi, i = 1, . . . ,μ−1, (2.58)

is valid, since we may represent Qi = (I +(I−Πi−1)Qi)Πi−1Qi with the nonsin-
gular factor I +(I−Πi−1)Qi, i = 1, . . . ,μ−1. This allows us to compute Qix from
Πi−1Qix and vice versa. We take advantage of this in the following rather cosmetic
changes.

Denote (cf. (1.45))

v0 := Q0x, vi :=Πi−1Qix, i = 1, . . . ,μ−1, (2.59)
u := DΠμ−1x, (2.60)
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such that we have the solution expression

x = v0 + v1 + · · ·+ vμ−1 +D−u. (2.61)

Multiply equation (2.57) by Πμ−2, and, if i ≥ 1, the i-th equation in (2.56) by
Πi−1. This yields the following system which determines the functions vμ−1, . . . ,v0
in terms of q and u:
⎡
⎢⎢⎢⎢⎣

0 N01 · · · N0,μ−1

0
. . .

...
. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝D

⎡
⎢⎢⎢⎣

v0
v1
...

vμ−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

′

(2.62)

+

⎡
⎢⎢⎢⎢⎣

I M01 · · · M0,μ−1

I
. . .

...
. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
...

vμ−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

H0
H1

...
Hμ−1

⎤
⎥⎥⎥⎦D−u =

⎡
⎢⎢⎢⎣

L0
L1
...

Lμ−1

⎤
⎥⎥⎥⎦q.

The matrix function D := (Di j)
μ−1
i, j=0 has as entries the blocks Dii = DΠi−1Qi,

i = 1, . . . ,μ − 1, D00 = 0, and Di j = 0, if i �= j. This matrix function is block-
diagonal if n = m. The further coefficients in (2.62) are also continuous, and their
detailed form is

N01 :=−Q0Q1D−,

N0 j :=−Q0P1 · · ·Pj−1Q jD−, j = 2, . . . ,μ−1,

Ni,i+1 :=−Πi−1QiQi+1D−,

Ni j :=−Πi−1QiPi+1 · · ·Pj−1Q jD−, j = i+2, . . . ,μ−1, i = 1, . . . ,μ−2,
M0 j := Q0P1 · · ·Pμ−1M jDΠ j−1Q j, j = 1, . . . ,μ−1,
Mi j :=Πi−1QiPi+1 · · ·Pμ−1M jDΠ j−1Q j, j = i+1, . . . ,μ−1, i = 1, . . . ,μ−2,

L0 := Q0P1 · · ·Pμ−1G−1
μ ,

Li :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ , i = 1, . . . ,μ−2,

Lμ−1 :=Πμ−2Qμ−1G−1
μ ,

H0 := Q0P1 · · ·Pμ−1KΠμ−1,

Hi :=Πi−1QiPi+1 · · ·Pμ−1KΠμ−1, i = 1, . . . ,μ−2,
Hμ−1 :=Πμ−2Qμ−1KΠμ−1,

withK andM j defined by formulas (2.54), (2.55). Introducing the matrix functions
N , M, H, L of appropriate sizes according to (2.62), we write this subsystem as



100 2 Linear DAEs

N (Dv)′+Mv+HD−u = Lq, (2.63)

whereby the vector function v contains the entries v0, . . . ,vμ−1.
Again, we draw the reader’s attention to the great consistency with (1.46). The

difficulties caused by the time-variations are now hidden in the coefficients Mi j
which disappear for constant coefficients.
We emphasize that the system (2.62) is nothing other than a more transparent re-
formulation of the former subsystem (2.56), (2.57). The next proposition records
important properties.

Proposition 2.29. Let the DAE (2.44) be regular with tractability index μ , and let
Q0, . . . ,Qμ−1 be admissible projector functions. Then the coefficient functions in
(2.62) have the further properties:

(1) Ni j = Ni jDΠ j−1Q jD− and Ni jD = Ni jDΠ j−1Q j, for j = 1, . . . ,μ − 1,
i = 0, . . . ,μ−2.

(2) rankNi,i+1 = rankNi,i+1D = m− ri+1, for i = 0, . . . ,μ−2.
(3) kerNi,i+1 = kerDΠiQi+1D−, and kerNi,i+1D = kerΠiQi+1, for

i = 0, . . . ,μ−2.
(4) The subsystem (2.62) is a DAE with properly stated leading term.
(5) The square matrix function ND is pointwise nilpotent with index μ , more

precisely, (ND)μ = 0 and rank(ND)μ−1 = m− rμ−1 > 0.
(6) Mi,i+1 = 0, i = 0, . . . ,μ−2.

Proof. (1) This is given by the construction.
(2) Because of Ni,i+1 = Ni,i+1DD−, the matrix functions Ni,i+1 and Ni,i+1D have
equal rank. To show that this is precisely m− ri+1 we apply the same arguments as
for Lemma 1.27. First we validate the relation

imQiQi+1 = Ni∩Si.

Namely, z ∈ Ni ∩ Si implies z = Qiz and Biz = Giw, therefore,
(Gi + BiQi)(Piw + Qiz) = 0, further (Piw + Qiz) = Qi+1(Piw + Qiz) = Qi+1w,
Qiz = QiQi+1w, and hence z = Qiz = QiQi+1w.
Conversely, z ∈ imQiQi+1 yields z = Qiz, z = QiQi+1w. Then the identity (Gi +
BiQi)Qi+1 = 0 leads to Biz = BiQiQi+1w =−GiQi+1w, thus z ∈ Ni∩Si.
The intersection Ni ∩ Si has the same dimension as Ni+1, so that we attain
dimimQiQi+1 = dimNi+1 = m− ri+1.
(3) From (1) we derive the inclusions

kerDΠiQi+1D− ⊆ kerNi,i+1, kerΠiQi+1 ⊆ kerNi,i+1D.

Because of ΠiQi+1 = D−(DΠiQi+1D−)D, and kerΠiQi+1 = kerQi+1, the assertion
becomes true for reasons of dimensions.
(4) We provide the subspaces
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kerN =
{

z =

⎡
⎢⎣

z0
...

zμ−1

⎤
⎥⎦ ∈ R

nμ : zi ∈ kerΠi−1Qi, i = 1, . . . ,μ−1
}

and

imD =
{

z =

⎡
⎢⎣

z0
...

zμ−1

⎤
⎥⎦ ∈ R

nμ : zi ∈ imΠi−1Qi, i = 1, . . . ,μ−1
}

which obviously fulfill the condition kerN ⊕ imD = R
nμ . The border projector is

R= diag(0,DΠ0Q1D−, . . . ,DΠμ−2Qμ−1D−), and it is continuously differentiable.
(5) The matrix functionND is by nature strictly block upper triangular, and its main
entries (ND)i,i+1 =Ni,i+1D have constant rank m− ri+1, for i = 0, . . . ,μ−2.
The matrix function (ND)2 has zero-entries on the block positions (i, i+1), and the
dominating entries are

((ND)2)i,i+2 =Ni,i+1DNi+1,i+2D =Πi−1QiQi+1ΠiQi+1Qi+2 =Πi−1QiQi+1Qi+2,

which have rank m− ri+2, and so on.
In (ND)μ−1 there remains exactly one nontrivial block in the upper right corner,
((ND)μ−1)0,μ−1 = (−1)μ−1Q0Q1 · · ·Qμ−1, and it has rank m− rμ−1.
(6) This property is a direct consequence of the representation of Mi+1 in Lem-
ma 2.28 (6) and Lemma 2.28 (1). ��

By this proposition, the subsystem (2.62) is in turn a regular DAE with tractabil-
ity index μ and transparent structure. Property (6) slightly eases the structure of
(2.62). We emphasize that the DAE (2.62) lives in R

mμ . The solutions belong to the
function space C1

D(I,Rmμ). Owing to the special form of the matrix function L on
the right-hand side, each solution of (2.62) satisfies the conditions v0 = Q0v0 and
vi =Πi−1Qivi, for i = 1, . . . ,μ−1.

We now formulate the main result concerning the basic decoupling:

Theorem 2.30. Let the DAE (2.44) be regular with tractability index μ , and let
Q0, . . . ,Qμ−1 be admissible projector functions. Then the DAE is equivalent via
(2.59)–(2.61) to the system consisting of the IERODE (2.51) related to its invariant
subspace imDΠμ−1, and the subsystem (2.62).

Proof. If x ∈ C1
D(I,Rm) is a solution of the DAE, then the component u :=

DΠμ−1x ∈ C1(I,Rm) satisfies the IERODE (2.51) and belongs to the invariant sub-
space imΠμ−1. The functions v0 := Q0x ∈ C(I,Rm), vi := Πi−1Qix ∈ C1

D(I,Rm),
i = 1, . . . ,μ − 1, form the unique solution of the system (2.62) corresponding
to u. Thereby, we recognize that DΠμ−1x = DΠμ−1D−Dx, Dvi := DΠi−1Qix =
DΠi−1QiD−Dx, i = 1, . . . ,μ−1, are continuously differentiable functions since Dx
and the used projectors are so.
Conversely, let u = DΠμ−1x denote a solution of the IERODE, and let v0, . . . ,vμ−1
form a solution of the subsystem (2.62). Then, it holds that vi = Πi−1Qivi, for
i = 1, . . . ,μ − 1, and v0 = Q0v0. The functions u and Dvi = DΠi−1Qivi, i = 1, . . . ,
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μ−1, are continuously differentiable. The composed function x := D−u+v0+v1+
· · ·+vμ−1 is continuous and has a continuous part Dx. It remains to insert x into the
DAE, and to recognize that x fulfills the DAE. ��

The coefficients of the IERODE and the system (2.62) are determined in terms
of the DAE coefficients and the admissible matrix function sequence resulting
from these coefficients. We can make use of these equations unless we suppose
that there is a solution of the DAE. Considering the IERODE (2.51) and the sys-
tem (2.62) as equations with unknown functions u ∈ C1(I,Rn), v0 ∈ C(I,Rm),
vi ∈ C1

D(I,Rm), i = 1, . . . ,μ − 1, we may solve these equations and construct con-
tinuous functions x := D−u+ v0 + v1 + · · ·+ vμ−1 with Dx = DD−u+Dv1 + · · ·+
Dvμ−1 being continuously differentiable, such that x satisfies the DAE. In this way
we restrict our interest to those solutions u of the IERODE that have the property
u = DΠμ−1D−u. In this way one can prove the existence of DAE solutions, suppos-
ing the excitation and the coefficients to be sufficiently smooth.

The following additional description of the coupling coefficients H0, . . . ,Hμ−1
in the subsystem (2.62), which tie the solution u of the IERODE into this subsys-
tem, supports the idea of an advanced decoupling. We draw the reader’s attention to
the consistency with Theorem 1.22 which provides the easier time-invariant coun-
terpart of a complete decoupling. This lemma plays its role when constructing fine
decouplings. Further, we make use of the given special representation of the coef-
ficient H0 when describing the canonical projector function associated to the space
of consistent values for the homogeneous DAE in the next subsection.

Lemma 2.31. Let the DAE (2.44) be regular with tractability index μ . Let
Q0, . . . ,Qμ−1 be admissible projector functions, and

Q0∗ := Q0P1 · · ·Pμ−1G−1
μ {B0 +G0D−(DΠμ−1D−)′D},

Qk∗ := QkPk+1 · · ·Pμ−1G−1
μ {Bk +GkD−(DΠμ−1D−)′DΠk−1}, k = 1, . . . ,μ−2,

Qμ−1∗ := Qμ−1G−1
μ Bμ−1.

(1) Then the coupling coefficients of the subsystem (2.62) have the representations

H0 = Q0∗Πμ−1,

Hk = Πk−1Qk∗Πμ−1, k = 1, . . . ,μ−2,
Hμ−1 = Πμ−2Qμ−1∗Πμ−1.

(2) The Q0∗, . . . ,Qμ−1∗ are also continuous projector functions onto the sub-
spaces N0, . . . ,Nμ−1, and it holds that Qk∗ = Qk∗Πk−1 for k = 1, . . . ,μ−1.

Proof. (1) For k = 0, . . . ,μ−2, we express

Ak : = QkPk+1 · · ·Pμ−1KΠμ−1 (cf. (2.54) for K and Prop. 2.23 for Vl)

= QkPk+1 · · ·Pμ−1G−1
μ Bμ−1Πμ−1 +QkPk+1 · · ·Pμ−1

μ−1

∑
l=0

VlDΠμ−1.
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Regarding the identity ΠlD−(DΠlD−)′DΠl = 0 we derive first

Πk−1

μ−1

∑
l=0

VlDΠμ−1 =Πk−1

μ−1

∑
l=k

VlDΠμ−1

=Πk−1

μ−1

∑
l=k
{(I−Πl)Pl︸ ︷︷ ︸

Pl−Πl

D−(DΠlD−)′DΠμ−1

− (I−Πl)Ql+1D−(DΠl+1D−)′DΠμ−1}

=Πk−1

μ−1

∑
l=k
{PlD−(DΠlD−)′ − (I−Πl)Ql+1D−(DΠl+1D−)′DΠμ−1D−}DΠμ−1

=Πk−1

μ−1

∑
l=k
{PlD−(DΠlD−)′ − (I−Πl)Ql+1D−(DΠμ−1D−)′DΠμ−1D−}DΠμ−1.

Then, taking into account that Qμ = 0, as well as the properties

QkPk+1 · · ·Pμ−1 = QkPk+1 · · ·Pμ−1Πk−1, QkPk+1 · · ·Pμ−1Pk = QkPk+1 · · ·Pμ−1Πk,

QkPk+1 · · ·Pμ−1Ql = 0, if l ≥ k+1,

we compute

QkPk+1 · · ·Pμ−1

μ−1

∑
l=0

VlDΠμ−1

= QkPk+1 · · ·Pμ−1

μ−1

∑
l=k+1

D−(DΠlD−)′DΠμ−1

+QkPk+1 · · ·Pμ−1

μ−1

∑
l=k

ΠlQl+1

︸ ︷︷ ︸
Πk−Πμ−1

D−(DΠμ−1D−)′DΠμ−1

= QkPk+1 · · ·Pμ−1

μ−1

∑
l=k+1

D−(DΠlD−)′DΠμ−1

+QkPk+1 · · ·Pμ−1Pk(DΠμ−1D−)′DΠμ−1.

This leads to

Ak = QkPk+1 · · ·Pμ−1G−1
μ

{
BkΠμ−1−

μ−1

∑
j=k+1

G jD−(DΠ jD−)′DΠμ−1

}

+QkPk+1 · · ·Pμ−1

μ−1

∑
l=k+1

D−(DΠlD−)′DΠμ−1

+QkPk+1 · · ·Pμ−1Pk(DΠμ−1D−)′DΠμ−1.



104 2 Linear DAEs

Due to QkPk+1 · · ·Pμ−1G−1
μ G j = QkPk+1 · · ·Pμ−1, for j ≥ k+1, it follows that

Ak = QkPk+1 · · ·Pμ−1G−1
μ BkΠμ−1−QkPk+1 · · ·Pμ−1

μ−1

∑
j=k+1

D−(DΠ jD−)′DΠμ−1

+QkPk+1 · · ·Pμ−1

μ−1

∑
l=k+1

D−(DΠlD−)′DΠμ−1

+QkPk+1 · · ·Pμ−1Pk(DΠμ−1D−)′DΠμ−1

= QkPk+1 · · ·Pμ−1G−1
μ BkΠμ−1 +QkPk+1 · · ·Pμ−1PkD−(DΠμ−1D−)′DΠμ−1

= Qk∗Πμ−1,

which proves the relations H0 = Q0P1 · · ·Pμ−1KΠμ−1 = Q0∗Πμ−1, and
Hk = Πk−1QkPk+1 · · ·Pμ−1KΠμ−1 = Πk−1AkΠμ−1 = Qk∗Πμ−1, k = 1, . . .,
μ − 2. Moreover, it holds that Hμ−1 = Πμ−2Qμ−1K = Qμ−1G−1

μ Bμ−1Πμ−1
=Πμ−2Qμ−1∗Πμ−1.

(2) Derive

Qk∗Qk = QkPk+1 · · ·Pμ−1G−1
μ {Bk +GkD−(DΠμ−1D−)′DΠk−1}Qk

= QkPk+1 · · ·Pμ−1G−1
μ BkQk +QkPk+1 · · ·Pμ−1PkD−(DΠμ−1D−)′DΠk−1Qk

= QkPk+1 · · ·Pμ−1Qk︸ ︷︷ ︸
=Qk

−QkPk+1 · · ·Pμ−1PkD−(DΠμ−1︸ ︷︷ ︸
=0

D−)(DΠk−1QkD−)′D.

Then, Qk∗Qk∗ = Qk∗ follows. The remaining part is evident. ��

2.4.3 Fine and complete decouplings

Now we advance the decoupling of the subsystem (2.62) of the regular DAE (2.44).
As benefits of such a refined decoupling we get further natural information on the
DAE being independent of the choice of projectors in the given context. In particu-
lar, we fix a unique natural IERODE.

2.4.3.1 Index-1 case

Take a closer look at the special case of regular index-1 DAEs. Let the DAE (2.44)
be regular with tractability index 1. The matrix function G0 = AD is singular with
constant rank. We take an arbitrary continuous projector function Q0. The resulting
matrix function G1 = G0 +BQ0 is nonsingular. It follows that Q1 = 0, Π1 =Π0 and
V0 = 0 (cf. Proposition 2.23), further B1 = BP0−G1D−(DΠ0D−)′DΠ0 = BP0. The
DAE scaled by G−1

1 is (cf. (2.48)) now
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D−(DΠ0x)′+G−1
1 BP0x+Q0x = G−1

1 q.

Multiplication by DΠ0 = D and I−Π0 = Q0 leads to the system

(Dx)′ −R′Dx+DG−1
1 BD−Dx = DG−1

1 q, (2.64)

Q0x+Q0G−1
1 BD−Dx = Q0G−1

1 q, (2.65)

and the solution expression x = D−Dx+Q0x. Equation (2.65) stands for the subsys-
tem (2.62), i.e., for

Q0x+H0D−Dx = L0q,

withH0 = Q0KΠ0 = Q0G−1
1 BΠ0 = Q0G−1

1 BP0, L0 = Q0G−1
1 .

The nonsingularity of G1 implies the decomposition S0⊕N0 =R
m (cf. Lemma A.9),

and the matrix function Q0G−1
1 B is a representation of the projector function onto

N0 along S0.
We can choose Q0 to be the special projector function onto N0 along S0 from the
beginning. The benefit of this choice consists in the propertyH0 = Q0G−1

1 BP0 = 0,
that is, the subsystems (2.65) uncouples from (2.64).

Example 2.32 (Decoupling of a semi-explicit index-1 DAE). We reconsider the semi-
explicit DAE from Example 2.3

[
I
0

]
(
[
I 0
]

x)′+
[

B11 B12
B21 B22

]
x = q

with nonsingular B22. Here we have the subspaces

N0 = {z ∈ R
m1+m2 : z1 = 0} and S0 = {z ∈ R

m1+m2 : B21z1 +B22z2 = 0},

and the projector function onto N0 along S0 is given by

Q0 =

[
0 0

B−1
22 B21 I

]
.

This projector is reasonable owing to the property H0 = 0, although it is far from
being orthogonal. It yields

D−=
[

I
−B−1

22 B21

]
,G1=

[
I +B12B−1

22 B21 B12
B21 B22

]
,G−1

1 =

[
I −B12B−1

22
−B−1

22 B21 (I +B−1
22 B21B12)

]
,

and the IERODE

x′1 +(B11−B12B−1
22 B21)x1 = q1−B12B−1

22 q2.

Notice that in Example 2.3, Q0 is chosen to be the orthoprojector, but precisely the
same IERODE results for this choice. ��
The last observation reflects a general property of regular index-1 DAEs as the fol-
lowing proposition states.
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Proposition 2.33. Let the DAE (2.44) be regular with index 1. Then its IERODE

u′ −R′u+DG−1
1 BD−u = DG−1

1 q

is actually independent of the special choice of the continuous projector function
Q0.

Proof. We compare the IERODEs built for two different projector functions
Q0 and Q̄0. It holds that Ḡ1 = G0 + BQ̄0 = G0 + BQ0Q̄0 = G1(P0 + Q̄0)
= G1(I + Q0Q̄0P0) and D̄− = D̄−DD̄− = D̄−R = D̄−DD− = P̄0D−, therefore
DḠ−1

1 = DG−1
1 , DḠ−1

1 BD̄− = DG−1
1 B(I − Q̄0)D− = DG−1

1 B(I − Q0Q̄0)D− =

DG−1
1 BD−. ��

Regular index-1 DAEs are transparent and simple, and the coefficients of their
IERODEs are always independent of the projector choice. However, higher index
DAEs are different.

2.4.3.2 Index-2 case

We take a closer look at the simplest class among regular higher index DAEs, the
DAEs with tractability index μ = 2.

Let the DAE (2.44) be regular with tractability index μ = 2. Then the IERODE
(2.51) and the subsystem (2.62) reduce to

u′ − (DΠ1D−)′u+DΠ1G−1
2 B1D−u = DΠ1G−1

2 q,

and
[

0 −Q0Q1D−

0 0

]([
0 0
0 DΠ0Q1

][
v0
v1

])′
+

[
v0
v1

]
+

[
H0
H1

]
D−u =

[
Q0P1G−1

2
Π0Q1G−1

2

]
q,

with

H0 = Q0P1KΠ1 = Q0P1G−1
2 B1Π1 +Q0(P1−Q1)D−(DΠ1D−)′DΠ1

= Q0P1G−1
2 B0Π1 +Q0P1D−(DΠ1D−)′DΠ1

H1 =Π0Q1KΠ1 =Π0Q1G−1
2 B1Π1.

Owing to the nonsingularity of G2, the decomposition (cf. Lemma A.9)

N1⊕S1 = R
m

is given, and the expression Q1G−1
2 B1 appearing in H1 reminds us of the represen-

tation of the special projector function onto N1 along S1 (cf. Lemma A.10) which is
uniquely determined. In fact, Q1G−1

2 B1 is this projector function. The subspaces N1
and S1 are given before one has to choose the projector function Q1, and hence
one can settle on the projector function Q1 onto N1 along S1 at the beginning.
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Thereby, the necessary admissibility condition N0 ⊆ kerQ1 is fulfilled because of
N0 ⊆ S1 = kerQ1. It follows that

Q1G−1
2 B1Π1 = Q1G−1

2 B1P1 = Q1P1 = 0, H1 =Π0Q1G−1
2 B1Π1 = 0.

Example 2.34 (Advanced decoupling of Hessenberg size-2 DAEs). Consider once
again the so-called Hessenberg size-2 DAE

[
I
0

]
(
[
I 0
]

x)′+
[

B11 B12
B21 0

]
x = q, (2.66)

with the nonsingular product B21B12. Suppose the subspaces imB12 and kerB21 to
be C1-subspaces. In Example 2.3, admissible matrix functions are built. This DAE
is regular with index 2, and the projector functions

Q0 =

[
0 0
0 I

]
, Q1 =

[
Ω 0
−B−12 0

]
, Ω := B12B−12, (2.67)

are admissible, for each arbitrary reflexive inverse B−12 such that Ω is continuously
differentiable. We have further DΠ1D− = I−Ω and

S0 = S1 = {z ∈ R
m1+m2 : B21z1 = 0}.

In contrast to Example 2.3, where widely orthogonal projectors are chosen and

kerQ1 = {z ∈ R
m1+m2 : B∗12z1 = 0}= (N0⊕N1)

⊥⊕N0,

now we set B−12 := (B21B12)
−1B21 such that Ω projects R

m1 onto imB12 along
kerB21, and Q1 projects Rm onto N1 along

kerQ1 = {z ∈ R
m1+m2 : B21z1 = 0}= S1.

Except for the very special case, if kerB∗12 = kerB21, a nonsymmetric projector func-
tion DΠ1D−= I−Ω = I−B12(B21B12)

−1B21 results. However, as we already know,
this choice has the advantage of a vanishing coupling coefficientH1.
In contrast to the admissible projector functions (2.67), the projector functions

Q0 =

[
0 0

B−12(B11−Ω ′)(I−Ω) I

]
, Q1 =

[
Ω 0
−B−12 0

]
, Ω := B12B−12, (2.68)

form a further pair of admissible projector functions again yielding DΠ1D− = I−
Ω . With B−12 := (B21B12)

−1B21, this choice forces both coefficients H1 and H0 to
disappear, and the subsystem (2.62) uncouples from the IERODE. One can check
that the resulting IERODE coincides with that from (2.67). ��

As mentioned before, the index-2 case has the simplest higher index structure.
The higher the index, the greater the variety of admissible projector functions. We
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recall Example 1.26 which shows several completely decoupling projectors for a
time-invariant regular matrix pair with Kronecker index 2.

2.4.3.3 General benefits from fine decouplings

Definition 2.35. Let the DAE (2.44) be regular with tractability index μ , and let
Q0, . . . ,Qμ−1 be admissible projector functions.

(1) If the coupling coefficientsH1, . . . ,Hμ−1 of the subsystem (2.62) vanish, then
we speak of fine decoupling projector functions Q0, . . . ,Qμ−1, and of a fine
decoupling.

(2) If all the coupling coefficients H0, . . . ,Hμ−1 of the subsystem (2.62) vanish,
then we speak of complete decoupling projector functions Q0, . . . ,Qμ−1, and
of a complete decoupling.

Special fine and complete decoupling projector functions Q0, Q1 are built in Exam-
ples 2.34 and (2.32).

Owing to the linearity of the DAE (2.44) its homogeneous version

A(t)(D(t)x(t))′+B(t)x(t) = 0, t ∈ J , (2.69)

plays its role, and in particular the subspace

Scan(t) := {z ∈ R
m : ∃x ∈ C1

D(I,Rm), A(Dx)′+Bx = 0, x(t) = z}, t ∈ I.

The subspace Scan(t) represents the geometric locus of all solution values of the
homogeneous DAE (2.69) at time t. In other words, Scan(t) is the linear space of
consistent initial values at time t for the homogeneous DAE.

For implicit regular ODEs (2.43), Scan(t) =R
m is simply the entire time-invariant

state space R
m. In contrast, for intrinsic DAEs, the proper inclusion

Scan(t)⊆ S0(t)

is valid. While S0(t) represents the so-called obvious constraint associated with the
DAE (2.69), the subspace Scan(t) serves, so to say, as the complete final constraint
which also incorporates all hidden constraints.

In particular, for the semi-explicit DAE in Example 2.3, we find the obvious
constraint

S0(t) = {z ∈ R
m1+m2 : z2 =−B22(t)−1B21(t)z1}, dimS0(t) = m1,

and further

Scan(t) = {z ∈ R
m1+m2 : z2 =−B22(t)−1B21(t)z1}= S0(t),
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supposing B22(t) remains nonsingular. However, if B22(t)≡ 0, but B21(t)B12(t) re-
mains nonsingular, then

Scan(t) = {z ∈ R
m1+m2 :B21(t)z1 = 0,

z2 =−[(B21B21)
−1B21(B11− (B12((B21B21)

−1B21)
′)](t)z1}

is merely a proper subspace of the obvious constraint

S0(t) = {z ∈ R
m1+m2 : B21(t)z1 = 0}.

Example 2.4 confronts us even with a zero-dimensional subspace Scan(t) = {0}.
Except for those simpler cases, the canonical subspace Scan is not easy to ac-

cess. It coincides with the finite eigenspace of the matrix pencil for regular linear
time-invariant DAEs. Theorem 2.39 below provides a description by means of fine
decoupling projector functions.

Definition 2.36. For the regular DAE (2.44) the time-varying subspaces Scan(t),
t ∈ I, and Ncan(t) := N0(t) + · · ·+ Nμ−1(t), t ∈ I, are said to be the canonical
subspaces of the DAE.

By Theorem 2.8, Ncan is known to be independent of the special choice of admissible
projectors, which justifies the notion. The canonical subspaces of the linear DAE
generalize the finite and infinite eigenspaces of matrix pencils.

Applying fine decoupling projector functions Q0, . . . ,Qμ−1, the subsystem (2.62)
corresponding to the homogeneous DAE simplifies to
⎡
⎢⎢⎢⎢⎣

0 N01 · · · N0,μ−1

0
. . .

...
. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝D

⎡
⎢⎢⎢⎣

v0
v1
...

vμ−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

′

+

⎡
⎢⎢⎢⎢⎣

I M01 · · · M0,μ−1

I
. . .

...
. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
...

vμ−1

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

H0
0
...
0

⎤
⎥⎥⎥⎦D−u =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ . (2.70)

For given u, its solution components are determined successively as

vμ−1 = 0, . . . , v1 = 0, v0 =−H0D−u,

and hence each solution x ∈ C1
D(I,Rm) of the homogeneous DAE possesses the

representation

x=D−u+v0=(I−H0)D−u=(I−Q0∗Πμ−1)D−DΠμ−1D−u=(I−Q0∗)Πμ−1D−u,

whereby u = DΠμ−1D−u is a solution of the homogeneous IERODE
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u′ − (DΠμ−1D−)′u+DΠμ−1G−1
μ BD−u = 0,

and Q0∗ is defined in Lemma 2.31. Owing to the relations P0Q0∗ = 0, the continuous
matrix function (I −Q0∗)Πμ−1 is also a projector function, and the nullspace is
easily checked to be

ker(I−Q0∗)Πμ−1 = Ncan.

Since each solution of the homogeneous DAE can be represented in this way, the
inclusion

Scan ⊆ im(I−Q0∗)Πμ−1

is valid. On the other hand, through each element of im((I−Q0∗(t))Πμ−1(t)), at
time t, there passes a DAE solution, and we obtain

im(I−Q0∗)Πμ−1 = Scan.

In fact, fixing an arbitrary pair x0 ∈ im((I−Q0∗(t0))Πμ−1(t0)), t0 ∈I, we determine
the unique solution u of the standard IVP

u′ − (DΠμ−1D−)′u+DΠμ−1G−1
μ BD−u = 0, u(t0) = D(t0)Πμ−1(t0)x0,

and then the DAE solution x := (I − Q0∗)Πμ−1D−u. It follows that
x(t0) = (I −Q0∗(t0))Πμ−1(t0)x0 = x0. In consequence, the DAE solution passes
through x0 ∈ im((I−Q0∗(t0))Πμ−1(t0)).
Owing to the projector properties, the decomposition

Ncan(t)⊕Scan(t) = R
m, t ∈ I, (2.71)

becomes valid. Moreover, now we see that Scan is a C-subspace of dimension
d = m−∑μ−1

i=0 (m− ri).

Definition 2.37. For a regular DAE (2.44) with tractability index μ , which has a fine
decoupling, the projector function Πcan ∈ C(I,L(Rm)) being uniquely determined
by

imΠcan = Scan, kerΠcan = Ncan

is named the canonical projector function of the DAE.

We emphasize that both canonical subspaces Scan and Ncan, and the canonical pro-
jector function Πcan, depend on the index μ . Sometimes it is reasonable to indicate
this by writing Scan μ , Ncan μ and Πcan μ .
The canonical projector plays the same role as the spectral projector does in the
time-invariant case.

Remark 2.38. In earlier papers also the subspaces Si (e.g., [159]) and the single
projector functions Q0, . . . ,Qμ−1 forming a fine decoupling (e.g., [157], [164]) are
named canonical. This applies, in particular, to the projector function Qμ−1 onto
Nμ−1 along Sμ−1. We do not use this notation. We know the canonical projector
function Πcan in Definition 2.37 to be unique, however, for higher index cases, the
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single factors Pi in the given representation by means of fine decoupling projectors
are not uniquely determined as is demonstrated by Example 1.26.

Now we are in a position to gather the fruit of the construction.

Theorem 2.39. Let the regular index-μ DAE (2.44) have a fine decoupling.

(1) Then the canonical subspaces Scan and Ncan are C-subspaces of dimensions
d = m−∑μ−1

i=0 (m− ri) and m−d.
(2) The decomposition (2.71) is valid, and the canonical projector function has

the representation
Πcan = (I−Q0∗)Πμ−1,

with fine decoupling projector functions Q0, . . . ,Qμ−1.
(3) The coefficients of the IERODE (2.51) are independent of the special choice

of the fine decoupling projector functions.

Proof. It remains to verify (3). Let two sequences of fine decoupling projector func-
tions Q0, . . . ,Qμ−1 and Q̄0, . . . , Q̄μ−1 be given. Then the canonical projector func-
tion has the representations Πcan = (I−Q0∗)Πμ−1 and Πcan = (I− Q̄0∗)Π̄μ−1. Tak-
ing into account that D̄− = P̄0D− we derive

DΠμ−1D− = DΠcanD− = DΠ̄μ−1D− = DΠ̄μ−1D̄−.

Then, with the help of Lemma 2.12 yielding the relation Ḡμ = GμZμ , we arrive at

DΠ̄μ−1Ḡ−1
μ = DΠμ−1D−DZ−1

μ G−1
μ = DΠμ−1G−1

μ ,

DΠ̄μ−1Ḡ−1
μ BD̄−=DΠμ−1G−1

μ BD̄−=DΠμ−1G−1
μ B(I−Q̄0)D−=DΠμ−1G−1

μ BD−,

and this proves the assertion. ��

For regular index-1 DAEs, each continuous projector function Q0 already generates
a fine decoupling. Therefore, Proposition 2.33 is now a special case of Theorem 2.39
(3).

DAEs with fine decouplings, later on named fine DAEs, allow an intrinsic DAE
theory in Section 2.6 addressing solvability, qualitative flow behavior and the char-
acterization of admissible excitations.

2.4.3.4 Existence of fine and complete decouplings

For regular index-2 DAEs, the admissible pair Q0,Q1 provides a fine decoupling,
if Q1 is chosen such that kerQ1 = S1. This is accompanied by the requirement that
imDΠ1D− = DS1 is a C1-subspace. We point out that, for fine decouplings, we need
some additional smoothness with respect to the regularity notion. While regularity
with index 2 comprises the existence of an arbitrary C1 decomposition (i.e., the
existence of a continuously differentiable projector function DΠ1D−)
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imDΠ1D−⊕ imDΠ0Q1D−︸ ︷︷ ︸
=DN1

⊕ kerA = R
n,

one needs for fine decouplings that the special decomposition

DS1⊕DN1⊕ kerA = R
n,

consists of C1-subspaces. For instance, the semi-explicit DAE in Example 2.34 pos-
sesses fine decoupling projector functions, if both subspaces imB12 and kerB21 are
continuously differentiable. However, for regularity, it is enough if imB12 is a C1-
subspace, as demonstrated in Example 2.3.

Assuming the coefficients A,D,B to be C1, and choosing a continuously differ-
entiable projector function Q0, the resulting DN1 and DS1 are always C1-subspaces.
However, we do not feel comfortable with such a generous sufficient smoothness
assumption, though it is less demanding than that in derivative array approaches,
where one naturally has to require A,D,B ∈ C2 for the treatment of an index-2 prob-
lem.
We emphasize that only certain continuous subspaces are additionally assumed to
belong to the class C1. Since the precise description of these subspaces is somewhat
cumbersome, we use instead the wording the coefficients of the DAE are sufficiently
smooth just to indicate the smoothness problem.
In essence, the additional smoothness requirements are related to the coupling coef-
ficients H1, . . . ,Hμ−1 in the subsystem (2.62), and in particular to the special pro-
jectors introduced in Lemma 2.31. It turns out that, for a fine decoupling of a regular
index-μ DAE, certain parts of the coefficients A,D,B have to be continuously dif-
ferentiable up to degree μ − 1. This meets the common understanding of index μ
DAEs, and it is closely related to solvability conditions. We present an example for
more clarity.

Example 2.40 (Smoothness for a fine decoupling). Consider the DAE
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

(
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
D

x

)′
+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −1
0 −1 0 0
α 0 −1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

x = 0,

on the interval I = [0,1]. According to the basic continuity assumption, B is con-
tinuous, that is, α ∈ C([0,1]). Taking a look at the solution satisfying the initial
condition x1(0) = 1, that is

x1(t) = 1, x3(t) = α(t), x2(t) = x′3(t) = α ′(t), x4(t) = x′′3(t) = α ′′(t)

we recognize that we must more reasonably assume α ∈ C2([0,1]). We demonstrate
by constructing a fine decoupling sequence that this is precisely the smoothness
needed.
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The first elements of the matrix function sequence can be chosen, respectively, com-
puted as

Q0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , G1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , Q1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −1
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦ .

We could continue with

Q2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎦ , G3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −1
0 −1 1 0
0 0 −1 0

⎤
⎥⎥⎦ ,

which shows the DAE to be regular with tractability index 3, and Q0,Q1,Q2 to be
admissible, if α ∈ C([0,1]). However, we dismiss this choice of Q2 and compute it
instead corresponding to the decomposition

N2⊕S2 = {z ∈ R
4 : z1 = 0,z2 = z3 = z4}⊕{z ∈ R

4 : αz1 = z3}= R
4.

This leads to

Q2 =

⎡
⎢⎢⎣

0 0 0 0
α 0 1 0
α 0 1 0
α 0 1 0

⎤
⎥⎥⎦ , DΠ2D− =Π2 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
−α 0 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

and hence, for these Q0,Q1,Q2 to be admissible, the function α is required to be
continuously differentiable. The coupling coefficients related to the present projec-
tor functions are

H1 =

⎡
⎢⎢⎣

0 0 0 0
α ′ 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , H2 = 0.

If α ′ does not vanish identically, we have not yet reached a fine decoupling. In the
next round we set Q̄0 = Q0 such that Ḡ1 = G1, but then we put

Q̄1 := Q1∗ := Q1P2G−1
3 {B1 +G1D−(DΠ2D−)′DΠ0}=

⎡
⎢⎢⎣

0 0 0 0
α ′ 1 0 0
0 0 0 0
α ′ 1 0 0

⎤
⎥⎥⎦ ,

in accordance with Lemma 2.31 (see also Lemma 2.41 below). It follows that
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DΠ̄1D− = Π̄1 =

⎡
⎢⎢⎣

1 0 0 0
−α ′ 0 0 0

0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , Ḡ2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −1
−α ′ −1 1 0

0 0 0 0

⎤
⎥⎥⎦ ,

and we see that, to ensure that DΠ̄1D− becomes continuously differentiable, and
Q̄0, Q̄1 admissible, we need a two times continuously differentiable function α .
Then we have N̄2 = N2, which allows for the choice Q̄2 = Q2. The resulting
Q̄0, Q̄1, Q̄2 are fine decoupling projector functions. ��
In general, if the DAE (2.44) is regular with tractability index μ , and Q0, . . . ,Qμ−1
are admissible projector functions, then the decomposition

Nμ−1⊕Sμ−1 = R
m

holds true (cf. Lemma A.9). If the last projector function Qμ−1 is chosen such
that the associated subspace Sμ−1 ⊇ N0⊕ ·· · ⊕Nμ−2 becomes its nullspace, that
is kerQμ−1 = Sμ−1, imQμ−1 = Nμ−1, then it follows (cf. Lemma A.10) that
Qμ−1 = Qμ−1G−1

μ−1Bμ−1, and hence (cf. (2.54))

Hμ−1 :=Πμ−2Qμ−1KΠμ−1 =Πμ−2Qμ−1K
=Πμ−2 Qμ−1(I−Πμ−1)︸ ︷︷ ︸

=Qμ−1

G−1
μ Bμ−1Πμ−1

+
μ−1

∑
l=0

Πμ−2 Qμ−1(I−Πl)︸ ︷︷ ︸
=0

(Pl−Ql)(DΠlD−)′DΠμ−1

=Πμ−2Qμ−1G−1
μ Bμ−1Πμ−1 =Πμ−2Qμ−1Πμ−1 = 0.

So far one can prevail on the coefficients Hμ−1 to vanish by determining
kerQμ−1 = Sμ−1. This confirms the existence of complete decoupling projector
functions for regular index-1 DAEs, and the existence of fine decoupling projec-
tor functions for regular index-2 DAEs.
Remember that, for regular constant coefficient DAEs with arbitrary index, com-
plete decoupling projectors are provided by Theorem 1.22. We follow the lines of
[169] to prove a similar result for general regular DAEs (2.44).

Having Lemma 2.31 we are well prepared to construct fine decoupling projector
functions for the general regular DAE (2.44). As in Example 2.40, we successively
improve the decoupling with the help of Lemma 2.31 in several rounds. We begin
by forming arbitrary admissible projector functions Q0, . . . ,Qμ−2 and Gμ−1. Then
we determine Qμ−1 by kerQμ−1 = Sμ−1 and imQμ−1 = Nμ−1. This yields Gμ =
Gμ−1 +Bμ−1Qμ−1 as well as

Qμ−1 = Qμ−1G−1
μ Bμ−1 = Qμ−1∗, and

Hμ−1 =Πμ−2Qμ−1∗Πμ−1 =Πμ−2Qμ−1Πμ−1 = 0.
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If μ = 2 we already have a fine decoupling. If μ ≥ 3, we assume DΠμ−3Qμ−2∗D−,
which is a priori continuous, to be even continuously differentiable, and compose a
new sequence from the previous one. We set

Q̄0 := Q0, . . . , Q̄μ−3 = Qμ−3, and Q̄μ−2 = Qμ−2∗.

DΠ̄μ−2D− = DΠμ−3D−−DΠμ−3Qμ−2∗D− is continuously differentiable, and the
projector functions Q̄0, . . . , Q̄μ−2 are admissible. Further, some technical calcula-
tions yield

Ḡμ−1 = Gμ−1 {I + Q̄μ−2Pμ−2 +(I−Πμ−3)Qμ−2D−(DΠ̄μ−2D−)′DΠμ−3Q̄μ−2}︸ ︷︷ ︸
Zμ−1

.

The matrix function Zμ−1 remains nonsingular; it has the pointwise inverse

Z−1
μ−1 = I− Q̄μ−2Pμ−2− (I−Πμ−3)Qμ−2D−(DΠ̄μ−2D−)′DΠμ−3Qμ−2.

We complete the current sequence by

Q̄μ−1 := Z−1
μ−1Qμ−1Zμ−1 = Z−1

μ−1Qμ−1.

It follows that Q̄μ−1Q̄μ−2 = Z−1
μ−1Qμ−1Qμ−2∗ = 0 and Q̄μ−1Q̄i = Z−1

μ−1Qμ−1Qi = 0
for i = 0, . . . ,μ − 3. Applying several basic properties (e.g., Π̄μ−2 = Π̄μ−2Πμ−2)
we find the representation DΠ̄μ−1D− = (DΠ̄μ−2D−)(DΠμ−1D−) which shows the
continuous differentiability of DΠ̄μ−1D−. Our new sequence Q̄0, . . . , Q̄μ−1 is ad-
missible. We have further im Ḡμ−1 = imGμ−1, thus

S̄μ−1 = Sμ−1 = kerWμ−1B = kerWμ−1BZμ−1 = Z−1
μ−1Sμ−1.

This makes it clear that, Q̄μ−1 = Z−1
μ−1Qμ−1 projects onto N̄μ−1 = Z−1

μ−1Nμ−1 along
S̄μ−1 = Z−1

μ−1Sμ−1, and therefore the new coupling coefficient satisfies H̄μ−1 = 0.
Additionally, making further technical efforts one attains H̄μ−2 = 0.
If μ = 3, a fine decoupling is reached. If μ ≥ 4, we build the next sequence analo-
gously as

¯̄Q0 := Q̄0, . . . ,
¯̄Qμ−4 := Q̄μ−4,

¯̄Qμ−3 := Q̄μ−3∗,

¯̄Qμ−2 := Z̄−1
μ−2Q̄μ−2Z̄μ−2,

¯̄Qμ−1 := Z̄−1
μ−1Q̄μ−1Z̄μ−1.

Supposing DΠ̄μ−4Q̄μ−3∗D− to be continuously differentiable, we prove the new
sequence to be admissible, and to generate the coupling coefficients

¯̄Hμ−1 = 0, ¯̄Hμ−2 = 0, ¯̄Hμ−3 = 0.

And so on. Lemma 2.41 below guarantees the procedure reaches its goal.
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Lemma 2.41. Let the DAE (2.44) with sufficiently smooth coefficients be regular
with tractability index μ ≥ 3, and let Q0, . . . ,Qμ−1 be admissible projector func-
tions.
Let k ∈ {1, . . . ,μ − 2} be fixed, and let Q̄k be an additional continuous projector
function onto Nk = kerGk such that DΠk−1Q̄kD− is continuously differentiable and
the inclusion N0 + · · ·+Nk−1 ⊆ ker Q̄k is valid. Then the following becomes true:

(1) The projector function sequence

Q̄0 := Q0, . . . , Q̄k−1 := Qk−1,

Q̄k,

Q̄k+1 := Z−1
k+1Qk+1Zk+1, . . . , Q̄μ−1 := Z−1

μ−1Qμ−1Zμ−1,

with the continuous nonsingular matrix functions Zk+1, . . . ,Zμ−1 determined
below, is also admissible.

(2) If, additionally, the projector functions Q0, . . . ,Qμ−1 provide an advanced de-
coupling in the sense that the conditions (cf. Lemma 2.31)

Qμ−1∗Πμ−1 = 0, . . . , Qk+1∗Πμ−1 = 0

are given, then also the relations

Q̄μ−1∗Π̄μ−1 = 0, . . . , Q̄k+1∗Π̄μ−1 = 0, (2.72)

are valid, and further

Q̄k∗Π̄μ−1 = (Qk∗ − Q̄k)Πμ−1. (2.73)

The matrix functions Zi are consistent with those given in Lemma 2.12; however,
for easier reading we do not access this general lemma in the proof below. In
the special case given here, Lemma 2.12 yields simply Z0 = I,Y1 = Z1 = I, . . .,
Yk = Zk = I, and further

Yk+1 = I +Qk(Q̄k−Qk)+
k−1

∑
l=0

QlAklQ̄k =

(
I +

k−1

∑
l=0

QlAklQk

)(
I +Qk(Q̄k−Qk)

)
,

Zk+1 = Yk+1,

Yj = I +
j−2

∑
l=0

QlA j−1lQ j−1, Z j = YjZ j−1, j = k+2, . . . ,μ .

Besides the general property kerΠ̄ j = kerΠ j, j = 0, . . . ,μ−1, which follows from
Lemma 2.12, now it additionally holds that

im Q̄k = imQk, but ker Q̄ j = kerQ j, j = k+1, . . . ,μ−1.

We refer to Appendix B for the extensive calculations proving this lemma.
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Lemma 2.41 guarantees the existence of fine decoupling projector functions, and
it confirms the procedure sketched above to be reasonable.
The following theorem is the time-varying counterpart of Theorem 1.22 on constant
coefficient DAEs.

Theorem 2.42. Let the DAE (2.44) be regular with tractability index μ .

(1) If the coefficients of the DAE are sufficiently smooth, then a fine decoupling
exists.

(2) If there is a fine decoupling, then there is also a complete decoupling.

Proof. (1) The first assertion is a consequence of Lemma 2.41 and the procedure
described above.
(2) Let fine decoupling projectors Q0, . . . ,Qμ−1 be given. We form the new sequence

Q̄0 := Q0∗, Q̄1 := Z−1
1 Q1Z1, . . . , Q̄μ−1 := Z−1

μ−1Qμ−1Zμ−1,

with the matrix functions Z j from Lemma 2.12, in particular Z1 = I+ Q̄0P0. It holds
that D̄− = P̄0D−. Owing to the special form of Z j, the relations Π j−1Z j = Π j−1,
Π j−1Z−1

j = Π j−1 are given for j ≤ i − 1. This yields Q̄iQ̄ j = Q̄iZ−1
j Q jZ j =

Q̄iΠi−1Z−1
j Q j︸ ︷︷ ︸

=0

Z j = 0.

Expressing DΠ̄1D̄−=DP̄0Z−1
1 P1Z1P̄0D−=DP0Z−1

1 P1︸ ︷︷ ︸
Π1

Z1P̄0D−=DΠ1D−, and suc-

cessively,

DΠ̄iD̄− = DΠ̄i−1Z−1
i PiZiP̄−D

= DΠ̄i−1D̄−DZ−1
i PiZiP̄−D = DΠi−1D−DZ−1

i Pi︸ ︷︷ ︸
Πi

ZiP̄−D = DΠiD−,

we see that the new sequence of projector functions Q̄0, . . . , Q̄μ−1 is admissible, too.
Analogously to Lemma 2.41, one shows

H̄μ−1 = 0, . . . , H̄1 = 0, H̄0 = (Q0∗ − Q̄0)Πμ−1,

and this completes the proof. ��

2.5 Hierarchy of admissible projector function sequences for
linear DAEs

The matrices Q0, . . . ,Qi are admissible projectors, where Q j projects onto
Nj = kerG j, j = 0, . . . , i, with P0 := I−Q0, Π0 :=P0 and Pj := I−Q j, Π j :=Π j−1Pj,
�
N j := (N0 + · · ·+Nj−1)∩Nj, j = 1, . . . , i.
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admissible (Def. 2.6)

(N0 + · · ·+Nj−1)�
�
N j ⊆ kerQ j, j = 1, . . . , i

Π j−1Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal (Def. 2.13)
Π j =Π ∗j , j = 0, . . . , i

regular admissible
�
N j = {0}, j = 1, . . . , i
Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal and regular

for regular index μ DAEs
(square by definition)

fine decoupling (Def. 2.35)
H1 = 0, . . . ,Hμ−1 = 0
DΠμ−1D− = DΠcan μD−

complete decoupling (Def. 2.35)
H0 = 0,H1 = 0, . . . ,Hμ−1 = 0
Πμ−1 =Πcan μ (cf. Def. 2.37)

2.6 Fine regular DAEs

Here we continue to investigate regular DAEs (2.44) which have tractability index μ
and fine decoupling projector functions Q0, . . . ,Qμ−1. It is worth emphasizing once
more that Theorem 2.42 guarantees the existence of a fine decoupling for all regular
DAEs with sufficiently smooth coefficients.

Definition 2.43. Equation (2.44) is said to be a fine DAE on the interval I, if it is
regular there and possesses a fine decoupling.

By Theorem 2.39 and Lemma 2.31,

Πcan = (I−Q0∗)Πμ−1 = (I−H0)Πμ−1

is the canonical projector function onto Scan along Ncan, and hence DΠcan =DΠμ−1,
and therefore DΠcanD− = DΠμ−1D−, and imDΠμ−1 = imDΠcan = DScan.
Taking into account also Lemma 2.28 (7), the IERODE can now be written as
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u′ − (DΠcanD−)′u+DΠcanG−1
μ BD−u = DΠcanG−1

μ q, (2.74)

and, by Lemma 2.27, the subspace DScan is a time-varying invariant subspace for its
solutions, which means u(t0)∈D(t0)Scan(t0) implies u(t)∈D(t)Scan(t) for all t ∈ I.
This invariant subspace also applies to the homogeneous version of the IERODE.
Here, the IERODE is unique, its coefficients are independent of the special choice
of the fine decoupling projector functions, as pointed out in the previous subsection.
With regard to the fine decoupling, Proposition 2.29 (6), and the fact that
vi =Πi−1Qivi holds true for i = 1, . . . ,μ−1, the subsystem (2.62) simplifies slightly
to

v0 =−
μ−1

∑
l=1
N0l(Dvl)

′ −
μ−1

∑
l=2
M0l vl−H0D−u+L0q, (2.75)

vi =−
μ−1

∑
l=i+1

Nil(Dvl)
′ −

μ−1

∑
l=i+2

Mil vl +Liq, i = 1, . . . ,μ−3, (2.76)

vμ−2 =−Nμ−2,μ−1(Dvμ−1)
′+Lμ−2q, (2.77)

vμ−1 = Lμ−1q. (2.78)

By Theorem 2.30, the DAE (2.44) is equivalent to the system consisting of the
IERODE and the subsystem (2.75)–(2.78).

2.6.1 Fundamental solution matrices

The following solvability assertion is a simple consequence of the above.

Theorem 2.44. If the homogeneous DAE is fine, then,

(1) for each arbitrary x0 ∈ R
m, the IVP

A(Dx)′+Bx = 0, x(t0)− x0 ∈ Ncan(t0), (2.79)

is uniquely solvable in C1
D(I,Rm),

(2) the homogeneous IVP

A(Dx)′+Bx = 0, x(t0) ∈ Ncan(t0),

has the trivial solution only, and
(3) through each x0 ∈ Scan(t0) there passes exactly one solution.

Remark 2.45. Sometimes is seems to be more comfortable to describe the initial
condition in (2.79) by an equation, for instance, as

Πcan(t0)(x(t0)− x0) = 0, (2.80)

and as
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C(x(t0)− x0) = 0, (2.81)

by any matrix C such that kerC = kerΠcan(t0) = Ncan(t0). For instance, taking ar-
bitrary admissible projector functions Q̃0, . . . , Q̃μ−1, one can choose C such that
C =CΠ̃can(t0) (cf. Theorem 3.66).

Proof. (2) The initial condition yields u(t0) = D(t0)Πcan(t0)x(t0) = 0. Then, the re-
sulting homogeneous IVP for the IERODE admits the trivial solution u = 0 only.
Therefore, the DAE solution x =ΠcanD−u vanishes identically, too.
(1) We provide the solution u of the homogeneous IERODE which satisfies the ini-
tial condition u(t0) = D(t0)Πcan(t0)x0. Then we form the DAE solution
x =ΠcanD−u, and check that the initial condition is met:

x(t0)− x0 =Πcan(t0)D(t0)−u(t0)− x0 =Πcan(t0)D(t0)−D(t0)Πcan(t0)x0− x0

=−(I−Πcan(t0))x0 ∈ Ncan(t0).

Owing to (2) this is the only solution of the IVP.
(3) We provide the IVP solution as in (1), with x0 replaced by x0. This leads to

x(t0) =Πcan(t0)D(t0)−u(t0) =Πcan(t0)D(t0)−D(t0)Πcan(t0)x0 =Πcan(t0)x0 = 0.

The uniqueness is ensured by (2). ��

By Theorem 2.44, regular homogeneous DAEs are close to regular homogeneous
ODEs. This applies also to their fundamental solution matrices.
Denote by U(t, t0) the classical fundamental solution matrix of the IERODE, that is,
of the explicit ODE (2.74), which is normalized at t0 ∈ I, i.e., U(t0, t0) = I.
For each arbitrary initial value u0 ∈ D(t0)Scan(t0), the solution of the homogeneous
IERODE passing through remains for ever in this invariant subspace, which means
U(t, t0)u0 ∈ D(t)Scan(t) for all t ∈ I, and hence

U(t, t0)D(t0)Πcan(t0) = D(t)Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0), t ∈ I. (2.82)

Each solution of the homogeneous DAE can now be expressed as

x(t) =(I−H0(t))D(t)−U(t, t0)u0 =Πcan(t)D(t)−U(t, t0)u0, (2.83)
t ∈ I, u0 ∈ D(t0)Scan(t0),

and also as

x(t) =Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0)︸ ︷︷ ︸
X(t,t0)

x0, t ∈ I, with x0 ∈ R
m. (2.84)

If x ∈ C1
D(I,Rm) satisfies the homogeneous DAE, then there is exactly one

u0 ∈ D(t0)Scan(t0) such that the expression (2.83) is valid, and there are elements
x0 ∈ R

m such that (2.84) applies. Except for the index-0 case, x0 is not unique.
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Conversely, for each arbitrary x0 ∈ R
m, formula (2.84) provides a solution of the

homogeneous DAE. We know that the solution values of the homogeneous DAE lie
in the d-dimensional canonical subspace Scan, in particular x(t0) ∈ Scan(t0). There-
fore, starting from an arbitrary x0 ∈ R

m, the consistency of x(t0) with x0 cannot be
expected. What we always attain is the relation

x(t0) =Πcan(t0)x0,

but the condition x(t0) = x0 is exclusively reserved for x0 belonging to Scan(t0).
The composed matrix function

X(t, t0) :=Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0), t ∈ I, (2.85)

arising in the solution expression (2.84) plays the role of a fundamental solution ma-
trix of the DAE (2.44). In comparison with the (regular) ODE theory, there are sev-
eral differences to be considered. By construction, it holds that X(t0, t0) = Πcan(t0)
and

imX(t, t0)⊆ Scan(t), Ncan(t0)⊆ kerX(t, t0), t ∈ I, (2.86)

so that X(t, t0) is a singular matrix, except for the case μ = 0. X(., t0) is continuous,
and DX(., t0) = DΠcanD−U(., t0)D(t0)Πcan(t0) is continuously differentiable, thus
the columns of X(., t0) are functions belonging to C1

D(I,Rm).
We show that X(t, t0) has constant rank d. Fix an arbitrary t �= t0 and in-
vestigate the nullspace of X(t, t0). X(t, t0)z = 0 means U(t, t0)D(t0)Πcan(t0)z ∈
kerΠcan(t)D(t)−, and with regard to (2.82) this yields U(t, t0)D(t0)Πcan(t0)z = 0,
thus D(t0)Πcan(t0)z = 0, and further Πcan(t0)z = 0. Owing to (2.86), and for reasons
of dimensions, it follows that

imX(t, t0) = Scan(t), kerX(t, t0) = Ncan(t0), rankX(t, t0) = d, t ∈ I. (2.87)

Lemma 2.46. The matrix function

X(t, t0)− =Πcan(t0)D(t0)−U(t, t0)−1D(t)Πcan(t), t ∈ I,

is the reflexive generalized inverse of X(t, t0) determined by

XX−X = X , X−XX− = X−, X−X =Πcan(t0), XX− =Πcan.

Proof. Applying the invariance (2.82), we derive

X−X =Πcan(t0)D(t0)−U−1DΠcanΠcanD−UD(t0)Πcan(t0)

=Πcan(t0)D(t0)−U−1 DΠcanD−UD(t0)Πcan(t0)︸ ︷︷ ︸
UD(t0)Πcan(t0)

=Πcan(t0),

and X−XX− = (X−X)X− = X−, XX−X = X(X−X) = X .
Next we verify the relation
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U−1DΠcan = D(t0)Πcan(t0)D(t0)−U−1DΠcan, (2.88)

which in turn implies

XX− =ΠcanD−UD(t0)Πcan(t0)Πcan(t0)D(t0)−U−1DΠcan

=ΠcanD−U D(t0)Πcan(t0)D(t0)−U−1DΠcan︸ ︷︷ ︸
U−1DΠcan

=Πcan.

From
U ′ − (DΠcanD−)′U +DΠcanG−1

μ BD−U = 0, U(t0) = 0,

it follows that

U−1′+U−1(DΠcanD−)′ −U−1DΠcanG−1
μ BD− = 0.

Multiplication by DΠcanD− on the right results in the explicit ODE

V ′ =V (DΠcanD−)′+V DΠcanG−1
μ BD−

for the matrix function V = U−1DΠcanD−. Then, the matrix function
Ṽ := (I−D(t0)Πcan(t0)D(t0)−)V vanishes identically as the solution of the clas-
sical homogeneous IVP

Ṽ ′ = Ṽ (DΠcanD−)′+Ṽ DΠcanG−1
μ BD−, Ṽ (t0) = 0,

and this proves (2.88). ��

The columns of X(., t0) are solutions of the homogeneous DAE, and the matrix
function X(., t0) itself satisfies the equation

A(DX)′+BX = 0, (2.89)

as well as the initial condition

X(t0, t0) =Πcan(t0), (2.90)

or, equivalently,
Πcan(t0)(X(t0, t0)− I) = 0. (2.91)

Definition 2.47. Let the DAE (2.44) be fine. Each matrix function
Y ∈ C(I,L(Rs,Rm)), d ≤ s ≤ m, is said to be a fundamental solution matrix of
the DAE, if its columns belong to C1

D(I,Rm), the equation

A(DY )′+BY = 0

is satisfied, and the condition imY = Scan is valid.
A fundamental solution matrix is named of minimal size, if s = d, and of maximal
size, if s = m.
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A maximal size fundamental solution matrix Y is said to be normalized at t0, if
Πcan(t0)(Y (t0)− I) = 0.

In this sense, the above matrix function X(., t0) (cf. (2.85)) is a maximal size
fundamental solution normalized at t0.

Remark 2.48. Concerning fundamental solution matrices of DAEs, there is no com-
mon agreement in the literature. Minimal and maximal size fundamental solution
matrices, as well as relations among them, were first described in [9] for standard
form index-1 DAEs. A comprehensive analysis for regular lower index DAEs, both
in standard form and with properly stated leading term, is given in [7]. This analysis
applies analogously to regular DAEs with arbitrary index.
Roughly speaking, minimal size fundamental solution matrices have a certain ad-
vantage in view of computational aspects, since they have full column rank. For
instance, the Moore–Penrose inverse can be easily computed. In contrast, the ben-
efits from maximal size fundamental solution matrices are a natural normalization
and useful group properties as pointed out, e.g., in [11], [7].
If X(t, t0) is the maximal size fundamental solution matrix normalized at t0 ∈ I, and
X(t, t0)− is the generalized inverse described by Lemma 2.46, then it holds for all
t, t0, t1 ∈ I that

X(t, t1)X(t1, t0) = X(t, t0), and X(t, t0)− = X(t0, t),

as immediate consequences of the construction, and Lemma 2.46.

2.6.2 Consistent initial values and flow structure

Turning to inhomogeneous DAEs, first suppose the excitation to be such that a so-
lution exists. Before long, we shall characterize the classes of admissible functions
in detail.

Definition 2.49. The function q ∈ C(I,Rm) is named an admissible excitation for
the DAE (2.44), if the DAE is solvable for this q, i.e., if a solution xq ∈ C1

D(I,Rm)
exists such that A(Dxq)

′+Bxq = q.

Proposition 2.50. Let the DAE (2.44) be fine with tractability index μ .

(1) Then, q ∈ C(I,Rm) is an admissible excitation, if and only if the IVP

A(Dx)′+Bx = q, x(t0) ∈ Ncan(t0), (2.92)

admits a unique solution.
(2) Each q ∈ C(I,Rm), which for μ ≥ 2 fulfills the condition q =

GμP1 · · ·Pμ−1G−1
μ q, is an admissible excitation.
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Proof. (1) Let q be admissible and xq the associated solution. Then the function
x̃(t) := xq(t)−X(t, t0)xq(t0), t ∈ I, satisfies the IVP (2.92). The uniqueness results
from Theorem 2.44 (2). The reverse is trivial.
(2) From the condition q = GμP1 · · ·Pμ−1G−1

μ q it follows that

Liq =Πi−1QiPi+1 · · ·Pμ−1G−1
μ q

=Πi−1QiPi+1 · · ·Pμ−1P1 · · ·Pμ−1G−1
μ q = 0, i = 1, . . .μ−2,

Lμ−1q =Πμ−2Qμ−1G−1
μ q =Πμ−2Qμ−1P1 · · ·Pμ−1G−1

μ q = 0.

In consequence, the subsystem (2.76)–(2.78) yields successively vμ−1, . . . ,v1 = 0.
The IERODE (2.74) is solvable for each arbitrary continuous excitation. Denote by
u∗ an arbitrary solution corresponding to q. Then, the function

v0 =−H0D−u∗+L0q =−H0D−u∗+Q0G−1
μ q

results from equation (2.75), and

x := D−u∗+ v0 =ΠcanD−u∗+Q0G−1
μ q

is a solution of the DAE (2.44) corresponding to this excitation q. ��

For a fine index-1 DAE, all continuous functions q are admissible. For fine higher
index DAEs, the additional projector function GμP1 · · ·Pμ−1G−1

μ cuts away the “dan-
gerous” parts of a function, and ensures that only the zero function is differentiated
within the subsystem (2.75)–(2.78). For higher index DAEs, general admissible ex-
citations have certain smoother components. We turn back to this problem later on.

Example 2.51 (A fine index-2 DAE). Consider the DAE
⎡
⎣

1 0
0 1
0 0

⎤
⎦(
[

1 α 0
0 1 0

]
x)′+

⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦x = q.

Here, α is a continuous scalar function. Set and derive

D− =

⎡
⎣

1 −α
0 1
0 0

⎤
⎦ , G0 =

⎡
⎣

1 α 0
0 1 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 α 0
0 1 −1
0 0 0

⎤
⎦ ,

and further

Q1 =

⎡
⎣

0 −α 0
0 1 0
0 1 0

⎤
⎦ , Q1Q0 = 0, DΠ1D− =

[
1 0
0 0

]
, G2 =

⎡
⎣

1 α 0
0 1 −1
0 1 0

⎤
⎦ .

The projector functions Q0,Q1 are admissible, G2 is nonsingular, and hence the
DAE is regular with tractability index 2. The given property kerQ1 = S1 = {z∈R

3 :
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z2 = 0} indicates that Q0,Q1 already provide a fine decoupling. The DAE is fine.
Compute additionally

Πcan =Π1 =

⎡
⎣

1 α 0
0 0 0
0 0 0

⎤
⎦ , G−1

2 =

⎡
⎣

1 0 −α
0 0 1
0 −1 1

⎤
⎦ , G2P1G−1

2 =

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ .

A closer look at the detailed equations makes it clear that each admissible exci-
tation q must have a continuously differentiable component q3. By the condition
q = G2P1G−1

2 q, the third component of q is put to be zero. ��

Theorem 2.52. Let the DAE (2.44) be fine. Let q ∈ C(I,Rm) be an admissible exci-
tation, and let the matrix C ∈ L(Rm,Rs) have the nullspace kerC = Ncan(t0).

(1) Then, for each x0 ∈ R
m, the IVP

A(Dx)′+Bx = q, C(x(t0)− x0) = 0, (2.93)

admits exactly one solution.
(2) The solution of the IVP (2.93) can be expressed as

x(t, t0,x0) = X(t, t0)x0 + xq(t),

whereby xq ∈ C1
D(I,Rm) is the unique solution of the IVP

A(Dx)′+Bx = q, Cx(t0) = 0. (2.94)

Proof. (1) It holds that C =CΠcan(t0). Since q is admissible, by Proposition 2.50(1),
the solution xq exists and is unique. Then the function x∗ := X(., t0)x0 + xq belongs
to the function space C1

D(I,Rm) and satisfies the DAE. Further, x∗ meets the initial
condition

C(x∗(t0)− x0) =CΠcan(t0)(x∗(t0)− x0) =CΠcan(t0)(Πcan(t0)x0 + xq(t0)− x0) = 0,

and hence, x∗ satisfies the IVP (2.93). By Theorem 2.44, x∗ is the only IVP solution.
This proves at the same time (2). ��

We take a further look at the structure of the DAE solutions xq and x(., t0,x0). For
the given admissible excitation q, we denote

v := v1 + · · ·+ vμ−1 +L0q−
μ−1

∑
l=1
N0l(Dvl)

′ −
μ−1

∑
l=2
M0lvl , (2.95)

whereby v1, . . . ,vμ−1 ∈ C1
D(I,Rm) are determined by equations (2.76)–(2.78), de-

pending on q. All the required derivatives exist due to the admissibility of q.
If q vanishes identically, so does v. By construction, v(t) ∈ Ncan(t), t ∈ I, and
Dv = Dv1 + · · ·+Dvμ−1, thus v ∈ C1

D(I,Rm). The function v is fully determined
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by q and the coefficients of the subsystem (2.75)–(2.78). It does not depend either
on the initial condition nor the IERODE solution.

Introduce further the continuously differentiable function uq as

uq(t) : =
∫ t

t0
U(t, t0)U(s, t0)−1D(s)Πcan(s)G−1

μ (s)q(s)ds

=U(t, t0)
∫ t

t0
X(s, t0)−G−1

μ (s)q(s)ds, t ∈ I,

that is, as the solution of the inhomogeneous IERODE completed by the homoge-
neous initial condition u(t0) = 0. Now the solution xq and, in particular, its value at
t0, can be expressed as

xq(t) = D(t)−uq(t)−H0(t)D(t)−uq(t)+ v(t) =Πcan(t)D(t)−uq(t)+ v(t),

xq(t0) = v(t0) ∈ Ncan(t0).

The solution of the IVP (2.93) and its value at t0 can be written in the form

x(t, t0,x0) = X(t, t0)x0 +Πcan(t)D(t)−uq(t)+ v(t), (2.96)

x(t0, t0,x0) =Πcan(t0)x0 + v(t0), (2.97)

but also as

x(t, t0,x0) =Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0)x0 +Πcan(t)D(t)−uq(t)+ v(t)

=Πcan(t)D(t)−{U(t, t0)D(t0)Πcan(t0)x0 +uq(t)}︸ ︷︷ ︸
u(t,t0,D(t0)Πcan(t0)x0)

+v(t).

The last representation

x(t, t0,x0) = Πcan(t)D(t)−︸ ︷︷ ︸ u(t, t0,D(t0)Πcan(t0)x0)︸ ︷︷ ︸ + v(t)︸︷︷︸
⇑ ⇑ ⇑

wrapping inherent flow perturbation

unveils the general solution structure of fine DAEs to be the perturbed and wrapped
flow of the IERODE along the invariant subspace DScan. If the wrapping is thin
(bounded) and the perturbation disappears, then the situation is close to regular
ODEs. However, it may well happen that wrapping and perturbation dominate (cf.
Example 2.57 below). In extreme cases, it holds that Scan = {0}, thus the inherent
flow vanishes, and only the perturbation term remains (cf. Example 2.4).

From Theorem 2.52, and the representation (2.96), it follows that, for each given
admissible excitation, the set

Mcan,q(t) := {z+ v(t) : z ∈ Scan(t)}, t ∈ I, (2.98)
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is occupied with solution values at time t, and all solution values at time t belong to
this set. In particular, for x0 ∈Mcan,q(t0) it follows that x0 = z0+v(t0), z0 ∈ Scan(t0);
further Πcan(t0)x0 = z0 and

x(t0, t0,x0) =Πcan(t0)x0 + v(t0) = z0 + v(t0) = x0.

By construction, the inclusions

Scan(t)⊆ S0(t) = {z ∈ R
m : B(t)z ∈ imA(t)}= kerW0(t)B(t),

Mcan,q(t)⊆M0(t) = {x ∈ R
m : B(t)x−q(t) ∈ imA(t)}

are valid, wherebyW0(t) is again a projector along imA(t) = imG0(t). Recall that

Scan(t) and S0(t) have the dimensions d = m−
μ−1
∑
j=0

(m− r j) = r0−
μ−1
∑
j=1

(m− r j) and

r0, respectively. Representing the obvious constraint set as

M0(t) = {x ∈ R
m :W0(t)B(t)x =W0(t)q(t)}

= {z+(W0(t)B(t))−W0(t)q(t) : z ∈ S0(t)}

we know that M0(t), as an affine space, inherits its dimension from S0(t), while
Mcan,q(t) has the same dimension d as Scan(t).

Since d = r0 if μ = 1, and d < r0 if μ > 1, Mcan,q(t) coincides with M0(t)
for index-1 DAEs, however, for higher index DAEs, Mcan,q(t) is merely a proper
subset of M0(t). Mcan,q(t) is the set of consistent values at time t. Knowledge of
this set gives rise to an adequate stability notion for DAEs. As pointed out in [7]
for lower index cases, in general,Mcan,q is a time-varying affine linear subspace of
dimension d.

2.6.3 Stability issues

As for regular time-varying ODEs (e.g., [80]), we may consider the qualitative be-
havior of solutions of DAEs.

Definition 2.53. Let the fine DAE (2.44) with an admissible excitation q be given
on the infinite interval I = [0,∞). The DAE is said to be

(1) stable, if for every ε > 0, t0 ∈ I, a value δ (ε , t0) > 0 exists, such that the
conditions x0, x̄0 ∈Mcan,q(t0), |x0− x̄0| < δ (ε , t0) imply the existence of so-
lutions x(., t0,x0), x(., t0, x̄0) ∈ C1

D(I,Rm) as well as the inequality

|x(t, t0,x0)− x(t, t0, x̄0)|< ε , t0 ≤ t,

(2) uniformly stable, if δ (ε , t0) in (1) is independent of t0,
(3) asymptotically stable, if (1) holds true, and



128 2 Linear DAEs

|x(t, t0,x0)− x(t, t0, x̄0)| −−→
t→∞

0 for all x0, x̄0 ∈Mcan,q(t0), t0 ∈ I,

(4) uniformly asymptotically stable, if the limit in (3) is uniform with respect to
t0.

Remark 2.54. We can dispense with the explicit use of the setMcan,q(t0) within the
stability notion by turning to appropriate IVPs (cf. Theorem 2.52). This might be
more comfortable from the practical point of view.
Let C ∈ L(Rm,Rs) denote a matrix that has precisely Ncan(t0) as nullspace, for in-
stance C =Πμ−1(t0) or C =Πcan(t0).
The DAE (2.44) is stable, if for every ε > 0, t0 ∈ I, there exists a value δC(ε , t0)> 0
such that the IVPs

A(Dx)′+Bx = q, C(x(t0)− x0) = 0,

A(Dx)′+Bx = q, C(x(t0)− x̄0) = 0,

with x0, x̄0 ∈ R
m, |C(x0− x̄0)| < δC(ε , t0)), have solutions x(., t0,x0), x(., t0, x̄0) ∈

C1
D(I,Rm), and it holds that |x(., t0,x0)− x(., t0, x̄0)|< ε , for t ≥ t0.

This notion is equivalent to the previous one. Namely, denoting by C− a generalized
reflexive inverse of C such that C−C =Πcan(t0), and considering the relation

C−C(x0− x̄0) =Πcan(t0)x0−Πcan(t0)x̄0

=Πcan(t0)x0 + v(t0)︸ ︷︷ ︸
=x0∈M0(t0)

−(Πcan(t0)x̄0 + v(t0))︸ ︷︷ ︸
=x̄0∈M0(t0)

= x0− x̄0,

we know that the existence of δ (ε , t0) in Definition 2.53 implies the existence of
δC(ε , t0) = |C|δ (ε , t0). Conversely, having δC(ε , t0) we may put δ (ε , t0) =
|C−|δC(ε , t0).

Making use of the linearity,

x(t, t0,x0)− x(t, t0, x̄0) = X(t, t0)(x0− x̄0) (2.99)

we trace back the stability questions to the growth behavior of the fundamental so-
lution matrices. Applying normalized maximal size fundamental solution matrices
we modify well-known results on flow properties of explicit ODEs (e.g., [80]) so
that they can be considered for DAEs.

Theorem 2.55. Let the DAE (2.44) be fine and the excitation q be admissible. Then
the following assertions hold true, with positive constants Kt0 ,K and α:

(1) If |X(t, t0)| ≤ Kt0 , t ≥ t0, then the DAE is stable.
(2) If |X(t, t0)| −−→

t→∞
0, then the DAE is asymptotically stable.

(3) If |X(t, t0)X(s, t0)−| ≤ K, t0 ≤ s≤ t, then the DAE is uniformly stable.
(4) If |X(t, t0)X(s, t0)−| ≤Ke−α(t−s), t0≤ s≤ t, then the DAE is uniformly asymp-

totically stable.
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Proof. (1) It suffices to put δ (t0,ε) = ε/Kt0 .
(2) This is now obvious.
(4) Take x0, x̄0 ∈Mcan,q(t0), z0 := x0− x̄0 �= 0 such that z0 ∈ Scan and X(t, t0)z0 has
no zeros. For t ≥ s, we compute

|X(t, t0)z0|
|X(s, t0)z0|

=
|X(t, t0)Πcanz0|
|X(s, t0)z0|

=
|X(t, t0)X(s, t0)−X(s, t0)z0|

|X(s, t0)z0|
≤ |X(t, t0)X(s, t0)−| ≤ Ke−α(t−s).

This implies

|x(t, t0,x0)− x(t, t0, x̄0)|= |X(t, t0)z0| ≤ Ke−α(t−s)|x(s, t0,x0)− x(s, t0, x̄0)|.

(3) This is proved as (4) by letting α = 0. ��

In the theory of explicit ODEs, for instance, in the context of boundary value prob-
lems, the notion of dichotomy plays its role. The flow of a dichotomic ODE accom-
modates both decreasing and increasing modes. The same can happen for DAEs.
As for explicit ODEs, we relate dichotomy of DAEs to the flow of homogeneous
equations. More precisely, we apply maximal size fundamental solution matrices
X(t, t0) normalized at a reference point t0. The following definition resembles that
for ODEs.

Definition 2.56. The fine DAE (2.44) is said to be dichotomic, if there are constants
K,α,β ≥ 0, and a nontrivial projector (not equal to the zero or identity matrix)
Pdich ∈ L(Rm) such that Pdich =Πcan(t0)Pdich = PdichΠcan(t0), and the following in-
equalities apply for all t,s ∈ I:

|X(t, t0)PdichX(s, t0)−| ≤ Ke−α(t−s), t ≥ s,

|X(t, t0)(I−Pdich)X(s, t0)−| ≤ Ke−β (s−t), t ≤ s.

If α, β > 0, then one speaks of an exponential dichotomy.

Sometimes it is reasonable to write the last inequality in the form

|X(t, t0)(Πcan(t0)−Pdich)X(s, t0)−| ≤ Ke−β (s−t), t ≤ s.

It should be pointed out that dichotomy is actually independent of the reference
point t0. Namely, for t1 �= t0, with Pdich,t1 := X(t1, t0)PdichX(t1, t0)− we have a pro-
jector such that Pdich,t1 =Πcan(t1)Pdich,t1 = Pdich,t1Πcan(t1) and

|X(t, t1)Pdich,t1X(s, t1)−| ≤ Ke−α(t−s), t ≥ s,

|X(t, t1)(Πcan(t1)−Pdich,t1)X(s, t1)−| ≤ Ke−β (s−t), t ≤ s.

Analogously to the ODE case, the flow of a dichotomic homogeneous DAE is
divided into two parts, one containing in a certain sense a nonincreasing solution,
the other with nondecreasing ones. More precisely, for a nontrivial x0 ∈ imPdich ⊆
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Scan(t0), the DAE solution x(t, t0,x0) = X(t, t0)x0 has no zeros, and it satisfies for
t ≥ s the inequalities

|x(t, t0,x0)|
|x(s, t0,x0)|

=
|X(t, t0)x0|
|X(s, t0)x0|

=
|X(t, t0)PdichΠcan(t0)x0|

|X(s, t0)x0|

=
|X(t, t0)PdichX(s, t0)−X(s, t0)x0|

|X(s, t0)x0|
≤ |X(t, t0)PdichX(s, t0)−| ≤ Ke−α(t−s).

For solutions x(t, t0,x0) = X(t, t0)x0 with x0 ∈ im(I−Pdich)Πcan ⊆ Scan(t0) we show
analogously, for t ≤ s,

|x(t, t0,x0)|
|x(s, t0,x0)|

=
|X(t, t0)x0|
|X(s, t0)x0|

=
|X(t, t0)(I−Pdich)Πcan(t0)x0|

|X(s, t0)x0|

=
|X(t, t0)(I−Pdich)X(s, t0)−X(s, t0)x0|

|X(s, t0)x0|
≤ |X(t, t0)(I−Pdich)X(s, t0)−| ≤ Ke−β (s−t).

The canonical subspace of the dichotomic DAE decomposes into

Scan(t) = imX(t, t0) = imX(t, t0)Pdich⊕ imX(t, t0)(I−Pdich) =: S−can(t)⊕S+can(t).

The following two inequalities result for t ≥ s, and they characterize the subspaces
S−can and S+can as those containing nonincreasing and nondecreasing solutions, re-
spectively:

|x(t, t0,x0)| ≤ Ke−α(t−s)|x(s, t0,x0)|, if x0 ∈ S−can,

1
K

eβ (t−s)|x(s, t0,x0)| ≤ |x(t, t0,x0)|, if x0 ∈ S+can.

In particular, for s = t0 it follows that

|x(t, t0,x0)| ≤ Ke−α(t−t0)|x0|, if x0 ∈ S−can,

1
K

eβ (t−t0)|x0| ≤ |x(t, t0,x0)|, if x0 ∈ S+can.

If α > 0, and I = [t0,∞), then |x(t, t0,x0)| tends to zero for t tending to ∞, if x0
belongs to S−can(t0). If β > 0 and x0 ∈ S+can(t0), then x(t, t0,x0) growths unboundedly
with increasing t.

As for explicit ODEs, dichotomy makes good sense on infinite intervals I. The
growth behavior of fundamental solutions is also important for the condition of
boundary value problems stated on compact intervals (e.g., [2] for explicit ODEs,
also [146] for index-1 DAEs). Dealing with compact intervals one supposes a con-
stant K of moderate size.
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Example 2.57 (Dichotomic IERODE and dichotomic DAE). Consider the semi-
explicit DAE [

I
0

]
(
[
I 0
]

x)′+
[

B11 B12
B21 B22

]
x = 0,

consisting of three equations, m1 = 2,m2 = 1,n = 2. Let B22 have no zeros, and let
the coefficients be such that

B11 +B12
[
γ1 γ2

]
=

[
α 0
0 −β

]
,
[
γ1 γ2

]
:=−B−1

22 B21,

with constants α,β ≥ 0. Then, the canonical projector function and the IERODE
have the form (cf. Example 2.32)

Πcan =

⎡
⎣

1 0 0
0 1 0
γ1 γ2 0

⎤
⎦ , and u′+

[
α 0
0 −β

]
u = 0.

The IERODE is obviously dichotomic. Compute the fundamental solution matrix of
the DAE and its generalized inverse:

X(t, t0) =

⎡
⎣

e−α(t−t0) 0 0
0 eβ (t−t0) 0

γ1(t)e−α(t−t0) γ2(t)eβ (t−t0) 0

⎤
⎦ ,

X(t, t0)− =

⎡
⎣

eα(t−t0) 0 0
0 e−β (t−t0) 0

γ1(t0)eα(t−t0) γ2(t0)e−β (t−t0) 0

⎤
⎦ .

The projector

Pdich =

⎡
⎣

1 0 0
0 0 0

γ1(t0) 0 0

⎤
⎦ , Πcan(t0)−Pdich =

⎡
⎣

0 0 0
0 1 0
0 γ2(t0) 0

⎤
⎦ ,

meets the condition of Definition 2.56, and it follows that

X(t, t0)PdichX(t, t0)− = e−α(t−t0)

⎡
⎣

1 0 0
0 0 0

γ1(t) 0 0

⎤
⎦ , and S−can(t) = span

⎡
⎣

1
0

γ1(t)

⎤
⎦ ,

X(t, t0)(Πcan(t0)−Pdich)X(t, t0)− = eβ (t−t0)

⎡
⎣

0 0 0
0 1 0
0 γ2(t) 0

⎤
⎦ , and

S+can(t) = span

⎡
⎣

0
1

γ2(t)

⎤
⎦ .
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If both γ1 and γ2 are bounded functions, then this DAE is dichotomic. If, addition-
ally, α and β are positive, the DAE has an exponential dichotomy. We see that if
the entries of the canonical projector remain bounded, then the dichotomy of the
IERODE is passed over to the DAE. In contrast, if the functions γ1, γ2 grow un-
boundedly, the situation within the DAE may change. For instance, if α = 0 and
β > 0, then the fundamental solution

X(t, t0) =

⎡
⎣

1 0 0
0 eβ (t−t0) 0

γ1(t) γ2(t)eβ (t−t0) 0

⎤
⎦

indicates that each nontrivial solution will grow unboundedly though the IERODE
is dichotomic. ��

The last example is too simple in the sense that DScan = imD = R
n is valid, which

happens only for regular index-1 DAEs, if A has full column rank, and D has full row
rank. In general, DScan is a time-varying subspace of imD, and the IERODE at the
whole does not comprise an exponential dichotomy. Here the question is whether
the IERODE shows dichotomic behavior along its (time-varying) invariant subspace
DScan. We do not go into more details in this direction.

2.6.4 Characterizing admissible excitations and perturbation index

The fine decoupling of a regular DAE into the IERODE (2.74) and the subsystem
(2.75)–(2.78) allows a precise and detailed description of admissible excitations.
Remember that the equations (2.75)–(2.78), which means

v0 =−
μ−1

∑
l=1
N0l(Dvl)

′ −
μ−1

∑
l=2
M0l vl−H0D−u+L0q, (2.100)

vi =−
μ−1

∑
l=i+1

Nil(Dvl)
′ −

μ−1

∑
l=i+2

Mil vl +Liq, i = 1, . . . ,μ−3, (2.101)

vμ−2 =−Nμ−2,μ−1(Dvμ−1)
′+Lμ−2q, (2.102)

vμ−1 = Lμ−1q, (2.103)

constitute the subsystem (2.62) specified for fine decouplings. We quote once again
the coefficients
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N01 :=−Q0Q1D−,

N0 j :=−Q0P1 · · ·Pj−1Q jD−, j = 2, . . . ,μ−1,

Ni,i+1 :=−Πi−1QiQi+1D−,

Ni j :=−Πi−1QiPi+1 · · ·Pj−1Q jD−, j = i+2, . . . ,μ−1, i = 1, . . . ,μ−2,
M0 j := Q0P1 · · ·Pμ−1M jDΠ j−1Q j, j = 1, . . . ,μ−1,
Mi j :=Πi−1QiPi+1 · · ·Pμ−1M jDΠ j−1Q j, j = i+1, . . . ,μ−1, i = 1, . . . ,μ−2,

L0 := Q0P1 · · ·Pμ−1G−1
μ ,

Li :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ , i = 1, . . . ,μ−2,

Lμ−1 :=Πμ−2Qμ−1G−1
μ ,

H0 := Q0P1 · · ·Pμ−1KΠμ−1.

For the detailed form of K and M j we refer to (2.54) and (2.55), respectively. All
these coefficients are continuous by construction.

The IERODE is solvable for each arbitrary continuous inhomogeneity, therefore,
additional smoothness requirements may occur only from the subsystem equations
(2.100)–(2.102).

This causes us to introduce the following function space, if μ ≥ 2:

Cind μ(I,Rm) :=
{

q ∈ C(I,Rm) :

νμ−1 := Lμ−1q, Dνμ−1 ∈ C1(I,Rn),

νμ−2 :=−Nμ−2,μ−1(Dνμ−1)
′+Lμ−2q, Dνμ−2 ∈ C1(I,Rn),

νi :=−
μ−1

∑
l=i+1

Nil(Dνl)
′ −

μ−1

∑
l=i+2

Mil νl +Liq, Dνi ∈ C1(I,Rn),

i = 1, . . . ,μ−3
}
. (2.104)

Additionally we set for μ = 1 : Cind 1(I,Rm) := C(I,Rm).
The function space Cind μ(I,Rm) makes sense unless there are further smoothness
assumptions concerning the coefficients. It contains, in particular, all continuous
functions q that satisfy the condition q = GμP1 · · ·Pμ−1G−1

μ q (cf. Proposition 2.50),
which implies ν1 = 0, . . . ,νμ−1 = 0.
The function space Cind μ(I,Rm) is always a proper subset of the continuous func-
tion space C(I,Rm). The particular cases μ = 2 and μ = 3 are described in detail
as

Cind 2(I,Rm) :=
{

q ∈ C(I,Rm) : ν1 := L1q, Dν1 ∈ C1(I,Rn)
}

(2.105)

=
{

q ∈ C(I,Rm) : DΠ0Q1G−1
2 q ∈ C1(I,Rm)

}
= C1

DΠ0Q1G−1
2
(I,Rm),

and
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Cind 3(I,Rm) :=
{

q ∈ C(I,Rm) : ν2 := L2q, Dν2 ∈ C1(I,Rn),

ν1 :=−N12(Dν2)
′+L1q, Dν1 ∈ C1(I,Rn)

}
(2.106)

=
{

q ∈ C(I,Rm) : ν2 :=Π1Q2G−1
3 q, Dν2 ∈ C1(I,Rn),

ν1 :=Π0Q1Q2D−(Dν2)
′+Π0Q1P2G−1

3 q, Dν1 ∈ C1(I,Rn)
}
.

We now introduce the linear operator L : C1
D(I,Rm)→C(I,Rm) by means of

Lx := A(Dx)′+Bx, x ∈ C1
D(I,Rm), (2.107)

so that the DAE (2.44) is represented by the operator equation Lx = q, and an exci-
tation q is admissible, exactly if it belongs to the range imL of the operator L.

Proposition 2.58. If the DAE (2.44) is fine with tractability index μ ∈ N, then the
linear operator L has the range

imL = C(I,Rm), if μ = 1,

imL = Cind μ(I,Rm)⊂ C(I,Rm), if μ ≥ 2.

Proof. The index-1 case is already known from Proposition 2.50 and the definition
of L. Turn to the case μ ≥ 2. By means of the decoupled version, to each excita-
tion q ∈ Cind μ(I,Rm), we find a solution x ∈ C1

D(I,Rm) of the DAE, so that the
inclusion Cind μ(I,Rm) ⊆ imL follows. Namely, owing to the properties of q (cf.
(2.104)), there is a solution vμ−1 ∈ C1

D(I,Rm) of equation (2.103), then a solution
vμ−2 ∈ C1

D(I,Rm) of (2.102), and solutions vi ∈ C1
D(I,Rm) of (2.101), successively

for i = μ−3, . . . ,1. Furthermore, compute a solution u of the IERODE, and v0 from
equation (2.100). Finally put x := D−u+ v0 + · · ·+ vμ−1.
To show the reverse inclusion Cind μ(I,Rm) ⊇ imL we fix an arbitrary
x ∈ C1

D(I,Rm) and investigate the resulting q := A(Dx)′+Bx. We again apply the
decoupling. Denote v0 := Q0x, and vi := Πi−1Qix, for i = 1, . . . ,μ − 1. Since the
projector functions DΠi−1QiD−, i = 1, . . . ,μ − 1, and the function Dx are contin-
uously differentiable, so are the functions Dvi = DΠi−1QiD−Dx, i = 1, . . . ,μ − 1.
Now equation (2.103) yields νμ−1 := Lμ−1q ∈ C1

D(I,Rm), equation (2.102) gives
νμ−2 :=−Nμ−2 μ−1(Dvμ−1)

′+Lμ−2q ∈ C1
D(I,Rm), and so on. ��

At this point, the reader’s attention should be directed to the fact that the linear
function space C1

D(I,Rm) does not necessarily contain all continuously differen-
tiable functions. For instance, if D is continuous, but fails to be continuously dif-
ferentiable, then there are constant functions xconst such that Dxconst fails to be con-
tinuously differentiable, and hence xconst does not belong to C1

D(I,Rm). In contrast,
if D is continuously differentiable and its nullspace is nontrivial, then the proper
inclusion

C1(I,Rm)⊂ C1
D(I,Rm)
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is valid. Similar aspects are to be considered if one deals with the space
Cind μ(I,Rm) comprising the admissible excitations. For μ ≥ 2, only if the involved
coefficients Li, Ni j andMi j are sufficiently smooth, does the inclusion

Cμ−1(I,Rm)⊂ Cind μ(I,Rm),

hold true. Of course, the index-1 case is simple with

C(I,Rm) = Cind 1(I,Rm).

To achieve more transparent estimates we introduce, for each function w being con-
tinuous on I and t0, t1 ∈ I, t0 < t1, the expression

‖w‖[t0,t1]∞ := max
t0≤τ≤t1

|w(τ)|,

which is the maximum-norm related to the compact interval [t0, t1]. Moreover, for
q ∈ Cind μ(I,Rm) and t0, t1 ∈ I, t0 < t1, we introduce

‖q‖[t0,t1]ind μ := ‖q‖[t0,t1]∞ +‖(Dνμ−1)
′‖[t0,t1]∞ + · · ·+‖(Dν1)

′‖[t0,t1]∞ ,

which means for the special cases μ = 2 and μ = 3:

‖q‖[t0,t1]ind 2 := ‖q‖[t0,t1]∞ +‖(Dν1)
′‖[t0,t1]∞ = ‖q‖[t0,t1]∞ +‖(DΠ0Q1G−1

2 q)′‖[t0,t1]∞ ,

‖q‖[t0,t1]ind 3 := ‖q‖[t0,t1]∞ +‖(Dν2)
′‖[t0,t1]∞ +‖(Dν1)

′‖[t0,t1]∞

= ‖q‖[t0,t1]∞ +‖(DΠ1Q2G−1
3 q)′‖[t0,t1]∞

+‖(DΠ0Q1Q2D−(DΠ1Q2G−1
3 q)′+DΠ0Q1P2G−1

3 q)′‖[t0,t1]∞ .

Theorem 2.59. Let the DAE (2.44) be fine with tractability index μ ∈ N. Let t0 ∈ I
and let C be a matrix such that kerC = Ncan(t0). Let the compact interval [t0, t̄]⊆ I
be fixed. Then the following assertions are true:

(1) The excitation q is admissible, if and only if it belongs to Cind μ(I,Rm).
(2) For each pair q ∈ Cind μ(I,Rm), x0 ∈ R

m , the solution x ∈ C1
D(I,Rm) of the

IVP
A(Dx)′+Bx = q, C(x(t0)− x0) = 0, (2.108)

satisfies the inequality

|x(t)| ≤ ‖x‖[t0,t]∞ ≤ c
{
|Πcan(t0)x0|+‖q‖[t0,t]ind μ

}
, t0 ≤ t ≤ t̄, (2.109)

whereby the constant c depends only on the interval.
(3) If the DAE coefficients are so smooth that Cμ−1(I,Rm)⊂ Cind μ(I,Rm), and
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‖q‖[t0,t]ind μ ≤ c0

{
‖q‖[t0,t]∞ +

μ−1

∑
l=1
‖q(l)‖[t0,t]∞

}
, for q ∈ Cμ−1(I,Rm),

then, for each pair q ∈ Cμ−1(I,Rm), x0 ∈ R
m, it holds that

‖x‖[t0,t]∞ ≤ K
{
|Πcan(t0)x0|+‖q‖[t0,t]∞ +

μ−1

∑
l=1
‖q(l)‖[t0,t]∞

}
. (2.110)

Proof. (1) is a consequence of Proposition 2.58, and (3) results from (2). It remains
to verify (2). We apply the solution representation (2.96). First we consider the func-
tion v defined by (2.95), for a given q ∈ Cind μ(I,Rm). One has in detail

vμ−1 = Lμ−1q, thus ‖vμ−1‖[t0,t]∞ ≤ c̄μ−1‖q‖[t0,t]ind μ ,

vμ−2 = Lμ−2q−Nμ−2μ−1(Dνμ−1)
′, thus ‖vμ−2‖[t0,t]∞ ≤ c̄μ−2‖q‖[t0,t]ind μ ,

and so on, such that

‖vi‖[t0,t]∞ ≤ c̄i‖q‖[t0,t]ind μ , i = μ−3, . . . ,1,

with certain constants c̄i. Then, with a suitable constant c̄, it follows that

‖v‖[t0,t]∞ ≤ c̄‖q‖[t0,t]ind μ .

Now the representation (2.96) leads to the inequality

|x(t)| ≤ ‖x‖[t0,t]∞ ≤ c1 |Πcan(t0)x0|+ c2 ‖q‖[t0,t]∞ +‖q‖[t0,t]ind μ , t0 ≤ t ≤ t̄,

with c1 being a bound of the fundamental solution matrix X(t, t0), c3 := c̄ and c2
resulting as a bound of the term X(t, t0)X(s, t0)−G−1

μ (s), whereby s varies between
t0 and t. We finish the proof by letting c := max{c1,c2 + c3}. ��

The inequality (2.110) suggests that the DAE has so-called perturbation index μ
(cf. [103, 105]). The concept of perturbation index interprets the index as a measure
of sensitivity of the solution with respect to perturbations of the given problem.
Applied to our DAE (2.44), the definition ([105, page 478]) becomes:

Definition 2.60. Equation (2.44) has perturbation index μp along a solution x∗ on
the interval [t0, t̄], if μp is the smallest integer such that, for all functions x̃ having a
defect

A(Dx̃)′+Bx̃−q = δ

there exists on [t0, t̄] an estimate

|x̃(t)− x∗(t)| ≤C{|x̃(t0)− x∗(t0)|+‖δ‖[t0,t]∞ + · · ·+‖δ (μp−1)‖[t0,t]∞ },

whenever the expression on the right-hand side is sufficiently small.
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Owing to the linearity, the DAE (2.44) has perturbation index μp (along each
solution) on the interval [t0, t̄], if for all functions x = x̃− x∗ having a defect
A(Dx)′+Bx = δ an estimate

|x(t)| ≤C{|x(t0)|+‖δ‖[t0,t]∞ + · · ·+‖δ (μp−1)‖[t0,t]∞ }, (2.111)

is valid.
The definition of the perturbation index does not specify function classes meant
for the solutions and defects, but obviously one has to suppose δ ∈ Cμp−1, such
that the notion applies to sufficiently smooth problems only. In fact, the required
estimate (2.111) corresponds to the inequality (2.110), which is available for smooth
problems only. Therefore, we observe that a fine DAE with tractability index μ and
sufficiently smooth coefficients has at the same time perturbation index μ .

All in all, the solution x = x(x0,q) of the IVP (2.108) depends on the value x0

as well as on the function q. It is shown that x varies smoothly with x0 such that,
concerning this aspect, the DAE solutions are close to the ODE solutions. How-
ever, solutions of higher index DAEs show an ambivalent character. With respect
to their variable q they are essentially ill-posed. More precisely, the linear operator
L : C1

D(I,Rm)→ C(I,Rm) described in (2.107) has the range imL = Cind μ(I,Rm)
which is a proper nonclosed subset in C(I,Rm), if μ ≥ 2. This makes the IVP
(2.108) essentially ill-posed with respect to the excitations q. We recall of Exam-
ple 1.5 which clearly shows this ill-posed character.

2.7 Specifications for regular standard form DAEs

At present, most of the literature on DAEs is devoted to standard form DAEs

E(t)x′(t)+F(t)x(t) = q(t), t ∈ I, (2.112)

where E and F are smooth square matrix functions. Here we assume E(t) to have
constant rank on the given interval whereas points at which E(t) change its rank are
considered to be critical.
As proposed in [96], one can treat (2.112) as

E(t)(P(t)x(t))′+(F(t)−E(t)P′(t))x(t) = q(t), t ∈ I, (2.113)

by means of a continuously differentiable projector function P such that kerP =
kerE. The DAE (2.113) has a properly stated leading term, and all results of the
previous sections apply. In particular, we build the matrix function sequence begin-
ning with

A := E, D := P, R = P, B := F−EP′, G0 = E, B0 := B,
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develop decouplings, etc. However, now the new question arises: which effects are
caused by a change from one projector function P to another one? Clearly, the matrix
function sequence depends on the projector function P.
Suppose P and P̃ to be two continuously differentiable projector functions such that

kerE = kerP = ker P̃.

Besides (2.113) we consider

E(t)(P̃(t)x(t))′+(F(t)−E(t)P̃′(t))x(t) = q(t), t ∈ I. (2.114)

Proposition 2.22 guarantees that the function spaces C1
P(I,Rm) and C1

P̃(I,R
m) co-

incide. Furthermore, the DAE (2.114) results from the DAE (2.113) by a refactor-
ization of the leading term. Namely, set

A := E, D := P, R := P, B := F−EP′, and H := P̃, H− := P̃.

Then, condition (2.27) is satisfied with RHH−R = PP̃P = P = R, and the refactor-
ized DAE (2.28) coincides with (2.114) because of (cf. (2.29))

Ā = AH = EP̃ = E, D̄ = H−D = P̃P = P̃,

B̄ = B−ARH(H−R)′D = F−EP′ −EP̃′P

= F−EP̃P′ −EP̃′P = F−E(P̃P)′

= F−EP̃′.

In consequence, by Theorem 2.21 on refactorizations, the subspaces imGi, Si, and
N0 + · · ·+Ni, as well as the characteristic values ri, are independent of the special
choice of P. This justifies the following regularity notion for standard form DAEs
which traces the problem back to Definition 2.25 for DAEs with properly stated
leading terms.

Definition 2.61. The standard form DAE (2.112) is regular with tractability index
μ , if the properly stated version (2.113) is so for one (or, equivalently, for each)
continuously differentiable projector function P with kerP = kerE.
The characteristic values of (2.113) are named characteristic values of (2.112).
The canonical subspaces Scan and Ncan of (2.113) are called canonical subspaces of
(2.112).

While the canonical subspaces Scan and Ncan are independent of the special choice
of P, the IERODE resulting from (2.113) obviously depends on P:

u′ − (PΠμ−1)
′u+PΠμ−1G−1

μ Bu = PΠμ−1G−1
μ q, u ∈ imPΠμ−1. (2.115)

This is a natural consequence of the standard formulation.
When dealing with standard form DAEs, the choice P0 := P, D− = P suggests

itself to begin the matrix function sequence with. In fact, this is done in the related
previous work. Then the accordingly specialized sequence is
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G0 = E, B0 = F−EP′0 = F−G0Π ′0,
Gi+1 = Gi +BiQi, Bi+1 = BiPi−Gi+1P0Π ′i+1Πi, i≥ 0. (2.116)

In this context, the projector functions Q0, . . . ,Qκ are regular admissible, if

(a) the projector functions G0, . . . ,Gκ have constant ranks,
(b) the relations QiQ j = 0 are valid for j = 0, . . . , i−1, i = 1, . . . ,κ ,
(c) and Π0, . . . ,Πκ are continuously differentiable.

Then, it holds that PΠi =Πi, and the IERODE of a regular DAE (2.112) is

u′ −Π ′μ−1u+Πμ−1G−1
μ Bu =Πμ−1G−1

μ q, u ∈ imΠμ−1. (2.117)

In previous papers exclusively devoted to regular DAEs, some higher smoothness is
supposed for Qi, and these projector functions are simply called admissible, without
the addendum regular. A detailed description of the decoupling supported by the
specialized matrix function (2.116) can be found in [194].

Remark 2.62. In earlier papers (e.g., [157], [159], [111], [160]) the matrix function
sequence

Gi+1 = Gi +BiQi, Bi+1 = BiPi−Gi+1Π ′i+1Πi, i≥ 0, (2.118)

is used, which is slightly different from (2.116). While [157], [159] provide solvabil-
ity results and decouplings for regular index-2 and index-3 DAEs, [111] deserves
attention in proving the invariance of the tractability index μ ∈ N with respect to
transformations (see also [160], but notice that, unfortunately, there is a misleading
misprint in the sequence on page 158). In these earlier papers the famous role of
the sum spaces N0 + · · ·+Ni was not yet discovered, so that the reasoning is less
transparent and needs patient readers.
In [167, Remark 2.6] it is thought that the sequence (2.116) coincides with the se-
quence (2.118); however this is not fully correct. Because of

Bi+1 = BiPi−Gi+1P0Π ′i+1Πi = BiPi−Gi+1Π ′i+1Πi +Gi+1Q0 Π ′i+1︸︷︷︸
(P0Πi+1)′

Πi

= BiPi−Gi+1Π ′i+1Πi +Gi+1Q0P′0Πi+1,

both matrix function sequences in fact coincide, if Q0P′0 = 0. One can always arrange
that Q0P′0 = 0 is locally valid. Namely, for each fixed t∗ ∈ I, we find a neighborhood
Nt∗ such that kerE(t)⊕ kerE(t∗)⊥ = R

m holds true for all t ∈ Nt∗ . The projector
function Q0 onto kerE(t) along kerE(t∗)⊥ has the required property

Q0P′0 = Q0(P0(t∗)P0)
′ = Q0P0(t∗)P′0 = 0.

Owing to the independence of the choice of the projector function P0 = P, the reg-
ularity notions for (2.112), defined by means of (2.116) or by (2.118), are actually
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consistent, and the sum subspaces, the canonical subspaces, and the characteristic
values are precisely the same.
Several papers on lower index DAEs use subspace properties rather than rank con-
ditions for the index definition. For instance, in [163], an index-2 tractable DAE is
characterized by a constant-dimensional nontrivial nullspace N1, together with the
transversality condition N1⊕ S1 = R

m. Owing to Lemma A.9, this is equivalent to
the condition for G1 to have constant rank lower than m, and the requirement for G2
to remain nonsingular.

Theorem 2.63. Let the DAE (2.112) be regular with tractability index μ and fine.
Let the matrix C ∈ L(Rm,Rs) be such that kerC = Ncan(t0).

(1) Then, the IVP
Ex′+Fx = 0, Cx(t0) = 0,

has the zero solution only.
(2) For each admissible excitation q, and each x0 ∈ R

m, the IVP

Ex′+Fx = q, C(x(t0)− x0) = 0,

has exactly one solution in C1
P(I.Rm).

(3) For each given admissible excitation q, the set of consistent initial values at
time t0 is

Mcan,q(t0) = {z+ v(t0) : z ∈ Scan(t0)},

whereby v is constructed as in (2.95) by means of fine decoupling projector
functions.

(4) If the coefficients of the DAE are sufficiently smooth, then each
q ∈ Cμ−1(I,Rm) is admissible. If the interval I is compact, then for the IVP
solution from (2), the inequality

‖x‖ ≤ K
(
|Πcan(t0)x0|+‖q‖∞+

μ−1

∑
l=1
‖q(l)‖∞

)
(2.119)

is valid with a constant K independent of q and x0.

Proof. (1) and (2) are consequences of Theorem 2.44(2) and Theorem 2.52(1), re-
spectively. Assertion (4) follows from Theorem 2.59(3). Assertion (3) results from
the representations (2.95) and (2.98), with D = D− = P. ��

The inequality (2.119) indicates that the DAE has perturbation index μ (cf. Def-
inition 2.60).

2.8 The T-canonical form

Definition 2.64. The structured continuous coefficient DAE with properly stated
leading term
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⎡
⎢⎢⎢⎢⎢⎢⎣

Id

0 Ñ0,1 · · · Ñ0,μ−1
. . . . . .

...
. . . Ñμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id
0

Im−r1
. . .

. . .
Im−rμ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̃

)′
(2.120)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W̃
H̃0 Im−r0

...
. . .

...
. . .

H̃μ−1 Im−rμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

x̃ = q̃,

m = d +
μ−1
∑
j=0

(m− r j), as well as its counterpart in standard form

[
Id 0
0 Ñ

]
x̃′+

[
W̃ 0
H̃ Im−d

]
x̃ = q̃, (2.121)

with

Ñ =

⎡
⎢⎢⎢⎢⎣

0 Ñ0,1 · · · Ñ0,μ−1
. . . . . .

...
. . . Ñμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦
,

are said to be in T(ractability)-canonical form, if the entries
Ñ0,1, . . . ,Ñμ−2,μ−1 are full column rank matrix functions, that is rankNi−1,i =
m− ri, for i = 1, . . . ,μ−1.

The subscript μ indicates the tractability index μ , and at the same time the uni-
form nilpotency index of the upper block triangular matrix function Ñ . Ñ μ van-
ishes identically, and Ñ μ−1 has the only nontrivial entry Ñ0,1Ñ1,2 · · · Ñμ−2,μ−1 of
rank m− rμ−1 in the upper right corner. If the coefficients H̃0, . . . ,H̃μ−1 vanish, the
T-canonical form (2.121) looks precisely like the Weierstraß–Kronecker canonical
form for constant matrix pencils.
Generalizing Proposition 1.28, we show that a DAE (2.44) is regular with tractability
index μ if and only if it can be brought into T-canonical form by a regular multi-
plication, a regular transformations of the unknown function, and a refactorization
of the leading term as described in Section 2.3. This justifies the attribute canoni-
cal. The structural sizes r0, . . . ,rμ−1 coincide with the characteristic values from the
tractability index framework.

Theorem 2.65. (1) The DAE (2.44) is regular with tractability index μ and char-
acteristic values r0 ≤ ·· · ≤ rμ−1 < rμ = m, if and only if there are pointwise
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regular matrix functions L,K ∈ C(I,L(Rm)), and a constant-rank refactor-
ization matrix function H ∈ C1(I,L(Rs,Rn)), RHH−R = R, such that pre-
multiplication by L, the transformation x = Kx̃, and the refactorization of the
leading term by H yield a DAE in T-canonical form, whereby the entry Ñi−1,i
has size (m− ri−1)× (m− ri) and

rankÑi−1,i = m− ri, for i = 1, . . . ,μ−1.

(2) If the DAE (2.44) is regular with tractability index μ , and its coefficients are
smooth enough for the existence of completely decoupling projector functions,
then the DAE is equivalent to a T-canonical form with zero coupling coeffi-
cients H̃0, . . . ,H̃μ−1.

Proof. (1) If the DAE has T-canonical form, one can construct a matrix function
sequence and admissible projector functions in the same way as described in Sub-
section 1.2.6 for constant matrix pencils, and this shows regularity and confirms the
characteristic values.
The reverse implication is more difficult. Let the DAE (2.44) be regular with
tractability index μ and characteristic values r0 ≤ ·· · ≤ rμ−1 < rμ = m. Let
Q0, . . . ,Qμ−1 be admissible projector functions. As explained in Subsection 2.4.2,
the DAE decomposes into equation (2.49) being a pre-version of the IERODE and
subsystem (2.63) together
[

DΠμ−1D− 0
0 N

]

︸ ︷︷ ︸
A

([DΠμ−1D− 0
0 D

]

︸ ︷︷ ︸
D

[
u
v

])′
+

[
W 0
HD− M

]

︸ ︷︷ ︸
B

[
u
v

]
=

[
Ld
L

]
q. (2.122)

This is an inflated system in R
m(μ+1), with W := DΠμ−1G−1

μ BD−, further coeffi-
cients given in Subsection 2.4.2, and the unknown functions

[
u
v

]
:=

⎡
⎢⎢⎢⎣

u
v0
...

vμ−1

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎢⎢⎣

DΠμ−1
Q0

Π0Q1
...

Πμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦

x.

We condense this inflated system back to R
m in a similar way as in Proposition 1.28.

The projector functions DΠμ−1D− and DΠi−1QiD− are continuously differentiable,
and so are their ranges and nullspaces. The C1-subspace im(DΠμ−1D−)∗ has di-
mension d = m−∑μ−1

i=0 (m− ri), and it is spanned by continuously differentiable
basis functions, which means that there is a matrix function Γd ∈ C1(I,L(Rn,Rd))
such that

im(DΠμ−1D−)∗ = imΓ ∗d , kerΓ ∗d = {0},

and hence
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imΓd = R
d , kerΓd = (im(DΠμ−1D−)∗)⊥ = kerDΠμ−1D−.

By Proposition A.17, there is a pointwise reflexive generalized inverse Γ−d ∈
C1(I,L(Rd ,Rn)) such thatΓdΓ−d = Id and Γ−d Γd =DΠμ−1D−. Analogously we find
Γi ∈C1(I,L(Rn,Rm−ri)) andΓ−i ∈C1(I,L(Rm−ri ,Rn)) such that for i= 1, . . . ,μ−1

imΓi = R
m−ri , kerΓi = kerDΠi−1QiD−, ΓiΓ−i = Im−ri , Γ−i Γi = DΠi−1QiD−.

This implies

ΓiD = ΓiDΠi−1Qi, D−Γ−i =Πi−1QiD−Γ−i , ΓiDD−Γ−i = ΓiΓ−i = Im−ri .

Finally we provideΓ0 ∈C(I,L(Rm,Rm−r0)) andΓ−0 ∈C(I,L(Rm−r0 ,Rm)) such that

imΓ0 = R
m−r0 , kerΓ0 = kerQ0, Γ0Γ−0 = Im−r0 , Γ−0 Γ0 = Q0.

Then we compose

Γ :=
[
Γd

Γsub

]
, Γ− :=

[
Γ−d

Γ−sub

]
,

Γsub :=

⎡
⎢⎢⎢⎣

Γ0
Γ1D

. . .
Γμ−1D

⎤
⎥⎥⎥⎦ , Γ−sub :=

⎡
⎢⎢⎢⎣

Γ−0
D−Γ−1

. . .
D−Γ−μ−1

⎤
⎥⎥⎥⎦

such that ΓΓ− = Im, ΓsubΓ−sub = Im−d , and

Γ−Γ =

⎡
⎢⎢⎢⎢⎢⎣

DΠμ−1D−

Q0
Π0Q1

. . .
Πμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦
,

Γ−subΓsub =

⎡
⎢⎢⎢⎣

Q0
Π0Q1

. . .
Πμ−2Qμ−1

⎤
⎥⎥⎥⎦ .

Additionally we introduce
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Ω :=

⎡
⎢⎢⎢⎣

0
Γ1

. . .
Γμ−1

⎤
⎥⎥⎥⎦ , Ω− :=

⎡
⎢⎢⎢⎣

0
Γ−1

. . .
Γ−μ−1

⎤
⎥⎥⎥⎦ ,

such that

Ω−Ω =

⎡
⎢⎢⎢⎣

0
DΠ0Q1D−

. . .
DΠμ−2Qμ−1D−

⎤
⎥⎥⎥⎦ , ΩΩ− =

⎡
⎢⎢⎢⎣

0
Im−r1

. . .
Im−rμ−1

⎤
⎥⎥⎥⎦ .

For the coefficients of the inflated system (2.122) it follows that

Γ−subΓsub N =NΩ−Ω =N , Γ−subΓsubM=MΓ−subΓsub, D =Ω−Γsub,

and further

ΓA=

[
ΓdDΠμ−1D−

ΓsubN

]
=

[
Γd

ΓsubNΩ−Ω

]
=

[
Id
ΓsubNΩ−

][
Γd

Ω

]
,

ΓB=

[
ΓdW 0

ΓsubHD− ΓsubM

]
=

[
ΓdWΓ−d Γd 0

ΓsubHD−Γ−d Γd ΓsubMΓ−subΓsub

]

=

[
ΓdWΓ−d 0

ΓsubHD−Γ− ΓsubMΓsub

][
Γd 0
0 Γsub

]
,

D=

[
Γ−d Γd 0

0 Ω−Γsub

]
=

[
Γ−d 0
0 Ω−

][
Γd 0
0 Γsub

]
.

Multiplying the inflated system (2.122) by the condensing matrix function Γ and
introducing the new variables

x̃ :=
[

ũ
ṽ

]
:=
[
Γd 0
0 Γsub

][
u
v

]

gives
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[
I 0
0 ΓsubNΩ−

][
Γd 0
0 Ω

]

︸ ︷︷ ︸
Ā

([
Γ−d 0
0 Ω−

]

︸ ︷︷ ︸
D̄

[
ũ
ṽ

])′

+

[
ΓdWΓ−d 0

ΓsubHD−Γ−d ΓsubMΓ−sub

]

︸ ︷︷ ︸
B̄

[
ũ
ṽ

]
= Γ

[
Ld
L

]

︸ ︷︷ ︸
L̄

q.

This last DAE lives in R
m, but the border space of its leading term is R

n(μ+1).
Because of

ker Ā = ker
[
Γd 0
0 Ω

]
= ker R̄, im D̄ = im R̄,

with the border projector R̄ =

[
DΠμ−1D− 0

0 Ω−Ω

]
the refactorization of the leading

term (cf. Section 2.3) by means of

H :=
[
Γ−d 0
0 Ω−

]
, H− =

[
Γd 0
0 Ω

]

suggests itself. H has constant rank d, and H− is the reflexive generalized inverse
with

H−H =

[
Id 0
0 ΩΩ−

]
, HH− =

[
DΠμ−1D− 0

0 Ω−Ω

]
= R̄, R̄HH−R̄ = R̄.

This way we arrive at the DAE

Ã(D̃x̃)′+ B̃x̃ = L̄q,

Ã :=
[

I 0
0 ΓsubNΩ−

]
, D̃ :=

[
I 0
0 ΩΩ−

]
, B̃ :=

[
ΓdWΓ−d −Γ ′dΓ

−
d 0

ΓsubHD−Γ−d B̃22

]
.

The entry

B̃22 : = ΓsubMΓ−sub−ΓsubNΩ−Ω ′Ω−

= ΓsubΓ−sub +Γsub(M− I)Γsub−ΓsubNΩ−Ω ′Ω− =: I +M̃

has upper block triangular form, with identity diagonal blocks. M̃ is strictly upper
block triangular, and I + M̃ remains nonsingular. Scaling the DAE by
diag(I,(I +M̃)−1) yields

[
I 0
0 Ñ

]
(

[
I 0
0 ΩΩ−

]
x̃)′+

[
W̃ 0
H̃ I

]
x̃ =
[

I 0
0 (I +M̃)−1

]
L̄q, (2.123)

with coefficients
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Ñ := (I +M̃)−1ΓsubNΩ−, H̃ := (I +M̃)−1ΓsubHD−Γ−d ,

W̃ := ΓdWΓ−d −Γ ′dΓ
−

d .

The DAE (2.123) has T-canonical form, if the entries Ñi,i+1 have full column rank.
Therefore, we take a closer look at these entries. Having in mind that M̃ is strictly
upper block triangular, we derive

Ñi,i+1 = (ΓsubNΩ)i,i+1 = ΓiDNi,i+1Γ−i+1 =−ΓiDΠi−1QiQi+1D−Γ−i+1

=−ΓiΓ−i ΓiDQi+1D−Γ−i+1 =−ΓiDQi+1D−Γ−i+1.

Then, Ñi,i+1z = 0 means ΓiDNi,i+1Γ−i+1z = 0, thusNi,i+1Γ−i+1z = 0. Applying Propo-
sition 2.29 (3) we find that DΠiQi+1D−Γ−i+1z = Γ−i+1z ∈ kerDΠiQi+1D−, and hence
Γ−i+1z = 0, therefore z = 0. This shows that Ñi,i+1 is injective for i = 1, . . . ,μ − 2.
The injectivity of Ñ0,1 follows analogously. We obtain in fact a T-canonical form.
The resulting transformations are

L =

[
I 0
0 (I +M̃)−1

]
Γ
[
Ld
L

]
=

[
I 0
0 (I +M̃)−1

]
⎡
⎢⎢⎢⎢⎢⎣

ΓdDΠμ−1
Γ0Q0

Γ1DΠ0Q1
...

Γμ−1DΠμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦

G−1
μ

and

K = Γ

⎡
⎢⎢⎢⎢⎢⎣

DΠμ−1
Q0

Π0Q1
...

Πμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

ΓdDΠμ−1
Γ0Q0

Γ1DΠ0Q1
...

Γμ−1DΠμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦
.

Both matrix functions K and L are continuous and pointwise nonsingular. This com-
pletes the proof of (1).
The assertion (2) now follows immediately, sinceH= 0 implies H̃= 0. ��

2.9 Regularity intervals and critical points

Critical points per se attract much special interest and effort. In particular, to find
out whether the ODE with a so-called singularity of the first kind (e.g. [123])

x′(t) =
1
t

M(t)x(t)+q(t),

has bounded solutions, standard ODE theory is of no avail, and one is in need of
smarter tools using the eigenstructure of the matrix M(0).
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In the case of DAEs, the inherent ODE might be affected by singularities. For in-
stance, the DAEs in [124] show inherent ODEs having a singularity of the first kind.
The following example is taken from [124].

Example 2.66 (Rank drop in G1 causes a singular inherent ODE). The DAE
[

1
1

]
(
[
1 −1

]
x(t))′+

[
2 0
0 t +2

]
x(t) = q(t)

has a properly stated leading term on [0,1]. It is accompanied by the matrix functions

G0(t) =
[

1 −1
1 −1

]
, Q0(t) =

1
2

[
1 1
1 1

]
, G1(t) =

[
2 0

2+ t
2

t
2

]
,

such that the DAE is regular with tractability index 1 just on the interval (0,1]. The
inherent ODE resulting there applies to u(t) = x1(t)− x2(t), and it reads

u′(t) =−2
t
(t +2)u(t)+

1
t
((t +2)q1(t)−2q2(t)).

Observe that, in view of the closed interval [0,1], this is no longer a regular ODE but
an inherent explicit singular ODE (IESODE). Given a solution u(·) of the IESODE,
a DAE solution is formed by

x(t) =
1
t

[
t +2

2

]
u(t)+

1
t

[
−q1(t)+q2(t)
−q1(t)+q2(t)

]
.

We refer to [124] for the specification of bounded solutions by means of boundary
conditions as well as for collocation approximations. ��
One could presume that rank changes in G1 would always lead to singular inherent
ODEs, but the situation is much more intricate. A rank drop of the matrix function
G1 is not necessarily accompanied by a singular inherent ODE, as the next example
shows.

Example 2.67 (Rank drop in G1 does not necessarily cause a singular inherent
ODE). The DAE [

1
0

]
(
[
t 1
]

x(t))′+
[
β (t) 0

0 1

]
x(t) = q(t),

with an arbitrary continuous real function β , has a properly stated leading term on
(−∞,∞). Put

G0(t) =
[

t 1
0 0

]
, D(t)− =

1
1+ t2

[
t
1

]
, Q0(t) =

1
1+ t2

[
1 −t
−t t2

]
,

and compute

G1(t) =
1

1+ t2

[
β (t)+ t + t3 1+ t2− tβ (t)

−t t2

]
, ω1(t) := detG1(t) = t(1+ t2).
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This DAE is regular with index 1 on the intervals (−∞,0) and (0,∞). The point
t∗ = 0 is a critical one. The inherent ODE reads, with u(t) = tx1(t)+ x2(t),

u′(t) =−β (t)
t

u(t)+q1(t)+
β (t)

t
q2(t).

All DAE solutions have the form

x(t) =
1
t

[
1
0

]
u(t)+

1
t

[
−q2(t)
tq2(t)

]
.

Obviously, if the function β has a zero at t∗ = 0, or if it actually vanishes identically,
then there is no singularity within the inherent ODE, even though the matrix G1(t∗)
becomes singular. Remember that the determinant ω1 does not at all depend on the
coefficient β .
We turn to a special case. Set q identically zero, β (t) = tγ , with an integer γ ≥ 0.
The inherent ODE simplifies to

u′(t) =−tγ−1u(t).

If γ = 0, this is a singular ODE, and its solutions have the form u(t) = 1
t c. All

nontrivial solutions grow unboundedly, if t approaches zero. In contrast, if γ ≥ 1,

the ODE is regular, and it has the solutions u(t) = e−
1
γ tγ u(0) which remain bounded.

However, among the resulting nontrivial DAE solutions

x(t) =
1
t

[
1
0

]
u(t)

there is no bounded one, even if γ ≥ 1. ��

As adumbrated by the above example, apart from the singularities concerning the in-
herent ODE, DAEs involve further sources of critical points which are unacquainted
at all in explicit ODEs. In DAEs, not only the inherent ODE but also the associated
subsystem (2.62) which constitutes the wrapping up, and which in higher index
cases includes the differentiated parts, might be hit by singularities. In the previous
two examples which show DAEs being almost overall index 1, a look at the solution
representations supports this idea. The next example provides a first impression of
a higher index case.

Example 2.68 (Rank drop in G2). The DAE with properly stated leading term
⎡
⎣

1 0
0 1
0 0

⎤
⎦
([1 0 0

0 1 0

]
x(t)
)′
+

⎡
⎣

0 0 β (t)
1 1 0

γ(t) 0 0

⎤
⎦x(t) = q(t)

yields
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G0(t)=

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ , Q0(t)=

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G1(t)=

⎡
⎣

1 0 β (t)
0 1 0
0 0 0

⎤
⎦ , Π0(t)=

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ ,

and further
�
N1(t) = N1(t)∩N0(t) = {z∈R

3 : z1 = 0,z2 = 0,β (t)z3 = 0}. Supposing
β (t) �= 0, for all t, we derive

Q1(t) =

⎡
⎣

1 0 0
0 0 0

− 1
β (t) 0 0

⎤
⎦ , Π0(t)Q1(t) =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , G2(t) =

⎡
⎣

1 0 β (t)
1 1 0

γ(t) 0 0

⎤
⎦ ,

and ω2(t) := detG2(t) =−β (t)γ(t). The projector functions Q0,Q1 are the widely
orthogonal ones. Taking a look at the following equivalent formulation of the DAE,

x1(t) =
1

γ(t)
q3(t),

x′2(t)+ x2(t) = q2(t)−
1

γ(t)
q3(t),

x3(t) =
1

β (t)
(q1(t)− (

1
γ(t)

q3(t))′),

we see the correspondence of zeros of the function γ to rank drops in G2, and to
critical solution behavior.
Observe also that if we dispense with the demand that the function β has no zeros,

and allow a zero at a certain point t∗, then the intersection
�
N1(t∗) is nontrivial,

�
N1(t∗) = N0(t∗), and the above projector function Q1(t) grows unboundedly, if t
approaches t∗. Nevertheless, since by construction G2 depends just on the product
Π1Q2, we can continue forming the next matrix function G2 considering the product
Π0Q1 that has a continuous extension. Then a zero of the function β also leads to a
zero of detG2.
Apart from critical points, the resulting IERODE applies to

u = DΠ1x =
[

0
x2

]
,

and it reads

u′+
[

0 0
0 1

]

︸ ︷︷ ︸
DΠ1G−1

2 B1D−

u =

[
0

q2− 1
γ q3

]

︸ ︷︷ ︸
DΠ1G−1

2 q

.

Observe the coefficient DΠ1G−1
2 BD− to be independent of the functions β and γ ,

while DΠ1G−1
2 does not depend on β . Therefore, the IERODE does not at all suffer

from zeros of β .
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Notice that, if one restricts interest to homogeneous DAEs only, then one cannot see
the singular solution behavior in this example. ��

Next we consider DAEs which fail to have a proper leading term on the entire given
interval.

Example 2.69 (Rank drop in A causes a singular inherent ODE). Consider the DAE
[

0 α
0 0

]

︸ ︷︷ ︸
A

([0 0
0 1

]

︸ ︷︷ ︸
D

x
)′
+

[
b11 b12
b21 b22

]

︸ ︷︷ ︸
B

x = q, (2.124)

given on the interval I = [−1,1]. The function α is continuous. Let b21 have no
zeros. This system yields

x1 =
1

b21
(q2−b22x2)

αx′2 = (
b11

b21
b11b22−b12)

︸ ︷︷ ︸
=M

x2 +q1−b11q2.

For any t∗ ∈ I with α(t∗) �= 0, there is an interval I∗ around t∗ such that α has no
zeros on I∗, and the DAE has a proper leading term there. On intervals where the
function α has no zeros, one can write the ODE for x2 in explicit form as

x′2 =
1
α

Mx2 +
1
α
(q1−b11q2). (2.125)

Then, equation (2.125) is a well-defined continuous coefficient ODE on this interval
so that standard solvability arguments apply.
In contrast, if α(t∗) = 0, but α(t) �= 0, for t ∈ I, t �= t∗, then equation (2.125) be-
comes a singular ODE, more precisely, an explicit ODE with a singularity at t∗. For
those kinds of equations special treatment is advisable. We have to expect a singular
flow behavior of the component x2(t). The component x1(t) may inherit properties
of x2(t) depending on the coefficient function b22. Let us glance over typical situa-
tions.
Let t∗ = 0, M be a constant function, α(t) = t, q(t) = 0 on I. Then the solutions of
the singular ODE (2.125) are x2(t) = ctM , with a real constant c. The behavior of
these solutions heavily depends on the sign of M. Figure 2.1 shows the different flow
behavior of the component x2(t) in the cases M = 2, M =−2, M = 0, respectively:
If M = 2, then all solutions cross the origin, while no solution satisfies an initial
condition x2(0) �= 0.
If M = −2, just the trivial solution passes the origin, and all other solutions grow
unboundedly if t tends to zero. Again, there is no solution with x2(0) �= 0.
If M = 0, then every constant function solves the ODE, and every IVP is uniquely
solvable. Derive, for t ∈ [−1,0) and t ∈ (0,1],
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Fig. 2.1 M = 2, M =−2, M = 0

G0(t) =
[

0 t
0 0

]
, Q0(t) =

[
1 0
0 0

]
, G1(t) =

[
b11(t) t
b21(t) 0

]
.

This shows the DAE to be regular with index 1 on both intervals [−1,0) and (0,1].
��

Example 2.70 (Rank change in A causes an index change). Now we put the contin-
uous entry (cf. Figure 2.2)

α(t) =
{

0 for t ∈ [−1,0]
t

1
3 for t ∈ (0,1]

into the DAE [
0 α
0 0

]([0 0
0 1

]
x
)′
+

[
1 0
0 1

]
x = q, (2.126)

which has a properly stated leading term merely on the subinterval (0,1].
The admissible matrix function sequence

G0 =

[
0 α
0 0

]
, Q0 =

[
1 0
0 0

]
, G1 =

[
1 α
0 0

]
, Q1 =

[
0 −α
0 1

]
, G1 =

[
1 α
0 1

]
,

indicates the characteristic values r0 = 1,r1 = 1 and r2 = 2 on (0,1]. The DAE is
regular with index 2 there.
For every q1 ∈ C((0,1],R), q2 ∈ C1((0,1],R), there is a unique solution x ∈
C1

D((0,1],R
2). The particular solution corresponding to q1(t) = 0, q2(t) = t

1
3 ,
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t ∈ (0,1], reads x1(t) =− 1
3 t−

1
3 , x2(t) = t

1
3 .

On the subinterval [−1,0] the leading term is no longer properly stated, but we may
turn to a proper reformulation if we replace D by D̄ = 0. Then, for t ∈ [−1,0], it
follows that

G0(t) = 0, Q0(t) = I, G1(t) = I, r0 = 0, r1 = 2,

and the DAE is regular with index 1 on the interval [−1,0]. On this subinterval,
for every continuous q, the solution is simply x = q. In particular, for q1(t) = 0,
q2(t) =−|t|

1
3 , the solution on this subinterval is x1(t) = 0, x2(t) =−|t|

1
3 .

Altogether, combining now the segments, we have an excitation q that is continuous
on the entire interval I, and its second component is continuously differentiable
on (0,1]. We have two solution segments. Can these segments be glued together to
form a solution on the entire interval? While the second component has a continuous
extension, the first has not, as shown in Figure 2.3.
Relaxing the minimal smoothness requirements for the excitation on the subinter-
vals, and assuming more generously q to be continuous with a continuously differ-
entiable second component on the whole interval I, then, for every such q, there
exists a unique solution x ∈ C1

D(I,R2). This means that, in the smoother setting, the
critical point does not matter. Those kinds of critical points which can be healed by
higher smoothness are said to be harmless. However, we stress once more that in a
setting with minimal smoothness, these points are in fact critical. Written as

Fig. 2.2 Continuous function α of Example 2.70

[
0 α
0 0

]
x′+

[
1 0
0 1

]
x = q, (2.127)

the DAE (2.126) yields a special DAE in standard canonical form (SCF). To ensure
continuously differentiable solutions on the entire interval, one now has to suppose
not only that q is continuously differentiable, but also that αq2 is so. ��
Example 2.71 (Index drop in A yielding a harmless critical point). We replace the
function α in (2.126) by a different one and turn to

[
0 α
0 0

]([0 0
0 1

]
x
)′
+

[
1 0
0 1

]
x = q, (2.128)
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Fig. 2.3 Solution segments of x1, x2 in Example 2.70

with

α(t) =

{
−|t| 1

3 for t ∈ [−1,0)
t

1
3 for t ∈ [0,1].

The DAE (2.128) has a properly stated leading term on the two subintervals [−1,0)
and (0,1], but on the entire interval [−1,1] the leading term fails to be properly
stated. The point t∗ = 0 is a critical one.
The matrix function sequence

G0 =

[
0 α
0 0

]
, Q0 =

[
1 0
0 0

]
, G1 =

[
1 α
0 0

]
, Q1 =

[
0 −α
0 1

]
, G1 =

[
1 α
0 1

]
,

is admissible with characteristic values r0 = 1,r1 = 1 and r2 = 2 on the intervals
[−1,0) and (0,1] which indicates the DAE to be regular with index 2 there.
We apply the excitation q1 ≡ 0, q2 = α on both subintervals. As in the previous ex-
ample, the first components of the solution segments cannot be glued together, as is
sketched in Figure 2.4. For smoother excitations, we again obtain solutions belong-
ing to C1

D(I,R2). Furthermore, if q and αq2 are smooth, then the SCF version (cf.
2.127) has C1-solutions. Those critical points which disappear in smoother settings
are said to be harmless. ��

Equations (2.124), (2.126) and (2.128) possess the following property indepen-
dently of the behavior of the function α: There is a subspace NA ⊆ R

2, such that

NA⊕ imD = R
2, NA = span

{[
1
0

]}
⊆ kerA.

This property motivates the following generalization of proper leading terms for
DAEs (2.1) having continuous coefficients as before.

Definition 2.72. For the DAE (2.1), let the time-varying subspace imD be a C1-
subspace on I, and let a further C1-subspace NA exist such that
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Fig. 2.4 Solution segments of x1, x2 in Example 2.71

NA(t)⊕ imD(t) = R
n, NA(t)⊆ kerA(t), t ∈ I. (2.129)

(1) If NA(t) = kerA(t) for all t from a dense subset of the interval I, then we
speak of a DAE with an almost proper leading term.

(2) If dimkerD(t) � 1, then equation (2.1) is called a DAE with a quasi-proper
leading term on I.

DAEs with proper leading terms constitute a particular case of DAEs with almost-
proper leading terms, if NA(t) = kerA(t) holds true for all t ∈ I.
The DAEs in Examples 2.69–2.71 have quasi-proper leading terms on the entire
given interval I. Examples 2.69 and 2.71 show even almost proper leading terms.
Example 2.70 represents a simple case of a DAE in SCF. Large classes of DAEs
with those quasi-proper leading term, including the DAEs in SCF, are treated in
detail in Chapter 9.
To some extent, the quasi-proper DAE form is quite comfortable. However, we
should be aware that, in the general setting of quasi-proper DAEs, there is no way
of indicating basic level critical points as in Examples 2.69, 2.70, and 2.71. This is
why we prefer properly stated leading terms.

Our examples clearly account for the correspondence between singular solution
behavior and points at which the matrix function sequence loses one of the required
constant-rank properties. Roughly speaking, at all points where the matrix function
sequence determining regularity cannot be built, we expect a critical (in some sense)
solution behavior. We refer to [194] for a closer view of the relevant literature. As
in [194], we consider critical (in [194] named singular) points to be the counter-
parts of regular points. Therefore, in this section, we deal with square DAEs (2.1)
the coefficients A of which do not necessarily show constant rank. We recall Exam-
ples 2.69, 2.70, and 2.71 once more, which demonstrate critical solution behavior
corresponding to the rank changes of A.
The DAE in Example 2.70 fails to have a proper leading term on the subinterval
[−1,0). On this subinterval, the special matrix function A = 0 has constant rank 0
and kerA = R

2 is a C1-subspace on [−1,0). For this reason, in this special case,
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we could do with a proper refactorization to a proper leading term. Such proper
refactorizations apply also in general cases as the next proposition says.

Proposition 2.73. Let the DAE (2.1) have a quasi-proper leading term on the given
interval I. Let Ĩ ⊆ I be a subinterval such that kerA is a C1-subspace on Ĩ. Then
R̃ := A+A is continuously differentiable on Ĩ and the DAE has there the reformula-
tion with a proper leading term

A(R̃Dx)′+(B−AR̃′D)x = q, t ∈ Ĩ. (2.130)

Proof. The matrix function R̃ is continuously differentiable as an orthoprojector
function along a C1-subspace. We rewrite the leading term in the DAE (2.1) on the
subinterval as

A(Dx)′ = AR̃(Dx)′ = A(R̃Dx)′ −AR̃′Dx,

which leads to (2.130).
Introduce R as the projector function onto imD along NA so that imD = imR and
NA = im(I − R). Owing to condition (2.129), R is well defined. Additionally, it
holds that im(I−R) = NA ⊆ kerA = ker R̃, and hence R̃(I−R) = 0, thus R̃ = R̃R.
This implies im R̃D = im R̃R = im R̃, which proves the spaces kerA = ker R̃ and
im R̃D = im R̃ to be transversal C1-subspaces on Ĩ . Therefore, the DAE (2.130) has
a proper leading term. ��

Definition 2.74. Let the DAE (2.1), with m = k, have a quasi-proper leading term.
Then, t∗ ∈ I is said to be a regular point of the DAE, if there is an open interval I∗
containing t∗ such that either the original DAE is regular on Ĩ := I ∩I∗ or kerA is
a C1-subspace on Ĩ and the proper reformulation (2.130) is a regular DAE on Ĩ.
Otherwise, t∗ is said to be a critical point.
Each open interval on which the DAE is regular is called a regularity interval. De-
note by Ireg the set of all t ∈ I being regular points of the DAE.

In this sense, t∗ = 0 is the only critical point of the DAEs in Examples 2.66, 2.67,
2.69, 2.70, and 2.71, while in Example 2.68 the set of critical points is formed by
the zeros of the functions β and γ . The left boundary point in Example 2.66 is a
critical point while the right boundary point is regular.
By definition, Example 2.66 shows the regularity interval (0,1) but Ireg = (0,1].
We find the regularity intervals (−∞,0) and (0,∞) in Example 2.67, whereby the
characteristic values are on both sides r0 = 1,r1 = 2 and μ = 2.
In Example 2.68, regularity intervals exist around all inner points t of the given
interval where β (t)γ(t) �= 0, with uniform characteristics r0 = 2,r1 = 2,r2 = 3 and
μ = 2.
The peculiarity of Example 2.70 consists of the different characteristic values on the
regularity intervals (−1,0) and (0,1).

Each regularity interval consists of regular points, exclusively. All subintervals
of a regularity interval inherit the characteristic values. If there are intersecting reg-
ularity intervals, then the DAE has common characteristic values on these intervals,
and the union of regularity intervals is a regularity interval, again ([173], applying
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widely orthogonal projector functions one can simplify the proof given there).
The set Ireg ⊆ I may be described as the union of disjoint regularity intervals, even-
tually completed by the regular boundary points. By definition, I \Ireg is the set of
critical points of the DAE (2.1).

The regularity notion (cf. Definitions 2.6 and 2.25) involves several constant-
rank conditions. In particular, the proper leading term brings the matrix function
G0 = AD with constant rank r0 = r. Further, the existence of regular admissible
matrix functions includes that, at each level k = 1, . . . ,μ−1,

(A) the matrix function Gk has constant rank rk, and

(B) the intersection
�
Nk is trivial, i.e.,

�
Nk = {0}.

Owing to Proposition 2.7 we have kerΠk−1 = N0 + · · ·+Nk−1, and hence

�
Nk = Nk ∩ (N0 + · · ·+Nk−1) = kerGk ∩kerΠk−1.

Then, the intersection
�
Nk is trivial, exactly if the matrix function

[
Gk
Πk−1

]
(2.131)

has full column rank m. This means that condition (B) also represents a rank condi-
tion.

Suppose the coefficients A,D and B of the DAE are sufficiently smooth
(at most class Cm−1 will do). Then, if the algebraic rank conditions are fulfilled,
the requirements for the projector functions Πk and DΠkD− to be continuous re-
spectively continuously differentiable, can be satisfied at one level after the other. In
consequence (cf. [173, 174, 194]), a critical point can be formally characterized as
the location where the coefficient A has a rank drop, or where one of the constant-
rank conditions type (A) or type (B), at a level k ≥ 1, is violated first.

Definition 2.75. Let the DAE (2.44) have a quasi-proper leading term, and t∗ be a
critical point. Then, t∗ is called

(1) a critical point of type 0, if rankG0(t∗)< r := rankD(t∗),
(2) a critical point of type A at level k ≥ 1 (briefly, type k-A), if there are admis-

sible projectors functions Q0, . . . ,Qk−1, and Gk changes its rank at t∗,
(3) a critical point of type B at level k≥ 1 (briefly, type k-B), if there are admissi-

ble projector functions Q0, . . . ,Qk−1, the matrix function Gk has constant rank,
but the full-rank condition for the matrix function (2.131) is violated at t∗.

It is worth emphasizing that the proposed typification of critical points remains in-
variant with respect to transformations and refactorizations (Section 2.3), and also
with respect to the choice of admissible projector functions (Subsection 2.2.2).
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The DAEs in Examples 2.66 and 2.67 have the type 1-A critical point t∗ = 0.
In Example 2.68, the zeros of the function γ are type 2-A critical points, while the
zeros of the function β yield type 1-B critical points. Examples 2.69, 2.70 and 2.71
show different cases of type 0 critical points.

While the zero of the function α in Example 2.71 yields a harmless critical point,
in contrast, in Example 2.69, the zero of α causes a singular inherent ODE.
How do harmless critical points differ from the other critical points? As suggested
by Example 2.71, we prove the nonsingularity of the matrix function Gμ to indicate
harmless critical points in general.

Let the DAE (2.44) have an almost proper leading term. For simplicity, let DD∗

be continuously differentiable such that the widely orthogonal projector functions
can be used. Assume the set of regular points Ireg to be dense in I.
Let Q0 be the orthogonal projector function onto kerD =: N0, which is contin-
uous on the entire interval I, since D has constant rank r there. Set G0 = AD,
B0 = B, G1 = G0 +BQ0. These functions are also continuous on I. For all t ∈ Ireg
it holds further that rankG0(t) = r. On each regularity interval, which is a regularity
region, we construct the matrix function sequence by means of widely orthogonal
projector functions up to Gμ , whereby μ denotes the lowest index such that Gμ(t) is
nonsingular for all t ∈ Ireg. In particular, Π1, . . . ,Πμ−1 are defined and continuous
on each part of Ireg. Assume now that

Π1, . . . ,Πμ−1 have continuous extensions on I, (2.132)

and we keep the same denotation for the extensions. Additionally, suppose

DΠ1D−, . . . ,DΠμ−1D− are continuously differentiable on I.

Then, the projector functions Πi−1Qi = Πi−1−Πi, i = 1, . . . ,μ − 1, have continu-
ous extensions, too, and the matrix function sequence (cf. (2.5)–(2.8), and Proposi-
tion 2.7)

Bi = Bi−1Πi−1−GiD−(DΠiD−)′DΠi−1,

Gi+1 = Gi +BiΠi−1Qi, i = 1, . . . ,μ−1,

is defined and continuous on the entire interval I. In contrast to the regular case,
where the matrix functions G j have constant rank on the entire interval I, now, for
the time being, the projector functions Q j are given on Ireg only, and

Ni(t) = imQi(t) = kerGi(t), for all t ∈ Ireg.

The projector function Π0 = P0 inherits the constant rank r = rankD from D. On
each of the regularity intervals, the rank r0 of G0 coincides with the rank of D,
and hence we are aware of the uniform characteristic value r0 = r on all regularity
intervals, that is on Ireg.
Owing to its continuity, the projector function Π1 has constant rank on I. Taking
into account the relations
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kerΠ1(t) = N0(t)⊕N1(t), dimN0(t) = m− r0, dimN1(t) = m− r1, t ∈ Ireg

we recognize the characteristic value r1 = rankG1 to be also uniform on Ireg, and
so on. In this way we find out that all characteristics

r0 ≤ ·· · ≤ rμ−1 < rμ = m are uniform on Ireg.

In particular, the DAE has index μ on Ireg.
Denote by Gμ(t)ad j the matrix of cofactors to Gμ(t), and introduce the determinant
ωμ(t) := detGμ(t), such that

ωμ(t)Gμ(t)−1 = Gμ(t)ad j, t ∈ Ireg.

By construction, it results that GμQi = BiQi = BiΠi−1Qi, for i = 1, . . . ,μ−1, thus

ωμ(t)Qi(t) = Gμ(t)ad jBi(t)Πi−1(t)Qi(t), i = 1, . . . ,μ−1, t ∈ Ireg. (2.133)

The last expression possesses a continuous extension, and hence
ωμQi = Gad j

μ BiΠi−1Qi is valid on I.
Observe that a nonsingular Gμ(t∗) also indicates that the projector functions
Q1, . . . ,Qμ−1 have continuous extensions over the critical point t∗. In this case, the
decoupling formulas (2.51), (2.62) keep their value for the continuous extensions,
and it is evident that the critical point is a harmless one.
In contrast, if Gμ has a rank drop at the critical point t∗, then the decoupling formulas
actually indicate different but singular solution phenomena. Additionally, several
projector functions Q j may suffer discontinuities, as is the case in Example 2.68.

Next, by means of the widely orthogonal projector functions, on each regular-
ity interval, we apply the basic decoupling (see Subsection 2.4.2, Theorem 2.30)
of a regular DAE into the IERODE (2.51) and the subsystem (2.62). In order to
safely obtain coefficients that are continuous on the entire interval I, we multiply
the IERODE (2.51) by ωμ , the first row of (2.62) by ωμ

μ , the second by ωμ−1
μ , and so

on up to the last line which we multiply by ωμ . With regard to assumption (2.132)
and relation (2.133), the expressions ωμG−1

μ and ωμK, ωμMl+1 (cf. (2.54), (2.55))
are continuous on I, and so are all the coefficients of the subsystem resulting from
(2.62). Instead of the IERODE (2.51) we are now confronted with the equation

ωμu′ −ωμ(DΠμ−1D−)′u+DΠμ−1Gad j
μ BμD−u = DΠμ−1Gad j

μ q, (2.134)

which is rather a scalarly implicit inherent ODE or an inherent explicit singular
ODE (IESODE). As is proved for regular DAEs by Theorem 2.30, the equivalence
of the DAE and the system decoupled in this way is given. We refer to [194, Sub-
section 4.2.2] for a detailed description in a slightly different way. Here we take a
look at the simplest lower index cases only.
The case μ = 1 corresponds to the solution decomposition x = D−u + Q0x, the
inherent ODE
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ω1u′ −ω1R′u+DGad j
1 B1D−u = DGad j

1 q, (2.135)

and the subsystem

ω1Q0x =−Q0Gad j
1 B1D−u+Q0Gad j

1 q. (2.136)

For μ = 2, we apply the solution decomposition x = D−u +Π0Q1x + Q0x. The
inherent ODE reads

ω2u′ −ω2(DΠ1D−)′u+DΠ1Gad j
2 B1D−u = DΠ1Gad j

2 q, (2.137)

and we have to add the subsystem
[
−ω2Q0ω2Q1D−(DΠ0Q1x)′

0

]
+

[
ω2

2 Q0x
ω2Π0Q1x

]
(2.138)

+

[
Q0ω2P1ω2KΠ1
Π0Q1ω2KΠ1

]
D−u =

[
Q0ω2P1Gad j

2
Π0Q1Gad j

2

]
q.

A careful inspection of our examples proves that these formulas comprise a worst
case scenario. For instance, in Example 2.68, not only is DΠ1Gad j

2 B1D− continuous
but already DΠ1G−1

2 B1D− can be extended continuously. However, as in Exam-
ple 2.66, the worst case can well happen.

Proposition 2.76. Let the DAE (2.1) have an almost proper leading term, and
DD∗ be continuously differentiable. Let the set of regular points Ireg be dense
in I. If the projector functions Π1, . . . ,Πμ−1 associated with the widely orthogo-
nal projector functions have continuous extensions on the entire interval I, and
DΠ1D−, . . . ,DΠμ−1D− are continuously differentiable, then the following holds
true:

(1) The DAE has on Ireg uniform characteristics r0 ≤ ·· · ≤ rμ−1 < rμ = m.
(2) If Gμ(t∗) is nonsingular at the critical point t∗, then the widely orthogonal

projector functions Q0, . . . ,Qμ−1 themselves have continuous extensions over
t∗. If the coefficients A,D, and B are sufficiently smooth, then t∗ is a harmless
critical point.

(3) If Gμ(t∗) is nonsingular at the critical point t∗, then Gμ−1(t) has necessarily
constant rank rμ−1 on a neighborhood including t∗.

(4) If the DAE has index 1 on Ireg, then its critical points fail to be harmless.
(5) A critical point of type B leads necessarily to a singular Gμ , and hence it can

never been harmless.

Proof. Assertion (1) is already verified. Assertion (2) follows immediately by mak-
ing use of the decoupling. If A,D,B are smooth, then the coefficients of the subsys-
tem (2.62) are also sufficiently smooth, and allow for the respective solutions.
Turn to (3). Owing to (2), Qμ−1 is continuous, and rankQμ−1(t∗) = m− rμ−1,
Gμ−1(t∗)Qμ−1(t∗) = 0 are valid, thus rankGμ−1(t∗) ≤ rμ−1. The existence of a
z ∈ kerGμ−1(t∗), Pμ−1(t∗)z = z �= 0, would imply Gμ−1(t∗)z = 0, and hence would
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contradict the nonsingularity of Gμ−1(t∗).
(4) is a direct consequence of (3).
For proving Assertion (5) we remember the relation

Π j−1(t)Q j(t) =Π j−1(t)Q j(t)Π j−1(t), t ∈ Ireg.

These relations remain valid for the continuous extensions, that is, for t ∈ I. Con-
sider a type k− B critical point t∗, and a nontrivial z ∈ Nk(t∗)∩ (N0(t∗) + · · ·+
Nμ−1(t∗)), which means Gk(t∗)z = 0, Πk−1(t∗)z = 0. This yields

Gμ(t∗)z = Gk(t∗)z+Bk(t∗)Qk(t∗)Πk−1(t∗)z

+ · · ·+Bμ−1(t∗)Πμ−2(t∗)Qμ−1(t∗)Πk−1(t∗)z = 0,

and hence, Gμ(t∗) is singular. ��

2.10 Strangeness versus tractability

2.10.1 Canonical forms

Among the traditional goals of the theory of linear time-varying DAEs are appro-
priate generalizations of the Weierstraß–Kronecker canonical form and equivalence
transformations into these canonical forms. So far, except for the T-canonical form
which applies to both standard form DAEs and DAEs with properly stated leading
term (cf. Subsection 2.8), reduction to canonical forms is developed for standard
form DAEs (e.g. [39], [25], [127]).
While equivalence transformations for DAEs with properly stated leading term in-
clude transformations K of the unknown, scalings L and refactorizations H of the
leading term (cf. Section 2.3), equivalence transformations for standard form DAEs
combine only the transformations K of the unknowns and the scalings L.
Transforming the unknown function by x = Kx̃ and scaling the standard form DAE
(2.112) by L yields the equivalent DAE

LEK︸︷︷︸
Ẽ

x̃′+(LFK +LEK′)︸ ︷︷ ︸
F̃

x̃ = Lq.

Therefore the transformation matrix functions K must be continuously differen-
tiable.

In the remaining part of this subsection we use the letters K and H also for special
entries in the matrix functions describing the coefficients of the canonical forms
below. No confusion will arise from this.

Definition 2.77. The structured DAE with continuous coefficients
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[

Im−l K
0 N

]
x′+

[
W 0
H Il

]
x = q, (2.139)

0≤ l ≤ m, is said to be in

(1) standard canonical form (SCF), if H = 0, K = 0, and N is strictly upper tri-
angular,

(2) strong standard canonical form (SSCF), if H = 0, K = 0, and N is a constant,
strictly upper triangular matrix,

(3) S-canonical form, if H = 0, K = [0 K1 . . .Kκ ], and

N =

⎡
⎢⎢⎢⎢⎣

0 N1,2 · · · N1,κ
. . .

...
. . . Nκ−1,κ

0

⎤
⎥⎥⎥⎥⎦

}l1

}lκ−1
}lκ

,

is strictly upper block triangular with full row rank entries Ni,i+1, i = 1, . . . ,
κ−1,

(4) T-canonical form, if K = 0 and N is strictly upper block triangular with full
column rank entries Ni,i+1, i = 1, . . . ,κ−1.

In the case of time-invariant coefficients, these four canonical forms are obviously
equivalent. However, this is no longer true for time-varying coefficients.
The matrix function N is nilpotent in all four canonical forms, and N has uniform
nilpotency index κ in (3) and (4). N and all its powers Nk have constant rank in (2),
(3) and (4). In contrast, in (1), the nilpotency index and the rank of N may vary with
time. The S-canonical form is associated with DAEs with regular strangeness index
ζ = κ − 1 (cf. [127]), while the T-canonical form is associated with regular DAEs
with tractability index μ = κ (cf. Subsection 2.8). The classification into SCF and
SSCF goes back to [39] (cf. also [25]). We treat DAEs being transformable into SCF
as quasi-regular DAEs in Chapter 9. Here we concentrate on the S-canonical form.
We prove that each DAE being transformable into S-canonical form is regular with
tractability index μ = κ , and hence, each DAE with well-defined regular strangeness
index ζ is a regular DAE with tractability index μ = ζ +1. All the above canonical
forms are given in standard form. For the T-canonical form, a version with properly
stated leading term is straightforward (cf. Definition 2.64).

The strangeness index concept applies to standard form DAEs (2.112) with suffi-
ciently smooth coefficients. A reader who is not familiar with this concept will find
a short introduction in the next subsection. For the moment, we interpret DAEs with
regular strangeness index as those being transformable into S-canonical form. This
is justified by an equivalence result of [127], which is reflected by Theorem 2.78
below.

The regular strangeness index ζ is supported by a sequence of characteristic
values r̄i, āi, s̄i, i = 0, . . . ,ζ , which are associated with constant-rank conditions for
matrix functions, and which describe the detailed size of the S-canonical form. By
definition, sζ = 0 (cf. Subsection 2.10.2). These characteristic values are invariant
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with respect to the equivalence transformations, however, they are not independent
of each other.

Theorem 2.78. Each DAE (2.112) with smooth coefficients, well-defined strange-
ness index ζ and characteristic values r̄i, āi, s̄i, i = 0, . . . ,ζ , is equivalent to a DAE
in S-canonical form with κ = ζ +1 , l = l1 + · · ·+ lκ , m− l = r̄ζ , and

l1 ≤ ·· · ≤ lκ , l1 = s̄κ−2 = s̄ζ−1, l2 = s̄κ−3, . . . , lκ−1 = s̄0, lκ = s̄0 + ā0.

Proof. This assertion comprises the regular case of [127, Theorem 12] which con-
siders more general equations having also underdetermined parts (indicated by non-
trivial further characteristic values ūi). ��

By the next assertion, which represents the main result of this subsection, we
prove each DAE with regular strangeness index ζ to be at the same time a regu-
lar DAE with tractability index μ = ζ +1. Therefore, the tractability index concept
applies at least to the entire class of DAEs which are accessible by the strangeness
index concept. Both concepts are associated with characteristic values being invari-
ant under equivalence transformations, and, of course, we would like to know how
these characteristic values are related to each other. In particular, the question arises
whether the constant-rank conditions supporting the strangeness index coincide with
the constant-rank conditions supporting the tractability index.

Theorem 2.79. (1) Let the standard form DAE (2.112) have smooth coefficients,
regular strangeness index ζ and characteristic values r̄i, āi, s̄i,
i = 0, . . . ,ζ . Then this DAE is regular with tractability index μ = ζ + 1 and
associated characteristic values

r0 = r̄0, r j = m− s̄ j−1, j = 1, . . . ,μ .

(2) Each DAE in S-canonical form with smooth coefficients can be transformed
into T-canonical form with H = 0.

Proof. (1) We prove the assertion by constructing a matrix function sequence and
admissible projector functions associated with the tractability index framework for
the resulting S-canonical form described by Theorem 2.78.
The matrix function N within the S-canonical form has constant rank l− lκ . Ex-
ploiting the structure of N we compose a projector function Q[N]

0 onto kerN, which
is upper block triangular, too. Then we set

P0 :=

[
Im−l KQ[N]

0

0 P[N]
0

]
, such that kerP0 = ker

[
Im−l K

0 N

]
.

P0 is a projector function. The DAE coefficients are supposed to be smooth enough
so that P0 is continuously differentiable. Then we can turn to the following properly
stated version of the S-canonical form:
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[

Im−l K
0 N

]
(P0x)′+

([W 0
0 Il

]
−
[

Im−l K
0 N

]
P′0

︸ ︷︷ ︸⎡
⎣W −K′Q[N]

0

0 Il−N(P[N]
0 )′

⎤
⎦

)
x = q. (2.140)

The product NP[N]′

0 is again strictly upper block triangular, and Il−N(P[N]
0 )′ is non-

singular. Scaling the DAE by
[

Im−l 0
0 (Il−N(P[N]

0 )′)−1

]

yields [
Im−l K

0 M0

]
(P0x)′+

[
W −K′Q[N]

0
Il

]
x = q. (2.141)

The matrix function M0 has the same structure as N, and kerM0 = kerN. For the
subsystem corresponding to the second line of (2.141)

M0(P
[N]
0 v)′+ v = q2.

Proposition B.2 in Appendix B provides a matrix function sequence G[N]
j ,

j = 0, . . . ,κ , and admissible projector functions Q[N]
0 , . . . ,Q[N]

κ−1 such that this sub-
system is a regular DAE with tractability index μ [N] = κ and characteristic values

r[N]
i = l− lκ−i, i = 0, . . . ,κ−1, r[N]

κ = l.

Now we compose a matrix function sequence and admissible projector functions
for the DAE (2.141). We begin with D = D− = R = P0, and build successively for
i = 0, . . . ,κ

Gi =

[
Im−l ∗

0 G[N]
i

]
, Qi =

[
0 ∗
0 Q[N]

i

]
, Πi =

[
Im−l ∗

0 Π [N]
i

]
, Bi =

[
W ∗
0 B[N]

i

]
.

The coefficients are supposed to be smooth enough so that the Πi are continuously
differentiable. It follows that the matrix functions Gi have constant ranks

ri =m− l+r[N]
i =m− l+ l− lκ−i =m− lκ−i, i= 0, . . . ,κ−1, rκ =m− l+r[N]

κ =m.

This confirms that the DAE is regular with tractability index μ = κ . Applying
again Theorem 2.78, we express ri = m− lκ−i = s̄i−1 for i = 1, . . . ,κ − 1, further
r0 = m− (s̄0 + ā0) = r̄0, and this completes the proof of (1).
(2) This is a consequence of assertion (1), and the fact that each regular DAE with
tractability index μ can be transformed into T-canonical form (with κ = μ , cf. The-
orem 2.65). ��
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2.10.2 Strangeness reduction

The original strangeness index concept is a special reduction technique for standard
form DAEs (2.112)

E(t)x′(t)+F(t)x(t) = q(t)

with sufficiently smooth coefficients on a compact interval I. We repeat the ba-
sic reduction step from [127]. For more details and a comprehensive discussion of
reduction techniques we refer to [130] and [189].

As mentioned before, the strangeness index is supported by several constant-rank
conditions. In particular, the matrix E in (2.112) is assumed to have constant rank r̄.
This allows us to construct continuous injective matrix functions T, Z, and T̄ such
that

imT = kerE, im T̄ = (kerE)⊥, imZ = (imE)⊥.

The columns of T, T̄ , and Z are basis functions of the corresponding subspaces.
Supposing Z∗FT to have constant rank ā, we find a continuous injective matrix
function V such that

imV = (imZ∗FT )⊥.

If, additionally, V ∗Z∗FT̄ has constant rank s̄, then one can construct pointwise non-
singular matrix functions K and L, such that the transformation x = Kx̃, and scaling
the DAE (2.112) by L leads to

⎡
⎢⎢⎢⎢⎣

Is̄
Id̄

0
0

0

⎤
⎥⎥⎥⎥⎦

x̄′+

⎡
⎢⎢⎢⎢⎣

0 F̃1,2 0 F̃1,4 F̃1,5
0 0 0 F̃2,4 F̃2,5
0 0 Iā 0 0
Is̄ 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

x̄ = Lq, (2.142)

with d̄ := r̄− s̄.
The system (2.142) consists of m = s̄+ d̄ + ā+ s̄+ ū equations, ū := m− r̄− ā− s̄.
The construction of K and L involves three smooth factorizations of matrix functions
and the solution of a classical linear IVP (see [130]).
The fourth equation in (2.142) is simply x̄1 = (Lq)4, which gives rise to replacement
of the derivative x̄′1 in the first line by (Lq)′4. Doing so we attain the new DAE

⎡
⎢⎢⎢⎢⎣

0
Id̄

0
0

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Enew

x̄′+

⎡
⎢⎢⎢⎢⎣

0 F̃1,2 0 F̃1,4 F̃1,5
0 0 0 F̃2,4 F̃2,5
0 0 Iā 0 0
Is̄ 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fnew

x̄ = Lq−

⎡
⎢⎢⎢⎢⎣

(Lq)′4
0
0
0
0

⎤
⎥⎥⎥⎥⎦
, (2.143)

which is expected to have a lower index since the mentioned differentiation of x̄1 is
carried out analytically.
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This reduction step is supported by the three rank conditions

rankE = r̄, rankZ∗FT = ā, rankV ∗Z∗FT̄ = s̄. (2.144)

The following proposition guarantees these constant-rank conditions to be valid, if
the DAE under consideration is regular in the tractability sense.

Proposition 2.80. Let the DAE (2.112) be regular with tractability index μ and
characteristic values r0 ≤ ·· · ≤ rμ−1 < rμ . Then the constant-rank conditions
(2.144) are valid,

r̄ = r0, ā = r1− r0, s̄ = m− r1,

so that the reduction step is feasible.

Proof. We choose symmetric projector functions W0, Q0 and W1, and verify the
relations

rankZ∗BT = rankW0BQ0 = r1− r0, rankV ∗Z∗FT̄ = rankW1B = m− r1.

��

The reduction from {E,F} to {Enew,Fnew} can be repeated as long as the
constant-rank conditions are given. This leads to an iterative reduction procedure.
One starts with {E0,F0}:={E,F} and forms, for each i≥ 0, a new pair {Ei+1,Fi+1}
to {Ei,Fi}. This works as long as the three constant-rank conditions

r̄i = rankEi, āi = rankZ∗i FiTi, s̄i = rankV ∗i Z∗i FiT̄i, (2.145)

hold true.
The strangeness index ζ ∈ N∪{0} is defined to be

ζ := min{i ∈ N∪{0} : s̄i = 0}.

The strangeness index is the minimal index such that the so-called strangeness dis-
appears. ζ is named the regular strangeness index, if there are no so-called under-
determined parts during the iteration such that ūi = 0 and r̄i + āi + s̄i = m for all
i = 0, . . . ,ζ .
The values r̄i, āi, s̄i, i ≥ 0, and several additional ones, are called characteristic
values associated with the strangeness index concept.
If the original DAE (2.112) has regular strangeness index ζ , then the reduction
procedure ends up with the DAE

[
Id 0
0 0

]
˜̃x′+
[

0 0
0 Ia

]
˜̃x = ˜̃q,

with d = d̄ζ , a = āζ .

Remark 2.81. Turn for a moment back to time-invariant DAEs and constant matrix
pairs. If the matrix pair {E,F} is regular with Kronecker index μ (which is the same
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as the tractability index μ), and characteristic values r0 ≤ ·· · ≤ rμ−1 < rμ = m,
then this pair has the regular strangeness index ζ = μ−1. The characteristic values
associated with the strangeness index can then be obtained from the r0, . . . ,rμ by
means of the formulas

r̄i = m−
i

∑
j=0

(m− r j),

āi =
i

∑
j=0

(m− r j)− (m− ri+1),

s̄i = m− ri+1, i = 0, . . . ,ζ .

The same relations apply to DAEs with time-varying coefficients, too (cf. [139]).

2.10.3 Projector based reduction

Although linear regular higher index DAEs are well understood, they are not acces-
sible to direct numerical integration as pointed out in Chapter 8. Especially for this
reason, different kinds of index reduction have their meaning.
We formulate a reduction step for the DAE (2.44) with properly stated leading term,
i.e.,

A(Dx)′+Bx = q,

by applying the projector function W1 associated with the first terms of the matrix
function sequence.W1 projects along imG1 = imG0⊕ imW0BQ0, and, because of
imA⊆ imG0 ⊆ imG1, multiplication of the DAE byW1 leads to the derivative-free
equations

W1Bx =W1q. (2.146)

We emphasize that these equations are just a part of the derivative-free equations,
except for the caseW0 =W1, which is given in Hessenberg systems, and in Exam-
ple 2.82 below. The complete set is described by

W0Bx =W0q. (2.147)

We suppose the matrix function W1 to have constant rank m− r1, which is at least
ensured in regular DAEs. For regular DAEs the subspace

S1 = kerW1B

is known to have dimension r1.
Introduce a continuous reflexive generalized inverse (W1B)−, and put

Z1 := I− (W1B)−W1B.
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Z1 is a continuous projector function onto S1. Because ofW1BQ0 = 0 the following
properties hold true:

Z1Q0 = Q0

DZ1 = DZ1P0 = DZ1D−D

DZ1D− = DZ1D−DZ1D−

imDZ1D− = imDZ1 = DS1 = DS0.

DZ1D− is a priori a continuous projector function. Assuming the DAE coefficients
to be sufficiently smooth, it becomes continuously differentiable, and we do so. In
consequence, for each function x ∈ C1

D(I,Rm) it follows that

DZ1x = DZ1D−Dx ∈ C1(I,Rn), D(I−Z1)x = Dx−DZ1x ∈ C1(I,Rn),

which allows us to write the DAE as

A(DZ1x)′+A(D(I−Z1)x)′+Bx = q. (2.148)

Equation (2.146) is consistent, since, for reasons of dimensions, imW1B = imW1.
It follows that

(I−Z1)x = (W1B)−W1q. (2.149)

This allows us to remove the derivative (D(I−Z1)x)′ from the DAE, and to replace
it by the exact solution part derived from (2.146). The resulting new DAE

A(DZ1x)′+Bx = q−A(D(W1B)−W1q)′

has no properly stated lading term. This is why we express A(DZ1x)′ =
A{DZ1D−(DZ1x)′ + (DZ1D−)′DZ1x}, and turn to the new DAE with a properly
stated leading term

ADZ1D−︸ ︷︷ ︸
Anew

(DZ1︸︷︷︸
Dnew

x)′+(A(DZ1D−)′DZ1 +B)︸ ︷︷ ︸
Bnew

x = q−A(D(W1B)−W1q)′ (2.150)

which has the same solutions as the original DAE (2.44) has, and which is expected
to have a lower index (cf. [138]).

Example 2.82 (Index reduction step). We reconsider the DAE (2.10) from Exam-
ple 2.4,

⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A(t)

(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
D

x(t)
)′

+

⎡
⎣

1 0 0
0 0 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B(t)

x(t) = q(t), t ∈ R,

where an admissible matrix function sequence for this DAE is generated. This DAE
is regular with tractability index 3. Now compute
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W1 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , W1B(t) =

⎡
⎣

0 0 0
0 0 0
0 −t 1

⎤
⎦ .

SinceW1B is already a projector function, we can set (W1B)− =W1B. This implies

Z1 =

⎡
⎣

1 0 0
0 1 0
0 t 0

⎤
⎦ , D(t)Z1(t) =

⎡
⎣

0 0 0
0 1 0
0 t 0

⎤
⎦ ,

and finally the special DAE (2.150)
⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
Anew(t)

(⎡
⎣

0 0 0
0 1 0
0 t 0

⎤
⎦

︸ ︷︷ ︸
Dnew(t)

x(t)
)′

+

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
Bnew(t)

x(t) =

⎡
⎣

q1(t)
q2(t)−q′3(t)

q3(t)

⎤
⎦ , t ∈ R,

which is indeed regular with tractability index 2. ��

For the special choice (W1B)− = (W1B)+, the resulting Z1 is the orthoprojector
function onto S1. This version is the counterpart to the strangeness reduction step
from Subsection 2.10.2.

At first glance it seems to be somewhat arbitrary to figure out just the equations
(2.146) for reduction. However, after the explanations below it will be seen as a nice
option.

An analogous reduction step can be arranged by choosing the complete set of
derivative-free equations (2.147) as a candidate. For regular DAEs, the subspace
kerW0B = S0 has dimension r0, and we again obtain consistency, as well as the
projector Z0 := I− (W0B)−W0B onto S0. From (2.147) it follows that

(I−Z0)x = (W0B)−W0q.

Now we need a smoother solution x to be able to differentiate this expression. To
be more transparent we assume at least D and Z0, as well as the solution x, to be
continuously differentiable, and turn to the standard form

AD︸︷︷︸
E

x′+(B−AD′)︸ ︷︷ ︸
F

x = q.

Here we express

x′ = (Z0x)′+((W0B)−W0q)′ = Z0x′+Z′0x+((W0B)−W0q)′,

such that we arrive at the new DAE

EZ0︸︷︷︸
Enew

x′+(F +EZ′0)︸ ︷︷ ︸
Fnew

x = q−E((W0B)−W0q)′. (2.151)
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This kind of reduction is in essence the procedure described in [189]. The descrip-
tion in [189] concentrates on the coefficient pairs, and one turns to a condensed
version of the pair {EZ0,(I−W0)(F +EZ′0)}.

In the following we do not provide a precise proof of the index reduction, but ex-
plain the idea behind it. Assume the DAE (2.44) to be regular with tractability index
μ and characteristic values r0 ≤ ·· · ≤ rμ−1 = rμ = m, and take a further look to the
completely decoupled version consisting of the IERODE (2.51) and the subsystem
(cf. (2.63))

N (Dv)′+Mv = Lq. (2.152)

This subsystem comprises the inherent differentiations. It reads in detail
⎡
⎢⎢⎢⎢⎣

0 N0,1 · · · N0,μ−1

0
. . .

...
. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
(DΠ0Q1x)′

...
(DΠμ−2Qμ−1x)′

⎤
⎥⎥⎥⎦ (2.153)

+

⎡
⎢⎢⎢⎢⎣

I M0,1 · · · M0,μ−1

I
. . .

...
. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Q0x
Π0Q1x

...
Πμ−2Qμ−1x

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

L0q
L1q

...
Lμ−1q

⎤
⎥⎥⎥⎦ .

We see that if we replace the derivative term (DΠμ−2Qμ−1x)′ by its exact solution
part (DLμ−1q)′ we arrive at the system

Nnew

⎡
⎢⎢⎢⎢⎢⎣

0
(DΠ0Q1x)′

...
(DΠμ−3Qμ−2x)′

0

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

I M0,1 · · · M0,μ−1

I
. . .

...
. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Q0x
Π0Q1x

...
Πμ−2Qμ−1x

⎤
⎥⎥⎥⎦ (2.154)

=

⎡
⎢⎢⎢⎢⎢⎣

L0q−N0,μ−1(Lμ−1q)′

L1q−N1,μ−1(Lμ−1q)′
...

Lμ−2q−Nμ−2,μ−1(Lμ−1q)′

Lμ−1q

⎤
⎥⎥⎥⎥⎥⎦
.

While the matrix function N has nilpotency index μ , the new matrix function
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Nnew =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 N0,1 · · · N0,μ−2 0

0
. . .

... 0
. . . Nμ−3,μ−2 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

has nilpotency index μ−1 (cf. Proposition 2.29). That means, replacing the deriva-
tive (DΠμ−2Qμ−1x)′ by the true solution term reduces the index by one. Clearly, re-
placing further derivatives and successively solving the subsystem for (I−Πμ−1)x=
Q0x+Π0Q1x+ · · ·+Πμ−2Qμ−1x reduces the index up to one. We keep in mind that,
replacing at least the derivative (DΠμ−2Qμ−1x)′ reduces the index by at least one.
However, in practice, we are not given the decoupled system. How can we otherwise
make sure that this derivative is replaced?
Consider for a moment the equation

Wμ−1Bx =Wμ−1q (2.155)

that is also a part of the derivative-free equations of our DAE. Since the subspace
Sμ−1 = kerWμ−1 has dimension rμ−1, the matrix functionWμ−1B has constant rank
m − rμ−1, and equation (2.155) is consistent, we obtain with Zμ−1 :=
I − (Wμ−1B)−Wμ−1B a continuous projector function onto Sμ−1, and it follows
that

(I−Zμ−1)x = (Wμ−1B)−Wμ−1q.

Since we use completely decoupling projector functions Q0, . . . ,Qμ−1, we know that
Πμ−2Qμ−1 is the projector function onto imΠμ−2Qμ−1 along Sμ−1. Therefore, with
I−Zμ−1 and Πμ−2Qμ−1 we have two projector functions along Sμ−1. This yields

I−Zμ−1 = (I−Zμ−1)Πμ−2Qμ−1, Πμ−2Qμ−1 =Πμ−2Qμ−1(I−Zμ−1),

and therefore, by replacing (D(I − Zμ−1)x)′ we replace at the same time
(DΠμ−2Qμ−1x)′. This means that turning from the original DAE (2.44) to

ADZμ−1D−(DZμ−1x)′+(A(DZμ−1D−)′DZμ−1+B)x= q−A(D(Wμ−1B)−Wμ−1q)′

indeed reduces the index by one. However, the use of Zμ−1 is rather a theoreti-
cal option, since Wμ−1 is not easy to obtain. The point is that working instead
with (2.146) and Z1 as described above, and differentiating the extra components
D(I−Z1)x, includes the differentiation of the component D(I−Zμ−1)x as part of
it. In this way, the reduction step from (2.44) to (2.150) seems to be a reasonable
compromise from both theoretical and practical viewpoints.
At this point we emphasize that there are various possibilities to compose special
reduction techniques.
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2.11 Generalized solutions

We continue to consider linear DAEs

A(t)(D(t)x(t))′+B(t)x(t) = q(t), t ∈ I, (2.156)

with coefficients A ∈ C(I,L(Rn,Rm)), D∈ C(I,L(Rm,Rn)), B ∈ C(I,L(Rm)). I ⊆
R denotes an interval. Here we focus on IVPs. Let t0 ∈ I be fixed. We state the
initial condition in the form

Cx(t0) = z, (2.157)

by means of a matrix C ∈ L(Rm,Rd) which satisfies the condition

C =CD(t0)−D(t0), (2.158)

and which is further specified below (cf. Theorem 2.52) where appropriate.
A classical solution of the IVP (2.156), (2.157) is a continuous function x which
possesses a continuously differentiable component Dx and satisfies the initial con-
dition as well as pointwise the DAE. Excitations corresponding to classical solutions
are at least continuous.

2.11.1 Measurable solutions

A straightforward generalization is now to turn to measurable solution functions
x such that the part Dx is absolutely continuous, the initial condition makes sense
owing to condition (2.158), and the DAE is satisfied for almost every t ∈ I. The
corresponding right-hand sides q are also measurable functions.
DAEs with excitations q ∈ L2(I,Rm) result, e.g., from Galerkin approximations
of PDAEs (cf. [207], [203]). Furthermore, in optimization problems one usually
applies measurable control functions.

We point out that regularity of the DAE, its characteristic values and the tractabil-
ity index are determined from the coefficient functions A, D and B alone. Also the
decoupling procedure is given in terms of these coefficient functions. Therefore,
the regularity notion, the tractability index, characteristic values and the decoupling
procedure retain their meaning also if we change the nature of the solutions and
excitations.

We use the function space

H1
D(I,Rm) := {x ∈ L2(I,Rm) : Dx ∈ H1(I,Rn)}

to accommodate the generalized solutions. For x ∈ H1
D(I,Rm) the resulting defect

q := A(Dx)′ + Bx belongs to L2(I,Rm). Conversely, given an excitation
q ∈ L2(I,Rm), it seems to make sense if we ask for IVP solutions from H1

D(I,Rm).
The following proposition is a counterpart of Proposition 2.50. Roughly speaking,
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in higher index cases, excitations are directed to the inherent regular ODE and the
nullspace component only, which is ensured by means of the filtering projector
GμP1 · · ·Pμ−1G−1

μ .

Proposition 2.83. Let the DAE (2.156) be fine with tractability index μ and char-
acteristic values 0 ≤ r0 ≤ ·· · ≤ rμ−1 < rμ = m. Put d = m−∑μ

j=1(m− r j−1),
Let Q0, . . . ,Qμ−1 be completely decoupling projectors. Set V1 := I and Vμ :=
GμP1 · · ·Pμ−1G−1

μ if μ > 1.
Let the matrix C in the initial condition 2.157 have the property kerC = Ncan(t0).
Then, for every z ∈ imC and q = Vμ p, p ∈ L2(I,Rm), the IVP (2.156), (2.157) has
exactly one solution x ∈ H1

D(I,Rm).
If, additionally, the component Q0P1 · · ·Pμ−1G−1

μ q = Q0P1 · · ·Pμ−1G−1
μ p is continu-

ous, then the solution x is continuous.

Proof. We refer to Section 2.6 for details. Applying the decoupling and regarding
condition q =Vμ p, we arrive at the inherent regular ODE

u′ − (DΠcanD−)′u+DΠcanG−1
μ BD−u = DΠcanG−1

μ p (2.159)

and the solution expression

x = D−u+Q0P1 · · ·Pμ−1G−1
μ p. (2.160)

The initial value problem for (2.159) with the initial condition

u(t0) = D(t0)C−z

has (cf. [79, pp. 166–167]) a continuous solution u with u′ in L2(I,Rn), and which
satisfies the ODE for almost all t. Then, by (2.160), x is in H1

D(I,Rm), and the initial
condition (2.157) is fulfilled:

Cx(t0) =CD(t0)−u(t0) =CD(t0)−D(t0)C−z =CC−z = z.

The second part of the assertion follows from the solution representation (2.160).
��

If the tractability index equals 1, then V1 = I is valid, and hence the operator

L : H1
D(I,Rm)→ L2(I,Rm), Lx := A(Dx)′+Bx,

is surjective. The corresponding IVP operator L is then a bijection.
If the DAE (2.156) is regular with tractability index 2, then by means of com-

pletely decoupling projectors we obtain the solution expression

x = D−u+Π0Q1G−1
2 q+Q0P1G−1

2 q+Q0Q1D−(DΠ0Q1G−1
2 q)′,

where u satisfies
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u′ − (DΠ1D−)′u+DΠ1G−1
2 BD−u = DΠ1G−1

2 q, u(t0) = D(t0)C−z,

for the IVP (2.156), (2.157). In this way, the excitation q is supposed to be from the
function space

{q ∈ L2(I,Rm) : DΠ0Q1G−1
2 q ∈ H1(I,Rn)}.

Because of V2 = G2P1G−1
2 and DΠ0Q1G−1

2 V2 = 0, the excitation q = V2 p in the
above proposition belongs to this space for trivial reasons.
Dealing with piecewise smooth excitations q, the solution expression shows how
jumps are passed onto the solution.
We refer to Chapter 12 for a discussion of abstract differential equations, which also
includes related results.
In all the above cases, suitably posed initial conditions play their role. If one replaces
the initial condition (2.157) by the condition x(t0) = x0 we used to apply for regular
ODEs, and which makes sense only for solutions being continuous, then the value x0
must be consistent. Otherwise solvability is lost. As discussed in Subsection 2.6.2,
a consistent value depends on the excitation.

2.11.2 Distributional solutions

The theory of distributional solutions allows us to elude the problem with incon-
sistent initial values and to consider discontinuous excitations q. We briefly address
DAEs having C∞-coefficients and a distributional excitation. For facts on general-
ized functions we refer to [201], [215].

Let D denote the space of functions from C∞(I,R) with compact support in I,
and D′ its dual space. The elements of D′ are said to be generalized functions or
distributions. Denote by 〈·, ·〉 the dual pairing between D′ and D.
For y ∈ [D′]k and ϕ ∈ [D]k, k ∈ N, we define

〈y,ϕ〉 :=
k

∑
j=1
〈y j,ϕ j〉.

For a matrix function M ∈ C∞(I,L(Rk,Rl)), l,k ∈ N, and y ∈ [D′]k we define the
product My ∈ [D′]l by

〈My,ϕ〉= 〈y,M∗ϕ〉, ∀ϕ ∈ [D]l .

This product is well defined since M∗ϕ belongs to [D]k. For this, the C∞ property of
M is crucial.
Any distribution y ∈ [D′]k possesses the distributional derivative y′ ∈ [D′]k defined
by means of

〈y′,ϕ〉=−〈y,ϕ ′〉, ∀ϕ ∈ [D]k.
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The product rule (My)′ = M′y+My′ is valid.
Now we are prepared to consider distributional solutions of the given DAE

(2.156) supposing its coefficient functions A,D,B have all entries belonging to
C∞(I,R).
Given a distributional excitation q ∈ [D′]m, a distribution x ∈ [D′]m is said to be a
distributional solution of the (generalized) DAE (2.156) if

〈A(Dx)′+Bx,ϕ〉= 〈q,ϕ〉, ∀ϕ ∈ [D]m, (2.161)

or, equivalently,

〈x,−D∗(A∗ϕ)′+B∗ϕ〉= 〈q,ϕ〉, ∀ϕ ∈ [D]m. (2.162)

Since the entries of A,D,B belong to C∞(I,R), for regular DAEs, all admissible
matrix functions and admissible projector functions have those entries, too. And
hence the decoupling procedure described in Section 2.4 keeps its value also for the
distributional solution. Every regular DAE possesses distributional solutions.

2.12 Notes and references

(1) For constant coefficient DAEs

Ēx̄′(t)+ F̄ x̄(t) = q̄(t), (2.163)

the Kronecker index and regularity are well defined via the properties of the matrix
pencil {Ē, F̄}, and these characteristics are of particular importance in view of an
appropriate numerical treatment. From about 1970, challenged by circuit simulation
problems, numerical analysts and experts in circuit simulation begun to devote much
work to the numerical integration of larger systems of implicit ODEs and DAEs
(e.g., [86], [64], [202], [89]). In particular, linear variable coefficient DAEs

Ē(t)x̄′(t)+ F̄(t)x̄(t) = q̄(t) (2.164)

were tackled by the implicit Euler method

Ē(tl)
1
h
(x̄l− x̄l−1)+ F̄(tl)x̄l = q̄(tl).

Obviously, for the method to be just feasible, the matrix 1
h Ē(tl) + F̄(tl) must be

nonsingular, but this can be guaranteed for all steps tl and all sufficiently small
stepsizes h, if one requires the so-called local matrix pencils {Ē(t), F̄(t)} to be
regular on the given interval (we mention at this point, that feasibility is by far not
sufficient for a numerical integration method to work well). However, it was already
discovered in [84] that the local pencils are not at all relevant characteristics of more
general DAEs. Except for regular index-1 DAEs, local matrix pencils may change
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their index and lose their regularity under smooth regular transformations of the
variables. That means that the local matrix pencils {E(t),F(t)} of the DAE

E(t)x′(t)+F(t)x(t) = q(t), t ∈ I, (2.165)

which result from transforming x̄(t)=K(t)x(t) in the DAE (2.164), with a pointwise
nonsingular continuously differentiable matrix function K, may have completely
different characteristics from the local pencils {Ē(t), F̄(t)}. Nevertheless, the DAEs
are equivalent, and hence, the local matrix pencils are irrelevant for determining the
characteristics of a DAE. The coefficients of equivalent DAEs (2.164) and (2.165)
are related by the formulas E(t) = Ē(t)K(t), F(t) = F̄(t)K(t)+ Ē(t)K′(t), which
gives the impression that one can manipulate the resulting local pencil almost arbi-
trarily by choosing different transforms K.
In DAEs of the form

Ā(t)(D̄(t)x̄(t))′+ B̄(t)x̄(t) = q̄(t), (2.166)

the transformation x̄(t) = K(t)x(t) leads to the equivalent DAE

A(t)(D(t)x(t))′+B(t)x(t) = q(t). (2.167)

The coefficients are related by A(t) = Ā(t), D(t) = D̄(t)K(t) and B(t) =
B̄(t)K(t), and the local pencils {Ā(t)D̄(t), B̄(t)} and {A(t)D(t),B(t)} =
{Ā(t)D̄(t)K(t), B̄(t)K(t)} are now equivalent. However, we do not consider this
to justify the local pencils of the DAE (2.167) as relevant carriers of DAE essen-
tials. For the DAE (2.167), also so-called refactorizations of the leading term yield
equivalent DAEs, and any serious concept incorporates this fact. For instance, in-
serting (Dx)′ = (DD+Dx)′ = D(D+Dx)′+D′D+Dx does not really change the DAE
(2.167), however, the local matrix pencils may change their nature as the following
example demonstrates. This rules out the local pencils again. The DAE

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ã

(
⎡
⎣

0 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
D̃(t)

x(t)
)′
+

⎡
⎣

1 0 0
0 1 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B̃(t)

x(t) = q(t), t ∈ R, (2.168)

has the local pencil {ÃD̃(t), B̃(t)} which is regular with index 3. However, deriving

(D̃(t)x(t))′ = (D̃(t)

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t))′ = D̃(t)

(
⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t)

)′
+ D̃′(t)

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t)

yields the equivalent DAE
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⎡
⎣

0 1 0
0 −t 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A(t)

(
⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
D

x(t)
)′
+

⎡
⎣

1 0 0
0 0 0
0 −t 1

⎤
⎦

︸ ︷︷ ︸
B(t)

x(t) = q(t), t ∈ R, (2.169)

the local matrix pencils {A(t)D,B(t)} = {E(t),F(t)} of which are singular for all
t ∈ R.
We see, aiming for the characterization of a variable coefficient DAE, that it does not
make sense to check regularity and index of the local pencils, neither for standard
form DAEs nor for DAEs with properly stated leading term.

(2) Although in applications one commonly already has DAEs with proper lead-
ing term or standard form DAEs (2.165) the leading coefficient E of which has
constant rank, there might be a different view of the constant-rank requirement for
E seeing it as a drawback. In the early work on DAEs (cf. [39, 25]), the standard
canonical form (SCF) of a DAE plays its role. By definition, the DAE (2.165) is in
SCF, if it is in the form

[
I 0
0 N(t)

]
x′(t)+

[
W (t) 0

0 I

]
x(t) = q(t), (2.170)

where N(t) is strictly lower (or upper) triangular. We emphasize that N(t), and con-
sequently E(t), need not have constant rank on the given interval. Supposing the
excitation q and the matrix function N are sufficiently smooth, this DAE has contin-
uously differentiable solutions, and the flow does not show critical behavior.

In contrast, in our analysis, several constant-rank conditions play their role, in
particular, each rank-changing point of A(t)D(t) or E(t) is considered as a critical
point, that is, as a candidate for a point where something extraordinary with the
solutions may happen. We motivate this opinion by Examples 2.69–2.71, among
them also DAEs in SCF.

(3) The ambition to allow for matrix coefficients E with variable rank in a more
general DAE theory is closely related to the SCF as well as to the derivative array
approach (cf. [41]).
Given a DAE (2.165) with m = k and coefficients E,F ∈ C2m(I,L(Rm)), one con-
siders the derivative array system (also, the prolongated or expanded system)

⎡
⎢⎢⎢⎢⎣

E(t) 0 . . . 0
E ′(t)+F(t) E(t) 0 . . .

∗ ∗ E(t) . . .
. . . . . .
∗ ∗ ∗ ∗ ∗ E(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jκ (t)

⎡
⎢⎢⎢⎢⎣

x1

x2

.

.
xκ+1

⎤
⎥⎥⎥⎥⎦
=−

⎡
⎢⎢⎢⎢⎣

F(t)
F ′(t)
.
.

F(κ)(t)

⎤
⎥⎥⎥⎥⎦

x+

⎡
⎢⎢⎢⎢⎣

q(t)
q′(t)
.
.

q(κ)(t)

⎤
⎥⎥⎥⎥⎦
,

(2.171)
which results from (2.165) by formally differentiating this equation κ times, collect-
ing all these equations, and replacing the derivative values x( j)(t) by jet variables x j.
The (κ+1)m× (κ+1)m matrix function Jκ is said to be smoothly 1-full on I ([25,
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Definition 2.4.7]), if there is a smooth nonsingular matrix functionRκ such that

Rκ(t)Jκ(t) =
[

Im 0
0 K(t)

]
.

If Jκ is smoothly 1-full, then an explicit vector field can be extracted from the
derivative array system (2.171), say

x1 = C(t)x+
κ

∑
j=0
D j(t)q( j)(t).

The solution set of the DAE (2.165) is embedded into the solution set of the explicit
ODE

x′(t) = C(t)x(t)+
κ

∑
j=0
D j(t)q( j)(t), (2.172)

which is called a completion ODE associated with the DAE, often also the underly-
ing ODE.
In this context, one speaks (cf. [25, 41]) about solvable systems (2.165), if for every
q ∈ Cm(I,Rm) there exists at least one solution x ∈ C1(I,Rm), which is uniquely
determined by its value at any t ∈ I. Any DAE that is transformable into SCF is
solvable in this sense. For every such solvable system, there is an index κ ≤ m such
that the derivative array matrix function Jκ has constant rank and is smoothly 1-full.
The reverse statement is true under additional assumptions (cf. [25, 41]).

If N in the SCF (2.170) is the zero matrix, then the leading coefficient of this
DAE has constant rank. Correspondingly, if the matrix function J1 has constant
rank and is smoothly 1-full on I, then E has constant rank. Namely, we have here

RJ1 =R
[

E 0
E ′+F E

]
=

[
I 0
0 K

]
.

The block K has constant rank since J1 has. Now, E has constant rank because of

R
[

0
E

]
=

[
0
K

]
.

It becomes clear that the leading coefficient E of a solvable system (2.165) may
undergo rank changes only in so-called higher index cases, that is, if κ ≥ 2 is the
lowest index such that Jκ has constant rank and is smoothly 1-full.
To illustrate what is going on we revisit the simple SCF-DAE

[
0 α
0 0

]
x′+

[
1 0
0 1

]
x = q

given on the interval I = [−1,1]. The function α is a strictly positive on (0,1] and
vanishes identically on [−1,0]. Suppose α to be four times continuously differen-
tiable. Notice that, in contrast, in Example 2.70 we only need continuous α . We
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form the derivative array functions

J1 =

⎡
⎢⎢⎣

0 α 0 0
0 0 0 0
1 α ′ 0 α
0 1 0 0

⎤
⎥⎥⎦ , J2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 α 0 0 0 0
0 0 0 0 0 0
1 α ′ 0 α 0 0
0 1 0 0 0 0
0 α ′′ 1 α ′+α ′′ 0 α
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

These matrix functions have constant-rank two, respectively four. Multiplication by
the smooth nonsingular matrix functions

R1 =

⎡
⎢⎢⎣

0 0 1 −α ′
0 0 0 1
1 0 0 −α
0 1 0 0

⎤
⎥⎥⎦ , R2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 −α ′ 0 −α
0 0 0 1 0 0
1 0 0 −α 0 0
0 1 0 0 0 0
0 0 0 −α ′′ 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

yields

R1J1 =

⎡
⎢⎢⎣

1 0 0 α
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , R2J2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 α ′+α ′′ 0 α
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The derivative array function J2 is smoothly 1-full on the entire interval
I = [−1,1] independently of the behavior of the function α . On the other hand,
1-fullness on I does not apply to J1. However, J1 is smoothly 1-full on the subin-
terval [−1,0), where α vanishes identically. It becomes clear that the restriction
of the DAE onto a subinterval does not necessarily show the same characteristic.
A more rigorous characterization of the DAE would depend on the interval.

We stress once again that we aim for a DAE analysis including a regularity no-
tion, which meets the lowest possible smoothness demands, and that we have good
reasons for treating the rank-changing points of the leading coefficient as critical
points and for regarding regularity intervals.
From our point of view, regularity of linear DAEs comprises the following three
main aspects (cf. Definition 2.25):

(a) The homogeneous equation has a solution space of finite dimension d.
(b) Equations restricted to subintervals inherit property (a) with the same d.
(c) Equations restricted to subintervals inherit the further characteristics

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

(4) Regularity is an often applied notion in mathematics to characterize quite di-
verse features. Also, different regularity notions are already known for linear DAEs.
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They refer to different intentions and are not consistent with each other. We pick up
some of them.

Repeatedly (e.g., [129, 130]) regularity of linear DAEs is bound to the unique
solvability of initial value problems for every sufficiently smooth excitation and
consistent initial conditions. Note that this property is named solvability, e.g., in
[41, 25].
In [25] the linear DAE is said to be regular, if the local matrix pencils remain regular,
a property that is helpful for numerical integration.
In [189] the ordered matrix function pair {E,F} is said to be regular, if E(t) has
constant rank r < m and E(t)E(t)∗+F(t)F(t)∗ is nonsingular, a property that is
useful for the reduction procedure. A DAE showing a regular coefficient pair is then
named reducible. So, for instance, the constant coefficient pair

⎧
⎨
⎩

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ ,
⎡
⎣

1 0 1
0 1 0
0 1 0

⎤
⎦
⎫
⎬
⎭

is regular in [189], but fails to be regular in [25].
Moreover, apart from higher smoothness demands, complete reducibility of the DAE
and complete regularity of the pair {E,F} in [189] are consistent with our regularity
notion. Namely, it is proved in [189] by a careful inspection of all involved constant-
rank requirements that complete reducibility is in full agreement with the condi-
tions yielding a well-defined regular strangeness index (cf. Section 2.10). In turn, as
shown in Section 2.10, the rank conditions supporting regularity in the tractability
index context are also in agreement with those from the regular strangeness index.

(5) Distributional solutions of linear DAEs with constant coefficients were stud-
ied very early, e.g., [53]. Generalized (distributional) solutions of linear DAEs with
smooth variable coefficients have been worked out in [187] (also [189, Chapter III]),
whereby so-called impulsive-smooth distributions play a central role. Recently, also
time-varying DAEs with discontinuous coefficients are on the agenda, see [208].

(6) Further solution generalizations such as weak solutions result from the special
settings of partial differential-algebraic equations (PDAEs) and abstract differential-
algebraic equations (ADAEs), see, e.g., [207, 191] and references therein.

(7) There are simple interrelations between standard form DAEs (2.165) and
DAEs (2.167) with proper leading term.
If D is continuously differentiable, we rewrite the DAE (2.167) as

A(t)D(t)x′(t)+(B(t)+A(t)D′(t))x(t) = q(t), (2.173)

which has standard form. If equation (2.167) has a properly stated leading term,
the resulting matrix function E = AD has constant-rank and the variable subspace
kerE = kerD is a C1-subspace.
Conversely, if a standard form DAE (2.165) with a constant rank matrix func-
tion E is given and, additionally, kerE is a C1-subspace, then, taking a contin-
uously differentiable projector valued function P, kerP = kerE, we may write
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Ex′ = EPx′ = E(Px)′ −EP′x. In this way we obtain

E(t)(P(t)x(t))′+(F(t)−E(t)P′(t))x(t) = q(t), (2.174)

which is a DAE with properly stated leading term. Now it is evident that any DAE
(2.167) with a properly stated leading term and a continuously differentiable matrix
function D yields a standard form DAE (2.165) such that the leading coefficient E
has constant rank and kerE is a C1-subspace, and vice versa.

Moreover, there are various possibilities to factorize a given matrix function E,
and to rewrite a standard form DAE as a DAE with proper leading term.
If the matrix function E itself is continuously differentiable and has constant rank,
then its nullspace is necessarily a C1-subspace, so that we may use equation (2.174).
Additionally in this case, by taking any continuously differentiable generalized in-
verse E− and by writing Ex′ = EE−Ex′ = EE−(Ex)′ −EE−E ′x we form

E(t)E(t)−(E(t)x(t))′+(F(t)−E(t)E(t)−E ′(t))x(t) = q(t)

which is also a DAE with properly stated leading term.
Furthermore, very often the original DAE consists of two kinds of equations, those
containing derivatives and those which are derivative-free. Then, the matrix function
E has the special form

E(t) =
[

E1(t)
0

]
, rankE1(t) = rankE(t),

or can be easily brought into this form. In this case, we can simply turn to
[

I
0

](
E1(t)x(t)

)′
+
(

F(t)−
[

E ′1(t)
0

])
x(t) = q(t).

We also point out the following full-rank factorization on a compact interval I,
which is provided by a continuous singular value decomposition (e.g. [49]),

E(t) =
[
U11(t) U12(t)
U21(t) U22(t)

][
Σ(t) 0

0 0

][
V11(t) V12(t)
V21(t) V22(t)

]∗
=

[
U11(t)
U21(t)

]
Σ(t)

︸ ︷︷ ︸
A(t)

[
V ∗11(t) V ∗21(t)

]
︸ ︷︷ ︸

D(t)

,

rankΣ(t) = rankE(t) =: r, n = r. The factors U , Σ and V are continuously differ-
entiable, supposing E is so. Then, A(t) has full column rank n and D(t) has full row
rank n.

As in the constant coefficient case, the special form of the factorization does
not matter for the nature of the solution. Only the nullspace kerD = kerE specifies
what a solution is. Namely, for every two matrix functions D ∈ C1(I,Rn) and D̄ ∈
C1(I,Rn̄) with constant rank and the common nullspace N := kerD= ker D̄, it holds
that

C1
D̄(I,R

m) = C1
D(I,Rm).
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Since the Moore–Penrose inverses D+ and D̄+ are continuously differentiable, too,
for any x ∈ C1

D(I,Rm) we find D̄x = D̄D̄+D̄x = D̄D+Dx ∈ C1(I,Rn̄), and hence
x ∈ C1

D̄(I,R
m).

(8) Our stability analysis of linear DAEs as well as the stability issues in Part
II concerning nonlinear index-1 DAEs carry forward the early ideas of [146, 96] as
well as fruitful discussions on a series of special conferences on stability issues. The
basic tool of our analysis is the explicit description of the unique IERODE defined
by fine decouplings. We emphasize that we do not transform the given DAE, but
work with the originally given data. In [17] they try another way of considering
DAEs via transformation into SCF and proposing Lyapunov functions.

(9) In Section 2.2 we provide the admissible matrix function sequences and ad-
missible projector functions together with their main properties. This part general-
izes the ideas of [167], [170]. While [167], [170] are restricted to regular DAEs, we
now give an adequate generalization for systems of k equations for m unknowns.
The new preliminary rearrangement of the DAE terms for better structural insight in
Subsection 2.4.1 is also valid for nonregular DAEs. We discuss this topic in Chapter
10 for over- and underdetermined DAEs. We emphasize once again that we only
rearrange terms in the given setting, but we do not transform the DAE at all.

The discussion of regular and fine DAEs renews the ideas of [170] and [169],
while the discussion of critical points reflects parts of [173, 174, 194], but we apply
a relaxed notion of regular points by the introduction of quasi-proper leading terms.
[194] is the first monograph offering a comprehensive introduction to the projector
based decoupling of regular linear DAEs, both in standard form and with proper
leading term. Moreover, this book considers critical points in the context of DAEs
having almost overall uniform characteristics.

(10) In the present chapter we describe harmless critical points somewhat loosely
as those which disappear in a smoother setting. A precise investigation on the back-
ground of the concept of quasi-regular DAEs (cf. Chapter 9) can be found in [59].



Chapter 3
Nonlinear DAEs

The objective of this chapter is a rigorous analysis of a large class of DAEs

f ((d(x(t), t))′,x(t), t) = 0

on a low smoothness level by means of admissible projector functions. In contrast
to the usually applied derivative array approaches and reduction procedures, we do
without those derivative arrays. We also do without providing solutions prior to and
involving them into the characterization of the equation.

The chapter is organized as follows. We describe the basic assumptions, the set-
ting of DAEs with properly involved derivative, their constraints and what we con-
sider to be a linearization in Section 3.1. Section 3.2 provides admissible matrix
function sequences and admissible projector functions, as well as their essential
properties, as pointwise generalizations of the admissible matrix function sequences
and admissible projector functions already defined in Chapter 2 on linear DAEs. In
Section 3.3 we introduce regularity regions and provide necessary and sufficient
regularity conditions via linearizations. We consider this to be the main result of the
present chapter. It says that a DAE is regular with tractability index μ and charac-
teristic values 0 ≤ r0 ≤ ·· · ≤ rμ−1 < rμ = m, if all its corresponding linearizations
are regular with these characteristics, and vice versa. Characteristic values and regu-
larity regions are shown to be invariant under transformations in Section 3.4. In this
context, a DAE having a well-defined index, which is commonly supposed in the
literature, appears to be a DAE comprising just one single regularity region. There-
fore, the class of DAEs showing several regularity regions appears to be quite large.
Nevertheless, Section 3.8 addresses the need for a further generalization of the DAE
class by an advanced localization of regularity regarding the jet variables.
Section 3.5 deals with the special structure of Hessenberg form DAEs and verifies
the full agreement of the tractability index concept with the trusted knowledge on
Hessenberg DAEs. For DAEs arising in circuit simulation which are studied in Sec-
tion 3.6, it is shown how the structure of the circuit can be exploited to reach useful
information and to build the admissible projector functions, and then to provide the
DAE characteristics.

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 3,
© Springer-Verlag Berlin Heidelberg 2013
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We prove strong local solvability assertions in Section 3.7. In Section 3.9 we derive
perturbation results for DAEs having a linear derivative part by means of an oper-
ator setting. Section 3.11 offers hints to ease models. We discuss relations to the
differentiation index in Section 3.10.

3.1 Basic assumptions and notions

3.1.1 Properly involved derivative

In this chapter we investigate general nonlinear equations

f ((d(x(t), t))′,x(t), t) = 0, (3.1)

which satisfy the following assumption.

Assumption 3.1. The function f : Rn×D f ×I f −→ R
k is continuous on the open

set Rn×D f ×I f ⊆ R
n×R

m×R and has continuous partial derivatives fy, fx with
respect to the first two variables y ∈ R

n, x ∈ D f .
The function d :D f ×I f −→ R

n is continuously differentiable.

DAEs in the form (3.1) arise, for instance, in circuit simulation by means of the
modified nodal analysis on a big scale (cf. Section 3.6).
Involving the derivative by means of an extra function into the DAE brings benefits
in view of solvability.

Definition 3.2. A solution x∗ of equation (3.1) is a continuous function defined
on an interval I∗ ⊆ I f , with values x∗(t) ∈ D f , t ∈ I∗, such that the function
u∗(.) := d(x∗(.), .) is continuously differentiable, and x∗ satisfies the DAE (3.1)
pointwise on I∗.
In our context, the wording the DAE is solvable simply means the existence of a
solution in this sense. In contrast, mostly in the literature on DAEs, solvability of
a DAE means the existence of a continuously differentiable function satisfying the
DAE pointwise. As for linear DAEs, one can expect lower smoothness solvability
results also for nonlinear DAEs (3.1).

Example 3.3 (Solvability benefit). The DAE

(x1(t)+ x2(t)x3(t))′ −q1(t) = 0,
x2(t)−q2(t) = 0,
x3(t)−q3(t) = 0, t ∈ I,

has the form (3.1) with k = m = 3, n = 1,

f (y,x, t) :=

⎡
⎣

1
0
0

⎤
⎦y+

⎡
⎣

0
x2
x3

⎤
⎦−q(t), d(x, t) := x1 + x2x3, x ∈ R

3, t ∈ I, y ∈ R.
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For each given continuous q and fixed t̄ ∈ I, c̄ ∈ R, this DAE has the solution

x1(t) = −q2(t)q3(t)+ c̄+q2(t̄ )q3(t̄ )+
t∫

t̄

q1(s)ds,

x2(t) = q2(t),

x3(t) = q3(t), t ∈ I,

which satisfies x(t̄ ) = x̄, x̄1 := c̄, x̄i := qi(t̄ ), i = 2,3. Obviously, the second and
third solution components are not necessarily continuously differentiable. Later on
we refer to such a system as a regular index-1 DAE. Observe that ker fy = {0},
imdx = R.
In contrast, rewriting this DAE in standard form as

x′1(t)+ x3(t) x′2(t)+ x2(t) x′3(t)−q1(t) = 0,
x2(t)−q2(t) = 0,
x3(t)−q3(t) = 0, t ∈ I,

we are led to solvability only for at least continuously differentiable q2, q3. ��

Equation (3.1) covers linear DAEs (2.1) via

f (y,x, t) = A(t)y+B(t)x−q(t), d(x, t) = D(t)x.

Semi-explicit systems

x′1(t)+b1(x1(t),x2(t), t) = 0, (3.2)
b2(x1(t),x2(t), t) = 0, (3.3)

where the unknown function is partitioned into the two components x1(.), x2(.),
and the derivative of the second component is absent, and, additionally, a part of the
equations is derivative-free, represent the special case with

f (y,x, t) =
[

I
0

]
y+b(x, t), d(x, t) = x1, y ∈ R

n, x ∈ Db =:D f , t ∈ Ib =: I f .

Many authors restrict themselves to semi-explicit DAEs; often one deals with so-
called Hessenberg form DAEs which are particular cases of semi-explicit DAEs.
Semi-explicit systems yield

fy(y,x, t) =
[

I
0

]
∈ L(Rn,Rm), dx(x, t) =

[
I 0
]
∈ L(Rm,Rn),

ker fy(y,x, t)⊕ imdx(x, t) = {0}⊕R
n = R

n, (y,x, t) ∈ R
n×D f ×I f ,

which is typical for properly stated terms.
The following notion of a properly involved derivative generalizes this property.



186 3 Nonlinear DAEs

Definition 3.4. Let the DAE (3.1) satisfy Assumption 3.1. The DAE (3.1) has on
D f ×I f a properly involved derivative, also called a properly stated leading term,
if imdx and ker fy are C1-subspaces in R

n, and the transversality condition

ker fy(y,x, t)⊕ imdx(x, t) = R
n, (y,x, t) ∈ R

n×D f ×I f , (3.4)

holds.

Variable subspaces moving in R
n, in particular C1-subspaces, are described in Ap-

pendix A.4. Any C1-subspace necessarily has constant dimension. Therefore, if the
DAE has a properly involved derivative, then the partial derivatives fy(y,x, t) and
dx(x, t) have constant rank on their definition domain. Denote

r := rankdx(x, t). (3.5)

Due to the transversality condition (3.4), fy(y,x, t) has rankr, too.
From our point of view it makes good sense to figure out the term housing the

derivative in a rigorous way, i.e., to use an improved model (3.1) compared with a
so-called standard DAE

f(x′(t),x(t), t) = 0 (3.6)

that leaves it undecided which derivatives are actually involved. Example 3.3 shows
a DAE with properly stated leading term and also any semi-explicit system has a
properly stated leading term, too. Both cases show trivial decomposition of Rn.

The general first-order form of the equation describing the motion of a con-
strained multibody system is actually a special semi-explicit DAE. The circuit mod-
els described in Section 3.6 also yield DAEs with properly stated leading term. It
seems that properly involved derivatives in the mathematical sense reflect the phys-
ical nature in basic applications well.

Whereas in properly stated leading terms both matrix functions fy(y,x, t) and
dx(x, t) have necessarily constant rank, the matrix function fy(y,x, t) is allowed to
change its rank in so-called quasi-proper leading terms in Chapter 9. Already in
Chapter 2 concerning linear DAEs, we threw some light on different views concern-
ing the constant-rank requirements, and of course, all arguments keep their value
for nonlinear DAEs, too. At this place we emphasize once more the role of properly
stated leading terms in detecting critical points on early stages. We demonstrate this
by the next two examples.

Example 3.5 (Critical point detection). The system

x1(t) x′1(t)− x2(t) = 0,
x1(t)− x2(t) = 0,

possesses the solutions x∗1(t) = x∗2(t) = t + c, where c denotes an arbitrary real
constant. Additionally, the identically vanishing function x̄∗(t) = 0 is also a solution.
Through every point on the diagonal line x1 = x2, except for the origin, there passes
exactly one solution. However, two different solutions satisfy the initial condition
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x(0) = 0, which characterizes the origin as a critical point. Writing the DAE in the
form (3.1) with n = 1, m = k = 2, D f = R

2, I f = R,

f (y,x, t) =
[

x1y− x2
x1− x2

]
, fy(y,x, t) =

[
x1
0

]
, d(x, t) = x1, dx(x, t) =

[
1 0
]
,

one arrives at a DAE which fails to have a properly stated leading term on the given
definition domainD f ×I f . However, the leading term is stated properly on the open
set

{(x, t) ∈ D f ×I f : x1 �= 0},

where fy keeps constant rank. This emphasizes the constant-rank condition (and the
proper leading term setting) to be helpful in indicating critical points. ��

So-called quasi-linear equations

A(x(t), t)(d(x(t), t))′+b(x(t), t) = 0 (3.7)

are accommodated in (3.1) with f (y,x, t) = A(x, t)y + b(x, t), d(x, t) = D(t)x.
Quasi-linear DAEs have an extra term housing the derivative, and formally leading
the equation. This justifies the name properly stated leading term. In a more gen-
eral equation, we might not have a leading term. Then the notion properly involved
derivative is more appropriate. However, we also keep using the more traditional no-
tions properly stated leading term and proper leading term for the general nonlinear
case.
A generally quite favorable version of a properly involved derivative term is given
if

ker fy(y,x, t) = {0}, imdx(x, t) = R
n,

which means that the partial derivatives fy(y,x, t) and dx(x, t) have full column rank
and full row rank, respectively, as it is the case for semi-explicit systems.

3.1.2 Constraints and consistent initial values

In Example 3.3, all solution values at time t must belong to the set

M0(t) = {x ∈ R
2 : x2 = q2(t),x3 = q3(t)}.

This is a typical feature of DAEs, which consists in the fact that the flow determined
by the DAE is restricted to certain lower-dimensional sets, the constraint sets (con-
strained manifold, if a manifold structure is given). This differs essentially from the
situation given for regular ODEs where no such restrictions are met. In DAEs, cer-
tain components are completely fixed by others and the excitations. Just for some
part of the components, if any, free integration constants allow for additional initial
or boundary conditions and an actual flow. If an IVP of the form
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f ((d(x(t), t))′,x(t), t) = 0, x(t0) = x0 (3.8)

should be solvable, the initial value x0 must meet these constraints. For instance, for
getting an integration routine started, one needs suitable initial values. In general, as
we shall see later, one needs a deep knowledge of the DAE structure to be able to
formulate, e.g., initial conditions such that the IVP becomes solvable.

Definition 3.6. For a given DAE (3.1) and given t0 ∈ I f , the value x0 ∈ D f is said
to be a consistent initial value if the IVP (3.8) possesses a solution.

Except for transparent academic examples and very special situations, one can pro-
vide consistent initial values just approximately. This is a difficult task that should
not be underrated.
For linear DAEs (2.1), all solution values at time t ∈ I obviously belong to the
constraint set

M0(t) = {x ∈ R
m : B(t)x−q(t) ∈ imA(t)}.

However, the precise set of consistent values at time t is given by (2.98), that is

Mcan,q(t) = {z+ v(t) : z ∈ Scan(t)} ⊆M0(t).

Recall that the function v vanishes identically if q does, which implies
Mcan,q(t) = Scan(t).
We already know thatMcan,q(t) =M0(t) exactly if the linear DAE is regular with
index 1. In the case of higher index DAEs,Mcan,q(t) is a lower-dimensional subset
ofM0(t).
Not surprisingly, the situation is quite involved in nonlinear equations.

Example 3.7 (All values inM0(t) are consistent). Consider the semi-explicit DAE

x′1(t)+ x1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),

with two equations and two unknown functions on D f = {x ∈R
2 : x2 > 0}, I f =R.

The real function γ is continuous on I f . We may write this DAE in the form (3.1)
with n = 1, m = k = 2,

f (y,x, t)=
[

y+ x1
x2

1 + x2
2− γ(t)−1

]
, fy(y,x, t)=

[
1
0

]
, d(x, t)= x1, dx(x, t)=

[
1 0
]
,

yielding a DAE with properly stated leading term. Every solution value x∗(t) must
lie in the set

M0(t) = {x ∈ D f : (x1)
2 +(x2)

2−1− γ(t) = 0}.

Therefore, this set must be nonempty, which means the function γ satisfies
1+ γ(t)> 0. Otherwise, the DAE has no solutions on those parts. The solution pass-

ing through x1(0) = x0,1, x2(0) =
√

1− x2
0,1 + γ(0) can be expressed as
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x∗1(t) = e−t x0,1, x∗2(t) =
√

1− e−2t x2
0,1 + γ(t).

Through each point of the setM0(0) there passes exactly one solution at time t = 0,
hence, the points ofM0(0) are consistent. Furthermore, the component x0,1 serving
as an integration constant can be chosen freely as long as 1− x2

0,1 + γ(0)> 0 holds.
Figure 3.1 shows, for γ(t)≡ 0 and for γ(t)= t2, the path of the solution (x1(t),x2(t)),
t ∈ [0,1], for the initial value x0,1 = 0.98, and the setsM0(0) andM0(1).

��

Fig. 3.1 Solution for γ(t)≡ 0 and γ(t) = t2 in Example 3.7

Example 3.8 (Hidden constraint). The DAE

x′1(t)+ x1(t) = 0,
x2(t) x′2(t)− x3(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),

given on D f = {x ∈ R
3 : x2 > 0}, I f = R, with γ being continuously differentiable

and satisfying 1+ γ(t) > 0, looks quite similar to the previous one. We may write
this DAE in the form (3.1), where n = 2, m = k = 3,

f (y,x, t) =

⎡
⎣

y1 + x1
x2y2− x3

x2
1 + x2

2− γ(t)−1

⎤
⎦ , fy(y,x, t) =

⎡
⎣

1 0
0 x2
0 0

⎤
⎦ ,

d(x, t) =
[

x1
x2

]
, dx(x, t) =

[
1 0 0
0 1 0

]
,

yielding again a DAE with properly stated leading term. The solution values must
belong to the set

M0(t) := {x ∈ R
3 : x2 > 0, x2

1 + x2
2−1− γ(t) = 0}.

However, a closer look at this DAE makes it clear that there is another set the so-
lution values have to belong to. Namely, for any solution x∗(.), differentiating the
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identity x∗1(t)2+x∗2(t)2−1 = γ(t) and replacing the expressions for the derivatives
we obtain the new identity

−2x∗1(t)2 +2x∗3(t) = γ ′(t).

Therefore, all solution values x∗(t) must also satisfy this hidden constraint, that is,
they must belong to the set

H(t) := {x ∈ D f :−2x2
1 +2x3− γ ′(t) = 0}.

In consequence, the obvious constraint set M0(t) contains points which are no
longer consistent, but the proper subsetM1(t) :=M0(t)∩H(t) ⊂M0(t) consists
of consistent points. Figure 3.2 shows M1(t) for γ(t) = − 1

2 cosπt for t = 0 and
t = 1

2 . ��

Fig. 3.2 M1 at t = 0 and t = 1
2 in Example 3.8

Turn back to general DAEs (3.1) with properly involved derivative. The function
d is continuously differentiable, and dx has constant rank. By definition, a solution
x∗ is a continuous function on a certain interval I∗ which has there a continuously
differentiable part u∗(.) := d(x∗(.), .). If x∗ were to belong to class C1, then the
identity

u′∗(t)−dt(x∗(t), t) = dx(x∗(t), t)x′∗(t), t ∈ I∗,

would be given. Although we do not suppose the solutions to be from C1, the inclu-
sion

u′∗(t)−dt(x∗(t), t) ∈ imdx(x∗(t), t), t ∈ I∗, (3.9)

remains to be valid for all solutions (cf. Proposition C.1), and there is a continuous
function (not necessarily unique) w∗ such that

u′∗(t) = dx(x∗(t), t)w∗(t)+dt(x∗(t), t), t ∈ I∗.
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The inclusion (3.9) holds trivially, if dx(x, t) has full row rank. In general, for every
solution of the DAE (3.1) the two identities

f (u′∗(t),x∗(t), t) = 0, t ∈ I∗,

and
f (dx(x∗(t), t)w∗(t)+dt(x∗(t), t),x∗(t), t) = 0, t ∈ I∗,

are valid, and hence, for all solutions, their values x∗(t) must belong to the sets

M̃0(t) := {x ∈ D f : ∃y ∈ R
n : f (y,x, t) = 0} (3.10)

and

M0(t) = {x ∈ D f : ∃w ∈ R
m : f (dx(x, t)w+dt(x, t),x, t) = 0}

= {x ∈ D f : ∃y ∈ R
n : y−dt(x, t) ∈ imdx(x, t), f (y,x, t) = 0}.

The sets M0(t) and M̃0(t) are defined for all t ∈ I f . Eventually, they might be
empty. The inclusionM0(t)⊆M̃0(t) is evident. For DAEs yielding a full row rank
matrix function dx, as is the case in Examples 3.7 and 3.8, these sets coincide. Both
sets are obviously restriction sets or constraints for the DAE solutions.

Definition 3.9. For a DAE (3.1) with proper leading term, the set

M0(t) := {x ∈ D f : ∃y ∈ R
n : y−dt(x, t) ∈ imdx(x, t), f (y,x, t) = 0}

is called the obvious restriction set or the obvious constraint of the DAE at t ∈ I f .

Turn for a moment to the special, but large class of quasi-linear DAEs (3.7). Remem-
ber that this class covers at least DAEs arising in circuit simulation and multibody
systems. Denote by W0(x, t) a projector matrix such that kerW0(x, t) = imA(x, t).
We represent

M̃0(t) = {x ∈ D f : ∃y ∈ R
n : A(x, t)y+b(x, t) = 0}

= {x ∈ D f : b(x, t) ∈ imA(x, t)}= {x ∈ D f :W0(x, t)b(x, t) = 0},

and

M0(t) = {x ∈ D f : ∃w ∈ R
m : A(x, t)(dx(x, t)w+dt(x, t))+b(x, t) = 0}

= {x ∈ D f : b(x, t) ∈ imA(x, t)}= {x ∈ D f :W0(x, t)b(x, t) = 0}= M̃0(t).

The setsM0(t) and M̃0(t) coincide, and they are described by means of an equation
which is more comfortable in some sense.
Observe that, for given t and x∈M0(t), the corresponding y is uniquely determined,
if the leading term is properly stated. Namely, for fixed t ∈ I f ,x ∈ M0(t), and
w, w̄ ∈ R

m with
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A(x, t)(dx(x, t)w+dt(x, t))︸ ︷︷ ︸
=y

+b(x, t) = 0, A(x, t)(dx(x, t)w̄+dt(x, t))︸ ︷︷ ︸
=ȳ

+b(x, t) = 0,

we derive A(x, t)dx(x, t)(w− w̄) = 0, and hence y− ȳ = dx(x, t)(w− w̄) = 0 owing
to the property kerAdx = kerdx.
The latter property holds true in general as the next proposition states.

Proposition 3.10. If the DAE (3.1) has a properly involved derivative, then, for
each x ∈M0(t) there exists exactly one y ∈ R

n such that y− dt(x, t) ∈ imdx(x, t),
f (y,x, t) = 0, which means,

M0(t) = {x ∈ D f : ∃!y ∈ R
n : y−dt(x, t) ∈ imdx(x, t), f (y,x, t) = 0}, t ∈ I f .

Proof. Let t̄ ∈ I f and x̄ ∈M0(t̄) be fixed. Suppose there are two different values
ȳ, ¯̄y ∈ R

n such that

ȳ−dt(x̄, t̄ ) ∈ imdx(x̄, t̄ ), f (ȳ, x̄, t̄ ) = 0,

¯̄y−dt(x̄, t̄ ) ∈ imdx(x̄, t̄ ), f ( ¯̄y, x̄, t̄ ) = 0.

Denote N̄ := kerdx(x̄, t̄), and introduce the vectors

w̄ := dx(x̄, t̄)+(ȳ−dt(x̄, t̄)), ¯̄w := dx(x̄, t̄)+( ¯̄y−dt(x̄, t̄)),

thus w̄, ¯̄w ∈ N̄⊥ = imdx(x̄, t̄)+. It follows that ȳ− ¯̄y = dx(x̄, t̄)(w̄− ¯̄w), as well as

f (dx(x̄, t̄)w̄+dt(x̄, t̄), x̄, t̄ ) = 0, f (dx(x̄, t̄) ¯̄w+dt(x̄, t̄), x̄, t̄ ) = 0,

hence

0 = f
(
dx(x̄, t̄)w̄+dt(x̄, t̄), x̄, t̄

)
− f
(
dx(x̄, t̄) ¯̄w+dt(x̄, t̄), x̄, t̄

)

=

1∫

0

fy
(
s(dx(x̄, t̄)w̄+dt(x̄, t̄))+(1− s)(dx(x̄, t̄) ¯̄w+dt(x̄, t̄)), x̄, t̄

)
dx(x̄, t̄)︸ ︷︷ ︸

M(s)

ds(w̄− ¯̄w).

The matrix M(s) depends continuously on s. Since the DAE has a properly stated
leading term, the matrix functions fydx and dx have common constant rank r, hence
rankM(s) = r, s ∈ [0,1]. The inclusion N̄ ⊆ kerM(s), s ∈ [0,1], together with rea-
sons of dimensions lead to the property N̄ = kerM(s), s ∈ [0,1].
Then the inclusion N̄ ⊆

∫ 1
0 kerM(s)ds is evident. Moreover, by applying a suffi-

ciently fine decomposition 0 = τ0 < τ1 < · · · < τS = 1 and considering the con-
tinuity of the matrix function M, one can successively verify that the rank of the
matrix

∫ τi
0 kerM(s)ds is greater than or equal to r, i = 1, . . . ,S. Again, for reasons of

dimensions, it holds that N̄ =
∫ 1

0 kerM(s)ds.
Now it follows that w̄− ¯̄w ∈ N̄, thus w̄− ¯̄w = 0, and finally ȳ− ¯̄y = 0. ��
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As we will see in Section 3.7, in the regular index-1 case, through each (x, t),
t ∈ I f , x ∈M0(t), there passes exactly one solution. This is what we intended to
obtain for index-1 DAEs.

The question whether the setM0(t) might be a proper subset of M̃0(t) remains
unsolved. In most cases the sets coincide as the next lemma shows.

Lemma 3.11. Let the DAE (3.1) have a properly stated leading term and let the
nullspace ker fy(y,x, t) be independent of y. Let R(x, t) ∈ L(Rn) denote the projector
matrix defined by

imR(x, t) = imdx(x, t), kerR(x, t) = ker fy(y,x, t), for x ∈ D f , t ∈ I f .

(1) Then the identities

f (y,x, t)≡ f (R(x, t)y,x, t), fy(y,x, t)≡ fy(R(x, t)y,x, t)≡ fy(y,x, t)R(x, t)

become true,
(2) R is continuously differentiable on D f ×I f ,
(3) and the setM0(t) coincides with M̃0(t) for t ∈ I f .

Proof. For x ∈ D f , t ∈ I f , y ∈ R
n, η := (I−R(x, t))y, it holds that

f (y,x, t)− f (R(x, t)y,x, t) =
∫ 1

0
fy(sy+(1− s)R(x, t)y,x, t)η ds = 0,

since η ∈ im(I−R(x, t)) = ker fy(sy+(1−s)R(x, t)y,x, t) independently of s, so the
identities in the first assertion are validated.
The function R is continuously differentiable as a projector function defined from
C1-subspaces.
For each fixed t ∈ I f , x ∈ M̃0(t), and a corresponding ỹ, such that
0 = f (ỹ,x, t) = f (R(x, t)ỹ,x, t), we define y := R(x, t)ỹ+(I−R(x, t))dt(x, t). It fol-
lows that

y−dt(x, t) = R(x, t)(ỹ−R(x, t)dt(x, t)) ∈ imdx(x, t),

and
f (y,x, t) = f (R(x, t)y,x, t) = f (R(x, t)ỹ,x, t) = f (ỹ,x, t) = 0,

and hence x belongs toM0(t). ��

In the fully implicit case, if ker fy(y,x, t) actually depends on y, the situation is less
transparent.

For solvability, the obvious constraint set and all hidden constraint sets must be
nonempty. Consistent values necessarily must belong to these sets.
Supposing the obvious constraint set is well accessible, all the following require-
ments concerning smoothness and constant ranks can be restricted to an open set
G ⊆D f ×I f being a neighborhood of the set {(x, t)∈D f ×I f : x∈M0(t), t ∈ I f }.
Also, D f ×I f can be initially interpreted to be such a neighborhood.
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The constraint sets, the obvious as well as the hidden ones, are strongly fixed by
the given DAE. Providing a description of the set of consistent values of a given
DAE is close to generating the solutions of this DAE. Perturbations of the right-
hand side can essentially change the constraint sets, as we can observe already in
the easier case of linear DAEs. This motivates us not to place primary emphasis on
the constraints. We try to find another way to characterize DAEs and for persistence
under perturbation.

We close this subsection by introducing the two additional subspaces

S(y,x, t) := {z ∈ R
m : fx(y,x, t)z ∈ im fy(y,x, t)},

S0(x1,x, t) := {z ∈ R
m : fx(dx(x, t)x1 +dt(x, t),x, t)z

∈ im fy(dx(x, t)x1 +dt(x, t),x, t)},

associated with the DAE (3.1). The subspaces are defined for x∈D f , t ∈ I f , y∈R
n

and x1 ∈R
m, and they are closely related to each other. In most cases they coincide.

By definition, one has

S0(x1,x, t) = S
(
dx(x, t)x1 +dt(x, t),x, t

)
for all x ∈ D f , t ∈ I f , x1 ∈ R

m,

and, on the other hand,

S(y,x, t) = S0(x1,x, t) for x ∈ D f , t ∈ I f ,

and those y ∈ R
n, x1 ∈ R

m, which are related by y = dx(x, t)x1 +dt(x, t).

It is evident that, if the partial derivative fx(y,x, t) and the subspace im fy(y,x, t) are
independent of y, then S(y,x, t) is independent of y and S0(x1,x, t) is independent of
x1, and both subspaces coincide, that is,

S(y,x, t) = S0(x1,x, t), x ∈ D f , t ∈ I f , y ∈ R
n, x1 ∈ R

m.

This property reflects the special situation given in linear DAEs and in all semi-
explicit DAEs, and we write at times S(x, t) := S(0,x, t) = S0(0,x, t) =: S0(x, t). For
linear DAEs only S0(t) is used.

Turn once again to quasi-linear DAEs (3.7) and their obvious constraint

M0(t) = {x ∈ D f :W0(x, t)b(x, t) = 0}.

For these DAEs with f (y,x, t) = A(x, t)y+b(x, t) it follows that

S(y,x, t) = kerW0(x, t) fx(y,x, t),

S0(x1,x, t) = kerW0(x, t) fx(dx(x, t)x1 +dt(x, t),x, t).

If, additionally, the matrix function A(x, t) has a constant range andW0 is a constant
projection along this range, then it holds that
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M0(t) = {x ∈ D f :W0b(x, t) = 0},
S(y,x, t) = kerW0bx(x, t) = S0(x1,x, t),

which indicates a certain affinity of the subspaces S(y,x, t), S0(x1,x, t) and the tan-
gent space TxM0(t), if x ∈M0(t) and the tangent space is well defined.

3.1.3 Linearization

Linearization plays an important role in various fields of nonlinear analysis. It is
a standard tool for obtaining information on smooth nonlinear problems. Here we
apply linearization for index determination in nonlinear DAEs. Roughly speaking,
below, we introduce regularity regions of a nonlinear DAE so that all linearizations
along sufficiently smooth reference functions residing in that region are regular lin-
ear DAEs with uniform characteristics.

For any reference function x∗ ∈ C(I∗,Rm), I∗ ⊆ I f , with values in D f , i.e.
x∗(t) ∈ D f , t ∈ I∗, such that d(x∗(·), ·) ∈ C1(I∗,Rn), we consider the linear DAE

A∗(t)(D∗(t)x(t))′+B∗(t)x(t) = q(t), t ∈ I∗, (3.11)

the coefficients of which are given by

A∗(t) := fy((d(x∗(t), t))′,x∗(t), t),

D∗(t) := dx(x∗(t), t),

B∗(t) := fx((d(x∗(t), t))′,x∗(t), t), t ∈ I∗.

The reference function x∗ ∈ C(I∗,Rm) is not necessary a solution of the DAE (3.1).

Definition 3.12. The linear DAE (3.11) is said to be a linearization of the nonlinear
DAE (3.1) along the reference function x∗.

We stress that here the linearization of the nonlinear DAE (3.1) along x∗ represents
the linear DAE (3.11) with unassigned general right-hand side q. In contrast, at
times in a different context one restricts a linearization to the equation with specific
right-hand side

A∗(t)(D∗(t)x(t))′+B∗(t)x(t) =− f ((d(x∗(t), t))′,x(t), t), t ∈ I∗,

supposing x∗ to be close to a solution of the original equation.
The smoothness demands (3.1) for the nonlinear DAE (3.1) ensure that the linear

DAE (3.11) is equipped with continuous coefficients. Moreover, if the DAE (3.1)
has a properly involved derivative, the decomposition

kerA∗(t)⊕ imD∗(t) = R
n, t ∈ I∗, (3.12)
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holds true with kerA∗ and imD∗ being C-subspaces, but not necessarily C1-
subspaces. This is a direct consequence of the construction.
To be able to apply the linear theory from Chapter 2, we look for additional con-
ditions ensuring C1-subspaces and a continuously differentiable border projector
associated to the decomposition (3.12).
If the subspace ker fy(y,x, t) does not depend on y at all, owing to Lemma 3.11,
we obtain C1-subspaces kerA∗ and D∗ by taking the linearization along a smoother
reference function x∗ ∈ C1(I∗,Rm).
If ker fy(y,x, t) depends on all its arguments, we can make do with x∗ ∈ C1(I∗,Rm),
and, additionally, d(x∗(.), .) ∈ C2(I∗,Rn). As a sufficient requirement for the latter
we suppose d to have continuous second partial derivatives, and x∗ ∈ C2(I∗,Rm).

Before we extend the tractability index concept to general nonlinear DAEs, we
introduce some convenient denotations and consider some basic properties. We start
with

D(x, t) := dx(x, t), (3.13)
A(x1,x, t) := fy(D(x, t)x1 +dt(x, t),x, t), (3.14)

B(x1,x, t) := fx(D(x, t)x1 +dt(x, t),x, t), (3.15)

for x1 ∈ R
m, x ∈ D f , t ∈ I f , to be used throughout the whole chapter. D,A and B

are continuous matrix functions. The coefficients of the DAE (3.11) linearized at a
continuously differentiable reference function x∗ now look like

A∗(t) = A(x′∗(t),x∗(t), t) = fy(D(x∗(t), t)x′∗(t)+dt(x∗(t), t),x∗(t), t),

D∗(t) = D(x∗(t), t),

B∗(t) = B(x′∗(t),x∗(t), t) = fx(D(x∗(t), t)x′∗(t)+dt(x∗(t), t),x∗(t), t), t ∈ I∗.

Lemma 3.13. For a DAE (3.1) with a properly involved derivative, the decomposi-
tion

kerA(x1,x, t)⊕ imD(x, t) = R
n, ∀x1 ∈ R

m, x ∈ D f , t ∈ I f , (3.16)

is true, and the subspaces kerA and imD are at least C-subspaces.

Proof. Because of the assumption, the transversality condition (3.4) is valid. For
each triple (x̄1, x̄, t̄ ) ∈ R

m×D f ×I f we set ȳ := D(x̄, t̄ )x̄1 +dt(x̄, t̄ ), which leads to

A(x̄1, x̄, t̄ ) = fy(ȳ, x̄, t̄ ), D(x̄, t̄) = dx(x̄, t̄),

hence
kerA(x̄1, x̄, t̄ )⊕ imD(x̄, t̄ ) = ker fy(ȳ, x̄, t̄ )⊕ imdx(x̄, t̄ ) = R

n.

The subspaces kerA and imD are at least C-subspaces, since A and D are continuous
matrix functions which have constant rank. ��
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In general we have to expect the subspace kerA(x1,x, t) to depend on all its argu-
ments x1,x and t. If the subspace ker fy(y,x, t) is independent of y, then kerA(x1,x, t)
is independent of x1. We emphasize the importance of the class of DAEs (3.1) whose
associate subspace ker fy(y,x, t) is independent of y. This class covers quasi-linear
DAEs (3.7) and all applications we know.

Lemma 3.14. Let the DAE (3.1) have a properly involved derivative, and let
ker fy(y,x, t) be independent of y. Then the transversality conditions (3.4) and (3.16)
are equivalent,

Proof. Owing to Lemma 3.13 it remains to verify that (3.16) implies (3.4). Let
(3.16) be valid. Let t and x be fixed. For each y ∈ R

n we find a x1 ∈ R
m such

that R(x, t)(y−dt(x, t)) = D(x, t)x1, thus R(x, t)y = R(x, t)(D(x, t)x1 +dt(x, t)), and
hence

fy(y,x, t) = fy(R(x, t)y,x, t) = fy(R(x, t)(D(x, t)x1 +dt(x, t)),x, t)

= fy(D(x, t)x1 +dt(x, t)),x, t) = A(x1,x, t).

��

We see that if the subspace ker fy(y,x, t) is independent of y then kerA(x1,x, t) =
kerR(x, t) is independent of x1, and both decompositions (3.4) and (3.16) de facto
coincide.
If ker fy(y,x, t) depends on y, then supposing condition (3.16) to be given, the def-
inition of the obvious constraint accompanying the DAE (cf. Definition 3.9) leads
to

ker fy(y,x, t)⊕ imdx(x, t) = R
n, ∀y ∈ R

n, x ∈M0(t), t ∈ I f . (3.17)

Altogether, we have

ker fy(y,x, t)⊕ imdx(x, t) = R
n

∀y ∈ R
m, x ∈ D f , t ∈ I f

−−−−→
←−−−−−
ker fy(y,x,t)
indep. of y
or x∈M0(t)

kerA(x1,x, t)⊕ imD(x, t) = R
n

∀x1 ∈ R
m, x ∈ D f , t ∈ I f .

The projector function R introduced in Lemma 3.11 plays its role in the further
analysis. The following definition of the border projector function generalizes this
projector function.

Definition 3.15. For a DAE (3.1) with properly involved derivative, the projector
valued function R defined by

imR(x1,x, t) = imD(x, t), kerR(x1,x, t) = kerA(x1,x, t)

for x1 ∈ R
m, x ∈ D f , t ∈ I f , is named the border projector function or briefly the

border projector of the DAE.
If kerA(x1,x, t) is independent at all of x1, we set R(0,x, t) =: R(x, t).
If kerA(x1,x, t) is independent at all of x1 and x, and imD(x, t) does not depend on
x, we write R(t).
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Under the smoothness Assumption 3.1 for f and d we have agreed upon by now,
the border projector function R is continuous, but not necessarily continuously dif-
ferentiable. For the analysis later on, we will need this function R to be continu-
ously differentiable. Therefore, we want to provide assumptions about the origi-
nal system leading to a continuously differentiable border projector R. We know,
for a DAE with properly involved derivative, and ker fy being independent of y,
the border projector R = R(x, t) is a priori continuously differentiable on D f ×I f
(cf. Lemma 3.11). On the other hand, if the subspace ker fy(y,x, t) depends on y
then kerA(x1,x, t) depends on x1, and so does R(x1,x, t). Then, if we require d to
have continuous second partial derivatives, then R is continuously differentiable on
R

m×D f ×I f .
We summarize the appropriate assumptions to be used later on.

Assumption 3.16. (Basic assumption for (3.1))

(a) The function f is continuous on R
n×D f ×I f together with its first partial

derivatives fy, fx. The function d is continuously differentiable on D f ×I f .
(b) The DAE (3.1) has a properly involved derivative.
(c) If ker fy(y,x, t) depends on y, then d is supposed to have additional continuous

second partial derivatives.

Having a continuously differentiable border projector R, we only need to choose
C2-functions x∗ as reference functions for the linearization in order to obtain lin-
ear DAEs (3.11) with C1-subspaces kerA∗, imD∗, and hence with a properly stated
leading term.

Definition 3.17. (Reference function set) Let G ⊆ D f × I f be open. Denote by
Cν∗ (G) the set of all Cmax(2,ν) functions with graph in G. In other words, x∗ ∈ Cν∗ (G)
if and only if x∗ ∈ Cmax(2,ν)(I∗,Rm), with (x∗(t), t) ∈ G, t ∈ I∗.

Under Assumption 3.16, all linearizations (3.11) of the general nonlinear DAE
(3.1) along reference functions x∗ ∈ C2

∗(G) have a properly stated leading term. This
provides the basis to applying the ideas from Chapter 2.

3.2 Admissible matrix function sequences and admissible
projector functions

In this section we construct an admissible matrix function sequence and associated
admissible projector functions for the general nonlinear DAE (3.1) emulating the
model of admissible matrix function sequences built for linear DAEs in Chapter 2.
The DAE (3.1) is supposed to satisfy Assumption 3.16.
We start with the matrix functions A, D, B defined in (3.13)–(3.15),

A(x1,x, t) ∈ L(Rn,Rk), D(x, t) ∈ L(Rm,Rn), B(x1,x, t) ∈ L(Rm,Rk)
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for x1 ∈ R
m, x ∈ D f , t ∈ I f . Assumption 3.16 ensures that the matrix functions

A, D, B are continuous, and the border projector function R associated with the
decomposition (3.16) is continuously differentiable. Denote

N0(x, t) := kerD(x, t) for x ∈ D f , t ∈ I f ,

and introduce Q0(x, t) ∈ L(Rm) to be a projector onto N0(x, t), i.e.,

Q0(x, t)2 = Q0(x, t), imQ0(x, t) = N0(x, t).

Set the complementary projector to be P0(x, t) := I−Q0(x, t). Since D(x, t) has con-
stant rank r, its nullspace has constant dimension m−r. This allows for choosing Q0,
P0 to be continuous, and we do so (see Lemma A.15). At this point we emphasize
the advantage of projector functions against bases. While globally defined smooth
bases might not exist, smooth projector functions do exist (see Remark A.16).

Next we introduce the generalized inverse D(x1,x, t)− ∈ L(Rn,Rm) by means of
the four conditions

D(x, t)D(x1,x, t)−D(x, t) = D(x, t),
D(x1,x, t)−D(x, t)D(x1,x, t)− = D(x1,x, t)−,

D(x, t)D(x1,x, t)− = R(x1,x, t),
D(x1,x, t)−D(x, t) = P0(x, t),

(3.18)

for x1 ∈ R
m, x ∈ D f , t ∈ I f . By (3.18), D(x1,x, t)− is uniquely determined, and it

is a continuous function (cf. Proposition A.17). Notice that D−, in general, depends
not only on (x, t) but also on x1 since R = R(x1,x, t).

Denote (cf. Section 2.2)

G0(x1,x, t) := A(x1,x, t)D(x, t), Π0(x, t) := P0(x, t), B0(x1,x, t) := B(x1,x, t).
(3.19)

Since the derivative is properly involved, it holds that kerG0(x1,x, t) = kerD(x, t) =
N0(x, t).
Next we form

G1(x1,x, t) := G0(x1,x, t)+B0(x1,x, t)Q0(x, t),

N1(x1,x, t) := kerG1(x1,x, t),

Π1(x1,x, t) :=Π0(x, t)P1(x1,x, t),

(3.20)

with Q1(x1,x, t) being a projector onto N1(x1,x, t) and P1(x1,x, t) := I−Q1(x1,x, t).

From the case of linear DAEs in Section 2.1 we know of the necessity to incor-
porate the derivative of DΠ1D− into the expression for B1. Now, since DΠ1D− may
depend on x1, x, t, we use the total derivative in jet variables, which means that

(DΠ1D−)′(x2,x1,x, t) =: Diff1(x2,x1,x, t)



200 3 Nonlinear DAEs

is defined to be the function of the variables (x2,x1,x, t)∈R
m×R

m×D f ×I f given
by

Diff1(x2,x1,x, t) = (DΠ1D−)x1(x1,x, t)x2 +(DΠ1D−)x(x1,x, t)x1

+(DΠ1D−)t(x1,x, t).

The new jet variable x2 can be considered as a place holder for x′′. Indeed, for the
special choice x := x(t), x1 := x′(t) and x2 := x′′(t), we get

d
dt
((DΠ1D−)(x′(t),x(t), t)) = Diff1(x′′(t),x′(t),x(t), t).

In the following, we mostly drop the arguments. The given relations are then meant
pointwise for all arguments.

Next, we introduce

B1 := B0P0−G1D−(DΠ1D−)′DΠ0,

G2 := G1 +B1Q1,

N2 := kerG2,

Π2 := Π1P2,

with Q2 being a projector function onto N2 and P2 := I−Q2. Now, DΠ2D− is a
function of x2, x1, x, t, and, by taking the total derivative, a new jet variable x3

appears, standing as a place holder for x′′′.
As long as the expressions exist, we form the sequence for i≥ 0,

Gi+1 := Gi +BiQi,

Ni+1 := kerGi+1,

Πi+1 :=ΠiPi+1,

Bi+1 := BiPi−Gi+1D−(DΠi+1D−)′DΠi,

(3.21)

with Qi+1 being a projector function onto Ni+1, Pi+1 := I − Qi+1. Here,
(DΠi+1D−)′ =: Diffi+1 is a function of xi+2, . . . ,x1,x, t satisfying

Diffi+1(xi+2, . . . ,x1,x, t) =
i+1

∑
j=1

(DΠi+1D−)x j(xi+1, . . . ,x1,x, t)x j+1

+(DΠi+1D−)x(xi+1, . . . ,x1,x, t)x1 +(DΠi+1D−)t(xi+1, . . . ,x1,x, t).

On each level i, a new jet variable xi appears as a place holder for the i-th derivative
x(i). In this way, we have

d
dt
((DΠiD−)(x(i)(t), . . . ,x′(t),x(t), t)) = Diffi(x(i+1)(t), . . . ,x′(t),x(t), t)
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for the special choice x := x(t), x1 := x′(t), . . . ,xi+1 := x(i+1)(t).
If the DAE (3.1) is linear with

f (y,x, t) = A(t)y+B(t)x−q(t), d(x, t) = D(t)x,

the total derivatives Diffi(x(i+1)(t), . . . ,x′(t),x(t), t) simplify to time derivatives
(DΠiD−)′(t), and the matrix function sequence (3.19)–(3.21) coincides with that
given in Section 2.2.

Example 3.18 (Sequence terminates at level 1). We continue to consider the semi-
explicit DAE from Example 3.7

x′1(t)+ x1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),

given on D f = {x ∈ R
2 : x2 > 0}, I f = R. The real function γ is continuous on I f .

We write the DAE in the form (3.1) with n = 1, m = k = 2,

f (y,x, t)=
[

y+ x1
x2

1 + x2
2− γ(t)−1

]
, fy(y,x, t)=

[
1
0

]
, d(x, t)= x1, dx(x, t)=

[
1 0
]
,

yielding a DAE with properly stated leading term and

G0 = AD =

[
1 0
0 0

]
, B0 = fx =

[
1 0

2x1 2x2

]
.

Letting

Q0 =

[
0 0
0 1

]
, yields G1 =

[
1 0
0 2x2

]
.

The matrix function G1 remains nonsingular on the given definition domain, there-
fore, the matrix function sequence terminates at level 1. ��

Example 3.19 (Sequence terminates at level 2). The DAE from Example 3.8

x′1(t)+ x1(t) = 0,
x2(t)x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2−1 = γ(t),

is given on D f = {x ∈ R
3 : x2 > 0}, I f = R. We write this DAE in the form (3.1),

where n = 2, m = k = 3,

f (y,x, t) =

⎡
⎣

y1 + x1
x2y2− x3

x2
1 + x2

2− γ(t)−1

⎤
⎦ , fy(y,x, t) =

⎡
⎣

1 0
0 x2
0 0

⎤
⎦ ,

d(x, t) =
[

x1
x2

]
, dx(x, t) =

[
1 0 0
0 1 0

]
,
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yielding a DAE with properly stated leading term and

G0 = AD =

⎡
⎣

1 0 0
0 x2 0
0 0 0

⎤
⎦ , B0 =

⎡
⎣

1 0 0
0 x1

2 −1
2x1 2x2 0.

⎤
⎦ .

Letting

Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , yields G1 =

⎡
⎣

1 0 0
0 2x2 −1
0 0 0

⎤
⎦ .

G1 is singular but has constant rank. Since N0∩N1 = {0} we find a projector func-
tion Q1 such that N0 ⊆ kerQ1. Later on those projector functions are named admis-
sible. We choose

Q1 =

⎡
⎣

0 0 0
0 1 0
0 1

x2
0

⎤
⎦ , P1 =

⎡
⎣

1 0 0
0 0 0
0 − 1

x2
1

⎤
⎦ , Π1 =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , DΠ1D− =

[
1 0
0 0

]
.

We obtain B1 = B0P0Q1 and then

G2 =

⎡
⎣

1 0 0
0 2x2 + x1

2 −1
0 2x2 0

⎤
⎦

which is nonsingular on the given definition domain such that the matrix function
sequence terminates. ��
Not surprisingly, the matrix function sequence composed for nonlinear DAEs keeps
the algebraic properties stated for linear DAEs in Section 2.2. For instance, the con-
secutive inclusions

imG0 ⊆ ·· · ⊆ imGi ⊆ Gi+1

remain valid. We are again interested in reaching a Gκ that is nonsingular or showing
at least maximal possible rank.
With exactly the same arguments as used for Proposition 2.5, we obtain

Proposition 3.20. Let the DAE (3.1) satisfy Assumption 3.16. Let a matrix function
sequence (3.19)–(3.21) be given and, additionally, a projector valued function W j
such that pointwise kerW j = imG j, j ≥ 0. Then, the following relations become
true:

(1) kerΠi ⊆ kerBi+1,
(2) Wi+1Bi+1 =Wi+1Bi = · · ·=Wi+1B0 =Wi+1B, Wi+1Bi+1 =Wi+1B0Πi,
(3) imGi+1 = imGi⊕ imWiBQi,
(4) Ni∩kerBi = Ni∩Ni+1 ⊆ Ni+1∩kerBi+1,
(5) Ni−1∩Ni ⊆ Ni∩Ni+1.

We keep in mind that the matrix function G j and the projector functions Q j,Pj
and W j may depend on the variables x j, . . . ,x1,x, t, and that all the above relations
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are meant pointwise. While the original variables (x, t) vary in D f ×I f , each jet
variable xi varies in R

m.
Although Gi+1 may depend on the variables xi+1,xi, . . . ,x1,x, t its rank ri+1 depends
at most on xi, . . . ,x1,x, t. This is a consequence of Proposition 3.20 (3).

As in Section 2.2 we turn to a smarter choice of the projector functions ensuring
continuous matrix functions G j and discovering certain invariants of the DAE.

Definition 3.21. Let the DAE (3.1) satisfy the basic Assumption 3.16. Let G ⊆D f ×
I f be open connected.
Let the projector function Q0 onto kerD be continuous on G, P0 = I−Q0. Let D−

be determined on R
m×G by (3.18). For the given level κ ∈N, we call the sequence

G0, . . . ,Gκ an admissible matrix function sequence associated to the DAE on the set
G, if it is built by the rule

Set G0 := AD, B0 := B, N0 := kerG0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1

Ni := kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi :=Πi−1Pi

and, additionally,

(a) the matrix function Gi has constant rank ri on R
mi×G, i = 0, . . . ,κ ,

(b) the intersection
�
Ni has constant dimension ui := dim

�
Ni there,

(c) the product function Πi is continuous and DΠiD− is continuously differen-
tiable on R

mi×G, i = 0, . . . ,κ .

The projector functions Q0, . . . ,Qκ in an admissible matrix function sequence are
said to be admissible themselves.
An admissible matrix function sequence G0, . . . ,Gκ is said to be regular admissible,
if

�
Ni = {0} ∀ i = 1, . . . ,κ .

Then, also the projector functions Q0, . . . ,Qκ are called regular admissible.
The numbers r0 := rankG0, . . . ,rκ := rankGκ and u1, . . . ,uκ are named charac-
teristic values of the DAE on G.

The notion of characteristic values makes sense, since these values are indepen-
dent of the special choice of admissible projector functions (cf. Theorem 3.23), and
invariant under regular transformations (cf. Section 3.4).
To shorten the wording we often speak simply of admissible projector functions
having in mind the admissible matrix function sequence built with these admissible
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projector functions. Admissible projector functions are always cross-linked with
their matrix function sequence. Changing a projector function yields a new matrix
function sequence.

The following proposition gathers benefits of the smarter construction. We em-
phasize that now the products of projector functions Πi are also projector valued.

Proposition 3.22. If Q0, . . . ,Qκ are admissible on G, then the following relations
become true (on G) for i = 1, . . . ,κ:

(1) kerΠi = N0 + · · ·+Ni,
(2) the productsΠi =P0 · · ·Pi,Πi−1Qi, DΠiD−, DΠi−1QiD− are projectors again,
(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi,
(4) Bi = BiΠi−1,
(5) Ni∩ (N0 + · · ·+Ni−1)⊆ Ni∩Ni+1,
(6) Gi+1Q j = B jQ j, 0≤ j ≤ i,
(7) D(N0 + · · ·+Ni) = imDΠi−1Qi⊕ imDΠi−2Qi−1⊕·· ·⊕ imDΠ0Q1.

Proof. All relations are considered pointwise, and the same arguments as in the
proof of Proposition 2.7 are used. ��

There is a great variety of admissible matrix function sequences left. Of course, also
the admissible matrix function sequences strongly depend on the special choice of
the involved projectors. However, fortunately, there are invariants.

Theorem 3.23. Let the DAE (3.1) satisfy the basic assumption (3.16). Let, for the
given κ ∈ N, an admissible matrix function sequence G0, . . . ,Gκ associated to the
DAE exist. Then the subspaces

imG j, N0 + · · ·+Nj, S j := kerW jB, with j = 0, . . . ,κ+1,

the numbers r0, . . . ,rκ and u1, . . . ,uκ as well as the functions

rκ+1 := rankGκ+1, uκ+1 := dim
�
Nκ+1,

are independent of the special choice of the involved admissible projector functions.

Proof. We repeat the arguments from Theorem 2.8. Basically, the assertions of
Lemma 2.12 remain valid in our case. Inspecting the proof of this lemma we see
that all properties used there are now guaranteed by Proposition 3.22. Since the
product rule for the derivative

(DΠ̄iD̄−×DΠiD−)′ = (DΠ̄iD̄−)′DΠiD−+DΠ̄iD̄−(DΠiD−)′

used in the proof of Lemma 2.12 is also valid for the total derivative we may adopt
this proof. ��
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If the projector functions Q0, . . . ,Qκ are admissible on G, then the nullspaces
N0, . . . ,Nκ and the sum spaces N0 +N1, . . . ,N0 + · · ·+Nκ are C-subspaces on G,
since they represent the ranges of the continuous projector functions I −G+

j G j,
j = 0, . . . ,κ , and I−Π j, j = 1, . . . ,κ .
If all projector functions Q0, . . . ,Qκ are also continuous, then the intersection spaces
�
N1, . . . ,

�
Nκ , as well as the complement spaces X1, . . . ,Xκ , are C-subspaces on G, too,

owing to
�
N j = imQ j(I−Π j−1) and Xj = im(I−Q j)(I−Π j−1), j = 1, . . . ,κ .

There is a comfortable flexibility left within admissible projectors. We can fix
special projectors by choosing them to be orthogonal as far as possible. We start
with orthoprojectors Q0 = Q∗0, and choose, for i≥ 1,

imQi = Ni, kerQi = (N0 + · · ·+Ni)
⊥⊕Xi, (3.22)

with
Xi := (N0 + · · ·+Ni−1)∩

�
Ni
⊥. (3.23)

Definition 3.24. Admissible projector functions Q0, . . . ,Qκ are called widely or-
thogonal, if Q0 = Q∗0, and the conditions (3.22), (3.23) are valid for i = 1, . . . ,κ .

Proposition 3.25. In the case of widely orthogonal projector functions Q0, . . . ,Qκ ,
the projectors Πi, Πi−1Qi, i = 1, . . . ,κ , are symmetric.

Proof. The same arguments as in Proposition 2.15 apply. ��

Widely orthogonal projector functions which are uniquely determined provide the
associated matrix function sequence to be unique. This appears to be useful in the
theory below and is helpful for ensuring the required smoothness of practically cal-
culated projector functions.
The question whether the smoothness demands in Definition 3.21(c) are in agree-
ment with the orthogonality requirement has a positive answer supposing the matrix
function DD∗ is continuously differentiable. This reflects the situation in Proposi-
tion 2.16.

Proposition 3.26. Let an admissible matrix function sequence up to the level κ as-
sociated to the DAE (3.1) exist. Let, additionally to the given basic assumptions,
the matrix function DD∗ be continuously differentiable. Then, the matrix function
sequence which meets the conditions (3.22), (3.23) is also admissible up to level κ .

Proof. We show that if admissible projector functions Q0, . . . ,Qκ are given, then we
can construct widely orthogonal ones, too. Let r0, . . . ,rκ and u1, . . . ,uκ denote the
associate characteristic values of the DAE.
First, we choose the orthogonal projector Q̄0 = Q̄∗0 onto kerG0 and form Ḡ1 = G0 +
B0Q̄0. With the same arguments as in Proposition 2.16 we realize that

dim
�
N̄1 = u1, for

�
N̄1 := N̄1∩ N̄0.
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Put

X̄1 = N̄0∩
�
N̄1

⊥
, im Q̄1 = N̄1, ker Q̄1 = (N̄0 + N̄1)

⊥⊕ X̄1.

Since Π̄0 := P̄0 and Π̄1 := Π̄0P̄1 are continuous, the projectors Q̄0, Q̄1 are admissible,
supposing DΠ̄1D̄− is continuously differentiable. Next, we show that DΠ̄1D̄− is
indeed continuously differentiable. As in Proposition 2.16,

kerDΠ̄1D̄− = kerDΠ1D− = D(N0 +N1)⊕kerR

is already a C1-subspace. Denote M1 := (D(N0 +N1))
⊥. Then, M1 is a C1-subspace

since D(N0 +N1) is so. We have to verify that

imDΠ̄1D̄− = imDΠ̄1 = D(N̄0 + N̄1)
⊥ = D(N0 +N1)

⊥

= DD∗(D(N0 +N1))
⊥ = DD∗M1

is also a C1-subspace. Derive

M⊥
1 = D(N0 +N1) = imDΠ0Q1D− = im(R−DΠ1D−)

= ker(I−R+DΠ1D−) = im(I−R∗+(DΠ1D−)∗)⊥,

thus M1 = im(I−R∗+(DΠ1D−)∗). Because of

kerDD∗ = kerD∗ = kerR∗

it follows that

DD∗M1 = imDD∗(DΠ1D−)∗ = DD∗im(DΠ1D−)∗.

The subspace im(DΠ1D−)∗ is a C1-subspace, too. Since

kerDD∗ ∩ im(DΠ1D−)∗ = kerR∗ ∩ imR∗(DΠ1D−)∗ = 0,

a local C1-basis of im(DΠ1D−)∗ multiplied by DD∗ yields a local C1-basis of
DD∗M1, i.e., DD∗M1 is in fact a C1-subspace (cf. Appendix A.4). Consequently,
im(DΠ̄1D̄−)∗ and ker(DΠ̄1D̄−)∗ are C1-subspaces, which implies that DΠ̄1D̄− is
continuously differentiable and Q̄0, Q̄1 are admissible.

On the further levels we proceed analogously (cf. Proposition 2.16), using for

Mi := (D(N0 + · · ·+Ni))
⊥

the representation

M⊥
i = im(R−DΠiD−) = ker(I−R+DΠiD−),

Mi = im(I−R∗+(DΠiD−)∗), and
DD∗Mi = DD∗im(DΠiD−)∗ = DD∗imR∗(DΠiD−)∗.

��
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We close the present section with an assertion which reflects the main idea behind
the construction of admissible matrix function sequences: we take the opportunity
to make use of linearizations.

Lemma 3.27. Let Assumption 3.16 be given for the DAE (3.1), and let Q0, . . . ,Qκ
be admissible projector functions for the DAE (3.1) on the open connected set
G ⊆ D f ×I f .
Then, for each reference function x∗ ∈ Cκ∗ (G) (see Definition (3.17)), the resulting
linearization (3.11) is a DAE with properly stated leading term, and Q∗0, . . . ,Q∗κ
defined by

Q∗0(t) := Q0(x∗(t), t),

Q∗i(t) := Qi(x
(i)
∗ (t), . . . ,x′∗(t),x∗(t), t), t ∈ I∗, i = 1, . . . ,κ ,

are admissible projector functions for the linear DAE 3.11). If Q0, . . . ,Qκ are widely
orthogonal, then so are Q∗0, . . . ,Q∗κ .

Proof. The properly stated leading term of the linear DAE (3.11) results from As-
sumption 3.16 and the smoothness of x∗. Denote

N∗0(t) := kerD∗(t), D∗(t) := D(x∗(t), t),

R∗(t) := R(x′∗(t),x∗(t), t), D∗(t)− := D(x′∗(t),x∗(t), t)
−

and

G∗0(t) := A∗(t)D∗(t) = A(x′∗(t),x∗(t), t)D(x∗(t), t) = G0(x′∗(t),x∗(t), t), t ∈ I∗.

It is evident that G∗0(t) has constant rank r0, and Q∗0 is admissible. We construct a
matrix function sequence for the linearized DAE (3.11), and indicate it by an asterix
index. The matrix function

G∗1(t) := G∗0(t)+B∗(t)Q∗0(t)

= G0(x′∗(t),x∗(t), t)+B0(x′∗(t),x∗(t), t)Q0(x∗(t), t) = G1(x′∗(t),x∗(t), t)

is continuous and has constant rank r1 on I∗, and

N∗1(t) := kerG∗1(t) = kerG1(x′∗(t),x∗(t), t) = N1(x′∗(t),x∗(t), t)

has constant dimension m− r1, while the intersection

�
N∗1(t) := N∗1(t)∩N∗0(t)

= N1(x′∗(t),x∗(t), t)∩N0(x∗(t), t) =
�
N1(x′∗(t),x∗(t), t)

has the constant dimension u1 on I∗. With
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X∗1(t) := imP1(x′∗(t),x∗(t), t)Q0(x∗(t), t)

we find the decomposition

N∗0(t) =
�
N∗1(t)⊕X∗1(t)

such that
Q∗1(t)X∗1(t) = Q1(x′∗(t),x∗(t), t)X∗1(t) = 0, t ∈ I∗.

Finally for this stage,

Π∗1(t) =Π1(x′∗(t),x∗(t), t) and (D∗Π∗1D−∗ )(t) = (DΠ1D−)(x′∗(t),x∗(t), t)

are, as composed functions, continuously differentiable on I∗. Thus, Q∗0, Q∗1 are
admissible, and

(D∗Π∗1D−∗ )
′(t) = Diff1(x′′∗(t),x

′
∗(t),x∗(t), t).

We proceed analogously on the next stages, whereby we put

X∗i(t) := imPi
(
x(i)∗ (t), . . . ,x′∗(t),x∗(t), t

)(
I−Πi−1(x

(i−1)
∗ (t), . . . ,x∗(t), t)

)
.

��

3.3 Regularity regions

The regularity notion for linear DAEs in Section 2.6 is supported by several
constant-rank conditions and comprises the following three main aspects:

(a) The solution space of the homogeneous equation has dimension d < ∞.
(b) Equations restricted to subintervals inherit property (a) with the same d.
(c) Equations restricted to subintervals inherit the characteristic values r j, j ≥ 0.

This feature is expressed in terms of admissible matrix functions and admissible
projector functions by Definition 2.25. Linear time-varying DAEs are considered
to be regular, if the time-dependent matrix functions Gi have constant rank ri, and
there is a nonsingular Gμ .
Now the matrix functions Gi not only depend on time but may also depend on x and
on the jet variables x1, . . . ,xi. As in the linear case, we require constant rank ri of
the matrix functions Gi. Points where these rank conditions fail will be handled as
critical ones.
The following regularity notion for the nonlinear DAE (3.1) comprises the above
three regularity aspects for all corresponding linearizations (3.11).

Definition 3.28. Let the DAE (3.1) satisfy Assumption 3.16 with k = m, and let
G ⊆ D f ×I f be an open connected set. Then the DAE (3.1) is said to be
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(1) regular with tractability index 0 , if r0 = m,
(2) regular with tractability index μ on G, if on G an admissible matrix function

sequence exists such that rμ−1 < rμ = m,
(3) regular on G, if it is, on G, regular with any index (i.e., case (1) or (2) apply).

The constants 0≤ r0 ≤ ·· · ≤ rμ−1 < rμ are named characteristic values of the reg-
ular DAE.
The open connected subset G is called a regularity region or regularity domain.
A point (x̄, t̄) ∈ D f ×I f is a regular point, if there is a regularity region G � (x̄, t̄).

By Theorem 3.23, regularity itself as well as the particular values μ and r0, . . . ,rμ
are independent of the special choice of the admissible projectors, although the ma-

trix functions G1, . . . ,Gμ depend on it. In regular DAEs, all intersections
�
Ni are triv-

ial ones, thus ui = 0, i≥ 1. Namely, because of the inclusions (Propositions 3.22 (5),
3.20 (5))

�
Ni ⊆ Ni∩Ni+1 ⊆ Ni+1∩Ni+2 ⊆ ·· · ⊆ Nμ−1∩Nμ ,

for reaching a nonsingular Gμ , which means Nμ = {0}, it is necessary to have
�
Ni =

{0}, i≥ 1. This is a useful condition for checking regularity in practice.
Definition 2.25 concerning regular linear DAEs and Definition 4.3 characterizing
special regular DAEs with tractability index 1 are in agreement with Definition 3.28.
Regularity intervals represent the specification of regularity regions for linear DAEs.

By definition, all points belonging to a regularity region are regular points, and
they must show uniform characteristics.

The union of regularity regions is, if it is connected, a regularity region, too.
Each open connected subset of a regularity region is again a regularity region, and
it inherits all characteristics.

Further, the nonempty intersection of two regularity regions is also a regularity
region. Only regularity regions with uniform characteristics yield nonempty inter-
sections.

Maximal regularity regions are bordered by critical points. To characterize a DAE
it is important to describe the maximal regularity regions with their characteristics.
It should be emphasized that, for this aim there is no need to compute solutions.

Example 3.29 (A regular index-1 DAE). We reconsider the DAE from Example 3.3

(x1(t)+ x3(t)x2(t))′ = q1(t),

x2(t) = q2(t),

x3(t) = q3(t), t ∈ I,

that is (3.1) with k = m = 3, n = 1,

f (y,x, t) :=

⎡
⎣

1
0
0

⎤
⎦y+

⎡
⎣

0
x2
x3

⎤
⎦−q(t), d(x, t) := x1 + x2x3, x ∈ R

3, t ∈ I, y ∈ R.
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The leading term is properly stated because of ker fy = {0}, imdx =R. Observe that
kerD(x, t) = kerG0(x, t) varies with x. G0 has rank r0 = 1. The obvious constraint is

M0(t) := {x ∈ R
3 : x2 = q2(t), x3 = q3(t)}, t ∈ I.

Choosing the projector function

Q0(x) :=

⎡
⎣

0 −x3 −x2
0 1 0
0 0 1

⎤
⎦

we find

G1(x) =

⎡
⎣

1 x3 x2
0 1 0
0 0 1

⎤
⎦ , r1 = m,

that is, this DAE is regular with index 1 on the entire definition domain R
3×I, that

is, there is a single maximal regularity region which coincides with the definition
domain. For each given continuous q and fixed t̄ ∈I, c̄∈R, the DAE has the solution

x∗1(t) = −q2(t)q3(t)+ c̄+q2(t̄ )q3(t̄ )+
t∫

t̄

q1(s)ds,

x∗2(t) = q2(t),

x∗3(t) = q3(t), t ∈ I,

which satisfies x∗(t̄ ) = x̄, x̄1 := c̄, x̄i := qi(t̄ ), i = 2,3, x̄ ∈M0(t̄ ). It is evident that
there is exactly one solution passing through each given (t̄, x̄), x̄ ∈M0(t̄ ). Theo-
rem 3.53 below confirms and generalizes this property. We observe that the solution
x∗ is continuous with a continuously differentiable part x∗1 + x∗2x∗3, but the sec-
ond and third solution components are not necessarily continuously differentiable.
From this point of view the notation of this DAE in standard form is so to speak
misleading.

Taking the identically vanishing function x∗∗(t) ≡ 0 as a fixed solution
on the compact interval [t̄,T ] and considering q as a perturbation,
K := max{|q(t)| : t ∈ [t̄,T ]}, we derive the inequality

|x∗(t)− x∗∗(t)| ≤ |x∗(t̄ )|+{(T − t̄ )+2K}max
t̄≤s≤t

|q(s)|,

hence the problem possesses perturbation index 1 along the solution x∗∗ (cf. [103]).
��

Example 3.30 (Two maximal regularity regions with index 1). We consider the semi-
explicit DAE from Example 3.7 (see also Example 3.18)

x′1(t)+ x1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),
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but now we suppose the definition domain D f = R
2, I f = R. As in Example 3.18

we compute

Q0 =

[
0 0
0 1

]
, yields G1 =

[
1 0
0 2x2

]
.

The matrix function G1 remains nonsingular for x2 �= 0, but this leads to the two
maximal regularity regions, one region associated to x2 > 0, the other one to x2 < 0.
The border points between these regularity regions are those with x2 = 0. A closer
look at the possible solutions confirms the critical behavior at these points.

Example 3.31 (Two maximal regularity regions with index 2). The DAE from Ex-
ample 3.8

x′1(t)+ x1(t) = 0,
x2(t)x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2−1 = γ(t),

is now given on D f = R
3, I f = R. We proceed as in Example 3.19 to obtain

G1 =

⎡
⎣

1 0 0
0 2x2 −1
0 0 0

⎤
⎦ .

G1 is singular but has constant rank. We have

N0∩N1 = {z ∈ R
3 : z1 = 0,x2z2 = 0,z3 = 0}.

If x2 > 0 or x2 < 0 it holds that N0∩N1 = {0}, and we find an admissible projector
function Q1 such that N0 ⊆ kerQ1. We choose the same Q1 as in Example 3.19 and
arrive in both cases at

G2 =

⎡
⎣

1 0 0
0 2x2 + x1

2 −1
0 2x2 0

⎤
⎦

which is nonsingular for all x2 > 0 and x2 < 0. In this way we find two maximal
regularity regions bordered by critical points with x2 = 0. ��

An admissible matrix function sequence incorporates by definition the existence
of the first derivative of the projectors DΠiD−. This might need some additional
smoothness demands for the functions f and d besides Assumption 3.16. Consider
the following example to illustrate this fact.

Example 3.32 (Smoothness for Hessenberg size-2 DAEs).

x′1(t)+b1(x1(t),x2(t), t) = 0, }m1

b2(x1(t), t) = 0, }m2
(3.24)

with the product B21B12 being nonsingular on the domainDb×Ib, Bi j := bi,x j . This
is a so-called Hessenberg size-2 DAE. With



212 3 Nonlinear DAEs

f (y,x, t) := Ay+b(x, t), d(x, t) = Dx, n = m1, k = m = m1 +m2

and

A =

[
I
0

]
, D =

[
I 0
]
, D− =

[
I
0

]
, R = I,

the DAE (3.24) appears to be a DAE with a very simple properly stated leading
term. We form

G0 = AD =

[
I 0
0 0

]
, B0 =

[
B11 B12
B21 0

]
, Q0 =

[
0

I

]
, Π0 = P0 = I−Q0 =

[
I

0

]

and

G1 = G0 +B0Q0 =

[
I B12
0 0

]
, r0 = m1, r1 = m1.

This implies

N1 = {z ∈ R
m : z1 +B12z2 = 0}, N1∩N0 = {z ∈ R

m : z1 = 0, B12z2 = 0}.

From the nonsingularity of the product B21B12 it follows that kerB12 = {0} and,
consequently, N0∩N1 = 0.
Choose a generalized inverse B−12 to B12 (pointwise on Db × Ib) such that
B12B−12B12 = B12, and

Q1 =

[
B12B−12 0
−B−12 0

]
, Π0Q1 =

[
B12B−12 0

0 0

]
, Π1 =Π0P1 =

[
I−B12B−12

0

]
.

Note that Q1 is, except for the smoothness of DΠ1D−, an admissible projector func-
tion since Q1 is a projector function onto N1 and we have

X1 := {z ∈ R
m : z1 = 0}= N0�

�
N1 = N0� (N0∩N1) = N0 ⊆ kerQ1.

This leads to DΠ1D− = I−B12B−12. The matrix B12 has constant rank m2 so that B−12
can be chosen continuously. For a continuously differentiable DΠ1D−, imB12 must
be a C1-subspace, but this is not necessarily guaranteed by the general Assump-
tion 3.16. A sufficient condition for that is the additional existence of continuous
second partial derivatives b1,x1x2 , b1,x2x2 , b1,x2t . However, if the subspace imB12 is a
constant one, the projector DΠ1D− can be chosen to be constant without any further
smoothness, and Assumption 3.16 is enough. Next we form

B1 = B0P0−G1D−(DΠ1D−)′DΠ0 =

[
B11 +(B12B−12)

′ 0
B21 0

]

and

G2 = G1 +B1Q1 =

[
I +(B11 +(B12B−12)

′)B12B−12 B12
B21B12B−12 0

]
.

Consider the homogeneous equation G2z = 0, i.e.,
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z1 +(B11 +(B12B−12)
′)B12B−12z1 +B12z2 = 0, (3.25)

B21B12B−12z1 = 0. (3.26)

Since B21B12 is nonsingular, (3.26) yields B−12z1 = 0, and (3.25) reduces to

z1 +B12z2 = 0.

Multiplying this equation by (I−B12B−12) implies (I−B12B−12)z1 = 0, hence z1 = 0,
and further B12z2 = 0, thus z2 = 0.

Consequently, the Hessenberg size-2 system is a regular DAE with tractability
index 2 on Db×Ib. Its characteristics are r0 = r1 = m1, r2 = m. ��

The demand for the projector functions DΠiD− to be continuously differentiable
corresponds to the consecutive decomposition of the C1-subspace imR = imD into
further C1-subspaces by

R = DD− = DΠ0D− = DΠ1D−+DΠ0Q1D−

= DΠiD−+DΠi−1QiD−+DΠi−2Qi−1D−+ · · ·+DΠ0Q1D−.

Example 3.32 which is structurally very simple shows that, in the case of a constant
subspace imB12, Assumption 3.16 is sufficient. For varying imB12, using special
knowledge of the structure, we have specified somewhat mild sufficient conditions
for the C1-property of DΠ1D−. From this point of view the requirement for b to
belong to C2 or Cm looks much too generous. However, to figure out the milder
sufficient smoothness conditions for more general DAEs needs hard technical work
and it does not seem to allow for better insights. This is why we do not go into those
details. Instead we use the phrasing f and d satisfy Assumption 3.16, and they are
sufficiently smooth. Let us stress that, owing to the structural properties, it may hap-
pen that Assumption 3.16 is sufficient. On the other hand, in this context it would
be greatly generous assuming f and d to belong to C μ̄ , if μ̄ < m is a known upper
bound of the index, or even to be from Cm. In contrast, applying derivative array ap-
proaches, one has to suppose at least C μ̄+1 functions to be able to form the derivative
array function Eμ̄ on its own and to compute its Jacobian (cf. Section 3.10).

Theorem 3.33. (Necessary and sufficient regularity conditions)
Let the DAE (3.1) satisfy the Assumption 3.16, with k = m, and DD∗ ∈
C1(D f ×I f ,L(Rn)). Let f and d be sufficiently smooth on the open connected subset
G ⊆ D f ×I f .

(1) Then, the DAE (3.1) is regular on G if all linearizations (3.11) along reference
functions x∗ ∈ Cm

∗ (G) are regular linear DAEs, and vice versa.
(2) If (3.1) is regular with tractability index μ , and characteristics r0, . . . ,rμ , then

all linearizations (3.11) along reference functions x∗ ∈ Cμ∗ (G) are regular lin-
ear DAEs with uniform index μ and uniform characteristics r0, . . . ,rμ .

(3) If all linearizations (3.11) along x∗ ∈ Cm
∗ (G) are regular linear DAEs, then

they have a uniform index μ , and uniform characteristics r0, . . . ,rμ , and the
nonlinear DAE (3.1) is regular on G with these characteristics and index.
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Proof. Assertion (1) is a consequence of assertions (2) and (3). Assertion (2) follows
immediately from Lemma 3.27. It remains to verify assertion (3).
If D is nonsingular, there is nothing to prove. So we suppose that r0 < m. Let all
linearizations (3.11) along functions x∗ ∈ Cm

∗ (G) be regular. Introduce the matrix
functions

G0(x1,x, t) := A(x1,x, t)D(x, t), B0(x1,x, t) := B(x1,x, t), N0(x, t) := kerD(x, t),

and choose Q0(x, t) to be the orthoprojector onto N0(x, t). D(x1,x, t)− denotes the
corresponding generalized inverse (cf. Section 3.2). Due to Assumption 3.16, the
matrix function G0 is continuous on R

m×D f ×I f and has constant rank r0, and
hence Q0 is continuous and so is D−. Compute further

G1(x1,x, t) = G0(x1,x, t)+B0(x1,x, t)Q0(x, t), N1(x1,x, t) = kerG1(x1,x, t).

Obviously, G1 is also a continuous matrix function.
We show the intersection N1(x1,x, t)∩N0(x, t) to be trivial for all x1 ∈R

m, (x, t)∈G,
and G1(x1,x, t) to have constant rank. Assume that there is a point (x̄1, x̄, t̄ )∈R

m×G
such that N1(x̄1, x̄, t̄ )∩N0(x̄, t̄ ) �= {0}. Consider the function x∗,

x∗(t) := x̄+(t− t̄ )x̄1, t ∈ I∗ = (t̄− ε , t̄ + ε),

with ε > 0 small enough to ensure x∗ ∈ Cm
∗ (G). The linearization along this func-

tion x∗ is regular because of the assumptions, and hence there are Q∗0, . . . ,Q∗μ∗−1
being admissible for (3.11), and Gμ∗ is nonsingular. Since D(x∗(t), t)D(x∗(t), t)∗ is
continuously differentiable with respect to t, we may consider Q∗0, . . . ,Q∗μ∗−1 to be
widely orthogonal (cf. Proposition 2.16). In this way we arrive at

N∗1(t̄ )∩N∗0(t̄ ) = N1(x′∗(t̄ ),x∗(t̄ ), t̄ )∩N0(x∗(t̄ ), t̄ )

= N1(x̄1, x̄, t̄ )∩N0(x̄, t̄ ) �= {0},

but this contradicts the property of regular linear DAEs to have those intersections
just trivial (cf. also Section 2.6).
We turn to the rank of G1(x1,x, t). Assume that there exist two points

Pi := (x1
i ,xi, ti) ∈ R

m×G, i = 1,2,

with rankG1(P1)> rankG1(P2). We connectP1 andP2 by a continuous curve lying
in R

m×G, and move along this curve starting at P1. We necessarily meet a point
P3 where the rank changes. This means that rankG1(P3) < rankG1(P1), and each
neighborhood of P3 contains points P4 with rankG1(P4) = rankG1(P1). Construct
a function x∗ passing through P3 and P4, i.e.,

x∗(ti) = xi, x′∗(ti) = x1
i , i = 3,4.

We may use the interpolation polynomial. Choosing P4 close enough to P3, we
make sure that x∗ belongs to Cm

∗ (G). In this way, for the DAE (3.11) linearized
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along x∗, it holds that

rankG∗1(t4) = rankG1(P4)> rankG1(P3) = rankG∗1(t3),

but this contradicts the regularity of (3.11).
Next, since G1 is continuous with constant rank r1, we may construct Q1 (pointwise
on R

m×G) to be the projector onto N1 along (N0 +N1)
⊥ ⊕N0. Q1 is continuous

since the involved subspaces are C1-subspaces (cf. Appendix A.4). It is justified by
Proposition 3.26 that we can do this by considering widely orthogonal projectors
only. If DΠ1D− actually varies with its arguments, due to the smoothness of f and
d, DΠ1D− is C1 and Q0, Q1 are admissible (widely orthogonal).
We continue to construct the matrix function sequence for (3.1) with widely or-
thogonal projectors. Let Q0, . . . ,Qκ be already shown to be widely orthogonal
which includes admissibility. Form Gκ+1 = Gκ + BκQκ (pointwise for xi ∈ R

m,
i = 1, . . . ,κ+1, (x, t) ∈ G), and consider its nullspace.
The existence of a point P̄ := (x̄κ+1, . . . , x̄1, x̄, t̄ ) in R

m(κ+1)×G where the intersec-
tion

Nκ+1(P̄)∩ (N0 + · · ·+Nκ)(x̄κ , . . . , x̄1, x̄, t̄ )

is nontrivial would contradict the regularity of the linearization along x∗, with

x∗(t̄ ) = x̄, x(i)∗ (t) = x̄i, i = 1, . . . ,κ+1, t ∈ (t̄− ε , t̄ + ε),

ε > 0 small enough. Similarly as for G1, we show that Gκ+1 has constant rank rκ+1
on R

m(κ+1)×G. The next step is the construction of Qκ+1 such that

imQκ+1 = Nκ+1, kerQκ+1 = (N0 + · · ·+Nκ+1)
⊥⊕ (N0 + · · ·+Nκ).

Again, the involved subspaces are C1-subspaces, hence Qκ+1 is continuous, and so
are Pκ+1 = I−Qκ+1,Πκ+1 =ΠκPκ+1. The smoothness of f and d makes DΠκ+1D−

continuously differentiable, thus, Q0, . . . ,Qκ+1 are admissible (widely orthogonal).
It follows also that all linearizations must have uniform characteristics

r0, . . . ,rκ+1 (cf. Lemma 3.27). We continue to construct the admissible matrix func-
tion sequence for the nonlinear DAE up to level μ using widely orthogonal pro-
jectors. It turns out that there must be a uniform index μ such that 0 ≤ r0 ≤ ·· · ≤
rμ−1 < rμ = m. ��

The necessary and sufficient regularity conditions provided by Theorem 3.33 rep-
resent the main goal and result of the present chapter. We had this in mind when
we started to create the admissible matrix function sequence for the nonlinear DAE.
Now, various questions can be traced back to linearizations. The next example shows
that rank changes in the matrix functions G1 indicate in fact points where somewhat
unusual things happen with the solutions such that we have good reason for calling
these points critical.

Example 3.34 (Singularities at rank drop points of G1). The system
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x′1(t)− x3(t) = 0,
x2(t)(1− x2(t))− γ(t) = 0,

x1(t)x2(t)+ x3(t)(1− x2(t))− t = 0,
(3.27)

written as (3.1) with k = m = 3, n = 1, f (y,x, t) = Ay+b(x, t),

A =

⎡
⎣

1
0
0

⎤
⎦ , b(x, t) =

⎡
⎣

−x3
x2(1− x2)− γ(t)

x1x2 + x3(1− x2)− t

⎤
⎦ , x ∈ R

3, t ∈ R,

and d(x, t) = x1 satisfies Assumption 3.16. The function γ is supposed to be contin-
uous, γ(t)≤ 1

4 .
The obvious constraint is

M0(t) = {x ∈ R
3 : x2(1− x2) = γ(t), x1x2 + x3(1− x2) = t}.

Compute

D =
[
1 0 0

]
, D− =

⎡
⎣

1
0
0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , R = 1,

B0(x, t) =

⎡
⎣

0 0 −1
0 1−2x2 0
x2 x1− x3 1− x2

⎤
⎦ , G1(x, t) =

⎡
⎣

1 0 −1
0 1−2x2 0
0 x1− x3 1− x2

⎤
⎦ .

Then, detG1(x, t) = (1− 2x2)(1− x2) has the zeros x2 =
1
2 and x2 = 1. This splits

the definition domain D f ×I f = R
3×R into the open sets

G1 :=
{
(x, t) ∈ R

3×R : x2 <
1
2

}
,

G2 :=
{
(x, t) ∈ R

3×R :
1
2
< x2 < 1

}
,

G3 := {(x, t) ∈ R
3×R : 1 < x2},

such thatD f ×I f is the closure of G1∪G2∪G3. The DAE is regular with tractability
index 1 on each region G�, �= 1,2,3.
All linearizations along functions x∗ ∈ C1

∗(Gi) are regular linear DAEs with tractabil-
ity index 1. Through each point (x̄, t̄) ∈ Gi such that x̄ ∈M0(t̄) there passes exactly
one solution (cf. Theorem 3.53). This is what we expect. Solutions moving along the
borders of the regularity domains or crossing these borders may behave differently
as discussed below.

Inspecting solutions of the DAE (3.27) one realizes that different kinds of prob-
lems may actually happen if the solution approaches or crosses the critical point set.
We take a closer look at special situations.
Set γ(t) = 1

4 − t2, and fix t̄ = 0 and x̄ = (0, 1
2 ,0) ∈ M0(0) and M0(0) =
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{x ∈ R
3 : x2 =

1
2 ,x1 + x3 = 0}. There are two solutions passing through (x̄, t̄). One

solution x∗ has the second and third components

x∗2(t) = t +
1
2
, x∗3(t) =

1
2t−1

((1+2t)x∗1(t)−2t),

while the first component is the unique solution x∗1 ∈ C1 of the standard IVP

x′1(t) =
1

2t−1
((1+2t)x1(t)−2t), x1(0) = 0. (3.28)

If t increases and tends to 1
2 , the component x∗2(t) approaches the border plane

x2 = 1 and the ODE for the first solution component undergoes a singularity. The
third component grows unboundedly.
The second solution through (x̄, t̄) has the components

x∗2(t) =−t +
1
2
, x∗3(t) =−

1
2t +1

((1−2t)x∗1(t)−2t),

while the first component is the unique solution x∗1 ∈ C1 of the standard IVP

x′1(t) =−
1

2t +1
((1−2t)x1(t)−2t), x1(0) = 0.

This solution stays, for t > 0, within the regularity domain G3.
The bifurcations observed at the border between G1 and G2 and the singularity in the
first ODE on the border between G2 and G3 indicate that we are in fact confronted
with critical points.
Figure 3.3 shows the isocline field of x1 related to the ODE of (3.28). Figures 3.4,
3.5 and 3.6 show the three components of further solutions of (3.27), which start

on the border between G1 and G2. The initial values are

⎡
⎣

1
1
2
−1

⎤
⎦ and

⎡
⎣

1
3
1
2
− 1

3

⎤
⎦ (solid

and dashed lines). We have two solutions in every case. The left-hand side shows
the solutions that went to G1. The other side shows the solutions which enter G2 and
then approach the border between G2 and G3, and undergo bifurcations at the border.
Note that in numerical computations at this point the continuation of the solution is
quite arbitrary.

The linearization along a reference function x∗ lying on the border plane x2 = 1,

x∗(t) :=

⎡
⎣
α(t)

1
β (t)

⎤
⎦ ,

with α , β arbitrary smooth functions, leads to
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Fig. 3.3 Isocline field of x1 of (3.28)

G∗0 =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , Q∗0 =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , B∗0 =

⎡
⎣

0 0 −1
0 −1 0
1 α−β 0

⎤
⎦ ,

G∗1 =

⎡
⎣

1 0 −1
0 −1 0
0 α−β 0

⎤
⎦ , Q∗1 =

⎡
⎣

1 0 0
0 0 0
1 0 0

⎤
⎦ , Q∗1Q∗0 = 0.

Further, Π∗1 =Π∗0P∗1 = 0, thus DΠ∗1D− = 0, and

G∗2 =

⎡
⎣

0 0 −1
0 −1 0
1 α−β 0

⎤
⎦ , detG∗2 =−1.

This means that the DAE linearized along x∗ is regular with tractability index 2. It
is worth emphasizing that we do not call the original nonlinear DAE regular with
index 2 on the set {(x, t) ∈ R

3×R : x2 = 1} because this set is not open in R
3×R.

In contrast, the linearization along functions

x∗(t) =

⎡
⎣
α(t)

1
2

β (t)

⎤
⎦

leads to

B∗0 =

⎡
⎣

0 0 −1
0 0 0
1
2 α−β 1

2

⎤
⎦ , G∗1 =

⎡
⎣

1 0 −1
0 0 0
0 α−β 1

2

⎤
⎦ .
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If α = β , then N∗0 ∩N∗1 = {z ∈ R
3 : z1 = 0, z3 = 0} is nontrivial so that the lin-

earized DAE is no longer regular. If α �= β , then we can choose

Q∗1 =

⎡
⎣

1 0 0
1

2(β−α) 0 0
1 0 0

⎤
⎦ , Q∗1Q∗0 = 0.

It follows that Π∗1 =Π∗0P∗1 = 0, DΠ∗1D− = 0, which means, Q∗0, Q∗1 are admis-
sible. From

G∗2 =

⎡
⎣

1 0 −1
0 0 0
1
2 α−β 1

2

⎤
⎦

and N∗0+N∗1 = kerΠ∗1 =R
3 we see that (N∗0+N∗1)∩N∗2 =N∗2, i.e., the necessary

regularity condition fails again.

Fig. 3.4 Solution component x1 of the DAE (3.27)

Fig. 3.5 Solution component x2 of the DAE (3.27)

��
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Fig. 3.6 Solution component x3 of the DAE (3.27)

Remark 3.35. If one puts γ = 0, the DAE (3.27) simplifies to

x′1(t)− x3(t) = 0,
x2(t)(1− x2(t)) = 0,

x1(t)x2(t)+ x3(t)(1− x2(t))− t = 0.
(3.29)

System (3.29) was originally introduced in [5, p. 235–236] to demonstrate that an
index notion should be a local one. It has the only solutions

x∗(t) =

⎡
⎣

t
1
1

⎤
⎦ and x∗∗(t) =

⎡
⎣

1
2 t2 + c

0
t

⎤
⎦ .

The solutions x∗∗ with arbitrary c ∈ R, lie in the index-1 regularity region G1. The
other solution x∗ proceeds on the border between G2 and G3. The linearization along
x∗ is a regular DAE with tractability index 2. However, there is no neighborhood of
the graph of x∗ representing a regularity region with tractability index 2.

By differentiating the second equation, and employing the solution property that
x2 �= 1

2 , one obtains (cf. [5]) from (3.29) the system

x′1(t)− x3(t) = 0,
x′2(t) = 0,

x1(t)x2(t)+ x3(t)(1− x2(t))− t = 0.

At a first glance, one could conclude that the index depends on the initial condition,
which means, x2(0) = 0 yields the index to be 1, and x2(0) = 1 yields the index to
equal 2. However, when trying to apply the corresponding notion of the (differentia-
tion) index along a solution to slightly perturbed problems, one comes into trouble.
In our opinion, in spite of practical models and numerical computations, a charac-
terization is wanted that is somehow stable with respect to perturbations. This is in
full agreement with the demand, e.g., in [25] that the statements concerning the dif-
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ferentiation index are taken to hold locally on open subsets of the respective spaces
(cf. also the discussion in Section 3.10).

In general we do not expect a DAE (3.1) to be regular on its entire definition domain
D f ×I f as it is the case for the class of Hessenberg form DAEs. It seems to be rather
natural, as sketched in Figure 3.7, that D f ×I f decomposes into several maximal
regularity regions the borders of which consist of critical points. In contrast to Ex-
ample 3.34, it may well happen that the characteristic values on different regularity
regions are different, as the next example shows. However, in each regularity region
there must be uniform characteristic values. A solution can enter a region with new
characteristic values only after passing a critical point.

Fig. 3.7 Regularity regions bordered by critical points

Example 3.36 (Regularity regions with different characteristics). Let the function

α ∈ C1((−∞,∞),R) be given as α(s) =
{

s2 for s > 0
0 for s≤ 0.

Consider the DAE

x′1(t)− x2(t)+ x3(t) = 0,
x′2(t)+ x1(t) = 0, (3.30)

x1(t)3 +α(x1(t))x3(t)− (sin t)3 = 0,

which has the form (3.1) and satisfies Assumption 3.16 with

d(x, t) =
[

x1
x2

]
, f (y,x, t) =

⎡
⎣

y1− x2 + x3
y2 + x1

x3
1 +α(x1)x3− (sin t)3

⎤
⎦ ,

y ∈ R
2, x ∈ D f = R

3, t ∈ J f = R.

Compute
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G0 =

⎡
⎣

1
1

0

⎤
⎦ , B0 =

⎡
⎣

0 −1 1
1 0 0

3x2
1 +α ′(x1)x3 0 α(x1)

⎤
⎦ ,

Q0 =

⎡
⎣

0
0

1

⎤
⎦ , G1 =

⎡
⎣

1 0 1
0 1 0
0 0 α(x1)

⎤
⎦ .

This makes it clear that the DAE is regular with characteristics r0 = 2, r1 = 3, μ = 1
for x1 > 0, i.e., on the regularity region G1 := {(x, t) ∈ D f ×I f : x1 > 0}.
For x1 < 0, we obtain further

G1 =

⎡
⎣

1 0 1
0 1 0
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

1
0

−1 0

⎤
⎦ , G2 =

⎡
⎣

1 0 1
0 1 0

3x2
1 0 0

⎤
⎦ ,

and hence the DAE is regular with characteristics r0 = r1 = 2, r2 = 3, μ = 2 on the
regularity region G2 := {(x, t) ∈ D f ×I f : x1 < 0}.
For every given reference function x∗, the linearization has the form
⎡
⎣

1 0
0 1
0 0

⎤
⎦
([

1 0 0
0 1 0

]
x(t)
)′

+

⎡
⎣

0 −1 1
1 0 0

3x2
∗1 +α ′(x∗1)x∗3 0 α(x∗1)

⎤
⎦x(t) = q(t). (3.31)

This linear DAE is regular with index 1 on intervals where x∗1(t) > 0, and it is
regular with index 2 on intervals where x∗1(t) < 0. On intervals where x∗1(t) = 0
the linear DAE (3.31) is no longer regular, because then G1 = G2 and there does not
exist any admissible projector Q2.

In particular, the reference function x∗(t)=

⎡
⎣

sin t
cos t

0

⎤
⎦ represents a periodic solution of

the original nonlinear DAE (3.30). It shuttles between G1 and G2. The corresponding
linear DAE (3.31) reads

x′1(t)− x2(t)+ x3(t) = q1(t),

x′2(t)+ x1(t) = q2(t),

3(sin t)2x1(t)+α(sin t)x3(t)− (sin t)3 = q3(t).

This linear DAE is regular with index 1 on all intervals where sin t is strictly positive,
and regular with index 2 on all intervals where sin t is strictly negative. ��

Theorem 3.37. (Stability with respect to perturbations)
If the DAE (3.1) is, on the open set G ⊆ D f ×I f , regular with tractability index μ
and characteristics r0, . . . ,rμ , then the perturbed DAE

f ((d(x(t), t))′,x(t), t) = q(t), (3.32)
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with at least continuous perturbation q : I f → R
m, is also regular on G with the

same index and the same characteristics.

Proof. The assertion is evident since the admissible matrix function sequences are
constructed just from d, fy and fx. ��

Theorem 3.33 provides the basis of practical index calculations and index mon-
itoring. The admissible matrix function sequence with the involved partial deriva-
tives of the projector functions is rather intended for theoretical investigations. Even
if the partial derivatives were available in practice, the amount seems to be far from
being reasonable. Owing to Theorem 3.33, one can choose reference functions and
then turn to linearizations involving time derivatives only. In this way, necessary
regularity conditions can be checked in practice, see Sections 7.4 and 8.1.

It is favorable if one can benefit from structural properties. For instance, so-called
Hessenberg form DAEs of arbitrary size are always regular DAEs (cf. Section 3.5).
Also the so-called MNA-DAEs (cf. Section 3.6) show a very useful structure.

To check the regularity of a given DAE or to monitor its index and characteristic
values, one can save computations on the last level of the admissible matrix function
sequence. Instead of generating the admissible projector Qμ−1, the term Bμ−1 hous-
ing the derivative (DΠμ−1D−)′ and Gμ , one can make do with cheaper expressions
due to the next proposition.

Proposition 3.38. (Modified regularity condition) Let the DAE (3.1) satisfy As-
sumption 3.16 with k = m. Let f and d be sufficiently smooth on the open connected
set G ⊆ D f ×I f .
Then the DAE (3.1) is regular on G with tractability index μ ≥ 2, precisely if there
are projector functions Q0, . . . ,Qμ−2 admissible on G, the matrix function Gμ−1 has
constant rank rμ−1 < m and one of the matrix functions

Gμ−1 +Wμ−1BQ̃μ−1 = Gμ−1 +Wμ−1Bμ−2Q̃μ−1, Gμ−1 +Bμ−2Pμ−2Q̃μ−1, (3.33)

which are built by an arbitrary projector function Q̃μ−1 onto kerGμ−1, is nonsingu-
lar.

Proof. Let the DAE be regular with index μ and let Q0, . . . ,Qμ−1 be admissible
projector functions. Let Q̃μ−1 be an arbitrary projector function onto kerGμ−1. Then
the relations

Gμ = (Gμ−1 +Bμ−2Pμ−2Qμ−1)(I−Pμ−1D−(DΠμ−1D−)′DΠμ−2Qμ−1)

Gμ−1 +Bμ−2Pμ−2Q̃μ−1 = (Gμ−1 +Bμ−2Pμ−2Qμ−1)(Pμ−1 + Q̃μ−1)

show nonsingular factors on the furthermost right-hand side. By Proposition 3.20, it
holds that

imGμ = imGμ−1⊕ imWμ−1BQμ−1 = imGμ−1⊕ imWμ−1Bμ−2Qμ−1.

Regarding
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Gμ−1 +Wμ−1BQ̃μ−1 = (Gμ−1 +Wμ−1BQμ−1)(Pμ−1 + Q̃μ−1),

Gμ−1 +Wμ−1Bμ−2Q̃μ−1 = (Gμ−1 +Wμ−1Bμ−2Qμ−1)(Pμ−1 + Q̃μ−1),

altogether it follows that the matrix functions (3.33) are nonsingular simultaneously
with Gμ .

Conversely, let Q0, . . . ,Qμ−2 be admissible, and Gμ−1 have constant rank
rμ−1 < m. Introduce the subspace Sμ−1 = kerWμ−1B = kerWμ−1BΠμ−2. The in-
clusion N0 + · · ·+ Nμ−2 ⊆ Sμ−1 is evident. If the first matrix function Gμ−1 +
Wμ−1BQ̃μ−1 is nonsingular, then Nμ−1∩Sμ−1 = {0}must be valid, thus N0 + · · ·+
Nμ−2 ⊆ Sμ−1 ∩Nμ−1 = {0}. Therefore, we can choose a projector function Qμ−1
such that Q0, . . . ,Qμ−1 are admissible. The resulting Gμ is nonsingular.
If the other matrix function Gμ−1 + Bμ−2Pμ−2Q̃μ−1 is nonsingular, the
Gμ−1 +Wμ−1BQ̃μ−1 is so, too, because of the representation

Gμ−1 +Bμ−2Pμ−2Q̃μ−1 = Gμ−1 +Wμ−1Bμ−2Pμ−2Q̃μ−1

+(I−Wμ−1)Bμ−2Pμ−2Q̃μ−1

= Gμ−1 +Wμ−1BQ̃μ−1 +Gμ−1G̃−μ−1Bμ−2Pμ−2Q̃μ−1

= (Gμ−1 +Wμ−1BQ̃μ−1)(I + G̃−μ−1Bμ−2Pμ−2Q̃μ−1),

whereby G̃−μ−1 denotes the reflexive generalized inverse of Gμ−1 fixed by the four
properties Gμ−1G̃−μ−1Gμ−1 = Gμ−1, G̃−μ−1Gμ−1G̃−μ−1 = G̃−μ−1, G̃−μ−1Gμ−1 = P̃μ−1,
Gμ−1G̃−μ−1 = (I−Wμ−1). The above arguments apply again. ��

3.4 Transformation invariance

What happens with the DAE (3.1) if we transform the unknown function
x(t) = k(x̃(t), t) and turn to the transformed DAE

f̃ ((d̃(x̃(t), t))′, x̃(t), t) = 0? (3.34)

Has the new DAE a properly stated leading term, too? Do the characteristic values
change, and is regularity actually maintained? We shall find answers to these ques-
tions. It is already known by Theorem 2.18 that, in the case of linear DAEs and
linear transformations, the characteristic values do not change.

Let the basic assumptions 3.16 for the DAE (3.1) be satisfied, and let D×I ⊆
D f ×I f be the open set on which we intend to realize a local transformation. Let
h ∈ Cν(D×I,Rm), k ∈ Cν(D̃ ×I,Rm), with ν ∈ N, be such that, for each t ∈ I,
h(·, t) and k(·, t) act bijectively fromD onto D̃ and from D̃ ontoD, respectively, and
h(·, t), k(·, t) are inverse to each other, i.e.,
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x̃ = h(k(x̃, t), t), x̃ ∈ D̃,
x = k(h(x, t), t), x ∈ D.

Then, the partial derivatives

K(x̃, t) := kx̃(x̃, t), H(x, t) := hx(x, t),

remain nonsingular on their definition domains, and it holds that

K(x̃, t) = H(k(x̃, t), t)−1, H(x, t) = K(h(x, t), t)−1.

We speak then of regular local transformations. The transformed DAE (3.34) is now
given by

f̃ (y, x̃, t) := f (y,k(x̃, t), t), y ∈ R
n, x̃ ∈ D̃, t ∈ I,

d̃(x̃, t) := d(k(x̃, t), t), x̃ ∈ D̃, t ∈ I.

The first partial derivatives to be used for the matrix function sequence are

f̃y(y, x̃, t) = fy(y,k(x̃, t), t),

f̃x̃(y, x̃, t) = fx(y,k(x̃, t), t)K(x̃, t),

d̃x̃(x̃, t) = dx(k(x̃, t), t)K(x̃, t),

d̃t(x̃, t) = dt(k(x̃, t), t)+dx(k(x̃, t), t)kt(x̃, t).

Since k is continuously differentiable, the subspaces ker f̃y and im d̃x are C1-
subspaces on R

n × D̃ × I. From the transversality of ker fy and imdx it follows
that

R
n = fy(y,k(x̃, t), t)⊕ imdx(k(x̃, t), t) = f̃y(y, x̃, t)⊕ im d̃x̃(x̃, t),

and hence the DAE (3.34) inherits the properly stated leading term from the original
DAE (3.1).

Theorem 3.39. Let the DAE (3.1) satisfy the basic assumptions 3.16. Let D×I ⊆
D f ×I f be open, and let the regular local transformations h, k be ν times continu-
ously differentiable, ν ≥ 1. If ker fy(y,x, t) depends on y, then ν ≥ 2.

(1) Then the basic assumption 3.16 holds true for the transformed DAE (3.34),
too. In particular, the DAE (3.34) has a properly stated leading term.

(2) If there are projector functions Q0, . . . ,Qκ admissible on D × I for the
original DAE (3.1), and ν ≥ κ + 1, then there are also projector functions
Q̃0, . . . , Q̃κ admissible on D̃ ×I accompanying the transformed DAE (3.34).
It holds that r̃i = ri, ũi = ui, i = 0, . . . ,κ .

(3) If the given DAE (3.1) is regular on D×I with index μ , and if ν ≥ μ , then
the transformed DAE (3.34) is regular on D̃ ×I. It has the same index μ as
well as the same characteristic values as the DAE (3.1).

Proof. The first assertion is already verified. The third assertion is an immedi-
ate consequence of the second one. To prove the second assertion we form step-
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wise the matrix function sequence for the transformed DAE. Let the admissible
matrix function sequence G0, . . . ,Gκ be given for the DAE (3.1), G0 = G0(x, t),
Gi = Gi(xi, . . . ,x1,x, t) if i≥ 1.
The transformations h and k provide at the same time the following one-to-one cor-
respondence between the original and transformed jet variables up to level κ:

x1 = K(x̃, t)x̃1 + k[0](x̃, t), k[0](x̃, t) := kt(x̃, t), (3.35)

x̃1 = H(x, t)x1 +h[0](x, t), h[0](x, t) := ht(x, t),

and, for j = 1, . . . ,κ−1,

x j+1 = K(x̃, t)x̃ j+1 + k[ j](x̃ j, . . . , x̃1, x̃, t),

x̃ j+1 = H(x, t)x j+1 +h[ j](x j, . . . ,x1,x, t),

with

k[ j](x̃ j, . . . , x̃1, x̃, t) :=
(
K(x̃, t)x̃ j + k[ j−1](x̃ j−1, . . . , x̃1, x̃, t)

)
x̃x̃1

+
(
K(x̃, t)x̃ j + k[ j−1](x̃ j−1, . . . , x̃1, x̃, t)

)
t +

j−1

∑
�=1

k[ j−1]
x̃�

(x̃ j−1, . . . , x̃1, x̃, t)x̃�+1,

and an analogous h[ j](x j, . . . ,x1,x, t). Notice that ν ≥ κ+1 ensures that all functions
k[0], . . . ,k[κ−1] are continuously differentiable. Denote

D̃(x̃, t) := d̃x̃(x̃, t) = dx(k(x̃, t), t)K(x̃, t) = D(k(x̃, t), t)K(x̃, t),

Q̃0(x̃, t) := K(x̃, t)−1Q0(k(x̃, t), t)K(x̃, t).

Q̃0 is a continuous projector function onto ker D̃(x̃, t), thus Q̃0 is admissible, and we
are done if κ = 0. Assume κ ≥ 1. Introduce further (cf. (3.14)–(3.15))

Ã(x̃1, x̃, t) := fy(D̃(x̃, t)x̃1 + d̃t(x̃, t),k(x̃, t), t),

B̃(x̃1, x̃, t) := fx(D̃(x̃, t)x̃1 + d̃t(x̃, t),k(x̃, t), t)K(x̃, t),

G̃0(x̃1, x̃, t) := Ã(x̃1, x̃, t)D̃(x̃, t),

to begin the matrix function sequence with. By means of the correspondence (3.35)
we derive

D̃(x̃, t)x̃1 + d̃t(x̃, t) = D(k(x̃, t), t)K(x̃, t)x̃1 +dt(k(x̃, t), t)+D(k(x̃, t), t)kt(x̃, t)

= D(k(x̃, t), t)
{

K(x̃, t)x̃1 + kt(x̃, t)
}
+dt(k(x̃, t), t)

= D(x, t)x1 +dt(x, t), (3.36)

and this yields
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Ã(x̃1, x̃, t) = A(x1,x, t),

B̃(x̃1, x̃, t) = B(x1,x, t)K(x̃, t),

G̃0(x̃1, x̃, t) = G0(x1,x, t)K(x̃, t),

and, further, for the border projector R̃(x̃1, x̃, t) which accompanies the decomposi-
tion (cf. (3.16), and Definition 3.15)

R
n = ker Ã(x̃1, x̃, t)⊕ im D̃(x̃, t)

we arrive at

R̃(x̃1, x̃, t) = R(x1,x, t) = R
(
K(x̃, t)x̃1 + k[0](x̃, t),k(x̃, t), t

)
.

With (cf. (3.18))

D̃(x̃1, x̃, t)− := K(x̃, t)−1D
(
K(x̃, t)x̃1 + k[0](x̃, t),k(x̃, t), t

)−
,

a continuous generalized inverse of D̃(x̃, t) is given, and

D̃D̃− = R̃, D̃−D̃ = P̃0.

Compute

G̃1(x̃1, x̃, t) = G̃0(x̃1, x̃, t)+ B̃(x̃1, x̃, t)Q̃0(x̃, t)
= G1(K(x̃, t)x̃1 + k[0](x̃, t),k(x̃, t), t)K(x̃, t),

r̃1 = r1,

Ñ1(x̃1, x̃, t) = K(x̃, t)−1N1(x1,x, t),

Ñ1(x̃1, x̃, t)∩ Ñ0(x̃, t) = K(x̃, t)−1(N1(x1,x, t)∩N0(x, t)),
ũ1 = u1.

The choice

Q̃1(x̃1, x̃, t) := K(x̃, t)−1Q1
(
K(x̃, t)x̃1 + k[0](x̃, t),k(x̃, t), t

)
K(x̃, t)

yields a continuous projector function Q̃1 onto Ñ1 such that X̃1 ⊆ ker Q̃1,
X̃1 := K−1X1 (cf. Definition 3.21), and, moreover,

D̃Π̃1D̃− = DKK−1P0KK−1P1KK−1D− = DP0P1D− = DΠ1D−,

i.e.,

(D̃Π̃1D̃−)(x̃1, x̃, t) = (DΠ1D−)(x1,x, t) = (DΠ1D−)
(
K(x̃, t)x̃1+k[0](x̃, t),k(x̃, t), t

)
,

hence, D̃Π̃1D̃− inherits the C1 property from DΠ1D−, and Q̃0, Q̃1 are shown to be
admissible on D̃×I. Compute further the total derivative
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(D̃Π̃1D̃−)′ = (D̃Π̃1D̃−)x̃1 x̃2 +(D̃Π̃1D̃−)x̃x̃1 +(D̃Π̃1D̃−)t

= (DΠ1D−)x1 Kx̃2 +(DΠ1D−)x1
(
Kx̃1 + k[0]

)
x̃x̃1 +(DΠ1D−)xKx̃1

+(DΠ1D−)x1
(
Kx̃1 + k[0]

)
t +(DΠ1D−)xkt +(DΠ1D−)t

= (DΠ1D−)x1 x2 +(DΠ1D−)xx1 +(DΠ1D−)t = (DΠ1D−)′,

as well as B̃1 = B1K. To apply induction we assume Q̃0, . . . , Q̃i to be admissible on
D̃×I, and

G̃ j = G jK, Q̃ j = K−1Q jK, B̃ j = B jK, j = 0, . . . , i.

Form G̃i+1 = G̃i+ B̃iQ̃i = Gi+1K and choose Q̃i+1 := K−1Qi+1K. G̃i+1 has constant
rank r̃i+1 = ri+1. Q̃i+1 is continuous and projects onto Ñi+1 = K−1Ni+1. Due to

(Ñ0 + · · ·+ Ñi)∩ Ñi+1 = K−1((N0 + · · ·+Ni)∩Ni+1
)

it follows that ũi+1 = ui+1. Further, it holds that

D̃Π̃i+1D̃− = D̃Π̃iP̃i+1D̃− = DΠiPi+1D− = DΠi+1D−,

and in more detail,

(D̃Π̃i+1D̃−)(x̃i+1, . . . , x̃1, x̃, t) = (DΠi+1D−)(xi+1, . . . ,x1,x, t)

= (DΠi+1D−)
(
K(x̃, t)x̃i+1 + k[i](x̃i, . . . , x̃1, x̃, t), . . . ,K(x̃, t)x̃1 + k[0](x̃, t),k(x̃, t), t

)
.

Since DΠi+1D− is continuously differentiable so is D̃Π̃i+1D̃−, thus Q̃0, . . . , Q̃i+1 are
admissible. Compute the partial derivatives

(D̃Π̃i+1D̃−)x̃i+1 = (DΠi+1D−)xi+1K,

(D̃Π̃i+1D̃−)x̃ j =
i+1

∑
�= j+1

(DΠi+1D−)x�k
[�−1]
x̃ j +(DΠi+1D−)x j K, j = 1, . . . , i,

(D̃Π̃i+1D̃−)x̃ =
i+1

∑
�=1

(DΠi+1D−)x�
(
Kx̃�+ k[�−1])

x̃ +(DΠi+1D−)xK,

(D̃Π̃i+1D̃−)t =
i+1

∑
�=1

(DΠi+1D−)x�
(
Kx̃�+ k[�−1])

t +(DΠi+1D−)xkt +(DΠi+1D−)t

and then the total derivative
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(D̃Π̃i+1D̃−)′ =
i+1

∑
j=1

(D̃Π̃i+1D̃−)x̃ j x̃ j+1 +(D̃Π̃i+1D̃−)x̃x̃1 +(D̃Π̃i+1D̃−)t

=
i+1

∑
�=1

(DΠi+1D−)x�

{
Kx̃�+1 +

�−1

∑
j=1

k[�−1]
x̃ j x̃ j+1 +

(
Kx̃�+ k[�−1])

x̃x̃1

+
(
Kx̃�+ k[�−1])

t

}
+(DΠi+1D−)x

(
Kx̃1 + kt

)
+(DΠi+1D−)t

=
i+1

∑
�=1

(DΠi+1D−)x�x
�+1 +(DΠi+1D−)xx1 +(DΠi+1D−)t

= (DΠi+1D−)′.

Finally, B̃i+1 = Bi+1K follows, and this completes the proof. ��

Theorem 3.39 applies to general DAEs (3.1) comprising k equations but the un-
known function has m components.

3.5 Hessenberg form DAEs of arbitrary size

Hessenberg form DAEs are semi-explicit systems with a special structure

x′1(t) +b1(x1(t), . . . ,xr−1(t),xr(t), t) = 0,
x′2(t) +b2(x1(t), . . . ,xr−1(t), t) = 0,

x′3(t) +b3(x2(t), . . . ,xr−1(t), t) = 0,
· · ·

x′r−1(t)+br−1(xr−2(t),xr−1(t), t) = 0,
br(xr−1(t), t) = 0,

(3.37)

with m1 + · · ·+mr−1 +mr = m equations, mr > 0, and a function b :Db×Ib →R
m

being at least continuous together with the partial derivative bx. Db ⊆ R
m is open,

Ib ⊆ R is an interval, r ≥ 2 is an integer. The partial derivative

bx =

⎡
⎢⎢⎢⎢⎣

B11 . . . B1,r−1 B1r

B21
. . .

... 0
. . . Br−1,r−1

Br,r−1 0

⎤
⎥⎥⎥⎥⎦

}m1

}m2

}mr−1
}mr

with Bi j := bi,x j shows the Hessenberg structure from which the name comes.

Definition 3.40. The system (3.37) is said to be a DAE in Hessenberg form of size
r, if the matrix function product

Br,r−1 · · ·B21B1r (3.38)
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remains nonsingular on Db×Ib.

We put (3.37) into the general form (3.1) by means of n = m1 + · · ·+mr−1,

f (y,x, t) = Ay+b(x, t), d(x, t) = Dx, x ∈ Db, t ∈ Ib, y ∈ R,

and

A :=

⎡
⎢⎢⎢⎣

I
. . .

I
0

⎤
⎥⎥⎥⎦ , D :=

⎡
⎢⎣

I
. . .

I 0

⎤
⎥⎦ , D− := A,

such that kerA= {0}, imD=R
n. Then the DAE (3.37) has a properly stated leading

term, the border projector is simply R = I, and Assumption 3.16 applies.
At this point we call attention to the fact that in the present section the integer r
indicates the size of the Hessenberg structure. We do not use it here for rankD =
m−mr, but we use only r0 = rankG0 = rankD so that no confusion can arise.

Hessenberg form size-2 DAEs were already considered in Section 3.3, Exam-
ple 3.32. It is shown there that any Hessenberg size-2 DAE is regular with tractabil-
ity index 2 on the definition domainDb×Ib. Example 2.11 in Subsection 2.2.2 pro-
vides an admissible matrix function sequence for a linear Hessenberg size-3 DAE
and the characteristic values r0 = r1 = r2 = m−m3 < m and r3 = m, thus μ = 3.
This sequence further shows the impact of the time-varying subspaces imB13 and
imB21B13, which is responsible for the time derivatives of the projector functions
within the admissible matrix functions. In the case of nonlinear DAEs considered
now, these subspaces may additionally depend on x, so that the jet variables may
come in. The most important class of Hessenberg form DAEs are those of size 3,
among them the equations describing the motion of constrained multibody systems.

Example 3.41 (Constrained multibody system). After [63, Chapter 1] the general
first-order form of the equation of motion of a constrained multibody system reads

p′ = Z(p)v, (3.39)
Mv′ = fa(t, p,v,s)−Z(p)∗G(p)∗λ , (3.40)

s′ = fs(t, p,v,s), (3.41)
0 = g(p), (3.42)

where p and s contain position coordinates, v velocities, and λ is a Lagrange multi-
plier.
The constraint (3.42) defines a manifold of free motion. G(p) := gp(p) is the con-
straint matrix, and the generalized constraint forces G(p)∗λ are responsible for the
constraint to be satisfied. M denotes the given positive definite mass matrix, and fa
contains the applied forces. Equation (3.40) arises from Newton’s law completed by
d’Alembert’s principle.
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Z(p) is a nonsingular transformation matrix. Equation (3.39) is the kinematic dif-
ferential equation. Equation (3.41) represents the influence of further components
(electromagnetic forces, hydraulic components, control devices, etc.).
The positions and velocities are expected to be continuously differentiable, while
the Lagrange multipliers are usually less smooth.
Multiply equation (3.40) by M−1 and move the top equation (3.39) to the third place
so that the semi-explicit system

v′ = M−1 fa(t, p,v,s)−M−1Z(p)∗G(p)∗λ ,
s′ = fs(t, p,v,s),

p′ = Z(p)v,

0 = g(p),

results. Set x1 :=
[

v
s

]
, x2 = p, x3 := λ , which allows us to write the system in

Hessenberg form (3.37) with size r = 3. The resulting partial Jacobian bx has the
particular entries

B13 =

[
M−1Z∗G∗

0

]
, B21 =

[
Z 0
]
, B32 = G,

yielding the product
B32B21B13 = GZM−1Z∗G∗.

The common demand for G = gp to have full row rank, which excludes redun-
dant constraints, ensures the product B32B21B13 remains nonsingular (cf. [63], also
Lemma 3.44 below). ��
Theorem 3.42. Any Hessenberg form DAE (3.37) with size r and sufficiently smooth
b :Db×Ib → R

m is regular on Db×Ib with tractability index r and characteristic
values

r0 = · · ·= rr−1 = m−mr, rr = m.

Theorem 3.42 attests to the structure of Hessenberg systems to be very special. In
particular, the nilpotent matrixN within the Weierstraß–Kronecker form (cf. Propo-
sition 1.3) of a linear constant coefficient DAE in Hessenberg size-r form consists
exclusively of nilpotent Jordan blocks of uniform order r.

Proof. This statement is proved by providing an admissible projector function se-
quence yielding a nonsingular matrix function Gr. We apply an inductive proof in-
cluding a certain amount of technical computations.
Since the product (3.38) remains nonsingular, the blocks

B1r, B21B1r, . . . , Br−1,r−2 · · ·B21B1r (3.43)

have full column rank mr. Then, the subspaces imB1r, imB21B1r,. . . ,
imBr−1,r−2 · · ·B21B1r are at least C-subspaces. We suppose that b is smooth enough
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to make them C1-subspaces. Introduce continuously differentiable projectors
Ω1, . . . ,Ωr−1 onto imB1r, imB21B1r,. . . , imBr−1,r−2 · · ·B21B1r, respectively. With
the use of generalized inverses we may represent

Ω1 = B1rB−1r, Ω2 = B21B1r(B21B1r)
−, . . . ,

Ωr−1 = Br−1,r−2 · · ·B21B1r(Br−1,r−2 · · ·B21B1r)
−.

Since the blocks (3.43) have full column rank, it holds that

B−1rB1r = I, (B21B1r)
−B21B1r = I, . . . ,

(Br−1,r−2 · · ·B21B1r)
−Br−1,r−2 · · ·B21B1r = I.

(3.44)

Then, for �= 1, . . . ,r−2, it is easily checked that

imB�+1,�Ω� = imΩ�+1.

Now we compose a matrix function sequence (3.19)–(3.21) and admissible projector
functions for (3.37). We begin with G0 = AD, B0 = B = bx,

G0 =

⎡
⎢⎢⎢⎣

I
. . .

I
0

⎤
⎥⎥⎥⎦ , Q0 =

⎡
⎢⎢⎢⎣

0
. . .

0
I

⎤
⎥⎥⎥⎦ , G1 =

⎡
⎢⎢⎢⎣

I B1r
. . .

I
0

⎤
⎥⎥⎥⎦ ,

Π0 = P0 = G0, and r0 = m−mr, r1 = r0. Describe the nullspace of G1 by

N1 = {z ∈ R
m : z1 +B1rzr = 0, z2 = 0, . . . ,zr−1 = 0}

= {z ∈ R
m : z1 =Ω1z1, zr =−B−1rz1, z2 = 0, . . . , zr−1 = 0},

such that we immediately find a projector onto N1, namely

Q1 =

⎡
⎢⎢⎢⎣

Ω1
0

. . .
−B−1r 0

⎤
⎥⎥⎥⎦ .

Observe that Q1Q0 = 0 is true. Form

Π1 =Π0P1 =

⎡
⎢⎢⎢⎢⎢⎣

I−Ω1
I

. . .
I

0

⎤
⎥⎥⎥⎥⎥⎦
, DΠ1D− =

⎡
⎢⎢⎢⎣

I−Ω1
I

. . .
I

⎤
⎥⎥⎥⎦ ,

and see that Q0, Q1 are admissible. Next we compute
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B1 = BP0−G1D−(DΠ1D−)′D =

⎡
⎢⎢⎢⎢⎣

B11 . . . B1,r−1 0

B21
. . .

...
...

. . . Br−1,r−1 0
Br,r−1 0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

Ω ′1
0

. . .
0

⎤
⎥⎥⎥⎦

and

G2 =

⎡
⎢⎢⎢⎢⎢⎣

I B1r
B21Ω1 I

. . .
I

0

⎤
⎥⎥⎥⎥⎥⎦
+C2,

where the matrix function C2 has the single nontrivial entry C2,11 = (B11 +Ω ′1)Ω1.
All other blocks in C2 are zero-blocks. G2 has constant rank r2 = r0, if r > 2, and
full rank r2 = m, if r = 2. This can be verified by applying Proposition 3.20 (3), and
taking the projectors

W0 =W1 =

⎡
⎢⎢⎢⎣

0
. . .

0
I

⎤
⎥⎥⎥⎦ such that W0B =W1B =

⎡
⎢⎢⎢⎣

0
. . .

0
Br,r−1 0

⎤
⎥⎥⎥⎦ ,

and

W1BQ1 = 0 for r > 2, W1BQ1 =

[
0 0

B21 0

][
Ω1 0
−B−12 0

]
=

[
0 0

B21Ω1 0

]
for r = 2.

From rankG2 = rankG1+rankW1BQ1 we conclude r2 = r1 = r0 =m−mr for r > 2,
and r2 = r1 + rankB21Ω1 = m−m2 +m2 = m for r = 2. For r = 2 we are done.

Assume that r > 2. For an induction proof we assume the following: k+1≤ r.

(1) Q0, . . . ,Qk are admissible projectors, and Q j has the block structure

Q j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
. . .

...
0 ∗
Ω j
0 0
...

. . .

0
. . .

∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j = 1, . . . ,k, (3.45)

whereby the nontrivial entries in column number j have the property
Q j,i j = Q j,i jΩ j, i = 1, . . . , j−1, and i = r.
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(2) The matrix function Gk has the structure

Gk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1r
B21Ω1 I

. . . . . .

Bk,k−1Ωk−1 I
I

. . .
I

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Ck, (3.46)

where Ck =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . ∗
. . .

...
∗

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k−1

k

is upper block triangular with nontrivial entries in the first k− 1 columns.
These entries satisfy the condition

Ck,i j =Ck,i jΩ j, j = 1, . . . ,k−1, i = j, . . . ,k−1, (3.47)

and Gk has constant rank rk = m−mr.
(3) The projector product Πk has the structure

Πk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−Ω1 ∗ . . . ∗
. . . . . .

...
. . . ∗

I−Ωk

I
. . .

I
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.48)

where the nontrivial entries indicated by stars have the properties

Πk,i j = (I−Ωi)Πk,i jΩ j, i = 1, . . . ,k−1, j = i+1, . . . ,k.

(4) The matrix function Bk has the structure
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Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . . . . . . . . . . ∗ 0

∗ . . .
...

...
. . . . . .

...
...

∗ . . .
...

...

Bk+1,k
. . .

...
...

. . . ∗
Br,r−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.49)

such that

BkQk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
. . .

...

0
...

∗
Bk+1,kΩk

0 0
...

. . .
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k+1
(3.50)

k

results.

We have to verify that assumptions (3.45)–(3.49) lead to the same properties for k
replaced by k+1. First we form

Gk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1r
B21Ω1 I

. . . . . .

Bk+1,kΩk I
I

. . .
I

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Ck+1,

where Ck+1 results to be upper block triangular with the entries from Ck in columns
1 to k−1 and entries from BkQk in the kth column, i.e.,
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Ck+1,i j =Ck,i j, j = 1, . . . ,k−1, i = j, . . . ,k−1,
Ck+1,ik = (BkQk)ik, i = 1, . . . ,k.

Since the nontrivial entries of Qk have the property Qk,ik = Qk,ikΩk, i = 1, . . . ,k, it
follows that

Ck+1,ik =Ck+1,ikΩk, i = 1, . . . ,k,

and Gk+1 has the right shape.
Next we describe the nullspace of Gk+1. Gk+1z = 0 implies in detail

z1 +B1rzr +
k
∑
�=1

Ck+1,1�z� = 0,

B21Ω1z1 + z2 +
k
∑
�=2

Ck+1,2�z� = 0,

· · ·
Bk,k−1Ωk−1zk−1 + zk +Ck+1,kkzk = 0,

Bk+1,kΩkzk + zk+1 = 0,
zk+2 = 0,
· · ·

zr−1 = 0.

(3.51)

Using the properties resulting from the nonsingularity of the product (3.38) which
are described at the beginning of this proof we realize that it makes sense to multi-
ply the first equation in (3.51) by I−Ω1 and B−1r, the second one by (I−Ω2) and
B1r(B21B1r)

−, and so on, to obtain the equivalent system

(I−Ω1)z1 +
k
∑
�=1

(I−Ω1)Ck+1,1�Ω�z� = 0,

B−1rΩ1z1 + zr +
k
∑
�=1

B−1rCk+1,1�Ω�z� = 0,

(I−Ω2)z2 +
k
∑
�=2

(I−Ω2)Ck+1,2�Ω�z� = 0,

Ω1z1 +B1r(B21B1r)
−Ω2z2 +

k
∑
�=2

B1r(B21B1r)
−Ck+1,2�Ω�z� = 0,

· · ·
(I−Ωk)zk +(I−Ωk)Ck+1,kkΩkzk = 0,

Ωk−1zk−1 +Bk−1,k−2 · · ·B21B1r(Bk,k−1 · · ·B21B1r)
−Ωkzk

+Bk−1,k−2 · · ·B21B1r(Bk,k−1 · · ·B21B1r)
−Ck+1,kkΩkzk = 0,

(I−Ωk+1)zk+1 = 0,
Ωkzk +Bk,k−1 · · ·B21B1r(Bk+1,k · · ·B21B1r)

−Ωk+1zk+1 = 0,
zk+2 = 0,
· · ·

zr−1 = 0.
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From this new system we observe that zk+2 = 0, . . . ,zr−1 = 0, zk+1 =Ωk+1zk+1, and
all resulting components can be successively expressed as zi = EiΩk+1zk+1 (with
certain coefficients Ei) i = 1, . . . ,k and i = r. Therefore,

Qk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
. . .

...
0 ∗
Ωk+1

0 0
...

. . .

0
. . .

∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with the only nontrivial entries

Qk+1,i,k+1 = EiΩk+1, i = 1, . . . ,k, i = r, (3.52)
Qk+1,k+1,k+1 = Ωk+1,

is a continuous projector onto Nk+1 = kerGk+1, and it satisfies Qk+1Q j = 0,
j = 0, . . . ,k.
Notice that Gk+1 has constant rank rk+1 = m−mr, if k ≤ r− 1. Now the projector
Πk+1 has the structure

Πk+1 =ΠkPk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−Ω1 ∗ . . . ∗
. . . . . .

...
∗

I−Ωk+1
I

. . .
I

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the indicated nontrivial off-diagonal entries possess by construction the prop-
erties

Πk+1,i j = (I−Ωi)Πk+1,i jΩ j, i = 1, . . . ,k, j = i+1, . . . ,k+1.

Πk+1 is continuous, and DΠk+1D− is continuously differentiable, if these off-
diagonal entries are so. Taking a closer look at these entries we know that they are
formed by the coefficients Ei arising in (3.52), and resulting from the linear system
(3.51). This makes it clear that supposing the function b to be smooth enough we
may consider DΠk+1D− to be continuously differentiable, and hence Q0, . . . ,Qk+1
to be admissible.
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The remaining matrix function Bk+1 has the structure

Bk+1 = BkPk−Gk+1D−(DΠk+1D−)′DΠk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . . . . . . . ∗ 0

∗
...

...
. . .

...
...

∗

Bk+2,k+1
...

...
. . . ∗

...
Br,r−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . . . . ∗

∗ . . .
...

. . . . . .
...

∗ ∗
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k+1

k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . . . . . . . . . . ∗ 0

∗
...

...
. . .

...
...

∗
...

...

Bk+2,k+1
...

...
. . . ∗

...
Br,r−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which fits into (3.49) and completes the induction. It turns out that we may form
these admissible projectors Q0, . . . ,Qk as long as we reach k+1 = r.
Let Q0, . . . , ,Qr−1 be already given. We have r0 = · · ·= rr−1 = m−mr, and

Gr = Gr−1 +Br−1Qr−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I B1r
B21Ω1 I

. . . . . .
. . . I

Br,r−1Ωr−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
+Cr.

It remains to show that Gr is nonsingular. Apply again Proposition 3.20 (3) and take
into account that imGr−1 = imGr−2 = · · ·= imG0 such that we can useWr−1 =W0.
This leads to rr = rankGr = rankGr−1 + rankWr−1BQr−1, and with

Wr−1BQr−1 =

⎡
⎢⎢⎢⎣

0
. . .

0
Br,r−1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 ∗
. . .

...
0 ∗
Ωr−1
∗ 0

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

0
. . .

0
Br,r−1Ωr−1 0

⎤
⎥⎥⎥⎦
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we find
rr = m−mr + rankBr,r−1Ωr−1 = m−mr +mr = m.

This completes the proof. ��

3.6 DAEs in circuit simulation

Circuit simulation was one of the driving motivations to study differential-algebraic
equations. The behavior of circuits depends, on the one hand, on the kind of net-
work elements involved and, on the other hand, on the connection of the network
elements. Kirchhoff’s laws describe algebraic relations between branch currents and
branch voltages depending on the network structure. Additionally, the characteris-
tics of dynamic elements like capacitances and inductances lead to differential equa-
tions. Hence, one is always confronted with a differential-algebraic equation system
when modeling electrical circuits.

Due to their high complexity, integrated circuits need an automatic treatment
for generating the model equations. One of the most commonly used techniques is
Modified Nodal Analysis (MNA). Let us have a more detailed look into this analysis
in order to get information on the structure of the resulting equation system.
In this section we use the notation common in circuit theory (cf. [51], [58]) to make
things more transparent for readers from this area.
The transient behavior of the circuit is described by its branch voltages u = u(t) and
branch currents j = j(t). Due to Kirchhoff’s voltage law, all branch voltages u can
be written as a linear combination of nodal potentials e,

u = ATe, (3.53)

where Aa ∈ R
n×b denotes the so-called incidence matrix with the entries

aik =

⎧
⎪⎨
⎪⎩

1 if branch k leaves node i
−1 if branch k enters node i
0 if branch k is not incident with node i.

Here, n and b denote the number of nodes and branches of the circuit. Since the
number of nodes is usually much smaller than the number of branches, a network
description using nodal potentials instead of branch voltages is advantageous. The
modified nodal analysis (MNA) uses all node potentials and all branch currents of
current controlled elements as the vector of unknowns and describes the electrical
network as follows.

1. Fix one node as the datum node and set the potential of the datum node to be
zero.

2. Express all branch voltages by nodal potentials using (3.53).
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3. Write the node equations by applying Kirchhoff’s current law (KCL) to each
node except for the datum node:

A j = 0. (3.54)

The vector j represents the branch current vector. Here, A is the reduced inci-
dence matrix that coincides with the incidence matrix Aa apart from the fact that
the row corresponding to the datum node is neglected.

4. Replace the currents jk of voltage controlled elements by the voltage–current
relation of these elements in equation (3.54).

5. Add the current–voltage relations for all current controlled elements.

We want to demonstrate this with the following simple example circuit.

Example 3.43 (Small RCL circuit). We consider a circuit, consisting of a capaci-
tance, an inductance, a resistor and a voltage source (see Figure 3.8). We denote the

Fig. 3.8 Circuit with one capacitance, resistor, inductance and voltage source

branch currents and branch voltages of the voltage source, the resistance, the capac-
itance and the inductance by jV , jR, jC, jL and vV , vR, vC, vL. First we fix the node
0 as the datum node. Then, we find

vV = e2, vR = e1− e2, vC =−e1, vL = e2.

In the third step, we write the KCL for the nodes 1 and 2, i.e.,

− jC + jR = 0 (node 1),
− jR + jL + jV = 0 (node 2).

The element characteristics are given by

jR = GvR = G(e1− e2), jC =Cv′C =−Ce′1, (3.55)

and
e2 = vV = vinput(t), e2 = vL = L j′L. (3.56)

Here, G denotes the conductance of the resistance, which means G = R−1. The
relations (3.55) are inserted into the KCL equations for node 1 and 2 which implies
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Ce′1 +G(e1− e2) = 0,
G(e2− e1)+ jL + jV = 0.

It remains to add the characteristic equations (3.56) and we get the differential-
algebraic equation system

Ce′1 +G(e1− e2) = 0,
G(e2− e1)+ jL + jV = 0,

j′L− e2 = 0,
e2 = vinput(t)

in the variables e1, e2, jL and jV . ��

In general, the MNA results in quasi-linear DAEs of the form

Â(d(x, t))′+b(x, t) = 0. (3.57)

What do the matrix Â and the functions d and b look like? In order to see this, we
split the incidence matrix A into the element-related incidence matrices

A =
[
AC AL AR AV AI

]
,

where AC, AL, AR, AV and AI describe the branch–current relation for capacitive
branches, inductive branches, resistive branches, branches of voltage sources and
branches of current sources, respectively. Using the element characteristics

jC =
d
dt

q(vC, t) =
d
dt

q(AT
Ce, t),

d
dt
φ( jL, t) = vL = AT

Le

for capacitances and inductances as well as

jR = g(vR, t) = g(AT
Re, t), jI = is(ATe, jL, jV , t),vV = vs(ATe, jL, jV , t)

for resistances, current and voltages sources, we obtain

AC
d
dt

q(AT
Ce, t)+ARg(AT

Re, t)+AL jL +AV jV +AIis(ATe, jL, jV , t) = 0,

d
dt
φ( jL, t)−AT

Le = 0,

AT
V e− vs(ATe, jL, jV , t) = 0,

(3.58)

where is and vs are input functions. Next we aim to uncover beneficial DAE struc-
tures of the network system (3.58).

Supposing that the capacitance matrix C(v, t) and the inductance matrix L( j, t)
are positive definite, which means passivity of capacitances and inductances, the
DAE (3.58) has a properly stated derivative term. In order to see this we formulate
a lemma which is also useful in the analysis later.
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Lemma 3.44. If M is a positive definite m×m matrix and A is a rectangular matrix
of dimension k×m, then we have

kerAMAT = kerAT and imAMAT = imA

and
kerA⊕ imMAT = R

k.

Furthermore, the matrix AMAT +QT
AQA is nonsingular for any projector QA onto

kerAT.

Proof. The first two equations of Lemma 3.44 follow immediately from the def-
inition of positive definite matrices. For the third equation we assume z to be an
element of kerA and imMAT. Then, we find an element y such that z = MATy,
thus AMATy = Az = 0. Since M is positive definite, we get ATy = 0, i.e., z = 0.
Consequently, the intersection of kerA and imMAT is trivial. Consider now z as an
arbitrary element of Rk and choose a projector Q̄A onto kerA with imMAT ⊆ ker Q̄A.
Then we have, due to the non-singularity of M,

rank(MAT) = rank(AT) = rank(A) = dimker Q̄A,

in other words imMAT = ker Q̄A. This implies

z = Q̄Az+(I− Q̄A)z ∈ im Q̄A⊕ker Q̄A = kerA⊕ imMAT

and the third equation of the theorem is satisfied. It remains to show the nonsingu-
larity of the matrix AMAT +QT

AQA. Assume z to belong to the kernel of this matrix.
Then,

0 = QT
A(AMAT +QT

AQA)z = QT
AQAz,

which means QAz = 0. This implies AMATz = 0 and, finally, z ∈ kerAT = imQA.
Since QA is a projector, we conclude that z = QAz = 0. ��

We rewrite the system (3.58) as

Ā(d(x, t))′+b(x, t) = 0, (3.59)

with

Ā =

⎡
⎣

AC 0
0 I
0 0

⎤
⎦ , d(x, t) =

[
q(AT

Ce, t)
φ( jL, t)

]
, x =

⎡
⎣

e
jL
jV

⎤
⎦ ,

and

b(x, t) =

⎡
⎣

ARg(AT
Re, t)+AL jL +AV jV +AIis(ATe, jL, jV , t),

−AT
Le

AT
V e− vs(ATe, jL, jV , t)

⎤
⎦ .

We use the bar notation Ā in order to distinguish it from the incidence matrix intro-
duced before. By
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ker Ā = kerAC×{0}, imdx(x, t) = imC(AT
Ce, t)AT

C× imL( jL, t) (3.60)

Lemma 3.44 implies that

ker Ā⊕ imdx(x, t) = R
nC ×R

nL ,

with nC, nL being the numbers of capacitances and inductances, respectively. Re-
membering that Ā represents a constant matrix, we find our general Assumption 3.16
to be satisfied, if d is continuously differentiable and bx is continuous.

The solutions of the network system (3.58) are expected to consist of continuous
nodal potentials and branch currents such that the charges and fluxes are contin-
uously differentiable. This makes sense from the physical point of view, and it is
consistent with the solution notion (Definition 3.2) for the DAE (3.59).

For the study of the regularity and index of (3.58), we introduce G(u, t) :=
∂ug(u, t). Further, we denote projectors onto

kerAT
C, kerAT

V QC, kerAT
RQCQV−C, kerAT

V , kerAC, kerQT
CAV ,

by
QC, QV−C, QR−CV , QV , Q̄C, Q̄V−C,

respectively1. The complementary projectors shall be denoted by P := I−Q, with
the corresponding subindex. We observe that

imPC ⊂ kerPV−C, imPV−C ⊂ kerPR−CV and imPC ⊂ kerPR−CV ,

and that thus QCQV−C is a projector onto ker(AC AV )
T, and QCQV−CQR−VC is a

projector onto ker(AC AR AV )
T. In order to shorten denotations, we use the abbre-

viation QCRV := QCQV−CQR−CV . Note that the projector PCRV , in general, does not
coincide with the projector PR−CV .

We start our analysis with a lemma that describes certain network topological
properties in terms of the introduced incidence matrices and projectors.

Lemma 3.45. [206, 70] Given a lumped circuit with capacitances, inductances and
resistances as well as independent voltage sources and current sources, then, the
following relations are satisfied.

(1) The matrix
[
AC AL AR AV

]
has full row rank, because cutsets of current

sources are forbidden.
(2) The matrix AV has full column rank, since loops of voltage sources are forbid-

den.
(3) The matrix

[
AC AR AV

]
has full row rank if and only if the circuit does not

contain cutsets consisting of inductances and current sources only.
(4) The matrix QT

CAV has full column rank if and only if the circuit does not con-
tain loops with at least one voltage source and consisting of capacitances and
voltage sources only.

1 An explicit description of such projectors is given in [67].
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For simplicity, we assume all current and voltage sources to be independent, which
means is(ATe, jL, jV , t) = is(t) and vs(ATe, jL, jV , t) = vs(t). For the general case we
refer to [70]. In order to describe all possible DAE index cases for electric networks
we need the following lemma.

Lemma 3.46. Consider lumped electric circuits containing resistances, capaci-
tances, inductances, as well as independent voltage and current sources. Let the ca-
pacitance, inductance and conductance matrices of all capacitances, inductances,
and resistances, respectively, be positive definite.2 Furthermore, assume that the
circuit neither contains a loop of voltage sources nor a cutset of current sources.3

Then, the auxiliary matrix functions

H1(v, t) := ACC(v, t)AT
C +QT

CQC,

H2( j, t) := QT
CRV ALL−1( j, t)AT

LQCRV +PT
CRV PCRV ,

H3(v, t) := Q̄T
V−CAT

V H−1
1 (v, t)AV Q̄V−C + P̄T

V−CP̄V−C

are nonsingular.

Proof. Regarding Lemma 3.44, it remains to show the matrices C(v, t), L−1( j, t)
and H−1

1 (v, t) to be positive definite and the projectors QC, PCRV and P̄V−C to be
projectors onto the nullspaces kerAT

C, kerAT
LQCRV and kerAV Q̄V−C, respectively.

First, the capacitance matrix C(v, t) is positive definite due to the assumption. The
relation imQC = kerAT

C follows directly from the definition of QC; see the page be-
fore. Consequently, H1(v, t) is nonsingular. Furthermore, it is positive definite since

xTH1(v, t)x = (AT
Cx)TC(v, t)(AT

Cx)+(Qcx)T(Qcx)≥ 0.

Since the inverse of a positive definite matrix is always positive definite, we get
H−1

1 (v, t) to be positive definite. The assumption that the inductance L( j, t) is posi-
tive definite implies L−1( j, t) is also positive definite.
Since cutsets of current sources are forbidden, the incidence matrix [ACARAV AL],
containing all noncurrent source branches, has full row rank. This implies

ker

⎡
⎢⎢⎢⎣

AT
C

AT
R

AT
V

AT
L

⎤
⎥⎥⎥⎦= {0}

and, further,
kerAT

LQCRV = kerQCRV = imPCRV .

The matrix AT
V has full row rank since loops of voltage sources are forbidden. From

that we may conclude that

2 For capacitances and inductances with affine characteristics the positive definiteness implies that
they are strictly locally passive (cf. [77]).
3 Loops of voltage sources and cutsets of current sources would lead to a short-circuit.
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kerAV Q̄V−C = ker Q̄V−C = im P̄V−C.

��

Now we can formulate the following theorem describing all possible DAE index
cases for electric circuits.

Theorem 3.47. Let the assumptions of Lemma 3.46 be satisfied. Furthermore, let
all current and voltage sources be independent.4 Then, the following statements are
true.

(1) If the network contains neither L-I cutsets nor C-V loops then the network
system (3.58) leads to a regular DAE system of index ≤ 1. The index is 0 if
and only if there is a capacitive path from each node to the datum node and
the network does not contain voltage sources.

(2) If the network contains L-I cutsets or C-V loops then the network system (3.58)
leads to a regular index-2 DAE system.

(3) If the network system yields an index-1 or index-2 DAE system, then G0 := Ādx
has constant rank and

Q0 =

⎡
⎣

QC 0 0
0 0 0
0 0 I

⎤
⎦ (3.61)

is a projector onto the nullspace of G0. Further, the matrix function
G1 := G0 +bxQ0 also has constant rank, and

Q1 =

⎡
⎢⎢⎢⎣

H−1
1 AV Q̄V−CH−1

3 Q̄T
V−CAT

V PC QCRV H−1
2 QT

CRV AL 0

0 L−1AT
LQCRV H−1

2 QT
CRV AL 0

− Q̄V−CH−1
3 Q̄T

V−CAT
V PC 0 0

⎤
⎥⎥⎥⎦ (3.62)

is a projector onto the nullspace of G1. Q0 and Q1 are continuous and satisfy
the condition Q1Q0 = 0.

Proof. First, we form

G0 =

⎡
⎣

AC 0
0 I
0 0

⎤
⎦
[
C(·)AT

C 0 0
0 L(·) 0

]
=

⎡
⎣

ACC(·)AT
C 0

0 L(·) 0
0 0 0

⎤
⎦ .

Regarding (3.60), we see that G0 has full row rank if and only if AC has full row rank
and the equations corresponding to the voltage sources disappear. Simple arguments
from graph theory show that AC has full row rank if and only if there is a capacitive
path from each node of the network to the datum node. Consequently, we have
shown the index-0 case.

In order to investigate the index-1 case, we use the projector Q0 given by (3.61)
and form
4 For the general case we refer to [70].
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G1 = G0 +B0Q0 =

⎡
⎣

ACC(·)AT
C 0

0 L(·) 0
0 0 0

⎤
⎦+
⎡
⎣

ARG(·)AT
R AL AV

−AT
L 0 0

AT
V 0

⎤
⎦
⎡
⎣

QC 0 0
0 0 0
0 0 I

⎤
⎦

=

⎡
⎣

ACC(·)AT
C +ARG(·)AT

RQC 0 AV
−AT

LQC L(·) 0
AT

V QC 0 0

⎤
⎦ .

It is not difficult to verify that Q1 is a projector and G1Q1 = 0 holds for Q1 given by
(3.62) if one regards the relations

PT
C = ACC(·)AT

CH−1
1 (·),

QT
CRV = QT

CRV ALL−1(·)AT
LQCRV H−1

2 (·),
Q̄T

V−C = Q̄T
V−CAT

V H−1
1 (·)AV Q̄V−CH−1

3 (·)

as well as

QCH−1
1 (·) = H−1

1 (·)QT
C, QT

CAV Q̄V−C = 0, QCQCRV = QCRV

and
AT

CQCRV = 0, AT
RQCRV = 0, AT

V QCRV = 0,

that follow directly from the definitions of the projectors Q∗ and the matrices
Hi, i = 1,2,3. Consequently, imQ1 ⊆ kerG1. In order to show that kerG1 ⊆ imQ1,
we assume z ∈ kerG1(·). Then,

ACC(·)AT
Cze +ARG(·)AT

RQCze +AV zV = 0, (3.63)
−AT

LQCze +L(·)zL = 0, (3.64)
AT

V QCze = 0. (3.65)

Considering (3.65) we see that

ze = QV−Cze. (3.66)

Multiplying (3.63) by zT
e QT

V−CQT
C yields

zT
e QT

V−CQT
CARG(·)AT

RQCQV−Cze = 0.

Since G(·) is positive definite, we find QCQV−Cze = 0. Taking into account (3.66),
we get

QCze = QCRV ze. (3.67)

Relation (3.64) leads to

zL = L−1(·)AT
LQCze = L−1(·)AT

LQCRV ze. (3.68)

Multiplying (3.63) by QT
C now yields QT

CAV zV = 0 and, hence,
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zV = Q̄C−CzV . (3.69)

Regarding (3.67)–(3.69), we obtain Q1z = z which implies z∈ imQ1. Consequently,
imQ1 = kerG1.

Obviously, we have Q1Q0 = 0 for the projectors Q0 and Q1 given by (3.61) and
(3.62).
The matrix G1 is nonsingular if and only if Q1 = 0. The latter relation is satisfied if
and only if

Q̄T
V−CAT

V = 0 and QT
CRV AL = 0.

Since loops of voltage sources only are forbidden, the matrix AT
V has full row rank.

Furthermore, the matrix [ACARAV AL] has full row rank since cutsets of current
sources only are forbidden. Both relations allow the conclusion that G1 is nonsin-
gular if and only if

Q̄T
V−C = 0 and QT

CRV = 0.

The first condition reflects the case that there is no C-V loop in the network. The sec-
ond one corresponds to the condition that the network does not contain L-I cutsets.
Consequently, the index-1 case has been completely proven.

Finally, applying the modified regularity condition given by Proposition 3.38,
and taking into account that, owing to the relation

G̃2 := G1 +BP0Q1 = (G1 +W0BQ1)(I +P1G−0 BP0Q1),

the matrix functions G̃2 and G1 +W0BQ1 must share their rank, it suffices to show
that the matrix function

G̃2 = G1 +BP0Q1

=

⎡
⎣

ACC(·)AT
C +ARG(·)AT

RQC 0 AV
−AT

LQC L(·) 0
AT

V QC 0 0

⎤
⎦+
⎡
⎣

ARG(·)AT
RPC AL 0

−AT
LPC 0 0

AT
V PC 0 0

⎤
⎦Q1

remains nonsingular. Let z be an element of ker G̃2. Then we have

0 =
[
0 0 Q̄T

V−C
]

G2z = Q̄T
V−CAT

V PCze

and
0 =
[
QT

CRV 0 0
]

G2z = QT
CRV ALzL.

Both conclusions yield Q1z= 0, and hence G1z= G̃2z= 0. In other words, z belongs
to kerQ1 and also to kerG1 = imQ1. In consequence, z = 0 holds true and G̃2 is
nonsingular. ��

We want to finish this section with a summary of structural properties of circuit
systems. We have seen by (3.59) that circuit systems are given in quasi-linear form

Ā(d(x, t))′+b(x, t) = 0 (3.70)
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with a constant matrix Ā. The subspace imQ0Q1 = N0 ∩ S0 is always independent
of the choice of projectors. From the decoupled versions of linear index-2 DAEs
we know that exactly the part of the solution belonging to imQ0Q1 describes the
index-2 components of the system. By an index-2 component we mean a compo-
nent which involves first derivatives of algebraically given components. Interest-
ingly, these components appear only linearly in circuit systems as the following
proposition shows.

Theorem 3.48. Let the assumptions of Theorem 3.47 be satisfied and let the index-1
or index-2 case be valid.

(1) Then, the circuit systems (3.70) have the special structure

Ā(d(P0x, t))′+ b̄(Ux, t)+ B̄T x = 0 (3.71)

with constant coefficient matrix B̄ and constant projectors

P0 =

⎡
⎣

PC 0 0
0 I 0
0 0 0.

⎤
⎦ , T =

⎡
⎣

QCRV 0 0
0 0 0
0 0 Q̄V−C.

⎤
⎦ , U := I−T.

(2) The projectors Q0 and Q1 described in (3.61) and (3.62) satisfy the relations

imT = imQ0Q1 = imQCRV ×{0}× im Q̄V−C, Q0 = I−P0.

Remark 3.49. Theorem 3.48 remains valid also for controlled current and voltage
sources if they do not belong to C-V loops or L-I cutsets and their controlling volt-
ages and currents do not belong to C-V loops or L-I cutsets. Using the results from
[70], the proof given here can also be applied to systems with controlled sources.

Proof. We start by proving (2). Using (3.61) and (3.62) we find

Q0Q1 =

⎡
⎣

0 QCRV H−1
2 (·)QT

CRV AL 0
0 0 0

− Q̄V−CH−1
3 (·)Q̄T

V−CAT
V PC 0 0

⎤
⎦ .

Obviously, imQ0Q1 ⊆ imQCRV ×{0}× imQ̄V−C. On the other hand, we have

Q0Q1

⎡
⎣
−H−1

1 (·)AV Q̄V−CzV
L−1(·)AT

LQCRV ze
0

⎤
⎦=

⎡
⎣

QCRV ze
0

Q̄V−CzV

⎤
⎦

for any ze ∈ R
ne and zV ∈ R

nV which implies also imQ0Q1 ⊇ imQCRV ×{0}×
im Q̄V−C.

(1) Since we have assumed all voltage and current sources to be independent, the
function b(x, t) in (3.71) has the form
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b(x, t) =

⎡
⎣

ARg(AT
Re, t)+AL jL +AV jV +AIis(t)

−AT
Le

AT
V e− vs(t)

⎤
⎦ .

Defining

b̄(x, t) :=

⎡
⎣

ARg(AT
Re, t)+AL jL +AV (I− Q̄V−C) jV +AIis(t)

−AT
L(I−QCRV )e

AT
V e− vs(t)

⎤
⎦ ,

and

B̄ :=

⎡
⎣

0 0 AV Q̄V−C
−AT

LQCRV e 0 0
0 0 0

⎤
⎦

we get b(x, t) = b̄(x, t)+BT x with the projector

T =

⎡
⎣

QCRV 0 0
0 0 0
0 0 Q̄V−C.

⎤
⎦ .

Notice that b̄(x, t) = b̄(Ux, t) for U = I−T since AT
RQCRV e = 0 and AT

V QCRV e = 0.
Owing to the properly stated leading term, the projector Q0 = I−P0 is at the same
time a projector onto kerdx. This implies

d(x, t)−d(P0x, t) =
1∫

0

dx(sx+(1− s)P0x, t)Q0xds = 0, for all arguments x and t.

��
Observe that here the intersection subspace N0 ∩ S0 = imT is even a constant one.
It is trivial that imT = {0} in the index-1 case, but it has dimension ≥ 1 for index-2
DAEs. We close this section by discussing solvability.

Theorem 3.50. Let the function d in (3.71) be continuously differentiable, let b̄ be
continuous together with b̄x and let the underlying network system (3.58) satisfy the
assumptions of Theorem 3.47 which yield a regular index-1 DAE.
Then, to each point (x0, t0) such that b̄(x0, t0)∈ im Ā, there exists at least one solution
x∗ of the DAE passing through x∗(t0) = x0.
If d also has continuous second partial derivatives dxx,dtx, then this solution is
unique.

Proof. The DAE satisfies Assumption 3.16 and it is regular with index 1. Addition-
ally, kerdx = kerP0 is constant. The existence of the solution is now an immediate
consequence of Theorem 3.55.
The uniqueness follows from Theorem 3.53. ��
The index-2 case is less transparent. The local solvability Theorem 3.56 applies only
to DAEs having a linear derivative part. For this reason we rewrite the DAE as
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Ādx(P0x, t)(P0x)′+ Ādt(P0x, t)+ b̄(Ux, t)+ B̄T x = 0. (3.72)

If d is continuously differentiable and also has continuous second partial derivatives
dxx,dtx, and b̄ is continuous together with b̄x, then the DAE (3.72) meets Assump-
tion 3.16. Also the structural conditions demanded by Theorem 3.56 are fulfilled
by equation (3.72). The consistency condition for the initial point (x0, t0) result-
ing from the obvious constraint reads b̄(Ux0, t0)∈ im Ā. A second much more subtle
consistency condition for (x0, t0) results from formula (3.99) in Theorem 3.56. Then,
supposing slight additional smoothness, Theorem 3.56 guarantees the existence and
uniqueness of a solution x∗ with x∗(t0) = x0.

3.7 Local solvability

Each regular linear DAE with sufficiently smooth coefficients and excitations is
solvable. Nonlinear DAEs are much more complex. Regularity does not necessarily
imply solvability. For instance, if a nonlinear Hessenberg form DAE has size r on
its definition domain Db×Ib, i.e., this DAE is regular with tractability index r (cf.
Theorem 3.42), then this does not at all mean that there is a solution passing through
a given point (x0, t0) ∈ Db×Ib. For the existence of such a solution, x0 must be a
consistent value. The following two examples illustrate the situation.

Example 3.51 (Semi-explicit index-1 DAE). We consider once again the DAE

x′1(t)+ x1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),

(3.73)

given on D f = {x ∈ R
2 : x2 > 0}, I f = R from Example 3.7. As shown in Exam-

ple 3.18, it is a semi-explicit DAE being regular with index 1 on D f ×I f . Every
solution value at time t must lie in the set

M0(t) := {x ∈ D f : (x1)
2 +(x2)

2−1− γ(t) = 0},

and, obviously, through points outside there are no solutions. Through each point
t0 ∈ I f , x0 ∈M0(t0) passes through exactly one solution. ��

Example 3.52 (Hessenberg size-2 DAE). Reconsider the DAE

x′1(t)+ x1(t) = 0,
x2(t)x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2−1 = γ(t),
(3.74)

given onD f = {x∈R
3 : x2 > 0}, I f =R, which is investigated in Examples 3.8 and

3.19. The DAE is regular with tractability index 2. The solution values must belong
to the obvious constraint set
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M0(t) := {x ∈ R
3 : (x1)

2 +(x2)
2−1− γ(t) = 0},

and also to the hidden constraint set

H(t) := {x ∈ D f :−2(x1)
2 +2x3− γ ′(t) = 0}.

The obvious constraint set M0(t) contains points which are no longer consistent,
but the proper subsetM1(t) :=M0(t)∩H(t)⊂M0(t) consists of consistent points,
that is, through each point t0 ∈ R, x0 ∈M1(t0) passes through a solution. ��

In the present section we prove that the obvious constraint set of a general reg-
ular DAE (3.1) with tractability index 1 is filled by solutions as it is the case in
Example 3.51.
Furthermore, we also prove the local solvability of a class of regular DAEs with
tractability index 2, which meets the structure of MNA DAEs and applies to Exam-
ple 3.52.

By definition, a function x∗ ∈ C(I∗,Rm) is a solution of the DAE (3.1), if
x∗(t) ∈ D f , t ∈ I∗, d(x∗(.), .) ∈ C1(I∗,Rn), and the DAE (3.1) is satisfied point-
wise on I∗. In our basic setting, d is always a C1 function, and D(x, t) = dx(x, t) has
constant rank. The inclusion

u′∗(t)−dt(x∗(t), t) ∈ D(x∗(t), t), t ∈ I∗ (3.75)

is valid for all solutions (cf. Proposition C.1). Due to the constant rank of D(x, t)
there is a continuous functions w∗ such that

u′∗(t)−dt(x∗(t), t) = D(x∗(t), t)w∗(t), t ∈ I∗. (3.76)

In particular, for d(x, t) = D(t)x it holds that

u′∗(t)−D′(t)x∗(t) = (D(t)P0(t)x∗(t))′ −D′(t)x∗(t)

= D′(t)P0(t)x∗(t)+D(t)(P0(t)x∗(t))′ −D′(t)x∗(t)

=−D′(t)Q0(t)x∗(t)+D(t)(P0(t)x∗(t))′

= D(t)Q′0(t)x∗(t)+D(t)(P0(t)x∗(t))′

= D(t){(P0(t)x∗(t))′ −P′0(t)x∗(t)}

with any C1-projector Q0 onto kerD, P0 = I−Q0.

3.7.1 Index-1 DAEs

Let the DAE (3.1) be regular with tractability index 1 on the open set G ⊂ D f ×I f .
All solution values have to remain within the obvious constraint set

M0(t) := {x ∈ D f : ∃y ∈ R
n : y−dt(x, t) ∈ imD(x, t), f (y,x, t) = 0}.
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We prove that through each (x̄, t̄ ) ∈ G, x̄ ∈M0(t̄ ) passes through exactly one solu-
tion. This means that the obvious constraint is at the same time the set of consistent
values.

Theorem 3.53. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set G ⊂ D f ×I f . Let d have the additional con-
tinuous partial derivatives dxx, dxt .
Then, for each (x̄, t̄ ) ∈ G, x̄ ∈M0(t̄), there is exactly one solution x∗ ∈ C(I∗,Rm) of
the DAE which satisfies x∗(t̄ ) = x̄.

Proof. Suppose all assumptions to be given. Owing to the index-1 property, the
matrix function G1 = G0 +B0Q0 remains nonsingular on R

m×G independently of
the special choice of the continuous projector function Q0 onto N0 = kerG0 = kerD.
Owing to the properly stated leading term the obvious constraint set is (cf. Proposi-
tion 3.10)

M0(t) := {x ∈ D f : ∃!y ∈ R
n : y−dt(x, t) ∈ imD(x, t), f (y,x, t) = 0}.

We take use of the subspaces

S(y,x, t) := {z ∈ R
m : fx(y,x, t)z ∈ im fy(y,x, t)D(x, t)},

and
S0(x1,x, t) := {z ∈ R

m : B0(x1,x, t)z ∈ imG0(x1,x, t)},

defined (cf. Section 3.1) for (x, t) ∈ D f ×I f , y ∈ R
n, and x1 ∈ R

m.
For each (x, t)∈G, the nonsingularity of G1(x1,x, t), for all x1 ∈R

m, is equivalent
to the transversality condition (cf. Lemma A.9)

N0(x, t)⊕S0(x1,x, t) = R
m, x1 ∈ R

m. (3.77)

We fix an arbitrary x̄ ∈ M0(t̄ ), (x̄, t̄ ) ∈ G. There is exactly one ȳ ∈ R
n with

ȳ−dt(x̄, t̄ ) ∈ imD(x̄, t̄ ), f (ȳ, x̄, t̄ ) = 0.
Denote by x̄1 ∈ R

m the value that is uniquely determined by the conditions

Q0(x̄, t̄ )x̄1 = 0, D(x̄, t̄ )x̄1 = ȳ−dt(x̄, t̄ ).

Then it holds that S(ȳ, x̄, t̄) = S0(x̄1, x̄, t̄). The index-1 property (3.77) yields

N0(x̄, t̄ )⊕S(ȳ, x̄, t̄ ) = R
m,

and further, if N(x̄,t̄ ) ⊂ G denotes a suitable neighborhood of (x̄, t̄ ),

N0(x, t)⊕S(ȳ, x̄, t̄ ) = R
m, (x, t) ∈N(x̄,t̄ ). (3.78)

This allows us to choose Q0(x, t) in accordance with the decomposition (3.78), such
that

imQ0(x, t) = N0(x, t), kerQ0(x, t) = S(ȳ, x̄, t̄), imP0(x, t) = S(ȳ, x̄, t̄).
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Denote

Q̄0(t) := Q0(x̄, t), P̄0(t) := P0(x̄, t), D̄(t) := D(x̄, t),

and further,

R̄(t) := R(x̄1, x̄, t), D̄(t)− := D(x̄1, x̄, t)−,

and emphasize that this construction leads to the property

ker Q̄0(t) = kerQ0(x, t) = S(ȳ, x̄, t̄ ), (x, t) ∈N(x̄,t̄ ).

Since the projectors Q0(x, t) and Q̄0(t) have the common nullspace S(ȳ, x̄, t̄ ), it fol-
lows that

Q0(x, t) = Q0(x, t)Q̄0(t), Q̄0(t) = Q̄0(t)Q0(x, t), P0(x, t) = P̄0(t)P0(x, t).

Because of

D(x1,x, t)− = P0(x, t)D(x1,x, t)− = P̄0(t)P0(x, t)D(x1,x, t)−,

we obtain the useful property

Q̄0(t)D(x1,x, t)− = 0, (x, t) ∈ N(x̄,t̄ ), x1 ∈ R
m.

Introduce the additional values

ū := d(x̄, t̄ ), μ̄ := D(x̄, t̄ )x̄ = D̄(t̄ )x̄, w̄ := Q0(x̄, t̄ )x̄+D(x̄1, x̄, t̄ )−(ȳ−dt(x̄, t̄ )).

By construction, it holds that Q̄0(t̄ )w̄ = Q̄0(t̄ )x̄, and

x̄ = P̄0(t̄ )x̄+ Q̄0(t̄ )x̄ = D̄(t̄ )−D̄(t̄ )x̄+ Q̄0(t̄ )x̄ = D̄(t̄ )−μ̄+ Q̄0(t̄ )w̄.

After these preparations we apply the standard implicit function theorem twice. In
the first step we define the function

D(μ ,u,w, t) := R̄(t)
{

u−d
(
D̄(t)−μ+ Q̄0(t)w , t

)}
− (I− R̄(t))μ (3.79)

for (μ ,u,w, t)∈R
n×R

n×R
m×R from a neighborhood of (μ̄ , ū, w̄, t̄ ). The function

D is continuous, and has the continuous partial derivatives Dμ , Du, Dw.
Due to

D(μ̄ , ū, w̄, t̄ ) = R̄(t̄ ){ū−d(x̄, t̄ )}− (I− R̄(t̄ ))D̄(t̄ )x̄ = 0,

and
Dμ(μ̄ , ū, w̄, t̄ ) = R̄(t̄){−R̄(t̄ )}− (I− R̄(t̄ )) =−I,

the equationD(μ ,u,w, t) = 0 implicitly defines a unique function μ = h(u,w, t) on a
neighborhoodN(ū,w̄,t̄ ) of (ū, w̄, t̄ ). This function h is continuous and has continuous
partial derivatives hu, hw. Its values belong to a neighborhood of μ̄ . It holds that
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h(ū, w̄, t̄ ) = μ̄ and, for (u,w, t) ∈ N(ū,w̄,t̄ ),

D(h(u,w, t),u,w, t) = 0, h(u,w, t) = R̄(t)h(u,w, t), h(u,w, t) = h(u, Q̄0(t)w, t).

As the second step we denote

ξ (u,w, t) := D̄(t)−h(u,w, t)+ Q̄0(t)w, (u,w, t) ∈N(ū,w̄,t̄),

and define the function F on N(ū,w̄,t̄) by

F(u,w, t) := f (D(ξ (u,w, t), t)w+dt(ξ (u,w, t), t),ξ (u,w, t), t). (3.80)

Observe that ξ (ū, w̄, t̄ ) = x̄, and

F(ū, w̄, t̄ ) = f (D(x̄, t̄ )w̄+dt(x̄, t̄ ), x̄, t̄ ) = f (ȳ, x̄, t̄ ) = 0.

The functions ξ and F are continuous. ξ , respectively F , have continuous partial
derivatives ξw, ξu, respectively Fw, Fu. We show the nonsingularity of the partial
Jacobian Fw(ū, w̄, t̄ ). Consider the equation Fw(ū, w̄, t̄ )z = 0, i.e.,

f̄y{D̄z+ D̄xξ̄wzw̄+ d̄txξ̄wz}+ f̄xξ̄wz = 0 (3.81)

(the accent bar indicates that the functions are to be evaluated at the arguments
ū, w̄, t̄, x̄, ȳ). Recall that h(u,w, t) ≡ h(u, Q̄0(t)w, t), which leads to ξ (u,w, t) =
ξ (u, Q̄0(t)w, t), and hence

ξw(u,w, t) = ξw(u,w, t)Q̄0(t).

That means that we have ξ̄wz = ξ̄wQ̄0(t)z in (3.81). Rearrange (3.81) to

( f̄yD̄+ f̄xQ̄0)z+ fy{D̄xξ̄wzw̄+ d̄txξ̄wz}+ f̄x(ξ̄w− I)Q̄0z = 0.

A closer look at the first matrix in front of z shows that

f̄yD̄+ f̄xQ̄0 = fy(ȳ, x̄, t̄ )D(x̄, t̄ )+ fx(ȳ, x̄, t̄ )Q0(x̄, t̄ )

= A(x̄1, x̄, t̄)D(x̄, t̄ )+B(x̄1, x̄, t̄ )Q0(x̄, t̄ ) = G1(x̄1, x̄, t̄ )

is nonsingular. It follows that

z+ Ḡ−1
1 Ā{D̄xξ̄wzw+ d̄txξ̄wz}+ Ḡ−1

1 B̄0(ξ̄w− I)Q̄0z = 0. (3.82)

Since Ḡ−1
1 Ā = Ḡ−1

1 Ḡ0D̄− = P̄0D̄−, multiplication of (3.82) by Q̄0 cancels out the
second term such that

Q̄0z+ Q̄0Ḡ−1
1 B̄0(ξ̄w− I)Q̄0z = 0. (3.83)

Because of im Q̄0 = N0(x̄, t̄ ), ker Q̄0 = S(ȳ, x̄, t̄ ), it holds that Q̄0 = Q̄0Ḡ−1
1 B̄0 (cf.

Lemma A.10). Compute
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Q̄0(ξ̄w− I)Q̄0 = Q̄0ξ̄w− Q̄0 = Q̄0{D̄−h̄w + Q̄0}− Q̄0 = Q̄0− Q̄0 = 0.

We then obtain from (3.83) that Q̄0z = 0, thus ξ̄wz = ξ̄wQ̄0z = 0. Finally, (3.82)
yields z = 0. In consequence, the partial Jacobian Fw(ū, w̄, t̄ ) is nonsingular. Again,
by the implicit function theorem, the equation F(u,w, t) = 0 defines a solution func-
tion w = ω(u, t) on a neighborhood N(ū,t̄) of (ū, t̄). The function ω is continuous
with a continuous partial derivative ωu.
Use the shorter expressions

κ(u, t) := D̄(t)−h(u, Q̄0(t)ω(u, t), t)+ Q̄0(t)ω(u, t) = ξ (u,ω(u, t), t),

φ(u, t) := D(κ(u, t), t)ω(u, t)+dt(κ(u, t), t), (u, t) ∈N(ū,t̄ ).

These two functions are continuous with continuous partial derivatives κu, φu.
Now we are ready to construct a solution of the DAE (3.1) which satisfies the

condition x(t̄) = x̄. First we solve the IVP

u′(t) = φ(u(t), t), u(t̄ ) = ū, (3.84)

and denote by u∗ ∈ C1(I∗,Rn) its solution, t̄ ∈ I∗. The interval I∗ is sufficiently
small so that all values (u∗(t), t) remain in the definition domain N(ū,t̄ ) of φ . The
solution u∗ exists and is unique owing to the continuity of φ and φu.
In the final step we set

w∗(t) := ω(u∗(t), t),

μ∗(t) := h(u∗(t),w∗(t), t),

x∗(t) := κ(u∗(t), t) = ξ (u∗(t),w∗(t), t), t ∈ I∗,

and prove that x∗ solves the DAE, possibly on an interval I∗∗ ⊆ I∗ containing t̄. By
construction, it hold that x∗(t̄) = κ(ū, t̄ ) = x̄, i.e., the function x∗ passes through the
given point.
For t ∈ I∗ compute

f (u′∗(t),x∗(t), t) = f
(
φ(u∗(t), t),κ(u∗(t), t), t

)

= f
(

D
(
ξ (u∗(t),w∗(t), t), t

)
w∗(t)+dt

(
ξ (u∗(t),w∗(t), t), t

)
,

ξ (u∗(t),w∗(t), t), t
)
= 0.

If we succeed in proving the relation u∗(t) = d(x∗(t), t) we obtain, with x∗, the
required DAE solution. Remember that x∗ and w∗ are just continuous functions, and
it holds that

u′∗(t) = D(x∗(t), t)w∗(t)+dt(x∗(t), t), t ∈ I∗, (3.85)
u∗(t̄) = ū = d(x̄, t̄).
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The construction further yields D(μ∗(t),u∗(t),w∗(t), t) = 0, t ∈ I∗, and hence

R̄(t)u∗(t) = R̄(t)d(x∗(t), t), t ∈ I∗. (3.86)

This implies, in particular, that the function R̄(.)d(x∗(.), .) is continuously differen-
tiable. We derive

(R̄(t)d(x∗(t), t))′ = R̄′(t)d(x∗(t), t)+ R̄(t)dt(x∗(t), t)+L(t), (3.87)

with

L(t) := lim
τ→0

1∫

0

R̄(t)
1
τ

D
(
x∗(t)+ s(x∗(t + τ)− x∗(t)), t + sτ

)
(x∗(t + τ)− x∗(t))ds.

The limit L(t) is well defined and continuous with respect to t since the derivative
on the left side of (3.87) exists and is continuous. By means of (3.85) and (3.86) we
find the expression

(R̄(t)d(x∗(t), t))′ = (R̄(t)u∗(t))′ = R̄′(t)u∗(t)+ R̄(t)u′∗(t)

= R̄′(t)u∗(t)+ R̄(t)(D(x∗(t), t)w∗(t)+dt(x∗(t), t)),

and therefore

L(t) = R̄(t)D(x∗(t), t)w∗(t)+ R̄′(t)(u∗(t)−d(x∗(t), t)).

The difference quotient

1
τ
(d(x∗(t + τ), t + τ)−d(x∗(t), t)) = K(t,τ)+dt(x∗(t), t),

with

K(t,τ) :=
1∫

0

1
τ

D
(
x∗(t)+ s(x∗(t + τ)− x∗(t)), t + sτ

)
(x∗(t + τ)− x∗(t))ds,

possesses a limit for τ → 0, if K(t,τ) does. To prove the latter, we recall that R̄(t)
projects onto imD(x̄, t). Denote N̄A(t) := ker R̄(t) such that

imD(x̄, t)⊕ N̄A(t) = R
n, t ∈ I∗.

In a sufficiently small neighborhood of (x̄, t̄), say for x ∈ Nx̄, t ∈ I∗∗, the decompo-
sition

imD(x, t)⊕ N̄A(t) = R
n

is valid, too. Denote by R̃(x, t) the projector onto imD(x, t) along N̄A(t). Since R̄(t)
and R̃(x, t) share their nullspace N̄A(t), it holds that R̃(x, t) = R̃(x, t)R̄(t), and hence
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D(x, t) = R̃(x, t)D(x, t) = R̃(x, t)R̄(t)D(x, t), x ∈Nx̄, t ∈ I∗∗.

By this means we obtain the limit K(t) := lim
τ→0

K(t,τ) = R̃(x∗(t), t)L(t), and conse-

quently, the derivative d(x∗(t), t)′ exists. Compute further

d(x∗(t), t)′ =dt(x∗(t), t)+K(t)

=dt(x∗(t), t)+ R̃(x∗(t), t)R̄(t)D(x∗(t), t)w∗(t)

+ R̃(x∗(t), t)R̄′(t)(u∗(t)−d(x∗(t), t))

=dt(x∗(t), t)+D(x∗(t), t)w∗(t)+R(x∗(t), t)R̄′(t)(u∗(t)−d(x∗(t), t))

=u′∗(t)+R(x∗(t), t)R̄′(t)(u∗(t)−d(x∗(t), t)).

Now it is evident that the function δ∗ := u∗−d(x∗(.), .) is the solution of the standard
homogeneous IVP δ ′+ R̃R̄δ = 0, δ (t̄) = 0, and therefore δ∗ vanishes identically.
This completes the proof of the relation u∗(t) = d(x∗(t), t), t ∈ I∗∗, thus, x∗ is in
fact a solution of the DAE. The uniqueness of the solution x∗ is a consequence of
the related properties of the implicitly given functions, and of the solution of the
IVP (3.84). ��

Considering the assumptions in detail we see that they are in fact appropriate, and
in general problems they cannot be weakened without losing, e.g., uniqueness.

Having local solutions, one can extend these solutions as long as the solution does
not leave the domain of regularity with index 1. Till now, such characterizations of
the maximal existence intervals as they are known for explicit regular ODEs are
not available. And there is no general answer to the question of whether there are
extensions through critical points and what they look like. This highly interesting
topic needs future research.

In particular, the general Theorem 3.53 applies to the DAE (3.88) in Exam-
ple 3.54 which is not covered by the theory in Part II.

Example 3.54 (ker fy varies with y). Put n = m = m1 +m2, k = m, and

f (y,x, t) :=
[

y1 +ϕ(y2,x, t)
x2−ψ(x1, t)

]
, y =

[
y1
y2

]
, x =

[
x1
x2

]
∈ R

m, t ∈ R,

d(x, t) :=
[

x1
ψ(x1, t)

]
, fy =

[
I ϕy2
0 0

]
, dx =

[
I 0
ψx1 0

]
, dt =

[
0
ψt

]
,

where ϕ and ψ are smooth functions such that the matrix I +ϕy2ψx1 remains non-
singular. The leading term of the resulting DAE (3.1) is properly stated: fy and dx
have constant rank m1, and ker fy⊕ imdx =R

m is valid. This special DAE (3.1) can
be written in detail

x′1(t)+ϕ((ψ(x1(t), t))′,x1(t),x2(t), t) = 0,
x2(t)−ψ(x1(t), t) = 0.

(3.88)
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The nonsingularity of I+ϕy2ψx1 is responsible for the fact that the implicit equation
for x′1(t), namely,

x′1(t)+ϕ(ψx1(x1(t), t)x′1(t)+ψt(x1(t), t),x1(t),ψ(x1(t), t), t) = 0, (3.89)

is regular, that is, it contains a uniquely defined expression for x′1(t), if any.
The matrix function G0, as well as an admissible Q0 and the resulting G1 = G0 +
fxQ0, are

G0 = Adx =

[
I +ϕy2ψx1 0

0 0

]
, Q0 =

[
0

I

]
, G1 =

[
I +ϕy2ψx1 ϕx2

0 I

]
.

Since the matrix function G1 remains nonsingular, by definition, the DAE is regular
with tractability index 1. Compute the constraint sets

M̃0(t) = {x ∈ R
m : x2 = ψ(x1, t)},

and

M0(t) = {x ∈Rm : x2 = ψ(x1, t),

∃y ∈ R
n : y1 +ϕ(y2,x, t) = 0,y2−ψt(x1, t) = ψx1(x1, t)y1}

= {x ∈Rm : x2 = ψ(x1, t),∃y2 ∈ R
m2 : y2−ψt(x1, t) =−ψx1(x1, t)ϕ(y2,x, t)}

= {x ∈M̃0(t) : ∃y2 ∈ R
m2 : y2 +ψx1(x1, t)ϕ(y2,x, t) = ψt(x1, t)}.

The set M0(t) is seemingly a proper subset of M̃0(t), however, we are not aware
of a concrete case where this actually happens.

For a very large class of DAEs the subspace kerD(x, t) is a C1-subspace independent
of x or even a constant subspace, and we may denote

kerD(x, t) =: N0(t), for x ∈ D f , t ∈ I f . (3.90)

For instance, the MNA-DAEs discussed in Section 3.6 and the DAEs describing
constrained mechanical motion show a constant leading nullspace. Also, this prop-
erty is given in Example 3.54.
Let Q0 be any continuously differentiable projector function onto N0, P0 = I−Q0.
The property (3.90) implies

d(x, t)−d(P0(t)x, t) =
1∫

0

dx(sx+(1− s)P0(t)x, t)Q0(t)xds = 0, x ∈ D f , t ∈ I f ,

supposing that the definition domain D f contains P0(t)x together with x. Now the
following identities result:
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d(x, t)≡ d(P0(t)x, t),

dx(x, t)≡ dx(P0(t)x, t),

dt(x, t)≡ dt(P0(t)x, t)+dx(P0(t)x, t)P′0(t)x.

The fact that d(x, t) is independent of the nullspace component Q0(t)x allows us
slightly to reduce the smoothness requirement for d in the local solvability assertion.

Theorem 3.55. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set G ⊂ D f ×I f . Additionally, let kerD(x, t) be
a C1-subspace independent of x.
Then, for each (x̄, t̄ )∈G, x̄∈M0(t̄), there exists at least one solution x∗ ∈C(I∗,Rm)
of the DAE passing through x∗(t̄ ) = x̄.

Proof. We repeat the arguments of the previous proof. The special property of d
leads to

D(μ ,u,w, t)≡D(μ ,u,0, t),
h(u,w, t)≡ h(u,0, t),

ξ (u,w, t)≡ D̄(t)−h(u,0, t)+ Q̄0(t)w,

F(u,w, t)≡ f (D(D̄(t)−h(u,0, t), t)(I+P′0(t)Q0(t))w

+dt(D̄(t)−h(u,0, t), t), D̄(t)−h(u,0, t)+Q0(t)w, t).

This makes it clear that the partial derivative Fw exists without assuming d to have
the second partial derivatives. However, now the resulting function ω(u, t) is just
continuous. For the existence of ωu second derivatives of d would be needed. ��

3.7.2 Index-2 DAEs

In higher index DAEs, new difficulties arise from hidden constraints and inherent
differentiations. We restrict our interest to regular DAEs with tractability index 2
and provide a solvability result which meets, in particular, the situation in circuit
modeling. For transparency we recall and modify some relevant facts from Chap-
ter 2.

3.7.2.1 Advanced decoupling of linear index-2 DAEs

Any regular DAE
A(Dx)′+Bx = q, (3.91)

with tractability index two and fine decoupling projector functions Q0,Q1, decom-
poses into the system
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u′ − (DΠ1D−)′u+DΠ1G−1
2 BD−u = DΠ1G−1

2 q,

−Q0Q1D−(DP0Q1x)′

+Q0x+(Q0P1G−1
2 B+Q0Q1D−(DP0Q1D−)′D)Π1x = Q0P1G−1

2 q,

P0Q1x = P0Q1G−1
2 q,

where u = DΠ1x, and the DAE solution is x =Π1D−u+P0Q1x+Q0x.
Notice that Q1G−1

2 BΠ1 = 0 is true for fine decoupling.
Here the matrix function D is supposed to be continuously differentiable. This
allows us to choose a continuously differentiable projector function Q0. In con-
sequence, all D−, Π1, P0Q1 are continuously differentiable, too. The subspace
imQ0Q1 = N0∩S0 is a C-subspace of dimension m− r1. The matrix function Q0Q1
has constant rank m−r1. We introduce the additional continuous projector functions
T and U = I−T such that

imT = imQ0Q1, T Q0 = T = Q0T, P0U = P0 =UP0

is fulfilled. With the help of these projectors we advance the splittings of the DAE
solution and the DAE itself to x =Π1D−u+P0Q1x+UQ0x+T x and

u′ − (DΠ1D−)′u+DΠ1G−1
2 BD−u = DΠ1G−1

2 q,

−Q0Q1D−(DP0Q1x)′

+T x+(T G−1
2 B+Q0Q1D−(DP0Q1D−)′D)Π1x = T Q0P1G−1

2 q,

UQ0x+UQ0P1G−1
2 BD−u =UQ0G−1

2 q,

P0Q1x = P0Q1G−1
2 q.

Since Z := P0Q1 +UQ0 is also a projector function, it is reasonable to write
x =Π1D−u+Zx+Tx and

u′ − (DΠ1D−)′u+DΠ1G−1
2 BD−u = DΠ1G−1

2 q,

−Q0Q1D−(DP0Q1x)′

+T x+(T G−1
2 B+Q0Q1D−(DP0Q1D−)′D)Π1x = (T −Q0Q1)G−1

2 q,

Zx+UQ0G−1
2 BΠ1x = ZG−1

2 q.

It is worth mentioning that this system could also be obtained by splitting the
original DAE (3.91) via (Π1 +Z +T )G−1

2 .
Our construction is accompanied by the properties

kerZG−1
2 = imA,

G−1
2 BT = T,

ZG−1
2 B = ZG−1

2 BΠ1 +P0Q1 +UQ0 = ZG−1
2 BΠ1 +Z,

DZG−1
2 BΠ1 = DP0Q1G−1

2 BΠ1 = 0,



3.7 Local solvability 261

which play their role in the nonlinear case later on, too.
The obvious constraint of the linear DAE (Definition 3.9 and Proposition 3.10) is

M0(t) = {x ∈ R
m : ∃!y ∈ R

n : y−D′(t)x ∈ imD(t), A(t)y+B(t)x = q(t)}
= {x ∈ R

m : B(t)x−q(t) ∈ imA(t)}
= {x ∈ R

m : Z(t)G2(t)−1(B(t)x−q(t)) = 0}
= {x ∈ R

m : Z(t)x = Z(t)G2(t)−1(q(t)−B(t)Π1(t)x)},

which shows the component Z(t)x to be fixed in terms of Π1(t)x. We also use the
description

M0(t) = {x ∈ R
m : ∃!D(t)x1,x1 ∈ R

m : A(t)(D(t)x1 +D′(t)x)+B(t)x = q(t)},

where the symbol ∃!D(t)x1 indicates that x1 is not necessarily unique, but the im-
age D(t)x1 is so. The above decoupled system unveils in its second line the hidden
constraint which additionally fixes the component T (t)x. This allows us to describe
the set of consistent values as

M1(t) =
{

x ∈ R
m : Z(t)x = Z(t)G2(t)−1(q(t)−B(t)Π1(t)x),

−Q0(t)Q1(t)D(t)−(D(t)P0(t)Q1(t)G2(t)−1q(t))′+T (t)x

+
(
T (t)G2(t)−1B(t)+Q0(t)Q1(t)D(t)−(D(t)P0(t)Q1(t)D(t)−)′D(t)

)
Π1(t)x

= (T (t)−Q0(t)Q1(t))G2(t)−1q(t)
}
.

It is not difficult to check that the more transparent description

M1(t) =
{

x ∈ R
m : ∃!D(t)x1,x1 ∈ R

m : A(t)(D(t)x1 +D′(t)x)+B(t)x = q(t),

D(t)P0(t)Q1(t)x1 = (D(t)P0(t)Q1(t)G2(t)−1q(t))′ − (D(t)P0(t)Q1(t))′x
}

is true by an analogous decoupling of the equation

A(t)(D(t)x1 +D′(t)x)+B(t)x = q(t).

This new description does not explicitly determine the hidden constraint as the pre-
vious version does, but instead fixes the corresponding part of the jet variable x1.
This understanding appears to be helpful in the nonlinear case.

3.7.2.2 Nonlinear index-2 DAEs

We consider the nonlinear DAE with linear derivative term

f ((D(t)x(t))′,x(t), t) = 0, (3.92)
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which is supposed to satisfy Assumption 3.16 and to be regular with tractability
index 2 on the open set G ∈ D f ×I f . The obvious constraint set is

M0(t) = {x ∈ D f : ∃!y ∈ R
n : y−D′(t)x ∈ imD(t), f (y,x, t) = 0}

= {x ∈ D f : ∃!D(t)x1,x1 ∈ R
m : f ((D(t)x1 +D′(t)x,x, t) = 0}.

We apply the subspaces

N0(t) = kerD(t) and S(y,x, t) = {z ∈ R
m : fx(y,x, t)z ∈ im fy(y,x, t)},

and notice that the intersection N0(t)∩ S(y,x, t) has the dimension m− r1 for all
y ∈ R

n,(x, t) ∈ G, x ∈M0(t).
Consider a fixed point (x̄, t̄) ∈ G such that x̄ ∈ M0(t̄), and denote by ȳ ∈ R

n,
x̄1 ∈ R

m associated values with

ȳ−D′(t̄)x̄ = D(t̄)x̄1, f (ȳ, x̄, t̄) = 0.

We intend to take use of the above advanced decoupling of linear index-2 DAEs
applying it via linearization. For this aim we construct a reference function x̃ ∈
C2(I,Rm) such that its values lie in G, i.e., (x̃(t), t) ∈ G, for t ∈ I, and x̃(t̄) = x̄,
(Dx̃)′(t̄) = ȳ. We can take, for instance, x̃(t) = x̄+ (t − t̄)x̄1. Then we apply lin-
earization along the function x̃ and arrive at the linear DAE

Ã(Dx)′+ B̃x = q (3.93)

with coefficients

Ã(t) = fy
(
(D(t)x̃(t))′, x̃(t), t

)
, B̃(t) = fx

(
(D(t)x̃(t))′, x̃(t), t

)
, t ∈ I.

The linear DAE (3.93) inherits regularity with tractability index 2 and the character-
istic values r0,r1,r2 from the nonlinear DAE (3.92) as guaranteed by Theorem 3.33.
Choose the projector function Q0 onto N0 to be continuously differentiable. This is
possible owing to the continuous differentiability of D.
Without loss of generality (cf. Proposition 3.79) we suppose the subspace
ker fy(y,x, t) to be independent of the variables y and x, such that ker fy(y,x, t) =
kerR(t) holds true. Since D, R and P0 are continuously differentiable, so is D−.

The following condition restricts the possible structure of the DAE (3.92), but it
is valid, for instance, in the MNA DAE in the previous section:

im fy(y,x, t) and N0(t)∩S(y,x, t) are independent of y and x. (3.94)

Assuming this structure to be given, T (t) ∈ L(Rm) denotes an additional projector
such that

imT (t) = N0(t)∩S(y,x, t), y ∈ R
n,(x, t) ∈ G. (3.95)

We choose T as in the linear case so that the relations
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T Q0 = T = Q0T, U := I−T, UP0 = P0 = P0U

become true. Supposing the intersection subspace to be a C1-subspace we may ar-
range T to be continuously differentiable.
Next, starting with Q0, we form an admissible matrix function sequence and admis-
sible projector functions for the linear DAE (3.93). We indicate by a tilde, if they
may depend on the function x̃, e.g., Q̃1, etc. The resulting projector functions Π̃1
and Z̃ = P0Q̃1 +UQ0 are also continuously differentiable.
Denote

ū = D(t̄)Π̃1(t̄)x̄,

z̄ = Z̃(t̄)x̄,

w̄ = T (t̄)x̄,

ū1 = D(t̄)Π̃1(t̄)x̄1 +(DΠ̃1)
′(t̄)x̄,

v̄1 = D(t̄)P0(t̄)Q̃1(t̄)x̄1 +(DP0Q̃1)
′(t̄)x̄,

so that

x̄ = Π̃1(t̄)D(t̄)−ū+ z̄+ w̄, ȳ = ū1 + v̄1.

Since the subspace im fy(y,x, t) does not vary with y and x, it holds that

ker Z̃(t)G̃2(t)−1 = im fy(y,x, t), y ∈ R
n,x ∈ D f , t ∈ I. (3.96)

Moreover, the condition (3.94) yields

Z̃(t)G̃2(t)−1 fx(y,x, t)T (t) = 0, y ∈ R
n,x ∈ D f , t ∈ I. (3.97)

Namely, for each ξ ∈ R
m, T (t)ξ belongs to S(y,x, t), thus fx(y,x, t)T (t)ξ

∈ im fy(y,x, t), and hence Z̃(t)G̃2(t)−1 fx(y,x, t)T (t)ξ = 0.
Further, we derive for y ∈ R

n,x ∈ D f , t ∈ I that

Z̃(t)G̃2(t)−1{ f (y,x, t)− f (0,(Π̃1(t)+ Z̃(t))x, t)
}

=

1∫

0

Z̃(t)G̃2(t)−1{ fy(sy,sx+(1− s)(Π̃1(t)+ Z̃(t))x, t)y

+ fx(sy,sx+(1− s)(Π̃1(t)+ Z̃(t))x, t)T (t)x
}

ds = 0.

This yields the identities

Z̃(t)G̃2(t)−1 f (y,x, t) = Z̃(t)G̃2(t)−1 f (0,(Π̃1(t)+ Z̃(t))x, t),

Z̃(t)G̃2(t)−1 fx(y,x, t) = Z̃(t)G̃2(t)−1 fx(0,(Π̃1(t)+ Z̃(t))x, t)(Π̃1(t)+ Z̃(t)),

y ∈ R
n, x ∈ D f , t ∈ I.
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Define the auxiliary function g on a neighborhoodN(ū,z̄,t̄) of (ū, z̄, t̄) in R
n+m+1 by

g(u,z, t) := Z̃(t)G̃2(t)−1 f (0,Π̃1(t)D(t)−u+ Z̃(t)z, t), (u,z, t) ∈N(ū,z̄,t̄). (3.98)

This gives g(ū, z̄, t̄) = Z̃(t̄)G̃2(t̄)−1 f (ȳ, x̄, t̄) = 0. The function g plays its role in our
solvability assertion, which takes up the idea of applying the structural condition
(3.94) from [205] and [211]. A priori, g is continuous together with its partial deriva-
tives gu and gz.

Now we are in a position to formulate the solvability assertion.

Theorem 3.56. Let the DAE (3.92) satisfy Assumption 3.16 and be regular with
tractability index 2 on the open set G. Let the structural restriction (3.94) be given,
and the intersection N0∩S be a C1-subspace.
Let (x̄, t̄) ∈ G be fixed, x̄ ∈M0(t̄), and let ȳ ∈R

n, x̄1 ∈R
m denote associated values

with
ȳ−D′(t̄)x̄ = D(t̄)x̄1, f (ȳ, x̄, t̄) = 0.

Let the linearized DAE (3.93) have the fine decoupling projector functions Q0, Q̃1.
Let the function g (see (3.98)) continuously differentiable.
Let the consistency condition

D(t̄)P0(t̄)Q̃1(t̄)x̄1 +(DP0Q̃1)
′(t̄)(I− Z̃(t̄))x̄+(Dg)t(D(t̄)Π̃1(t̄)x̄, Z̃(t̄)x̄, t̄) = 0

(3.99)
be satisfied.

(1) Then there exists at least one solution x∗ ∈ C1
D(I∗,Rm) of the DAE passing

through x∗(t̄) = x̄.
(2) The IVP

f ((D(t)x(t))′,x(t), t) = 0, D(t̄)Π̃1(t̄)x(t̄) = D(t̄)Π̃1(t̄)x̄+δ ,

is solvable for all sufficiently small δ ∈ imD(t̄)Π̃1(t̄).
(3) If, additionally, g has second partial derivatives guu,gzz,gzu,gtu,gtz, then the

DAE solutions in items (1) and (2) are unique.

The idea behind the proof is to benefit from the structural restrictions and to decom-
pose the original DAE in the following way.
Because of Π̃1+ Z̃+T = I and the nonsingularity of G̃2 we may turn from the given
DAE (3.92) to

(Π̃1(t)+ Z̃(t)+T (t))G̃2(t)−1 f ((D(t)x(t))′,x(t), t) = 0.

Owing to the projector properties, the latter equation decomposes into the three parts

Π̃1(t)G̃2(t)−1 f ((D(t)x(t))′,x(t), t) = 0,

Z̃(t)G̃2(t)−1 f ((D(t)x(t))′,x(t), t) = 0,

T (t)G̃2(t)−1 f ((D(t)x(t))′,x(t), t) = 0,
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which is the basic idea of the following investigation.

Lemma 3.57. Let g have the additional continuous partial derivative gt .

(1) Then there is a unique continuously differentiable function h : N(ū,t̄) → R
m

such that h(ū, t̄) = z̄, hu(ū, t̄) = Z̃(t̄)G̃2(t̄)−1B̃(t̄)Π̃1(t̄), and g(u,h(u, t), t) = 0,

h(u, t) = Z̃(t)h(u, t) = h(D(t)Π̃1(t)D(t)−u, t), (u, t) ∈N(ū,t̄).

(2) If Q0, Q̃1 provide a fine decoupling of the linearized DAE (3.93), then it follows
that D(t̄)hu(ū, t̄) = 0.

(3) If g has the additional continuous partial derivatives guu,gzz,guz,gtz,gtu, then
the function h has the continuous second partial derivatives huu,htu.

Proof. Introduce the continuously differentiable function

H(u,z, t) := g(u,z, t)+(I− Z̃(t))z, (u,z, t) ∈N(ū,z̄,t̄).

ComputeH(ū, z̄, t̄) = 0 and

Hz(ū, z̄, t̄) = gz(ū, z̄, t̄)+(I− Z̃(t)) = Z̃(t)G̃2(t)−1B̃(t)Z̃(t)+(I− Z̃(t)) = I.

The first and third assertions are now direct consequences of the standard implicit
function theorem, and the fact that H(u,h(u, t), t) = 0 implies g(u,h(u, t), t) = 0.
The second assertion follows from

D(t̄)Z̃(t̄)G̃2(t̄)−1B̃(t̄)Π̃1(t̄) = D(t̄)P0(t̄)Q̃1(t̄)G̃2(t̄)−1B̃(t̄)Π̃1(t̄) = 0.

��

Define the further auxiliary function

v1(u, t,u1) := D′(t)h(u, t)+D(t){hu(u, t)u1 +ht(u, t)}, u1 ∈ R
n,(u, t) ∈N(ū,t̄).

If g is continuously differentiable, then the function v1 is continuous together with
its partial derivative v1

u1(u, t,u1) = D(t)hu(u, t). If g has additional second partial
derivatives, then v1 also has the continuous partial derivative v1

u. Compute

v1(ū, t̄, ū1) = D′(t̄)z̄+D(t̄)ht(ū, t̄)

and
ht(ū, t̄) =−Ht(ū, z̄, t̄) =−gt(ū, z̄, t̄)+ Z̃′(t̄)z̄,

D(t̄)ht(ū, t̄) =−D(t̄)gt(ū, z̄, t̄)+D(t̄)Z̃′(t̄)z̄ =−D(t̄)gt(ū, z̄, t̄)+(DZ̃)′(t̄)z̄−D′(t̄)z̄.

It follows that
v1(ū, t̄, ū1) = (DP0Q̃1)

′(t̄)z̄−D(t̄)gt(ū, z̄, t̄). (3.100)

Assume for the moment that there is already a solution x∗ ∈ C1
D(I∗,Rn) passing

through x∗(t̄) = x̄, with I∗ a small neighborhood of t̄. Then
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Z̃(t)x∗(t) = h(D(t)Π̃1(t)x∗(t), t),

D(t)P0(t)Q̃1(t)x∗(t) = D(t)h(D(t)Π̃1(t)x∗(t), t),

(D(t)P0(t)Q̃1(t)x∗(t))′ = v1(D(t)Π̃1(t)x∗(t), t,(D(t)Π̃1(t)x∗(t))′
)

for t ∈ I∗,

must necessarily be valid, and in particular also

v̄1 = v1(ū, t̄, ū1). (3.101)

The last condition (3.101) reads in detail (cf. (3.100))

D(t̄)P0(t̄)Q̃1(t̄)x̄1 +(DP0Q̃1)
′(t̄)x̄ = (DP0Q̃1)

′(t̄)z̄−D(t̄)gt(ū, z̄, t̄).

Taking into account that

D(t̄)gt(ū, z̄, t̄) = (Dg)t(ū, z̄, t̄)−D′(t̄)g(ū, z̄, t̄) = (Dg)t(ū, z̄, t̄)

we obtain the equivalent condition (3.99), namely

D(t̄)P0(t̄)Q̃1(t̄)x̄1 +(DP0Q̃1)
′(t̄)(I− Z̃(t̄))x̄+(Dg)t(D(t̄)Π̃1(t̄)x̄, Z̃(t̄)x̄, t̄) = 0.

For a linear DAE (3.91), the condition (3.99) simplifies to the demand

D(t̄)P0(t̄)Q1(t̄)x̄1 +(DP0Q1)
′(t̄)x̄ = (DP0Q1G−1

2 q)′(t̄)

already known in this context and used to describe the set of consistent valuesM1(t)
in the linear case.

Proof (of Theorem 3.56). We verify assertion (2) first. We introduce the function K
on a neighborhoodN(ū,w̄,ū1,t̄) of (ū, w̄, ū1, t̄) by

K(u,w,u1, t) := (I−D(t)Π̃1(t)D(t)−)(u1− (D(t)Π̃1(t)D(t)−)′u)

+D(t)Π̃1(t)G̃2(t)−1 f
(
u1 + v1(u, t,u1), Π̃1(t)D(t)−u+h(u, t)+T (t)w, t

)
.

The functionK is continuous and has continuous partial derivativesKu1 andKw. We
obtainK(ū, w̄, ū1, t̄) = 0 andKu1(ū, w̄, ū1, t̄) = I. Then the implicit function theorem
provides a unique continuous function k : N(ū,w̄,t̄) → R

n such that k(ū, w̄, t̄) = ū1;
further (cf. (3.97)) kw(ū, w̄, t̄) = 0 and

K(u,w,k(u,w, t), t) = 0,

k(u,w, t)− (D(t)Π̃1(t)D−(t))′u

= D(t)Π̃1(t)D−(t)(k(u,w, t)− (D(t)Π̃1(t)D−(t))′u),

D(t)Π̃1(t)G̃2(t)−1 f
(
k(u,w, t)

+ v1(u, t,k(u,w, t)),Π̃1(t)D(t)−u+h(u, t)+T (t)w, t
)
= 0,

k(u,w, t) = k(D(t)Π̃1(t)D−(t)u,w, t) = k(u,T (t)w, t), (u,w, t) ∈N(ū,w̄,t̄).
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The composed function γ(u,w, t) := k(u,w, t)+ v1(u, t,k(u,w, t)) is continuous to-
gether with its partial derivative γw. We have γ(ū, w̄, t̄) = ū1 + v̄1 = ȳ and
γw(ū, w̄, t̄) = 0.
We build the last auxiliary function L on a neighborhoodN(ū,w̄,t̄) of (ū, w̄, t̄) by

L(u,w, t) :=(I−T (t))w

+T (t)G̃2(t)−1 f
(
γ(u,w, t),Π̃1(t)D(t)−u+h(u, t)+T (t)w, t

)
.

L is continuous and has a continuous partial derivative Lw. It holds that
L(ū, w̄, t̄) = 0 and Lw = (I−T )+T G̃−1

2 ( fyγw + fxT ), and hence
Lw(ū, w̄, t̄) = I− T (t̄) + T (t̄)G̃2(t̄)−1B̃(t̄)T (t̄) = I. The implicit function theorem
yields a continuous function l : N(ū,t̄) → R

m such that l(ū, t̄) = w̄ and, for
(u, t) ∈N(ū,t̄),

L(u, l(u, t), t) = 0, l(u, t) = T (t)l(u, t) = l(D(t)Π̃1(t)D(t)−u, t),

T (t)G̃2(t)−1 f (γ(u, l(u, t), t),Π̃1(t)D(t)−u+h(u, t)+ l(u, t), t) = 0.

Now we are prepared to construct a solution of the IVP in assertion (2). Owing to
Peano’s theorem, the standard IVP

u′(t) = k(u(t), l(u(t), t), t) =: ϕ(u(t), t), u(t̄) = ū+δ (3.102)

possesses at least one solution u∗ ∈ C1(I∗,Rn).
Multiplying the identity

u′∗(t)− k(u∗(t), l(u∗(t), t), t)≡ 0

by I−D(t)Π̃1(t)D(t)− we prove that the function α∗ := (I−DΠ̃1D−)u∗ is the solu-
tion of the IVP α ′ = (I−DΠ̃1D−)′α, α(t̄) = 0. Therefore, α∗ vanishes identically,
which means that u∗ = DΠ̃1D−u∗ is true.
We compose the continuous function

x∗(t) := Π̃1(t)D(t)−u∗(t)+h(u∗(t), t)+ l(u∗(t), t), t ∈ I∗

such that

T (t)x∗(t) = l(u∗(t), t), Z̃(t)x∗(t) = h(u∗(t), t), D(t)Π̃1(t)x∗(t) = u∗(t).

The part Dx∗ = u∗+Dh(u∗(.), .) is continuously differentiable.
The initial condition D(t̄)Π̃1(t̄)x∗(t̄) = ū+δ is fulfilled. Finally, due to the construc-
tion of the auxiliary functions h, l and k, we have the three identities on I∗:
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Z̃(t)G̃2(t)−1 f ((D(t)x∗(t))′,x∗(t), t) = Z̃(t)G̃2(t)−1 f (0,Π̃1(t)D(t)−u∗(t)

+ Z̃(t)x∗(t), t)

= g(u∗(t),h(u∗(t), t), t) = 0,

T (t)G̃2(t)−1 f ((D(t)x∗(t))′,x∗(t), t) = L(u∗(t), l(u∗(t), t), t) = 0,

D(t)Π̃1(t)G̃2(t)−1 f ((D(t)x∗(t))′,x∗(t), t) =K(u∗(t),w∗(t),k(u∗(t),w∗(t), t), t) = 0.

Altogether this yields for t ∈ I∗

f ((D(t)x∗(t))′,x∗(t), t)

= G̃2(t)(Z̃(t)+T (t)+D(t)−D(t)Π̃1(t))G̃2(t)−1 f ((D(t)x∗(t))′,x∗(t), t) = 0.

Assertion (1) is a consequence of (2). Namely, we put δ = 0 in the initial condition.
Then, for the solution provided by (2) it follows that

x∗(t̄) := Π̃1(t̄)D(t̄)−ū+h(ū, t)+ l(ū, t) = x̄.

Assertion (3) follows immediately since now the function ϕ in (3.102) possesses the
continuous partial derivative ϕu. ��

3.7.2.3 Index reduction step

The smoothness demands for g (see (3.98)) in the previous part require only parts
of the function f to be smoother than is supposed in the basic Assumption 3.16.
A generous overall assumption would be that f is twice continuously differentiable.

Theorem 3.56 provides the following local description of the constraint sets:
for (x, t) ∈N(x̄,t̄) it holds that

x ∈M0(t)⇐⇒ Z̃(t)x = h(D(t)Π̃1(t)x, t),

x ∈M1(t)⇐⇒ (Z̃(t)+T (t))x = h(D(t)Π̃1(t)x, t)+ l(D(t)Π̃1(t)x, t).

Agreeing upon the meaning of the projectors Q̃1 and Π̃1 as given via linearization
and fine decoupling we can describe the set of consistent initial values as

M1(t̄) = {x̄ ∈M0(t̄) : D(t̄)P0(t̄)Q̃1(t̄)x̄1 = (DP0Q̃1)
′(t̄)z̄− (Dg)t(ū, z̄, t̄)}.

With the background of Theorem 3.56, we can write

f ((D(t)x(t))′,x(t), t) = f ((DΠ̃1x)′(t)+(DP0Q1x)′(t),x(t), t)

= f
(
(DΠ̃1D−)(t)(DΠ̃1x)′(t)

+(DΠ̃1D−)′(t)(DΠ̃1x)(t)+(DP0Q̃1x)′(t),x(t), t
)
,

for all functions x ∈ C1
D(I,Rm) with values in D f . In the above analysis we learned

that the term DΠ̃1x corresponds to the inherent ODE while the term DP0Q̃1x is to
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be differentiated. The function v1 defined via Lemma 3.57 as

v1(u, t,u1) := D′(t)h(u, t)+D(t){hu(u, t)u1 +ht(u, t)}, u1 ∈ R
n,(u, t) ∈N(ū,t̄),

represents the tool to carry out the inherent differentiation in the given index-2 DAE,
that is, for each solution x∗ it holds that

(D(t)P0(t)Q̃1(t)x∗(t))′ = v1(D(t)Π̃1(t)x∗(t), t,(D(t)Π̃1(t)x∗(t))′).

Inserting such an expression into the original DAE, we arrive at the new DAE

f̆ ((D̆(t)x(t))′,x(t), t) = 0, (3.103)

with functions

D̆(t) :=D(t)Π̃1(t),

f̆ (y̆,x, t) := f
(
(DΠ̃1D−)(t)y̆

+(DΠ̃1D−)′(t)D(t)Π̃1(t)x+ v1(D(t)Π̃1(t)x, t, y̆),x, t
)
,

defined for y̆ ∈ R
n, x ∈ Nx̄, t ∈ Nt̄ .

We expect this procedure to provide a local index reduction by one. In fact, the new
DAE is regular with tractability index 1 as we show by Theorem 3.58.
Recall the function g playing its role in Lemma 3.57, and in the definition of the
function h, in turn used to obtain the function v1:

g(u,z, t) := Z̃(t)G̃2(t)−1 f (0,Π̃1(t)D(t)−u+ Z̃(t)z, t), (u,z, t) ∈N(D(t̄)Π̃1(t̄)x̄,Z̃(t̄)x̄,t̄).

We stress once more that the function g inherits its smoothness from the function f .

Theorem 3.58. Let the DAE (3.92) satisfy Assumption 3.16 and be regular with
tractability index 2 on the open set G. Let the structural restriction (3.94) be given,
and the intersection N0∩S be a C1-subspace.
Let (x̄, t̄) ∈ G be fixed, x̄ ∈M0(t̄), and let ȳ ∈R

n, x̄1 ∈R
m denote associated values

such that
ȳ−D′(t̄)x̄ = D(t̄)x̄1, f (ȳ, x̄, t̄) = 0.

Let the linearized DAE (3.93) have the fine decoupling projector functions Q0, Q̃1.
Let the function g be continuously differentiable and have continuous second partial
derivatives guu,gzz,gzu,gtu,gtz.
Let the consistency condition (3.99) be satisfied.

(1) Then the DAE (3.103) is regular with tractability index 1 on a neighborhood
of (x̄1, x̄, t̄), and x̄ belongs to the obvious constraint set M̆0(t̄) of this DAE.

(2) The DAEs (3.92) and (3.103) are locally equivalent in the following sense:



270 3 Nonlinear DAEs

If x∗ ∈ C1
D(I∗,Rm) is a solution of the index-2 DAE (3.92) passing through

the reference point (x̄, t̄), then x∗ belongs to the function space C1
DΠ̃1

(I∗,Rm)

and solves the index-1 DAE (3.103). If x∗ ∈ C1
DΠ̃1

(I∗,Rm) is a solution of
the index-1 DAE (3.103) passing through the reference point (x̄, t̄), then x∗
belongs also to the function space C1

D(I∗,Rm) and solves the index-2 DAE
(3.92).

To be more precise, regularity with tractability index 1 on a neighborhood of
(x̄1, x̄, t̄) is meant in the sense of Definition 3.62 while the previous Definition 3.28
explains regularity with index 1 only if there is no restriction on the jet variable x1.
Definition 3.62 allows a localization also of the jet variables.
In the simpler particular case, if f (y,x, t)=A(t)y+b(x, t), the resulting DAE (3.103)
is regular with index 1 on a neighborhood N(x̄,t̄) of (x̄, t̄) in the sense of Defini-
tion 3.28. In the context of the more general Definition 3.62 this is regularity with
tractability index 1 on R

m×N(x̄,t̄).

Proof. Owing to Lemma 3.57, the function h is continuously differentiable and has
the continuous second partial derivatives huu and htu. In consequence, the function
v1 is continuous with a continuous partial derivative v1

u, and it depends linearly on
u1.
Moreover, the property hu = huDΠ̃1D− is given, and hence v1

u1 =Dhu = v1
u1DΠ̃1D−.

The matrix function D̆ is continuously differentiable, the function f̆ is continuous
and has continuous partial derivatives with respect to y̆ and x,

f̆y̆ = fy{DΠ̃1D−+ v1
u1}= fy(I +Dhu)DΠ̃1D−,

f̆x = fy{(DΠ̃1D−)′DΠ̃1 + v1
uDΠ̃1}+ fx.

We show that ker f̆y̆ = im(I −DΠ̃1D−) is valid, but then the derivative term of
(3.103) is properly involved and the DAE satisfies the basic Assumption 3.16. Con-
sider a w ∈ ker f̆y̆, which means

(I +Dhu)DΠ̃1D−w ∈ ker fy∩ imD = {0}.

Due to Dhu = DP0Q̃1huΠ̃1 (cf. Lemma 3.57), the matrix function

I +Dhu = I +DP0Q̃1huΠ̃1

is nonsingular, but this implies DΠ̃1D−w = 0.
Next we verify the index-1 property. Choose Q̆0 = I− Π̃1 and indicate in the same
way the members of the matrix function sequence associated with the DAE (3.103).
Compute
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Ă(x̄1, x̄, t̄) = f̆y̆(D̆(t̄)x̄1 + D̆′(t̄)x̄, x̄, t̄) = fy(ū1 + v̄1, x̄, t̄) = Ã(t̄),

B̆(x̄1, x̄, t̄)Q̆0(t̄) = f̆x(D̆(t̄)x̄1 + D̆′(t̄)x̄, x̄, t̄)(I− Π̃1(t̄))

= fx(ū1 + v̄1, x̄, t̄)(I− Π̃1(t̄)) = B̃(t̄)(I− Π̃1(t̄)),

Ğ1(x̄1, x̄, t̄) = Ă(x̄1, x̄, t̄)D̆(t̄)+ B̆(x̄1, x̄, t̄)Q̆0(t̄)

= Ã(t̄)D(t̄)Π̃1(t̄)+ B̃(t̄)(I− Π̃1(t̄))

= Ã(t̄)D(t̄)Π̃1(t̄)+ B̃(t̄)(Z̃(t̄)+T (t̄)).

It follows that

G̃2(t̄)−1Ğ1(x̄1, x̄, t̄) = Π̃1(t̄)+ G̃2(t̄)−1B̃(t̄)Z̃(t̄)+T (t̄).

Let ζ belong to the nullspace of Ğ1(x̄1, x̄, t̄), that is

{Ã(t̄)D(t̄)Π̃1(t̄)+ B̃(t̄)((Z̃(t̄)+T (t̄))}ζ = 0.

Multiplication by Z̃(t̄)G̃2(t̄)−1 yields Z̃(t̄)ζ = 0. Then, set Z̃(t̄)ζ = 0 and multiply
by G̃2(t̄)−1 so that

Π̃1(t̄)ζ +T (t̄)ζ = 0

results. Finally, this implies ζ = 0, and the matrix Ğ1(x̄1, x̄, t̄) is nonsingular. It is
clear that the matrix function Ğ1 preserves nonsingularity on a neighborhood of our
reference point (x̄1, x̄, t̄), and therefore the DAE is regular with tractability index 1
on a neighborhood of this point.
Notice that, for the special case f (y,x, t) = A(t)y+b(x, t), the matrix function Ğ1 is
independent of the variable x1, and therefore it remains nonsingular uniformly for
all x1 ∈ R

m.
Next we show that the reference point x̄ belongs to the obvious constraint set asso-
ciated with the DAE (3.103) at time t̄, that is

M̆0(t̄) := {x ∈ Nx̄ : ∃x̆1 ∈ R
m : f̆ (D̆(t̄)x̆1 + D̆′(t̄)x,x, t̄) = 0}.

We set ¯̆x1 := x̄1 and show that, in fact, f̆ (D̆(t̄)x̄1 + D̆′(t̄)x̄, x̄, t̄) = 0 is valid. We have

D̆(t̄)x̄1 + D̆′(t̄)x̄ = D(t̄)Π̃1(t̄)x̄1 +(DΠ̃1)
′(t̄)x̄ = ū1,

and, taking the condition (3.99) into account, which means v1(D(t̄)Π̃1(t̄)x̄, t̄, ū1) =
v̄1, it follows that

f̆ (D̆(t̄)x̄1 + D̆′(t̄)x̄, x̄, t̄) = f
(
(DΠ̃1D−)(t̄){D(t̄)Π̃1(t̄)x̄1

+(DΠ̃1)
′(t̄)x̄}+(DΠ̃1D−)′(t̄)D(t̄)Π̃1(t̄)x̄+ v̄1, x̄, t̄

)

= f (D(t̄)Π̃1(t̄)x̄1 +(DΠ̃1)
′(t̄)x̄+ v̄1, x̄, t̄)

= f (ū1 + v̄1, x̄, t̄) = f (ȳ, x̄, t̄) = 0.
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Now the proof of our first assertion is complete. We turn to the second assertion.
Let x∗ ∈ C1

D(I∗,Rm) be a solution of the DAE (3.92) with values in the definition
domain of the functions h and v1. Then it necessarily holds that

Z̃(t)x∗(t) = h(D(t)Π̃1(t)x∗(t), t),

D(t)P0(t)Q̃1(t)x∗(t) = D(t)h(D(t)Π̃1(t)x∗(t), t),

(D(t)P0(t)Q̃1(t)x∗(t))′ = v1(D(t)Π̃1(t)x∗(t), t,(D(t)Π̃1(t)x∗(t))′) for t ∈ I∗.

Because of DΠ̃1x∗ = DΠ̃1D−Dx∗, the component DΠ̃1x∗ inherits its smoothness
from that of DΠ̃1D− and Dx∗. Inserting the above expression into the identity

0 = f ((D(t)x∗(t))′,x∗(t), t) = f ((DΠ̃1x∗)′(t)+DP0Q̃1x∗)′(t), x∗(t), t)

= f
(
(DΠ̃1D−)(t)(DΠ̃1x∗)′(t)+(DΠ̃1D−)′(t)D(t)Π̃1(t)x∗(t)

+(DP0Q̃1x∗)′(t), x∗(t), t
)

we see that the new DAE (3.103) is satisfied.
Conversely, let x∗ ∈ C1

DΠ̃1
(I∗,Rm) be a solution of the DAE (3.103), i.e.,

0 = f̆ ((DΠ̃1x∗)′(t),x∗(t), t)

= f ((DΠ̃1x∗)′(t)+ v1(D(t)Π̃1(t)x∗(t), t,(DΠ̃1x∗)′(t)),x∗(t), t).

The structural restrictions (3.96), (3.97) lead to

0 = Z̃(t)G̃2(t)−1 f (0,Π̃1(t)x∗(t)+ Z̃(t)x∗(t), t) = g(D(t)Π̃1(t)x∗(t), Z̃(t)x∗(t), t),

and, with regard to Lemma 3.57, we find the relation

D(t)P0(t)Q̃1(t)x∗(t) = D(t)h(D(t)Π̃1(t)x∗(t), t).

Since h and DΠ̃1x∗ are continuously differentiable, the component DP0Q̃1x∗ on the
left side is so, too. We derive

(DP0Q̃1x∗)′(t) = v1(D(t)Π̃1(t)x∗(t), t,(DΠ̃1x∗)′(t))

and insert this expression into the above identity. This makes it clear that x∗ solves
the DAE (3.92). ��

3.8 Advanced localization of regularity: including jet variables

The class of nonlinear DAEs that are regular on their entire definition domain, which
means that there is just a single maximal regularity region, comprises, for instance,
the MNA-DAE and the Hessenberg form DAEs of arbitrary size. A different situa-
tion is given in Example 3.34, where the definition domainD f ×I f is split into three
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maximal regularity regions Gi, i = 1,2,3, whose borders consist of critical points.
The special DAE (3.27) is regular with tractability index 1 locally on each region
Gi; however, neither of the regions Gi covers the obvious constraint set, and there
are solutions crossing the borders. The class of DAEs which show several maximal
regularity regions represents a straightforward generalization of the DAEs having
just a single maximal regularity region. However, also this notion needs a further
generalization.
The regularity notion given in Section 3.3 is local with respect to the basic vari-
ables (x, t) ∈D f ×I f . Admissible projectors Q0, . . . ,Qμ−1 may depend not only on
(x, t) ∈ D f ×I f but also on jet variables x1, . . . ,xμ−1 ∈ R

m. The demands yielding
regularity on a region G ⊆ D f ×I f are meant to hold true for all (x, t) ∈ G and
globally for all x1, . . . ,xμ−1 ∈ R

m, as well.
There are quite simple nonlinear problems where the regularity Definition 3.28 does
not apply. It is natural to advance the localization to apply to jet variables, too.

Example 3.59 (rankG1 depends on x1). Set k = m = 2, n = 1, α ∈ R is a parameter,
and β : R→ R is a continuous function. The DAE

(x1(t)+ x2(t))′ − t2−α = 0,
x1(t)(x1(t)+ x2(t))′ −β (t) = 0,

(3.104)

has the solutions

x∗1(t) =
β (t)

t2 +α
, x∗1(t)+ x∗2(t) = z0 +α(t− t0)+

1
3
(t3− t3

0 ), t ∈ I∗,

which satisfy the initial condition x∗1(t0) + x∗2(t0) = z0, z0 ∈ R. The initial time
point t0 as well as the existence interval I∗ are bound with the requirement for the
expression t2 +α not to have zeros.
If α > 0, then t0 ∈ R can be chosen arbitrarily, and I∗ = R. If α < 0, then
t0 �=±

√
−α is allowed, but the interval I∗ is restricted. If α = 0, then t0 �= 0 is

allowed, and it results that I∗ = (0,∞) for t0 > 0, and I∗ = (−∞,0) for t0 < 0.
We put the DAE (3.104) into the general form (3.1) by

f (y,x, t) :=
[

1
x1

]
y−
[

t2 +α
β (t)

]
, d(x, t) := x1 + x2, x ∈ R

2, y ∈ R, t ∈ R.

Assumption 3.16 is valid with D f = R
2, I f = R, and ker fy = 0. The DAE has a

properly stated leading term. The obvious constraint

M0(t) = {x ∈ R
2 : (α+ t2)x1 = β (t)}

is well-defined and nonempty for all t ∈ R with t2 + α �= 0. For t̄ ∈ R with
α+ t̄ 2 = 0 and β (t̄ ) = 0 it follows that M0(t̄ ) = R

2. To each fixed t0 ∈ R,
x0 ∈M0(t0), with t2

0 +α �= 0, there is exactly one solution x∗ (given on its indi-
vidual interval I∗) passing through it. That is, the DAE (3.104) behaves as a regular
index-1 DAE. Derive



274 3 Nonlinear DAEs

A =

[
1
x1

]
, D =

[
1 1
]
, D− =

[
0
1

]
, R = 1,

Q0 =

[
1 0
−1 0

]
, P0 =Π0 =

[
0 0
1 1

]
, B =

[
0 0

x1
1 + x1

2 0

]
,

G0 =

[
1 1
x1 x1

]
, G1 =

[
1 1

x1 + x1
1 + x1

2 x1

]
, detG1 =−(x1

1 + x1
2).

Inspecting the matrix function G1 and their determinant we see that Definition 3.28
does not apply here, since G1 becomes singular for x1

1 = −x1
2. Therefore we are

led to extend the regularity notion for suitable sets concerning the jet variables,
too. It makes sense to say that the DAE (3.104) is regular with tractability index
1 on the two open sets G[1]− := D(1)

− ×D f ×I f and G[1]+ := D(1)
+ ×D f ×I f , with

D(1)
+ := {x1 ∈ R

2 : x1
1 + x1

2 > 0}, D(1)
− := {x1 ∈ R

2 : x1
1 + x1

2 < 0}.
Points belonging to the border set {(x1,x, t) ∈ R

2×D f ×I f : x1
1 + x1

2 = 0} are con-
sidered to be critical ones. These points correspond to zeros of the expression t2+α
in the solutions, that is, they are in fact critical.
If one linearizes the DAE (3.104) along a smooth reference function with values
only in G[1]− or only in G[1]+ , then the resulting linear DAE (3.11) is regular with
tractability index 1. In contrast, if one linearizes along a reference function x∗ with
x′∗,1(t)+ x′∗,2(t) = 0, t ∈ I∗, that is, along a function with values on the border be-

tween the sets G[1]− and G[1]+ , then the resulting linear DAE (3.11) fails to be regular
on I∗. ��

Example 3.60 ([125], rankG3 depends on x and x1). Set n = 2, k = m = 3, η ∈R is
a parameter, D f = R

3, I f = R, q ∈ C1(R,R3), q3 ∈C2(R,R). The DAE
⎡
⎣

1 0
1 1
0 0

⎤
⎦

︸ ︷︷ ︸
A

([0 1 0
0 0 1

]

︸ ︷︷ ︸
D

x(t)
)′
+

⎡
⎣

x1(t)− t
x2(t)(x1(t)+η)−1

x2(t)(1− 1
2 x2(t))+ x3(t)

⎤
⎦−q(t) = 0 (3.105)

has a properly stated leading term and satisfies Assumption 3.16. The obvious con-
straint is

M0(t) =
{

x ∈ R
3 : x2

(
1− 1

2
x2
)
+ x3 = q3(t)

}
.

The DAE has the only solutions

x∗1(t) = −x′∗2(t)+ t +q1(t),

x∗2(t) =
1+q2(t)−q′3(t)

t +η+q1(t)
,

x∗3(t) = −x∗2(t)
(

1− 1
2

x∗2(t)
)
+q3(t), t ∈ I∗,
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given on intervals I∗ such that t +η + q1(t) �= 0, t ∈ I∗. The solutions satisfy the
relations

x∗1(t)+η+x′∗2(t)= t+η+q1(t), x∗2(t)(t+η+q1(t))=1+q2(t)−q′3(t), t ∈I∗.

We construct an admissible matrix function sequence starting with

G0 =

⎡
⎣

0 1 0
0 1 1
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , B0 =

⎡
⎣

1 0 0
x2 x1 +η 0
0 1− x2 1

⎤
⎦ ,

D− =

⎡
⎣

0 0
1 0
0 1

⎤
⎦ , P0 =Π0 =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 1 0
x2 1 1
0 0 0

⎤
⎦ .

Choose further

Q1 :=

⎡
⎣

0 α β
0 −α −β
0 (1− x2)α (1− x2)β

⎤
⎦ , α := (1− x2)β −1,

β ∈ C1(R3×R,R) an arbitrary function, such that Q0,Q1 are admissible projectors.
It holds that Q1Q0 = 0, and

DΠ1D− =

[
1+α β

−(1− x2)α 1− (1− x2)β

]
.

It follows that (cf. [125])

G2 =

⎡
⎣

1 1−αβx1
2 −β 2x1

2
x2 1−α(x1 +η+ x1

2)−αβx2x1
2 1−β (x1 +η+ x1

2)−β 2x2x1
2

0 0 0

⎤
⎦ .

Since, with W1 :=

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦, it holds that W1B0Q1 = 0, we conclude that imG2 =

imG1, and henceW2 =W1,

S2 = kerW2B0 = {z ∈ R
3 : (1− x2)z2 + z3 = 0}.

Consider z ∈ S2∩N2, that is

(1− x2)z2 + z3 = 0,
z1 +(1−αβx1

2)z2−β 2x1
2z3 = 0,

x2z1 +(1−α(x1 +η+ x1
2)−αβx2x1

2)z2 +(1−β (x1 +η+ x1
2)−β 2x2x1

2)z3 = 0,

or, equivalently, the system
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z3 =−(1− x2)z2,

z1 +(1+βx1
2)z2 = 0,

x2z1 +(1+(x1 +η+ x1
2)− (1− x2)+βx2x1

2)z2 = 0,

that is

z3 =−(1− x2)z2,

z1 =−(1+βx1
2)z2,

(x1 +η+ x1
2)z2 = 0.

Because of N0 +N1 ⊆ S2, the relation S2∩N2 = {0} implies (N0 +N1)∩N2 = {0}.
At the same time, without computing a particular projector Q2, we know the matrix
function G3 (cf. Lemma A.9) remains nonsingular, supposing x1 +η + x1

2 �= 0. In
consequence, the DAE (3.105) is regular with tractability index 3 on the open sets

G[2]+ = {(x2,x1,x, t) ∈ R
3×R

3×R
3×R : x1 +η+ x1

2 > 0}

and
G[2]− = {(x2,x1,x, t) ∈ R

3×R
3×R

3×R : x1 +η+ x1
2 < 0}.

If one takes a smooth reference function x∗ with values in just one of these sets,
then the linearized DAE (3.11) is regular with index 3. In contrast, for a reference
function x∗ that satisfies x∗,1(t)+η + x′∗,2(t) = 0, t ∈ I∗, the resulting linear DAE
(3.11) fails to be regular. All corresponding matrix functions G∗i are singular.
Furthermore, letting

q1(t) =−t2, q2(t) = 0, q3(t) = 0, for t ∈ I∗ = [0,2), and η = 2,

the function x∗ given by

x∗1(t) =−x′∗2(t)+ t− t2,

x∗2(t) =
1

t +2− t2 ,

x∗3(t) =−x∗2(t)+
1
2

x∗2(t)2, t ∈ I∗,

is a solution of the original DAE and has values (x′′∗(t),x
′
∗(t),x∗(t), t) ∈ G

[2]
+ . How-

ever, if t approaches 2, x∗(t) grows unboundedly, which indicates the singularity at
the border between G[2]+ and G[2]− . ��

We call those open connected sets G[1]− and G[1]+ regularity regions, too. In the previ-
ous two examples, linearizations along reference functions with values belonging to
the border of such a maximal regularity region fail to be a regular DAE. In different
cases it may also happen that regularity is maintained, but the index changes. We
refer to Example 3.34 which shows three regularity regions; on one border the lin-
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earized DAEs are regular (with changed index), while they fail to be regular on the
other border. As before, to allow for small perturbations without losing regularity
we tie regularity to open sets of the corresponding spaces. The following two defi-
nitions generalize the Definition 3.21 of admissible matrix function sequences and
the Definition 3.28 of regular DAEs.
By construction (cf. Section 3.2), for i ≥ 1, the matrix function Gi depends on the
variables x, t and x1, . . . ,xi, and so does the nullspace projector function Qi. On the
next level, the additional variable xi+1 comes in, and Gi+1 depends on the variables
x, t,x1, . . . ,xi+1, and so on. Of course, it may happen in more special cases, e.g.,
the last examples, that these matrix functions do not actually vary with all these
variables.
For an easier description, if we deal with the level κ , we now suppose that all matrix
functions of the lower levels depend on all jet variables up to xκ . The lower level
matrix functions are constant functions with respect to the jet variables coming in
later.
We first extend the previous Definition 3.21 of admissible projector functions.

Definition 3.61. Let the DAE (3.1) satisfy the basic Assumption 3.16. Let κ ∈ N

be the given level and let the sets G ⊆ D f ×I f and G[κ ] ⊆ R
mκ ×D f ×I f be open

connected.
Let the projector function Q0 onto kerD be continuous on G[κ ], P0 = I−Q0, and D−

be determined there by (3.18).
We call the sequence G0, . . . ,Gκ an admissible matrix function sequence associated
with the DAE on the set G[κ ], if it is built by the rule

Set G0 := AD, B0 := B, N0 := kerG0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1

Ni := kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi :=Πi−1Pi

and, additionally,

(a) the matrix function Gi has constant rank ri on G[κ ], i = 0, . . . ,κ ,

(b) the intersection
�
Ni has constant dimension ui := dim

�
Ni there,

(c) the product function Πi is continuous and DΠiD− is continuously differen-
tiable on G[κ ], i = 0, . . . ,κ .

The projector functions Q0, . . . ,Qκ in an admissible matrix function sequence are
said to be admissible themselves.
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The numbers r0 := rankG0, . . . ,rκ := rankGκ and u1, . . . ,uκ are named charac-
teristic values of the DAE on Gκ .
The matrix functions G0, . . . ,Gκ are said to be admissible on G, if they are admissi-
ble on G[κ ] = R

mκ ×G.

Having this more general notion of admissible matrix function sequences, which
maintains the algebraic properties figured out in Section 3.2, we are ready to extend
also the regularity notion correspondingly.

Definition 3.62. Let the DAE (3.1) satisfy Assumption 3.16, k = m, and let the sets
G[μ ] ⊆ R

mμ ×D f ×I f and G ⊆ D f ×I f be open connected.

(1) If r0 = m, then equation (3.1) is said to be regular with index 0.
(2) The DAE is said to be regular with tractability index μ ∈ N on G[μ ], if there

is a matrix function sequence admissible on G[μ ] such that rμ−1 < rμ = m.
Then G[μ ] is named a regularity region of the DAE, with characteristic values
r0 ≤ ·· · ≤ rμ−1 < rμ = m and tractability index μ .

(3) A jet (xμ , . . . ,x1,x, t) ∈ R
mμ ×D f ×I f is named a regular index μ jet, if

there is a neighborhood in R
mμ ×R

m×R which is a regularity region with
tractability index μ .

(4) If the DAE is regular with tractability index μ on G[μ ] = R
mμ ×G, then we

say simply the DAE is regular on G, and G is called a regularity region.
(5) The point (x, t) ∈ D f ×I f is called a regular point, if it has a neighborhood

N(x,t) ⊆D f ×I f such that Rmμ ×N(x,t) is a regularity region.

Definition 3.62 is consistent with the previous Definition 3.28. Examples 3.59 and
3.60 provide actual regularity regions with index 1 and index 3, respectively.
By construction, if a nonlinear DAE (3.1) is regular with tractability index μ on
G[μ ], then all linearizations along smooth reference functions x∗ with values in G[μ ],
i.e.,

(x(μ)∗ (t), . . . ,x′∗(t),x∗(t), t) ∈ G[μ ], t ∈ I∗,

are regular with uniform tractability index μ , and uniform characteristics 0 ≤ r0 ≤
·· · ≤ rμ−1 < rμ = m. The linearizations may behave differently, if the reference
function crosses critical points. A systematic study of possible coherences needs
future research.

Next we reconsider the local solvability assertion in Subsection 3.7.1 and adapt
Theorem 3.53 to the advanced localization.

Theorem 3.63. Let the DAE (3.1) satisfy Assumption 3.16 and be regular with
tractability index 1 on the open set G[1] ⊂ R

m×D f ×I f . Let d have the additional
continuous partial derivatives dxx, dxt .
Then, for each (x̄1, x̄, t̄) ∈ G[1], x̄ ∈ M0(t̄), there exists exactly one solution
x∗ ∈ C(I∗,Rm) such that x∗(t̄) = x̄.

Proof. In contrast to Theorem 3.53, now a value x̄1 is already given, and D(x̄, t̄)x̄1 =
ȳ−dt(x̄, t̄).
The matrix functions have the following special property:
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For each arbitrary ¯̄x1 ∈ R
m with D(x̄, t̄)x̄1 = D(x̄, t̄) ¯̄x1, it follows that G1(x̄1, x̄, t̄) =

G1( ¯̄x1, x̄, t̄). This allows us to select the ¯̄x1 in such a way that Q0(x̄, t̄) ¯̄x1 = 0. Then
we apply the former proof starting with ( ¯̄x1, x̄, t̄) instead of (x̄1, x̄, t̄). ��
We emphasize that here the solutions are not necessarily continuously differentiable.
Moreover, even if they are, the relation x′∗(t̄) = x̄1 cannot be expected to be valid, as
the following example shows.

Example 3.64 (Inconsistency of x̄1). Set k = m = 3,n = 2, and turn to the special
DAE of the form (3.1) given by

f (y,x, t) =

⎡
⎣

y1− x3
y2− x1− t

x3y2− x1x3 + x2

⎤
⎦ , d(x, t) =

[
x1
x2

]
, y ∈ R

2,x ∈ R
3, t ∈ R.

This DAE has a properly stated leading term and satisfies Assumption 3.16. In more
detail, it reads

x′1(t)− x3(t) = 0,
x′2(t)− x1(t)− t = 0, (3.106)

x3(t)x′2(t)− x1(t)x3(t)+ x2(t) = 0,

and in compact formulation,
⎡
⎣

1 0 0
0 1 0
0 x3(t) 1

⎤
⎦
⎡
⎣

x′1(t)− x3(t)
x′2(t)− x1(t)

x2(t)

⎤
⎦−
⎡
⎣

0
t
0

⎤
⎦= 0.

The last version suggests that this would be a regular index-3 DAE. However, this
is wrong. Actually the DAE (3.106) is regular with tractability index 1 on the two
open sets

G[1]+ ={(x1,x, t)∈Rm+m+11 : x1
2−x1 > 0}, G[1]− ={(x1,x, t)∈Rm+m+1 : x1

2−x1 < 0}.

To show this we provide the matrix function sequence

G0 =

⎡
⎣

1 0 0
0 1 0
0 x3 0

⎤
⎦ ,B0 =

⎡
⎣

0 0 −1
−1 0 0
−x3 1 x1

2− x1

⎤
⎦ ,Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ ,G1 =

⎡
⎣

1 0 −1
0 1 0
0 x3 x1

2− x1

⎤
⎦ .

The matrix G1(x1,x, t) is nonsingular, exactly if x1
2 �= x1, which proves regularity

with index 1 on the open sets G[1]− and G[1]+ .
The obvious constraint set of the DAE (3.106) is given as

M0(t) = {x ∈ R
3 : x3(x1 + t)− x1x3 + x2 = 0}= {x ∈ R

3 : x2 + tx3 = 0}.

For each fixed t̄ ∈ R, x̄ ∈M0(t̄) such that t̄ �= 0, there is a unique solution passing
through it. In fact, the first two components of this solution are given by means of
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the explicit IVP
[

x′1(t)
x′2(t)

]
=

1
t

[
0 −1
t 0

][
x1(t)
x2(t)

]
+

[
0
t

]
, x1(t̄) = x̄1, x2(t̄) = x̄2, (3.107)

while the third component is x3(t) =− 1
t x2(t).

This is exactly what we expect for a regular index-1 DAE. The condition t̄ �= 0 en-
sures that this solution proceeds in G[1]− or G[1]+ . If t̄ > 0, the condition f (Dx̄1, x̄, t̄) = 0
defines the first two components of x̄1 uniquely, and x̄1

2− x̄1 = t̄ > 0 holds true. We
get (x̄1, x̄, t̄) ∈ G[1]+ , for all x̄1

3 ∈ R.
Each linearization (3.11) along a smooth reference function with values in just

one of the regularity regions is regular with tractability index 1, however, lineariza-
tion along a function lying on the border of these regions yields a regular DAE with
tractability index 3. Namely, let x∗ denote an arbitrary smooth reference function
with values on the border set, i.e., x′∗2(t)− x∗1(t) = 0, t ∈ I∗. The DAE (3.11) lin-
earized along this function has the coefficients

A∗ =

⎡
⎣

1 0
0 1
0 x∗3

⎤
⎦ , D =

[
1 0 0
0 1 0

]
, B∗ =

⎡
⎣

0 0 −1
−1 0 0
−x∗3 1 0

⎤
⎦ .

The following matrix function sequence for this DAE shows singular matrix func-
tions G∗0, G∗1, and G∗2, but ends up with a nonsingular G∗3:

G∗0 =

⎡
⎣

1 0 0
0 1 0
0 x∗3 0

⎤
⎦ , Q∗0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G∗1 =

⎡
⎣

1 0 −1
0 1 0
0 x∗3 0

⎤
⎦ , Q∗1 =

⎡
⎣

1 0 0
0 0 0
1 0 0

⎤
⎦ ,

G∗2 =

⎡
⎣

1 0 1
−1 1 0
−x∗3 x∗3 0

⎤
⎦ , Q∗2 =

⎡
⎣

0 −1 0
0 1 0
0 −1 0

⎤
⎦ , G∗3 =

⎡
⎣

1 0 1
−1 1 0
−x∗3 1+ x∗3 0

⎤
⎦ , detG∗3 =−1,

which proves in fact that the linearized DAE is regular with tractability index 3. For
instance, the special reference functions

x∗(t) =

⎡
⎣

a
at +b

− 1
t (at +b)

⎤
⎦ ,

with certain parameters a,b ∈ R, have values x∗(t) ∈ M0(t), but, because of
x′∗2(t)− x∗1(t) = 0, they are located on the border between the regularity regions.

Now we put t̄ = 1, x̄1 = 1, x̄2 = 1, x̄3 =−1, x̄1
1 =−1, x̄1

2 = 2, x̄1
3 = 7.

The condition x̄ ∈M0(t̄) is fulfilled, since x̄2 + x̄3 = 0. Further, (x̄1, x̄, t̄) belongs
to G[1]+ . Taking a look at the corresponding solution of the explicit IVP (3.107), one
recognizes that x′∗,1(1) = x̄1

1, x′∗,2(1) = x̄1
2. The third solution component is
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x∗,3(t) =−
1
t

x∗,2(t), thus x′∗,3(t) = +
1
t2 x∗,2(t)−

1
t

x′∗,2(t).

Finally it follows that x′∗,3(1) = −1 �= x̄1
3, which proves the inconsistency of x̄1

3.
Notice further that we could choose an arbitrary x′∗,3(1) �= x̄1

3, and we would come
to the same conclusion. ��

Why does it happen that Theorem 3.63 works, though x̄1 may fail to be consistent?
In general, the matrix function sequence is determined from the coefficients

A(x1,x, t) := fy(D(x, t)x1 +dt(x, t),x, t)

B(x1,x, t) := fx(D(x, t)x1 +dt(x, t),x, t)

D(x, t) := dx(x, t),

and x1 is involved exclusively via the term D(x, t)x1. Therefore, it follows that

G1(x1,x, t) = G1(x1 + z,x, t) for all z ∈ kerD(x, t),

and (x̄1, x̄, t̄) ∈ G[1] implies (x̄1 + z, x̄, t̄) ∈ G[1] for all z ∈ kerD(x, t). This explains
why the consistency of x1 and x′∗(t̄) cannot be expected even if the solution is
smooth.

3.9 Operator settings

In the present section we restrict our interest to IVPs in DAEs comprising an equal
number of equations and unknowns, k = m. The DAE is now specified as

f ((D(t)x(t))′,x(t), t) = 0. (3.108)

It is assumed to satisfy Assumption 3.16. In particular, the derivative is properly
involved and D is continuously differentiable.
Let I ⊆ I f be a compact interval. Let DF denote an open set in the function space
C1

D(I,Rm) such that x ∈ DF implies x(t) ∈ D f , t ∈ I. Define the operator F acting
on C1

D(I,Rm) by

(Fx)(t) := f ((D(t)x(t))′,x(t), t), t ∈ I, x ∈ DF , (3.109)

so that the range imF resides in the continuous function space,

F :DF ⊆ C1
D(I,Rm)→C(I,Rm).

Since D is continuously differentiable, the inclusion

Cν(I,Rm)⊆ C1
D(I,Rm)
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is valid for each ν ∈ N . Equipped with the natural norm

‖x‖C1
D

:= ‖x‖∞+‖(Dx)′‖∞ , x ∈ C1
D(I,Rm),

the linear function space C1
D(I,Rm) becomes a Banach space and the DAE (3.108)

is represented as the operator equation

Fx = 0 (3.110)

in a Banach space setting. At this point it is worth emphasizing that the opera-
tor equation (3.110) reflects the classical view on DAEs: the solutions belong to
C1

D(I,Rm) and satisfy the DAE pointwise for all t ∈ I.
For each arbitrary x∗ ∈ DF we continue to denote

A∗(t) := fy((D(t)x∗(t))′,x∗(t), t), B∗(t) := fx((D(t)x∗(t))′,x∗(t), t), t ∈ I.

Next, for arbitrarily fixed x∗ ∈ DF and any x ∈ C1
D(I,Rm) the directional derivative

Fx(x∗)x := lim
τ→0

1
τ
(F(x∗+ τx)−F(x∗)) = A∗(Dx)′+B∗x

is well defined. In fact, the resulting map Fx(x∗) : C1
D(I,Rm)→ C(I,Rm) is linear

and bounded. Moreover, Fx(x̄) varies continuously with respect to x̄. This means
that the linear bounded map

Fx(x∗)x = A∗(Dx)′+B∗x, x ∈ C1
D(I,Rm),

is the Fréchet derivative of F at x∗. The linear operator equation Fx(x∗)x = q stands
now for the linearization of the original DAE, that is, for the linear DAE

A∗(Dx)′+B∗x = q. (3.111)

While in the context of differential equations, one usually speaks about linearization
along the function x∗, in the context of operator equations one rather applies the
wording linearization at x∗.
The linearizations (3.111) inherit from the nonlinear DAE (3.108) the properly
stated leading term. The function space C1

D(I,Rm) accommodates also the solutions
of the linearized DAE.
Based on Theorem 3.33, we state that the DAE operator F is regular with charac-
teristics r0 ≤ ·· · ≤ rμ−1 < rμ = m, exactly if all linearizations Fx(x∗)x = q, with
x∗ ∈ DF ∩Cm(I,Rm) are so.

We complete the DAE (3.108) by the initial condition

Cx(t0) = z0, (3.112)

with fixed t0 ∈ I and a matrix C ∈ L(Rm,Rd) to be specified later. The composed
operator associated with the IVP (3.108), (3.112),
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F :DF ⊆ C1
D(I,Rm)→C(I,Rm)×R

d , Fx := (Fx,Cx(t0)− z0), x ∈ DF ,

is as smooth as F . The equationFx= 0 represents the IVP (3.108), (3.112), whereas
the equation Fx = (q,δ ) is the operator setting of the perturbed IVP

f ((D(t)x(t))′,x(t), t) = q(t), t ∈ I, Cx(t0)− z0 = δ . (3.113)

3.9.1 Linear case

The linear case, if f (y,x, t) = A(t)y+B(t)x, is of particular interest, and we intro-
duce the extra symbol L for the linear mapping given by

Lx := A(Dx)′+Bx, x ∈ C1
D(I,Rm). (3.114)

The linear operator equation Lx = q now stands for the linear DAE

A(t)(D(t)x(t))′+B(t)x(t) = q(t), t ∈ I. (3.115)

The linear operator L which maps C1
D(I,Rm) into C(I,Rm) is bounded, since the

inequality

‖Lx‖∞ ≤ ‖A‖∞‖(Dx)′‖∞+‖B‖∞‖x‖∞ ≤max{‖A‖∞ ,‖B‖∞}‖x‖C1
D

holds true for all x ∈ C1
D(I,Rm).

We complete the DAE (3.115) with the initial condition (3.112) and compose the
map

L : C1
D(I,Rm)→C(I,Rm)×R

d , Lx := (Lx, Cx(t0)), x ∈ C1
D(I,Rm),

so that the operator equation Lx = (q,z0) represents the IVP (3.115), (3.112). The
operator L is bounded simultaneously with L.

For operators acting in Banach spaces, the closure or nonclosure of the range is
a very important feature. To apply, e.g., Fredholm theory and generalized inverses
one needs to have closed range operators. Therefore, to know the precise range of
the linear DAE operator L would be helpful. We take a look at a simple special case
and figure out the range.

Example 3.65 (Nonclosed range). The operator L given by

Lx =
[

0 1
0 0

]

︸ ︷︷ ︸
A

([0 0
0 1

]

︸ ︷︷ ︸
D

x
)′
+ x =

[
x′2 + x1

x2

]
,
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x ∈ C1
D(I,R2) = {x ∈ C(I,R2) : x2 ∈ C1(I,R)} has the range imL = C(I,R)×

C1(I,R), which is a nonclosed subset in C(I,R2). Note that the equation Lx = q
represents a regular index-2 DAE.

The basic assumption on the DAE coefficients to be just continuous is mild. If neces-
sary, certain additional smoothness of the coefficients is required to obtain regularity
and solvability results. One needs the technical machinery of Chapter 2 to describe
the requirements in detail. In this section, we do not give a rigorous description of
the smoothness demands concerning the coefficients of the DAE, but instead we use
the vague formulation sufficiently smooth. However we are precise in view of the
right-hand sides. The following theorem is a consequence of Proposition 2.58 and
Theorem 2.59.

Theorem 3.66. Let the DAE (3.115) be regular with tractability index μ ∈ N and
characteristic values 0 ≤ r0 ≤ ·· · ≤ rμ−1 < rμ = m on the compact interval I,
d := m−∑μ

j=1(m− r j−1), and let the data of the DAE be sufficiently smooth.
Let the matrix C which forms the initial condition (3.112) satisfy
kerC = kerΠμ−1(t0). Then the following assertions are true:

(1) The map L has a d-dimensional nullspace, and the map L is injective.
(2) If μ = 1, then L is surjective and L is a bijection.
(3) If μ ≥ 2, then the ranges imL and imL are nonclosed proper subsets in

C(I,Rm), respectively C(I,Rm)×R
d.

(4) The inverse map L−1 is bounded for μ = 1, but unbounded for μ > 1.
(5) For every z0 ∈ R

d and q ∈ Cμ−1(I,Rm), the IVP (3.115), (3.112) is uniquely
solvable, and there is a constant K such that the inequality

‖x‖C1
D
≤ K(|z0|+‖q‖∞+

μ−1

∑
j=1
‖q( j)‖∞)

is valid for all these solutions.

Remember that, for a linear operator L : X → Y acting in the Banach spaces X ,Y ,
the equation Lx = y is said to be a well-posed problem in the sense of Hadamard, if
L is bijective and there is a continuous inverse L−1. Otherwise this linear equation
is called an ill-posed problem. If the range of the operator L is a nonclosed subset
in Y , then the linear equation is said to be essentially ill-posed in Tikhonov’s sense.

Owing to Theorem 3.66, the IVP (3.115), (3.112) is a well-posed problem solely
for μ ≤ 1, but otherwise this IVP is ill-posed. The typical solution behavior of ill-
posed problems can be observed in higher index DAEs: small perturbations of the
right-hand side yield large changes of the solution. Already the simple constant
coefficient DAE in Example 1.5 gives an impression of this ill-posedness. We take
a further look to this DAE.

Example 3.67 (A simple index-4 DAE). The operator L associated to the DAE
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⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

x(t)

⎞
⎟⎟⎟⎟⎠

′

+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

x(t) = q(t),

is given on the function space

C1
D(I,R5) = {x ∈ C(I,R5) : x1,x3,x4,x5 ∈ C1(I,R)}

and its image is

imL =
{

q ∈ C(I,R5) : q5 ∈ C1(I,R),q4−q′5 ∈ C1(I,R),
q3− (q4−q′5)

′ ∈ C1(I,R)
}
=: Cind 4(I,R5).

Namely, it is easily checked that for each x ∈ C1
D(I,R5) it follows that

Lx ∈ Cind 4(I,Rm). Conversely, q ∈ Cind 4(I,Rm) appears to be an admissible ex-
citation such that the equation Lx = q is solvable.
Obviously the inclusion

C3(I,R5)⊂ Cind 4(I,R5)⊂ C(I,R5)

is valid. Introducing the norm

‖q‖ind 4 := ‖q‖∞+‖q′5‖∞+‖(q4−q′5)
′‖∞+‖(q3− (q4−q′5)

′)′‖∞,

on the linear function space Cind 4(I,R5) we obtain a further Banach space. More-
over, owing to the inequality

‖Lx‖ind 4 = ‖Lx‖∞+‖x′5‖∞+‖x′4‖∞+‖x′3‖∞ ≤ KL‖x‖C1
D
, x ∈ C1

D(I,R5),

the operator L is bounded and surjective in the new setting

L : C1
D(I,R5)→Cind 4(I,R5),

which implies that the respective operator corresponding to the IVP,

L= C1
D(I,R5)→Cind 4(I,R5)× imC,

is bounded and bijective. In turn, in this setting, the inverse L−1 is continuous,
and hence the IVP is well-posed. However, we keep in mind the actual enormous
error amplification shown by the figures of Example 1.5, a fact that is completely
independent of the mathematical setting.

��
Confronted with the nonclosed range of the operator L in the original setting, we
are led to consider the map L in the new advanced setting, namely in the spaces
C1

D(I,Rm) and Cind μ(I,Rm), where Cind μ(I,Rm) is defined to be the linear space
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imL equipped with a natural stronger norm ‖.‖ind μ such that one creates a Banach
space. L is surjective in this advanced setting. Provided the inequality

‖Lx‖ind μ ≤ KL‖x‖C1
D
, x ∈ C1

D(I,Rm), (3.116)

is valid with a constant KL, the operator L and the accompanying IVP operator L
are bounded in the advanced setting. Then, as a bounded map acting bijectively on
Banach spaces, L has a bounded inverse.
In Example 3.65, it holds that ‖Lx‖ind 2 = ‖x‖C1

D
, and hence the operator L is con-

tinuous in the advanced setting.
In Example 1.5 the inequality (3.116) is also given, but in the general case, the
procedure to provide a suitable stronger norm as well as to check whether L becomes
bounded is somewhat cumbersome. The advanced setting, both the function space
and its norm, depends strongly on the special DAE. Nevertheless it seems to work.
However, we do not advance far in this direction and restrict our further interest to
the index-2 case. We think that although there is a couple of interesting perturbation
results, this road has rather a dead end.

Proposition 3.68. Let the DAE (3.115) be fine with tractability index 2, and let
Q0,Q1 denote completely decoupling projector functions. Then, the operator L has
the range

imL = {q ∈ C(I,Rm) : DΠ0Q1G−1
2 q ∈ C1(I,Rm)}.

The linear space imL equipped with the norm

‖q‖ind 2 := ‖q‖∞+‖(DΠ0Q1G−1
2 q)′‖∞ , q ∈ imL,

yields the Banach space Cind 2(I,Rm), and L : C1
D(I,Rm) → Cind 2(I,Rm) is

bounded.

Proof. The inclusion C1
DΠ0Q1G−1

2
(I,Rm) ⊆ imL follows from the solvability state-

ments in Section 2.6. We verify the reverse implication. Consider an arbitrary
x ∈ C1

D(I,Rm) and the resulting continuous q := Lx = A(Dx)′+Bx. Compute

DΠ0Q1G−1
2 q = DΠ0Q1G−1

2 Bx = DΠ0Q1G−1
2 B1Q1x = DΠ0Q1x = DΠ0Q1D−Dx

which shows DΠ0Q1G−1
2 q to be continuously differentiable together with Dx and

DΠ0Q1D−, and hence the assertion concerning imL is valid.
By standard arguments, one proves the function space Cind 2(I,Rm) to be complete.
Furthermore, because of

∥∥(DΠ0Q1G−1
2 Lx)′

∥∥
∞ =

∥∥(DΠ0Q1D−Dx)′
∥∥
∞

≤max{‖(DΠ0Q1D−)′D‖∞,‖DΠ0Q1D−‖∞}‖x‖C1
D
,

the operator L is bounded in the new setting. ��
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3.9.2 Nonlinear case

We turn back to the nonlinear DAE (3.108) and the accompanying nonlinear map
F (3.109) acting from the space C1

D(I,Rm) into the continuous function space
C(I,Rm).

Denote now by x∗ ∈ C1
D(I,Rm) a solution of the DAE (3.108), and put

z0 :=Cx∗(t0) so that Fx∗ = 0, Fx∗ = 0. Is then the perturbed IVP (3.113), respec-
tively the operator equationFx∗=(q,δ ) solvable, and how does the solution depend
on the perturbations? Does the implicit function theorem answer these questions?
We have a continuously differentiable mapF , andFx∗ = 0 is satisfied. If the deriva-
tive Fx(x∗) were a homeomorphism, then we would obtain the good answers by
means of the Banach fixed point theorem. From Theorem 3.66 it is known that
Fx(x∗) is bijective provided the index is 1 and the initial condition is such that
d = m− r0, kerC = kerΠ0(t0). Regarding the relation kerΠ0(t0) = kerD(t0) the
following theorem results immediately.

Theorem 3.69. Let the DAE (3.108) satisfy Assumption 3.16. Let x∗ be a solution
of the DAE (3.108), z0 :=Cx∗(t0), and let the linearization (3.111) at x∗ be regular
with tractability index 1.
Let the matrix C satisfy kerC = kerD(t0), imC = R

d, d = rankD(t0).
Then, for every sufficiently small perturbation (q,δ )∈ C(I,Rm)×R

d, the perturbed
IVP (3.113) possesses exactly one solution x(q,δ ) in the neighborhood of x∗, and
the inequality

‖x(q,δ )− x∗‖C1
D
≤ K1(|δ |+‖q‖∞) (3.117)

is valid for all these solutions, whereby K1 is a constant.
x(q,δ ) is defined on a neighborhood of the origin in C(I,Rm)×R

d such that
x(0,0) = x∗. Furthermore, x(q,δ ) is continuously differentiable with respect to
(q,δ ).

In particular, in the index-1 case, the function value (x(0,δ ))(t) =: x(t;δ ) depends
continuously differentiably on the initial data δ for t ∈ I. The IVP

f ((D(t)x(t))′,x(t), t) = 0, t ∈ I, C(x(t0)− x∗(t0)) = δ ,

is uniquely solvable for all sufficiently small δ ∈ R
d , the solution x(t;δ ) is con-

tinuously differentiable with respect to δ , and the sensitivity matrix X(t;δ ) :=
xδ (t;δ ) ∈ L(Rd ,Rm) satisfies the variational system

fy
(
(D(t)x(t;δ ))′,x(t;δ ), t

)(
D(t)X(t;δ )

)′
+ fx
(
(D(t)x(t;δ ))′,x(t;δ ), t

)
X(t;δ ) = 0, t ∈ I,

CX(t0;δ ) = Id .

The columns of the matrix function X(.;δ ) belong to the function space C1
D(I,Rm).
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Similarly, IVPs and BVPs in regular index-1 DAEs, whose data depend smoothly
on additional parameters, have solutions that are continuously differentiable with
respect to these parameters, and the sensitivity matrix satisfies the corresponding
variational system.
Evidently, with these properties, regular index-1 DAEs are very close to regular
ODEs.

Higher index DAEs are essentially different. Let x∗ again denote a solution of the
nonlinear DAE (3.108). Let the linearized equation (3.111) be regular with tractabil-
ity index μ > 1, and let the matrix C in the initial condition be such that unique
solvability of the linear IVP Fx(x∗)x = (q,δ ) is ensured for every q from imFx(x∗)
(cf. Theorem 3.66). Then the linear mapping

Fx(x∗) : C1
D(I,Rm)→C(I,Rm)×R

d

is injective but has an unbounded inverse. In the advanced setting

Fx(x∗) : C1
D(I,Rm)→Cind μ

∗ (I,Rm)×R
d ,

a bounded inverse exists, where Cind μ
∗ (I,Rm) denotes the function space that arises

from imFx(x∗) by introducing a suitable norm to reach a Banach space. If the
nonlinear operator F also maps into this space, i.e.,

Fx ∈ Cind μ
∗ (I,Rm), x ∈ DF , (3.118)

and if the Fréchet differentiability is not lost in the new setting, then the implicit
function theorem yields a perturbation result analogous to Theorem 3.69, but now
instead of the inequality (3.117) it follows that

‖x(q,δ )− x∗‖C1
D
≤ Kμ(|δ |+‖q‖ind μ).

In particular, for q being μ−1 times continuously differentiable, and for sufficiently
smooth DAE coefficients, the inequality

‖x(q,δ )− x∗‖∞ ≤ ‖x(q,δ )− x∗‖C1
D
≤ K̃μ(|δ |+‖q‖∞+

μ−1

∑
j=1
‖q( j)‖∞) (3.119)

follows.
The above only seemingly solves the perturbation problem, since there are seri-
ous difficulties concerning condition (3.118). This condition can only be forced by
means of strong structural restrictions, for instance

W∗0(t){ f (y,x, t)− f (0,P0(t)x, t)} ∈ imW∗0(t)B∗(t)Q0(t), y ∈ R
n,x ∈ D f , t ∈ I,

(3.120)
where W∗0(t) := I−A∗(t)A−∗ (t) denotes a projector along imA∗(t). At least Hes-
senberg form size-2 DAEs meet this condition.
If the DAE (3.111) linearized at x∗ is regular with tractability index 2, then the actual
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Banach space is given by (cf. Proposition 3.68)

Cind 2
∗ (I,Rm) := {q ∈ C(I,Rm) : DΠ∗0Q∗1G−1

∗2 q ∈ C1(I,Rm)},
‖q‖∗ind 2 := ‖q‖∞+‖(DΠ∗0Q∗1G−1

∗2 q)′‖∞, q ∈ Cind 2
∗ (I,Rm).

Proposition 3.70. Let the DAE (3.108) satisfy Assumption 3.16. Let x∗ be a solu-
tion of (3.108), z0 := Cx∗(t0), and let the linearization (3.111) at x∗ be fine with
tractability index 2 and characteristic values r0 ≤ r1 < r2 = m, d = r0− (m− r1).
Let Q∗0,Q∗1 be completely decoupling projector functions to the linearized DAE
(3.111).
Let the matrix C satisfy the conditions kerC = kerΠ∗1(t0), imC = R

d.
Additionally, let all data be sufficiently smooth and let the function f satisfy the
structural condition (3.120) at least in a neighborhood of the extended graph of x∗.
Then, for all sufficiently small perturbation (q,δ ) ∈ Cind 2

∗ (I,Rm)×R
d, the per-

turbed IVP (3.113) possesses exactly one solution x(q,δ ) in the neighborhood of x∗,
and the inequality

‖x(q,δ )− x∗‖C1
D
≤ K2(|δ |+‖q‖∗ind 2) (3.121)

is valid for all these solutions, where K2 is a constant.
x(q,δ ) is defined on a neighborhood of the origin in C(I,Rm)×R

d such that
x(0,0) = x∗. Furthermore, x(q,δ ) is continuously differentiably with respect to
(q,δ ).

Proof. The assertion is proved in [163] for perturbed index-2 DAEs in modified
standard form f(P(t)x(t))′ −P′(t)x(t),x(t), t) = q(t). The same arguments apply to
the DAE (3.108). ��

One should pay attention to the fact that d and C in Proposition 3.70 differ from
those in Theorem 3.69.

In consequence of Proposition 3.70, similar to those of Theorem 3.69, the func-
tion value (x(0,δ ))(t) =: x(t;δ ) again depends continuously differentiable on the
initial data δ for t ∈ I. The IVP

f ((D(t)x(t))′,x(t), t) = 0, t ∈ I, C(x(t0)− x∗(t0)) = δ ,

is uniquely solvable for all sufficiently small δ ∈R
d , the solution x(t;δ ) is continu-

ously differentiable with respect to δ , and the sensitivity matrix X(t;δ ) := xδ (t;δ )∈
L(Rd ,Rm) satisfies the variational system

fy((D(t)x(t;δ ))′,x(t;δ ), t)(D(t)X(t;δ ))′

+ fx((D(t)x(t;δ ))′,x(t;δ ), t)X(t;δ ) = 0, t ∈ I,
CX(t0;δ ) = Id .

The columns of the matrix function X(.;δ ) belong to the function space C1
D(I,Rm).
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Theorem 3.70 confirms once again the ambivalent character of higher index
DAEs, and the conflicting nature of their solutions: On the one hand they behave
as we would expect coming from regular ODE theory. On the other hand they be-
have as solutions of ill-posed problems.

As adumbrated in the previous sections of this chapter, we hope to reach new
transparent solvability assertions without somewhat artificial structural restrictions
as in Proposition 3.70 by applying the theory of regularity regions and linearizations.
We emphasize the uniform structural characteristics of all linearizations within a
regularity region. It is hoped to verify the following conjecture which would perti-
nently generalize Theorem 3.69.
Notice at this place only that the term Π̃∗,can in the conjecture below stands for the
canonical projector function associated with the linearization of the DAE at a close
smooth approximation x̃∗ of x∗. If x∗ itself is smooth enough, we put x̃∗ = x∗.

Conjecture 3.71. Let the DAE

f ((D(t)x(t))′,x(t), t) = 0, t ∈ I,

satisfy Assumption 3.16 and have the regularity region G with tractability index
μ . Let the data be sufficiently smooth. Let x∗ ∈ C1

D(I,Rm) be a solution with val-
ues in G, I be compact and z0 := Cx∗(t0). Let the matrix C satisfy the condition
kerC = kerΠ̃∗,can(t0), imC = R

d , d = rankΠ̃∗,can(t0).
Then, for every sufficiently small perturbation (q,δ ) ∈ Cμ−1(I,Rm)×R

d , the IVP

f ((D(t)x(t))′,x(t), t) = q(t), t ∈ I, C(x(t0)) = z0 +δ , (3.122)

possesses exactly one solution x(q,δ ) ∈ C1
D(I,Rm) in the neighborhood of x∗, and

the inequality

‖x(q,δ )− x∗‖C1
D
≤ Kμ(|δ |+‖q‖∞+

μ−1

∑
j=1
‖q( j)‖∞) (3.123)

is valid for all these solutions, where Kμ is a constant.
x(q,δ ) is defined on a neighborhood of the origin in Cμ−1(I,Rm)×R

d such that
x(0,0) = x∗. Furthermore, for fixed q, the function x(q,δ ) is continuously differen-
tiable with respect to δ .

3.10 A glance at the standard approach via the derivative array
and differentiation index

The derivative array approach aiming at a so-called completion ODE associated with
the standard form DAE

f(x′(t),x(t), t) = 0 (3.124)
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works for smooth nonlinear systems in a similar way as for linear ones (cf. [44, 50]).
In this way, the rank of the partial Jacobian fx′(x′,x, t) is allowed to vary except for
the index-1 case (cf. Note (3) in Section 2.12).

To begin, one provides, for a certain index κ ∈ N, the prolongated system or
derivative array system

Eκ(xκ+1, . . . ,x2,x1,x, t) = 0, (3.125)

where the derivative array function

Eκ(xκ+1, . . . ,x2,x1,x, t) :=

⎡
⎢⎢⎢⎢⎢⎣

f(x1,x, t)
fx1(x1,x, t)x2 + fx(x1,x, t)x1 + ft(x1,x, t)

...
fx1(x1,x, t)xκ+1 + · · ·+ f t···t︸︷︷︸

κ

(x1,x, t)

⎤
⎥⎥⎥⎥⎥⎦
,

is defined for t ∈ If, x∈Df and x1, . . . ,xκ+1 ∈R
m. It results from the given function

f by taking the total derivatives in jet variables up to order κ and collecting all these
expressions row-wise into the array. Then it is asked whether the prolongated system
(3.125) determines on Df×If (or on an open subset) a continuous function S such
that

x1 = S(x, t), (x, t) ∈ Df×If
holds true. Then one solves the resulting explicit ODE

x′(t) = S(x(t), t).

The basic tool for deciding whether a vector field description S can be extracted
from equation (3.125) consists in the fullness property (e.g. [25]). In particular, one
has explicitly to prepare at each level κ the Jacobian

Jκ = [Eκ ,x1 Eκ ,w], w := [x2, . . . ,xκ+1]

and to check whether it has constant rank and is smoothly 1-full. If there is no such
function S , one tries again on the next level κ + 1. This procedure needs highly
smooth data. The amount increases enormously with κ and the dimension.
The commonly used index characterization of general standard form DAEs (3.124)
is the differentiation index, at the beginning called merely the index without an ep-
ithet, and sometimes named the differential index (e.g. [25], [44], [45], [105]). The
differentiation index supposes derivative array systems (3.125).

Definition 3.72. Let f be sufficiently smooth.
If fx1(x1,x, t) remains nonsingular, equation (3.124) is called a DAE with differenti-
ation index 0, as well as a regular ODE.
Otherwise, if there is an index μ ∈ N such that the prolongated system
Eμ(xμ+1, . . . ,x2,x1,x, t) = 0 determines the variable x1 as a continuous function S
in terms of x and t on (an open set in) Df×If, and if μ is the smallest such index,
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then μ is named the differentiation index of the DAE (3.124). The resulting explicit
ODE

x′(t) = S(x(t), t)

is called a completion ODE (e.g. [45]) as well as an underlying ODE (e.g. [105]).

Example 3.73 (Consistency with regularity regions). The equation E1(x1,x, t) = 0
for the DAE in Example 3.34 reads

x1
1− x3 = 0,

x2(1− x2)− γ(t) = 0,
x1x2 + x3(1− x2)− t = 0,

x2
1− x1

3 = 0,

x1
2(1− x2)− x2x1

2− γ ′(t) = 0,

x1
1x2 + x1x1

2 + x1
3(1− x2)− x3x1

2−1 = 0.

Looking for a function x1 = S(x, t) one is led to the system

x1
1− x3 = 0,

x1
2(1−2x2)− γ ′(t) = 0,

x1
3(1− x2)+ x1

1x2 +(x1− x3)x1
2−1 = 0,

which provides the required functions x1 =S(x, t) precisely on each of the regularity
regions

G1 :=
{
(x, t) ∈ R

3×R : x2 <
1
2

}
,

G2 :=
{
(x, t) ∈ R

3×R :
1
2
< x2 < 1

}
,

G3 := {(x, t) ∈ R
3×R : 1 < x2},

given in Example 3.34. It follows that the DAE has differentiation index 1 on the
(tractability-) index-1 regularity regions. ��

For a large class of DAEs the constant-rank conditions supporting the tractability
index and regularity regions are exactly the same as needed to determine the dif-
ferentiation index and completion ODE. This indicates a certain consistency. We
highlight the essential differences later on in this section.

Index-1 DAEs are those whose solutions fill up the obvious constraint

M0(t) = {x ∈ Df : ∃x1 : f(x1,x, t) = 0}

as in the particular case of Example 3.7. In general, one has to expect further con-
straints that are not so obvious, but hidden in the DAE formulation as in Exam-



3.10 Differentiation index 293

ple 3.8. The general expectation is a sequence of constraint sets

M0(t)⊃M1(t)⊃ ·· · ⊃Mμ−1(t) =Mμ(t), t ∈ If,

becoming stationary at level μ−1, and just the setMμ−1(t) is filled up by solutions.
This idea is incorporated, e.g., in the notion of geometrical solvability (cf. [44, 50])
of standard form DAEs (3.124) saying that there is a well-behaved manifold of so-
lutions and a given solution is uniquely determined by an appropriate initial condi-
tion. The DAE solutions are embedded into the flow of the completion ODE. More
precisely, the DAE solutions are those solutions of the completion ODE which are
located at the final constraint setMμ−1(t), that is,

x′(t) = S(x(t), t), x(t) ∈Mμ−1(t). (3.126)

The framework of the completion ODE is taken to hold on open sets so that, with
wise foresight in view of a numerical treatment, perturbations by excitations can be
incorporated. The solution of the IVP

x′(t) = S(x(t), t), x(t0) = x0 ∈Mμ−1(t0),

proceeds in Mμ−1(t), however, in numerical computations it drifts away from this
constraint set. This phenomenon is caused by the stability behavior of the completed
flow in the neighborhood of the constraint set. It is well known that, in general,
completion ODEs are not uniquely determined by their original DAEs.

Example 3.74 (Different completion ODEs). Supposing the real functions α,β and
γ are sufficiently smooth, the autonomous Hessenberg size-2 DAE

x′1 = (α(x1)− x2)β (x1)+ γ(x1),

x′2 = x3, (3.127)
0 = x2−α(x1),

leads to the following two specific autonomous completion ODEs

x′1 = (α(x1)− x2)β (x1)+ γ(x1),

x′2 = x3, (3.128)

x′3 = α ′′(x1)
(
(α(x1)− x2)β (x1)+ γ(x1)

)2−α ′(x1)β (x1)x3 +α ′(x1)
(
α ′(x1)β (x1)

+(α(x1)− x2)β ′(x1)+ γ ′(x1)
)(
α(x1)β (x1)− x2β (x1)+ γ(x1)

)
,

and
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x′1 = (α(x1)− x2)β (x1)+ γ(x1),

x′2 = α ′(x1)
(
α(x1)β (x1)− x2β (x1)+ γ(x1)

)
, (3.129)

x′3 = α ′′(x1)
(
(α(x1)− x2)β (x1)+ γ(x1)

)2−α ′(x1)β (x1)x3 +α ′(x1)
(
α ′(x1)β (x1)

+(α(x1)− x2)β ′(x1)+ γ ′(x1)
)(
α(x1)β (x1)− x2β (x1)+ γ(x1)

)
.

The constraint sets also being independent of t are

M0 = {x ∈ R
3 : x2 = α(x1)} ⊃M1 = {x ∈ R

3 : x2 = α(x1),x3 = γ(x1)}.

Assume γ(c) = 0,γ ′(c) �= 0, for a certain fixed c ∈ R, and consider the stationary
solution x∗ of the DAE given by x∗,1 = c, x∗,2 = α(c), x∗,3 = 0. Owing to Lya-
punov’s theorem the eigenstructure of the corresponding Jacobian matrix Sx(x∗) is
responsible for the stability behavior of the reference solution x∗. In the first case,
these eigenvalues are

λ1 = γ ′(c), λ2 = 0, λ3 = 0,

and the two zero eigenvalues belong to a second-order Jordan chain. In the second
case, the eigenvalues are

λ1 = γ ′(c), λ2 = 0, λ3 =−α ′(c)β (c).

This explains why numerical solutions often drift away from the constraint set they
should remain on. Even if γ ′(c)< 0, the stationary solution x∗ fails to be asymptot-
ically stable as a solution of the completion ODE.
Setting α(ξ ) =−ξ , β (ξ ) = 5 and γ(ξ ) = 1−ξ 2 then we obtain c= 1. The resulting
stationary solution is x∗ = (1,−1,0). The DAE (3.127) is now

x′1 =−5(x1 + x2)+1− x2
1,

x′2 = x3,

0 = x1 + x2,

with the obvious constraint setM0 = {x∈R
3 : x1+x2 = 0} and the set of consistent

valuesM1 = {x ∈ R
3 : x1 + x2 = 0, x3 = x2

1−1}.
The completion ODEs (3.128) and (3.129) simplify to

x′1 =−5(x1 + x2)+1− x2
1,

x′2 = x3, (3.130)

x′3 = 5x3 +(5+2x1)(−5(x1 + x2)+1− x2
1),

respectively to

x′1 =−5(x1 + x2)+1− x2
1,

x′2 = 5(x1 + x2)−1+ x2
1, (3.131)

x′3 = 5x3 +(5+2x1)(−5(x1 + x2)+1− x2
1).
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The solution x∗ is asymptotically stable as a solution of the DAE, that is, IVPs with
slightly perturbed but consistent initial values have solutions on the entire interval
[0,∞) tending to x∗.
Notice that solutions of the completion ODEs which start from points inM1 behave
in exactly the same way. However, if the initial value of a solution of the completion
ODEs does not exactly belong to M1, then the solution fails to approach x∗, but
drifts away.
Figure 3.9 shows the solution (solid line) of the DAE starting at t = 0 in
(1.1,−1.1,0.21) ∈M1 which solves at the same time the completion ODEs, and
the solutions of the ODEs (3.130) (dashed line) and (3.131) (dot-dashed line) start-
ing from the initial value (1.1,−1.101,0.21) which is close to the previous one but
does not belong toM1. While the solution of (3.131) (dot-dashed line) moves away
quickly the solution of (3.130) (dashed line) drifts slowly. ��

Fig. 3.9 Solution components x1,x2,x3 related to Example 3.74

It is not at all a simple task to extract the description of the completion ODE and the
constraint manifold from equation (3.125). Even if the full information about the
completion ODE is available, i.e., the vector field S is given, and the constraint set
is described by an equation, sayMμ−1(t) = {x ∈ D f : h(x, t) = 0}, and hx(x, t) has
full row rank, then in view of the numerical treatment, it is proposed ([87], cf. [25])
to change to the Hessenberg size-2 DAE

x′(t) = S(x(t), t)+hx(x(t), t)∗λ (t),
0 = h(x(t), t),

whereby the new variable λ has the size rankhx.
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There are various special approaches to DAEs, which are based in a similar
way on derivative array functions, such as reduction techniques (e.g., [95, 189])
and transformations into special forms (e.g., [130]). In any case one has to provide
derivative array functions with all their included derivatives. We refer to the mono-
graph [130] which is devoted to derivative array approaches for a further discussion.
To avoid the shortcomings of the completion ODE, e.g., in [130], one sets stronger
priority in regarding the constraints and tries to extract from equation (3.125) an
index-1 DAE of the special form

x′1(t) = L(x1(t), t), x2(t) =R(x1(t), t), (3.132)

whereby the given components of the unknown x are suitably partitioned into x1 and
x2. It should be pointed out that the ODE in (3.132) is not the same as an IERODE.
To see the difference we turn to the simple constant coefficient DAE in Example 1.5
(cf. also Example 3.67).

Example 3.75 (Different resulting ODEs). For the regular index-4 DAE
⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

x′(t)+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F

x(t) = q(t)

the corresponding equation E4(x5,x4,x3,x2,x1,x, t) = 0 comprises 25 equations,
from which a completion ODE as well as an index-1 DAE (3.132) can be extracted,
namely

x′1 = αx1 + x2 +q1,

x′2 = q′2−q′′3 +q(3)4 −q(4)5 ,

x′3 =−x2 +q2,

x′4 =−x3 +q3,

x′5 =−x4 +q4,

and

x′1 = αx1 +q1−q2 +q′3−q(2)4 +q(3)5 , (3.133)

x2 = q2−q′3 +q(2)4 −q(3)5 ,

x3 = q3−q′4 +q(2)5 ,

x4 = q4−q′5,

x5 = q5.

In contrast, the projector based decoupling given in Example 3.67 leads to



3.10 Differentiation index 297

(x1+x3−αx4+α2x5)
′=α(x1+x3−αx4+α2x5)+q1+q2−αq3+α2q4−α3q5,

(3.134)

x2 = q2− (q3− (q4−q′5)
′)′,

x3 = q3− (q4−q′5)
′,

x4 = q4−q′5,

x5 = q5.

The ODE (3.133) and the IERODE (3.134) have the same dimension. We recognize
that the IERODE 3.134 precisely reflects the smoothest part of the unknown x, being
independent of the derivatives of the excitation. This part is captured by means of
the projector Π3 which is the spectral projector associated with the matrix pencil
λE +F . In general, one cannot expect standard basis vectors like (1,0, . . . ,0)T to
belong to the finite eigenspace of a given regular matrix pencil. ��

We turn to another example to highlight further differences.

Example 3.76 (Campbell’s DAE). Consider the system of m = m3 + m1 + m2,
m2 > m1, equations

A(x1(t), t)x′1(t)+ϕ(x1(t), t)+ x3(t) = 0,
x1(t)− γ(t) = 0,

x′2(t)+ψ(x1(t),x2(t),x3(t), t) = 0,

whereA,ϕ ,γ,ψ are sufficiently smooth on the domain R
m×R. The matrix function

A(x1, t) ∈ L(Rm1 ,Rm2) is assumed to have different rank on different subdomains.
We assume in detail

A(x1, t) = 0, if x1 ∈ D[1]
1 , and rankA(x1, t) = m1, if x1 ∈ D[2]

1 ,

with open connected sets D[1]
1 ,D[2]

1 in R
m1 . This DAE can be easily solved. It serves

as a special case to emphasize the advantages of the derivative array approach
(e.g., [46]). To apply this approach we form the array functions

E1(x2,x1,x, t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(x1, t)x1
1 +ϕ(x1, t)+ x3

x1− γ(t)
x1

2 +ψ(x, t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A(x1, t)x2

1 +Ax1(x1, t)x1
1x1

1 +At(x1, t)x1
1

+ϕx1(x1, t)x1
1 +ϕt(x1, t)+ x1

3

x1
1− γ ′(t)

x2
2 +ψx1(x, t)x

1
1 +ψx2(x, t)x

1
2 +ψx3(x, t)x

1
3 +ψt(x, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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E2(x3,x2,x1,x, t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(x1, t)x1
1 +ϕ(x1, t)+ x3

x1− γ(t)
x1

2 +ψ(x, t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A(x1, t)x2

1 +Ax1(x1, t)x1
1x1

1 +At(x1, t)x1
1

+ϕx1(x1, t)x1
1 +ϕt(x1, t)+ x1

3

x1
1− γ ′(t)

x2
2 +ψx1(x, t)x

1
1 +ψx2(x, t)x

1
2 +ψx3(x, t)x

1
3 +ψt(x, t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A(x1, t)x3

1 + · · ·+ x2
3

x2
1− γ ′′(t)

x3
2 +ψx1(x, t)x

2
1 + · · ·+ψtt(x, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

First we check whether the equation

E1(x2,x1,x, t) = 0

contains a relation x1 = S(x, t) with an at least continuous function S defined on an
open set in R

m×R. This happens in fact ifA(x1, t) vanishes identically, for instance,
if x1 ∈ D[1]

1 . Therefore, the DAE has differentiation index 1 on the corresponding
region

G1 :=D[1]
1 ×R

m2 ×R
m3 ×R.

A look at the DAE system itself shows that then the solution does not depend on the
derivative of the function γ .
IfA(x1, t) does not vanish identically, but if it disappears just on a lower-dimensional
subset Ω ⊂ R

m×R, then the prolongated system E1(x2,x1,x, t) = 0 determines a
vector field SΩ just on this subset Ω , that is, SΩ is no longer given on an open set
in R

m×R, and the definition of the completion ODE does not apply.
Therefore, if A(x1, t) does not vanish identically, we must turn to the equation

E2(x3,x2,x1,x, t) = 0

and ask again for a relation x1 = S(x, t). Now we actually attain such a relation
globally and independently of the behavior of A(x1, t). We obtain a completion
ODE x′(t) = S(x(t), t) and the DAE has differentiation index 2 on its definition
domain R

m×R.
On the other hand, since the rank of A varies, this DAE cannot be rewritten as a
DAE with a properly leading term. However writing the above system as

⎡
⎣
A(x1(t), t) 0

0 0
0 I

⎤
⎦

︸ ︷︷ ︸
A(x1(t),t)

(

[
I 0 0
0 I 0

]

︸ ︷︷ ︸
D

x(t))′+

⎡
⎣

ϕ(x1(t), t)+ x3(t)
x1(t)− γ(t)

ψ(x1(t),x2(t),x3(t), t)

⎤
⎦= 0, (3.135)
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we arrive at a DAE with quasi-proper leading term (cf. Section 3.12 and Chapter 9).
Therefore it does not matter if the matrixA(x1, t) changes its rank. Observe that the
leading term in (3.135) becomes even properly stated if the matrix function A has
full column rank, for instance, if x1 ∈ D[2]

2 .
We form a matrix function sequence from only the first partial derivatives of the
coefficients A,ϕ ,γ,ψ starting with

G0 := AD =

⎡
⎣
A 0 0
0 0 0
0 I 0

⎤
⎦ , B0 :=

⎡
⎣
ϕx1 +(Ay)x1 0 I

I 0 0
ψx1 ψx2 ψx3

⎤
⎦ .

We first compute a projector Q0 onto kerD, and then G1 := G0 +B0Q0, that is

Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 I

⎤
⎦ , G1 =

⎡
⎣
A 0 I
0 0 0
0 I ψx3

⎤
⎦ .

Next we ask whether G1 is nonsingular. This is not the case, but G1 has constant
rank. We compute the continuous projector function Q1 onto kerG1,

Q1 =

⎡
⎣

I 0 0
ψx3A 0 0
−A 0 0

⎤
⎦ .

Next we set P0 := I−Q0, P1 := I−Q1 and compute

G̃2 := G1 +B0P0Q1 =

⎡
⎣

A+ϕx1 0 I
I 0 0

ψx1 +ψx2ψx3A I ψx3

⎤
⎦ .

The matrix function G̃2 is everywhere nonsingular, which means that the DAE is
quasi-regular on the definition domain R

m×R (cf. Chapter 9).
At the same time, on open sets whereA(x1, t) has full column rank, a regular index-
2 DAE results. In particular,

G2 :=D[2]
1 ×R

m2 ×R
m3 ×R

is a regularity region with index 2.
On open sets where A identically vanishes, by replacing D in (3.135) with

Dnew =

[
0 0 0
0 I 0

]
a proper reformulation results and there is a regularity region with

index-1. For instance, G1 is such an index-1 regularity region. ��

The notion of quasi-regularity (see Chapter 9) is somewhat close to the differential
index. It allows rank changes but it is weak in the sense that the restrictions of the
given DAE to subdomains do not inherit the global characteristics.
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3.11 Using structural peculiarities to ease models

A more comfortable version of a DAE with proper leading term is the equation

f ((D(t)x(t))′,x(t), t) = 0, (3.136)

in which the derivative term is linear. This special form arises in the general DAE
(3.1) for d(x, t) = D(t)x. It might be easier to handle than the fully nonlinear DAE.
In particular, there is a linear function space, C1

D(I,Rn), which accommodates the
solutions. Therefore, sometimes it is reasonable to turn from equation (3.1) to an
equivalent auxiliary enlarged system which possesses such a simpler structure. The
following proposition ensures the change.
Let the DAE (3.1) satisfy Assumption 3.16 and let ker fy(y,x, t) be independent of y
and x. Then a projector valued function RA ∈ C1(I f ,L(Rn)) is available such that

kerRA(t) = ker fy(y,x, t), y ∈ R
n,x ∈ D f , t ∈ I f .

For instance, the orthoprojector function along ker fy(y,x, t) can be chosen. Because
of the identity

f (y,x, t)− f (RA(t)y,x, t)=
1∫

0

fy(sy+(1−s)RA(t)y,x, t)(I−RA(t))yds= 0 (3.137)

we can rewrite the DAE (3.1) as

f (RA(t)(d(x(t), t))′,x(t), t) = 0,

and hence as

f ((RA(t)d(x(t), t))′ −R′A(t)d(x(t), t),x(t), t) = 0. (3.138)

The latter equation suggests we turn to a slightly weaker solution notion.

Definition 3.77. Let the DAE (3.1) satisfy Assumption 3.16 and show the nullspace
ker fy(y,x, t) to be independent of y and x. Each function x∗ ∈ C(I∗,Rm) with values
in D f and a continuously differentiable term RA(.)d(x∗(.), .), which satisfies the
DAE pointwise on the interval I∗, is said to be a solution of this DAE.

One can check immediately that this solution notion is invariant with respect to the
special choice of the projector function RA. Of course, if (I−RA(.))d(x∗(.), .) is also
continuously differentiable, then we attain a solution in the previous sense.

The enlarged system

f
(
(RA(t)u(t))′ −R′A(t)d(x(t), t),x(t), t

)
= 0, (3.139)

u(t)−d(x(t), t) = 0, (3.140)

actually has the required form (3.136). We have
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f̂ ((D̂(t)x̂(t))′, x̂(t), t) = 0, (3.141)

with

x̂ =
[

u
x

]
, f̂ (y, x̂, t) =

[
f (y−R′A(t)d(x, t),x, t)

u−d(x, t)

]
, y ∈ R

n,u ∈ R
n,x ∈ D f , t ∈ I f ,

D̂(t) =
[
RA(t) 0

]
.

Since the original DAE (3.1) satisfies the Assumption 3.16 so does the enlarged
version (3.141). In particular, it holds that

ker f̂y = ker fy = kerRA and im D̂ = imRA,

so that ker f̂y and im D̂ are actually transversal C1-subspaces.
If even ker fy = {0}, then RA = I and the enlarged system (3.141) simplifies to

f (u′(t),x(t), t) = 0,
u(t)−d(x(t), t) = 0.

Proposition 3.78. Let equation (3.1) satisfy Assumption 3.16 and ker fy be indepen-
dent of y and x.

(1) Then the enlarged system (3.141) is a DAE of the form (3.136) and satisfies
Assumption 3.16, too.

(2) If x∗ is a solution of the DAE (3.1) in the sense of Definition 3.77, then
x̂∗ := (u∗,x∗), u∗ := d(x∗(.), .), is a solution of the enlarged DAE (3.141), and
vice versa.

(3) If fy has full column rank, then RA = I, and the enlarged DAE comprises also
a full-column-rank partial derivative f̂y. If x∗ is a solution of (3.1), then the
pair u∗ := d(x∗(.), .), x∗ is a solution of the enlarged system, and vice versa.

Proof. (1) and the first part of (3) are evident and are shown before Proposition 3.78.
It remains to show (2) and the second part of (3).
If x∗ is a solution of (3.1) in the sense of Definition 3.77, u∗ := d(x∗(.), .), then the
second row (3.140) of the enlarged DAE is satisfied. Furthermore, the component
RAu∗ is continuously differentiable and

f
(
(RA(t)u∗(t))′ −R′A(t)d(x∗(t), t),x∗(t), t

)
= f (RA(t)u′∗(t),x∗(t), t)

= f (u′∗(t),x∗(t), t) = 0.

Conversely, if x̂∗ := (u∗,x∗) is a solution of the enlarged DAE, then RAu∗ is contin-
uously differentiable and
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0 = u∗(t)−d(x∗(t), t),

0 = f ((RA(t)u∗(t))′ −R′A(t)d(x∗(t), t),x∗(t), t)

= f (RA(t)(d(x∗(t), t))′ −R′A(t)d(x∗(t), t),x∗(t), t).

This proves the assertion. ��

The analysis simplifies if one has subspaces which do not at all depend on y and x. In
the standard applications—circuit simulation and mechanical motion simulation—
the partial Jacobian fy is a constant matrix such that ker fy is constant. We are not
aware of any applications resulting in subspaces ker fy, imdx that actually depend
on y and x. Of course, theoretically, such a dependence is imaginable.
If just one of the two relevant subspaces has the desired property, then the DAE can
be slightly modified to acquire the property for the other subspace, too. This fact is
worth considering in the modeling process at the very beginning.

More precisely, let DAE (3.1) satisfy Assumption 3.1, let imdx be a C1-subspace.
Assuming imdx(x, t) to be independent of x, we find a projector function RD ∈
C1(I f ,L(Rn)) such that imRD(t) = imdx(x, t), for all x ∈ D f , t ∈ I f . In particu-
lar, the orthoprojector onto imdx(x, t) can serve as RD(t). Then, we turn from (3.1)
to the modified DAE

f̃ ((d(x(t), t))′,x(t), t) = 0, (3.142)

where

f̃ (y,x, t) := f (RD(t)y+(I−RD(t))dt(x, t), x, t),

f̃y(y,x, t) = fy(RD(t)y+(I−RD(t))dt(x, t),x, t)RD(t), y ∈ R
n,x ∈ D f , t ∈ I f .

In contrast, in the opposite case, if imdx(x, t) depends on x, but ker fy(y,x, t) is inde-
pendent of (y,x), supposing that ker fy is a C1-subspace, we take a projector function
RA ∈ C1(I f ,L(Rn)) such that kerRA(t) = ker fy(y,x, t), and modify the DAE as

f̃ ((d̃(x(t), t))′,x(t), t) = 0, (3.143)

with

d̃(x, t) := RA(t)d(x, t),

f̃ (y,x, t) := f (RA(t)y−R′A(t)d(x, t), x, t),

f̃y(y,x, t) = fy(RA(t)y−R′A(t)d(x, t), x, t)RA(t), y ∈ R
n,x ∈ D f , t ∈ I f .

Proposition 3.79. Let the DAE (3.1) satisfy Assumption 3.16.

(1) If imdx(x, t) is independent of x, then the DAE (3.142) satisfies Assumption
3.16, too, and it holds that

ker f̃y(y,x, t) = kerRD(t), imdx(x, t) = imRD(t).
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Moreover, the DAEs (3.1) and (3.142) are equivalent.
(2) Let ker fy(y,x, t) be independent of y and x. Then the DAE (3.143), satisfies

Assumption 3.16, too, and it holds that

ker f̃y(y,x, t) = kerRA(t), im d̃x(x, t) = imRA(t).

The solutions of the DAE (3.1) are at the same time solutions of the modified
DAE (3.143), whereas the solutions of (3.143) are solutions of (3.1) in the
sense of Definition 3.77.

Proof. (1) For each arbitrary function x ∈ C(I,Rm), with values in D f , such that
d(x(.), .) ∈ C1(I,Rn), Proposition C.1 provides the expression

(d(x(t), t))′ = dx(x(t), t)w(t)+dt(x(t), t), t ∈ I,

with a certain continuous function w. This yields

(I−RD(t))(d(x(t), t))′ = (I−RD(t))dt(x(t), t),

and hence

f ((d(x(t), t))′,x(t), t) = f
(
RD(t)(d(x(t), t))′+(I−RD(t))dt(x(t), t), x(t), t

)

= f̃
(
(d(x(t), t))′,x(t), t

)
.

Consequently, each solution of (3.1) also solves (3.142), and vice versa.
Since the DAE (3.1) has a properly stated leading term, its transversality condi-
tion implies ker fy(y,x, t)∩ imRD(t) = {0}, thus ker f̃y(y,x, t) = kerRD(t), and hence
ker f̃y(y,x, t)⊕ imdx(x, t) = kerRD(t)⊕ imRD(t) = R

n.
(2) Choosing a projector function RA ∈ C1(I f ,L(Rn)), kerRA(t) ⊆ ker fy(y,x, t)
we apply relation (3.137). For each arbitrary x ∈ C(I,Rm), with values in D f ,
d(x(.), .) ∈ C1(I,Rn), we derive

f
(
(d(x(t), t))′,x(t), t

)
= f
(
RA(t)(d(x(t), t))′,x(t), t

)

= f
(
(RA(t)d(x(t), t))′ −R′A(t)d(x(t), t),x(t), t

)

= f̃ ((d̃(x(t), t))′,x(t), t).

This shows that each solution of (3.1) also solves the modified DAE (3.143). If x∗ is
a solution of the modified DAE, then just RAd(x∗(.), .) is continuously differentiable,
so that Definition 3.77 applies.
Since (3.1) has a properly stated leading term, it holds that kerRA(t)∩ imdx(x, t) =
{0}. This yields im d̃x(x, t)= imRA(t)dx(x, t)=RA(t) imdx(x, t); further im d̃x(x, t)=
imRA(t), and ker f̃y(y,x, t)⊕ im d̃x(x, t) = kerRA(t)⊕ imRA(t) = R

n. ��
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3.12 Regularity regions of DAEs with quasi-proper leading terms

It may well happen that a given DAE (3.1) satisfies the Assumption 3.1, and it
actually shows a regular behavior, but fails to have a properly involved derivative.
To capture this situation we relax the constant-rank condition for fy and apply local
reformulations.

Definition 3.80. Equation (3.1) which satisfies Assumption 3.1 is said to be a DAE
with quasi-proper leading term, if imdx is a C1-subspace, kerdx is nontrivial, and
there exists a further C1-subspace NA, possibly depending on y,x, t, such that the
inclusion

NA(y,x, t)⊆ ker fy(y,x, t), y ∈ R
n,x ∈ D f , t ∈ I f , (3.144)

and the transversality condition

NA(y,x, t)⊕ imdx(x, t) = R
n, x ∈ D f , t ∈ I f , (3.145)

are valid.

For what concerns the solution notion, we continue to apply Definition 3.2.
There is a simple idea to create a DAE with quasi-proper leading term: One

arranges things in such a way that dx is rectangular and has full row rank r = n ≤
m− 1. In this case, the trivial subspace NA = {0} satisfies both conditions (3.144)
and (3.145).

Often the substitution of a singular square matrix Dinc into a standard form DAE

f(x′(t),x(t), t) = 0,

such that kerDinc ∩ imDinc = {0} and f(x1,x, t) = f(Dincx1,x, t) holds for all argu-
ments, will do. Having such an incidence matrix, its entries are mostly zeros and
ones, and the standard form DAE can be rewritten as

f((Dincx(t))′,x(t), t) = 0.

One attains a quasi-proper leading term by letting NA := kerDinc.

Example 3.81 (Quasi-proper leading term by an incidence matrix). Consider the
nonlinear system

α(x2(t),x3(t), t) x′2(t)+ x1(t) − q1(t) = 0,
β (x3(t), t) x′3(t)+ x2(t) − q2(t) = 0,

x3(t) − q3(t) = 0,

with smooth functions α and β . Assume the function α(x2,x3, t) vanishes identi-
cally for x2 ≤ 1 and remains positive elsewhere. The function β has no zeros at all.
This system cannot be written globally as a DAE with proper leading term. How-
ever, choosing Dinc = diag(0,1,1) we obtain the DAE with quasi-proper leading
term



3.12 Quasi-proper regular DAEs 305
⎡
⎣

0 α(x2(t),x3(t), t) 0
0 0 β (x3(t), t)
0 0 0

⎤
⎦
(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
Dinc

x(t)

)′
+ x(t)−q(t) = 0, (3.146)

with

f (y,x, t) =

⎡
⎣

0 α(x2,x3, t) 0
0 0 β (x3, t)
0 0 0

⎤
⎦y+ x−q(t), d(x, t) =

⎡
⎣

0
x2
x3

⎤
⎦= Dincx,

and NA = kerDinc. We introduce the open connected sets

G+ = {(x, t) ∈ R
3×R : x2 > 1}, G− = {(x, t) ∈ R

3×R : x2 < 1},

and consider the DAE on these sets separately. On G+, this is a DAE with properly
stated leading term. Further, computing an admissible matrix function sequence,
one knows the DAE to be regular with index 3 and characteristics r0 = r1 = r2 =
2, r3 = 3.
In contrast, on G−, the leading term of the DAE is no longer properly stated
and NA is a proper subspace of ker fy. Observe that fy has constant rank on G−,
and Rnew := diag(0,0,1) is the orthoprojector along ker fy. Replacing in the DAE
(3.146) the function d by dnew = Rnewd = RnewDincx we arrive at the DAE

⎡
⎣

0 0 0
0 0 β (x3(t), t)
0 0 0

⎤
⎦
(
⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
Dinc

x(t)
)′
+ x(t)−q(t) = 0, (3.147)

with properly stated leading term, and which is regular with index 2 and character-
istic values r0 = 1,r1 = 2,r2 = 3. That means that the reformulated DAE (3.147) is
regular on G− in the sense of Definition 3.28, whereas this definition does not apply
to the original quasi-proper DAE (3.146). ��

Similarly as in this example, the leading term in a quasi-proper DAE is often lo-
cally somewhat too generously stated and could be reformulated locally in a proper
version. Nevertheless we agree to speak of regularity regions also in those cases.

Definition 3.82. Let the DAE (3.1) satisfy Assumption 3.1 and have a quasi-proper
leading term. The open connected set G ⊆ D f ×I f is said to be a regularity region
of this DAE, if fy has constant rank on G and the DAE can be reformulated on G
such that the resulting DAE has a properly stated leading term and is regular on G
in the sense of Definition 3.28.

We emphasize at this point that, as in the above example, a proper reformulation
comes along with a lower level smoothness demand concerning the solution. The
following proposition provides sufficient conditions for proper reformulations.
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Proposition 3.83. Let the DAE (3.1) satisfy Assumption 3.1 and have a quasi-proper
leading term. Let ker fy be a C1-subspace on the open set Rn×G, G ⊆D f ×I f . Let
ker fy be independent of y and x there,

ker fy(y,x, t) =: Nf (t), (y,x, t) ∈ R
n×G.

Let Rnew(t) ∈ L(Rn) denote the orthoprojector along Nf (t), and further

dnew(x, t) := Rnew(t)d(x, t), (x, t) ∈ G.

Then the DAE

f ((dnew(x(t), t))′ −R′new(t)d(x(t), t),x(t), t) = 0 (3.148)

is a reformulation of equation (3.1), which has a properly involved derivative on
R

n×G.
Each solution of the DAE (3.1) that resides in G is also a solution of the new
DAE (3.148). Conversely, if x∗ is a solution of (3.148) with values in G and
u∗ := d(x∗(.), .), then x∗ is a solution of the DAE (3.1), supposing the part (I −
Rnew)u∗ is also continuously differentiable.

Proof. Owing to the quasi-proper leading term it holds that NA⊕ imdx =R
n. Denote

by R the projector function onto imdx along NA. On R
n×G the relations

im(I−R) = NA ⊆ Nf = ker fy = kerRnew

are valid, and therefore Rnew(I−R) = 0, Rnew = RnewR. It follows that

imdnew x = imRnewdx = imRnewR = imRnew,

and hence R
n = kerRnew⊕ imRnew = ker fy⊕ imdnew x.

Let x∗ be a solution of the DAE (3.1) with path in G. Then u∗ := d(x∗(.), .) is con-
tinuously differentiable. Rnew is also continuously differentiable since ker fy is a C1-
subspace. Then, unew ∗ := Rnewd(x∗(.), .) = Rnewu∗ is continuously differentiable,
too. We derive

f
(
(dnew(x∗(t), t))′ −R′new(t)d(x∗(t), t),x∗(t), t

)

= f
(
(Rnew(t)u∗(t))′ −R′new(t)u∗(t),x∗(t), t

)

= f
(
Rnew(t)u′∗(t),x∗(t), t

)
= f (u′∗(t),x∗(t), t) = 0,

so that x∗ solves the reformulated DAE (3.148).
Solutions x∗ of (3.148) are continuous with Rnewu∗ being continuously differen-
tiable. The extra smoothness demand ensures the continuous differentiability of u∗.

��
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3.13 Notes and references

(1) The material of this chapter is to a large extent new. In constructing the admis-
sible matrix function sequences it follows the lines of [168, 171], which consider
DAEs of the form

A(d(x(t), t))′+b(x(t), t) = 0,

and
A(x(t), t)(D(t)x(t))′+b(x(t), t) = 0,

respectively. Now we consider fully implicit equations including both previous ver-
sions.
The tractability index concept is fully consistent with the knowledge of Hessen-
berg DAEs. Section 3.5 generalizes the special index-3 results obtained in [200] to
Hessenberg form DAEs with arbitrary size.
The achievements concerning DAEs in circuit simulation in Section 3.6 reflect ideas
from [70] and [207].
The local solvability assertions in Section 3.7 take up the decoupling ideas of [96],
[205] and [211] and put them in a more general context.

(2) There are various interrelations between standard form DAEs and DAEs with
proper or quasi-proper leading terms. We believe in the general possibility of for-
mulating DAE models in applications at the very beginning with properly stated
derivative terms, as is the case in circuit simulation. That is, one creates more pre-
cise models than standard form DAEs can be.
It seems that till now, owing to the well-developed theory on standard form DAEs
(including numerical integration methods), one often transforms models that are
originally in a properly stated version into standard form (e.g., [118]). This means
that supposing continuously differentiable solutions and taking the total derivative
in (3.1) one turns from (3.1) to the standard form DAE

f (dx(x(t), t)x′(t)+dt(x(t), t), x(t), t) = 0. (3.149)

However this form again hides the precise information on how the derivative is
packet in. We do not recommend turning from the precise model (3.1) to (3.149) for
numerical integration, etc. In circuit simulation, it is a well-known experience that
numerical integration performs better when using the precise model. Furthermore,
often the dimensions are very large and the functions f ,d, respectively f, satisfy low
smoothness requirements only. From these points of view, it is rather worse to turn
from equation (3.1) to the standard form version (3.149) in practice.

The opposite question of whether a given standard form DAE

f(x′(t),x(t), t) = 0, (3.150)

where f : Rm×D f ×I f −→ R
k is continuous with continuous partial derivatives

fx′ , fx, can be reformulated as a DAE with a properly stated leading term or at least
with a quasi-proper leading term is less simple.
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If there is a nontrivial, possibly time-varying C1-subspace N in R
m such that

N(t)⊆ ker fx′(x
′,x, t), (x′,x, t) ∈ R

m×Df×If, (3.151)

we find (cf. Appendix A.4) a continuously differentiable projector valued function
P such that kerP = N = im(I−P). It holds that

fx′(x
′,x, t)(I−P(t)) = 0, (x′,x, t) ∈ R

m×Df×If,

and hence

f(x′,x, t)− f(P(t)x′,x, t) =
∫ 1

0
fx′(sx′+(1− s)P(t)x′,x, t)(I−P(t))x′ds = 0,

thus f(x′,x, t)≡ f(P(t)x′,x, t), and equation (3.150) is the same as

f(P(t)x′(t),x(t), t) = 0. (3.152)

In the next step we turn to

f((P(t)x(t))′ −P′(t)x(t),x(t), t) = 0, (3.153)

and this latter form suggests that solutions should be in C1
P(I,Rn) instead of

C1(I,Rn). The DAE (3.153) has at least a quasi-proper leading term.
The DAE (3.153) has a proper leading term, if N and ker fx′ coincide. We emphasize
that the latter requires ker fx′(y,x, t) to be a subspace independent of the variables x′

and x, as it is supposed, e.g., in [96], [160].
If fx′ has a constant nullspace—as it is often the case in applications—also a constant
projector P can be chosen, and equation (3.153) simplifies to

f((Px(t))′,x(t), t) = 0. (3.154)

Often a standard form DAE can be changed into a DAE with at least quasi-proper
leading term by substituting an incidence matrix (see Section 3.12).
The question of whether a general standard form DAE (3.150), whose leading
nullspace ker fx1 depends on (x′,x), can be reformulated to a DAE with properly
stated leading term is unsolved. No general rules are in sight for this task. How-
ever, if it works, one can expect advantages concerning solvability and numerical
treatment as in Example 3.3.

(3) Geometric methods, treating systems of smooth differential equations—
among them DAEs—such as jet varieties, avoid the difficulties concerning drift and
perturbation by consequently working just on related manifolds. The particular geo-
metric reduction procedure in [189, Chapter IV] (also [145]), uses local parametriza-
tion and the subimmersion theorem for providing a sequence of (sub)manifolds

M0 ⊃M1 ⊃ ·· · ⊃Mμ−1 =Mμ
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as well as a vector field defined just on the final manifold. Thereby, certain constant-
rank requirements are to support the manifold structure. Then the flow given on
the final manifold is studied, in particular singularities of this flow are addressed.
A local version of this geometric reduction procedure is developed in [194], and it
is pointed out how additional singularities may occur in every step on the way to a
final manifold.
In contrast, we aim for an analysis of DAEs which persists in view of arbitrarily
small perturbations, similarly as it is done with the completion ODEs; however,
we proceed without any derivative array functions. We emphasize several aspects
concerning perturbations.
Perturbations may force the solutions to leave the constraint set of the unperturbed
DAE. In particular, for linear constant coefficient systems Ex′(t)+Fx(t) = 0 the
flow is restricted to the finite eigenspace of the matrix pencil, that is, to the range of
the spectral projector imΠμ−1. The subspace imΠμ−1 is at the same time the set of
consistent initial values for the homogeneous DAE. A nontrivial excitation q may
force the flow of the DAE Ex′(t)+Fx(t) = q(t) to spread out over all in R

m. The
sets of consistent values strongly depend on q.
Following the idea of characterizing linear DAEs by characterizing just the coef-
ficient pair {E,F} independently of the particular right-hand side q, our goal is a
perturbation invariant characterization of general DAEs. In this context we are not
interested in working out the particular constraint sets. In our view, generating the
obvious and hidden constraint of a DAE is then an essential part of the particular
solution procedure.
The DAEs arising from applications are nothing else than models describing physi-
cal phenomena just approximately. They are partly derived from physical laws, but
other parts are created by means of quite voluntary ansatz functions and parame-
ter calibrations. Having this in mind we aim for a structural characterization that is
invariant with respect to perturbations rather than for an explicit description of the
solution varieties of special DAEs.

(4) In essence, in the present chapter we preclude rank changes of the matrix
function fy. We want to emphasize again that rank changes in fy(y,x, t) lead to
somewhat critical problems. As pointed out in various case studies (e.g., in Sec-
tion 2.9), the resulting critical points may have very different natures. There are
quite harmless critical points which could be healed by means of smoother data, but
there are also serious critical points, yielding singularities in the flow. We do not go
here into further detail in this direction. We refer to Chapter 9 for a discussion of
quasi-regular problems including harmless critical points. Our goal in the present
chapter is just to discover the basic regularity conditions. As explained to a large
extent already in Section 2.9 on linear DAEs, with the object of an analysis which
meets rigorous low smoothness requirements, we have to put up with constant-rank
requirements and critical points which are no longer visible in smoother systems.
These arguments keep their value also for nonlinear DAEs. In general we see the
constant-rank condition as a useful tool to detect critical points on early stages of
the investigation.



310 3 Nonlinear DAEs

(5) Properly stated leading terms were applied first in [10] (report, revised as
[11]), in the context of a unified approach to linear DAEs and their adjoints, but not
yet marked by this special name. Slightly later, in [113] (report, revised as [114]),
the quasi-linear DAE

A(x(t), t)(d(x(t), t))′+b(x(t), t) = 0,

which has a separate leading term housing the derivative, was defined to have a
properly formulated leading term on D f ×I f , if

kerA(x, t)⊕ imdx(x, t) = R
m, for all (x, t) ∈ D f ×I f ,

and there is a projector function R ∈ C1(I,L(Rn)) such that

kerA(x, t) = kerR(t), imdx(x, t) = imR(t), d(x, t) = R(t)d(x, t), (x, t) ∈ D f ×I f

(cf. [114, Definition 5.1]). A comparison makes clear that Definition 3.4 generalizes
this former notion considerably. Equation (3.1) is not necessarily quasi-linear and,
moreover, the conditions concerning the projector function R are now exchanged for
the demand that the two subspaces ker fy, imdx have to be transversal C1-subspaces.
This is much less restrictive. In particular, now these subspaces may depend also on
y and x. We dispense with the condition d(x, t) = R(t)d(x, t).
Although the wording properly stated leading term sounds somewhat strange for
fully implicit equations which do not show a separate leading term housing the
derivative, we keep this traditional notion also for fully nonlinear DAEs. At the
same time we also speak of DAEs with properly involved derivatives.

(6) The question of whether the set M0(t) might actually be a proper subset of
M̃0(t) remains unsolved in the fully implicit case, if ker fy(y,x, t) depends on y. In
Example 3.54 we have illustrated this situation.

(7) There are open questions concerning the extension of solutions. Having a
local solutions of an index-1 DAE, one can extend these solutions as long as the
solution does not leave the regularity region. Till now we do not see results on
the maximal existence intervals as they are known for explicit regular ODEs. And
there is no general answer to the question of whether there are extensions through
critical points and what they look like. This highly interesting topic needs future
research. We refer just to Examples 3.34, 3.36, 3.59, 3.64, and 3.60 for some typical
situations.
Moreover, also maximal regularity regions and their borders need further investiga-
tion.

(8) As shown in Section 3.8, the regularity regions depend also on the jet co-
ordinates. One could ask whether this is a technical deficit of the tractability index
concept. This is not the case. For instance also the quest for a completion ODE is ac-
companied by the same problem. Revisit Example 3.59. The derivative array system
of size 1 for the special DAE (3.104) is
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x1
1 + x1

2− t2−α = 0,
x1(x1

1 + x1
2)−β (t) = 0,

x2
1 + x2

2−2t = 0,
x1

1(x
1
1 + x1

2)+ x1(x2
1 + x2

2)−β ′(t) = 0.

The search for a completion ODE leads to the system
[

1 1
t2 +α 0

][
x1

1
x1

2

]
=

[
t2 +α

β ′(t)−2tx1

]
,

as well as to the equivalence of the conditions t2+α = 0 and x1
1+x1

2 = 0. Evidently,
one is confronted with the same necessity for an advanced localization including
the jet variables as it is the case for the regularity regions. We realize differentiation
index 1 on the open sets G[1]− and G[1]+ .

(9) The basic ill-posedness due to the nonclosed range of the operator represent-
ing the linear IVP in a higher index DAE was pointed out in [155], and much work
was done to apply methods known for ill-posed problems (cf. [110], [106], [107]).
Most of the resulting regularization methods for DAEs consist of a singular pertur-
bation of the original problem. Although deep results could be proved, except for a
few cases having a nice physical background, these regularization methods did not
earn much resonance in practice because of the numerical difficulties in solving the
singularly perturbed problems.

(10) For a long time (e.g., [163], [205]) it was hoped that appropriate structural
restrictions can be found for f to guarantee the structural condition (3.118), that is

Fx ∈ Cind μ
∗ (I,Rm), x ∈ DF ,

for the operator setting. Certain conditions were in fact posed. An improved ver-
sion of Proposition 3.70 is obtained in [205] by means of an advanced decoupling.
Although a quite interesting class of index-2 DAEs satisfies the structural condi-
tion (3.120), this condition remains somewhat synthesized. It is not satisfied, e.g.,
in MNA equations arising in circuit simulation. Moreover, the search for further
structural conditions, in particular those for index-3 DAEs, did not yield sufficient
success. The proposals have been too cumbersome and partly dependent on compu-
tational procedures (cf. [200]), and hence, this way seems to have no future.
The background of the difficulties in this context is the fact that, if a certain lineariza-
tion to a given nonlinear DAE has index μ > 1, then this does not say anything about
the neighboring linearizations (see, for instance, Example 3.34). The structural con-
dition (3.118) was also used to ensure the same characteristics of the neighboring
linearizations (e.g., [161]). In the present chapter, nonlinear DAEs are approached
anew via the concept of regularity regions and linearizations. This time we dispense
with structural restrictions.
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(11) The most natural formulation of a network system in circuit simulation is
the physically reasonable system (3.58), that is

AC
d
dt

q(AT
Ce, t)+ARg(AT

Re, t)+AL jL +AV jV +AIis(ATe, jL, jV , t) = 0,

d
dt
φ( jL, t)−AT

Le = 0,

AT
V e− vs(ATe, jL, jV , t) = 0.

(3.155)

Supposing continuously differentiable solutions and applying the chain rule to the
network system (3.58), i.e., expressing

d
dt

q(AT
Ce, t) =C(AT

Ce, t)AT
Ce′+qt(AT

Ce, t),
d
dt
φ( jL, t) = L( jL, t) j′L +φt( jL, t),

with

C(v, t) :=
∂
∂v

q(v, t), L( j, t) :=
∂
∂ j

φ( j, t),

one obtains a DAE in standard formulation, namely

ACC(AT
Ce, t)AT

Ce′+ACqt(AT
Ce, t)+ARg(AT

Re, t)+AL jL
+AV jV +AIis(ATe, jL, jV , t) = 0,

L( jL, t) j′L +φt( jL, t)−AT
Le = 0,

AT
V e− vs(ATe, jL, jV , t) = 0.

This resulting DAE is considered as the conventional MNA formulation. It is com-
monly used to apply results and software given for standard form DAEs.
On the other hand, introducing the charges and fluxes

q := q(AT
Ce, t) and ϕ := φ( jL, t)

as additional variables, we obtain the equation system
⎡
⎢⎢⎢⎢⎣

ACq′

ϕ ′
0
0
0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

ARg(AT
Re, t)+AL jL +AV jV +AIis(ATe, jL, jV , t)

−AT
Le

AT
V e− vs(ATe, jL, jV , t)

q−q(AT
Ce, t)

ϕ−φ( jL, t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b(q,ϕ,e, jL, jV ,t)

= 0

which is regarded as the charge/flux oriented MNA formulation. It also represents a
DAE in standard form and at the same time a DAE with quasi-proper leading term
and linear derivative term,



3.13 Notes 313

⎡
⎢⎢⎢⎢⎣

AC 0
0 I
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

[
I 0 0 0 0
0 I 0 0 0

]
⎡
⎢⎢⎢⎢⎣

q
ϕ
e
jL
jV

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

′

︸ ︷︷ ︸
=

([
q
ϕ

])′

+b(q,ϕ ,e, jL, jV , t) = 0.

The solution understanding of the last equation adopts that for (3.155) as it stands.
The charge/flux-oriented MNA formulation is well established as intermediate for
contracting and analyzing numerical integration methods to solve the original DAE
(3.155). The last system has the useful proper reformulation

⎡
⎢⎢⎢⎢⎣

AC 0
0 I
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

[
P̄C 0 0 0 0
0 I 0 0 0

]
⎡
⎢⎢⎢⎢⎣

q
ϕ
e
jL
jV

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

′

︸ ︷︷ ︸
=

([
P̄Cq
ϕ

])′

+b(q,ϕ ,e, jL, jV , t) = 0,

which is responsible for the fact that integration methods applied to this formulation
behave quite well. Furthermore, this represents one of the origins of the idea of
turning to DAEs whose derivative term is housed by an extra function (e.g., [114,
168]).

(12) We know from [25] that the index μ of a DAE is the smallest integer μ such
that the derivative array system Eμ+1 = 0 (cf. Section 3.10) determines the variable
x1 as a continuous function of x, t. To this end it is emphasized that the statement is
taken to hold locally on an open subset in the basic space.
In contrast, at times the differentiation index is introduced without the explicit de-
mand for open sets. From [105] we learn that the DAE has differential index μ ,
if μ is the minimal number of analytical differentiations such that the prolongated
system Eμ+1 = 0 can be transformed by algebraic manipulations into an explicit
ODE system. No further comments on the nature of the set on which the vector
field S should be given are added, but this may lead to diverging interpretations. In
particular, in Example 3.76, one could think of accepting the equation

x′(t) = SΩ (x(t), t), (x(t), t) ∈Ω ,

as an underlying ODE and to say that the DAE has differential index 1 on the lower-
dimensional subset Ω .
We adopt the original intention of [25], [45] to apply open sets in the basic spaces.
In contrast, a different view comes from geometrical approaches which, supposing
manifold structures, consequently work on the (sub)manifolds.
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(13) Concerning the practical use of the underlying ODEs, the drift phenomenon
needs careful compensation when applying numerical integration methods. This is a
particular feature in the simulation of constrained mechanical motion. Several con-
straint stabilization methods and projection techniques have been developed, forcing
the numerical solution to stay close to the constraint. We refer to [63] for a compre-
hensive survey.

(14) The derivative array approaches including the various reduction procedures
are approved definite solution procedures rather than a characterization of the given
DAE. They apply to smooth problems in standard form.
Our goal is a different one. We look for criteria characterizing the given DAE with-
out solving this DAE in advance or supposing solvability. Since we do not at all use
derivative array functions, we can do with low smoothness requirements. We use lin-
earizations and the projector based structural decomposition of the originally given
DAE. To our knowledge, this is the only such treatment. In this framework, not only
the constant-rank condition concerning the proper statement of the derivative term,
but also the additional constant-rank requirements on further levels of the admissi-
ble matrix function sequences are welcome tools to figure out regular problems as
well as different kinds of critical points.

(15) We emphasize the great benefit of working with projectors against the use
of basis functions. Given is an at least continuous matrix function M : DM ⊆ R

s →
L(Rm,Rk) which has constant rank on the open setDM . We would like to describe its
nullspace. With I−M+M, a continuous projector function globally defined on DM
is available. Thereby the size of s does not matter at all. If kerM is a C1-subspace,
then this projector function is continuously differentiable.
In contrast, we can expect the existence of basis functions globally defined on DM
which span the C1-subspace kerM if s = 1 only. Otherwise there are merely local
basis functions. We refer to Remark A.16 in the appendix for an illustrative example.



Part II
Index-1 DAEs: Analysis and numerical

treatment
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Part II constitutes a self-contained script on regular index-1 DAEs. It constitutes in
essence an up-to-date improved and completed version of the early book [96]. While
the latter is devoted to standard form DAEs, we now address DAEs of the form

f ((D(t)x(t))′,x(t), t) = 0,

with properly involved derivative.

This part starts with a chapter on the structural analysis of index-1 DAEs. It is
shown that each solution of a regular index-1 DAE is actually a somewhat wrapped
solution of an inherent explicit ODE. A certain decoupling function ω , resembling
that in [96], plays its role. This inherent ODE is only implicitly given, but it is
uniquely determined by the problem data. With this background, local solvability
and perturbation results are proved.

In the chapter on numerical integration, backward differentiation formulas and
certain classes of Runge–Kutta methods and general linear methods that are suitable
for DAEs are discussed. Then we concentrate on the question of whether a given in-
tegration method passes the wrapping unchanged and is handed over to the inherent
explicit ODE. The answer appears not to be a feature of the method, but a prop-
erty of the DAE formulation. If the subspace imD(t) is actually time-invariant, then
the integration method reaches the inherent explicit ODE unchanged. This makes
the integration smooth to the extent to which it may be smooth for explicit ODEs.
Otherwise one has to expect additional serious stepsize restrictions.

The third chapter addresses stability topics. Contractivity and dissipativity of
DAEs are introduced, and it is discussed how integration methods reflect the respec-
tive flow properties. Again, one can benefit from a time-invariant subspace imD(t).
Finally, stability in the sense of Lyapunov is addressed and the related solvability
assertions on infinite intervals are allocated.



Chapter 4
Analysis

This chapter is devoted to the analysis of nonlinear regular index-1 DAEs of the
form

f ((D(t)x(t))′,x(t), t) = 0,

which contains m equations and m unknown functions. We want to introduce the
analysis of such DAEs explaining their inner structure. In particular, in the follow-
ing chapter, this serves as helpful background for understanding how numerical in-
tegration methods work.

The present chapter is self-contained. Neither the general analysis in Chapter 3
devoted to fully nonlinear arbitrarily high index DAEs

f ((d(x(t), t))′,x(t), t) = 0,

nor the general linear theory given in Chapter 2 are supposed to be known. Of
course, the presentations are consistent.

The chapter is organized as follows. The basic assumptions and notions are col-
lected in Section 4.1. Section 4.2 provides solvability and perturbation results by
means of a structural decoupling of the DAE into the inherent explicit ODE and
a certain part wrapping up the ODE solutions to become DAE solutions. Then we
describe in Section 4.3 how one can compute consistent initial values.

4.1 Basic assumptions and notions

Looking at the formulation of the DAE

f ((D(t)x(t))′,x(t), t) = 0, (4.1)

it is natural to search for continuous solutions x with a continuously differentiable
part Dx. Therefore, we introduce

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 4,
© Springer-Verlag Berlin Heidelberg 2013
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C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)}

as the solution space of the DAE (4.1). The same function space was already used
for linear DAEs in Chapter 2 (cf. Section 2.6.1, also Definition 3.2).
Throughout the whole chapter, we assume the following assumption to be satisfied.

Assumption 4.1. Let f be a continuous function mapping R
n×D f ×I f to R

m and
having continuous partial derivatives fy(y,x, t) and fx(y,x, t). D f ⊆ R

m is assumed
to be an open domain and I f ⊆R an interval. Let D be a continuous matrix function
with constant rank that maps I f to L(Rm,Rn). Let the subspaces ker fy and imD
form C1-subspaces (see Definition A.19).
Let the transversality condition

ker fy(y,x, t)⊕ imD(t) = R
n, ∀y ∈ R

n, x ∈ D f , t ∈ I f , (4.2)

be valid, and finally, let ker fy(y,x, t) be independent of y and x.

By Definition 3.4, the DAE (4.1) now has a properly involved derivative on
R

n×D f ×I f , except for the fact that Definition 3.4 requires a continuously dif-
ferentiable matrix function D, while here as in Chapter 2 we accept also functions
D being just continuous.
It is useful to operate with the border projector R(t) ∈ L(Rn) realizing the decom-
position of Rn given by the transversality condition (4.2), such that

imR(t) = imD(t), kerR(t) = ker fy(y,x, t) ∀y ∈ R
n, x ∈ D f , t ∈ I f .

The function R is continuously differentiable as a projector function acting on C1-
subspaces.

Lemma 4.2. Assumption 4.1 implies the identities

f (y,x, t)≡ f (R(t)y,x, t), fy(y,x, t)≡ fy(R(t)y,x, t)≡ fy(y,x, t)R(t).

Proof. For x ∈ D f , t ∈ I f , y ∈ R
n, η := (I−R(t))y, we get

f (y,x, t)− f (R(t)y,x, t) =
∫ 1

0
fy(sy+(1− s)R(t)y,x, t)η ds = 0,

since η ∈ im(I−R(t)) = ker fy(sy+(1− s)R(t)y,x, t) independently of s. ��

For obvious reasons, if x∗ ∈ C1
D(I,Rm) is a solution of (4.1), then the function values

x∗(t) must belong to the set

M̃0(t) := {x ∈ D f : ∃y ∈ R
n : f (y,x, t) = 0}, (4.3)

and hence, in contrast to regular ODEs, the solution values of a DAE are restricted
to a certain subset of Rm. Supposing Assumption 4.1, for DAEs (4.1) with continu-
ously differentiable D, the obvious restriction set or obvious constraint is given (cf.
Definition 3.9, Lemma 3.11) as
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M0(t) := {x ∈ D f : ∃y ∈ R
n : y−D′(t)x ∈ imD(t), f (y,x, t) = 0}= M̃0(t),

for all t ∈ I f . Regarding Lemma 4.2, we can check the representation

M0(t) = {x ∈ D f : ∃y ∈ R
n : y ∈ imD(t), f (y,x, t) = 0}= M̃0(t), (4.4)

and this makes sense also in the case of D being just continuous. In consequence,
speaking of the obvious restriction set or obvious constraint of a DAE (4.1) under
Assumption 4.1 we have in mind the formula (4.4). Following the lines of Proposi-
tion 3.10, one can show that, to each x ∈M0(t) there is always exactly one corre-
sponding y, which means

M0(t) = {x ∈ D f : ∃!y ∈ R
n : y ∈ imD(t), f (y,x, t) = 0}.

Below we see, for regular index-1 DAEs, and just for those, the obvious constraint
exclusively consists of solution values, that is, through each t̄ ∈ I f , x̄∈M0(t̄), there
is a solution x∗(·) such that x∗(t̄) = x̄. For the moment, we refer to Example 3.7
which shows this property.

We introduce the subspace

S(y,x, t) := {z ∈ R
m : fx(y,x, t)z ∈ im fy(y,x, t)}

which plays its role in the following characterization of regular DAEs of index 1.

Definition 4.3. We call a nonlinear DAE (4.1) which satisfies Assumption 4.1 a
regular DAE with tractability index 1 on the open set G ⊆ D f ×I f , or more briefly,
a regular index-1 DAE on G, if

kerD(t)∩S(y,x, t) = {0} for all y ∈ R
n, (x, t) ∈ G.

If G is open and connected, and the DAE is regular with index 1 on G, then G
is said to be a regularity region of the DAE, also an index-1 regularity region. If
G =D f ×I f , we speak of a regular DAE with (tractability) index 1.

This definition is consistent with the previous ones concerning regular index-1
DAEs (see Definitions 2.25, 3.28, regarding the nonsingularity of the matrix func-
tion (4.8) below). A more subtle concept arises, if one is content with intersections
kerD(t)∩ S(y,x, t) being trivial on an open set in R

n×D f ×I f , only. We refer to
Section 3.8 which addresses those questions.
In this chapter, we exclusively deal with regular index-1 DAEs, but often we omit
the epithet regular as is common in the literature.

By Lemma A.9, the index-1 condition kerD(t)∩S(y,x, t) = {0} is equivalent to

kerD(t)⊕S(y,x, t) = R
m, (4.5)

and, in turn, the decomposition (4.5) holds true, exactly if the matrix pencil
(cf. Definition 1.4)
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λ fy(y,x, t)D(t)+ fx(y,x, t) is regular with Kronecker index 1. (4.6)

Corresponding to Chapter 2, we denote the uniquely given projector realizing de-
composition (4.5) by Πcan(y,x, t), which means

imΠcan(y,x, t) = S(y,x, t) and kerΠcan(y,x, t) = kerD(t). (4.7)

Introducing a projector Q0(t) ∈ L(Rm) onto N(t) := kerD(t) and again applying
Lemma A.9, we know that the condition (4.5) is equivalent to the regularity of the
matrix

G(y,x, t) := fy(y,x, t)D(t)+ fx(y,x, t)Q0(t), (4.8)

independently of the special choice of projector Q0(t).

Further, for all t ∈ I f , we introduce P0(t) := I−Q0(t) and, additionally, D(t)−

to be the reflexive generalized inverse of D(t) with the properties

D(t)D(t)− = R(t), D(t)−D(t) = P0(t).

Since the matrix function D(·) is supposed to be continuous and to have constant
rank we are allowed to assume, in the following, that Q0(·), P0(·) and D(·)− are
continuous as well (see Proposition A.17).

4.2 Structure and solvability of index-1 DAEs

In this section we analyze the inner structure of regular index-1 DAEs and provide
results about the existence of solutions. First, we extract the inherent ordinary differ-
ential equation from the DAE (4.1). In contrast to the linear case, we do not expect
to get it globally. However, a smart separation of components allows an elegant
extraction locally as follows. For any vector x, we can write

x = P0(t)x+Q0(t)x = D(t)−D(t)x+Q0(t)x.

If we regard Lemma 4.2 then equation (4.1) can be expressed as

f (R(t)(D(t)x(t))′,D(t)−D(t)x(t)+Q0(t)x(t), t) = 0. (4.9)

Assuming, for a moment, that there is a solution x∗ ∈ CD(I,Rm), we introduce two
new functions by u∗(t) := D(t)x∗(t), and w∗(t) := D(t)−(D(t)x∗(t))′+Q0(t)x∗(t),
for all t ∈ I, such that x∗(t) = D(t)−u∗(t)+Q0(t)w∗(t), and

D(t)w∗(t) = R(t)(D(t)x∗(t))′, Q0(t)w∗(t) = Q0(t)x∗(t), t ∈ I,

and hence the identity coming from (4.9) can be rewritten as

f ((D(t)w∗(t),D(t)−u∗(t)+Q0(t)w∗(t), t) = 0, t ∈ I. (4.10)
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The last expression suggests that we ask whether the equation in R
m, with unknowns

w ∈ R
m, u ∈ R

n, given by

f (D(t)w,D(t)−u+Q0(t)w, t) = 0 (4.11)

implicitly determines a continuous solution function w = ω(u, t), such that w∗(t) =
ω(u∗(t), t). For linear regular index-1 DAEs, i.e., in the case of

f (y,x, t) := A(t)y+B(t)x−q(t), G(t) = A(t)D(t)+B(t)Q0(t),

equation (4.11) simplifies to

(A(t)D(t)+B(t)Q0(t))w+B(t)D(t)−u−q(t) = 0,

which uniquely determines the function w = −G(t)−1(B(t)D(t)−u − q(t)) =:
ω(u, t).

The next lemma provides such a desired function ω(u, t) yielding the local equiv-
alence of (4.10) with w∗(t) = ω(u∗(t), t). As one can see later by Theorem 4.5, the
function ω(u, t) enables us to decouple the entire dynamic part of the DAE (4.1)
from the constraint part.

Lemma 4.4. Let equation (4.1) be regular of index 1. For given t̄ ∈ I f , x̄ ∈M0(t̄),
ȳ ∈ imD(t̄) such that f (ȳ, x̄, t̄) = 0, we introduce

ū := D(t̄)x̄, w̄ := D(t̄)−ȳ+Q0(t̄)x̄

and define
F(w,u, t) := f (D(t)w,D(t)−u+Q0(t)w, t)

for (w,u, t) within a neighborhoodN(w̄,ū,t̄) ⊆R
m×R

n×R of (w̄, ū, t̄). Then, we find
a neighborhood N(ū,t̄) ⊆ R

n×R of (ū, t̄) and a continuous function

ω : N(ū,t̄)→ R
m

satisfying ω(ū, t̄) = w̄ and

F(ω(u, t),u, t) = 0, for all (u, t) ∈N(ū,t̄).

Furthermore, ω(u, t) = ω(R(t)u, t), ω has the continuous partial derivative

ωu(u, t) =−(G−1 fx)
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
D(t)−

for (u, t) ∈N(ū,t̄) and, in particular,

ωu(ū, t̄) =−(G−1 fx)(ȳ, x̄, t̄)D(t̄)−

with G defined in (4.8).

Proof. First, we have
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F(w̄, ū, t̄) = f (D(t̄)w̄,D(t̄)−ū+Q0(t̄)w̄, t̄) = f (ȳ, x̄, t̄) = 0.

Additionally,

Fw(w̄, ū, t̄)

= fy
(
D(t̄)w̄,D(t̄)−ū+Q0(t̄)w̄, t̄

)
D(t̄)+ fx

(
D(t̄)w̄,D(t̄)−ū+Q0(t̄)w̄, t̄

)
Q0(t̄)

= fy(ȳ, x̄, t̄)D(t̄)+ fx(ȳ, x̄, t̄)D(t̄)Q0(t̄) = G(ȳ, x̄, t̄)

is nonsingular since the DAE was assumed to be regular of index 1. Now, the as-
sumption follows from the implicit function theorem. ��

Knowledge about the implicitly given function ω allows us to state the following
theorem describing the inner structure of regular index-1 DAEs (4.1).

Theorem 4.5. Each solution x∗ ∈ C1
D(I,Rm) of a regular index-1 DAE (4.1) can be

represented as
x∗(t) = D(t)−u∗(t)+Q0(t)ω(u∗(t), t),

with the continuously differentiable function u∗(·) := D(·)x∗(·) satisfying the inher-
ent ODE

u′(t) = R′(t)u(t)+D(t)ω(u(t), t), (4.12)

whereby the continuous function ω mapping from a neighborhood Dω of the set
{(D(t)x∗(t), t) : t ∈ I} into R

m is implicitly given by

f
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
= 0, (u, t) ∈ Dω .

The function ω has the continuous partial derivative

ωu(u, t) =−(G−1 fx)
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
D(t)−.

Proof. For any solution x∗ ∈ C1
D(I,Rm) of the regular index-1 DAE (4.1) we know

all solution values x∗(t) to be elements of M0(t). Therefore, Lemma 4.4 can be
applied to all points (x̄, t̄), x̄ := x∗(t̄), t̄ ∈ I, and ȳ = R(t̄)u′∗(t̄). By uniqueness and
continuity arguments, we find a continuous function ω mapping from a neighbor-
hood Dω of {(D(t̄)x∗(t̄), t̄) : t̄ ∈ I} to R

m with the properties

f (D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t) = 0, (u, t) ∈ Dω ,

ω(u∗(t), t) = w∗(t) := D(t)−u′∗(t)+Q0(t)x∗(t), u∗(t) := D(t)x∗(t) (4.13)

and there is the continuous partial derivative

ωu(u, t) =−(G−1 fx)
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
D(t)−.

Consequently,

D(t)ω(u∗(t), t) = R(t)u′∗(t) = (Ru∗)′(t)−R′(t)u∗(t) = u′∗(t)−R′(t)u∗(t)
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since (Ru∗)(t) = (RDx∗)(t) = (Dx∗)(t) = u∗(t). In this way, we know u∗ satisfies
the ODE

u′(t) = R′(t)u(t)+D(t)ω(u(t), t).

Furthermore, expression (4.13) implies

Q0(t)ω(u∗(t), t) = Q0(t)x∗(t) and D(t)−u∗(t) = P0(t)x∗(t),

and hence, the solution representation

x∗(t) = P0(t)x∗(t)+Q0(t)x∗(t) = D(t)−u∗(t)+Q0(t)ω(u∗(t), t).

��

The solution representation given by Theorem 4.5 explains the inner structure of
an index-1 DAE (4.1): The inherent ODE (4.12) describes the flow, the dynamic
part, of the DAE in terms of the component u∗(t) = D(t)x∗(t), while the remaining
component Q0(t)x∗(t) is determined by the implicitly given function ω as

Q0(t)x∗(t) = Q0(t)ω(u∗(t), t),

which reflects the constraint.
For a given index-1 DAE (4.1), the function ω , and so the ODE (4.12), is lo-

cally provided by Lemma 4.4, without supposing any solution. We emphasize the
importance of this structure by the following definition.

Definition 4.6. For the regular index-1 DAE (4.1), we call the ordinary differential
equation (4.12) the inherent explicit regular ODE, and we use the abbreviations
inherent ODE and IERODE.

Proposition 4.7 below justifies this definition saying that the IERODE is uniquely
determined by the index-1 DAE itself. One might think that the function Dω de-
pends on the choice of the projector function Q0, but it does not.
For linear regular index-1 DAEs (2.1), the ODE (4.12) is nothing else than the
IERODE introduced in Definition 2.26, and we already know (see Proposition 2.33
or Theorem 2.39 in the more general context of fine decouplings) that the IERODE
coefficients are independent of the projector choice. This is now confirmed once
more.

Proposition 4.7. Let the DAE (4.1) be regular of index 1.

(1) Then, the inherent ODE (4.12) is uniquely determined by the problem data
functions f and D, which means it is independent of the choice of the projector
Q0.

(2) Furthermore, the time-varying subspace imD(t) of R
n is an invariant sub-

space of the inherent ODE (4.12), such that, if a solution u(·) exists on the
interval I ⊂ I f , and starts in u(t0) ∈ imD(t0) for some t0 ∈ I, then the solu-
tion value u(t) belongs to imD(t) for all t ∈ I.
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(3) If the subspace imD(t) is actually time-invariant, then the solutions u(·) of
the ODE (4.12), having a certain value u(t0) ∈ imD(t0), satisfy the simpler
ODE

u′(t) = D(t)ω(u(t), t). (4.14)

Proof. (1) We show that the vector field of the ODE (4.12) does not depend on the
choice of the projector function Q0. We assume Q0(t) and Q̂0(t) to be two projec-
tors onto kerD(t). Correspondingly, we get generalized inverses D(t)− and D̂(t)−.
According to Lemma 4.4, we find two functions ω and ω̂ satisfying

f
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
= 0

and
f
(
D(t)ω̂(u, t), D̂(t)−u+ Q̂0(t)ω̂(u, t), t

)
= 0.

Let Dω,ω̂ be their common definition domain. Regarding (4.12), we have to show
that the corresponding vector fields coincide, which means

R′(t)u+D(t)ω(u, t) = R′(t)u+D(t)ω̂(u, t) (4.15)

for all (u, t) ∈ Dω,ω̂ . Since im Q̂0 = kerD(t) = imQ0, we know that (cf. Lemma
A.3)

Q̂0(t) = Q0(t)Q̂0(t)

as well as

D̂(t)− = P0(t)D̂(t)−+Q0(t)D̂(t)− = D(t)−R(t)+Q0(t)D̂(t)−

= D(t)−+Q0(t)D̂(t)−

and we may conclude

f
(
D(t)ω̂(u, t),D(t)−u+Q0(t)(D̂(t)−u+ Q̂0(t)ω̂(u, t)), t

)
= 0.

Introducing ω̃(u, t) := P0(t)ω̂(u, t)+Q0(t)(D̂(t)−u+ Q̂0(t)ω̂(u, t)), we see that

f
(
D(t)ω̃(u, t),D(t)−u+Q0(t)ω̃(u, t), t

)
= 0

is satisfied. Since ω is the locally uniquely defined function satisfying

f
(
D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t

)
= 0,

we obtain

ω(u, t) = ω̃(u, t) = P0(t)ω̂(u, t)+Q0(t)(D̂(t)−u+ Q̂0(t)ω̂(u, t)).

This implies
D(t)ω(u, t) = D(t)ω̂(u, t)
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and, consequently, (4.15) is true. In other words, the inherent ODE (4.12) is inde-
pendent of the choice of the projector Q0. It is uniquely defined by f and D.

(2) We show that imD(t) is an invariant subspace for the ODE (4.12). If u(·) is a
solution existing on the interval I, then the identity

(I−R(t))u′(t) = (I−R(t))(R′(t)u(t)+D(t)ω(u, t)) = (I−R(t))R′(t)u(t), t ∈ I,

is true. Using v(t) := (I−R(t))u(t), we see that

v′(t) = (I−R(t))u′(t)−R′(t)u(t) = (I−R(t))R′(t)u(t)−R′(t)u(t)

= −R(t)R′(t)u(t) = −R′(t)u(t)+R′(t)R(t)u(t) = −R′(t)v(t).

For u(t0) ∈ imD(t0), which means v(t0) = 0, the function v(·) vanishes identically
and it holds that

u(t) = R(t)u(t) ∈ imD(t), for all t ∈ I.

(3) Since the subspace imD(t) does not vary with t, the orthoprojector Rc onto
imD(t) is also independent of t, and R(t)Rc = Rc. For the solutions under consider-
ation, due to assertion (2), it holds that u(t) = Rcu(t), thus R′(t)u(t) = R′(t)Rcu(t) =
(R(t)Rc)

′u(t) = (Rc)
′u(t) = 0, and hence the respective term in (4.12) disappears.

��

Example 4.8 (Decoupling function and regularity regions). Consider the semi-
explicit DAE (cf. Example 3.7)

x′1(t)+βx1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),

onD f =R
2, I f = [0,∞). β is a real parameter. The real function γ is continuous on

I f , and 1+ γ(t)≥ 0. We write this DAE in the form (4.1) with n = 1, m = 2,

f (y,x, t) =
[

y+βx1
x2

1 + x2
2− γ(t)−1

]
, fy(y,x, t) =

[
1
0

]
, D(t) =

[
1 0
]
,

as a DAE with properly stated leading term. Derive further

M0(t) = {x ∈ D f : x2
1 + x2

2−1− γ(t) = 0},

S(y,x, t) = {z ∈ R
2 : 2x1z1 +2x2z2 = 0}, kerD(t) = {z ∈ R

2 : z1 = 0},

and

Q0(t) =
[

0 0
0 1

]
, G(y,x, t) =

[
1 0
0 2x2

]
.

It becomes evident that G(y,x, t) is nonsingular exactly if the intersection S(y,x, t)∩
kerD(t) is trivial, and this happens if x2 �= 0. In consequence, the DAE has index 1
on the open connected sets
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G+ := {x ∈ R
2 : x2 > 0}×I f , G− := {x ∈ R

2 : x2 < 0}×I f ,

being maximal index-1 regularity regions. The subspace x2 = 0 constitutes the bor-
der between the regularity regions G+ and G−.
The canonical projector function

Πcan(y,x, t) =
[

1 0
− x1

x2
0

]

is defined for all y ∈ R, (x, t) ∈ G := G+∪G−. It grows unboundedly, if x2 tends to
zero. The decoupling function related to G± now reads

ω(u, t) =
[ −βu
±(1+ γ(t)−u2)

1
2

]
, (u, t) ∈ domω

with domω := {(u, t) ∈ R
2 : ±u < (1 + γ(t)) 1

2 , t ∈ I f }, The IERODE is linear,
u′(t) = −βu(t). The function Dω has a smooth extension onto R×I f , and we
put D(t)ω(u, t) =−βu, (u, t) ∈ domDω := R×I f .
To each arbitrary (x0, t0) ∈ G, x0 ∈M0(t0), the IERODE has a unique solution such
that u(t0) = x0,1, and a unique DAE solution results such that x(t0) = x0. The living
interval of this solution may be finite or infinite, depending on the parameter β and
the function γ .
For instance, if β > 0 and γ vanishes identically, the solution exists on the infinite
interval, and x(t) tends to (0,1)T , if t→∞. Notice that in this case, from each border
point between G+ and G−, two solutions emerge, one turns to G+, and the other to
G−.
If β < 0, the solutions go the other way round, and there are no solutions emerging
at the border points. In contrast, a solution starting in G ends up in finite time at
a border point. Because of this critical flow behavior at the border, we call those
border points critical. ��

DAE
local decoupling

IERODE

solve ODE

x∗
for DAE solution

wrap up
u∗

Fig. 4.1 Transfer of solvability results for ODEs to DAEs via local decoupling

The knowledge concerning the inner structure of nonlinear regular index-1 DAEs
provided by Lemma 4.4 and Theorem 4.5 allows us to derive solvability results as
well as error estimations, and also perturbation results. Mainly, we apply standard
results for ODEs to the inherent ODE (4.12) and extend them to the DAE solution
regarding the properties of the implicitly given function ω (see Figure 4.1).
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Before presenting the results we formulate a useful lemma that provides us with
a locally uniquely determined function ω pert which plays the role of ω for slightly
perturbed DAEs

f ((D(t)x(t))′,x(t), t) = q(t), (4.16)

with a perturbation q(t) ∈ R
m. Applying Definition 4.3 we see that the original

equation (4.1) is a regular index-1 DAE if and only if its perturbed version (4.16) is
regular of index-1.

Lemma 4.9. Let the DAE (4.1) be regular of index 1.

(1) For given t̄ ∈ I ⊂ I f , x̄ ∈ M0(t̄), ȳ ∈ imD(t̄) such that f (ȳ, x̄, t̄) = 0, we
introduce

ū := D(t̄)x̄, w̄ := D(t̄)−ȳ+Q0(t̄)x̄

and define

Fpert(w,u, t,q) := f (D(t)w,D(t)−u+Q0(t)w, t)−q (4.17)

for (w,u, t,q) within a neighborhood N(w̄,ū,t̄,0) ⊆ R
m×R

n×R of (w̄, ū, t̄,0).
Then, we find a neighborhood N(ū,t̄,0) ⊆ R

n×R of (ū, t̄,0) and a unique con-
tinuous function

ωpert : N(ū,t̄,0)→ R
m

satisfying ωpert(ū, t̄,0) = w̄ and

Fpert(ωpert(u, t,q),u, t,q) = 0 for all (u, t,q) ∈N(ū,t̄,0).

Furthermore, ωpert(u, t,q) = ωpert(R(t)u, t,q), ωpert has the continuous par-
tial derivatives

ωpert
u (u, t,q) =−(G−1

1 fx)(y,x, t)D(t)−, ωpert
q (u, t,q) = G−1

1 (y,x, t)

with
y := D(t)ωpert(u, t,q), x := D(t)−u+Q0(t)ωpert(u, t,q)

for (u, t,q) ∈ N(ū,t̄,0) and, in particular,

ωpert
u (ū, t̄,0) =−(G−1

1 fx)(ȳ, x̄, t̄)D(t̄)−, ωpert
q (ū, t̄,0) = G−1

1 (ȳ, x̄, t̄).

(2) Suppose Ic ⊆ I f is a compact interval and x̄ : Ic → R
m, ȳ : Ic →D f ⊆ R

n

are continuous functions satisfying

f (ȳ(t), x̄(t), t) = 0 ∀ t ∈ Ic.

Define

ū(t) := D(t̄)x̄(t), w̄(t) := D(t̄)−ȳ(t)+Q0(t̄)x̄(t) ∀ t ∈ Ic

and
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F [t](w,u,q) := f (D(t)w,D(t)−u+Q0(t)w, t)−q (4.18)

for all (w,u,q) belonging to a neighborhood N(w̄(t),ū(t),0) ⊆ R
m×R

n×R of
(w̄(t), ū(t),0). Then, we find a radius ρ independent of t and a continuous
function

ω [t] : Bρ(ū(t),0)→ R
m

satisfying ω [t](ū(t),0) = w̄(t) for all t ∈ Ic and

F [t](ω [t](u,q),u,q) = 0 for all (u,q) ∈ Bρ(ū(t),0) and t ∈ Ic.

The function ωpert : {(u, t,q) | t ∈ Ic,(u,q) ∈ Bρ(ū(t),0)} → R
m defined

by ωpert(u, t,q) := ω [t](u,q) is continuous with respect to t. Furthermore,
ωpert(u, t,q) = ωpert(R(t)u, t,q) for all t ∈ Ic and (u,q) ∈ Bρ(ū(t),0). Addi-
tionally, ωpert has the continuous partial derivatives

ωpert
u (u, t,q) =−(G−1

1 fx)(y,x, t)D(t)−,

ωpert
q (u, t,q) = G−1

1 (y,x, t)

with
y := D(t)ωpert(u, t,q), x := D(t)−u+Q0(t)ωpert(u, t,q)

for (u,q) ∈ Bρ(ū(t),0) and t ∈ Ic. In particular,

ω [t]
u (ū(t),0) =−(G−1

1 fx)(ȳ(t), x̄(t), t̄)D(t̄)−,

ω [t]
q (ū(t),0) = G−1

1 (ȳ(t), x̄(t), t̄).

Notice that the function Fpert extends the function F by the additional perturbation
term q. More precisely,

Fpert(w,u, t,q) = F(w,u, t)−q.

Proof. (1) This follows from the implicit function theorem analogously to the proof
of Lemma 4.4. The function ωpert extends the previous function ω in the sense

ωpert(u, t,0) = ω(u, t).

(2) The main work here is to show the existence of such a radius ρ that is indepen-
dent of t ∈ Ic. We show the existence of ω [t] by constructing a fixed point map as
follows. Let δ > 0 be so small that

N(ȳ,x̄) :=
{(

ȳ(t)+D(t)wδ , x̄(t)+D(t)−uδ , t
)
| t ∈ Ic, |wδ | ≤ δ , |uδ | ≤ δ

}

⊆ R
n×D f ×I f .

Since ȳ(·), x̄(·), D(·) and D(·)− are continuous on Ic we get N(ȳ,x̄) to be a compact
set and, thus, fy(·) as well as fx(·) is uniformly continuous on N(ȳ,x̄). Therefore, we
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find an α such that 0 < α ≤ δ and for all t ∈ Ic, wδ ∈ Bα(0) and uδ ∈ Bα(0) one
has
∣∣∣( fy(ȳ(t)+D(t)wδ , x̄(t)+D(t)−uδ , t)− fy(ȳ(t), x̄(t), t)

)
D(t)

∣∣∣ (4.19)

+
∣∣∣( fx(ȳ(t)+D(t)wδ , x̄(t)+D(t)−uδ , t)− fx(ȳ(t), x̄(t), t)

)
Q0(t)

∣∣∣≤ 1
2c1

with
c1 := max

t∈Ic
|(G1(ȳ(t), x̄(t), t))−1|.

Define the fixed point map

H [t](w,z) := w− (F [t]
w (w̄(t), z̄(t)))−1F [t](w,z)

for w ∈ Bα(w̄(t)) and z ∈ Bρ(z̄(t)) with

z := (u,q), z̄(t) := (ū(t),0), ρ := α ·min
{

1,
1

2c1c2

}

and

c2 := max
t∈Ic,|wδ |≤α,|uδ |≤α

(| fx(ȳ(t)+D(t)wδ , x̄(t)+D(t)−uδ , t)D(t)−|+1).

Next, we show that H [t](·,z) is a contractive mapping from Bα(w̄(t)) into Bα(w̄(t)).
By definition of F [t] and (4.19) we have

F [t](w̄(t), z̄(t)) = f (ȳ(t), x̄(t), t) = 0, (4.20)
∣∣(F [t]

w (w̄(t), z̄(t)))−1∣∣≤ c1, (4.21)
∣∣F [t]

w (w̄(t), z̄(t))−F [t]
w (w,z)

∣∣≤ 1
c2
, (4.22)

∣∣F [t]
z (w̄(t), z̄(t))−F [t]

z (w,z)
∣∣≤ c2 (4.23)

for all t ∈ Ic, w ∈ Bα(w̄(t)) and z ∈ Bρ(z̄(t)). The contractivity of H [t](·,z) can be
concluded from (4.21), (4.22) and

|H [t](w1,z)−H [t](w1,z)|

= |w1−w2− (F [t]
w (w̄(t), z̄(t)))−1

∫ 1

0
F [t]

w (sw1 +(1− s)w2,z)ds(w1−w2)|

≤ c1

∫ 1

0
|F [t]

w (w̄(t), z̄(t))−F [t]
w (sw1 +(1− s)w2,z)|ds |w1−w2|

≤ c1
1

2c1
|w1−w2| ≤ 1

2
|w1−w2|
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for all w1,w2 ∈ Bα(w̄(t)), z ∈ Bρ(z̄(t)) and t ∈ Ic. We see that H [t](·,z) is a self-
mapping on Bα(w̄(t)) by (4.20)–(4.23) and

|H [t](w,z)− w̄(t)|

= |w− w̄(t)− (F [t]
w (w̄(t), z̄(t)))−1[F [t](w,z)−F [t](w̄(t), z̄(t))]|

≤ c1|F [t]
w (w̄(t), z̄(t))−

∫ 1

0
F [t]

w (sw+(1−s)w̄(t),sz+(1−s)z̄(t))ds| |w− w̄(t)|

+ c1|
∫ 1

0
F [t]

z (sw+(1− s)w̄(t),sz+(1− s)z̄(t))ds| |z− z̄(t)|

≤ c1

∫ 1

0
|F [t]

w (w̄(t), z̄(t))−F [t]
w (sw+(1−s)w̄(t),sz+(1−s)z̄(t))|ds |w− w̄(t)|

+ c1c2|z− z̄(t)|

≤ 1
2
|w− w̄(t)|+ c1c2|z− z̄(t)| ≤ 1

2
α+ c1c2ρ ≤ α

for all t ∈ Ic, w ∈ Bα(w̄(t)) and z ∈ Bρ(z̄(t)). The Banach fixed point theorem pro-
vides a fixed point w of H [t](·,z). This means that there is a unique w = w[t](z) ∈
Bα(w̄(t)) such that H [t](w[t](z),z) = w[t](z) for all t ∈ Ic and z ∈ Bρ(z̄(t)). Conse-
quently,

F [t](w[t](z),z) = 0, ∀ t ∈ Ic ∀z ∈ Bρ(z̄(t)).

By standard arguments one obtains w[t](z) to be continuously differentiable having
the derivative

w[t]
z (z) =−(F [t]

w (w[t](z),z))−1F [t]
z (w[t](z),z), ∀ t ∈ Ic ∀z ∈ Bρ(z̄(t)).

Defining
ω [t](u,q) := w[t](z) = w[t](u,q)

it remains to show that the function ω̃pert(u, t,q) := ω [t](u,q) is continuous with
respect to t. Since the locally defined function ωpert(u, t,q) from part (1) of this
lemma is unique, we can conclude that the function ω̃pert(u, t,q) equals ωpert(u, t,q)
on a neighborhood N(ū(t̄),t̄,0) for all t̄ ∈ Ic. Since ωpert(u, t,q) is continuous with
respect to t, also ω̃pert(u, t,q) is continuous with respect to t. Removing the tilde
notation in ω̃pert(u, t,q), the assertion (2) is proven. ��
Corollary 4.10 below is an extension of Theorem 4.5, and it can be proven analo-
gously to the proof of Theorem 4.5.

Corollary 4.10. Let the DAE (4.1) be regular with index 1 and Ic⊆I f be a compact
interval. Then, each solution x ∈ C1

D(Ic,R
m) of the perturbed DAE

f ((Dx)′(t),x(t), t) = q(t)

with |(Dx)(t0)−D(t0)x0| and ‖q‖∞ being sufficiently small, can be represented as

x(t) = D(t)−u(t)+Q0(t)ωpert(u(t), t,q(t)), t ∈ Ic
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with the continuously differentiable function u := Dx satisfying the (perturbed)
IERODE

u′(t) = R′(t)u(t)+D(t)ωpert(u(t), t,q(t)), u(t0) = D(t0)x0 (4.24)

and Fpert(ωpert(u, t,q),u, t,q) = 0 for Fpert defined in (4.17).

Now we are prepared to state the main solvability and perturbation results.

Theorem 4.11. (Solvability) Let the DAE (4.1) be regular of index 1.

(1) Through each x0 ∈M0(t0) there passes exactly one solution of the DAE (4.1).
More precisely, we find an open interval I ⊂ I f and a solution x ∈ C1

D(I,Rm)
satisfying x(t0) = x0 ∈M0(t0).

(2) Let Ic ⊆ I f be a compact interval, t0 ∈ Ic. If x∗ ∈ C1
D(Ic,R

m) is a solution of
the DAE (4.1), then all perturbed IVPs

f ((Dx)′(t),x(t), t)= q(t), D(t0)(x(t0)−x0)= 0, x0 ∈R
m, q∈C(Ic,R

m)

are uniquely solvable on C1
D(Ic,R

m) supposing ‖q‖∞ and the deviation
|D(t0)(x0−x∗(t0))| of the initial value x0 are sufficiently small. The solution x
of the perturbed system satisfies

‖x− x∗‖∞ ≤C( |D(t0)x(t0)−D(t0)x∗(t0)|+‖q‖∞),

while its differential component Dx satisfies

max
t0≤s≤t

|D(s)x(s)−D(s)x∗(s)|

≤ ec1(t−t0)
(
|D(t)x(t0)−D(t)x∗(t0)|+ c2

c1
max

t0≤s≤t
|q(s)|

)
,

with certain constants C, c1,c2 > 0.

Proof. (1) Since x0 ∈M0(t0), we may apply Lemma 4.4 (1) for t̄ = t0 and x̄ := x0
in order to obtain a function ω satisfying

f (D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t) = 0 (4.25)

and Q0(t0)x0 = Q0ω(D(t0)x0, t0). Consider the inherent regular ODE (4.12)

u′(t) = R′(t)u(t)+D(t)ω(u(t), t)

and notice that (D(t0)x0, t0) ∈ Dω . Since ω is continuously differentiable with re-
spect to u, the Picard–Lindelöf theorem provides a unique continuously differen-
tiable solution function u(·) existing on a certain neighborhood Iu ⊆ I f of t0 such
that u(t0) = D(t0)x0, and (u(t), t)∈Dω , for all t ∈ Iu. Since R is a projector function
we find RR′R = 0 and
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((I−R(t))u(t))′ = u′(t)−R′(t)u(t)−R(t)u′(t)

= D(t)ω(u(t), t)−R(t)R′(t)u(t)−D(t)ω(u(t), t)

=−R(t)R′(t)(I−R(t))u(t).

Regarding (I−R(t))u(t0) = 0 we may conclude (I−R(t))u(t) = 0 for all t ∈ Iu and

R(t)u′(t) = D(t)ω(u(t), t), t ∈ Iu. (4.26)

Next, the function

x(t) := D(t)−u(t)+Q0(t)ω(u(t), t), t ∈ Iu,

is continuous and

D(t)x(t) = D(t)D(t)−u(t) = R(t)u(t) = u(t), t ∈ Iu,

which means x ∈ C1
D(Iu,R

m). Furthermore,

x(t0) = D(t0)−D(t0)x0 +Q0(t0)ω(D(t0)x0, t0) = P0(t0)x0 +Q0(t0)x0 = x0,

and hence x(·) passes trough x0. It remains to verify that x(·) satisfies the DAE (4.1).
Inserting the definition of x(·) into (4.1) and using (4.26) we find

f ((D(t)x(t))′,x(t), t) = f (u′(t),x(t), t) = f (R(t)u′(t),x(t), t)

= f (D(t)ω(u(t), t),D(t)−u(t)+Q0(t)ω(u(t), t), t)

= 0, t ∈ Iu.

(2) We define u∗(t) := D(t)x∗(t). Since x∗(·) solves the unperturbed DAE (4.1)
we get a continuous function y∗(t) := (D(t)x∗(t))′ satisfying f (y∗(t),x∗(t), t) = 0.
Then, Lemma 4.9 (2) provides a radius ρ > 0 and a function ωpert(u, t,q) defined
on {(u, t,q) | t ∈ Ic, (u,q) ∈ Bρ(u∗(t),0)} such that

Fpert(ωpert(u, t,q),u, t,q) = 0 ∀(u,q) ∈ Bρ(u∗(t),0) ∀ t ∈ Ic.

This implies

f
(
D(t)ωpert(u, t,q),D(t)−u+Q0(t)ωpert(u, t,q), t

)
−q = 0

for all (u,q) ∈ Bρ(u∗(t),0) and t ∈ Ic. We consider the IVP

u′(t) = R′(t)u(t)+D(t)ωpert(u(t), t,q(t)), u(t0) = D(t0)x0.

Using Peano’s theorem we obtain a continuously differentiable solution u(·) on Ic
for sufficiently small perturbations q. With the same arguments as in the proof of
part (1), we see that

u(t) = R(t)u(t), ∀ t ∈ Ic
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and the function

x(t) := D(t)−u(t)+Q0(t)ωpert(u(t), t,q(t)), t ∈ Ic,

satisfies the perturbed IVP

f ((Dx)′(t),x(t), t) = q(t), D(t0)x(t0) = R(t0)u(t0) = u(t0) = D(t0)x0.

It remains to prove the perturbation estimations. We know that

u′(t)−u′∗(t) = R′(t)(u(t)−u∗(t))

+D(t)(ωpert(u(t), t,q(t))−ωpert(u(t), t,0))

and
u(t0)−u∗(t0) = D(t0)(x(t0)− x∗(t0)).

Taking the mean value we conclude

u′(t)−u′∗(t) = R′(t)(u(t)−u∗(t))

+D(t)
∫ 1

0
ωpert

u (su(t)+(1− s)u∗(t), t,sq(t))ds(u(t)−u∗(t))

+D(t)
∫ 1

0
ωpert

q (su(t)+(1− s)u∗(t), t,sq(t))dsq(t).

Since Ic is assumed to be compact, also the set
{
(su(t)+(1− s)u∗(t), t,sq(t)) | t ∈ Ic, s ∈ [0,1]

}

is compact and we obtain uniform bounds for the continuous functions R′, Dωpert
u =

−DG−1
1 fxD and Dωpert

q =−DG−1
1 . Hence, we find constants c1 > 0 and c2 > 0 such

that
|u′(t)−u′∗(t)| ≤ c1|u(t)−u∗(t)|+ c2|q(t)|, ∀ t ∈ Ic,

and Gronwall’s lemma implies

max
t0≤τ≤t

|u(τ)−u∗(τ)| ≤ ec1(t−t0)
(
|u(t0)−u∗(t0)|+ c2

c1
max

t0≤τ≤t
|q(τ)|

)
.

Regarding u(τ) = D(τ)x(τ) for all τ ∈ [t0, t], the assertion for the differential com-
ponents is proven. Additionally, we find a constant c3 > 0 such that

‖u−u∗‖∞ = max
t∈Ic

|u(t)−u∗(t)| ≤ c3(|D(t0)(x(t0)− x∗(t0))|+‖q‖∞). (4.27)

Taking into consideration the solution representation, we derive
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x(t)− x∗(t) = D(t)−(u(t)−u∗(t))

+Q0(t)
∫ 1

0
ωpert

u (su(t)+(1− s)u∗(t), t,sq(t))ds(u(t)−u∗(t))

+Q0(t)
∫ 1

0
ωpert

q (su(t)+(1− s)u∗(t), t,sq(t))dsq(t).

Again, we find uniform bounds on Ic for the continuous functions D−, Q0ωpert
u =

−Q0G−1
1 fxD− and Q0ωpert

q = Q0G−1
1 , thus

|x(t)− x∗(t)| ≤ c4|u(t)−u∗(t)|+ c5|q(t)| ∀ t ∈ Ic.

Together with (4.27), this leads to the perturbation estimation of the theorem. ��

4.3 Consistent initial values

This section describes a way to compute consistent initial values y0,x0 for a fixed t0
such that

f (y0,x0, t0) = 0. (4.28)

This task is relevant for starting integration methods (see Chapter 5). The value y0
reflects the expression R(t)(Dx)′(t0). By definition, an initial value x0 is consistent
for

f ((Dx)′(t),x(t), t) = 0 (4.29)

if there is a solution of (4.29) through x0. As seen in the section before, all values
x0 ∈M0(t0) are consistent initial values for index-1 DAEs of the form (4.29). A pair
(y0,x0) is called a consistent initialization if x0 is a consistent value and y0 satisfies
(4.28).

We recall Assumption 4.1 and the property f (y,x, t) = f (R(t)y,x, t) resulting
from Lemma 4.2. The system (4.28) is underdetermined with m equations and the
n+m unknowns (y0,x0). Therefore, we aim to complete the system to a regular one.
Before doing so, we notice that one sometimes seeks a so-called operation point x0
satisfying

f (0,x0, t0) = 0.

This is possible by means of Newton-like methods supposing fx to be nonsingular.
An index-1 IVP is described by the DAE (4.29) and the initial condition

P0(t0)(x(t0)− x0) = 0, or equivalently, D(t0)(x(t0)− x0) = 0.

We consider the system of equations
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f (y0,x0, t0) = 0,

P0(t0)(x0− x0) = 0,
(I−R(t0))y0 = 0,

which can be condensed to the square system

f (y0,x0, t0) = 0, (4.30)

(I−R(t0))y0 +D(t0)(x0− x0) = 0. (4.31)

Lemma 4.12. The left-hand side of the system (4.30), (4.31) has a nonsingular Ja-
cobian

J=

[
fy fx

I−R(t0) D(t0)

]

with respect to y0,x0 if (4.29) has tractability index 1. The inverse of J is given by

J
−1 =

[
D(t0)G−1 I−R(t0)−D(t0)G−1 fxD−(t0)
Q0(t0)G−1 D−(t0)−Q0(t0)G−1 fxD−(t0)

]
.

We omit the arguments of fy = fy(y0,x0, t0), fx = fx(y0,x0, t0) and G = G(y0,x0, t0).

Proof. The Jacobian of the left-hand side of (4.30), (4.31) with respect to y0,x0 is
given by

J=

[
fy fx

I−R(t0) D(t0)

]
.

The nonsingularity of J is investigated by looking for nontrivial solutions of
[

fy fx
I−R(t0) D(t0)

][
zy
zx

]
= 0.

Multiplying the second equation by R(t0), it leads to D(t0)zx = 0 and, consequently,
also (I−R(t0))zy = 0. Using this, the first equation reads

fyR(t0)zy + fxQ0(t0)zx = 0 or ( fyD(t0)+ fxQ0(t0))︸ ︷︷ ︸
=G1

(D−(t0)zy +Q0(t0)zx) = 0.

From the nonsingularity of G1 one can conclude D−(t0)zy = 0 and Q0(t0)zx = 0.
Altogether, zy = 0 and zx = 0. This means J is nonsingular. The form of the inverse
of J can be confirmed by direct multiplication. ��

The regularity of the nonlinear system (4.30), (4.31) to determine (y0,x0) makes it
possible to apply Newton-like methods to solve the system. System (4.30), (4.31)
has dimension m + n, which might be large. The introduction of a new variable
η := D−(t0)y0 +Q0(t0)x0 reduces the dimension of the nonlinear system. We con-
sider the system
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f (D(t0)η ,P0(t0)x0 +Q0(t0)η , t0) = 0 (4.32)

of dimension m with respect to η . It has a nonsingular Jacobian matrix for index-
1 DAEs (4.29). As one can easily verify, consistent initializations (y0,x0) can be
computed by calculating an η satisfying (4.32) and assembling y0 and x0 by

y0 = D(t0)η , x0 = P0(t0)x0 +Q0(t0)η .

4.4 Notes and references

(1) To a large extent, our presentation follows the lines of [96, 114]. In [96], similar
decoupling functions ω are applied to investigate DAEs in standard form, whereas
[114] comes up with a modification of this approach to quasi-linear DAEs of the
form A(x(t), t)(D(t)x(t))′+b(x(t), t) = 0 with properly stated leading term.

(2) The demand for the nullspace ker fy(y,x, t) to be independent of the variables
y and x is not really a restriction in the given context. Each DAE that meets all other
conditions in Assumption 4.1 can be easily modified to satisfy this requirement, too.
Namely, choosing a C1-projector function onto imD, R̃ : I f → R

n , the equivalent,
modified DAE

f̃ ((D(t)x(t))′,x(t), t) = 0,

with f̃ (y,x, t) := f (R̃(t)y+ R̃′(t)D(t)x,x, t), ker f̃y(y,x, t) = ker R̃(t), satisfies As-
sumption 4.1 in all detail.

(3) Definition 4.3 generalizes the corresponding index-1 definitions given for
linear DAEs in Chapters 1 and 2.
In the present chapter, dealing exclusively with index-1 DAEs, we apply the notation
G(y,x, t), while in Chapters 1 and 2, where also higher level matrix functions come
in, the corresponding special cases are G1, respectively G1(t). We mention, that in
Chapter 3, to handle fully nonlinear DAEs (4.1) of arbitrary index, we use the further
generalization G1(x1,x, t) of G1(t) which is slightly different from G(y,x, t).

(4) As addressed in detail in Chapter 3, almost all DAE literature is devoted to
standard form DAEs (3.150), i.e.

f(x′(t),x(t), t) = 0, (4.33)

given by a smooth function f, and one usually applies the differentiation index (cf.
Remark 3.72). As pointed out in Chapter 3, there are good reasons for supposing a
constant-rank partial Jacobian fx1(x1,x, t), such that ker fx1 becomes a C1-subspace.
By [25, Proposition 2.5.2], the standard form DAE (4.33) has differentiation index 1,
exactly if the so-called local pencil

λ fx1(x1,x, t)+ fx(x1,x, t) has Kronecker index 1 (4.34)
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uniformly for all arguments x1,x, t.
As discovered by Ch. Lubich (cf. Example 9.3), if the subspace ker fx1(x1,x, t) ac-
tually varies with (x1,x), then it may happen that the DAE (4.33) has differentiation
index 1, but its perturbation index is higher. We avoid this situation by supposing
the nullspace ker fx1(x1,x, t) to be independent of (x1,x). Note that in applications
one usually has such a constant nullspace. Then we put

N(t) := ker fx1(x1,x, t)

choose a C1-projector function P along N, and turn, as described in Section 3.13,
from (4.33) to the DAE (3.153), that is to

f ((P(t)x(t))′,x(t), t) := f((P(t)x(t))′ −P′(t)x(t),x(t), t) = 0, (4.35)

which has a properly involved derivative. The matrix pencil (cf. (4.6))

λ fyP+ fx = λ fx1P+(fx− fx1P′) = λ fx1 +(fx− fx1P′)

is regular with Kronecker index 1, exactly if the matrix pencil (4.34) is so (see
Lemma A.9). This shows that in this context the tractability index 1 coincides with
the differentiation index 1, and hence the results given in this chapter for DAEs of
the form (4.1) apply at the same time via (4.35) to the standard form DAEs (4.33).

(5) As an immediate consequence of Theorem 4.11, each DAE (4.1) being regular
with index 1 has perturbation index 1.



Chapter 5
Numerical integration

Index-1 DAEs with properly involved derivative have the advantage that there exists
a uniquely determined (by the problem data) inherent explicit ODE, which is not the
case for standard form DAEs. Investigating numerical integration methods applied
to DAEs with properly stated leading term, the central question is how the given
method performs on this inherent ODE. We discuss backward differentiation for-
mulas (BDFs), Runge–Kutta methods, and general linear methods (GLMs). In each
case, it turns out to be reasonable, to seek a numerically qualified DAE formulation,
which means a DAE with imD(t) being independent of t, since then the integration
method is passed unchanged to the inherent ODE. In this way, additional restric-
tions on the integration stepsize, which arise when using DAEs in standard form,
are avoided.

Section 5.1 communicates the basic idea by means of an example. Section 5.2
collects material on the methods applied to ODEs and standard form DAEs. Then
Section 5.3 describes how these methods can be applied to DAEs with properly
leading term. We provide in Section 5.4 a condition which ensures that the given
integration method arrives unchanged at the inherent ODE. Then, Section 5.5 pro-
vides error estimations and convergence results. We mention that the next chapter
on stability issues adds respective results concerning infinite intervals.

In the present chapter, the number n is used for two different quantities. On the
one hand, as throughout this monograph, n denotes the dimension of the space where
D(t) is mapping into (D(t)x ∈ R

n for x ∈ R
m). On the other hand, n describes the

current numerical discretization (cf. xn, tn). We keep this common notation for dis-
cretizations. It should always be clear from the context which meaning of n is sup-
posed.

In the present chapter we use the acronym ODE for explicit ODEs, as is quite
common in numerical analysis.
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Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 5,
© Springer-Verlag Berlin Heidelberg 2013
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5.1 Basic idea

We apply several well-known ODE methods to DAEs. We start by means of special
cases and examples to point out distinctive features.

First, consider the explicit Euler method as a prototype for explicit step by step
integration methods. Applied to the explicit linear ODE

x′(t) =C(t)x(t)+q(t), (5.1)

it reads
xn = xn−1 +h(C(tn−1)xn−1 +q(tn−1)),

with the stepsize h. Clearly, for given xn−1, the Euler formula uniquely determines
the current approximation xn. Rewriting the Euler method as

1
h
(xn− xn−1) =C(tn−1)xn−1 +q(tn−1)

we see that the derivative is approximated by the backward difference quotient
whereas the right-hand side is evaluated at the previous time point tn−1. Following
this idea also in the case of linear DAEs in standard form

E(t)x′(t)+F(t)x(t) = q(t) (5.2)

we get the method

E(tn−1)
1
h
(xn− xn−1)+F(tn−1)xn−1 = q(tn−1),

and for DAEs with a proper leading term

A(t)(D(t)x(t))′+B(t)x(t) = q(t), (5.3)

it follows that

A(tn−1)
1
h
(D(tn)xn−D(tn−1)xn−1)+B(tn−1)xn−1 = q(tn−1).

In the case of DAEs, the matrices E(tn−1) and A(tn−1)D(tn−1) are singular and,
obviously, in both cases the current value xn is no longer uniquely determined. In
consequence, the explicit Euler method does not work for DAEs. The same difficulty
arises when applying any other explicit method directly. So, if no special structure
can be exploited, one is obliged to use implicit integration methods. As a prototype
we consider the implicit Euler method. For linear explicit ODEs (5.1), the numerical
solution xn is given by

1
h
(xn− xn−1) =C(tn)xn +q(tn).
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The derivative is again approximated by the backward difference quotient, but the
right-hand side is evaluated at the new time point tn. For linear DAEs (5.2) and (5.3),
this idea results in the formulas

E(tn)
1
h
(xn− xn−1)+F(tn)xn = q(tn), (5.4)

and
A(tn)

1
h
(D(tn)xn−D(tn−1)xn−1)+B(tn)xn = q(tn). (5.5)

This time, in each case, we obtain a unique solution xn if the matrices 1
h E(tn)+F(tn)

and 1
h A(tn)D(tn) +B(tn), respectively, are nonsingular. It is not difficult to verify

that both matrices are nonsingular if the local matrix pencils λE(tn) +F(tn) and
λA(tn)D(tn)+B(tn), respectively, are regular (see Definition 1.2) and the stepsize
h is sufficiently small. As pointed out in Section 4.4, Note (4), index-1 DAEs, both
standard form DAEs and DAEs with properly stated leading term, have regular ma-
trix pencils. In the present chapter, we show that large classes of implicit integration
methods work well for index-1 DAEs. For the moment we would like to empha-
size, that also higher-index DAEs often exhibit regular local matrix pencils. Conse-
quently, implicit numerical integration methods are often formally feasible, but they
may generate values far away from the exact solution (cf. Chapter 8).

Before turning to general index-1 DAEs, we consider an example showing a
surprising behavior of the implicit Euler method for DAEs. It causes unexpected
extra stepsize restrictions compared to its behavior for explicit ODEs. Recall that
A-stability is an important feature of numerical ODE methods which allows us to
avoid stepsize restrictions caused by stability reasons. The explicit and implicit Eu-
ler method applied to the scalar ODE x′(t) = λx(t), with λ < 0, generate the recur-
sions

xn = (1+hλ )xn−1, and xn =
1

1−hλ
xn−1.

In order to reflect the solution property |xn| < |xn−1| appropriately, the stepsize re-
striction |1+ hλ | < 1 or, equivalently, h < 2

−λ , is required for the explicit Euler
method. For the implicit Euler method, the corresponding condition 0 < 1

1−hλ < 1
is satisfied for any stepsize, which is much more comfortable.

Example 5.1 (The impact of the DAE formulation). Let λ be any real parameter
λ < 0, λ �= 1. Consider the DAE

(λ −1)x′1 +λ tx′2 = 0, (5.6)
(λ −1)x1 +(λ t−1)x2 = 0, (5.7)

which has the smooth solutions

x1(t) =−
λ t−1
λ −1

eλ (t−t0)x2(t0), x2(t) = eλ (t−t0)x2(t0). (5.8)

The DAE can be written in standard form (5.2) as
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[
λ −1 λ t

0 0

]
x′(t)+

[
0 0

λ −1 λ t−1

]
x(t) = 0.

Turning to the slightly reformulated equivalent version of the given DAE

(λ −1)x′1 +(λ tx2)
′ −λx2 = 0, (5.9)

(λ −1)x1 +(λ t−1)x2 = 0 (5.10)

one has a DAE with properly stated leading term (5.3),
[

1
0

]([
λ −1 λ t

]
x(t)
)′
+

[
0 −λ

λ −1 λ t−1

]
x(t) = 0.

Choosing

D(t)− =

[ 1
λ−1
0

]
, Q0(t) =

[
0 − λ t

λ−1
0 1

]
,

we obtain the decoupling function

ω(u, t) =−
[
λ t−1

λ−1
−1

]
u, D(t)ω(u, t) = λu.

Then, the IERODE associated to the DAE version with properly stated leading term
applies to the variable u = Dx = (λ −1)x1 +λ tx2, and it reads

u′ = λu. (5.11)

Further, observe that, turning from the variables x1, x2 to u and v with

u := (λ −1)x1 +λ tx2, v := x2,

the system (5.6)–(5.7) is equivalent to

u′ = λv, (5.12)
u = v. (5.13)

Next, the implicit Euler method applied to the DAE (5.6)–(5.7) in standard form
reads

(λ −1)
1
h
(x1,n− x1,n−1)+λ tn

1
h
(x2,n− x2,n−1) = 0, (5.14)

(λ −1)x1,n +(λ tn−1)x2,n = 0. (5.15)

In terms of the transformed variables

un = (λ −1)x1,n +λ tnx2,n, vn = x2,n,

this leads to
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1
h
(un−un−1) = λvn−1, (5.16)

un = vn, (5.17)

and the recursion
1
h
(un−un−1) = λun−1.

Surprisingly, this represents the explicit Euler method for the ODE u′ = λu involved
in (5.12)–(5.13) although we have applied the implicit Euler method to the DAE
(5.6)–(5.7). Consequently, the implicit Euler method applied to the DAE (5.6)–(5.7)
provides stability preserving solution approximations only if h < − 2

λ . Such extra
stepsize restrictions have already been observed in [3]. Figure 5.1(a) shows the nu-
merical solution x2 for λ = −100 and h = 0.0202 for the implicit Euler method
applied to (5.6)–(5.7). This is not what one expects from an A-stable method. In
this sense, the A-stability gets lost when the method is applied to a DAE in standard
form. In light of this observation one could think that the implicit Euler method is

Fig. 5.1 Solution x2 of the implicit Euler method with the stepsize h = 0.0202 and λ =−100

not well suited for integrating problems like (5.6)–(5.7). However, the situation be-
comes much nicer if one applies the same implicit Euler method to the same DAE
written with properly stated leading term. Then we get

(λ −1)
1
h
(x1,n− x1,n−1)+

1
h
(λ tnx2,n−λ tn−1x2,n−1)−λx2,n = 0,

(λ −1)x1,n +(λ tn−1)x2,n = 0.

Using the transformed variables

un = (λ −1)x1,n +λ tnx2,n, vn = x2,n,

the implicit Euler method for (5.6)–(5.7) implies
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1
h
(un−un−1) = λvn, (5.18)

un = vn, (5.19)

and the resulting recursion has the form

1
h
(un−un−1) = λun,

which is exactly the implicit Euler method for the inherent ODE. In this case, the
inherent dynamical system of the DAE with a properly stated leading term is solved
by the same numerical method as the one applied to the original DAE. Figure 5.1(b)
shows the solution x2 for the same values as chosen previously. No stepsize restric-
tion for stability reasons occur. ��

The preceding example makes it clear that the way we formulate the DAE may have
a significant influence on the numerical solution behavior. DAEs with a properly
involved derivative seem to have an advantage in contrast to standard form DAEs.
The following pages are devoted to a detailed analysis of numerical methods applied
to DAEs with a properly involved derivative. Our special interest is directed to the
question of how numerical methods applied to DAEs (4.1) act on the inherent ODE
(4.12).

The theoretically ideal way of deriving a suitable numerical method for DAEs
would be to formulate the method for the inherent ODE and then to compose a nu-
merical solution xn of the DAE from this ODE solution un (see Figure 5.2). However,

DAE
local decoupling

IERODE

solve ODE numerically

xn
for numerical DAE solution

wrap up
un

Fig. 5.2 Ideal construction of numerical methods for DAEs via local decoupling

this is not a realistic way to solve DAEs since the local decoupling function ω is
usually not known. Even, if a decoupling is known, it is often very costly to com-
pute. What we can do—and we should do it—is to investigate to what extent the
numerical methods, being applied to the DAE, generate a correct integration of the
IERODE, and whether the constraints are correctly reflected. In general, both con-
cerns might be missed. On the other hand, as we point out in this chapter, there are
numerical methods that fulfill the desired properties if they are applied to DAEs in
a suitable way. To be precise, we formulate sufficient conditions guaranteeing that
the numerical method applied to the DAE (4.1) generates exactly the same method
for the IERODE (4.12). Thereby, knowledge of the inner structure of the nonlinear
regular index-1 DAE described in Theorem 4.5 plays its role.
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As prototypes of linear multistep methods and one-step methods, we discuss the
BDF and Runge–Kutta methods. Afterwards we consider general linear methods.
First we recall how these methods look for explicit ODEs, and then we consider
modification for DAEs in standard form and for DAEs (4.1) with a properly involved
derivative.

5.2 Methods applied to ODEs and DAEs in standard form

5.2.1 Backward differentiation formula

The backward differentiation formula (BDF) is an implicit linear multistep method
that generalizes the implicit or backward Euler method by approximating the deriva-
tive by an eventually more accurate k-step backward difference quotient. This for-
mula has been introduced in [55]. It is widely used, in particular in circuit simula-
tion, on the basis of [86]. For explicit ODEs

x′(t) = g(x(t), t),

the BDF method is formed by

1
hn

k

∑
i=0

αnixn−i = g(xn, tn).

Here, xn denotes the numerical solution at the time point tn. The stepsize tn− tn−1 is
denoted by hn. The coefficients αni are derived from a polynomial interpolation of
the ODE solution through the interpolation points tn, . . . , tn−k. As is well-known, in
the case of constant stepsizes, the BDF satisfies the root criterion of Dahlquist for
k ≤ 6, but it does not for k > 6 (see, e.g., [86, 105]). For this reason, it is strongly
recommended to apply the BDF just with k ≤ 6, since otherwise dangerous error
accumulations may appear. The BDF is feasible in the sense that the nonlinear equa-
tion system to be solved, in order to generate the actual value xn, has the nonsingular
Jacobian I− hn

αn0
gx if the stepsize hn is sufficiently small. To ensure a smooth numer-

ical integration, one has to consider quite nontrivial aspects concerning the stepsize
arrangement (e.g., [99, 96, 100, 34]).

The BDF has a natural extension to DAEs in standard form (4.33) (e.g., [86, 90,
96, 25])

f

( 1
hn

k

∑
i=0

αnixn−i,xn, tn
)
= 0.

Now the system to be solved for xn has the Jacobian

αn0

hn
fx1 + fx.
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As pointed out in Section 4.4 Note (4), for index-1 DAEs, the local matrix pencil
(4.34) is regular with Kronecker index 1, and therefore the Jacobian is nonsingular,
supposing the stepsize is sufficiently small.

The BDF is implemented in several well-known DAE solver packages such as
DASSL [182] and DASPK [181, 148]. The BDF is applied very successfully in
many applications, which use in essence index-1 DAEs. In contrast, for higher index
DAEs, one has to expect the failure of the method ([90], see also Chapter 8).

5.2.2 Runge–Kutta method

More than a hundred years ago, Runge and Kutta ([196, 136]) introduced their one-
step methods, called explicit Runge–Kutta methods today. Implicit Runge–Kutta
methods for ODEs

x′(t) = g(x(t), t)

were promoted in the 1960s (cf. [32, 33, 104, 29]). An s-stage Runge–Kutta method
is a one-step method of the form

xn = xn−1 +hn

s

∑
i=1

biX ′ni,

where one has to compute the stage derivatives X ′n1, . . . ,X
′
ns as a solution of the

equation system

X ′ni = g
(

xn−1 +hn

s

∑
j=1

ai jX ′n j, tni

)
, i = 1, . . . ,s,

with stages tni := tn−1 + cihn, and coefficients ai j,bi,ci which are usually collected
in a Butcher tableau

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs.

=
c A

bT .

If the Runge–Kutta matrix A is strictly lower triangular, one speaks of an explicit
Runge–Kutta method. Otherwise, it is called an implicit one. In case the Runge–
Kutta matrix is nonsingular, we denote the entries of its inverse by αi j, that is

A−1 =: (αi j)i, j=1,...,s .

As before, xn denotes the numerical solution at the current time point tn, and hn
is the stepsize tn− tn−1. The stage derivatives X ′ni are thought to approximate the
derivative values x′∗(tni) of the solution, and the resulting expressions
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Xni = xn−1 +hn

s

∑
j=1

ai jX ′n j, i = 1, . . . ,s, (5.20)

are called stage approximations for the solution values x∗(tni) at the stages tni.
Extensions of Runge–Kutta methods to DAEs in standard form

f(x′(t),x(t), t) = 0

are not as evident as in the case of BDF methods. At first glance, one can formulate
them as ([183, 96, 25, 103])

xn = xn−1 +hn

s

∑
i=1

biX ′ni, (5.21)

with stage derivatives X ′ni to be determined from the system

f(X ′ni,xn−1 +hn

s

∑
j=1

ai jX ′n j, tni) = 0, i = 1, . . . ,s. (5.22)

One has to be aware of the fact that the existence of stage derivatives X ′ni is not
assured, if one uses an explicit method. This becomes evident by a look at the fol-
lowing simple DAE, with x = (u,w):

u′ = w, 1 = u2 +w2,

for which, for instance, any two-stage explicit Runge–Kutta method fails to de-
termine unique stage derivatives X ′n1 = (U ′n1,W

′
n1) and X ′n2 = (U ′n2,W

′
n2) from the

respective system (5.22), that is, from

U ′n1 = wn−1, 1 = u2
n−1 +w2

n−1

U ′n2 = wn−1 +hna21W ′
n1, 1 = (un−1 +hna21U ′n1)

2 +(wn−1 +hna21W ′
n1)

2.

On the one hand, W ′
n2 is not defined at all. On the other hand, the system is solvable

only if the previous solution (un−1,wn−1) satisfies the constraint

u2
n−1 +w2

n−1 = 1.

The situation described above is typical of all explicit Runge–Kutta methods, and we
simply decide not to use them. Analogous problems arise for Runge–Kutta methods
having a singular Runge–Kutta matrix A, which also rules out these methods. To
explain the circumstance we turn, for a moment, to the linear constant coefficient
DAE

Ex′(t)+Fx(t) = q(t), (5.23)

and the respective system of equations (5.22)
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EX ′ni +F(xn−1 +hn

s

∑
j=1

ai jX ′n j) = q(tni), i = 1, . . . ,s. (5.24)

We are led to inspect the linear system

An

⎡
⎢⎣

X ′n1
...

X ′ns

⎤
⎥⎦=

⎡
⎢⎣
−Fxn−1 +q(tn1)

...
−Fxn−1 +q(tns)

⎤
⎥⎦ , An := Is⊗E +hnA⊗F,

whereby the symbol⊗means the Kronecker product. Clearly, for a feasible method,
the coefficient matrix An should be nonsingular for all sufficiently small stepsizes.
For the simplest index-1 DAE, if E is the zero matrix and F is nonsingular, we
arrive at An = hA⊗F . Therefore, both matrices An and A are nonsingular at the
same time. In consequence, in order to ensure the feasibility of the method, we have
to assume the Runge–Kutta methods to have a nonsingular coefficient matrix A.

From now on, suppose the matrix A to be nonsingular. Since the DAE (5.23)
has index 1, the matrix pair {E,F} is regular with Kronecker index 1, and we find
nonsingular real valued matrices (cf. Proposition 1.3) L,K such that

LEK =

[
I 0
0 0

]
, LFK =

[
W 0
0 I

]
.

Multiplying system (5.24) by L, and forming X ′ni = K
[
U ′ni
V ′ni

]
, xn−1 = K

[
un−1
vn−1

]
, im-

plies that the system (5.24) is decoupled into two parts, the first one

U ′ni +hn

s

∑
j=1

ai jU ′n j = p(tni)−Wun−1, i = 1, . . . ,s,

being uniquely solvable with respect to U ′n1, . . . ,U
′
ns, if the stepsize hn > 0 is small,

and the second one

hn

s

∑
j=1

ai jV ′n j = r(tni)− vn−1, i = 1, . . . ,s,

which is uniquely solvable, since A is nonsingular. Thus, the coefficient matrix An
is also nonsingular.

Runge–Kutta methods having a nonsingular coefficient matrix A exhibit a re-
markable property: they provide a one-to-one correspondence between the stage
derivatives and the stage approximations via the relation (5.20). Clearly, formula
(5.20) fixes the stage approximations Xn1, . . . ,Xns to be uniquely determined by the
stage derivatives X ′n1, . . . ,X

′
ns. Conversely, if the stage approximations Xn1, . . . ,Xns

are already known, then (5.20) determines the stage derivatives as the solution of
the linear system
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s

∑
j=1

ai jX ′n j =
1
hn

(Xni− xn−1), i = 1, . . . ,s.

The coefficient matrix of this linear system is A⊗ Im, and is thus nonsingular, and
(A⊗ Im)

−1 =A−1⊗ Im. The system solution is given as

X ′ni =
1
hn

s

∑
j=1

αi j(Xn j− xn−1), i = 1, . . . ,s. (5.25)

For all Runge–Kutta methods, we can write

f(X ′ni,Xni, tni) = 0, i = 1, . . . ,s, (5.26)

instead of (5.22). This shows that the stage approximations Xn1, . . . ,Xns always sat-
isfy the obvious constraint.

The assumption of a nonsingular Runge–Kutta matrix A allows us to replace
the stage derivatives in the description (5.21), (5.22) by the stage approximations,
and to use exclusively the stage approximations. In this way we arrive at another
description of the given Runge–Kutta method, namely

xn = xn−1 +hn

s

∑
i=1

bi
1
hn

s

∑
j=1

αi j(Xn j− xn−1) = (1−
s

∑
i, j=1

biαi j)

︸ ︷︷ ︸
=:ρ

xn−1 +
s

∑
i, j=1

biαi jXn j,

(5.27)

f(
1
hn

s

∑
j=1

αi j(Xn j− xn−1),Xni, tni) = 0, i = 1, . . . ,s. (5.28)

There is an extensive literature providing stability, convergence and order results for
Runge–Kutta methods applied to standard form index-1 DAEs (e.g., [183, 96, 25,
103]). Here we mention the condition |ρ | ≤ 1 for stability reasons. Additionally,
schemes with |ρ | = 1 are not recommended for the numerical integration of fully
implicit DAEs ([25, p. 100]). Consequently, the Gauss methods are excluded. It is
worth mentioning that, in the context of the collocation solution of boundary value
problems for index-1 DAEs, also Gauss methods prove their value. Concerning the
orders, one has to be aware of certain order reductions when comparing it with the
explicit ODE case.

We stress once again that all stage approximations satisfy equation (5.26) which
reflects the solution property

f(x′∗(tni),x∗(tni), tni) = 0, i = 1, . . . ,s.

In contrast, the value xn generated by the Runge–Kutta method via (5.21), or
(5.27), does not necessarily satisfy the constraint. There might be no counter-
part X ′n such that f(X ′n,xn, tn) = 0 although the true solution satisfies the DAE
f(x′∗(tn),x∗(tn), tn) = 0. No doubt, it would be to the best advantage, if xn were to
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satisfy the DAE, too. This is a question concerning the choice of the coefficients bi.
Luckily, we are able to solve the problem by assuming cs = 1 and bi = asi for all
i = 1, . . . ,s. Then, we have ρ = 0, tn = tns and xn = Xns. Hence xn satisfies the DAE
and, in particular, the constraint.

Another idea is to apply formula (5.21) or (5.27) afterwards to provide a projec-
tion onto the constraint set, and then to use the resulting value as the new xn. The
idea of projections back to a constraint has been proposed in [4] for Hessenberg
index-2 DAEs. This approach might work for DAEs with special structure, but for
index-1 DAEs in general the benefit does not compensate the extra costs.

In the following, an IRK(DAE) is an implicit Runge–Kutta method that is par-
ticularly suitable for DAEs because of the nonsingular A, and the conditions cs = 1
and bi = asi, i = 1, . . . ,s.

The Radau IIA methods serve as examples for IRK(DAE) methods [105]. The
Radau IIA method with stage number s = 3 is implemented in the well-known DAE
solver package RADAU5 [102]. It has order 5 for ODEs and semi-implicit index-1
DAEs.

An IRK(DAE) method simplifies (5.21), (5.22) to

xn := Xns, (5.29)

f(
1
hn

s

∑
j=1

αi j(Xn j− xn−1),Xni, tni) = 0, i = 1, . . . ,s. (5.30)

5.2.3 General linear method

Both integration schemes, linear multistep and one-step methods, are well-
established numerical methods with their particular advantages and disadvantages.
Linear multistep methods can be implemented efficiently for large problems, but
the stability properties are not always satisfactory. One-step methods have superior
stability properties but they do suffer from high computational costs.

Several attempts have been made in order to overcome difficulties associated
with each class of methods while keeping its advantages. We quote some of them,
only. Hybrid methods allow more than one function evaluation in a linear multistep
scheme [85]. Using cyclic compositions of multistep methods it became possible
to break Dahlquist’s barriers [19]. On the other hand, Rosenbrock methods aim at
reducing the costs for a Runge–Kutta scheme by linearizing the nonlinear system
and incorporating the Jacobian into the numerical scheme [105, 122].

In order to cover both linear multistep and Runge–Kutta methods in one unifying
framework, Butcher [28] introduced general linear methods (GLMs) for the solution
of ordinary differential equations

x′(t) = g(x(t), t).
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As for linear multistep methods, a general linear method uses r input quantities
x[n−1]

1 , . . . ,x[n−1]
r from the past when proceeding from tn−1 to tn = tn−1 + h with a

stepsize h. For simplicity, we restrict the discussion to constant stepsizes here. Sim-
ilarly to Runge–Kutta methods, s internal stages tn j = tn−1 + c jh, j = 1, . . . ,s, are
introduced, and the quantities Xn1, . . . ,Xns have to be calculated from the system

Xni = h
s

∑
j=1

ai jg(Xn j, tn j)+
r

∑
j=1

ui jx
[n−1]
j , i = 1, . . . ,s.

Then, the new solution vector x[n] is given by

x[n]i = h
s

∑
j=1

bi jg(Xn j, tn j)+
r

∑
j=1

vi jx
[n−1]
j , i = 1, . . . ,r.

Using the more compact notation

Xn =

⎡
⎢⎣

Xn1
...

Xns

⎤
⎥⎦ , G(Xn) =

⎡
⎢⎣

g(Xn1, tn1)
...

g(Xns, tns)

⎤
⎥⎦ , x[n−1] =

⎡
⎢⎢⎣

x[n−1]
1

...
x[n−1]

r

⎤
⎥⎥⎦

a general linear method can be written as

Xn = (A⊗ Im)hG(Xn)+(U ⊗ Im)x[n−1],

x[n] = (B⊗ Im)hG(Xn)+(V ⊗ Im)x[n−1].

The integer m denotes the problem size and ⊗ represents the Kronecker product for
matrices (cf. [117]). It is only a slight abuse of notation when the Kronecker product
is often omitted, i.e., [

Xn

x[n]

]
=

[
A U
B V

][
hG(Xn)

x[n−1]

]
.

This formulation of a GLM with s internal and r external stages from the past is
due to Burrage and Butcher [27]. The matrices A, U , B and V contain the method’s
coefficients.

The internal stages Xni estimate the exact solution values x∗(tni), but the external
stages x[n−1]

i are fairly general. Commonly adopted choices are approximations of
the form

x[n−1] ≈

⎡
⎢⎢⎢⎣

x∗(tn−1)
x∗(tn−1−h)

...
x∗(tn−1− (r−1)h)

⎤
⎥⎥⎥⎦ or x[n−1] ≈

⎡
⎢⎢⎢⎣

x∗(tn−1)
hx′∗(tn−1)

...
hr−1x(r−1)

∗ (tn−1)

⎤
⎥⎥⎥⎦ ,
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the former representing a method of multistep type while the latter is a Nordsieck
vector. Notice that, compared to Nordsieck’s original formulation [179], factorials
have been omitted for convenience. General linear methods with Nordsieck type
external stages are considered, among other references, in [120, 31, 214, 211]. Dif-
ferent choices of the vector x[n−1] are often related by linear transformations. In this
sense the representation of a method using the matricesA, U , B and V is not unique
as two different methods may be equivalent owing to such a transformation [29].

A modification of GLMs to apply to index-1 DAEs in standard form

f(x′(t),x(t), t) = 0

is given by [199]:

f(X ′ni,Xni, tni) = 0, i = 1, . . . ,s,

Xn = (A⊗ Im)hX ′n +(U ⊗ Im)x[n−1],

x[n] = (B⊗ Im)hX ′n +(V ⊗ Im)x[n−1].

For the same reasons as in the case of Runge–Kutta methods, the matrix A is as-
sumed to be nonsingular.

5.3 Methods applied to DAEs with a properly involved derivative

Again, as prototypes of linear multistep methods and one-step methods, we discuss
the BDF and Runge–Kutta methods. Afterwards we turn to general linear methods.

5.3.1 Backward differentiation formula

A self-evident extension of the BDF to DAEs with a properly involved derivative
(4.1)

f ((Dx)′(t),x(t), t) = 0

is given by

f (
1
hn

k

∑
i=0

αniD(tn−i)xn−i,xn, tn) = 0. (5.31)

Here, just the derivative term (Dx)′ is approximated by a backward difference quo-
tient. By construction, the resulting estimate xn belongs to the constraint setM0(tn)
which reflects the true solution property x∗(tn) ∈M0(tn). The Jacobian of the sys-
tem to be solved for xn, which means 1

hn
αn0 fyD+ fx, is nonsingular for all suffi-
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ciently small stepsizes, since the related matrix pencil (4.6) is regular with Kro-
necker index 1.

5.3.2 Runge–Kutta method

IRK(DAE) methods, given by a Butcher tableau

c A
bT , A nonsingular , A−1 =: (αi j)i, j=1,...,s ,

are applicable to DAEs in standard formulation (cf. Section 5.2.2). How can we
extend these methods to nonlinear DAEs

f ((Dx)′(t),x(t), t) = 0,

with a properly involved derivative? The equation itself suggests that we adapt the
method in such a way that only approximations for (Dx)′(tni) are needed. There-
fore, we compose the method by means of stage approximations Xn1, . . . ,Xns for
estimating the solution values x∗(tn1), . . . ,x∗(tns) and stage derivatives [DX ]′ni for
approximating (Dx)′(tni), i = 1, . . . ,s (cf. (5.26)). Naturally,

f ([DX ]′ni,Xni, tni) = 0, i = 1, . . . ,s

is satisfied. In order to obtain a reasonable formula containing stage approxima-
tions only, we follow the idea behind the Runge–Kutta formula in terms of stage
approximations (5.28). We introduce

[DX ]′ni :=
1
hn

s

∑
j=1

αi j(D(tn j)Xn j−D(tn−1)xn−1), i = 1, . . . ,s,

which is equivalent to

D(tni)Xni = D(tn−1)xn−1 +hn

s

∑
j=1

ai j[DX ]′n j, i = 1, . . . ,s. (5.32)

This yields

f (
1
hn

s

∑
j=1

αi j(D(tn j)Xn j−D(tn−1)xn−1),Xni, tni) = 0, i = 1, . . . ,s, (5.33)

for computing the stage approximations Xn1, . . . ,Xns.
In order to answer the basic question of whether the Jacobian of the system re-

mains nonsingular, we turn for a moment, for simplicity, to linear constant coeffi-
cient DAEs
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A(Dx(t))′+Bx(t) = q(t),

and the corresponding system

A
1
hn

s

∑
j=1

αi j(DXn j−Dxn−1)+BXni = q(tni), i = 1, . . . ,s. (5.34)

The coefficient matrix An of this linear ms×ms system with respect to the unknowns
Xn1, . . . ,Xns reads

An =A⊗ (AD)+hnIs⊗B.

Due to the index-1 property of the matrix pencil {AD,B}, the matrix G :=
AD + BQ0 is nonsingular with Q0 being the projector onto kerAD along
{z ∈ R

m : Bz ∈ im AD}. Letting P0 = I−Q0 it holds that G−1AD = P0, G−1BQ0 =
Q0, and, additionally, Q0 = Q0G−1B. Derive

(Is⊗G−1)An =A⊗P0 +hnIs⊗ (G−1B),

and consider the homogeneous equation

(A⊗P0 +hnIs⊗ (G−1B))Z = 0.

Multiplying the homogeneous system by Is⊗Q0, and taking into account the rela-
tion (Is⊗Q0)(A⊗P0) =A⊗ (Q0P0) = 0, we find

(hnIs⊗ (Q0G−1B))Z = (hnIs⊗Q0)Z = 0, thus (Is⊗Q0)Z = 0, (Is⊗P0)Z = Z.

Writing A⊗P0 = (A⊗ Im)(Is⊗P0) we arrive at

(A⊗ Im +hnIs⊗ (G−1B))Z = 0,

and hence, if the stepsize hn is sufficiently small, Z = 0 follows. This shows that the
coefficient matrix An is nonsingular for sufficiently small stepsizes hn > 0. In the
case of general index-1 DAEs (4.1), feasibility can be proved in a similar way, but
by stronger technical effort.

Observe that, by construction, the stage approximations lie in the obvious con-
straint set,

Xni ∈M0(tni), i = 1, . . . ,s,

which reflects the corresponding solution property X∗(tni) ∈M0(tni), i = 1, . . . ,s.
Consequently, xn ∈M0(tn) for IRK(DAE) methods due to xn = Xns.

Finally, the IRK(DAE) methods applied to DAEs (4.1) are given by

xn := Xns, (5.35)

f (
1
hn

s

∑
j=1

αi j(D(tn j)Xn j−D(tn−1)xn−1),Xni, tni) = 0, i = 1, . . . ,s. (5.36)
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5.3.3 General linear method

We apply a general linear method to the DAE (4.1),

f ((Dx)′(t),x(t), t) = 0,

as given by

f ([DX ]′ni,Xni, tni) = 0, i = 1, . . . ,s, (5.37)

[DX ]n = h(A⊗ In)[DX ]′n +(U ⊗ In)[Dx][n−1], (5.38)

[Dx][n] = h(B⊗ In)[DX ]′n +(V ⊗ In)[Dx][n−1] . (5.39)

The stages Xni are approximations to the exact solution values x∗(tni) at the interme-
diate time points tn1, . . . , tns. The super-vectors [DX ]n and [DX ]′n are given by

[DX ]n =

⎡
⎢⎣

D(tn1)Xn1
...

D(tns)Xns

⎤
⎥⎦ , [DX ]′n =

⎡
⎢⎣
[DX ]′n1

...
[DX ]′ns

⎤
⎥⎦ ,

where [DX ]′ni approximates (Dx∗)′(tni). The input vector

[Dx][n−1] ≈

⎡
⎢⎢⎢⎣

(Dx∗)(tn−1)
h(Dx∗)′(tn−1)

...
hr−1(Dx∗)(r−1)(tn−1)

⎤
⎥⎥⎥⎦

is assumed to be a Nordsieck vector. Observe that only information regarding the
solution’s D-component is passed on from step to step. Hence errors in this compo-
nent are the only ones that are possibly propagated.
Again we rule out all methods having a singular coefficient matrix A.

Because of the nonsingularity of A, the relation (5.38) is equivalent to

[DX ]′n =
1
h
(A−1⊗ In)([DX ]n− (U ⊗ In)[Dx][n−1]). (5.40)

The same arguments as used for Runge–Kutta methods apply now to show that this
method is feasible.

The quantity xn that estimates the true solution value x∗(tn), tn = tn−1 +h has to
be obtained by means of a linear combination of the internal stages Xni. Every stage
Xni satisfies the obvious constraints, such that

Xni ∈M0(tni), i = 1, . . . ,s.

It is a desirable feature for the numerical solution to satisfy xn ∈M0(tn) as well. As
we know from the previous section, IRK(DAE) (stiffly accurate) methods guaran-
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tee this situation. We will therefore restrict our attention to stiffly accurate general
linear methods, which means

M =

[
A U
B V

]
with A nonsingular , eT

sA= eT
1B, eT

s U = eT
1V , cs = 1,

such that the last row of [A,U ] coincides with the first row of [B,V ]. This implies
that xn coincides with the last stage Xns and hence xn to belong toM0(tn).

Similarly as in the case of Runge–Kutta methods, since the matrix A is nonsin-
gular, making use of the relation (5.40) we may reformulate the GLM (5.37)–(5.39)
as

f

(
1
h

s

∑
j=1

αi j

(
D(tn j)Xn j−

r

∑
�=1

μ j�[Dx][n−1]
�

)
,Xni, tni

)
= 0, i = 1, . . . ,s, (5.41)

and [Dx][n] is given recursively by
⎡
⎢⎢⎣
[Dx][n]1

...
[Dx][n]r

⎤
⎥⎥⎦= (B⊗ In)(A−1⊗ In)([DX ]n− (U ⊗ In)[Dx]n−1)+(V ⊗ In)[Dx][n−1].

(5.42)
The coefficients α j� and μ j� are the entries of the coefficient matrices A−1 and U .

5.4 When do decoupling and discretization commute?

In contrast to index-1 DAEs in standard formulation, a DAE (4.1) with properly
involved derivative holds a natural inherent ODE, the IERODE, which is uniquely
determined by the problem data (Proposition 4.7). It is reasonable to ask whether nu-
merical methods being applied to the DAE reach the IERODE unchanged. It would
be quite favorable to know which kind of method works on the inner dynamical
part. As Example 5.1 demonstrates, it may actually happen that a method arrives at
the inner dynamic part just in an essentially converted version, and this may cause
serious additional stepsize restrictions.

As before, equation (4.1) is assumed to be an index-1 DAE. We consider BDF
methods, IRK(DAE) methods, and GLMs as described in Section 5.3. Recall that xn
generated by the BDF method, by an IRK(DAE) method or by a stiffly stable GLM
satisfies the obvious constraint xn ∈M0(tn). Despite the different approaches, we
are able to merge all methods into one framework

f ([Dx̂]′n, x̂n, t̂n) = 0, (5.43)

by introducing the expressions
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x̂n :=

⎧
⎨
⎩

xn, for BDF,

Xni, i = 1, . . . ,s, for RK and GLM,

t̂n :=

⎧
⎨
⎩

tn, for BDF,

tni, i = 1, . . . ,s, for RK and GLM,

as well as

[Dx̂]′n :=

⎧
⎪⎪⎨
⎪⎪⎩

1
hn
∑k

i=0αniD(tn−i)xn−i, for BDF,
1
hn
∑s

j=1αi j(D(tn j)Xn j−D(tn−1)xn−1), i = 1, . . . ,s, for RK,

1
h ∑

s
j=1αi j(D(tn j)Xn j−∑r

�=1 μ j�[Dx̂][n−1]
� ), i = 1, . . . ,s, for GLM

with
[Dx̂][n−1] = (B⊗ In)[Dx̂]′n−1 +(V ⊗ In)[Dx̂][n−2]

for GLMs. Along with equation (5.43), we give special attention to the perturbed
equation

f ([D̃x̂]′n, ˜̂xn, t̂n) = qn, (5.44)

with

˜̂xn :=

⎧
⎨
⎩

x̃n, for BDF,

X̃ni, i = 1, . . . ,s, for RK and GLM,

and

[D̃x̂]′n :=

⎧
⎪⎪⎨
⎪⎪⎩

1
hn
∑k

i=0αniD(tn−i)x̃n−i, for BDF,
1
hn
∑s

j=1αi j(D(tn j)X̃n j−D(tn−1)x̃n−1), i = 1, . . . ,s, for RK,

1
h ∑

s
j=1αi j(D(tn j)X̃n j−∑r

�=1 μ j�[D̃x][n−1]
� ), i = 1, . . . ,s, for GLM,

with [
X̃n

[D̃x][n]

]
=

[
A U
B V

][
h[D̃x̂]′n−1
[D̃x][n−1]

]

for GLMs. The perturbation qn stands for rounding errors, and for possible errors
from a nonlinear solver. It is supposed to be sufficiently small. The tilde symbol
indicates possible errors in the quantities under consideration. Furthermore, form

ûn := D(t̂n)x̂n, ˜̂un := D(t̂n) ˜̂xn, [û]′n := [Dx̂]′n, ˜̂u′n := [D̃x̂]′n. (5.45)

Aiming to achieve better insight, we make use of the decoupling procedure de-
scribed in Section 4.2, in particular of the implicitly defined function ωpert. Assume
the definition domain of this function to be as spacious as needed and the time in-
terval to be Ic = [t0,T ]. Applying Lemma 4.9 for ( ˜̂u,qn) ∈ Bρ(u∗(t̂n),0), we derive
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the expression

ωpert( ˜̂un, t̂n,qn) = ωpert(R(t̂n) ˜̂un, t̂n,qn) = D(t̂n)−[D̃x̂]′n +Q0(t̂n) ˜̂xn (5.46)

from (5.44). Multiplying (5.46) by D(t̂n) and Q0(t̂n) yields

D(t̂n)ωpert( ˜̂un, t̂n,qn) = R(t̂n)[D̃x̂]′n = R(t̂n)[ ˜̂u]′n,

and
Q0(t̂n)ωpert( ˜̂un, t̂n,qn) = Q0(t̂n) ˜̂xn,

respectively. In consequence, the solution ˜̂xn of (5.44) can be represented as

˜̂xn = D(t̂n)−D(t̂n) ˜̂xn +Q0(t̃n) ˜̂xn = D(t̂n)− ˜̂un +Q0(t̂n)ωpert( ˜̂un, t̂n,qn),

with ˜̂un satisfying
D(t̂n)ωpert( ˜̂un, t̂n,qn) = R(t̂n)[ ˜̂u]′n.

By introducing the quantities Ũni := D(tni)X̃ni, ũn−i := D(tn−i)x̃n−i, and
[ũ][n−1]

� := [D̃x][n−1]
� , we may rewrite [ ˜̂u]′n as

[ ˜̂u]′n =

⎧
⎪⎪⎨
⎪⎪⎩

1
hn
∑k

i=0αniũn−i, for BDF,
1
hn
∑s

j=1αi j(Ũn j− ũn−1), i = 1, . . . ,s, for RK,

1
h ∑

s
j=1αi j(Ũn j−∑r

�=1 μ j�[ũ]
[n−1]
� ), i = 1, . . . ,s, for GLM.

(5.47)

To obtain the corresponding relations concerning the case qn = 0 we simply drop
the tildes, in particular,

[û]′n =

⎧
⎪⎪⎨
⎪⎪⎩

1
hn
∑k

i=0αniun−i, for BDF,
1
hn
∑s

j=1αi j(Un j−un−1), i = 1, . . . ,s, for RK,

1
h ∑

s
j=1αi j(Un j−∑r

�=1 μ j�[u]
[n−1]
� ), i = 1, . . . ,s, for GLM.

(5.48)

For later use, the following proposition summarizes the last lines.

Proposition 5.2. Let equation (4.1) be an index-1 DAE and x∗ : Ic →R
m be a solu-

tion of (4.1). Then, the solution x̂n of (5.43) can be represented as

x̂n = D(t̂n)−ûn +Q0(t̂n)ωpert(ûn, t̂n,0),

with ûn satisfying the equation

R(t̂n)[û]′n = D(t̂n)ωpert(ûn, t̂n,0) (5.49)

supposing ûn ∈ Bρ((Dx∗)(tn)). The solution ˜̂xn of (5.44) can be represented as

˜̂xn = D(t̂n)− ˜̂un +Q0(t̂n)ωpert( ˜̂un, t̂n,qn),
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with ˜̂un satisfying the equation

R(t̂n)[ ˜̂u]′n = D(t̂n)ωpert( ˜̂un, t̂n,qn) (5.50)

supposing ( ˜̂un,qn) ∈ Bρ((Dx)(tn),0). The function ωpert is a continuous function
provided by Lemma 4.9 in the neighborhood {(u, t,q) | t ∈ Ic, (u,q) ∈
Bρ((Dx)∗(t),0)}.

Next we reconsider, for a moment, the perturbed DAE

f ((Dx)′(t),x(t), t) = q(t),

and its decoupled form (cf. Theorem 4.5)

x(t) = D(t)−u(t)+Q0(t)ωpert(u(t), t,q(t)),

with u(·) being a solution of the IERODE (4.24)

u′(t) = R′(t)u(t)+D(t)ωpert(u(t), t,q(t)).

Applying the given integration method to this IERODE, we obtain the discretized
inherent ODE

[ ˜̂u]′n = R′(t̂n) ˜̂un +D(t̂n)ωpert( ˜̂un, t̂n,q(t̂n)). (5.51)

Here, the quantity ˜̂un describes the numerical approximation of u(t̂n), and [û]′n esti-
mates u′(t̂n) in accordance with formula (5.48). Obviously, formula (5.50) coincides
with (5.51) if and only if

R(t̂n)[ ˜̂u]′n = [ ˜̂u]′n−R′(t̂n) ˜̂un and q(t̂n) = qn. (5.52)

In other words, discretization and decoupling commute if and only if (5.52) is satis-
fied (see Figure 5.3).

f ((D(t)x(t))′,x(t), t) = q(t)
decoupling perturbed DAE

solve DAE numerically, qn:=q(t̂n)

u′(t) = D(t)ωpert(u(t), t,q(t))

solve ODE numerically

f ([̃Dx̂]
′
n,

˜̂xn, t̂n) = qn
local decoupling

[ ˜̂u]′n = D(t̂n)ωpert( ˜̂un, t̂n,qn)

Fig. 5.3 For an index-1 DAE with a properly involved derivative, discretization and local decou-
pling commute if and only if (5.52) is satisfied. A time-invariant subspace imD(t) is a sufficient
condition for (5.52) to be fulfilled.

The commutativity of discretization and decoupling in this sense is of great im-
portance: it ensures that the integration methods approved for explicit ODEs retain
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their essential properties if applied to DAEs. The following theorem provides a suf-
ficient condition which guarantees commutativity.

Theorem 5.3. Let the index-1 DAE (4.1) have a subspace imD(t) independent of
t and x∗ : Ic → R

m be a solution of (4.1). Suppose the components [Dx][0]i of the
starting vector [Dx][0] for the GLM belong to imD(t0) for all i = 1, . . . ,r. Then, the
discretization and the decoupling procedure commute for BDF, IRK(DAE) and stiffly
accurate GLM. The discretized IERODE has the form

[ ˜̂u]′n = D(t̂n)ωpert( ˜̂un, t̂n,qn) (5.53)

with [ ˜̂u]′n defined in (5.47) and qn := q(t̂n), independently of the order, decoupling
before discretization or discretization before decoupling. Additionally, in both cases,
the estimate ˜̂xn of x(t̂n) is given by

˜̂xn = D(t̂n)− ˜̂un +Q0(t̂n)ωpert( ˜̂un, t̂n,qn).

Thereby, ωpert is a continuous function in the neighborhood

{(u, t,q) | t ∈ Ic, (u,q) ∈ Bρ((Dx)∗(t),0)}

for a fixed radius ρ > 0, provided by Lemma 4.9.

Proof. If imD(t) is constant then we find a constant projector Rc with

imD(t) = imRc = imR(t), R(t)Rc = Rc, for all t ∈ I.

Since [ ˜̂u]′n ∈ imRc by (5.47), we conclude

R(t̂n)[ ˜̂u]′n = R(t̂n)Rc[ ˜̂u]′n = Rc[ ˜̂u]′n = [ ˜̂u]′n

in formula (5.50). On the other hand, the values ˜̂un appearing in (5.51) also belong
to imRc due to (5.45). This implies

R′(t̂n)ûn = R′(t̂n)Rcûn = (RnRc)
′ûn = R′cûn = 0

in formula (5.51). Consequently, (5.53) follows and the proof is complete. ��

The discretized IERODE in Theorem 5.3 reflects the special form of the IERODE
given by Proposition 4.7 for the case of a time-invariant imD(t).

Fortunately, DAEs can often be reformulated such that imD(t) is independent of
t. It is even so that one usually finds a formulation with a full row rank matrix D(t),
imD(t) = R

n.
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5.5 Convergence on compact intervals and error estimations

We continue analyzing the BDF, IRK(DAE) methods and stiffly stable GLMs ap-
plied to DAEs (4.1) with a properly stated derivative and time-invariant imD(t). In
this section we make use of Theorem 5.3 which allows us easily to transfer conver-
gence and stability properties known for these methods, when they are applied to
explicit ODEs, to the case of DAEs.

It should be mentioned that the numerical integration methods may show conver-
gence also for the case that imD(t) varies with t. However, one is then not aware of
the method which actually integrates the IERODE. Additional stepsize restrictions
might be a consequence.

5.5.1 Backward differentiation formula

We apply the BDF to the DAE (4.1) on a partition π of the compact interval Ic =
[t0,T ] ∈ I f . Regarding rounding errors and defects in the nonlinear equations, the
BDF methods are given by (cf. (5.44))

f (
1
hn
∑k

i=0αniD(tn−i)xn−i,xn, tn) = qn, n≥ k. (5.54)

The partitions π are assumed to have the following properties:

π : t0 < t1 < · · ·< tN = T, (5.55)

0 < hmin ≤ hn :=tn− tn−1 ≤ hmax, κ1 ≤
hn−1

hn
≤ κ2, n≥ 1,

where κ1, κ2, hmin and hmax are suitable constants such that the BDFs are stable for
explicit ODEs, see [99, 100, 34].

Theorem 5.4. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of t. Let x∗ ∈ C1

D(Ic,R
m) be a solution of the DAE (4.1).

If the deviations in the starting values |D(tn)xn−D(tn)x∗(tn)|, 0 ≤ n < k, and the
perturbations qn, k ≤ n ≤ N, are sufficiently small, then the k-step BDF method
(k ≤ 6) is feasible for all partitions (5.55) with hmax being sufficiently small. There
exist numerical solution values xn fulfilling (5.44) for each n with k ≤ n ≤ N. Fur-
thermore, there is a constant c > 0 such that

max
1≤n≤N

|xn− x∗(tn)| ≤ c
(

max
n<k
|D(tn)xn−D(tn)x∗(tn)|+max

n≥k
|qn|+max

n≥k
|Ln|
)

with Ln being the local error

Ln = f ([Dx∗]′n,x∗(tn), tn), k ≤ n≤ N,
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and

[Dx∗]′n :=
1
hn

k

∑
i=0

αni(Dx∗)(tn−i).

Proof. From Corollary 4.10 we know that the solution x∗ can be written as

x∗(t) = D(t)−u∗(t)+Q0(t)ωpert(u∗(t), t,0), t ∈ Ic, (5.56)

with u∗ being the solution of the IVP

u′∗(t) = D(t)ωpert(u∗(t), t,0), u∗(t0) = D(t0)x∗(t0).

The term R′(t)u∗(t) vanishes since we have assumed imD(t) to be time-invariant,
cf. Proposition 4.7(3). The continuous function ωpert is implicitly defined on

{(u, t,q) |(u,q) ∈ Bρ((Dx∗)(t),0), t ∈ Ic}

by Lemma 4.9. It has continuous partial derivatives ωpert
u and ωpert

p . Proposition 5.2
and (5.53) tell us that

xn = D(tn)−un +Q0(tn)ωpert(un, tn,qn), k ≤ n≤ N, (5.57)

is the solution of (5.54), if un is the solution of

[u]′n = D(tn)ωpert(un, tn,qn), k ≤ n≤ N, un := D(tn)xn, 0≤ n < k, (5.58)

with

[u]′n =
1
hn

k

∑
i=0

αniun−i.

Introducing
qu

n := D(tn)ωpert(un, tn,qn)−D(tn)ωpert(un, tn,0),

we see that un solves equation (5.58) if and only if it satisfies the equation

1
hn

k

∑
i=0

αniun−i = D(tn)ωpert(un, tn,0)+qu
n;

however, this is the BDF for the explicit ODE

u′(t) = D(t)ωpert(u(t), t,0), t ∈ Ic,

with a perturbation qu
n of the right-hand side in each step. Standard ODE theory

ensures the existence of the approximate BDF solutions un supposing the errors in
the starting phase |un−u∗(tn)|, 0≤ n < k, and |qu

n|, k≤ n≤ N are sufficiently small.
Both demands are satisfied since

|un−u∗(tn)|= |D(tn)xn−D(tn)x∗(tn)|, for 0≤ n < k,
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and there is a constant c1 > 0 such that

|qu
n|= |D(tn)ωpert(un, tn,qn)−D(tn)ωpert(un, tn,0)| ≤ c1|qn| (5.59)

for k ≤ n ≤ N. The existence of a continuous partial derivative ωpert
q ensures that

(5.59) is valid. Consequently, the existence of a BDF solution xn satisfying (5.54) is
ensured as long as un ∈ Bρ(u∗(tn)). Applying standard arguments, we find the error
estimation

max
n≥k
|un−u∗(tn)| ≤ c2

(
max
n<k
|un−u∗(tn)|+max

n≥k
|qu

n|+max
n≥k
|Lu

n|
)

(5.60)

with a constant c2 > 0, Lu
n being the local error

Lu
n = [u∗]′n−D(tn)ωpert(u∗(tn), tn,0) = [u∗]′n−u′∗(tn), k ≤ n≤ N

and

[u∗]′n =
1
hn

k

∑
i=0

αniu∗(tn−i).

Defining

Lw
n := D(tn)−[u∗]′n +Q0(tn)x∗(tn) = D(tn)−[Dx∗]′n +Q0(tn)x∗(tn), (5.61)

we get

f (D(tn)Lw
n ,D(tn)−u∗(tn)+Q0(tn)Lw

n , tn) = f ([Dx∗]′n,x∗(tn), tn) = Ln,

thus, by means of the function ωpert,

Lw
n = ωpert(u∗(tn), tn,Ln).

Regarding (5.61), we see that

D(tn)ωpert(u∗(tn), tn,Ln) = D(tn)Lw
n = R(tn)[u∗]′n = [u∗]′n.

Here, we again used that imD(t) is time-invariant. We have

Lu
n = D(tn)ωpert(u∗(tn), tn,Ln)−D(tn)ωpert(u∗(tn), tn,0).

Since ωpert
q exists and is continuous, we find a constant c3 > 0 satisfying

|Lu
n| ≤ c3|Ln|, k ≤ n≤ N. (5.62)

Inserting (5.62) and (5.59) into (5.60), there is a constant c4 > 0 such that

max
n≥k
|un−u∗(tn)| ≤ c4

(
max
n<k
|D(tn)xn−D(tn)x∗(tn)|+max

n≥k
|qn|+max

n≥k
|Ln|
)
.
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Obviously, un ∈ Bρ(u∗(tn)) is always satisfied if the deviations in the initial values,
the perturbations qn and the local error are sufficiently small. The latter condition
can be fulfilled by sufficiently small stepsizes. Hence, the existence of a BDF so-
lution xn satisfying (5.44) is proved. Regarding the solution representations (5.56),
(5.57) and the fact that ωpert

u and ωpert
q exist and are continuous, we obtain the de-

sired estimation

max
n≥k
|xn− x∗(tn)| ≤ c

(
max
n<k
|D(tn)xn−D(tn)x∗(tn)|+max

n≥k
|qn|+max

n≥k
|Ln|
)
.

with a constant c > 0. ��

Corollary 5.5. (Convergence) Let the assumptions of Theorem 5.4 be satisfied. Sup-
pose the errors in the initial values and the perturbations qn, for k ≤ n ≤ N, have
order O(hk

max). Assume Dx∗ to be k-times continuously differentiable. Then, the k-
step BDF method (5.43) is convergent and globally accurate of order O(hk

max).

Proof. Following the proof of Theorem 5.4, we see that the error estimation

max
n≥k
|xn− x∗(tn)| ≤ c

(
max
n<k
|D(tn)xn−D(tn)x∗(tn)|+max

n≥k
|qn|+max

n≥k
|Lu

n|
)

is satisfied for a constant c > 0 and

Lu
n = [u∗]′n−u′∗(tn) =

1
hn

k

∑
i=0

αniu∗(tn−i)−u′∗(tn) = O(hk
max).

Now, the assertion is clear. ��

5.5.2 IRK(DAE) method

Before formulating perturbation estimates for IRK(DAE) methods applied to DAEs
we present estimations for IRK(DAE) methods applied to ODEs regarding the in-
fluence of perturbations caused by rounding and linear/nonlinear solvers.

An IRK(DAE) method for ODEs

u′(t) = f (u(t), t) (5.63)

can be formulated as

1
h

s

∑
j=1

αi j(Un j−un−1) = f (Uni, tni)+qni, i = 1, . . . ,s, (5.64)

with αi j being the coefficients of A−1, A being the Runge–Kutta coefficient matrix
and qni reflecting perturbations caused by rounding errors and defects of nonlinear
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solvers. The numerical solution un at time tn is given by Uns since cs = 1 and bi = asi
for i = 1, . . . ,s for IRK(DAE) methods.

Lemma 5.6. Let u∗ ∈ C1(Ic,R
m) be a solution of the ODE (5.63). Assume f to

have the continuous partial derivative fu. If the deviation in the starting value |u0−
u∗(t0)|, the stepsize h, the perturbations qni and the local errors

Lni :=
1
h

s

∑
j=1

αi j(u∗(tn j)−u∗(tn−1))−u′∗(tni), i = 1, . . . ,s, 1≤ n≤ N,

are sufficiently small, then the IRK(DAE) methods provide numerical solutions Uni
fulfilling (5.64). Furthermore, there is a constant c > 0 such that

max
1≤n≤N

|un−u∗(tn)| ≤ c
(
|u0−u∗(t0)|+ max

1≤n≤N
max

i=1,...,s
(|qni|+ |Lni|)

)
.

Proof. Regarding (5.64), we get

1
h

s

∑
j=1

αi j(Un j−un−1)−
1
h

s

∑
j=1

αi j(u∗(tn j)−u∗(tn−1))

= f (Uni, tni)+qni−Lni− f (u∗(tni), tni)

for i = 1, . . . ,s since u∗ is a solution of (5.63). Regarding fu to be continuous, the
implicit function theorem ensures the existence of solutions Uni in a neighborhood
of u∗(tni) if qni, Lni and h are sufficiently small for all i = 1, . . . ,s. Furthermore,

1
h

s

∑
j=1

αi j

(
(Un j−u∗(tn j))− (un−1−u∗(tn−1))

)
= Hni(Uni−u∗(tni))+qni−Lni

for

Hni :=
∫ 1

0
fu(τUni +(1− τ)u∗(tni), tni)dτ , i = 1, . . . ,s.

Introducing

Un :=

⎡
⎢⎣

Un1
...

Uns

⎤
⎥⎦ , U∗n :=

⎡
⎢⎣

u∗(tn1)
...

u∗(tns)

⎤
⎥⎦ , qn :=

⎡
⎢⎣

qn1
...

qns

⎤
⎥⎦ , Ln :=

⎡
⎢⎣

Ln1
...

Lns

⎤
⎥⎦ ,

we get

1
h
(A−1⊗ I)[(Un−U∗n)−1⊗ (un−1−u∗(tn−1))] = Hn(Un−U∗n)+qn−Ln

with a bounded
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Hn :=

⎡
⎢⎣

Hn1 0
. . .

0 Hns

⎤
⎥⎦

for qn, Ln and h being sufficiently small. Rearranging this equation yields

(I−h(A⊗ I)Hn)(Un−U∗n) = 1⊗ (un−1−u∗(tn−1))+h(A⊗ I)(qn−Ln).

Since Hn is bounded, the matrix I−h(A⊗ I)Hn is nonsingular for sufficiently small
stepsizes h and we find constants c1 > 0, c2 > 0 such that

max
i=1,...,s

|Uni−u∗(tni)| ≤ (1+ c1h)|un−1−u∗(tn−1)|+hc2 max
i=1,...,s

(|qni|+ |Lni|).

By standard arguments, this implies the existence of a constant c > 0 satisfying

max
1≤n≤N

max
i=1,...,s

|Uni−u∗(tni)| ≤ c
(
|u0−u∗(t0)|+ max

1≤n≤N
max

i=1,...,s
(|qni|+ |Lni|)

)
.

Since un =Uns and tn = tns the assertion is proven. ��

Using the commutativity of the diagram in Figure 5.3, we may conclude feasi-
bility, error estimations and convergence of IRK(DAE) methods for index-1 DAEs
with a properly involved derivative and time-invariant imD(t). They are given by

f ([DX ]′ni,Xni, tni) = qni, i = 1, . . . ,s. (5.65)

with

[DX ]′ni =
1
hn

s

∑
j=1

αi j(D(tn j)Xn j−D(tn−1)xn−1), i = 1, . . . ,s,

αi j being the coefficients of A−1, A being the Runge–Kutta coefficient matrix
and qni reflecting perturbations caused by rounding errors and defects of nonlin-
ear solvers. Again, the numerical solution xn at time tn is given by Xns since cs = 1
and bi = asi for i = 1, . . . ,s for IRK(DAE) methods.

Theorem 5.7. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of t. Let x∗ ∈ C1

D(Ic,R
m) be a solution of the DAE (4.1).

If the deviation in the starting value
∣∣D(t0)x0− (Dx∗)(t0)

∣∣, the stepsize h, the per-
turbations qni and the local errors

Lni :=
1
h

s

∑
j=1

αi j((Dx∗)(tn j)−(Dx∗)(tn−1))−(Dx∗)′(tni), i= 1, . . . ,s, 1≤ n≤N,

are sufficiently small, then IRK(DAE) methods provide numerical solutions Xni ful-
filling (5.65). Furthermore, there is a constant c > 0 such that

max
1≤n≤N

|xn− x∗(tn)| ≤ c
(
|D(t0)x0− (Dx∗)(t0)|+ max

1≤n≤N
max

i=1,...,s
(|qni|+ |Lni|)

)
.
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Proof. From Corollary 4.10 we know that the solution x∗ can be written as

x∗(t) = D(t)−u∗(t)+Q0(t)ωpert(u∗(t), t,0), t ∈ Ic, (5.66)

with u∗ being the solution of the IVP

u′∗(t) = D(t)ωpert(u∗(t), t,0), u∗(t0) = D(t0)x∗(t0).

The term R′(t)u∗(t) vanishes since we have assumed imD(t) to be time-invariant,
(cf. Proposition 4.7 (3)). The continuous function ωpert is implicitly defined on

{(u, t,q) |(u,q) ∈ Bρ((Dx∗)(t),0), t ∈ Ic}

by Lemma 4.9. It has continuous partial derivatives ωpert
u and ωpert

p . From Proposi-
tion 5.2 and (5.53), we may conclude

Xni = D(tni)
−Uni +Q(tni)ωpert(Uni, tni,qni), 1≤ n≤ N, i = 1, . . . ,s, (5.67)

are the stage solutions of (5.44) if Uni are the stage solutions of

[u]′ni =D(tn)ωpert(Uni, tni,qni), 1≤ n≤N, i= 1, . . . ,s, u0 :=D(t0)x0, (5.68)

with

[u]′ni =
1
h

s

∑
j=1

αi j(Un j−un−1), i = 1, . . . ,s.

Introducing

qu
ni := D(tni)ωpert(Uni, tni,qni)−D(tni)ωpert(Uni, tni,0),

we see that Uni, i = 1, . . . ,s, solve equations (5.68) if and only if they satisfy the
equation

1
h

s

∑
j=1

αi j(Un j−un−1) = D(tni)ωpert(Uni, tni,0)+qu
ni.

This is exactly the IRK(DAE) method for the explicit ODE

u′(t) = D(t)ωpert(u(t), t,0), t ∈ Ic,

with the perturbations qu
ni of the right-hand side in each step. Lemma 5.6 ensures

the existence of the approximate IRK(DAE) solutions Uni supposing the initial error
|u0−u∗(t0)|, the perturbations |qu

ni|, 1≤ n≤ N, i = 1, . . . ,s, and the local errors

Lni =
1
h

s

∑
j=1

αi j(u∗(tn j)−u∗(tn−1))−u′∗(tni), i = 1, . . . ,s, 1≤ n≤ N,

are sufficiently small. All three demands are satisfied due to the assumptions of the
theorem since
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|u0−u∗(t0)|= |D(t0)x0−D(t0)x∗(t0)|,

and there is a constant c1 > 0 such that

|qu
ni|= |D(tni)ωpert(Uni, tni,qni)−D(tni)ωpert(Uni, tni,0)| ≤ c1|qni| (5.69)

for 1≤ n≤N. The existence of a continuous partial derivative ωpert
q ensures (5.69) to

be valid. Consequently, the existence of a IRK(DAE) solution Xni satisfying (5.65)
is ensured as long as Uni ∈ Bρ(u∗(tni)). Applying standard arguments, we find the
error estimation

max
1≤n≤N

|uni−u∗(tni)| ≤ c2

(
|u0−u∗(t0)|+max

n≥k
max

i=1,...,s
(|qu

ni|+ |Lni|)
)

(5.70)

with a constant c2 > 0. Defining

Lw
ni := D(tni)

−[u∗]′ni +Q0(tni)x∗(tn) = D(tni)
−[Dx∗]′ni +Q0(tni)x∗(tni), (5.71)

we get

f (D(tni)Lw
ni,D(tni)

−u∗(tni)+Q0(tni)Lw
ni, tni) = f ([Dx∗]′ni,x∗(tni), tni) =: L f

ni,

and thus, by means of the function ωpert,

Lw
ni = ωpert(u∗(tni), tni,L

f
ni).

Regarding (5.71), we see that

D(tni)ωpert(u∗(tni), tni,L
f
ni) = D(tni)Lw

ni = R(tn)[u∗]′ni = [u∗]′ni.

Here, we again used that imD(t) is time-invariant. We have

L f
ni = f ([Dx∗]′ni,x∗(tni), tni)− f ((Dx∗)′(tni),x∗(tni), tni)

= f (Lni +(Dx∗)′(tni),x∗(tni), tni)− f ((Dx∗)′(tni),x∗(tni), tni).

Since f is continuously differentiable with respect to its first argument, we find a
constant c3 > 0 satisfying

|L f
ni| ≤ c3|Lni|, 1≤ n≤ N, i = 1, . . . ,s. (5.72)

Inserting (5.72) and (5.69) into (5.70), there is a constant c4 > 0 such that

max
1≤n≤N

max
i=1,...,s

|Uni−u∗(tni)| ≤ c4
(
|D(t0)x0−D(t0)x∗(t0)|

+ max
1≤n≤N

max
i=1,...,s

(|qni|+ |Lni|)
)
.

Obviously, Uni ∈ Bρ(u∗(tni)) is always satisfied if the deviations in the initial values,
the perturbations qn and the local error are sufficiently small. Hence, the existence
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of an IRK(DAE) solution xn satisfying (5.65) is proven. Regarding the solution rep-
resentations (5.66), (5.67) and the fact that ωpert

u and ωpert
q exist and are continuous,

we obtain the estimation

max
n≥k
|Xni− x∗(tni)| ≤ c

(
|D(t0)x0−D(t0)x∗(t0)|+ max

1≤n≤N
max

i=1,...,s
(|qni|+ |Lni|)

)

with a constant c > 0. Since xn = Xns and tn = tns, the proof is complete. ��
As a direct consequence of Theorem 5.7 the following results:

Corollary 5.8. (Convergence) Let the assumptions of Theorem 5.7 be satisfied. Sup-
pose the errors in the initial values, the perturbations qni and the local errors Lni,
1 ≤ n ≤ N, i = 1, . . . ,s have order O(hk). Then, the IRK(DAE) method (5.65) is
convergent and globally accurate of order O(hk).

We mention further that if the method coefficients satisfy the C(k) condition (see
[29])

s

∑
j=1

ai jc�−1
j =

1
�

c�i , i = 1, . . . ,s, �= 1, . . . ,k, (5.73)

and Dx∗ is k-times continuously differentiable, then the local errors Lni are of order
O(hk).

5.5.3 General linear method

We consider the formulation (5.41) of a stiffly stable general linear method applied
to index-1 DAEs (4.1):

f
(

1
h

s

∑
j=1

αi j

(
D(tn j)Xn j−

r

∑
�=1

μ j�[Dx][n−1]
�

)
,Xni, tni

)
= qni, i = 1, . . . ,s, (5.74)

and [Dx][n] is given recursively by
⎡
⎢⎢⎣
[Dx][n]1

...
[Dx][n]r

⎤
⎥⎥⎦= (B⊗ In)(A−1⊗ In)([DX ]n− (U ⊗ In)[Dx]n−1)+(V ⊗ In)[Dx][n−1]

(5.75)
with

[DX ]n =

⎡
⎢⎣

D(tn1)Xn1
...

D(tns)Xns

⎤
⎥⎦ .

The coefficients α j� and μ j� are the entries of the coefficient matrices A−1 and U .
The perturbations qni reflect the rounding errors and defects caused by nonlinear
solvers.
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Theorem 5.9. Let the DAE (4.1) be regular with index 1, and let the subspace
imD(t) be independent of t. Assume x∗ ∈ C1

D(Ic,R
m) to be a solution of the DAE

(4.1) and xn = Xns to be the numerical solution of a stiffly stable GLM. Suppose the
GLM has stage order p for explicit ODEs with perturbations and deviations in the
starting values of magnitude O(hp).
If [Dx][0]− [Dx∗][0] =O(hp) and qni =O(hp) for all 1≤ n≤ N and i = 1, . . . ,s then
there is a constant c > 0 such that |xn− x(tn)| ≤ chp for all 1≤ n≤ N.

Proof. From Corollary 4.10 we know that the solution x∗ can be written as

x∗(t) = D(t)−u∗(t)+Q0(t)ωpert(u∗(t), t,0), t ∈ Ic, (5.76)

with u∗ being the solution of the IVP

u′∗(t) = D(t)ωpert(u∗(t), t,0), u∗(t0) = D(t0)x∗(t0).

The term R′(t)u∗(t) vanishes since we have assumed imD(t) to be time-invariant,
(cf. Proposition 4.7 (3)). The continuous function ωpert is implicitly defined on

{(u, t,q) |(u,q) ∈ Bρ((Dx∗)(t),0), t ∈ Ic}

by Lemma 4.9. It has continuous partial derivatives ωpert
u and ωpert

p . From Proposi-
tion 5.2 and (5.53), we may conclude

Xni = D(tni)
−Uni +Q(tni)ωpert(Uni, tni,qni), 1≤ n≤ N, i = 1, . . . ,s, (5.77)

are the stage solutions of (5.44) if Uni are the stage solutions of

[u]′ni = D(tn)ωpert(Uni, tni,qni), 1≤ n≤ N, i = 1, . . . ,s, (5.78)

with

[u]′ni =
1
h

s

∑
j=1

αi j(Un j−
r

∑
�=1

μ j�[u]
[n−1]
� ), i = 1, . . . ,s

and
[u][0]− [u∗][0] =O(hp).

Introducing

qu
ni := D(tni)ωpert(Uni, tni,qni)−D(tni)ωpert(Uni, tni,0),

we see that Uni, i = 1, . . . ,s, solve the equations (5.78) if and only if they satisfy the
equation

1
h

s

∑
j=1

αi j(Un j−
r

∑
�=1

μ j�[u]
[n−1]
� ) = D(tni)ωpert(Uni, tni,0)+qu

ni.

This is exactly the GLM for the explicit ODE
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u′(t) = D(t)ωpert(u(t), t,0), t ∈ Ic,

with the perturbations qu
ni of the right-hand side in each step. The existence of a

continuous partial derivative ωpert
q provides a constant c1 > 0 satisfying

|qu
ni|= |D(tni)ωpert(Uni, tni,qni)−D(tni)ωpert(Uni, tni,0)| ≤ c1|qni|

for 1 ≤ n ≤ N. Consequently, qu
ni = O(hp). Since the GLM has stage order p for

explicit ODEs, we obtain Uni−u∗(tni) =O(hp), i = 1, . . . ,s. Regarding the solution
representations (5.76), (5.77) and the fact that ωpert

u and ωpert
q exist and are continu-

ous, we obtain a constant c > 0 such that

|Xni− x∗(tni)| ≤ chp, i = 1, . . . ,s.

Since the GLM is stiffly stable, we have xn = Xns as well as tn = tns and the proof is
complete. ��

5.6 Notes and references

(1) We do not at all reflect the enormous amount of literature concerning numerical
integration methods for explicit ODEs and index-1 DAEs in standard formulation.
We have mentioned merely several sources in the corresponding subsections.
Convergence results and perturbation estimations for multistep methods and Runge–
Kutta methods applied to index-1 DAEs in standard form have been well-known for
a long time (e.g., [90, 96, 25, 103, 105]).

(2) To a large extent, concerning BDF and Runge–Kutta methods applied to
index-1 DAEs with properly stated leading term. Our presentation follows the lines
of [96, 114, 115]. First convergence proofs and error estimations for quasilinear
DAEs can be found in [114, 113, 115], which, in turn, follow the lines of [96].
For general linear methods, we summarize the results of [211, 198, 197].

(3) More detailed results including the existence of numerical solutions, consis-
tency and stability of GLMs for DAEs are given in [211].
In [199, 211], general linear methods have been extended to linear DAEs with prop-
erly stated leading term, and to implicit nonlinear DAEs of the form

y′(t) = f (y(t),z′(t)), z(t) = g(y(t), t)

with I− fz′gy being nonsingular. Such a nonlinear DAE has differentiation index 1,
but perturbation index 2. Notice that this DAE does not meet the form (4.1) we are
interested in. The slightly modified version

y′(t) = f (y(t),(g(y(t), t))′), z(t) = g(y(t), t)
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meets the conditions discussed in Chapter 3, and it is a regular DAE with tractability
index 1 (cf. Example 3.54, Definition 3.28). Here, we follow the approach of [199,
211], and apply it to the general index-1 DAE of the form (4.1)

f ((Dx)′(t),x(t), t) = 0.

(4) Runge–Kutta methods with cs = 1 and bi = asi for i = 1, . . . ,s, are known
as stiffly accurate methods [29] since they are well suited for stiff explicit ODEs.
DAEs are frequently considered as infinitely stiff systems since one can describe
them, under certain conditions, as a limit of singular perturbed systems with a small
parameter ε tending to zero. However, the solutions of the resulting DAE need not
have a stiff behavior. As a simple example, we regard the system

x′1(t) =−x2(t), 0 = 3x1(t)− x2(t).

It can be considered as a limit of the singular perturbed system

x′1(t) =−x2(t), εx′2(t) = 3x1(t)− x2(t)

for ε → 0. Whereas the singular perturbed system is stiff if 0 < ε # 1, the DAE
solution

x1(t) = e3(t0−t)x1(t0), x2(t) = 3e3(t0−t)x1(t0)

does not show any stiffness. Nevertheless, stiffly accurate Runge–Kutta methods
are particularly suited for DAEs for the reasons explained before. The solution xn is
enforced to fulfill the constraints of the system. Since we want to stress this essential
property, we follow here the notation of [96] and call them IRK(DAE) methods. An
IRK(DAE) is an implicit Runge–Kutta method that is particularly suitable for DAEs
because of the nonsingular A, and the conditions cs = 1 and bi = asi, i = 1, . . . ,s.

(5) A first implementation of the BDF method for DAEs with a properly involved
derivative in C++ is presented in [76]. Furthermore, it is used in commercial soft-
ware packages, for instance in the in-house simulator TITAN of Infineon Technolo-
gies and in the multiphysics network simulator MYNTS developed at the University
of Cologne together with the Fraunhofer Institute SCAI.

(6) Special GLMs described in Subsection 5.3.3 are implemented in FORTRAN
as the software package GLIMDA, see [210].

(7) Often DAEs can be reformulated such that imD(t) is independent of t. It is
even so that one finds a formulation with a full row rank matrix D(t), imD(t) =R

n.
For a detailed discussion of possible reformulations, we refer to [115] (see also
Section 3.11). Some benefits of certain constant subspaces were already observed
in [96, 83] for DAEs in standard form, and in particular, contractivity results are
obtained in this way.

(8) In [96], dealing with standard form DAEs, it is pointed out that one can benefit
from a constant leading nullspace ker fx1 , such that the given integration method
arrives unchanged at an inherent ODE and one obtains, for instance, B-stability.
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Applying modified Runge–Kutta methods to linear standard form DAEs, in [83,
112] similar advantages are obtained from a time-invariant range imE(t) of the
leading coefficient. Altogether, these properties led us to the notion of numerically
qualified formulations of index-1 DAEs. A regular index-1 DAE

f ((D(t)x(t))′,x(t), t) = 0,

with properly stated leading term is said to be in numerically qualified form, if
imD(t) is actually time-invariant, see [115].



Chapter 6
Stability issues

Here we consider DAEs and their numerical approximations on infinite time inter-
vals. We discuss contractivity, dissipativity and stability in Lyapunov’s sense. With
the help of this structural insight, we show that it is reasonable to formulate the
DAE itself in a numerically qualified manner, which means, one should have a DAE
with properly stated leading term with, additionally, imD(t) being independent of t.
Then the integration methods are passed unchanged to the inherent ODE, and the
numerical approximations reflect the qualitative solution behavior as well as in the
case of explicit ODEs and one avoids additional stepsize restrictions.
Section 6.1 describes the basic notions for explicit ODEs. Sections 6.2 and 6.3
comprise the notions of contractivity and dissipativity, as well as flow properties
of contractive and dissipative DAEs. Then, it is discussed how these properties are
reflected by numerical approximations. Section 6.4 presents a stability criterion by
means of linearization, also including solvability results on the infinite time interval.

6.1 Preliminaries concerning explicit ODEs

Stable systems play their role in theory and applications. As a stable system one
usually has in mind a linear ODE

x′(t) =Cx(t)+q(t), (6.1)

the coefficient matrix C of which has exclusively eigenvalues with nonpositive real
parts, and the purely imaginary eigenvalues are nondefective. Each pair of solutions
x(·), x̄(·) of such an ODE satisfies the inequality

|x(t)− x̄(t)| ≤ e−β (t−t0)|x(t0)− x̄(t0)|, for all t ≥ t0, (6.2)

in a suitable norm, and with a nonnegative constant β . The norm as well as the
value of β are determined by the coefficient matrix C (cf. Appendix C, Lemma C.3).

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 6,
© Springer-Verlag Berlin Heidelberg 2013
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Namely, to each arbitrary m×m matrix C with real entries, which has the prescribed
properties, there exist a value β ≥ 0 and an inner product 〈·, ·〉 inducing the Rm-norm
| · | such that

〈C(x− x̄),x− x̄〉 ≤ −β |x− x̄|2, for all x, x̄ ∈ R
m. (6.3)

In other words, the function | · |2 is a Lyapunov function for the homogeneous ODE
x′(t) =Cx(t).
If C has no eigenvalues on the imaginary axis, then the constant β is strictly positive,
and the system is said to be asymptotically stable.
Each arbitrary solution of a stable ODE (6.1) is stable in the sense of Lyapunov (e.g.,
Definition 6.3 below), and each arbitrary solution of such an asymptotically stable
homogeneous ODE is asymptotically stable in Lyapunov’s sense.

Given a stepsize h > 0, as well as grid points tn = t0 +nh, each solution pair of a
stable ODE (6.1) satisfies the inequalities

|x(tn)− x̄(tn)| ≤ e−βh|x(tn−1)− x̄(tn−1)|, for all n > 0, (6.4)

no matter how large the stepsize is chosen. Among the step-by-step numerical in-
tegration methods, the absolutely stable (A-stable) ones (e.g., [104], [29]) are in-
tended to reflect this solution property devoid of restrictions on the stepsize h for this
reason.

There are various popular generalizations of stability (e.g. [204]) for nonlinear
ODEs

x′(t) = g(x(t), t). (6.5)

Typically, the function g is continuous, with the continuous partial derivative gx
on R

m× [0,∞). In particular, contractivity and dissipativity generalize stability as
global properties of the ODE, applying to all solutions. In contrast, (asymptotical)
stability in the sense of Lyapunov applies just locally to a reference solution.

Definition 6.1. The ODE (6.5) is named contractive, if there are a constant β ≥ 0
and an inner product 〈·, ·〉, such that

〈g(x, t)−g(x̄, t),x− x̄〉 ≤ −β |x− x̄|2, for all x, x̄,∈ R
m, t ≥ 0. (6.6)

If β > 0, then we speak of strongly contractive ODEs.

Contractivity means a contractive flow, although the formal definition is given in
terms of g via the so-called one-sided Lipschitz condition. All solutions of a con-
tractive ODE exist on the infinite interval, and for each pair of them, the inequality
(6.2) holds true. A strongly contractive ODE has at most one stationary solution (see
Proposition C.2). For linear ODEs, contractivity is equivalent to stability, and strong
contractivity is the same as asymptotical stability.

Regarding numerical integration, so-called B-stable Runge–Kutta methods (e.g.,
[104], [29]) reflect contractivity devoid of stepsize restrictions by
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|xn− x̄n| ≤ |xn−1− x̄n−1|, for all n > 0.

Dissipative ODEs (6.5) are those which possess an absorbing set, i.e., a bounded,
positively invariant set sucking in all solutions. A large class of dissipative ODEs is
characterized in terms of g by the dissipativity inequality below that ensures that the
solutions exist on the infinite interval, and to be absorbed in balls around the origin,
with radius ε+α/β , for any ε > 0.

Definition 6.2. The ODE (6.5) satisfies the dissipativity inequality, if there are con-
stants β > 0, α ≥ 0, and an inner product 〈·, ·〉, such that

〈g(x, t),x〉 ≤ α−β |x|2, for all x ∈ R
m, t ≥ 0. (6.7)

Notice that asymptotically stable homogeneous linear ODEs (6.1) satisfy the in-
equality (6.7) with α = 0. The origin is the only stationary solution of these systems,
and balls around the origin serve as absorbing sets.

In contrast to the previous global system properties, the next stability notion is
tied up with a reference solution.

Definition 6.3. A solution x∗ ∈ C1([0,∞),Rm) of the ODE (6.5) is said to be

(1) stable in the sense of Lyapunov, if for every ε > 0, t0 ≥ 0, there is a
δ (ε , t0)> 0 such that

|x∗(t0)− x0|< δ (ε , t0)

implies the existence of a solution x(·; t0,x0) on the entire infinite interval as
well as the estimation

|x∗(t)− x(t; t0,x0)|< ε for t ≥ t0,

(2) asymptotically stable, if for each ε > 0, t0 ≥ 0, there is a δ (ε , t0)> 0 such that

|x∗(t0)− x0|< δ (ε , t0)

implies the existence of a solution x(·; t0,x0) on the infinite interval as well as
the limit

|x∗(t)− x(t; t0,x0)| −−→
t→∞

0.

Making use of the inherent structure of index-1 DAEs, as provided in Section 4.2,
we modify the stability notions to become reasonable for nonlinear index-1 DAEs
(4.1) in the next section. Here we add slight generalizations of contractivity and
dissipativity for this aim.

Definition 6.4. Let the ODE (6.5) have the possibly time-dependent invariant sub-
space G(t) ⊆ R

m, t ≥ 0, that is, if for an ODE solution x∗(·) there is a t0 ≥ 0 such
that x∗(t0) ∈G(t0), then x∗(t) belongs to G(t) all time.

(1) The ODE is named contractive on G(·), if there are a constant β ≥ 0 and an
inner product 〈·, ·〉, such that
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〈g(x, t)−g(x̄, t),x− x̄〉 ≤ −β |x− x̄|2, for all x, x̄ ∈G(t)⊆ R
m, t ≥ 0. (6.8)

If β < 0, then we speak of strong contractivity on G.
(2) The ODE satisfies the dissipativity inequality on G(·), if there are constants

β > 0, α ≥ 0, and an inner product 〈·, ·〉, such that

〈g(x, t),x〉 ≤ α−β |x|2, for all x ∈G(t), t ≥ 0. (6.9)

All solutions of an ODE being contractive on G(·), which start in G(t0) at time
t0 ≥ 0, exist on the infinite interval, and for each pair of them, the inequality (6.2) is
valid.

6.2 Contractive DAEs and B-stable Runge–Kutta methods

In this part, the definition domain of the index-1 DAE (4.1) is assumed to be such
that I f = [0,∞), and the function Dω is supposed to be given on the domain
dom Dω = R

n×I f .
The flow of an explicit ODE (6.5) takes over the entire space R

m, and this state
space is, trivially, independent of t. In contrast, the flow of a DAE is restricted to the
obvious constraint set M0(t), which in turn may move with time (e.g., Examples
3.7, 4.8). This is the view from outside. The inner structure of an index-1 DAE, as
described in Section 4.2, shows the IERODE flow within imD(·) that is somehow
wrapped up to become the DAE flow. In the case of linear DAEs, the wrapping
is given by means of the canonical projector function Πcan. In the light of Exam-
ple 2.57, we direct our interest to the contractivity of the IERODE, as well as to a
wrapping which does not amplify the IERODE flow unboundedly.
In the nonlinear index-1 case, the canonical projector function Πcan projects onto
N = ker fyD = kerD along S = {z ∈ R

n : fxz ∈ im fy = im fyD} (cf. page 320). By
Lemma A.10, Πcan can be described as Πcan = I−Q0G−1 fx. We make use of this
representation, when calculating the difference of two solutions.

Applying the solution representation provided by Theorem 4.5, for any two so-
lutions x(·), x̄(·) ∈ C1

D(I,Rm), defined on an interval I ⊆ I f , and u(·) := D(·)x(·),
ū(·) := D(·)x̄(·), we describe the difference

x(t)− x̄(t) = D(t)−(u(t)− ū(t))+Q0(t)(ω(u(t), t)−ω(ū(t), t))

=

∫ 1

0
[D(t)−+Q0(t)ω ′u(su(t)+(1− s)ū(t), t)]ds(u(t)− ū(t))

=
∫ 1

0
[D(t)−−Q0(t)(G−1 fx)(η(u(t),ū(t),t)(s))D(t)−]ds(u(t)− ū(t))

=

∫ 1

0
Πcan(η(u(t),ū(t),t)(s))D(t)− ds(u(t)− ū(t)), (6.10)

with
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η(u(t),ū(t),t)(s) :=
(
D(t)ω(su(t)+(1− s)ū(t), t),

D(t)−(su(t)+(1− s)ū(t))+Q0(t)ω(su(t)+(1− s)ū(t), t), t
)
,

which suggests that we trace back the contractivity question for the DAE to that for
the IERODE

u′(t) = R′(t)u(t)+D(t)ω(u(t), t) (6.11)

on its invariant subspace imD(·), but then to suppose that the product Πcan(·)D(·)−
remains bounded.

One could believe that the matrix function Πcan(·)D(·)− depends on the choice
of the projector function P0(·), however this is not the case. Namely, if there are
two different P0 and P̃0, as well as the corresponding D and D̃, one can compute
ΠcanD̃− =ΠcanP0D̃− =ΠcanD−DD̃− =ΠcanD−R =ΠcanD−.

The IERODE (6.11) is contractive on imD(·) (Definition 6.4), if there exist an
inner product and a constant β ≥ 0 such that

〈D(t)(ω(u, t)−ω(ū, t))+R′(t)(u− ū),u− ū〉 ≤ β |u− ū|2, for u, ū∈ imD(t), t ≥ 0.
(6.12)

Since the inherent ODE is given implicitly only, we look for a criterion in terms of
the original DAE.

Definition 6.5. The regular index-1 DAE (4.1) is said to be contractive if there are
an inner product 〈·, ·〉 and a value β ≥ 0 such that

〈y− ȳ,D(t)(x− x̄)〉+ 〈R′(t)D(t)(x− x̄),D(t)(x− x̄)〉 ≤ −β |D(t)(x− x̄)|2, (6.13)

for all x, x̄ ∈M0(t), y, ȳ ∈ imD(t), t ≥ 0, satisfying f (y,x, t) = 0, f (ȳ, x̄, t) = 0.
If β > 0, then we speak of strong contractivity.

The next theorem confirms this definition in view of reasonable solution properties.
We mention at this point that Definition 6.5 is a straight generalization of Definition
6.1 given for explicit ODEs. Namely, letting f (y,x, t) = y−g(x, t), n = m, D(t) = I
it results that R = I, M0(t) = R

m, and the inequality (6.13) says nothing but (6.6).
A straightforward check makes it clear that an index-1 DAE (4.1) is (strongly) con-
tractive, if its IERODE is so on imD.
For a linear constant coefficient index-1 DAE

A(Dx(t))′+Bx(t) = q(t)

the condition (6.13) simplifies to

〈−DG−1BD−z,z〉 ≤ −β |z|2, for all z ∈ imD.

This DAE is contractive, if the finite eigenvalues of the matrix pair {AD,B} have
nonnegative real parts, and the eigenvalues on the imaginary axis are nondefective.
It is strongly contractive, if the finite eigenvalues of {AD,B} have positive real parts
(cf. Section 1.4).
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In the theory of (explicit) ODEs and dynamical systems, stationary solutions
play an important role. From the viewpoint of DAEs, it seems to be reasonable to
consider also solutions having a stationary IERODE component only. A particular
such case can be found in Example 4.8, with c = 0.

Definition 6.6. A solution x∗ ∈ C1
D(J ,Rm) of the index-1 DAE (4.1) is called a

solution with stationary core, if it has the form

x∗(t) = D(t)−c+Q0(t)ω(c, t), t ∈ I,

where c ∈ imD(t), t ∈ I, is a stationary solution of the IERODE.

Theorem 6.7. A contractive index-1 DAE (4.1), with I f = [0,∞), domDω =R
n×I f ,

features the following:

(1) The IERODE (6.11) is contractive on imD.
(2) For each arbitrary t0 ∈ I f , x0 ∈M0(t0), the DAE has a unique solution satis-

fying the condition x(t0) = x0. This solution exists on the entire infinite interval
I = I f .

(3) Any pair of solutions fulfills the inequalities

|D(t)(x(t)− x̄(t))| ≤ e−β (t−t0)|D(t0)(x(t0)− x̄(t0))|, t ≥ t0,

and
|x(t)− x̄(t)| ≤ K(x,x̄)(t)|D(t)(x(t)− x̄(t))|, t ≥ t0,

with

K(x,x̄)(t) : = max
s∈[0,1]

max
z∈imD(t), |z|=1

|Πcan(η((Dx)(t),(Dx̄)(t),t)(s))D(t)−z|

≤ max
s∈[0,1]

|Πcan(η((Dx)(t),(Dx̄)(t),t)(s))D(t)−|.

(4) If the matrix function ΠcanD− is uniformly bounded by the constant K, then it
follows that

|x(t)− x̄(t)| ≤ K |D(t)(x(t)− x̄(t))|
≤ Ke−β (t−t0)|D(t0)(x(t0)− x̄(t0))|, t ≥ t0.

(5) If β > 0, then the DAE possesses one solution with a stationary core at the
most.

Proof. (1) We show the contractivity of the IERODE (6.11) on imD. For t ≥ 0,
u, ū ∈ imD(t), we form

x := Q0(t)ω(u, t)+D(t)−u ∈M0(t), y := D(t)ω(u, t) ∈ imD(t),

x̄ := Q0(t)ω(ū, t)+D(t)−ū ∈M0(t), ȳ := D(t)ω(ū, t) ∈ imD(t),
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which implies D(t)x = u, D(t)x̄ = ū, f (y,x, t) = 0, f (ȳ, x̄, t) = 0 due to the construc-
tion of the function ω . The contractivity assumption (6.13) gives

〈D(t)(ω(u, t)−ω(ū, t)),u− ū〉+
〈
R′(t)(u− ū),u− ū

〉
≤−β |u− ū|2,

and hence, the inherent ODE (6.11) is contractive on imD with the same inner prod-
uct and constant β as in (6.13).

(2) Theorem 4.11, item (1), provides the local existence of a unique solution
passing through x0 at time t0. Due to the contractivity of the IERODE on imD, this
solution can be continued to the entire infinite interval.

(3) Let two solutions x(·) and x̄(·) be given. The components u(·) := D(·)x(·) and
ū(·) := D(·)x̄(·) satisfy the IERODE, such that

1
2

d
dt
|u(t)− ū(t)|2 =

〈
u′(t)− ū′(t),u(t)− ū(t)

〉

=
〈
R(t)(u′(t)− ū′(t))+R′(t)(u(t)− ū(t)),u(t)− ū(t)

〉

=
〈
D(t)(ω(u(t), t)−ω(ū(t), t))+R′(t)(u(t)− ū(t)),u(t)− ū(t)

〉
,

and regarding the contractivity we conclude that

1
2

d
dt
|u(t)− ū(t)|2 ≤−β |u(t)− ū(t)|2.

Now the Gronwall lemma leads to the first inequality in assertion (3), that is

|u(t)− ū(t)| ≤ e−β (t−t0)|u(t0)− ū(t0)|, t ≥ t0.

The second inequality follows from (6.10), since (6.10) provides us with the esti-
mate

|x(t)− x̄(t)| ≤
∫ 1

0
|Πcan(η(u(t),ū(t),t)(s))D(t)−(u(t)− ū(t))|ds

≤ K(x,x̄)(t)|(Dx)(t)− (Dx̄)(t)|.

(4) If Πcan(·)D(·)− is uniformly bounded by the constant K, then assertion (4) re-
sults from (3).
(5) If c and c̄ are stationary solutions of the IERODE, then it follows from contrac-
tivity that |c− c̄| ≤ e−β (t−t0)|c− c̄|, therefore c = c̄. Since the IERODE has at most
one stationary solution, due to Theorem 4.5 describing the structure of the DAE so-
lution, the DAE has at most one solution with a stationary core. ��

Example 6.8 (Contractive DAE). We continue to investigate the DAE from Exam-
ple 4.8,

x′1(t)+βx1(t) = 0,
x1(t)2 + x2(t)2−1 = γ(t),
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which is contractive for β ≥ 0. The inner product is the usual product of real num-
bers, and the given β applies.
The solutions of the DAE related to the region G+ are

x1(t) = e−β (t−t0)x01,

x2(t) = (1+ γ(t)+ e−2β (t−t0)x2
01)

1
2 .

Using the canonical projector function Πcan given in Example 4.8 we find that

Πcan(y,x, t)D(t)− =

[
1
− x1

x2

]

is not globally bounded. Compute, additionally, the difference of the second com-
ponents of two solutions corresponding to the initial data x01 and x̄01,

x2(t)− x̄2(t) = (1+ γ(t)+ e−2β (t−t0)x2
01)

1
2 − (1+ γ(t)+ e−2β (t−t0)x̄2

01)
1
2

=
1
2
(1+ γ(t)+ e−2β (t−t0)c)−

1
2 e−2β (t−t0)(x2

01− x̄2
01),

with any c ∈ [x2
01, x̄

2
01], which confirms the preciseness of the estimations given by

Theorem 6.7 (3). One can benefit from a bounded product ΠcanD−, if both solutions
reside on a bounded set with respect to x1, as well as bounded away from the border
x2 = 0. It strongly depends on the function γ whether this is possible or not. In
general, a disadvantageous function γ might force the solutions, and the differences
of solutions, to grow. ��

Next, we discuss to what extent numerical solutions generated by Runge–Kutta
methods reflect the contractive behavior of the DAE solutions. For explicit ODEs,
this question is well-known to be answered by the B-stability concept. In particular,
algebraically stable Runge–Kutta methods are B-stable ([30], [54]), which means
that every two sequences of numerical solutions generated step-by-step along a
given grid

t0 < t1 < · · ·< tn−1 < tn < · · ·

by an algebraically stable Runge–Kutta method, if applied to a contractive explicit
ODE (6.5) satisfy the inequality

|xn− x̄n| ≤ |xn−1− x̄n−1|, for all n≥ 1, (6.14)

and this inequality is a correct counterpart of the true solution property

|x(tn)− x̄(tn)| ≤ |x(tn−1)− x̄(tn−1)|, for all n≥ 1. (6.15)

The point is here that (6.14) reflects this contractivity behavior independently of the
chosen stepsizes of the grid. No stepsize restrictions whatsoever are caused by this
reason. For instance, the implicit Euler method and the RADAU IIA methods are
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algebraically stable. At the same time, these methods belong to the class IRK(DAE).

Turn back to DAEs. As we have seen in Example 5.1, in general, we cannot ex-
pect that algebraically stable Runge–Kutta methods, in particular the implicit Euler
method, preserve the decay behavior of the exact DAE solution without strong step-
size restrictions, not even when we restrict the class of DAEs to linear ones. This
depends on how the DAE is formulated. If the DAE has a properly involved deriva-
tive formulated in such a way that the image space of D(t) is independent of t, then
we already know (cf. Section 5.4) that the IRK(DAE) applied to the index-1 DAE
reaches the IERODE unchanged. If the IRK(DAE) is algebraically stable, and the
DAE is contractive, then we are sure to reflect the true solution properties

|D(tn)x(tn)−D(tn)x̄(tn)| ≤ |D(tn−1)x(tn−1)−D(tn−1)x̄(tn−1)|, (6.16)

|x(tn)− x̄(tn)| ≤ K(x,x̄)(tn)|D(tn)x(tn)−D(tn)x̄(tn)|
≤ K(x,x̄)(tn)|D(tn−1)x(tn−1)−D(tn−1)x̄(tn−1)|, (6.17)

with no restrictions on the stepsizes. The next theorem confirms this fact.
At this point, we emphasize once again the specific structure of DAE solutions that
leads to (6.16), (6.17) instead of (6.15) given in the case of explicit ODEs. For
DAEs, one cannot expect an inequality (6.15), and so one should no longer try for
the strong condition (6.14).

Theorem 6.9. Assume the index-1 DAE (4.1), with I f = [0,∞), domDω = R
n×I f ,

to be contractive, and imD(t) to be independent of t.
Then, an algebraically stable IRK(DAE) method starting with any two values
x0, x̄0 ∈M0(t0) yields sequences of numerical solutions xn and x̄n satisfying

|D(tn)xn−D(tn)x̄n| ≤ |D(tn−1)xn−1−D(tn−1)x̄n−1|, for all n≥ 1, (6.18)

|xn− x̄n| ≤ K̃(xn,x̄n)(tn) |D(tn)xn−D(tn)x̄n|
≤ K̃(xn,x̄n)(tn) |D(tn−1)xn−1−D(tn−1)x̄n−1|, n≥ 1,

where

K̃(xn,x̄n)(tn) := max
s∈[0,1]

max
z∈imD(tn), |z|=1

|Πcan(η(un,ūn,tn)(s))D(tn)−z|,

η(un,ūn,tn)(s) :=
(
D(t)ω(sun +(1− s)ūn, tn),

D(tn)−(sun +(1− s)ūn)+Q0(tn)ω(sun +(1− s)ūn, tn), tn
)
.

If K is a global bound of the matrix function Πcan(·)D(·)−, then it holds further that

|xn− x̄n| ≤ K |Dnxn−Dnx̄n|
≤ K |Dn−1xn−1−Dn−1x̄n−1|, for all n≥ 1. (6.19)
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Proof. By Theorem 6.7, the IERODE (6.11) is contractive on imD(t). Since this
subspace does not depend on t, we know (cf. Theorem 5.3, Proposition 5.2) that the
numerical solutions satisfy

xn = D(tn)−un +Q0(tn)ω(un, tn), x̄n = D(tn)−ūn +Q0(tn)ω(ūn, tn)

with un = D(tn)xn and ūn := D(tn)x̄n fulfilling the discretized IERODE

[u]′n = Dnω(un, tn), [ū]′n = Dnω(ūn, tn).

Therefore, un and ūn are at the same time the numerical solutions generated by the
given algebraically stable IRK(DAE) method being directly applied to the contrac-
tive IERODE (6.11). Algebraically stable Runge–Kutta methods are B-stable and,
thus,

|un− ūn| ≤ |un−1− ūn−1|,

which proves the first inequality of the theorem.
Analogously to (6.10), we derive the second inequality from

xn− x̄n = D(tn)−(un− ūn)+Q0(tn)(ω(un, tn)−ω(ūn, tn))

=

∫ 1

0
Πcan(η(un,ūn,tn)(s))D(tn)− ds(un− ūn).

If the matrix function Πcan(·)D(·)− is bounded by the constant K, then we get the
remaining part of the assertion:

|xn− x̄n| ≤ K |D(tn)xn−D(tn)x̄n| ≤ K |D(tn−1)xn−1−D(tn−1)x̄n−1|.

��

We emphasize once more that the solutions of a contractive DAE with bounded
product Πcan(·)D(·)− are not expected to satisfy the inequality (6.15) as the solu-
tions of a contractive explicit ODE do. Instead, the inequality (6.17) is natural for
DAEs. Also, the numerical solutions generated by an algebraically stable IRK(DAE)
applied to the DAE do not fulfill the inequality (6.14), as for explicit ODEs, but in-
stead (6.19).

6.3 Dissipativity

A further popular qualitative property of dynamical systems described by explicit
ODEs is dissipativity, where an absorbing set sucks up all solutions. First, we have to
clarify what this could mean for DAEs (cf. [115]). In contrast to an explicit ODE the
flow of which extends within its entire constant state space Rm, the flow correspond-
ing to a regular index-1 DAE (4.1) is restricted to the proper subset M0(t) ⊂ R

m,
which in turn may move in R

m with time t. We think, then, that it makes sense to
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allow the absorbing set itself to vary with time, also.
As in the previous subsection, we assume the DAE (4.1) to be regular with index 1,
I f = [0,∞) and domDω = Rn×I f . We denote the solution of the index-1 DAE (4.1)
passing at time t+ through x+ ∈M0(t+) by x(t; t+,x+).

Definition 6.10. Consider a regular index-1 DAE (4.1) the solutions of which exist
on the entire infinite interval I f = [0,∞).

(1) A possibly time-dependent set B(t) ⊂ M0(t), t ≥ 0, is called a positively
invariant set of the DAE if x+ ∈ B(t+) implies x(t; t+,x+) ∈ B(t) for all
t > t+.

(2) A positively invariant set B(t), t ≥ 0, is called an absorbing set of the DAE, if,
for any t+ ∈ [0,∞) and any bounded set E ⊂M0(t+), there is a time t(E,t+) ≥
t+ such that x+ ∈ E implies x(t, t+,x+) ∈ B(t) for t ≥ t(E,t+).

(3) The DAE (4.1) is said to be dissipative if it has a bounded absorbing set.

In the next proposition we formulate an inequality in terms of the DAE (4.1) gen-
eralizing the well-known dissipativity inequality for explicit ODEs (Definition 6.2).
This is actually a sufficient dissipativity condition for the IERODE on its invariant
subspace imD(·), and also for DAEs with bounded matrix functions Πcan(·)D(·)−
and Q0(·)ω(0, ·). In the case of an autonomous DAE, Q0(·)ω(0, ·), Q0 and ω are
independent of t, and this expression is trivially bounded.

Proposition 6.11. Assume (4.1) to be a regular index-1 DAE with I f = [0,∞) and
dom Dω = Rn×I f . Let an inner product 〈·, ·〉 and constants α ≥ 0, β > 0 exist such
that the inequality

〈y,D(t)x〉+ 〈R′(t)D(t)x,D(t)x〉 ≤ α−β |D(t)x|2 (6.20)

is satisfied for all x ∈M0(t), y ∈ imD(t), f (y,x, t) = 0, t ≥ 0.

(1) Then the IERODE (4.12) is dissipative on imD(t), and

BIERODE(t) :=
{

v ∈ imD(t) : |v|2 ≤ α
β
+ ε
}

is an absorbing set for each ε > 0.
(2) All DAE solutions can be continued to exist on the infinite interval.
(3) If, additionally, Πcan(·)D−(·) is uniformly bounded by a constant K and

Q0(·)ω(0, ·) is bounded by a constant KQ, then the DAE (4.1) is dissipative
with the absorbing sets

B(t) =
{

x ∈M0(t) : |x| ≤ K
(α
β
+ ε
)1/2

+KQ

}
, t ≥ 0, ε > 0.

Proof. Recall that the function ω(u, t) in (4.12) is implicitly given by means of

f (D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t) = 0 u ∈ R
n, t ∈ [0,∞).
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For each arbitrary t ≥ 0, u ∈ imD(t), we introduce y := D(t)ω(u, t),
x := D(t)−u+Q0(t)ω(u, t), which gives f (y,x, t) = 0, and hence, by (6.20),

〈D(t)ω(u, t),u〉+ 〈R′(t)u,u〉 ≤ α−β |u|2. (6.21)

The IERODE (4.12) satisfies the dissipativity inequality on the invariant subspace
imD(·). For any solution u(·) of the IERODE that belongs to imD(·), (6.21) yields

1
2

d
dt
|u(t)|2 = 〈u′(t),u(t)〉= 〈R′(t)u(t)+D(t)ω(u(t), t),u(t)〉

≤ α−β |u(t)|2.

For any t+ ≥ 0, u+ ∈ D(t+), the solution u(·) of the corresponding IVP exists on a
certain interval I+ � t+, and satisfies there the inequality

|u(t)|2 ≤ α
β
+ e−2β (t−t+)

(
|u+|2−

α
β

)
, t ≥ t+ ∈ I+.

Since the solution u(·) is bounded, it can be continued, and hence it exists on the
entire interval [t+,∞). Then,

x(t) := D(t)−u(t)+Q0(t)ω(u(t), t), t ∈ [t+,∞),

is the related DAE solution on the infinite interval, and assertion (2) is verified.
Furthermore, the inequality

|u(t)| ≤max

{
|u+|,

(
α
β

)1/2
}
, t ≥ t+,

results, and this shows the set BIERODE(t) to be positively invariant for the IERODE.
We check if it absorbs the solutions. Let a bounded set Eu ⊂ imD(t+) be given.
Denote r := sup{|v| : v ∈ Eu}. For all u+ ∈ Eu, the resulting IVP solutions satisfy

|u(t)| ≤ α
β
+ e−2β (t−t+)

(
r2− α

β

)
, t ≥ t+.

Choosing t̄ = t̄(Eu, t+) so that e−2β (t̄−t+)
(
r2− α

β
)
≤ ε , we obtain |u(t)| ≤ α

β + ε for
all u+ ∈Eu and t ≥ t̄. In other words, the setBIERODE(t) indeed absorbs the solutions.
Consider now an arbitrary bounded set E ⊂M0(t+), t+ ≥ 0, and put Eu := D(t+)E.
For each arbitrary x+ ∈ E, we know that the IVP solution x(t) = x(t; t+,x+) has the
representation

x(t) = D(t)−u(t)+Q0(t)ω(u(t), t),

whereby u(t) = D(t)x(t) satisfies the IERODE (4.12) as well as the initial condition
u(t+) = u+ := D(t+)x+ ∈ Eu. Due to (1), it holds that |u(t)| ≤

√
α
β + ε for all t ≥ t̃,

and uniformly for all u+ ∈ Eu. In consequence,
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|x(t)|= |D(t)−u(t)+Q0(t)ω(u(t), t)−Q0(t)ω(0, t)+Q0(t)ω(0, t)|

≤
∣∣∣

1∫

0

(
I−Q0(t)ω ′u(σu(t), t)

)
dsD(t)−u(t)

∣∣∣+ |Q0(t)ω(0, t)|

≤ K|u(t)|+ γ ≤ K
(
α
β
+ ε
)1/2

+KQ for t ≥ t̄.

��

For what concerns numerical integration methods, we refer once more to the fact
that the integration method reaches the IERODE unchanged, if the index-1 DAE
(4.1) is given in such a way that imD(t) does not at all vary with t. Then, the re-
sults about the numerical integration of dissipative explicit ODEs can be carried
over to hold for the DAE (4.1), too. For instance, [204] shows that the backward
Euler method reflects dissipativity without any stepsize restriction, whereas general
algebraically stable Runge–Kutta methods reflect the dissipative flow under certain
stepsize restrictions. We adopt the result for the implicit Euler method here.

Proposition 6.12. Let the conditions of Proposition 6.11 be given, and, addition-
ally, let imD(·) be constant. Then the implicit Euler method reflects the dissipativity
behavior properly without any stepsize restriction. The absorbing sets of the dis-
cretized DAE are the same as described in Proposition 6.11.

Proof. Since imD(t) is constant, discretization and decoupling commute (see Sub-
section 5.4). If we apply the corresponding result for explicit ODEs (e.g., [204,
Theorem 5.5.3]) and match the components as in Proposition 6.11, we obtain the
desired result. ��

6.4 Lyapunov stability

If we want to apply Lyapunov stability to DAEs then we have to consider the neigh-
boring solutions of a reference solution. More precisely, we have to identify these
neighboring solutions by consistent initial values or by appropriate initial condi-
tions. For regular index-1 DAEs we know (see Theorem 4.11) that the set of consis-
tent initial values at time t0 is given by

M0(t0) = {x ∈ D f : ∃y ∈ R
n : f (y,x, t0) = 0}.

If we are given a reference solution x∗(·), and in particular the value x∗(t0) ∈
M0(t0), the values of all neighboring solutions have to belong toM0(t0), too. Since
x0 ∈M0(t0) can be expressed as

x0 = D(t0)−D(t0)x0 +Q0(t0)ω(D(t0)x0, t0),
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an consistent value x0 of an index-1 DAE is fully determined by its component
P0(t0)x0 or equivalently by D(t0)x0.
In contrast, Theorem 4.11 states the initial condition as

D(t0)x(t0) = D(t0)x0, with x0 ∈ R
m.

Thereby, x0 is not necessarily consistent, and it simply holds only that D(t0)x(t0) =
D(t0)x0. No information regarding the component Q0(t0)x0 slips in. This leads to the
following equivalent possibilities to figure out the neighboring solutions by means
of initial conditions.

(a) x0 ∈M0(t0), |x0− x∗(t0)|< τa, x(t0) = x0,
(b) x0 ∈ R

m, |D(t0)(x0− x∗(t0))|< τb, D(t0)(x(t0)− x0) = 0,
(c) x0 ∈ R

m, |D(t0)(x0− x∗(t0))|< τc, x(t0)− x0 ∈ kerD(t0),
(d) x0 ∈ R

m, |x0− x∗(t0)|< τd , x(t0)− x0 ∈ kerD(t0).

In essence, the definition below coincides with the one already given in [96] for
standard form index-1 DAEs. While [96] applies version (d), we now make use of
version (a).

Definition 6.13. Let the DAE (4.1) be regular with index 1, and I f = [0,∞).
The solution x∗ ∈ C1

D(I,Rm) is said to be

(1) stable in the sense of Lyapunov if, for each ε > 0, t0 ∈ I, there is a δ (ε , t0)> 0
such that

|x∗(t0)− x0|< δ (ε , t0), x0 ∈M0(t0)

imply the existence of a solution x(t; t0,x0) on [t0,∞) as well as the estimation

|x∗(t)− x(t; t0,x0)|< ε for t ≥ t0,

(2) asymptotically stable if for every ε > 0, t0 ∈ I, there is a δ (ε , t0) > 0 such
that

|x∗(t0)− x0|< δ (ε , t0), x0 ∈M0(t0)

imply the existence of a solution x(t; t0,x0) on [t0,∞) as well as the limit

|x(t)− x(t; t0,x0)| −−→
t→∞

0.

By Theorem 6.7, each solution of a strongly contractive index-1 DAE, with bounded
product ΠcanD−, is asymptotically stable. However, a general index-1 DAE (4.1)
may have stable and unstable solutions at the same time.

Example 6.14 (Stable periodic solution). Consider the index-1 DAE given by m =
3,n = 2,

D =

[
1 0 0
0 0 0

]
, f (y,x, t) =

⎡
⎣

y1 + x1− x2− x1x3 +(x3−1)sin t
y2 + x1 + x2− x2x3 +(x3−1)cos t

x2
1 + x2

2 + x3−1

⎤
⎦ .
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There is the asymptotically stable solution (see [141] for a proof via Floquet theory)

x∗1(t) = sin t, x∗2(t) = cos t, x∗3(t) = 0,

as well as the unstable stationary solution

x∗1(t) = 0, x∗2(t) = 0, x∗3(t) = 1.

This example is rather too simple with its time-invariant constraint set M0 =
{x ∈ R

3 : x2
1 + x2

2 = 1− x3}. Figure 6.1 shows the flow on the constraint set. ��

Fig. 6.1 Flow on the constraint set

The situation in the next example is less transparent although the DAE is also semi-
explicit and has the same dimensions m = 3,n = 2.

Example 6.15 (Voltage doubling network). The DAE

x′1(t) =−
GL

C1
x1(t)+

F(−(x1(t)+ x3(t)))
C1

,

x′2(t) =−
1

C2RQ
(x2(t)+ x3(t)+E(t)),

0 =− 1
RQ

(x2(t)+ x3(t)+E(t))+F(−(x1(t)+ x3(t)))−F(x3(t)),

describes the voltage doubling network from Figure 6.2, where

E(t) = 3.95 sin
(

2π
t
T

)
kV, T = 0.064, F(u) = 5 ·10−5(e630u−1)mA
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Fig. 6.2 Voltage doubling network

and
C1 =C2 = 2.75nF, GL =

1
RL

, RQ = 0.1MΩ, RL ∈ [1,∞).

For RL = 10, there is an asymptotically stable T -periodic solution, which is dis-
played in Figure 6.3. It can be provided numerically, only. In [141], stability is
checked via the eigenvalues of the monodromy matrix X∗(T,0), where X∗(·,0) de-
notes the fundamental solution of the linearized DAE normalized at t = 0. In our
context, this Floquet procedure consists of an equivalent periodic reduction to a
strongly contractive constant coefficient DAE. ��

Fig. 6.3 T -periodic solution

Theorem 6.16. Let the DAE (4.1) be regular with index 1, and I f = [0,∞). Addi-
tionally to the basic assumptions (cf. Assumption 4.1, Definition 4.3) we suppose f
to feature continuous second partial derivatives fyy, fyx, fxx.
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Let x∗ ∈ C1
D([0,∞),Rm) be a solution of the DAE, and let the DAE linearized along

x∗
A∗(t)(D(t)x(t))′+B∗(t)x(t) = 0, (6.22)

with

A∗(t) := fy((D(t)x∗(t))′,x∗(t), t), B∗(t) := fx((D(t)x∗(t))′,x∗(t), t), t ∈ [0,∞),

be strongly contractive.
Let the given first and second partial derivatives as well as G−1 be bounded in a
neighborhood of the graph of the reference solution. Then u∗ := Dx∗ is an asymp-
totically stable solution of the IERODE with respect to imD.
If, additionally, the product ΠcanD− remains bounded, then x∗ is asymptotically
stable.

Proof. The linear DAE (6.22) has, as its origin (4.1), a properly involved derivative,
and it is regular with index 1, thus, G∗(t) = A∗(t)D(t)+B∗(t)Q0(t) remains nonsin-
gular. Moreover, due to the strong contractivity, there are a value β > 0 and an inner
product such that, for all [0,∞),

〈y− ȳ,D(t)(x− x̄)〉+ 〈R′(t)D(t)(x− x̄),D(t)(x− x̄)〉 ≤ −β |D(t)(x− x̄)|2,

∀x, x̄ ∈ R
m, with A∗(t)y+B∗(t)x = 0, A∗(t)ȳ+B∗(t)x̄ = 0, y = R(t)y, ȳ = R(t)ȳ.

This implies
y− ȳ =−D(t)G∗(t)−1B∗(t)D(t)−D(t)(x− x̄),

and therefore the inequality

〈(R′(t)−D(t)G∗(t)−1B∗(t)D(t)−)D(t)(x− x̄),D(t)(x− x̄)〉 ≤ −β |D(t)(x− x̄)|2,

holds for all x, x̄ ∈ R
m, and, equivalently

〈(R′(t)−D(t)G∗(t)−1B∗(t)D(t)−)v,v〉 ≤ −β |v|2, for allv ∈ imD(t). (6.23)

Turn to the IERODE, and to the explicit ODE

v′(t) = (R′(t)+D(t)ω(u∗(t), t))v(t)+h(v(t), t) (6.24)

resulting from the IERODE by the translation v(t) = u(t)−u∗(t). The function h is
defined to be

h(v, t) := D(t)
(
ω(v+u∗(t), t)−ω(u∗(t), t)−ωu(u∗(t), t)

)
.

Lemma 4.4 provides us with

D(t)ω(u, t) =−(DG−1 fxD−)(D(t)ω(u, t), D(t)−u+Q0(t)ω(u, t), t),

D(t)ω(u∗(t), t) =−D(t)G∗(t)−1B∗(t)D(t)−.
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The function ω has a continuous second partial derivative ωuu due to the smoothness
of f . Then, the function h is continuous, and has continuous partial derivatives hv
and hvv, in particular, it holds that

h(0, t) = 0, hv(0, t) = 0, hvv(v, t) = D(t)ωuu(v+u∗(t), t).

Let Kh be a bound of the second partial derivative hvv such that

|h(v, t)| ≤ Kh|v|2, for all sufficiently small |v|.

Such a Kh is available, since the involved partial derivatives of f and G−1 are
locally bounded around the reference solution. Choose a value ε > 0 such that
β − εKh =: β̃ > 0, and fix a t0 ≥ 0. The IVP for (6.24), and the initial condition
v(t0) = v0 ∈ imD(t0), |v0| ≤ ε , has a unique solution v(·), say on the interval
[t0, t0 +T ). With regard to (6.23) we derive

d
dt
|v(t)|2 = 〈v′(t),v(t)〉

= 2〈(R′(t)−D(t)G∗(t)−1B∗(t)D(t)−)v(t),v(t)〉+2〈h(v(t), t),v(t)〉
≤ −2β |v(t)|2 +2|h(v(t), t)||v(t)|
≤ (−2β + εKh)|v(t)|2 =−2β̃ |v(t)|2, for t ∈ [t0, t0 +T ).

By Gronwall’s lemma, it follows that

|v(t)| ≤ eβ̃ (t−t0)|v(t0)|= eβ̃ (t−t0)|v0| ≤ ε , t ∈ [t0, t0 +T ).

Now it is evident that v(·) can be continued to exist on the entire interval [t0,∞), and

|v(t)| ≤ eβ̃ (t−t0)|v(t0)|= eβ̃ (t−t0)|v0| ≤ ε , t ∈ [t0,∞).

The existence of v(·) corresponds to the existence of the function u(·) = u∗(·) +
v(·) which satisfies the IERODE, and meets the condition u(t0) = u∗(t0) + v0. In
summary, we have the following: To each t0 ≥ 0 and ε > 0, there is a δ (ε , t0) :=
ε > 0 such that, for each u0 ∈ imD(t0), |u0− u∗(t0)| ≤ δ (ε , t0), the IERODE has
a solution on the infinite interval, that meets the initial condition u(t0) = u0. The
difference |u(t; t0,u0)− u∗(t)| tends to zero, if t tends to infinity. This means, that
in fact, u∗(·) is an asymptotically stable solution of the IERODE with respect to
imD(·).
For t0 ≥ 0 and ε > 0, we consider the initial condition

D(t0)(x(t0)− x0) = 0, x0 ∈ R
m, |D(t0)(x0− x∗(t0)| ≤ δ (ε , t0),

for the nonlinear DAE (4.1). By means of the IERODE solution u( · ; t0,D(t0)x0) we
build

x(t; t0,x0) := D(t)−u(t; t0,D(t0)x0)+Q0(t)ω(u(t; t0,D(t0)x0), t), t ∈ [t0,∞),
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which is a solution of the DAE, with D(t0)x(t0; t0,x0) = D(t0)D(t0)−D(t0)x0 =
D(t0)x0. Regarding the expression (6.10) for differences of DAE solutions, and the
boundedness of the product ΠcanD− by the constant K, we obtain

|x(t; t0,x0)−x∗(t)| ≤K|u(t; t0,D(t0)x0)−u∗(t)| ≤Ke−β̃ (t−t0)|D(t0)x0−D(t0)x∗(t0)|.

This proves the assertion. ��

Example 6.17. We turn once again to the DAE in Example 4.8. Assume β > 0. We
consider the reference solution

x∗(t) =
[

0
(1+ γ(t))

1
2

]
,

which has a stationary core. The DAE (6.22) linearized along x∗ reads
[

1
0

]
(
[
1 0
]

x(t))′+
[
β 0
0 2(1+ γ(t)) 1

2

]
x(t) = 0.

This linear DAE is strongly contractive with the constant β and the standard product
in R. If additionally, the function γ fulfills the condition

1+ γ(t)≥ α > 0, for all t ∈ [0,∞),

then, by the above theorem, x∗ is asymptotically stable.
If γ vanishes identically, the nonlinear DAE is autonomous, the reference solution
becomes a stationary one, and the linearized DAE has constant coefficients. The
related matrix pencil is {[

1 0
0 0

]
,

[
β 0
0 2

]}
.

The pencil has the only finite eigenvalue −β < 0, and hence asymptotical stability
is once more confirmed by the next corollary. ��

Corollary 6.18. Let the autonomous DAE

f ((Dx(t))′,x(t)) = 0 (6.25)

be regular with index 1, and let f belong to class C2.
Let x∗(t) = c be a stationary solution. If all finite eigenvalues of the matrix pair
{ fy(0,c)D, fx(0,c)} are strictly negative, then c is an asymptotically stable station-
ary solution.

Proof. Since the finite spectrum of the matrix pair { fy(0,c)D, fx(0,c)}=: {A∗,B∗}
lies in C

−, the linear constant coefficient DAE A∗(Dx(t))′+B∗x(t) = 0 is contrac-
tive, and the assertion follows from Theorem 6.16. ��

Having an appropriate stability notion with regard to the exact solutions of the DAE
(4.1), the question arises, to what extent do numerical methods generate stable nu-
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merical solutions if the exact DAE solution is stable. What about A-stable integra-
tion methods?

The DAE given by (5.6)–(5.7) shows that a general positive answer for DAEs
cannot be expected. Recall that also in the case of explicit ODEs, A-stable methods
show the required property without stepsize restrictions just for linear time-invariant
systems and autonomous ODEs with weak nonlinearities. Already in the case of
time-varying explicit ODEs extra stepsize restrictions for stability reasons may oc-
cur. Expecting better results for DAEs would be naive as DAEs incorporate explicit
ODEs. In general, the situation in the case of DAEs is worse. The time dependencies
play their role.
An A-stable integration method preserves its benefit, if it is applied to a DAE which
has a linear constant coefficient IERODE and a time-invariant imD(t) such as the
DAE in Example 4.8.

6.5 Notes and references

(1) To a large extent, the presentation concerning contractivity and dissipativity fol-
lows the lines of [96, 115]. In particular, the contractivity and dissipativity notions
as well as Theorem 6.7 take up corresponding results given in [115] for quasi-linear
DAEs. The presentation of stability in the sense of Lyapunov generalizes and mod-
ifies those in [96] given there for standard form DAEs.

(2) It seems that also Floquet theory can be appropriately adapted following the
lines of [141], see Example 6.15.

(3) Stable and asymptotically stable linear DAEs are introduced in Chapter 2,
Definition 2.53, as generalizations of the respective notions for explicit ODEs,
which exploits the DAE structure in a reasonable manner. Looking back once again
at Example 2.57, we recognize the role of the IERODE and that of the canonical
projector function Πcan wrapping up the IERODE flow to the DAE flow. Choosing
there α > 0, β = 0, the IERODE becomes stable. However, taking a look at the
fundamental solution matrix we see that, even if the IERODE is stable, the DAE
may have unbounded solutions. This happens in fact, if certain entries of the canon-
ical projector function Πcan grow unboundedly. In contrast, if all entries of Πcan are
bounded, then the stability of the IERODE is passed over to the DAE. In our view,
the dominance of the wrapping over the IERODE flow is somewhat beside the point.
In the present chapter, regarding nonlinear DAEs, we concentrate on problems fea-
turing uniformly bounded canonical projector functions. For an extended discussion
of the boundedness conditions see [178].
Roughly speaking, if the canonical projector function remains bounded, then an
index-1 DAE is contractive or dissipative, if its IERODE is so. Moreover, in essence,
numerical integration methods preserve their A- and B-stability for the DAE suppos-
ing the matrix function D(·) has a constant range. In this case, the integration meth-
ods reaches the IERODE unchanged (cf. Example 5.1). Otherwise, serious stepsize
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restrictions are necessitated.

(4) The following is worth mentioning: If in the standard form DAE

E(t)x′(t)+F(t)x(t) = q(t),

the matrix function E has a time-invariant nullspace, kerE(t) = NE , taking a projec-
tor PE , with kerPE = NE , the DAE can be written as

E(t)(PEx(t))′+F(t)x(t) = q(t).

If kerE(t) varies with time, but E(t) has a constant range, imE(t) = RE , then we
can write

VE(E(t)x(t))′+F(t)x(t) = q(t),

where VE is a projector such that imVE = RE . In both cases, the reformulation is a
DAE with properly involved derivative, and the subspace corresponding to imD(t)
is independent of t. This confirms and explains the former contractivity results in
[96, for nonlinear DAEs, with constant nullspace] and [83, linear DAEs, with con-
stant range]. Of course, a Runge–Kutta method applied to the different formulations
provides different results, for instance, the implicit Euler method reads in the first
case

E(tn)
1
h
(xn− xn−1)+F(tn)xn = q(tn),

and in the second case

1
h
(E(tn)xn−E(tn−1)xn−1)+F(tn)xn = q(tn).

However, we would not like to speak here of different methods, but we emphasize
that the same given method is applied to different DAE forms. And we emphasize
the benefit of trying to find a numerically qualified DAE formulation which features
a constant subspace imD(t).
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Part III is mainly devoted to computational aspects of the practical preparation of
all ingredients of admissible matrix function sequences and the associated projec-
tors. In particular one has to carry out matrix factorizations, rank calculations, and
determinations of generalized inverses. Chapter 7 provides several versions to ac-
complish the basic step of the matrix function sequence from one level to the next.
Moreover, a special more involved algorithm is developed for regular DAEs. The
characteristic values arise as byproducts of matrix factorizations. From the numeri-
cal viewpoint, the widely orthogonal projector functions are favorably.

The second chapter sheds light on aspects of the direct numerical treatment of
higher index DAEs, index monitoring, consistent initialization and numerical in-
tegration. Not surprisingly, the integration methods approved for regular index-1
DAEs not longer perform well or fail, if they are applied in the same way to gen-
eral higher index DAEs, for instance to time-varying linear index-3 DAEs. This is
due to the ill-posed character of the DAE solutions with respect to perturbations.
Fortunately, exploiting special structural peculiarities, one can often create special
methods for restricted classes of DAE.



Chapter 7
Computational linear algebra aspects

Originally, the tractability index concept was designed rather for the theoretical
investigation of DAEs. However, the resulting clear index criteria by rank condi-
tions let us trust that it also has practical meaning. Moreover, the projectors prove
their value when characterizing the different solution components, when looking for
consistent initial values and formulating appropriate initial conditions as well. And
these are good arguments to implement the associated matrix function sequences.
The algorithmic realization of a matrix function sequence (2.5)–(2.8), (see also
(3.19)–(3.21))

Gi+1 = Gi +BiQi,

Bi+1 = BiPi−Gi+1D−(DΠi+1D−)′DΠi

requires the computation of the involved generalized inverse D− and the admissible
projectors Qi (cf. Definitions 1.10, 2.6, 2.25, 3.21).
For a DAE that has the leading term A(t)(D(t)x(t))′, it is also important to check
whether this leading term is actually properly stated by testing the transversality
condition

kerA(t)⊕ imD(t) = R
n.

The last question is considered in Section 7.2, whereas the basics of the compu-
tation of nullspace and image projectors associated with matrices are collected in
Section 7.1. At this point we also bring to mind the detailed Appendix A on linear
algebra issues. Methods of computing a suitable generalized inverse D− are de-
scribed in Section 7.1. In Section 7.3 we deal with the basic step of the construction
of admissible matrix functions, that is, with the step from level i to level i+1 by the
computation of an appropriate projector. After that, in Section 7.4, sequences of ma-
trices with admissible projectors are delivered, first level by level on the background
of Section 7.3, and then by a strongly involved version only for the regular case.
We stress that all the computation are more or less related to matrix decomposi-
tions and rank calculations, and, naturally, one has to expect to inherit all the related
numerical problems.
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© Springer-Verlag Berlin Heidelberg 2013

399

http://dx.doi.org/10.1007/978-3-642-27555-5_7


400 7 Computational linear algebra aspects

7.1 Image and nullspace projectors

For a given G ∈ R
k×m, with rankG = r, any matrix Q ∈ R

m×m that satisfies

GQ = 0, Q2 = Q, rankQ = m− r

is a projector onto kerG. Any matrix W ∈ R
k×k that satisfies

WG = 0, W 2 =W, rankW = k− r

is a projector along imG.
Clearly, having a basis of the subspace in question, a required projector can

immediately be described by these basis elements (cf. Lemma A.7). In partic-
ular, if n1, . . . ,nm−r ∈ Rm form a basis of kerG and Γ :=

[
n1 · · · nm−r

]
, then

Q = Γ (Γ ∗Γ )−1Γ ∗ represents the orthogonal projector onto this nullspace. If the
n1, . . . ,nm−r form an orthonormal basis, the expression simplifies to

Q = ΓΓ ∗ =
m−r

∑
i=1

nin∗i .

In other words, knowledge of an orthonormal basis can immediately be used to form
an orthogonal projector as the sum of the dyadic product of the basis vectors. For
problems of limited dimension a formula manipulation system like Mathematica®

or Maple® can be used to compute a basis. The command in Mathematica is
NullSpace[G] and in Maple nullspace(G).
However, to provide a basis of the nullspace of a given matrix one usually has to
carry out a factorization, for instance a singular value decomposition (SVD).

If a generalized reflexive inverse G− (cf. Appendix A.2) is known, we gain at the
same time the nullspace projector Q = I−G−G and the projector along the image
W = I −GG−. To compute a generalized inverse of the given matrix G, again a
factorization of that matrix serves as an appropriate tool.
Each decomposition

G = U
[

S
0

]
V−1, (7.1)

with nonsingular S ∈ R
r×r, U =:

[
U1 U2

]
∈ R

k×k and V =:
[
V1 V2

]
∈ R

m×m, and
U1 ∈ R

k×r, V2 ∈ R
m×(m−r), immediately delivers the bases kerG = spanV2 and

imG = spanU1 as well as (7.1) the family of reflexive generalized inverses of G
by

G− = V
[

S−1 M2
M1 M1SM2

]
U−1, (7.2)

with the free parameter matrices M1 and M2 (see Appendix A.13). The resulting
projectors are
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Q = V
[

0
−M1S I

]
V−1 and W = U

[
0 −SM2

I

]
U−1.

If we are looking for orthogonal projectors, we have to ensure symmetry, that is
U−1 = U∗, V−1 = V∗, M1 ≡ 0 and M2 ≡ 0.

There are different ways to generate matrix decompositions (7.1). Applying the
SVD one delivers orthogonal matrices U and V , and the orthogonal projector Q is
given by

Q =
[
V1 V2

][0
I

][
V∗1
V∗2

]
= V2V∗2 . (7.3)

Also the Householder method is suitable for computing a decomposition (7.1). The
Householder decomposition needs less computational work than the SVD. For a
singular matrix G, a Householder decomposition with column pivoting is needed.
We obtain

GIper =U
[

R1 R2
0 0

]

with a column permutation matrix Iper, an orthogonal matrix U and a nonsingular
upper triangular matrix R1. The required decomposition (7.1) then has the structure

G =U
[

R1
0

][
I R−1

1 R2
I

]
I∗per

︸ ︷︷ ︸
=:V−1

, (7.4)

and hence the nullspace projector

Q = Iper

[
I −R−1

1 R2
I

][
0

−M1R1 I

][
I R−1

1 R2
I

]
I∗per

and the projector

W =U
[

0 −R1M2
I

]
U∗

along the image of G results. The free parameter matrices M1 and M2 can be used
to provide special properties of the projectors as, for instance, we do in Section 7.4.
Since the Householder method provides an orthogonal matrix U , choosing M2 = 0
we arrive at an orthoprojector W . If we apply the Householder method to G∗ instead
of G, we also deliver an orthogonal nullspace projector for G.

In principle also an LU decomposition of G using the Gaussian method with
scaling and pivoting yields a decomposition (7.1). With a row permutation matrix
Iper we obtain

IperG = LU =

[
L1
L2 I

][
R1 R2

0

]

and the decomposition
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G = I∗per

[
L1
L2 I

]

︸ ︷︷ ︸
=:U

[
R1

0

][
I R−1

1 R2
I

]

︸ ︷︷ ︸
=:V−1

.

It is well-known that rank determination by the Gaussian method is not as robust
as it is by the Householder method or SVD (cf. [93]), which is confirmed by our
practical tests. We do not recommend this method here.

7.2 Matters of a properly stated leading term

Having a pair of matrices A and D one might be interested in making sure whether
they are well matched in the sense of Definition 1.36. For instance, if a DAE with
a quasi-proper leading term is given, one can check pointwise if the DAE even has
a proper leading term (see Definitions 2.72, 3.2). In this way critical points can be
indicated and eventual programming errors in handwritten subroutines as well.
Moreover, when generating the basic matrix function sequences starting pointwise
from the given coefficients A, D, and B, the reflexive generalized inverses D− and
the border projector R play their role.

Let the two matrices A ∈ R
k×n and D ∈ R

n×m be given and G := AD. Then the
inclusions imG⊆ imA and kerD⊆ kerG are valid. Owing to Lemma A.4, A and D
are well matched, exactly if

rankA = rankG = rankD, (7.5)
imG = imA, (7.6)
kerD = kerG. (7.7)

The failure of one of these three conditions indicates that A and D miss the mark.
Since, in turn, (7.6), (7.7) imply the rank condition (7.5), these two conditions al-
ready ensure the well-matchedness.

Let G− denote a reflexive generalized inverse of G, e.g., provided by a decom-
position (7.2). Then the conditions (7.6), (7.7) can be written as

(I−GG−)A = 0, (7.8)

D(I−G−G) = 0, (7.9)

and these conditions are also useful for testing the well-matchedness.
Next we suppose A and D to be well matched, and hence (7.8) and (7.9) to be

valid. Then
D− := G−A, A− := DG− (7.10)

are reflexive generalized inverses of D and A, and

R := DD− = DG−A = A−A
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is nothing else than the projector matrix onto imD along kerA. Namely, it holds that

DD−D = DG−AD = DG−G = D,

D−DD− = G−ADG−A = G−A = D−,

AA−A = ADG−A = GG−A = A,

A−AA− = DG−ADG− = DG− = A−.

It turns out that, decomposing G delivers at the same time a reflexive generalized
inverse G− such that one can first check the conditions (7.8) and (7.9), and then,
supposing they hold true, form the generalized inverses D−, A− and the border pro-
jector R.
We stress at this point that an orthogonal projector is often preferable. It can be
reached by a SVD applied to G or a Householder factorization applied to G∗ (Sec-
tion 7.1).

An alternative way to test well-matchedness of A and D and then to provide
D− and R uses factorizations of both matrices A and D. This makes sense, if the
factorizations of A and D are given or easily available.
Suppose the decompositions (cf. (7.1)) of A and D are

A =UA

[
SA

0

]
V−1

A and D =UD

[
SD

0

]
V−1

D . (7.11)

We can now check the rank conditions rankSA = rankSD which are necessary for
well-matchedness (see (7.5)). Also AD = G has to have the same rank. The decom-
positions yield

AD =UA

[
SA

0

]
V−1

A UD

[
SD

0

]
V−1

D (7.12)

and, denoting V−1
A UD =: H =

[
H1 H2
H3 H4

]
, the necessary rank condition is satisfied iff

H1 remains nonsingular.
The generalized inverses of D and A are not independent of each other, but they

have to satisfy the relation DD− = A−A. Using the given decompositions (7.11) the
reflexive generalized inverses are immediately found (see (A.13)) as

A− =VA

[
S−1

A M2,A
M1,A M1,ASAM2,A

]
U−1

A and D− =VD

[
S−1

D M2,D
M1,D M1,DSDM2,D

]
U−1

D ,

which leads to

DD− =UD

[
I SDM2,D
0 0

]
U−1

D , A−A =VA

[
I 0

M1,ASA 0

]
V−1

A .

Using again the notation UD = VAH, the relation DD− = A−A becomes equivalent
to
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H
[

I SDM2,D
0 0

]
=

[
I 0

M1,ASA 0

]
H.

This fixes two of the free parameter matrices, namely

M2,D = S−1
D H−1

1 H2 (7.13)

and
M1,A = H3H−1

1 S−1
A .

The other two parameter matrices M1,D and M2,A can be used to ensure further prop-
erties.

Finally in this section, we briefly turn to standard form DAEs given with a leading
term of the form Gx′(t). A factorization (7.1) is then adjuvant in determining a
properly stated leading term version (cf. Section 1.5). We can define A and D as

(a) A = U
[

S
0

]
, D = V−1,

(b) A = U , D =

[
S

0

]
V−1,

and with U =:
[
U1,U2

]
and V−1 =:

[
(V−1)1
(V−1)2

]

(c) A = U1S, D = (V−1)1 ∈ R
r×m,

(d) A = U1, D = S(V−1)1.

The cases (c) and (d) provide the splitting with full rank matrices A and D, which is
advantageous, e.g., because the border projector is simply R = I.
Analogously one can proceed in the case of time-varying term coefficients G(t), but
then one needs a continuous matrix decomposition and a continuously differentiable
D(·) as well as its derivative.
Notice that often standard form DAEs are given with separated derivative-free equa-
tions such that a continuous projector function I−W (t) onto imG(t) is available at
the beginning. Then one can make use of this situation and put A(t) := I−W (t),
D(t) := G(t) (cf. Chapter 2, Note (7)).

7.3 The basic step of the sequence

Now we consider the basic part of the determination of an admissible matrix func-
tion sequence, that is the step from Gi to Gi+1 (cf. for the constant coefficient case
(1.10), for variable coefficients (2.6)–(2.8), and in the nonlinear case (3.21)). Let a
projector Πi := P0 · · ·Pi be already computed. We are looking for the next admissi-
ble projector Qi+1. An admissible projector must satisfy the required properties (cf.
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Definitions 1.10, 2.6, and 3.21). Not only its image kerGi+1, but also a part of the
kernel is fixed such that kerΠi ⊆ kerΠiQi+1 is valid.

If we are dealing with matrix functions, the determinations are carried out point-
wise for frozen arguments.

In the following we suppress the step index i. G complies with Gi+1(z) and Π
with Πi(z), where z is an arbitrary frozen argument.

For a given matrix G ∈ R
k×m with rankG = r and a given projector Π ∈ R

m×m

with rankΠ = ρ , we seek a new projector matrix Q such that

imQ = kerG,

kerQ⊇ X (cf. (1.13)),

and X is any complement of
�
N := kerΠ ∩ imQ in kerΠ (cf. (1.12)), which means

that Q has to satisfy (cf. Proposition 1.13 (3)) the conditions

GQ = 0, rankQ = m− r, (7.14)
ΠQ(I−Π) = 0. (7.15)

Owing to Lemma A.7 such a projector Q exists. Denote N := kerG and K :=
kerΠ = im(I−Π). Condition (7.14) implies imQ = N. If N and K intersect only
trivially, i.e., K∩N = {0}, which we call the regular case, we can form Q to satisfy
X = K ⊆ kerQ, and then condition (7.15) holds. In general the computation of a
representation of X is needed. We have to fix a set X ⊆ K such that K = X ⊕N.
Notice that X is not uniquely defined. An example illustrates the situation.

Example 7.1. For Π =
[

0
0

1

]
and G =

[0 −1 1
0 1 −1

0

]
, m = 3, we obtain K = kerΠ =

span
[

1 0
0 1
0 0

]
and N = kerG = span

[
1 0
0 1
0 1

]
, further K ∩N = span

[
1
0
0

]
and K ⊕N =

R
m. Any plane given by (K∩N)c := span

[
cosα 0
sinα −cosα

0 β

]
, with fixed α ∈ (0,π), and

β �= 0, is a complement of K ∩N in R
m. A possible subspace X can be given as

X = K ∩ (K ∩N)c = span
[ cosα

sinα
0

]
. As we can see by the different choices of α and

β , the complement (K∩N)c as well as X are not unique. For reasons of dimensions,
in this example, since dim(K +N) = m, the projector onto N along X is uniquely
determined as

Q =

⎡
⎣

1 − cosα
sinα

cosα
sinα

0 1
1

⎤
⎦ .

Figure 7.1 shows this case. In general, Rm = N⊕X︸ ︷︷ ︸
K+N

⊕(K +N)c holds with a non-

trivial complement (K +N)c, which shows that fixing X does not completely fix
the projector. It is worth mentioning that always restricting the choice to orthogonal
complements we arrive at the so-called widely orthogonal projectors, and those are
uniquely determined. This case corresponds here to the choice α = π

2 and β = 1.
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Fig. 7.1 Decomposition of R3

Now we start to discuss several methods of constructing projectors Q.

7.3.1 Basis representation methods

If a basis n1, . . . ,nm−r of N and a basis χ1, . . . ,χσ of a suitable X are available,
X ∩N = 0, we immediately form a projector Q onto N satisfying X ⊆ kerQ we are
looking for as (cf. Lemma A.7)

Q = H
[

I
0

]
H−,

whereas N =
[
n1 . . .nm−r

]
, X =

[
χ1 . . .χσ

]
and H :=

[
N ,X

]
have full column

rank, and H− is any reflexive generalized inverse of H. Consider different ways of
generating suitable bases, and at the same time, a suitable subspace X .

A basis of N is delivered by decomposition (7.1). We have to provide a basis of
a suitable subspace X . Recall that for any matrix A the relation kerA∗A = kerA is
true. Therefore, because of

�
N = N∩K = ker

[
G
Π

]
= ker(G∗G+Π ∗Π),
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by means of a decomposition of
[

G
Π

]
∈ R

k+m,m or of (G∗G+Π ∗Π) ∈ R
m,m we

can design a projector Z onto
�
N . The choice of this projector also fixes a possible

complement
�
N c := imZ of

�
N . By means of Z we compute a basis of X by one of

the relations

ker
[

Z
Π

]
= ker(Z∗Z +Π ∗Π) = (N∩K)c∩K = X .

This method of providing the projector Q needs three decompositions including
those of matrices with k+m, respectively 2m rows as well as the computation of
expressions like (G∗G+Π ∗Π).

An alternative possibly cheaper way to construct an admissible projector Q is
suggested by Lemma A.5. Decomposing

G =UG

[
SG

0

]
V−1

G , VG =: [VG,1,VG,2] (7.16)

we obtain N = kerG = imVG,2, that is, a basis of N. Then, in order to apply Lem-
ma A.5, we decompose

ΠVG,2 =UΠN

[
SΠN

0

]
V−1
ΠN , VΠN =: [VΠN,1,VΠN,2],

and hence kerΠVG,2 = imVΠN,2 is valid. Then, owing to Lemma A.5,
Y := VG,2VΠN,2 ∈ R

m×q represents a basis of kerG∩ kerΠ = N ∩K. Having the
basis Y of N ∩K we could, as before, compute a projector Z onto N ∩K, and put
(N ∩K)c = kerZ, but here we actually do not compute Z, but provide a basis of the
nullspace of Z in a different way. We decompose

Y =UY

[
SY
0

]
, UY =: [UY,1,UY,2],

with nonsingular UY , SY . Now, UY,2 ∈ R
m×(m−q) serves as a basis of a complement

(N∩K)c = kerZ, which means kerZ = imUY,2. To apply Lemma A.5 once more we
compute a basis of kerΠUY,2 by the further decomposition

ΠUY,2 =UX

[
SX

0

]
V−1

X , VX =: [VX ,1,VX ,2],

yielding kerΠUY,2 = imVX ,2. This finally leads to

X = (N∩K)c∩K = kerZ∩kerΠ = imUY,2VX ,2.

Here, four lower-dimensional matrix decompositions are needed to compute the
admissible projector Q.
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7.3.2 Basis representation methods—Regular case

In the regular case (cf. Definition 2.6), if

K∩N = {0}, (7.17)

equation (7.15) simplifies to

Q(I−Π) = 0. (7.18)

Condition (7.17) implies m− ρ ≤ r. With the background of the decomposition
(7.16) of G, each projector onto N has the form

Q =VG

[
0 0

−M1SG Im−r

]
V−1

G . (7.19)

A basis of im(I−Π) = kerΠ can be computed by means of the decomposition

Π =UΠ

[
SΠ

0

]
V−1
Π , SΠ ∈ R

ρ×ρ nonsingular, VΠ =: [VΠ ,1,VΠ ,2]

yielding im(I −Π) = imVΠ ,2, rankVΠ ,2 = m− ρ . Now condition (7.18) means
QVΠ ,2 = 0, or VΠ ,2 = PVΠ ,2, with P := I−Q. This leads to

VΠ ,2 = PVΠ ,2 =VG

[
I 0

M1SG 0

]
V−1

G VΠ ,2︸ ︷︷ ︸
=:

[
V1
V2

]
=VG

[
I 0

M1SG I

][
V1
0

]
, (7.20)

which shows that rankV1 = rankVΠ ,2 = m− ρ , i.e., V1 ∈ R
r,m−ρ has full column

rank.
The requirement QVΠ ,2 = 0 results in the condition −M1SGV1 +V2 = 0, which de-
termines M1. The choice

M1 = V2V−1 S−1
G (7.21)

satisfies this relation with an arbitrary generalized reflexive inverse V−1 , since
V−1 V1 = I.
If Π is symmetric, VΠ is orthogonal and V+

1 is the Moore–Penrose inverse, then the
choice

M1 = V2V+
1 S−1

G (7.22)

generates the widely orthogonal projector Q, which is shown at the end of Subsec-
tion 7.3.3.
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7.3.3 Projector representation method

Now we build the projector Q without using subspace bases. We again apply the
decomposition (7.16) and the general projector representation (7.19), that is

Q =VG

[
0 0

−M1SG Im−r

]
V−1

G .

Introducing Π̃ :=V−1
G ΠVG we derive the expression

[
V−1

G
V−1

G

][
Π

I−Q

]
VG =

[
V−1

G ΠVG

I−V−1
G QVG

]
=

⎡
⎢⎢⎣

Π̃11 Π̃12
Π̃21 Π̃22
Ir 0

M1SG 0

⎤
⎥⎥⎦
}r

. (7.23)

From ker
[

Π
I−Q

]
= K ∩N =

�
N and u = dim

�
N it follows that dimker

[
Π

I−Q

]
=

m−u. Regarding this we conclude from (7.23) that the rank condition rank
[
Π̃12
Π̃22

]
=

m−u− r is valid.

Lemma 7.2. Given a projector Π and the decomposition (7.1) of a matrix G,
rankG = r, then the projector Q defined by (7.19) satisfies the properties (7.14)
and (7.15), supposing one of the following three conditions is satisfied:

(1) M1 =−
[
Π̃12
Π̃22

]− [Π̃11
Π̃21

]
S−1

G .

(2) M1 = −Π̃−22Π̃21S−1
G , and the reflexive generalized inverse Π̃−22 satisfies

Π̃12 = Π̃12Π̃−22Π̃22.
(3) Π =Π ∗, VG is orthogonal, and M1 =−Π̃−22Π̃21S−1

G .

Moreover, the special choice of the Moore–Penrose inverse in case (3),

M1 =−Π̃+
22Π̃21S−1

G ,

provides a symmetric ΠQ and a widely orthogonal Q .

Proof. (1) Condition (7.14) is always given by the construction and it remains to

verify (7.15). We let M := M1SG =−
[
Π̃12
Π̃22

]− [Π̃11
Π̃21

]
and compute



410 7 Computational linear algebra aspects

V−1
G ΠQ(I−Π)VG =

[
Π̃11 Π̃12
Π̃21 Π̃22

][
0 0
−M I

][
I− Π̃11 −Π̃12
−Π̃21 I− Π̃22

]

=

[
Π̃12
Π̃22

][
−M I

][I− Π̃11 −Π̃12
−Π̃21 I− Π̃22

]

=

[
−
[
Π̃12
Π̃22

]
M
[
Π̃12
Π̃22

]][
I− Π̃11 −Π̃12
−Π̃21 I− Π̃22

]
.

The relation 0 = Π̃(I− Π̃) provides
[
Π̃11
Π̃21

][
I− Π̃11 −Π̃12

]
=−

[
Π̃12
Π̃22

][
−Π̃21 I− Π̃22

]
,

and hence

M
[
I− Π̃11 −Π̃12

]
=

[
Π̃12
Π̃22

]− [Π̃12
Π̃22

][
−Π̃21 I− Π̃22

]
.

Regarding this we finally find

V−1
G ΠQ(I−Π)VG =

[
Π̃12
Π̃22

]
M
[
I− Π̃11 −Π̃12

]
+

[
Π̃12
Π̃22

][
−Π̃21 I− Π̃22

]

=

[
Π̃12
Π̃22

][
Π̃12
Π̃22

]−(
−
[
Π̃12
Π̃22

][
−Π̃21 I− Π̃22

])

+

[
Π̃12
Π̃22

][
−Π̃21 I− Π̃22

]

= 0.

(2) If we are aware of a (m− r)× (m− r) submatrix of
[
Π̃12
Π̃22

]
∈ R

m×(m−r), which

has rankm− r − u, a generalized reflexive inverse of
[
Π̃12
Π̃22

]
can be computed,

i.e., by a Householder decomposition. We assume without loss of generality that
rankΠ̃22 = m− r− u. If the submatrix is distributed over the rows of the matrix, a
row permutation leads to the same assumption but at the end the factor U contains
row permutations.

Decompose
[
Π̃12
Π̃22

]
=

⎡
⎣

Z12 0
Z22,1 0
Z22,2 0

⎤
⎦U with nonsingular Z22,1 ∈ R

m−r−u,m−r−u and or-

thogonal U , and fix the reflexive generalized inverse Π̃−22 = U∗
[

Z−1
22,1 0

0 0

]
. Below

we show that a generalized reflexive inverse is given by

[
Π̃12
Π̃22

]−
:=
[
0 Π̃−22

]
. (7.24)
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Applying (1) and this special structure of the inverse provides

M1 =−
[
Π̃12
Π̃22

]− [Π̃11
Π̃21

]
S−1

G =
[
0 −Π̃−22

][Π̃11
Π̃21

]
S−1

G =−Π̃−22Π̃21S−1
G ,

which verifies the assertion. It remains to verify that (7.24) in fact serves as a reflex-
ive generalized inverse. The condition

[
Π̃12
Π̃22

][
0 −Π̃−22

][Π̃12
Π̃22

]
=

[
Π̃12
Π̃22

]

is valid because of our assumption concerning the generalized inverse Π̃−22, namely

Π̃12 = Π̃12Π̃−22Π̃22 or equivalently im(I− Π̃−22Π̃22) = kerΠ̃22 ⊆ kerΠ̃12. (7.25)

(3) The symmetry of Π and Π̃ (with orthogonal VG) yields

Π̃22 =
[
Π̃21 Π̃22

][Π̃12
Π̃22

]
=

[
Π̃12
Π̃22

]∗ [Π̃12
Π̃22

]

and therefore rankΠ̃22 = m−r−u and kerΠ̃22 = ker
[
Π̃12
Π̃22

]
, i.e., kerΠ̃22 ⊆ kerΠ̃12.

Considering (7.25), assertion (3) is shown to be a consequence of (2).

Finally we have to verify that taking the Moore–Penrose inverse in case (3) one
delivers a widely orthogonal projector Q. By Definition 1.12 a widely orthogonal

projector Q projects onto N along (K +N)⊥⊕X with X =
�
N⊥∩K. Lemma A.7 (7)

describes sufficient conditions. Put M = Π̃+
22Π̃21 and derive

ΠQ =VGΠ̃V ∗GVG

[
0 0
−M I

]
V ∗G =VG

[
Π̃12Π̃+

22Π̃21 Π̃12
Π̃22Π̃+

22Π̃21 Π̃22

]
V ∗G.

The symmetry of Π̃ implies the symmetry of Π̃11,Π̃22 and Π̃12 = Π̃ ∗21. The Moore–
Penrose inverse of a symmetric matrix is symmetric itself, therefore Π̃22Π̃+

22 =
Π̃+

22Π̃22. We consider the matrix blocks of ΠQ which seemingly derange the sym-
metry,

(Π̃12Π̃+
22Π̃21)

∗ = Π̃ ∗21(Π̃+
22)
∗Π̃ ∗12 = Π̃12Π̃+

22Π̃21 and

Π̃22Π̃+
22Π̃21 = (Π̃22Π̃+

22)
∗Π̃ ∗12 = (Π̃12Π̃22Π̃+

22)
∗ = (Π̃12Π̃+

22Π̃22)
∗ (7.25)

= Π̃ ∗12 = Π̃21,

but this shows the symmetry of ΠQ and naturally ΠP with P = I−Q.
The last properties we have to show are the symmetry of P(I−Π) and the condition
QΠP = 0 as well. Derive
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P(I−Π) = (I−Q)(I−Π) =VG

[
I 0
M 0

]
V ∗GVG(I− Π̃)V ∗G

=VG

[
I− Π̃11 −Π̃12

M(I− Π̃11) −MΠ̃12

]
V ∗G,

further

M(I− Π̃11) =−Π̃+
22 Π̃21(I− Π̃11)︸ ︷︷ ︸

Π̃22Π̃21

=−Π̃21 =−Π̃ ∗12

MΠ̃12 =−Π̃+
22Π̃21Π̃12 =−Π̃+

22Π̃22(I− Π̃22)

which shows the symmetry of P(I−Π). Next we compute

QΠP =VG

[
0 0
−M I

]
V ∗GVG

[
Π̃11 Π̃12
Π̃21 Π̃22

]
V ∗GVG

[
I 0
M 0

]
V ∗G

=VG

[
0 0

−MΠ̃11 + Π̃21 +(−MΠ̃12 + Π̃22)M 0

]
V ∗G,

and

−MΠ̃11 + Π̃21 +(−MΠ̃12 + Π̃22)M︸ ︷︷ ︸
−Π̃21

= Π̃+
22(− Π̃21Π̃11︸ ︷︷ ︸

(I−Π̃22)Π̃21

+ Π̃21Π̃12︸ ︷︷ ︸
Π̃22(I−Π̃22)

Π̃+
22Π̃21) = 0,

and hence QΠP = 0. Now the assertion follows from Lemma A.7 (7). ��

We are especially interested in the regular case, where
�
N = {0}. Lemma 7.2 sug-

gests a practical way to compute a widely orthogonal projector for that case. Since
�
N = {0} and u = dim

�
N = 0 the matrix

[
Π̃12
Π̃22

]
in (7.23) has full column rank. Then

Π̃22 =

[
Π̃12
Π̃22

]∗ [Π̃12
Π̃22

]
is nonsingular and Π̃+

22 = Π̃−1
22 . Moreover, Π̃22 is not only

nonsingular but positive definite as the following lemma proves.

Lemma 7.3. Let the symmetric projector Π =

[
Π11 Π12
Π21 Π22

]
have a nonsingular block

Π22. Then this block Π22 is positive definite.

Proof. Π is a projector and therefore Π22 =Π21Π12 +Π 2
22. It holds that Π21 =Π ∗12

and Π22 =Π ∗22. We consider 〈Π22x,x〉 for x �= 0.

〈Π22x,x〉= 〈(Π21Π12 +Π 2
22)x,x〉

= 〈Π21Π12x,x〉+ 〈Π 2
22x,x〉

= 〈Π12x,Π12x〉+ 〈Π22x,Π22x〉
≥ 〈Π22x,Π22x〉> 0.

��
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Lemma 7.3 suggests to decompose Π̃22 by Cholesky decomposition when comput-
ing

M1 =−Π̃−1
22 Π̃21S−1

G (7.26)

for widely orthogonal projectors.
Next we show that, in the regular case, formula (7.22) provides exactly the same M1
as formula (7.26), and hence an additional way to compute the widely orthogonal
projectors.
The projector Π is symmetric and has the decomposition

Π =VΠ

[
I

0

]
V T
Π =:

[
VΠ ,1 VΠ ,2

][I
0

][
V T
Π ,1

V T
Π ,2

]

with an orthogonal matrix VΠ . We obtain Π = I−VΠ ,2V T
Π ,2, which leads to

Π̃ =V−1
G ΠVG = I−V−1

G VΠ ,2V T
Π ,2VG (cf. (7.20))

= I−
[
V1
V2

][
V1
V2

]T

=

[
I−V1VT

1 −V1VT
2

−V2VT
1 I−V2VT

2

]
.

Applying (7.26) we obtain

M1 = (I−V2VT
2 )
−1V2︸ ︷︷ ︸

=V2(VT
1 V1)−1

VT
1 S−1

G = V2 (VT
1 V1)

−1VT
1︸ ︷︷ ︸

=V+
1

S−1
G , (7.27)

which coincides with (7.21).

7.4 Matrix function sequences

7.4.1 Stepping level by level

The admissible sequences of matrix functions are constructed pointwise. We start
with matrices (standing for matrix functions with frozen arguments) A,D and B.
We compute a generalized inverse of G0 := AD and fix in that way a projector
Q0 := I −P0 = I−G−0 G0 onto kerG0. The starting matrices of the sequence are
G0,G−0 ,B0 := B,Π0 := P0.
Let us assume that we have determined the sequence up to level i, which means,
Gi, the admissible projectors Q j, j = 1, . . . , i, and the projectors Π j = P0 . . .Pj are
already computed. Since they are admissible, the condition (cf. (7.15))
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Π j−1Q j(I−Π j−1) = 0

holds for every level j = 1, . . . , i. We have to build Gi+1 = Gi+BiQi and a nullspace
projector Qi+1 onto kerGi+1 satisfying

Xi+1 = (N0 + · · ·+Ni)�
�
Ni ⊂ kerQi+1 (7.28)

(cf. (2.45)), or equivalently,

ΠiQi+1(I−Πi) = 0. (7.29)

The decomposition

Gi+1 = Ui+1

[
Si+1

0

]
V−1

i+1 (7.30)

provides the reflexive generalized inverse

G−i+1 = Vi+1

[
S−1

i+1 M2,i+1
M1,i+1 M1,i+1Si+1M2,i+1

]
U−1

i+1

and the nullspace projector

Qi+1 = Vi+1

[
0 0

−M1,i+1Si+1 I

]
V−1

i+1.

The entry M1,i+1 can be computed by means of one of the proposals in Section 7.3
and M2,i+1 can be set to zero.
Since we proceed pointwise with frozen arguments, to ensure continuity of the
nullspace projector and then that of the next matrix function, it is recommended
to apply widely orthogonal projectors. For widely orthogonal projectors we need
an orthogonal matrix Vi+1 (see Lemma 7.2 (3)), which requires a decomposition
of Gi+1 by an SVD or by the Householder method (decomposition of G∗i+1). After
having generated Gi+1 and the nullspace projector Qi+1 we have to provide also the
next

Bi+1 = BiPi−Gi+1D−(DΠi+1D−)′DΠi (cf. (2.8))

or, in the invariant case,
Bi+1 = BiPi.

The latter case does not present any difficulty; however, in general the involved
derivative of DΠi+1D− represents a serious challenge. In [137] finite differences are
used to approximate this derivative, which delivers quite accurate results in lower in-
dex cases and if the relevant subspaces are invariant. A more accurate approximation
of the derivative by automatic differentiation (cf. [98]) is done in [143]. The appli-
cation of automatic differentiation needs higher smoothness assumptions as needed
for the tractability index concept itself. In Section 8.1 the index determination for
nonlinear DAEs is discussed.
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7.4.2 Involved version for the regular case

A complete new decomposition of Gi+1 at each level appears to be expensive. In the
regular case, a possibility to make better use of results obtained in previous steps is
developed in [137]. We use the representation

Gi+1 = Gi +BiQi = (Gi +WiB0Qi)Fi+1

with the projector Wi along imGi and the nonsingular matrix Fi+1 = I +G−i BiQi
(cf. Proposition 2.5 (3)). For the matrix G j, j = 0, . . . , i we already have the decom-
position

G j = U j

[
S j

0

]
V−1

j

with U j, S j and V j nonsingular matrices. The other components are given for
j = 0, . . . , i by

G−j = V j

[
S−1

j M2, j

M1, j M1, jS jM2, j

]
U−1

j ,

Wj = I−G jG−j = U j

[
0 −S jM2, j

I

]
U−1

j = U jT−1
u, j

[
0

I

]
U−1

j , (7.31)

Q j = I−G−j G j = V j

[
0

−M1, jS j I

]
V−1

j = V j

[
0

I

]
T−1

l, j V
−1
j (7.32)

with the upper and lower triangular matrices

Tu, j :=
[

I S jM2, j
I

]
and Tl, j :=

[
I

M1, jS j I

]
.

Using the detailed structure of the various matrices we find

Gi+1 = UiT−1
u,i

⎛
⎜⎝
[

Si
0

]
+

[
0

I

]
U−1

i B0Vi︸ ︷︷ ︸
B̄i

[
0

I

]
⎞
⎟⎠T−1

l,i V
−1
i Fi+1.

If we write B̄i =

[
Bi

11 Bi
12

Bi
21 Bi

22

]
and decompose Bi

22 = Ũi+1

[
S̃i+1

0

]
Ṽ−1

i+1, we can use

this decomposition and obtain

Gi+1 = UiT−1
u,i

[
I

Ũi+1

]

︸ ︷︷ ︸
=:Ui+1

⎡
⎣

Si
S̃i+1

0

⎤
⎦
[

I
Ṽ−1

i+1

]
T−1

l,i V
−1
i Fi+1

︸ ︷︷ ︸
=:V−1

i+1

. (7.33)

Defining Si+1 :=
[

Si
S̃i+1

]
we now have the required decomposition of
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Gi+1 = Ui+1

[
Si+1

0

]
V−1

i+1 (7.34)

and

G−i+1 = Vi+1

[
S−1

i+1 M2, j
M1,i+1 M1,i+1Si+1M2,i+1

]
U−1

i+1.

The projector

Qi+1 = I−G−i+1Gi+1 = Vi+1

[
0 0

−M1,i+1Si+1 I

]
V−1

i+1.

is a nullspace projector for each M1,i+1.
To fix the projector, the different entries M1,i+1 can be determined as described in
Section 7.3, where Π is replaced by Πi. The computation of M1 by (7.21) goes bet-
ter with the step-by-step computation. Widely orthogonal projectors are computed
using the Moore–Penrose inverse of V1 (see (7.27)).
The advantage of the involved step-by-step computation of the sequence is that, at
each step, we decompose only the matrix B̄i

22, whose dimension reduces from step
to step.
After having computed Gi+1 and Qi+1 we have to provide

Bi+1 = BiPi−Gi+1D−(DΠi+1D−)′DΠi (cf. (2.8)).

Here again, the challenge is the differentiation of DΠi+1D−.

7.4.3 Computing characteristic values and index check

The characteristic values of the DAE under consideration, which are (see Defini-
tion 2.9) the values

ri = rankGi, ui = dim
�
Ni,

�
Ni = ker

[
Πi−1
I−Qi

]
= ker

[
Πi−1
Gi

]
= ker

[
G∗i Gi +Π ∗i−1Πi−1

]

are rank values arising as byproducts within the factorizations when generating the
matrix sequences as described in the previous subsection.
If one meets a nonzero value ui, the given DAE fails to be regular, which makes the
question

“ui = 0 ?”

serve as a regularity test.
The determination of the tractability index of a regular DAE requires the determi-
nation of the matrix sequence up to a nonsingular matrix Gμ . We concentrate on the
regular case.
At every level Gi, i = 0,1, . . . , the characteristic value ri = rankGi is determined
by checking the nonsingularity of Gi. The step-by-step algorithm of Section 7.4.2
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delivers the characteristic values successively starting from r0 = rankG0 and ri+1 =
ri + ri

B, i = 0,1, . . . , with ri
B := rank B̄i

22.
The regularity is implicitly checked by computing an admissible projector at every
level. In the case of a critical point, we are faced with a rank drop of V1 if we use
(7.21) or a singular block Π̃22 if we apply (7.26).
The computation of Bi, i > 0, needs the differentiation of DΠiD−. The factoriza-
tion Gi+1 = (Gi +WiB0Qi)(I +G−i BiQi)︸ ︷︷ ︸

nonsingular

allows us to determine ri+1 = rank(Gi +

WiB0Qi), which is easier, since one can do without computing the derivative of
DΠiD−. The first level where the derivative of DΠiD− may influence the sequence
matrix occurs for i = 2. The check of the index-3 property needs only one differen-
tiation, which is accurately realizable by finite differences.
Algorithmic differentiation (AD) to compute the derivative of DΠiD− is applied in
[144]. Using an AD tool all computations are made by Taylor polynomials and a
derivative is reduced to a shift of the Taylor series. The application of this technique
requires higher smoothness assumptions.
For time-invariant linear DAEs the tractability index coincides with the Kronecker
index (cf. Theorem 1.31), i.e., the numerical determination of the characteristic val-
ues discloses the inner structure of the DAE.
For a further discussion of the numerical index determination of nonlinear DAEs
see Section 8.1.



Chapter 8
Aspects of the numerical treatment of higher
index DAEs

At the beginning of the numerical treatment of DAEs, several experiments with
the integration of initial value problems of higher index DAEs were done. The re-
sults were usually not satisfactorily. One could observe instabilities and numerical
difficulties, in particular when integrating index-3 DAEs arising from rigid body
mechanics (cf. [63]). Meanwhile several stabilizing techniques (see, e.g., [88], [23])
have been introduced for problems with a special structure (e.g., DAEs in Hessen-
berg form) to counteract these problems. Reading only the titles of papers (e.g., [50],
[132]) one could think that it is no longer a challenge to solve higher index DAEs.
But one should be aware that derivative arrays of DAEs are used there to reduce the
higher index DAE to an index-0 or index-1 DAE before performing any integration
method.

This chapter advises the reader of various troubles arising when numerical meth-
ods are applied directly to higher index DAEs. Before demonstrating this, we present
a procedure for the practical calculation of the index and make a few remarks on
consistent initialization in the higher index case. This is of importance for users of
DAE solver packages since they usually require knowledge about the DAE index.

8.1 Practical index calculation

The calculation of the index of a DAE now coincides, in the fully nonlinear case,
with the determination of a regular point of the DAE. Two ways are appropriate. The
theoretical index investigation using structure, smoothness and maybe additional
assumptions determining the resulting index for a class of problems as it is done,
e.g., for Hessenberg systems in Section 3.5 or for DAEs simulating electrical circuits
in Section 3.6. The other way is a pointwise numerical determination. We choose a
time point t and a jet (x,x1,x2, . . . ,xν) with ν < μ ≤ m. At this point we compute
the matrix sequence (cf. Section 3.2) and determine the index of the DAE.
The tractability index depends on the jet (see Definition 3.28). The fact that different
solutions of a DAE may indicate different values of the differentiation index (cf. [5],

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 8,
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p. 235) or the structural index (cf. [186], Example 2.3) is a known property, as we
will see in the example where we compare the differentiation, the structural, and the
tractability index.

Example 8.1 (Index dependence on jet variables (cf. [144])). We consider the DAE

x′2 + x1− t = 0, (8.1)
x′2 + x′3 + γx1x2 +ηx2−1 = 0, (8.2)

x2(1−
x2

2
)+ x3 = 0. (8.3)

The proper formulation reads
⎡
⎣

1 0
1 1
0 0

⎤
⎦

︸ ︷︷ ︸
A

([
0 1 0
0 0 1

]

︸ ︷︷ ︸
D

⎡
⎣

x1
x2
x3

⎤
⎦
)′

+

⎡
⎣

x1− t
γx1x2 +ηx2−1
x2(1− x2

2 )+ x3

⎤
⎦= 0. (8.4)

The differentiation index is based upon the derivative array, which is given up to
order 2 by (8.1)–(8.3), and the differentiated equations (8.5)–(8.8)

x′′2 + x′1−1 = 0, (8.5)
x′′2 + x′′3 + γ(x′1x2 + x1x′2)+ηx′2 = 0, (8.6)

x′2(1− x2)+ x′3 = 0, (8.7)
−−−−−−−−−−−−−−−−−−−−−−

x′′′2 + x′′1 = 0,
x′′′2 + x′′′3 + γ(x′′1x2 +2x′1x′2 + x1x′′2)+ηx′′2 = 0,

x′′2 + x′′3− x′′2x2− (x′2)
2 = 0. (8.8)

The differentiation index requires us to filter an ODE system from the derivative
array.
We form the ODE system by (8.1) (for x′2), (8.7) (for x′3) and (8.6) (for x′1). Replacing
x′′2 +x′′3 in (8.6) we use (8.8) and, finally, replacing x′′2 and x′2 we need (8.5) and (8.1).
The system we thus obtain reads

x′1x2(γ−1)+ x2 +(t− x1)(t− x1 + γx1 +η) = 0,

x′2 + x1− t = 0, (8.9)
x′3 +(t− x1)(1− x2) = 0.

Hence, the DAE (8.1)–(8.3) has differentiation index μd = 2 if and only if the con-
dition x2(γ−1) �= 0 is satisfied.

The structural index is based on quantities deduced from the DAE. We apply the
definition given in [186]. We have to compute the signature matrix Σ , the equation
offsets c, the variable offsets d, and the system Jacobian J with
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Ji j =

{
∂ fi

∂ ((d j−ci)th derivative of x j)
if this derivative is present in fi

0 otherwise incl. d j− ci < 0,

which has to be nonsingular. In this case the structural index is defined by

μs = max
i

ci +

{
0 if all d j > 0
1 if some d j = 0.

For the DAE (8.1)–(8.3) we obtain

c

Σ =

⎡
⎣

0 1 −∞
0 1 1
−∞ 0 0

⎤
⎦

0
0
1

d 0 1 1

and the related system Jacobian matrix

J =

⎡
⎣

1 1 0
γx2 1 1
0 1− x2 1

⎤
⎦ .

J is nonsingular if x2(1− γ) �= 0 and the structural index μs = 2.
The tractability index matrix sequence as defined in (3.21) starts for (8.4) with

the matrices

G0 = AD =

⎡
⎣

0 1 0
0 1 1
0 0 0

⎤
⎦ , B =

⎡
⎣

1 0 0
γx2 γx1 +η 0
0 1− x2 1

⎤
⎦ ,

where (x,x′) denotes the chosen point in the jet space. A nullspace projector Q0
onto kerG0 and the next sequence matrix G1, and a nullspace projector Q1 with
Q1Q0 onto kerG1 are given by

Q0 =

⎡
⎣

1
0

0

⎤
⎦ , G1 = G0 +BQ0 =

⎡
⎣

0 1 0
γx2 1 1
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

0 −1 0
0 1 0
0 γx2−1 0

⎤
⎦ .

From (3.21) it follows that B1 = BP0−G1D−(DP1D−)′D with

D− =

⎡
⎣

0 0
1 0
0 1

⎤
⎦ , DP1D− =

[
1 0
γx2 0

]
,

and we obtain

B1 =

⎡
⎣

0 0 0
0 γ(x1 + x′2)+η 0
0 x2(γ−1) 0

⎤
⎦ , G2 = G1 +B1Q1 =

⎡
⎣

1 1 0
γx2 1+ γ(x1 + x′2)+η 1
0 x2(γ−1) 0

⎤
⎦ .
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detG2 = x2(γ−1) and the DAE has tractability index μt = 2 iff the point belongs to
a region where x2(γ−1) �= 0.

This shows that, in the considered index definitions, the DAE (8.4) has the same
index under the same restriction. If we assume that γ �= 1, then the DAE has a critical
point at x2 = 0 or, more precisely, x2 = 0 separates two regularity regions. There-
fore, the index obviously depends on the chosen point.
DAE (8.4) was considered for γ = 1 in Example 3.60. Unfortunately, in that case
the structural index is not defined, because the matrix J becomes singular.
However, the DAE has tractability index 3 if additionally x1+η+x1

2 �= 0 (cf. Exam-
ple 3.60). The determination of the differentiation index requires the same condition
and leads to the index-3 property. ��

The complete characterization of a DAE, that is to figure out all regularity regions
including the characteristic values by numerical methods, seems to be too extensive
in the general case. What we can do is to check several necessary regularity condi-
tions (cf. Theorem 3.33), e.g., monitoring the index in the points computed during
an integration of an IVP.
In Example 3.34 a solution of DAE (3.27) crosses in t = 1

2 a critical point leading
to bifurcations (see Figure 3.4) which might not be discovered by the integration
method.
An index monitor should supervise the characteristic values (which includes the in-
dex) and properties of the sequence matrices Gi, i = 0, . . . ,μ . During an integration
we may pass a critical point only. Here a monitoring of the condition of Gμ is help-
ful. This could be done by a check of pivot elements of the applied decompositions
when the characteristic values are computed.

We now sketch an algorithm to calculate and test the characteristic values by
means of the matrix sequence (3.21):
Fix a time point t and a jet (x,x1, . . . ,xν), ν ≤ μ−1 < m, or choose a linearization
function x(·), which is sufficiently smooth to compute the required derivatives at t.

1. Compute the initialization matrices A,D,B (cf. (3.13)–(3.15)), check the well-
matched condition of A and D (cf. Section 7.2), compute D−, set i = 0.

2. If i == 0
set G0 = AD, B0 = B, Q0 = I−D−D, r0 = rankG0.

else
compute Gi = Gi−1 +Bi−1Qi−1 (cf. (3.21) and Section 7.4), ri = rankGi.

3. If ri == m⇒ tractability index μ = i, SUCCESS.
4. If i == m⇒ no regular matrix sequence⇒ critical point, STOP.
5. If i > 0 compute an admissible projector Qi projecting onto kerGi (cf. Defini-

tion 3.21).
If no projector exists,
i.e., M1,i (cf. Section 7.3) not calculable⇒ critical point, STOP.

6. Compute Pi = I−Qi,
if i == 0

set Π0 = P0
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else
compute Πi =Πi−1Pi, (DΠiD−)′ (cf. Section 7.4.3) and Bi (cf. (3.21)).

7. Set i := i+1, GOTO 2.

This algorithm is implemented using widely orthogonal projectors and the differ-
entiation of (DΠiD−)′ is done by algorithmic differentiation using the MATLAB
AD-tool INTLAB (cf. [195]).

Example 8.2 (Robotic arm ([57])). The DAE describes a prescribed path control of
a two-link, flexible-joint, planar robotic arm as presented in [43].

[
I6
0

]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
I6 0
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
u1
u2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4
x5
x6
f4(x2,x3,x4,x6)+a(x3)(u1−u2)
f5(x2,x3,x4,x6)−a(x3)(u1−u2)+u2
f6(x2,x3,x4,x6)− (a(x3)+b(x3))(u1−u2)
cosx1 + cos(x1 + x3)− p1(t)
sinx1 + sin(x1 + x3)− p2(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

Set t = 1. We determine the index and characteristic values ri at x =
(−1.72, 0.39, 1.718, −2.72, 4.29, 1.72, 13.59, 14.33). The QR decomposition of
Gi provides the diagonal elements Rri,ri of the upper triangular matrix for a rank de-
cision. We observe in the next table that the gap between Rri,ri > threshold= 10−12

and the next diagonal element Rri+1,ri+1 allows a robust rank determination. We
obtain

i detGi ri = rankGi |Rri,ri | |Rri+1,ri+1|
0 0 6 1 0
1 0 6 1 0
2 0 6 9.6556e–1 4.0164e–17
3 −5.3724e–17 7 1.0968e–1 3.2092e–17
4 −1.0724e–15 7 1.3430e–1 6.7654e–17
5 −2.4783e+00 8 5.4233e–2

The same DAE was investigated by other authors using different index concepts (cf.
[42, 185]).

dimension index
differentiation ([42]) 40 (27) 5
structural ([185]), derivatives of 2nd order 5 3

manually modified 9 5
tractability 8 5

The differentiation index needs to investigate a derivative array of dimension 40 or,
if one knows in advance which equations are to be differentiated, at least dimension
27. The determined index equals 5, (cf. [42]).
The structural index applied to a modified DAE version with second derivatives de-
termines the index 3. A manually modified DAE of dimension 9 delivers the index
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5, (cf. [185]).
The DAE has no degrees of freedom, i.e., there is no dynamics within the system,
which leads to Π4 ≡ 0. We can use this property to check the accuracy of the nu-
merical results. We obtain

max
i, j
|(DΠ4D−)i j|= 1.005e–15, max

i, j
|(DΠ4D−)′i j|= 1.354e–15.

Also the accuracy of the projector calculation lies near the machine precision:

Projector property max
i
|Q2

i −Qi|= 4.022e–15

Admissibility max
i> j
|QiQ j|= 3.075e–15

��

8.2 Consistent initialization

An initial value problem of a nonlinear DAE of index μ is described by

f ((d(x, t))′,x, t) = 0, t ∈ I, (8.10)

C(x(t0)− x0) = 0. (8.11)

The choice of the matrix C is in the nonlinear higher index case a nontrivial task.
In the linear case we can take any matrix C with kerC = Ncan(t0) or equivalently
C = CΠμ−1(t0) (cf. Theorem 3.66). In the nonlinear case the projector Πμ−1 may
depend on the solution in t0 up to its (μ − 1)th derivatives (cf. Section 3.2) and is
therefore in general not available. But in most cases taking advantage of the structure
of the given DAE or using numerical computations of Πμ−1 a matrix C is available.
It is important to fix with (8.11) directly or indirectly the components of the inherent
ODE only.
To start an integration of an index-μ DAE we have to compute consistent initial
values (cf. Definition 3.6) at t0. The Πμ−1x(t0) component is fixed by the initial
condition (8.11), e.g., we have to compute the (I−Πμ−1)x(t0) component, which
is fixed by the obvious constraint and in the case of higher index μ > 1 additionally
the hidden constraints and we have to compute a value y0 = d′(x(t0), t0) such that
f (y0,x(t0), t0) = 0. The pair y0,x0 is also called consistent initialization.
We illustrate the situation by the next examples.

Example 8.3 (Consistent initialization of an index-1 DAE). Let us consider the DAE

x′1(t)− x1(t) t−1 = 0, (8.12)

x1(t)2 + x2(t)2−1 = 0. (8.13)
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The proper formulation is realized by A =

[
1
0

]
, D =

[
1 0
]

and we have AD = G0 =:

P0. This DAE has index 1 for x2 �= 0. If we choose C := P0 we can established the
DAE with the initial condition

P0(x(t0)− x0) = 0.

At t0 we have equations (8.12), (8.13) and the initial condition

x′1(t0)− x1(t0) t0−1 = 0, (8.14)

x1(t0)2 + x2(t0)2−1 = 0, (8.15)

x1(t0) = x0
1. (8.16)

This leads directly to x1(t0) = x0
1 and with (8.14) we obtain x′1(t0) = x0

1 t0 + 1 and

from (8.15) also the last component x2(t0) =
√

1− (x0
1)

2 is determined. We discover
that x(t0) ∈M0(t0). ��

For a general procedure for index-1 DAEs we refer to Section 4.3.

Example 8.4 (Consistent initialization of an index-2 DAE). We consider the DAE

x′1(t)− x1(t) t−1 = 0, (8.17)
x2(t)x′2(t)− x3(t) = 0, (8.18)

x1(t)2 + x2(t)2−1 = 0. (8.19)

The matrix sequence starts with A =

⎡
⎣

1
x2
0

⎤
⎦ , D =

[
1 0 0
0 1 0

]
, B =

⎡
⎣
−t 0 0
0 x1

2 1
2x1 2x2 0

⎤
⎦ . This

leads to the sequence

G0 =

⎡
⎣

1 0 0
0 x2 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ if x2 �= 0

G1 =

⎡
⎣

1 0 0
0 x2 1
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

0 0 0
0 1 0
0 −x2

⎤
⎦ ,G2 =

⎡
⎣

1 0 0
0 x2 + x1

2 1
0 2x2 0

⎤
⎦ with detG2 =−2x2.

The DAE (8.17)–(8.19) has index 2 if x2 �= 0. We choose

C :=Π1 = P0P1 = (I−Q0)(I−Q1) =

⎡
⎣

1
0

0

⎤
⎦ .

While Q1 depends on x2 the projector Π1 is constant which is advantageous for the
choice of C. We establish the DAE with the initial condition
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Π1(x(t0)− x0) = 0.

x1(t0) = x0
1 is given by the initial condition, from (8.19) we obtain x2(t0), and we

compute x′1(t0) = x0
1 t0 + 1 from (8.17). But we need an additional equation to de-

termine x3(t0) and x′2(t0). The projectorW1 = diag(0,0,1) along imG1 tells us (cf.
also Section 2.10.3) that we have to differentiate (8.19) and obtain, after replacing
the derivatives in the point t = t0,

x3(t0)+ x1(t0)(x1(t0) t0 +1) = 0.

This equation describes the hidden constraint H(t0), see Figure 8.1, and we have
x3(t0) =−x1(t0)(x1(t0) t0 +1) and also x′2(t0) can be determined. It is obvious that
x(t0) ∈M1(t0) as discussed also in Example 3.8. ��

8.3 Numerical integration

Here, we discuss the direct integration of higher index DAEs without performing
any preliminary index reduction steps. In contrast, the integration procedures for
higher index DAEs as proposed in [50], [132] use derivative arrays and reduce the
original DAE to DAEs of index 0 or index 1 previous to the integration steps.

IVPs resulting from higher index DAEs above all are ill-posed problems (see Ex-
ample 1.5 and Theorem 3.66), and hence, in view of numerical integration, we have
to look out for serious difficulties. In particular, it may well happen that an inte-
gration code seemingly works; however, it generates wrong results. For this reason,
tools for monitoring the DAE structure would be very useful.

Essentially, we demonstrate various troubles associated with a direct integration
of higher index DAEs. The difficulties are mostly method independent but prob-
lem dependent. This motivates us to restrict our demonstrations to BDF methods.
Analyzing other methods in the same manner will show the same trouble. First we
demonstrate by a simple example which is a slight generalization of a linear Hessen-
berg size-3 DAE, that even the direct numerical integration of linear index-3 DAEs
with variable coefficients is somewhat hopeless; not only order reductions but also
fatal error accumulations happen.

Example 8.5 (Index-3 example, [160]). Consider the DAE
⎡
⎣

0 1 0
0 tη 1
0 0 0

⎤
⎦x′(t)+

⎡
⎣

1 0 0
0 η+1 0
0 tη 1

⎤
⎦x(t) = q(t) (8.20)

with a right-hand side q such that the solution is given by

x1(t) = e−t sin t, x2(t) = e−2t sin t, x3(t) = e−t cos t.
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Fig. 8.1 Obvious and hidden constraint of Example 8.4 with x1(0) = 0.9
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The leading coefficient matrix in (8.20) has constant nullspace and constant image
space and a properly stated representation is given by

⎡
⎣

1 0
ηt 1
0 0

⎤
⎦

︸ ︷︷ ︸
A

([0 1 0
0 0 1

]

︸ ︷︷ ︸
D

x(t)
)′
+

⎡
⎣

1 0 0
0 η+1 0
0 tη 1

⎤
⎦

︸ ︷︷ ︸
B

x(t) = q(t). (8.21)

An admissible matrix function sequence for (8.21) is given by

G0 =

⎡
⎣

0 1 0
0 tη 1
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

1
0

0

⎤
⎦ , G1 =

⎡
⎣

1 1 0
0 tη 1
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

0 −1 0
0 1 0
0 −tη 0

⎤
⎦

(DΠ1D−)′ =
[

0 0
η 0

]
, B1 =

⎡
⎣

0 0 0
0 1 0
0 tη 1

⎤
⎦ , G2 =

⎡
⎣

1 1 0
0 1+ tη 1
0 0 0

⎤
⎦ ,

Q2 =

⎡
⎣

0 tη 1
0 −tη −1
0 tη(1+ tη) 1+ tη

⎤
⎦ , G3 =

⎡
⎣

1 1 0
0 1+ tη 1
0 tη 1

⎤
⎦ , detG3 = 1.

The DAE, in both versions, is regular with index 3 independent of η .
Here, the BDF applied to the standard form DAE (8.20) and the BDF applied to

the properly formulated version (8.21) result in the same formulas.
Table 8.1, taken from [160], shows the error accumulation for different parameter

values η . For the starting phase in each case consistent values are used. Except for
the case η = 0 (constant coefficient DAE) the results are no longer acceptable. The
results in Table 8.1 were rechecked with different methods in standard and properly
stated form with consistent initial values but starting values computed as usual, but
the results were worse than those presented in the table. Notice that the subspaces
N1 = kerG1, N2 = kerG2, and imP0Q1Q2 move with time (cf. [158]). ��

We now investigate linear index-μ DAEs with constant coefficients

Ex′(t)+Fx(t) = q(t). (8.22)

Applying BDF methods of order k ≤ 6 with constant stepsize h yields

1
h

k

∑
l=0

αlExn−l +Fxn = qn−δn (8.23)

with qn := q(tn) and δn summarizing the rounding errors and possible defects when
solving (8.23) by a linear iterative solver. We introduce the local discretization error
τn in tn as

1
h

k

∑
l=0

αlEx(tn−l)+Fx(tn)−qn =: τn. (8.24)
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η =−0.5 η = 0 η = 2.0
h P0x Q0x P0x Q0x P0x Q0x

BDF-2
2.5e–02 3e–02 3e+00 3e–04 4e–03 1e-04 5e-02
3.1e–03 3e+07 2e+10 5e–06 6e–05 1e–05 2e–05
7.8e–04 1e+43 3e+46 3e–07 4e–06 1e–06 2e–06
3.9e–04 - - 8e–08 1e–06 2e–07 5e–07
1.9e–04 - - 2e–08 2e–07 6e–08 1e–07
9.7e–05 - - 5e–09 9e–09 1e–08 3e–08

BDF-3
2.5e–02 - - 1e–05 2e–02 1e–03 8e–02
3.1e–03 - - 3e–08 1e–07 3e–04 1e–02
7.8e–04 - - 4e–10 2e–09 1e–01 1e+02
3.9e–04 - - 5e–11 1e–08 3e+03 4e+06
1.9e–04 - - 5e–12 3e–08 6e+12 2e+16
9.7e–05 - - 9e–13 1e–07 1e+32 1e+36

BDF-6
3.1e–03 - - 2e–13 3e–09 - -
7.8e–04 - - 5e–13 2e–08 - -
3.9e–04 - - 4e–12 3e–08 - -
1.9e–04 - - 2e–12 2e–07 - -
9.7e–05 - - 4e–12 4e–06 - -

Table 8.1 Error of the BDF solution of (8.20) for different stepsizes

The difference of (8.24) and (8.23) results in

1
h

k

∑
l=0

αlE(x(tn−l)− xn−l)+F(x(tn)− xn) = τn +δn. (8.25)

Performing a complete decoupling of (8.25) as presented in Section 1.2.3 we obtain,
as a version for (8.25), the decoupled system
⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 N01 · · · N0,μ−1

. . . . . .
...

. . . Nμ−2,μ−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
h ∑

k
l=0αl(u(tn−l)−un−l)

0
1
h ∑

k
l=0αl(v1(tn−l)− v1,n−l)

...
1
h ∑

k
l=0αl(vμ−1(tn−l)− vμ−1,n−l)

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.26)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W
0 I
...

. . .
...

. . .
0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u(tn)−un
v0(tn)− v0,n

...

...
vμ−1(tn)− vμ−1,n

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ld
L0
...
...

Lμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦
(τn +δn)

with
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v0,n := Q0xn, vi,n :=Πi−1Qixn, i = 1, . . . ,μ−1, un :=Πμ−1xn,

and
xn = v0,n + v1,n + · · ·+ vμ−1,n +un.

Consider the stepwise integration on the compact interval [t0,T ]. For sufficiently
small stepsizes h > 0, we find a constant c > 0 such that

|u(tn)−un| ≤ c max
0≤l≤k−1

(|u(tl)−ul |+ max
k≤l≤n

|τl +δl |), for n≥ k

|vμ−1(tn)− vμ−1,n| ≤ c|τn +δn|, for n≥ k

|vμ−2(tn)− vμ−2,n| ≤ c
1
h

max
n−k≤l≤n

|τl +δl |, for n≥ 2k

...

|v0(tn)− v0,n| ≤ c
1

hμ−1 max
n−(μ−1)k≤l≤n

|τl +δl |, for n≥ μk.

We can conclude the following proposition.

Proposition 8.6. The BDF (8.23) applied to the regular index-μ DAE (8.22) on
[t0,T ] generates values xn, μk ≤ n≤ T−t0

h , which satisfy

|x(tn)− xn| ≤C
(

max
0≤l≤k−1

|x(tl)− xl |+ max
k≤l≤n

|τl +δl |+
μ−1

∑
i=1

1
hi max

n−ik≤l≤n
|τl +δl |

)

with a constant C > 0, supposing h is sufficiently small.
If all errors δl vanish and the starting values are exact x(tl) = xl , l = 0, . . . ,k− 1,
then the estimation

|x(tn)− xn| ≤C
(

max
k≤l≤n

|τl |+
μ−2

∑
i=1

1
hi max

n−ik≤l≤n
|τl |
)

becomes valid.

Proof. It remains to verify the second estimation. First, we note that Lμ−1τn = 0
because

τn =
1
h

k

∑
l=0

αlEx(tn−l)+Fx(tn)−qn =
1
h

k

∑
l=0

αlEx(tn−l)−Ex′(tn) ∈ imE.

��

The amplifying factors 1
hi are caused by the differentiations involved in higher index

problems. In the worst case, parts of the defects δl are amplified by 1
hμ−1 for index-μ

DAEs.
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The estimations of Proposition 8.6 are somewhat coarse; however they remain
valid in the case of variable stepsize BDFs, if the ratio of the adjacent steps is kept
bounded and the stability for explicit ODEs is preserved. Then, neglecting the errors
δl and supposing appropriate starting values one obtains approximations

xn = x(tn)+O(hq
max), n≥ μk,

with the order q := min{k,k − μ + 2}. This confirms well-known results, see
[25, p. 45]. In particular, the numerical integration of an index-3 DAE by the im-
plicit Euler method may lead to O(1) errors!

Example 8.7 (Variable stepsize integration problem). We consider the simplest
index-3 DAE

x′1− x2 = 0,

x′2− x3 = 0,

x1 = g(t),

which has the only solution

x1(t) = g(t), x2(t) = g′(t), x3(t) = g′′(t).

The implicit Euler method (with dropped errors δ j) yields, after three integration
steps,

x1,n = g(tn),

x2,n =
1
hn

(g(tn)−g(tn−1)),

x3,n =
1
hn

(
1
hn

(g(tn)−g(tn−1))−
1

hn−1
(g(tn−1)−g(tn−2))

)
.

If hn = hn−1, the solution component x3,n converges to g′′(tn) with an error ofO(hn),
but it blows up as hn → 0 and hn−1 fixed. For instance, if hn−1 = 2hn then the
resulting x3,n =

3
2 g′′(tn)+O(hn) fails to approximate x3(tn) = g′′(tn).

This phenomenon was already described in [25, p. 57]. It is closely related to the
fact that the implicit Euler method is not suitable to start an integration of DAEs
with index μ ≥ 3. Namely, even with a consistent initial value,

x1,0 = g(t0), x2,0 = g′(t0), x3,0 = g′′(t0),

one arrives at
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x1,1 = g(t1),

x2,1 =
1
h1

(g(t1)−g(t0)),

x3,1 =
1
h1

(
1
h1

(g(t1)−g(t0))−g′(t0)
)

=
1
h2

1

(
g(t0 +h1)−g(t0)−h1g′(t0)

)
=

1
2

g′′(θ),

with a mean value θ . Obviously, 1
2 g′′(θ) cannot be seen as an approximation of

g(t1), even if g is a second-degree polynomial. ��

The bad results in the previous example reflect that derivatives of order higher than
1 are not correctly approximated by BDF methods with variable stepsize.

On the other hand, Example 8.7 indicates order preservation in the case of con-
stant stepsizes. In fact, again neglecting the errors δl we obtain from (8.26) that

vμ−1(tn)− vμ−1,n = Lμ−1τn = 0, n≥ k,

vμ−2(tn)− vμ−2,n = Lμ−2τn, n≥ 2k,

vμ−3(tn)− vμ−3,n = Lμ−3τn−Nμ−3,μ−2
1
h

k

∑
l=0

αlLμ−2τn−l , n≥ 3k.

Supposing a sufficiently smooth solution, we have

1
h

k

∑
l=0

αlLμ−2τn−l =O(hk)

and hence vμ−3(tn)−vμ−3,n =O(hk). The further rigorous analysis of the recursion
(8.26) and of the starting phase yields (cf. [25, Theorem 3.1.1])

x(tn)− xn =O(hk), n≥ μk− (k−1).

The last order result remains also valid in the case of nontrivial defects δl =
O(hk+μ−1); however, we emphasize that neither the errors δl can be neglected or
supposed to be smooth in practical computations—see the case η = 0 in Table 8.1—
nor the starting steps can be skipped. Therefore, these order results are of limited
meaning.

Next we investigate the direct numerical integration of linear index-2 DAEs. Al-
ready in [84], it has been shown that the BDF methods may fail completely for
standard form index-2 DAEs

E(t)x′(t)+F(t)x(t) = q(t),

as the next example illustrates.
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Example 8.8 (Standard form index-2 DAE with variable coefficients). The DAE
from [84]

x′1 +ηtx′2 +(1+η)x2 = 0,
x1 +ηtx2 = g(t) (8.27)

is regular with index 2 independent of the value of the parameter η . It has the unique
solution

x2 =−g′,

x1 = g−ηtx2.
(8.28)

Figure 8.2 shows the numerical solution for g = g(t) = e−t for different methods
and parameter values. One can see that all the tested methods fail for certain pa-

Fig. 8.2 The solutions (second component) of (8.27) for various parameter values η , the constant
stepsize h = 10−1.5 and the consistent initial value x0 = (1,1)T . The different curves represent
the exact solution of the problem (exact) and the numerical solutions by the implicit Euler method
(IEuler), by the two-step BDF method (BDF2) and by the two-stage RADAU IIA method (RADAU
IIa).

rameter values. For instance, the BDF methods are no longer feasible for η = −1.
They are feasible but unstable and nonconvergent for η < −0.5 (see [90]). This
is really an alarming behavior since all the methods used (implicit Euler, two-step
BDF, RADAU IIA) are approved for explicit ODEs and index-1 DAEs. ��



434 8 Aspects of the numerical treatment of higher index DAEs

However, the situation becomes better when reformulating the previous example
for a DAE with a properly stated leading term

A(t)(D(t)x(t))′+B(t)x(t) = q(t). (8.29)

The BDF now applied to (8.29) yields the recursion

A(tn)
1
h

k

∑
l=0

αlD(tn−l)xn−l +B(tn)xn = q(tn)−δn. (8.30)

Again, the term δn represents rounding errors and defects. Fortunately, BDF meth-
ods and IRK(DAE) methods (see Chapter 5) work quite well for index-2 DAEs with
properly stated leading term.

Example 8.9 (Properly stated index-2 DAE with variable coefficients). The index-2
DAE

x′1 +(ηtx2)
′+ x2 = 0,

x1 +ηtx2 = g(t),
(8.31)

or in compact form
[

1
0

]([
1 ηt

]
x(t)
)′
+

[
0 1
1 ηt

]
x(t) =

[
0

g(t)

]
,

has, obviously, the same unique solution (8.28) as in Example 8.8. Figure 8.3 shows
the numerical approximation. In contrast to the integration of the problem in stan-
dard formulation, one can see that now all tested methods work well for all param-
eter values. ��

To formulate a convergence result for general linear index-2 DAEs, we introduce
the local discretization error

τn := A(tn)
1
h

k

∑
l=0

αlD(tn−l)x(tn−l)+B(tn)x(tn)−q(tn)

= A(tn)
{1

h

k

∑
l=0

αlD(tn−l)x(tn−l)− (Dx)′(tn)
}
, n≥ k,

and set for the starting phase

δl := G2(tl)(xl− x(tl)), l = 0, . . . ,k−1.

Proposition 8.10. Let the DAE (8.29) be regular with index 2 on [t0,T ], then:

(1) For sufficiently small stepsizes h > 0, the BDF (8.30), k≤ 6, generates values
xn, k ≤ n≤ T−t0

h , which satisfy the estimation
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Fig. 8.3 The solutions (second component) of (8.31) for various parameter values η , the constant
stepsize h = 10−1.5 and the consistent initial value x0 = (1,1)T . The different curves represent
the exact solution of the problem (exact) and the numerical solutions by the implicit Euler method
(IEuler), by the two-step BDF method (BDF2) and by the two-stage RADAU IIA method (RADAU
IIa).

|x(tn)− xn| ≤C
{

max
l=0,...,k−1

|D(tl)(x(tl)− xl)|+ max
l=k,...,n

|τn +δn| (8.32)

+ max
l=0,...,n

|1
h
(DQ1G−1

2 )(tn)δn|
}

with a constant C independent of the stepsize h.
(2) If, additionally, the errors δn, l ≥ k, vanish and the starting values are exact,

xl = x(tl), l = 0, . . . ,k−1, then it follows that

|x(tn)− xn| ≤C
{

max
l=k−1,...,n

|τn|
}
.

Proof. Assertion (1) is obtained in [116] by simultaneous decoupling of the index-2
DAE (8.29) and the BDF recursion (8.30).
Assertion (2) is an immediate consequence of (1). ��
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The last proposition implies convergence of order k; however in practical computa-
tions parts of the errors are amplified by 1

h . Owing to the index-2 structure and the
linearity these errors are not propagated.

Similar results apply to IRK(DAE)s (see, e.g., [59]).

In Subsection 5.4,it is shown that one can benefit from a time-invariant imD(t).
If a regular index-1 DAE is in numerically qualified form, in this sense, then the
integration is as smooth as for explicit ODEs. This means that the given method
arrives at the IERODE unchanged and there are no additional stepsize restrictions
for stability reasons. An analogous situation can be observed in the index-2 case.
Now the two subspaces imDΠcan and imD(I−Πcan) have to be time-invariant to
ensure that the integration method reaches the IERODE unchanged (see [116]). At
this point we mention that the DAE (8.31) is in numerically qualified formulation.
The associated canonical projector is Πcan = 0, and imDΠcan = 0, imD(I−Πcan) =
imD = R are constant. This explains why the integration methods perform so well
for the relatively large stepsize h = 10−1.5 (see Figure 8.3).

The following example illustrates the impact of time-varying subspaces. Note
that the refactorization into a numerically qualified (index-2) DAE does no longer
show those errors (see [116]).

Example 8.11 (Index-2 DAE with varying D(I−Πcan), [109]). Consider the Hes-
senberg index-2 DAE

⎡
⎣

1
1

0

⎤
⎦x′(t)+

⎡
⎣

λ −1 −1
ηt(1−ηt)−η λ −ηt

1−ηt 1 0

⎤
⎦x(t) = 0

where λ ,η ∈ R are constant parameters. If x0 ∈ R
3 is a consistent initial value at

t = 0 (i.e., x0
1 + x0

2 = 0, x0
3 + x0

2 = 0), the solution of the DAE is

x1(t) = x0
1 e−λ t , x2(t) = (ηt−1)x1(t) , x3(t) =−x2(t) .

Taking the proper formulation with

A =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ , D =

[
1 0 0
0 1 0

]

and the admissible projector sequence

Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , Q1 =

⎡
⎣

1−ηt 1 0
−ηt(ηt−1) ηt 0

1−ηt 1 0

⎤
⎦ ,

we obtain

imDQ1 = im
[

1−ηt 1 0
−ηt(ηt−1) ηt 0

]
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to be dependent on t for η �= 0. Notice that

imDQ1 = DN1 = D(N0⊕N1) = imD(I−Πcan).

For different values of η , Figure 8.4 shows the first component of the numerical
solutions calculated using the different integration methods.

Fig. 8.4 Numerical solutions (first component) for λ = 10 and h = 10−1.5 and the consistent initial
value x0 = (1,−1,1)T

8.4 Notes and references

(1) The integration of higher index DAEs—i.e., the approximate solution of an
ill-posed problem (cf. Theorem 3.66)— leads in general to unsatisfactory results.
Therefore the formulation of a DAE model should, if ever possible, result in an at
most index-1 DAE.

(2) A large number of papers have investigated the behavior of ODE methods di-
rectly applied to DAEs with an index greater than 1, beginning with the monographs
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[25] and [103]. Higher index DAEs mostly are restricted to autonomous Hessenberg
form DAEs of size 2 or 3.
If the DAE has higher index but a very special structure, suitable methods can be
developed. This is especially the case if the relevant DAE components are separated,
as it is the case for Hessenberg form DAEs. We mention here [103], [24], [23],

(3) The DAEs of rigid body mechanics have index 3. A huge number of particular
methods to compute consistent initial values and to solve IVPs and BVPs have been
developed. Often index reduced DAEs of index 0 or 1 are finally solved.
For a comprehensive overview we refer to [119] and [63].

(4) Example 8.4 emphasizes that the computation of consistent initial values, in
the higher index case, additionally needs information about the hidden constraints.
Compared with (4.30), (4.31) for the index-1 case, the extension to index-2 DAEs
comprises an additional equation which contains information about the hidden con-
straint.
This idea was realized for index-2 DAEs in standard formulation in [68] and [69],
for DAEs with properly stated leading term in [137] and [14], and for special struc-
tured large dimensional DAEs in [108]. The index-3 case is discussed in [142]. The
necessary differentiations are realized numerically by generalized backward differ-
entiation formulas (GBDFs) on nonuniform meshes.

(5) Proposition 8.10 is slightly generalized for linear index-2 DAEs with harm-
less critical points and possible index changes in [59]. In this paper, one finds an
elaborate description of the corresponding decoupling.

(6) In the case of higher index constant coefficient DAEs the errors 1
hi δl are local;

they are not propagated. This situation is also given in the case of linear variable
coefficient index-2 DAEs with properly stated leading term.

Unfortunately, already in the case of linear index-3 DAEs those bad error terms
can be propagated, see Example 8.20. No doubt, in the case of nonlinear DAEs, the
situation is even worse.

Only for quite special classes of nonlinear index-2 DAEs we can handle the error
term 1

hi δl . To our knowledge, the class of index-2 DAEs of the forms

A(t)x′(t)+b(x(t), t) = 0 and
A(t)(D(t)x(t))′+b(x(t), t) = 0

are the richest ones for which respective proofs are given, see [205], respectively
[211]. In both cases certain structural conditions concerning subspaces are sup-
posed.

We refer to the Theorem 3.56 concerning local existence for slightly more gen-
eral structural conditions.
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Part IV of this monograph continues the hierarchical projector based approach to
DAEs, which is discussed in Part I, in view of three different aspects. We con-
sider quasi-regular DAEs, nonregular DAEs, and ADAEs (abstract DAEs) in Hilbert
spaces. An additional chapter conveys results obtained by the projector based anal-
ysis concerning minimization problems with DAE constraints.

The chapter on minimization starts with a discussion of adjoint and self-adjoint
DAEs. It contains necessary and sufficient extremal conditions in terms of the orig-
inal data. Special attention is directed to properties of the optimality DAE as the
basis for indirect optimization methods. Further, an appropriate generalization of
the Riccati feedback for LQPs is given.

For quasi-regular DAEs, we relax the constant-rank condition supporting the ad-
missible matrix functions and the regularity. If, due to rank changes in a matrix
function, a continuous nullspace no longer exists, we use instead a continuous sub-
nullspace. In this way we figure out quasi-regularity. Linear DAEs that are trans-
formable into standard canonical form are quasi-regular. However, the characteristic
values characterizing regularity in Part I now lose their meaning and quasi-regularity
appears to be somewhat diffuse—similarly to the differentiation index approach.

Nonregular DAEs may comprise a different number of equations and compo-
nents of the unknown function. Discussing mainly linear DAEs, we emphasize the
scope of possible different interpretations. We generalize the tractability index as
well as the decouplings to apply also to those equations.

The concept of regular DAEs so far applied to DAEs in finite-dimensional spaces
is then, in the chapter on ADAEs, generalized for equations

A(t)
d
dt

d(x(t), t)+b(x(t), t) = 0,

with operators acting in Hilbert spaces. After having briefly discussed various spe-
cial cases we turn to a class of linear ADAEs which covers parabolic PDEs and
index-1 DAEs as well as couplings thereof. We treat this class in detail by means of
Galerkin methods yielding solvability of the ADAE.



Chapter 9
Quasi-regular DAEs

The regularity notion in Part I is supported by several constant-rank conditions.
In this chapter we relax these rank conditions and allow for certain rank changes.
If a matrix function changes the rank, its nullspace is no longer continuous, and
also the projector functions onto the nullspace fail to be continuous. Replacing
the nullspaces kerGi that are no longer continuous by continuous subnullspaces
Ni ⊆ kerGi we again obtain continuous matrix functions sequences. These modi-
fied sequences inherit most of the properties given for the standard sequences in
Chapters 1, 2, and 3. This allows us to cover a large class of equations with some-
what harmless index changes. In particular, linear DAEs that are transferable into
so-called standard canonical form (cf. [39]) are proved to be quasi-regular, whereas
regular linear DAEs comprise DAEs transferable into strong standard canonical
form. However, the price to be paid for this is the loss of useful information con-
cerning local characteristic values and index. From this point of view, quasi-regular
DAEs show a certain affinity to DAEs having a well-defined differentiation index.
The chapter is organized as follows. After collecting basics in Section 9.1 and de-
scribing quasi-admissible projector functions in Section 9.2, we introduce quasi-
regularity in Section 9.3 and show relations to linearizations in Section 9.4. In Sec-
tion 9.5 we prove quasi-regularity for all linear DAEs that are transferable into SCF.
A general decoupling procedure applied to linear quasi-regular DAEs is offered in
Section 9.6. In Section 9.7 we touch on difficulties arising with the use of sub-
nullspaces.

9.1 Quasi-proper leading terms

We deal with equations of the form

f ((d(x(t), t))′,x(t), t) = 0, (9.1)

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 9,
© Springer-Verlag Berlin Heidelberg 2013
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where f (y,x, t)∈R
m, d(x, t)∈R

n, for y∈R
n, x ∈D f , t ∈ I f , andD f ⊆R

m is open,
I f ⊆ R is an interval. The functions f and d are supposed to be continuous on their
definition domains together with their partial derivatives fy, fx, dx, dt . This means
that the general Assumption 3.1 is again satisfied. We restrict our interest to systems
having an equal number of equations and unknowns, m = k.
As agreed upon in Chapter 3, Definition 3.2: A solution x∗ of equation (9.1) is a con-
tinuous function x∗ defined on an interval I∗ ⊆ I f , with values x∗(t) ∈ D f ,t ∈ I∗,
such that the function u∗(.) := d(x∗(.), .) is continuously differentiable, and x∗ sat-
isfies the DAE (3.1) pointwise on I∗. For convenience, we repeat the definition of a
DAE with quasi-proper leading term (cf. 3.80).

Definition 9.1. Equation (9.1) is said to be a DAE with quasi-proper leading term
on D f ×I f , if imdx is a C1-subspace, kerdx is nontrivial and there exists a further
C1-subspace NA, possibly depending on y,x, t, such that the inclusion

NA(y,x, t)⊆ ker fy(y,x, t), y ∈ R
n, x ∈ D f , t ∈ I f , (9.2)

and the transversality condition

NA(y,x, t)⊕ imdx(x, t) = R
n, x ∈ D f , t ∈ I f , (9.3)

are valid.

Whereas an attendant property of a properly stated leading term consists of the
constant-rank condition for both matrix functions fy and dx, in the case of a quasi-
proper leading term, for the matrix function fy rank changes are allowed. In contrast,
the subspace imdx, as a C1-subspace, always has constant dimension

r := dimimdx(x, t), x ∈ D f , t ∈ I f .

Then, the continuous matrix function dx has constant rank r, and its nullspace kerdx
is a continuous subspace of dimension m− r. To ensure that kerdx is nontrivial the
inequality m > r must be given. Notice that a function d with nonsingular Jacobian
dx, for instance d(x, t)≡ x, is excluded here.
A good idea to create a DAE with quasi-proper leading term is to arrange things in
such a way that dx is rectangular and has full row rank r = n with n≤ m−1. In this
case, the trivial subspace NA = {0} satisfies both conditions (9.2), (9.3).
If a standard form DAE

f(x′(t),x(t), t) = 0

is given, one often finds a singular square matrix Dinc, with entries being zeros or
ones, such that f(x1,x, t) = f(Dincx1,x, t) holds for all arguments; further imDinc ∩
kerDinc = {0}. By such an incidence matrix, the standard form DAE can be written
as

f((Dincx(t))′,x(t), t) = 0,

and letting NA := kerDinc we attain a DAE with quasi-proper leading term.

Example 9.2 (Quasi-proper by an incidence matrix). The nonlinear system
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α(x2(t),x3(t), t) x′2(t)+ x1(t) − q1(t) = 0,
β (x3(t), t) x′3(t)+ x2(t) − q2(t) = 0,

x3(t) − q3(t) = 0,

with smooth functions α,β : D×I → R, which do not vanish identically on the
definition domain, but which have zeros or vanish identically on subsets, cannot be
written as a DAE with proper leading term. However, choosing Dinc = diag(0,1,1)
we obtain a DAE with quasi-proper leading term. ��

It is a typical phenomenon of DAEs with quasi-proper leading term—in contrast to
DAEs with properly stated leading term—that there might be natural local refor-
mulations on subdomains, which show a lower rank d̃x and a larger subspace ÑA or
are even properly stated versions (cf. Examples 3.81, 3.76).

It may happen that there is no singular incidence matrix in the given standard
form DAE, since seemingly all derivative components are involved. Nevertheless, a
quasi-proper formulation might be found as the next example shows.

Example 9.3 (Quasi-proper DAE with nonlinear d). The system

x′1(t)− x3(t) x′2(t)+ x2(t) x′3(t)−q1(t) = 0,
x2(t)−q2(t) = 0,
x3(t)−q3(t) = 0,

has standard form f(x′(t),x(t), t) = 0, with

f(x′,x, t) =

⎡
⎣

1 −x3 x2
0 0 0
0 0 0

⎤
⎦x′+

⎡
⎣

0
x2
x3

⎤
⎦−q(t),

and ker fx′ depends on x. This example is the one created by Ch. Lubich in [103] to
show that the differentiation index might be 1 while the perturbation index is 2. We
rearrange this system as

(x1(t)+ x2(t) x3(t))′ −2x3(t) x′2(t)−q1(t) = 0,
x2(t)−q2(t) = 0,
x3(t)−q3(t) = 0,

i.e., in the form (9.1) with m = 3, n = 2,

d(x, t) =
[

x1 + x2x3
x2

]
, f (y,x, t) =

⎡
⎣

y1−2x3y2−q1(t)
x2−q2(t)
x3−q3(t)

⎤
⎦ .

The partial Jacobian

dx(x, t) =
[

1 x3 x2
0 1 0

]
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has full row rank n, as well as a one-dimensional nullspace. Choosing NA = {0} we
obtain a quasi-proper leading term.
For every continuous q with a continuously differentiable component q2, t̄ ∈ I,
c̄ ∈ R, this DAE has the unique solution

x1(t) =−q2(t)q3(t)+ c̄+q2(t̄ )q3(t̄ )+
t∫

t̄

(q1(s)+2q3(s)q′2(s))ds,

x2(t) = q2(t),

x3(t) = q3(t), t ∈ I.

Later on, in Example 9.17, this DAE is shown to be quasi-regular with a nonsingular
matrix function on level 2. ��

In Section 2.9, by means of several examples, it is pointed out that a rank change of
the coefficient A(t) of a linear DAE

A(t)(D(t)x(t))′+B(t)x(t) = q(t), (9.4)

indicates a critical solution behavior. In contrast, in the context of quasi-proper lead-
ing terms those critical points are no longer indicated at this level, but they are hid-
den.

Example 9.4 (Hidden critical point). The system

x1(t)x′1(t)− x2(t) = 0,
x1(t)− x2(t) = 0,

possesses the solutions x∗1(t) = x∗2(t) = t + c, where c denotes an arbitrary real
constant. Additionally, the identically vanishing function x̄∗(t) = 0 is also a solution.
Through every point on the diagonal line x1 = x2, except for the origin, there passes
exactly one solution. However, two different solutions satisfy the initial condition
x(0) = 0, which characterizes the origin as a critical point. Writing the DAE in the
form (9.1) with n = 1, m = k = 2, D f = R

2, I f = R,

f (y,x, t) =
[

x1y− x2
x1− x2

]
, fy(y,x, t) =

[
x1
0

]
, d(x, t) = x1, dx(x, t) =

[
1 0
]
,

one arrives at a DAE which fails to have a properly stated leading term. However,
the leading term is quasi-proper, which emphasizes that the constant-rank condition
(and the proper leading term setting) is helpful in indicating critical points. ��

Example 9.5 (Hidden singular ODE). The system

tkx′1(t)+Mx2(t) = q1(t), x1(t)+ x2(t) = q2(t),

written as



9.1 Quasi-proper leading terms 445
[

tk

0

]
(
[
1 0
]

x(t))′+
[

M 0
1 1

]
= q(t),

with k > 0, has a quasi-proper leading term on intervals � 0. However, no doubt,
depending on k and M, the critical point t∗ = 0 may indicate serious singularities
concerning flow and solvability. ��

The constant-rank requirement for fy of properly stated leading terms rules out those
singularities, but it also rules out certain harmless rank changes that are perceivable
only when looking for rigorous low smoothness solvability. Those harmless critical
points can be found in Example 9.2. Each zero of one of the functions α and β
yields such a harmless critical points.

The obvious constraint set of a DAE with quasi-proper leading term possesses
the same form as that for DAEs with properly involved derivative (see Definition
3.9), namely

M0(t) := {x∈D f : ∃y∈R
n : y−dt(x, t)∈ imdx(x, t), f (y,x, t) = 0}, t ∈ I f . (9.5)

Whereas Proposition 3.10 guarantees the uniqueness of the associated y-values for
given x ∈M0(t) for DAEs with properly involved derivatives, this fact is no longer
true for DAEs with quasi-proper leading terms. Now there might be several values
y corresponding to a fixed x ∈M0(t), t ∈ I f , as the following example shows.

Example 9.6 (Nonuniqueness of y). The system

x′1(t)
2− x2(t)2− γ(t) = 0,

x2(t)−ϕ(x1(t), t) = 0,

has the form (9.1) with n = 1, m = k = 2, D f = R
2, I f = R,

f (y,x, t) =
[

y2− x2
2− γ(t)

x2−ϕ(x1, t)

]
, fy(y,x, t) =

[
2y
0

]
, d(x, t) = x1, dx(x, t) =

[
1 0
]
.

This DAE has a quasi-proper leading term, and a full row rank matrix function dx
on the definition domain. The obvious constraint is given by

M0(t) = {x ∈ R
2 : x2−ϕ(x1, t) = 0, y2 = x2

2 + γ(t)}.

To each x ∈ M0(t), with x2
2 + γ(t) > 0, there are associated two values y =

±
√

x2
2 + γ(t).

Observe that the matrix function fy has a rank drop at y = 0. Again, this might be
interpreted as a critical point. ��

With the structural characterization of quasi-regular DAEs in mind we construct
a matrix function sequence and accompanying projector functions in a quite similar
way as in Chapter 3. For this aim we introduce once again the auxiliary coefficient
functions
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D(x, t) :=dx(x, t),

A(x1,x, t) := fy(D(x, t)x1 +dt(x, t),x, t), (9.6)

B(x1,x, t) := fx(D(x, t)x1 +dt(x, t),x, t), for x1 ∈ R
m, x ∈ D f , t ∈ I f ,

to be used throughout this chapter. These coefficients A,D and B are continuous. If
the DAE has a quasi-proper leading term, then conditions (9.2) and (9.3) imply the
inclusion

NA
(
D(x, t)x1 +dt(x, t), x, t

)
⊆ kerA(x1,x, t),

and the decomposition

NA
(
D(x, t)x1 +dt(x, t), x, t

)
⊕ imD(x, t) = R

n, for x1 ∈ R
m, x ∈ D f , t ∈ I f .

We introduce the projector valued function R pointwise by

imR(x1,x, t) = imD(x, t), kerR(x1,x, t) = NA
(
D(x, t)x1 +dt(x, t), x, t

)
. (9.7)

R is continuous by construction. If NA(y,x, t) is independent of y, then R(x1,x, t) =
R(0,x, t) is independent of x1, and R is a continuously differentiable projector func-
tion in (x, t).
If NA(y,x, t) varies with y, we enforce the projector function R to be continuously
differentiable by additionally supposing continuous second partial derivatives for d.
We summarize the basic assumptions for later use.

Assumption 9.7. (Basic assumption for (9.1))

(a) The function f is continuous on R
n ×D f × I f together with its first partial

derivatives fy, fx. The function d is continuously differentiable on D f ×I f .
(b) The DAE (9.1) has a quasi-proper leading term.
(c) If NA(y,x, t) depends on y, then d is supposed to have continuous second partial

derivatives.

Assumption 9.7 is the counterpart of Assumption 3.16 in Part I.

9.2 Quasi-admissible matrix function sequences and admissible
projector functions

We suppose the DAE (9.1) satisfies Assumption 9.7. Aiming for a projector based
structural analysis we proceed quite similarly as in Part I. The following construc-
tion of matrix function sequences and involved projector functions is close to the
construction for regular DAEs. The only difference is that now we deal with sub-
spaces Ni of the nullspaces kerGi instead of these nullspaces themselves. Denote

N0(x, t) := kerD(x, t), for x ∈ D f , t ∈ I f ,
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and introduce pointwise projectors Q0(x, t), P0(x, t) ∈ L(Rm), such that

Q0(x, t)2 = Q0(x, t), imQ0(x, t) = N0(x, t), P0(x, t) = I−Q0(x, t).

Since D(x, t) has constant rank r, its nullspace has constant dimension m− r. This
allows for choosing Q0, P0 to be continuous, and we do so.
We emphasize again that, while for properly stated leading terms the nullspaces
kerAD and kerD = N0 coincide, N0 is now just a subspace of kerAD. In contrast to
the case of proper leading terms, the intersection kerA∩ imD might be nontrivial.
Actually, kerAD is not necessarily a continuous subspace in the present chapter.

Next we provide the generalized inverse D(x1,x, t)− ∈ L(Rn,Rm) by means of
the four conditions

D(x, t)D(x1,x, t)−D(x, t) = D(x, t),
D(x1,x, t)−D(x, t)D(x1,x, t)− = D(x1,x, t)−,

D(x, t)D(x1,x, t)− = R(x1,x, t),
D(x1,x, t)−D(x, t) = P0(x, t),

(9.8)

for x1 ∈ R
m, x ∈ D f , t ∈ I f . D(x1,x, t)− is uniquely determined by (9.8), and it

represents a continuous function (Proposition A.17).
Owing to the quasi-proper leading term, one has available the identities

A(x1,x, t) =A(x1,x, t)R(x1,x, t),

imA(x1,x, t) =imA(x1,x, t)D(x1,x, t),

which we already know from proper leading terms. Namely, the first identity is a
simple consequence of (9.2), kerA⊇NA = im(I−R), A(I−R) = 0. The second one
follows from imA⊆ imAD = imADD− = imAR = imA.

We compose matrix function sequences for the DAE (9.1) starting from

G0 := AD, B0 := B, Π0 := P0, (9.9)

which are defined pointwise, for all x1 ∈ R
m, x ∈ D f , t ∈ I f .

Recall that N0 = kerD is a continuous subnullspace of G0. We build, for i ≥ 0, as
long as the expressions exist,

Gi+1 := Gi +BiQi, (9.10)

then choose a continuous subspace Ni+1,

Ni+1 ⊆ kerGi+1, (9.11)

as well as projectors Pi+1,Qi+1 such that Pi+1 := I−Qi+1, imQi+1 = Ni+1, and put

Πi+1 :=ΠiPi+1, (9.12)
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Bi+1 := BiPi−Gi+1D−(DΠi+1D−)′DΠi. (9.13)

Denote ri := rankGi, i≥ 0.

Again, all these definitions are meant pointwise for all arguments. (DΠi+1D−)′

stands for the total derivative with respect to the jet variables.
As explained in Section 3.2, at each level i, a new jet variable xi comes in. While G1
has the arguments x1,x, t, G2 depends on x2,x1,x, t, and so on.
The matrix function sequence (9.9)–(9.13) looks formally like those introduced in
Subsection 2.2.2 and Section 3.2, with the only difference that now, Ni+1 is possibly
a continuous subspace of kerGi+1 and also N0 = kerD belongs to kerG0 but does
not necessarily coincide.
Working with continuous subspaces of the corresponding nullspaces offers the pos-
sibility to dispense with continuous nullspaces and to allow for rank changes in the
matrix functions G j.

By construction, it holds that

Gi+1Pi = GiPi = Gi, Gi+1Qi = BiQi,

hence,
imG0 ⊆ ·· · ⊆ imGi ⊆ imGi+1,

r0 ≤ ·· · ≤ ri ≤ ri+1.

As previously, we try for continuous matrix functions Gi. In contrast to Section 3.2,
Gi may now change its rank, and ri is an integer valued function. Owing to the
arbitrariness of possible subnullspaces (cf. Section 9.7), the rank values ri lose their
meaning of characteristic values for the DAE.

To show further properties we use projector functions Wi : I → L(Rm)) and
generalized inverses G−i : I → L(Rm)) of Gi with

GiG−i Gi = Gi, G−i GiG−i = G−i , GiG−i = I−Wi. (9.14)

Wi projects along imGi. In contrast to Section 3.2, since now Gi may change its
rank, both G−i andWi are no longer necessarily continuous.
The subspace Ni is part of the nullspace kerGi, and we can decompose

kerGi = Ni⊕ (kerGi∩ imPi),

and choose the generalized inverse G−i such that

imG−i Gi ⊆ imPi. (9.15)

Remember that, in contrast, if Ni coincides with kerGi, then also imPi and imG−i Gi
coincide.
Many of the properties given in Propositions 2.5 and 3.20 for standard sequences
are maintained by now.
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Proposition 9.8. For the matrix function sequence (9.9)–(9.13) the following rela-
tions are satisfied:

(1) kerΠi ⊆ kerBi+1,
(2) Wi+1Bi+1 =Wi+1Bi = · · ·=Wi+1B0 =Wi+1B,Wi+1Bi+1 =Wi+1B0Πi,
(3) imGi+1 = imGi⊕ imWiBQi,
(4) Ni∩kerBi = Ni∩kerGi+1,
(5) kerGi∩ imPi ⊆ kerGi+1.

Proof. (1)–(3) We use the same arguments as in Proposition 2.5. Then
Fi+1 := I +G−i BiQi is nonsingular because of (9.15).
(4) From z = Qiz we conclude Gi+1z = Giz+BiQiz = Biz, which implies the asser-
tion.
(5) Giz = 0, Qiz = 0 yields Gi+1z = Giz+BiQiz = 0. ��

We restrict the variety of projector functions in an analogous way as we did in Part I
concerning standard sequences.

Definition 9.9. Suppose we are given a DAE (9.1) which satisfies Assumption 9.7.
Let G ⊆ D f ×I f be open.
Let the projector function Q0 onto N0 be continuous. P0 = I−Q0. The generalized
inverse D− is given by DD−D = D, D−DD− = D−, DD− = R, D−D = P0.
For a given level κ ∈ N, we call the sequence G0, . . . ,Gκ a quasi-admissible matrix
function sequence associated to the DAE on G, if it is built by the rule

Set G0 := AD, B0 := B, N0 := kerG0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1

fix a subspace Ni ⊆ kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi = I−Qi, Πi =Πi−1Pi

and additionally

(a) the subspace Ni is continuous, i = 1, . . . ,κ ,
(b) Πi is continuous and DΠiD− is continuously differentiable, i = 1, . . . ,κ .

The projector functions Q0, . . . ,Qκ associated to a quasi-admissible matrix
function sequence are said to be quasi-admissible, too.

With quasi-admissible projector functions Q0, . . . ,Qκ we are sure to have continu-
ous matrix functions G0, . . . ,Gκ and Gκ+1.
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Definition 9.10. If quasi-admissible projector functions Q0, . . . ,Qκ are chosen such
that

kerQ0 = N⊥0 , kerQi = [N0 + · · ·+Ni]
⊥⊕Xi, Xi := [N0 + · · ·+Ni−1]∩

�
Ni

⊥
,

for i = 1, . . . ,κ , then we speak of widely orthogonal quasi-admissible projector
functions.

Proposition 9.11. If Q0, . . . ,Qκ are quasi-admissible projectors, then the following
relations are valid

(1) kerΠi = N0 + · · ·+Ni, i = 0, . . . ,κ ,
(2) the productsΠi =P0 · · ·Pi, Πi−1Qi =P0 · · ·Pi−1Qi, DΠiD−=DP0 · · ·PiD− and

DΠi−1QiD− = DP0 · · ·Pi−1QiD− are projectors for i = 1, . . . ,κ ,
(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi, i = 1, . . . ,κ ,
(4) Gi+1Q j = B jQ j, 0≤ j ≤ i, i = 1, . . . ,κ ,
(5) D(N0 + · · · + Ni) = imDΠi−1Qi ⊕ imDΠi−2Qi−1 + · · · + imDΠ0Q1,

i = 1, . . . ,κ ,

(6)
�
Ni ⊆ kerG j, 1≤ i < j ≤ κ+1.

Proof. (1)–(5) We use the same arguments as for Proposition 2.7.

(6) z ∈
�
Ni means z ∈ Ni and so z = Qiz. Property (1) implies Πi−1z = 0. This allows

us to conclude that Gi+1z = Giz+BiQiz = 0. For s = 2, . . . ,κ+1− i, we have

Gi+sz = Gi+s−1z+Bi+s−1Qi+s−1z = Gi+s−1z+Bi+s−1Qi+s−1Πi−1+s−1z = Gi+s−1z.

Therefore, we find Gi+2z = 0, . . . ,Gκ+1 = 0. ��

We reconsider the above examples featuring different kinds of critical points and
describe associated matrix functions.

Example 9.12 (Hidden critical point). The DAE from Example 9.4

x1(t)x′1(t)− x2(t) = 0,
x1(t)− x2(t) = 0,

yields

fy(y,x, t) =
[

x1
0

]
, dx(x, t) =

[
1 0
]
, G0 =

[
x1 0
0 0

]
, fx(y,x, t) =

[
y −1
1 −1

]
,

further

Q0 =

[
0 0
0 1

]
, G1 =

[
x1 −1
0 −1

]
.

There is no nontrivial continuous subnullspace N1, since the matrix function G1 is
nonsingular except for x1 = 0. ��
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Example 9.13 (Nonuniqueness of y). For the DAE from Example 9.6,

x′1(t)
2− x2(t)2− γ(t) = 0,

x2(t)−ϕ(x1(t), t) = 0,

with

fy(y,x, t) =
[

2y
0

]
, dx(x, t) =

[
1 0
]
, fx(y,x, t) =

[
0 −2x2

−ϕx1(x1, t) 1

]
,

we find

Q0 =

[
0 0
0 1

]
, G1 =

[
2x1

1 2x2
0 1

]
.

There is no nontrivial continuous subnullspace N1 such that the sequence cannot be
continued. The last matrix function is nonsingular for x1

1 �= 0 but it has a rank drop
at x1

1 = 0. ��

Example 9.14 (Hidden singular ODE). For the DAE from Example 9.5
[

tk

0

]
(
[
1 0
]

x(t))′+
[

M 0
1 1

]
= q(t),

we generate

Q0 =

[
0 0
0 1

]
, G1 =

[
tk 0
0 1

]
.

Again there is no nontrivial continuous subnullspace N1, since the matrix G1 is
nonsingular if t �= 0. ��

Example 9.15 (Harmless critical point). We revisit Example 2.70 from Section 2.9,
which shows a harmless critical point. The DAE

[
0 α(t)
0 0

]
(

[
0 0
0 1

]
x)′+

[
1 0
0 1

]
x = q, (9.16)

has a quasi-proper leading term. We choose

Q0 =

[
1 0
0 0

]
, Π0 = P0 = R =

[
0 0
0 1

]

and compute

G0 = A =

[
0 α
0 0

]
, G1 =

[
1 α
0 0

]
, N1 = {z ∈ R

2 : z1 +αz2 = 0}.

Next, we choose

Q1 =

[
0 −α
0 1

]
, thus, P0P1 =Π1 = 0, B1 = BP0 =

[
0 0
0 1

]
, G2 =

[
1 α
0 1

]
.
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Observe that N1 equals kerG1, and G2 remains nonsingular on the entire interval
independently of how the function α behaves. ��

Observe that the quasi-admissible matrix function sequences do not at all indicate
harmless critical points, but they indicate other critical points in later stages of the
sequence.

9.3 Quasi-regularity

In general, a nonsingular matrix function Gκ indicates quasi-regularity by the fol-
lowing definition.

Definition 9.16. A DAE (9.1) which satisfies Assumption 9.7 is said to be quasi-
regular on the open connected set G ⊆D f ×I f , if there is a quasi-admissible matrix
function sequence G0, . . . ,Gκ such that Gκ is nonsingular.
Then the set G is called a quasi-regularity region.
A point (x̄, t̄) ∈ D f ×I f is named quasi-regular if there is a quasi-regularity region
G � (x̄, t̄).

Definition 9.16 generalizes Definition 3.28. In the same way one can generalize
Definition 3.62 which allows for a localization of the jet variables, too. Clearly, if a
DAE is regular, then it is also quasi-regular, but the opposite is not true. The class
of quasi-regular DAEs is much wider.
The following example continues the discussion of Example 9.3 and shows a quasi-
regular DAE involving a nonlinear function d.

Example 9.17 (Lubich’s DAE, [103]). The DAE

(x1(t)+ x2(t)x3(t))′ −2x3(t)x′2(t) = q1(t),

x2(t) = q2(t),

x3(t) = q3(t),

has the form (9.1) with m = 3, n = 2,

d(x, t) =
[

x1 + x2x3
x2

]
, f (y,x, t) =

⎡
⎣

y1−2x3y2−q1(t)
x2−q2(t)
x3−q3(t)

⎤
⎦ .

The matrix function

G0 = AD =

⎡
⎣

1 −x3 x2
0 0 0
0 0 0

⎤
⎦

has the two-dimensional nullspace kerG0 = {z ∈ R
3 : z1− x3z2 + x2z3 = 0}, while

N0 = kerD = {z ∈ R
3 : z2 = 0,z1 + x2z3 = 0} has dimension one only. With
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Q0 =

⎡
⎣

0 0 −x2
0 0 0
0 0 1

⎤
⎦ , P0 =

⎡
⎣

1 0 x2
0 1 0
0 0 0

⎤
⎦ , B =

⎡
⎣

0 0 −2x1
2

0 1 0
0 0 1

⎤
⎦ ,

we obtain

G1 =

⎡
⎣

1 −x3 x2−2x1
2

0 0 0
0 0 1

⎤
⎦ , W1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ .

Choosing now N1 = {z ∈ R
3 : z3 = 0, z1− x3z2 = 0} and

Q1 =

⎡
⎣

0 x3 0
0 1 0
0 0 0

⎤
⎦ , we realize Q1Q0 = 0, and furtherW1BQ1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦

such that G2 must have constant rank r2 = 3. Therefore, Lubich’s DAE is quasi-
regular with r2 = 3. ��

Example 9.18 (G3 is nonsingular). We investigate the DAE from Example 9.2,
⎡
⎣

0 α 0
0 0 β
0 0 0

⎤
⎦
(⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦x(t)

)′
+ x(t)−q(t) = 0.

We derive

G0 =

⎡
⎣

0 α 0
0 0 β
0 0 0

⎤
⎦ , B0 =

⎡
⎣

1 αx2 x1
2 αx3x1

2
0 1 βx3x1

3
0 0 1

⎤
⎦ ,

D− =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , P0 =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 α 0
0 0 β
0 0 0

⎤
⎦ .

Because of the zeros of the function β , the matrix function G1 changes its rank.
This makes the nullspace of G1 discontinuous. Choose the continuous subnullspace
N1 = {z ∈ R

3 : z1 +αz2 = 0,z3 = 0} as well as the projector

Q1 =

⎡
⎣

0 −α 0
0 1 0
0 0 0

⎤
⎦ ,

such that Q1Q0 = 0, and

P0Q1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , Π1 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G2 =

⎡
⎣

1 α+αx2x1
2 0

0 1 β
0 0 0

⎤
⎦ .

Now G2 has constant rank 2, and we may use the nullspace N2 = kerG2
= {z ∈ R

3 : z1 +(α+αx2 x1
2)z2 = 0, z2 +β z3 = 0} as well as the nullspace projec-
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tor

Q2 =

⎡
⎣

0 0 (α+αx2x1
2)β

0 0 −β
0 0 1

⎤
⎦ .

This yields

Π1Q2 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , Π2 =

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ , G3 =

⎡
⎣

1 α+αx2x1
2 0

0 1 β
0 0 1

⎤
⎦ .

Consequently, the given DAE is quasi-regular independently of the behavior of the
functions α and β . G2 has constant rank, and G3 remains nonsingular. Observe that
there might be open subsets of D×I where natural reformulations of the DAE are
regular with tractability index 1, 2 or 3. This kind of more precise information is not
available within the framework of quasi-regular DAEs (cf. Section 3.12). ��

The class of quasi-regular DAEs seems to be close to the class of DAEs with well-
defined differentiation index (cf. Section 3.10). In both versions, the local nature of
the DAE may essentially differ from the global one, however, the framework does
not comprise the precise local characterization.

By Proposition 9.11 (6), we can never reach a nonsingular Gκ if one of the in-

tersections
�
Ni, i = 1, . . . ,κ − 1, is nontrivial. Further, from Proposition 9.8 (5) we

conclude that, for the nonsingularity of Gκ , the relation

Nκ−1 = kerGκ−1

is necessary. In particular, if N0 is in fact a proper subspace of kerG0, it can never
happen that G1 is nonsingular.

As mentioned before, if Gκ is nonsingular, then all intersections
�
N1, . . . ,

�
Nκ−1,

must be trivial and the sums N0 + · · ·+Ni, i = 1, . . . ,κ−1, are direct sums. Owing
to the construction, Xi = N0+ · · ·+Ni−1 ⊆ kerQi, i = 1, . . . ,κ−1, is valid for quasi-
regular DAEs and we then have

QiQ j = 0, 0≤ j ≤ i−1, i = 1, . . . ,κ .

Furthermore, Proposition 9.11 (4) implies GκQ j = B jQ j. In consequence, for quasi-
regular DAEs the associated projector functions Q j = G−1

κ B jΠ j−1Q j, j = 1, . . .,
κ−1, are continuous in all their components.

We show in Section 9.6 that a similar decoupling, as approved for regular linear
DAEs, is possible also for quasi-regular DAEs.

As pointed out before, in general, the structural relevance of the rank values ri(t)
gets lost. However, there are special situations if they keep their meaning. Suppose
the matrix function sequence under consideration is built by means of widely or-
thogonal quasi-admissible projector functions. If the subspaces Ni for all i coincide
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with the nullspaces kerGi on a dense subset Gdense of the open set G, then the admis-
sible projector functions are actually continuous extensions of the related nullspace
projector functions defined on Gdense, and the ranks ri are constants on Gdense. In this
case, the ranks ri regain a structural meaning.

9.4 Linearization

Supposing the DAE (9.1) satisfies Assumption 9.7, for any reference function
x∗ ∈ C(I∗,Rm), I∗ ⊆ I f , with values in D f , i.e., x∗(t) ∈ D f , t ∈ I∗, and such that
d(x∗(·), ·) ∈ C1(I∗,Rn), the linear DAE

A∗(t)(D∗(t)x(t))′+B∗(t)x(t) = q(t), t ∈ I∗, (9.17)

with coefficients given by

A∗(t) := fy((d(x∗(t), t))′,x∗(t), t),

D∗(t) := dx(x∗(t), t),

B∗(t) := fx((d(x∗(t), t))′,x∗(t), t), t ∈ I∗,

is called a linearization of the nonlinear DAE (9.1) along the reference function x∗
(cf. Definition 3.12).
The linear DAE (9.17) has continuous coefficients. Owing to the quasi-proper lead-
ing term of the nonlinear DAE (9.1), the subspace kerD∗ is a nontrivial C-subspace,
and it holds that

NA((d(x∗(t), t))′,x∗(t), t)⊕ imD∗(t) = R
n, im(A∗(t)D∗(t)) = imA∗(t), t ∈ I∗.

(9.18)
If the reference function x∗(.) is continuously differentiable, these subspaces are
C1-subspaces, D∗ is continuously differentiable, and hence the linearization (9.17)
inherits the quasi-proper leading term from the nonlinear DAE.
Depending on where the graph of the reference function x∗ is located, it may well
happen that the linearization (9.17) possesses a more precise reformulation in the
sense that it has a properly stated leading term or at least a higher dimensional
subspace ker D̃∗.

In case of smooth reference functions x∗, the coefficients of the DAE (9.17) can
be described using (9.6) as

A∗(t) = A(x′∗(t),x∗(t), t), (9.19)
D∗(t) = D(x∗(t), t), (9.20)
B∗(t) = B(x′∗(t),x∗(t), t), t ∈ I∗. (9.21)

It is due to the construction of the matrix function sequences that linearizations of
quasi-regular DAEs inherit the quasi-regularity. This constitutes the content of the
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following theorem. However, we cannot expect the reverse assertion to be valid, and
this makes a serious difference to the class of regular DAEs (see Theorem 3.33).
The case studies in Examples 9.2 and 9.18 illustrate that a linearization does not
necessarily inherit the values ri.

Theorem 9.19. If the DAE (9.1) satisfies Assumption 9.7 and is quasi-regular on the
open set G ⊆ D f ×I f , then, for each arbitrary reference function x∗ ∈ Cν(I∗,Rm),
with (x∗(t), t) ∈ G, t ∈ I∗ ⊆ I f , ν ∈N sufficient large, the linear DAE (9.17) is also
quasi-regular.

Proof. Since x∗ is at least continuously differentiable, we may use the expressions
(9.19), (9.20), (9.21) for the coefficients of the linearized DAE (9.17). Then the
assertion becomes an immediate consequence of the structure of the matrix function
sequences. In particular, Q∗,0(t) := Q0(t), Q∗,1(t) := Q1(x′∗(t),x∗(t), t). Further, for
i≥ 2, we see that Q∗,i(t) = Q0(x

(i)
∗ (t), . . . ,x′∗(t),x∗(t), t) represent quasi-admissible

projector functions for the linear DAE (9.17). If Gκ is nonsingular, so is G∗,κ . ��

Linearizations of a quasi-regular DAE may actually be regular with different char-
acteristic values as demonstrated by the next example.

Example 9.20 (Different linearizations). Put α(s) =
{

s2 for s > 0
0 for s≤ 0 and let a ∈R be

a constant. The DAE

x′1(t)− x2(t) = 0,
x′2(t)+ x1(t) = 0, (9.22)

α(x1(t)) x′4(t)+ x3(t) = 0,
x4(t)−a = 0,

satisfies Assumption 9.7 with D f = R
4, I f = R, n = 3 and

d(x, t) =

⎡
⎣

x1
x2
x4

⎤
⎦ , f (y,x, t) =

⎡
⎢⎢⎣

y1− x2
y2 + x1

α(x1)y3 + x3
x4−a

⎤
⎥⎥⎦ ,G0 =

⎡
⎢⎢⎣

1
1

0 α(x1)
0

⎤
⎥⎥⎦ .

Notice that the DAE (9.22) has the two maximal regularity regions
G+ := {(x, t) ∈ D f ×I f : x1 > 0} and G− := {(x, t) ∈ D f ×I f : x1 < 0}. The latter
is associated with a proper reformulation

dnew(x, t) =

⎡
⎣

x1
x2
0

⎤
⎦ , fy(y,x, t) =

⎡
⎢⎢⎣

1
1

0
0 0 0

⎤
⎥⎥⎦ , Rnew =

⎡
⎣

1
1

0

⎤
⎦ .

It is easy to check that the DAE is actually regular with index 1 on G− and regular
with index 2 on G+.
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Set

Q0 =

⎡
⎢⎢⎣

0
0

1
0

⎤
⎥⎥⎦ , N0 = imQ0 = kerdx,

and compute

G1 =

⎡
⎢⎢⎣

1
1

1 α(x1)
0

⎤
⎥⎥⎦ , Q1 =

⎡
⎢⎢⎣

0
0

0 −α(x1)
1

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

1
1

1 α(x1)
1

⎤
⎥⎥⎦ ,

which proves quasi-regularity on D f ×I f .
The linearization along a reference function x∗(·) has the form
⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 α(x∗1(t))
0 0 0

⎤
⎥⎥⎦

⎛
⎝
⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦x(t)

⎞
⎠
′

+

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0

α ′(x∗1(t)) x′∗4(t) 0 1 0
0 0 0 1

⎤
⎥⎥⎦x(t) = q(t).

(9.23)

In particular, if x∗(t) = [0, 0, 0, a]T , which is a stationary solution of the original
DAE, the linear DAE (9.23) is actually regular with index 1.
If x∗(t) = [sin t,cost,0,a]T , which is a periodic solution of the nonlinear DAE, the
linearization is in detail

x′1(t)− x2(t) = q1(t),

x′2(t)+ x1(t) = q2(t),

α(sin t) x′4(t)+ x3(t) = q3(t),

x4(t) = q4(t).

This linear DAE has in turn index 2 and index 1 on its regularity intervals (0,π),
(π,2π), (2π,3π), and so on. ��

9.5 A DAE transferable into SCF is quasi-regular

We show in this section that if a DAE is transformable into standard canonical form
(SCF) then it is quasi-regular.

By Definition 2.77 a DAE is already in SCF if it is in the form
[

I 0
0 N(t)

]
x′(t)+

[
W (t) 0

0 I

]
x(t) = q(t), t ∈ I, (9.24)

where N is strictly upper or lower triangular.
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We stress that N does not need to have constant rank nor uniform nilpotency
index. We use N as the strictly upper triangular κ×κ matrix function

N =

⎡
⎢⎢⎢⎣

0 n12 · · · n1κ
. . . . . .

...
. . . nκ−1,κ

0 0

⎤
⎥⎥⎥⎦ . (9.25)

With the m×m matrix functions

A =

[
I

N

]
, D =

⎡
⎢⎢⎢⎢⎣

I
0

1
. . .

1

⎤
⎥⎥⎥⎥⎦
, B =

[
W

I

]
,

the DAE (9.24) becomes a DAE with quasi-proper leading term.

Lemma 9.21. Each DAE of the form (9.24), (9.25) is quasi-regular, more precisely,
there is a sequence of quasi-admissible matrix functions G0, . . . ,Gκ resulting in a
nonsingular Gκ , whereby κ denotes the size of the nilpotent matrix N in (9.24).

Proof. We start constructing the sequence with P0 := D, D− = P0 =Π0,

G0 = AD = A, Q0 =

⎡
⎢⎢⎢⎢⎣

0
1

0
. . .

0

⎤
⎥⎥⎥⎥⎦
,

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
1 n12 · · · n1κ

0
. . .

...
. . . nκ−1,κ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0 −n12

1
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

This choice fulfills Q1Q0 = 0. Further,

P0P1 =Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
0

0
1

. . .
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, B1 = B0P0 =

⎡
⎢⎢⎢⎢⎢⎣

W
0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎦
.
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Since the entries ni,i+1 may have zeros or also vanish identically on subintervals, the
nullspaces kerG0 and kerG1 can be much larger than N0 = imQ0 and N1 = imQ1,
respectively. Next we derive

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
1 n12 n1κ

1 n23

0
...

. . . nκ−1,κ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and choose

Q2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0 q(2)1

0 q(2)2
1
0 0
...

. . .
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

implying Π2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0

0
0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with q(2).2 :=−n23, q(2)1 :=−n13+n12n23, and Q2Q1 = 0, Q2Q0 = 0. Since G2Q2 = 0
the subspace N2 := imQ2 belongs to kerG2. Proceeding further in this way we arrive
at

Πi−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0

. . .
0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
i

, Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
1 n12 n1κ

. . .

1 ni,i+1
...

0
. . . nκ−1,κ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and choose
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Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0 q(i)1
. . .

...
0 q(i)i

1
0 0
...

. . .
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with q(i)i =−ni,i+1, etc.

This leads to

Πi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0

. . .
0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
i+1

, Bi =

[
W 0
0 I

]
Πi−1.

Further,

Gi+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
1 n12 n1κ

. . . . . .

1 ni+1,i+2
...

0
. . .
. . . nκ−1,κ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and so on. We end up with the nonsingular matrix function

Gκ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
1 n12 n1κ

1
. . .
. . . nκ−1,κ

1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which completes the proof. ��

The SCF-DAE (9.24), (9.25) represents at the same time the two special cases
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N = 0 and N =

⎡
⎢⎢⎢⎢⎣

0 1 0
. . . . . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦
.

In both these instances, the DAE is regular in its natural proper reformulation. The
index is 1 in the first case, and κ in the second case. This makes it clear that the num-
ber κ does not contain any further essential information about the DAE structure.
If we knew more about the entries of N, we could possibly find higher dimensional
subspaces Ni and obtain a nonsingular matrix function Gκ̄ with κ̄ ≤ κ .

Turn now to general linear DAEs in standard form

E(t)x′(t)+F(t)x(t) = q(t), t ∈ I. (9.26)

Definition 9.22. The linear DAE (9.26) in standard form is said to be quasi-regular
if there is a reformulation with quasi-proper leading term, such that the reformulated
DAE is quasi-regular.

Let the DAE (9.26) be equivalent to a DAE in SCF. Then nonsingular matrix func-
tions L ∈ C(I,L(Rm)) and K ∈ C1(I,L(Rm)) exist such that premultiplication of
(9.26) by L(t) and the transformation x(t) = K(t)x̄(t) yield a DAE in SCF (9.24).
Denote

A := LEK =

[
I 0
0 N

]
, B := LFK +LEK′ =

[
W 0
0 I

]

and introduce the incidence matrix

D :=

⎡
⎢⎢⎢⎢⎢⎣

I
0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎦

such that A = AD holds and the transformed SCF-DAE

A(t)x̄′(t)+B(t)x̄(t) = L(t)q(t), t ∈ I, (9.27)

can be written as a DAE with quasi-proper leading term

A(t)(Dx̄(t))′+B(t)x̄(t) = L(t)q(t), t ∈ I. (9.28)

Let Q0, . . . ,Qκ−1 be the quasi-admissible projector functions provided by Lem-
ma 9.21 for equation (9.28). Put Ã := L−1A, D̃ := DK−1, B̃ := L−1BK−1, and con-
sider the DAE with quasi-proper leading term
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Ã(t)(D̃x(t))′+ B̃(t)x(t) = q(t), t ∈ I, (9.29)

which arises from scaling (9.28) by L(t)−1 and letting x̄(t) = K(t)−1x(t). By
construction, Ñ0 = ker D̃ = KkerD = KN0 is a continuous subnullspace of G̃0 =
ÃD̃ = L−1ADK−1 = L−1G0K−1 and Q̃0 := KQ0K−1 is a quasi-admissible projec-
tor function for (9.29). Choosing at each level Q̃i := KQiK−1, and then deriving
G̃i+1 = L−1Gi+1K−1, we find quasi-admissible projector functions Q̃0, . . . , Q̃κ−1
yielding a nonsingular G̃κ . This means that the SCF-DAE (9.27) and the trans-
formed DAE (9.29) are quasi-regular at the same time.

Theorem 9.23. If a linear DAE (9.26) can be transformed into SCF, then it is quasi-
regular.

Proof. Regarding Lemma 9.21, it remains to show that the transformed DAE(9.29)
is actually a quasi-proper reformulation of the original DAE (9.26). Applying the
property AD = A we derive

ÃD̃ = L−1ADK−1 = L−1AK−1 = E,

and

B̃+ ÃD̃′ = L−1BK−1 +L−1AD(K−1)′ = L−1BK−1 +L−1A(K−1)′

= L−1(LFK +LEK′)K−1 +L−1LEK(K−1)′

= F +E
(
K′K−1 +K(K−1)′

)
= F.

Then, the DAE (9.26) can be written as ÃD̃x′+(B̃+ ÃD̃′)x = q, which verifies the
assertion. ��

We show in the next section (cf. Proposition 9.25) that the structure of each quasi-
regular linear DAE can be uncovered by means of quasi-admissible projectors.
Therefore, Theorem 9.23 actually implies solvability results concerning DAEs being
transformable into SCF. More precisely, supposing the coefficients E,F are smooth
enough, for each inhomogeneity q that is also sufficiently smooth, and each t0 ∈ I,
a ∈ R

m, there is exactly one function x∗ ∈ C1
D̃(I,R

m) which satisfies the DAE as
well as the initial condition

D̃(t0)Π̃κ−1(t0)(x(t0)−a) = 0.

Under certain additional smoothness requirements, x∗ is continuously differentiable
and satisfies the original DAE (9.26). This confirms once again the well-known
solvability results given in [41].

9.6 Decoupling of quasi-regular linear DAEs

Here we deal with linear DAEs (9.4), i.e.,
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A(t)(D(t)x(t))′+B(t)x(t) = q(t),

that have a quasi-proper leading term and quasi-admissible projectors Q0, . . . ,Qκ−1
such that the associated matrix function Gκ is nonsingular on the given interval
I ⊆ R.

We decouple the DAEs by means of the same arguments and tools as used for
regular DAEs in Section 2.4. Due to A = ADD−, D−D = P0, the DAE (9.4) is

G0D−(Dx)′+B0x = q, (9.30)
G0D−(Dx)′+B0P0x+B0Q0x = q,

and, with G1D− = G0D−, G1Q0 = B0Q0,

G1D−(Dx)′+B0P0x+G1Q0x = q. (9.31)

Expressing

P1D−(Dx)′ = P0P1D−(Dx)′+Q0P1D−(Dx)′ = D−DP0P1D−(Dx)′+Q0P1D−(Dx)′

= D−(DP0P1x)′ −D−(DP0P1D−)′Dx+Q0P1D−(Dx)′

= D−(DΠ1x)′ −D−(DΠ1D−)′Dx− (I−Π0)Q1D−(Dx)′

= D−(DΠ1x)′ −D−(DΠ1D−)′Dx− (I−Π0)Q1D−(DΠ0Q1x)′

+(I−Π0)Q1D−(DΠ0Q1D−)′Dx

we obtain

G1D−(DΠ1x)′+B1x+G1Q0x−G1(I−Π0)Q1D−(DΠ0Q1x)′

−G1(I−Π0)Q1D−(DΠ1D−)′DΠ0x = q.
(9.32)

Proceeding analogously, by means of G1(I−Π0) = G2(I−Π0), B1Q1 = G2Q2,

G1D− = G2P2P1D− = G2(Π1P2P1D−+(I−Π1)P2P1D−)

= G2(Π2D−+(I−Π1)P1D−− (I−Π1)Q2D−)

= G2(D−DΠ2D−+(I−Π1)P1D−− (I−Π1)Q2D−DΠ1Q2D−)

we arrive at

G2D−(DΠ2x)′+B2x+G2
1
∑
j=0

Q jx

−G2
1
∑
j=0

(I−Π j)Q j+1D−(DΠ jQ j+1x)′+G2
1
∑
j=0

VjDΠ jx = q
(9.33)

with Vj := (I−Π j){PjD−(DΠ jD−)′ −Q j+1D−(DΠ j+1D−)′}DΠ jD−.
Formally, these expressions look like those given in Section 2.4 (e.g., (2.39)).

However, since now the subspaces N0, N1, N2 do not necessarily coincide with
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kerG0, kerG1 and kerG2, and so on, we are confronted with a different meaning
of the coefficients.

Let us go into detail for the case when G2 is nonsingular on I, but G1 is not.
Then, evidently we have Q2 = 0, P2 = I, Π1 =Π2, and (9.33) simplifies to

G2D−(DΠ1x)′+B2Π1x+G2(Q0x+Q1x)−G2(I−Π0)Q1D−(DΠ0Q1x)′

+G2

{
− (I−Π0)Q1D−(DΠ1D−)′DΠ0

+(I−Π1)P1D−(DΠ1D−)′DΠ1

}
x = q.

(9.34)

Notice that due to Proposition 9.8(5) the relation N1 = kerG1 must be valid on I.
Scaling (9.34) by G−1

2 and then splitting by I = D−DΠ1 + (I−Π1) leads to the
system consisting of the ODE

(DΠ1x)′ − (DΠ1D−)′DΠ1x+DΠ1G−1
2 B2D−DΠ1x = DΠ1G−1

2 q, (9.35)

and the relation

(I−Π1)D−(DΠ1x)′+(I−Π1)G−1
2 B2Π1x+Q0x+Q1x

−(I−Π0)Q1D−(DΠ0Q1x)′ − (I−Π0)Q1D−(DΠ1D−)′D(Π0Q1 +Π1)x

+(I−Π1)P1D−(DΠ1D−)′DΠ1x = (I−Π1)G−1
2 q.

Due to Q1D−(DΠ1D−)′DΠ0Q1 = 0, the latter reads as

Q0x+Q1x− (I−Π0)Q1D−(DΠ0Q1x)′

= (I−Π1)G−1
2 q− (I−Π1)G−1

2 B0Π1x+Q0Q1D−(DΠ1D−)′DΠ1x.
(9.36)

In turn equation (9.36) decouples to

Π0Q1x =Π0Q1G−1
2 q−Π0Q1G−1

2 B0Π1x, (9.37)

Q0x−Q0Q1D−(DΠ0Q1x)′ (9.38)

= Q0P1G−1
2 q−Q0P1G−1

2 B0Π1x+Q0Q1D−(DΠ1D−)′DΠ1x.

It becomes clear that any quasi-regular DAE (9.4) with κ = 2 is equivalent via the
decomposition x = D−DΠ1x+Π0Q1x+Q0x to the system (9.35), (9.37), (9.38).
Equation (9.35) is an explicit ODE that determines the component DΠ1x, thus Π1x.
Equation (9.37) describes the algebraic components Π0Q1x as in the case of reg-
ular DAEs. Equation (9.38) looks like a differentiation problem, however, now, in
contrast to the decoupling of regular DAEs, it may happen that Q0Q1 vanishes on
I or on subintervals. A lot of different situations are integrated in the framework of
quasi-regular DAEs.

Example 9.24 (G2 is nonsingular). The linear system with continuous coefficients
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A11x′1 + x1 = q1 } m1,

A23x′3 + x2 = q2 } m2, (9.39)
x3 = q3 } m3,

has a quasi-proper leading term with

A =

⎡
⎣

A11 0 0
0 0 A23
0 0 0

⎤
⎦ , D =

⎡
⎣

I 0 0
0 0 0
0 0 I

⎤
⎦ , B =

⎡
⎣

I 0 0
0 I 0
0 0 I

⎤
⎦ ,

D−=D, R=D, P0 =D, G0 =AD=A, Q0 = I−P0. Let the entry A11 be nonsingular
on the given interval I. Compute

G1 =

⎡
⎣

A11 0 0
0 I A23
0 0 0

⎤
⎦ , Q1 =

⎡
⎣

0 0 0
0 0 −A23
0 0 I

⎤
⎦ , Π0Q1 =

⎡
⎣

0 0 0
0 0 0
0 0 I

⎤
⎦ , G2 =

⎡
⎣

A11 0 0
0 I A23
0 0 I

⎤
⎦ .

The projectors Q0, Q1 are quasi-admissible. G2 is nonsingular on I independently
of the rank of A23, thus the DAE is quasi-regular with κ = 2. Then it holds that
kerG1 = N1. With

DΠ1D− =

⎡
⎣

I
0

0

⎤
⎦ , DΠ1G−1

2 B2D− =

⎡
⎣

A−1
11

0
0

⎤
⎦ , DΠ1G−1

2 =

⎡
⎣

A−1
11

0
0

⎤
⎦ ,

Π0Q1G−1
2 =

⎡
⎣

0
0

I

⎤
⎦ , Π0Q1G−1

2 B0Π1 = 0, Q0Q1 =

⎡
⎣

0 0 0
0 0 −A23
0 0 0

⎤
⎦ ,

Q0P1G−1
2 =

⎡
⎣

0
I

0

⎤
⎦ , 32Q0P1G−1

2 B0Π1 = 0,

the decoupled system (9.35), (9.37), (9.38) is of the form (omitting the zeros)

x′1 +A−1
11 x1 = A−1

11 q1,

x3 = q3, (9.40)
x2 +A23x′3 = q2,

which is, of course, not a surprise. Notice that the third equation may contain further
derivative-free equations. Namely, with any generalized inverse A−23, it holds that
(I−A23A−23)x2 = (I−A23A−23)q2, and these equations disappear (are trivial ones)
only if A23 has full row rank m2 on I. Different situations arise depending on A23.

Case 1: kerA23 = {0}, m2 ≥ m3.

Here, the DAE actually has a proper leading term, kerG0 = kerD = N0, the projec-
tors Q0, Q1 are admissible ones, and the DAE is regular with tractability index 2. All
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components of q3 have to be differentiated. Observe that rankQ0Q1 = rankA23 =
m3. The decoupled system (9.35), (9.37), (9.38) is exactly what we have already
obtained in Subsection 2.4.3.2.

Case 2: A23 = 0.

Obviously, this system (9.39) is in fact regular with tractability index one. However,
as we now cover only a part of kerG0 by the quasi-admissible projector Q0, the
other part is included in N1. Because of Q0Q1 = 0, equation (9.38) de facto does not
contain any term with a differentiation problem.
This example makes it obvious that, initially, κ has nothing to do with the index.

Case 3: rankA23 varies on I.

Here we may find local index-2 problems on subintervals I2⊂I with kerA23 = {0}.
On other subintervals I1 ⊂ I there might be regular index-1 problems. The index
changes in between are harmless. Even clusters of critical points, for instance at
m2 = m3 = 1, A23(t) = t sin 1

t , are allowed.

Case 4: rankA23 = m2, m3 > m2.

In contrast to Case 1, even though A has constant rank, N0 = kerD is only a proper
subspace of kerG0. The third equation in the system (9.40) does not contain any
derivative-free part; however, it is not necessary to differentiate all components of
x3, which becomes obvious, e.g., in the special case A23 =

[
I 0
]
. A possible refor-

mulation with proper leading term would read

Ã = A, D̃ =

⎡
⎣

I 0 0
0 0 0
0 0 P23

⎤
⎦ , B̃ =

⎡
⎣

I 0 0
0 I −A23P′23
0 0 I

⎤
⎦ , G̃0 = ÃD̃ = A,

with P23 := A−23A23. An admissible sequence would be, for instance,

Q̃0 =

⎡
⎣

0 0 0
0 I 0
0 0 I−P23

⎤
⎦ , G̃1 =

⎡
⎣

A11 0 0
0 I A23(I−P′23)
0 0 I−P23

⎤
⎦ ,

Q̃1 =

⎡
⎣

0 0 0
0 0 −A23(I−P′23)P23
0 0 P23

⎤
⎦=

⎡
⎣

0 0 0
0 0 −A23
0 0 P23

⎤
⎦ , D̃Π̃1D̃− =

⎡
⎣

I 0 0
0 0 0
0 0 0

⎤
⎦ ,

G̃2 =

⎡
⎣

A11 0 0
0 I A23(I−P′23)
0 0 I

⎤
⎦ .

This means that the DAE is regular with index 2, with characteristic values

r̃0 = m1 +m2, r̃1 = m1 +m2 +(m3−m2), r̃2 = m1 +m2 +m3 = m, μ = 2.
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Comparing, for the latter case, the given quasi-admissible and admissible projectors,
reveals that the loss of a component of kerG0 is, one might say, compensated for in
the next step. ��

In general, any quasi-regular DAE decouples into an inherent explicit regular
ODE that determines the solution component DΠκx and equations defining the other
components, possibly with inherent differentiation problems. This seems to be the
same as for regular DAEs, but as demonstrated by the previous example, the mean-
ing might differ essentially.

Proposition 9.25. If the linear DAE (9.4) is quasi-regular with Gκ being nonsingu-
lar, then it can be rewritten as

GκD−(DΠκ−1x)′+BκΠκ−1x (9.41)

+Gκ
κ−1

∑
j=0

{
Q jx− (I−Π j)Q j+1D−(DΠ jQ j+1x)′+VjDΠ jx

}
= q,

and decoupled via

x = D−u+ v0 + · · ·+ vκ−1,

u = DΠκ−1x, v0 = Q0x, vi =Πi−1Qix, i = 1, . . . ,κ−1,

into the system

u′ − (DΠκ−1D−)′u+DΠκ−1G−1
κ BκD−u = DΠκ−1G−1

κ q, (9.42)

⎡
⎢⎢⎢⎢⎣

0 N01 · · · N0,κ−1

0
...

. . . Nκ−2,κ−1
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
Dv1

...
Dvκ−1

⎤
⎥⎥⎥⎦

′

(9.43)

+

⎡
⎢⎢⎢⎢⎣

I M01 · · · M0,κ−1

I
...

. . . Mκ−2,κ−1
I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
...

vκ−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

H0
H1

...
Hκ−1

⎤
⎥⎥⎥⎦u =

⎡
⎢⎢⎢⎣

L0
L1
...

Lκ−1

⎤
⎥⎥⎥⎦q

with continuous coefficients for i = 1, . . . ,κ−2,
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Vj = (I−Π j)
{

PjD−(DΠ jD−)′ −Q j+1D−(DΠ j+1D−)′
}

DΠ jD−,

j = 0, . . .κ−1,

N01 =−Q0Q1D−, N0 j =−Q0P1 · · ·PjQ jD−, j = 2, . . . ,κ−1,

Ni,i+1 =−Πi−1QiQi+1D−, Ni j =−Πi−1QiPi+1 · · ·Pj−1Q jD−, j = i+2, . . . ,κ−1,
M0 j = Q0P1 · · ·Pκ−1M jDΠ j−1Q j, j = 1, . . . ,κ−1,
Mi j =Πi−1QiPi+1 · · ·Pκ−1M jDΠ j−1Q j, j = i+1, . . . ,κ−1,

M j =
j−1

∑
s=0

VsDΠ j−1Q jD−, j = 1, . . . ,κ−1,

L0 = Q0P1 · · ·Pκ−1G−1
κ , Li =Πi−1QiPi+1 · · ·Pκ−1G−1

κ ,

Lκ−1 =Πκ−2Qκ−1G−1
κ ,

H0 = Q0P1 · · ·Pκ−1KΠκ−1, Hi =Πi−1QiPi+1 · · ·Pκ−1KΠκ−1,

Hκ−1 =Πκ−2Qκ−1KΠκ−1,

K = (I−Πκ−1)G−1
κ Bκ−1Πκ−1 +

κ−1

∑
�=0

V�DΠκ−1.

Proof. Formula (9.41) is proved by the induction arguments used in Proposi-
tion 2.23 for (2.39). Thereby we take into account that Qκ = 0, Pκ = I, Πκ−1 =Πκ .
The further decoupling will be obtained by scaling (9.41) with G−1

κ and then split-
ting by DΠκ−1D− and I−Πκ−1 and repeating the respective arguments from Sec-
tion 2.4.2 (cf. (2.48), (2.50) and (2.52)). ��

We stress once again that the decoupling formulas look like those obtained for reg-
ular DAEs but they have a different meaning. The following solvability assertion
constitutes a simple benefit of the above decoupling.

Corollary 9.26. If the linear DAE (9.4) is quasi-regular and it possesses sufficiently
smooth coefficients, then it is solvable for each arbitrary sufficiently smooth excita-
tions.

9.7 Difficulties arising with the use of subnullspaces

The use of continuous subnullspaces and quasi-admissible matrix functions instead
of nullspaces and admissible matrix functions offers more flexibility concerning
the DAE analysis, but it is less rigorous in some sense. Any regular DAE is also
quasi-regular, and hence quasi-regularity can be thought as a concept generalizing
regularity. However, the meaning of the rank functions ri to indicate characteristic
values of the DAE gets lost.
It remains open how one should choose the continuous subnullspaces, and this
makes the approach somewhat precarious. Compared with the case of admissible
projector functions, the closest way is to look for continuous subnullspaces with
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maximal possible dimension, i.e., for maximal subnullspaces. If, at the level i, the
matrix function Gi has constant rank, then the maximal continuous subnullspace Ni
coincides with the nullspace of Gi itself, and if Gi has constant rank on a dense sub-
set of its definition domain, then the maximal continuous subnullspace represents
the continuous extension of the nullspace restricted to the dense subset. However, in
general, if the rank function ri varies arbitrarily, as demonstrated before, it heavily
depends on the locality whether a continuous subnullspace is maximal, and max-
imality may get lost on subsets. Hence, global maximality does not imply local
maximality.

The opposite way to build continuous subnullspaces is to take one-dimensional
ones. This seems to be easier in practice. For regular DAEs having the tractability
index μ , the quasi-admissible sequences resulting this way need more levels, and
end up with a nonsingular Gκ , κ ≥ μ . The following examples indicate once again
the loss of information formerly contained in the ranks ri.

Example 9.27 (Different sequences). The linear constant coefficient DAE
⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦x(t)

⎞
⎟⎟⎠

′

+ x(t) = q(t)

is regular with tractability index 2 and characteristic values r0 = 2,r1 = 2,r2 = 4. We
describe two different matrix sequences built with one-dimensional subnullspaces
starting from

G0 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , Q0 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , W0 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

and

G1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , W1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Case A:

Q1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ , W2 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

further,
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Q2 =

⎡
⎢⎢⎣

0 −1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , G3 =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ , W3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

and

B3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , Q3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 1

⎤
⎥⎥⎦ , G4 =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ .

Case B:

Q1 =

⎡
⎢⎢⎣

0 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , W2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

further,

Q2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , G3 =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ , W3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

and

B3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , Q3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 1

⎤
⎥⎥⎦ , G4 =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ .

In both cases, we have the same rank values r0 = 2, r1 = 2, r3 = 3 and r4 = 4, except
for r2 which equals 2 in Case A and 3 in Case B. ��

Example 9.28 (Loss of meaning). The linear constant coefficient DAE
⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
(
⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦x(t)

)′
+ x(t) = q(t)

is regular with tractability index 3. The characteristic values are r0 = 2, r1 = 3,
r2 = 3, r3 = 4. We describe a quasi-admissible sequence corresponding to one-
dimensional subnullspaces:
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G0 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q0 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , W0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B0 = I,

G1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q1 =

⎡
⎢⎢⎣

0 −1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , W1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

G2 =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 −1 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , W2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

G3 =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , Q3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , W3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , B3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

G4 =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The rank sequence r0 = 2, r1 = 2, r2 = 2, r3 = 3, r4 = 4 for this index-3 DAE is
exactly the same as the corresponding sequence in Case A of the previous example
which comprises an index-2 DAE. ��

9.8 Notes and references

(1) If there is some structure available to be exploited, the construction of quasi-
admissible projector functions might be easier than the construction of admissible
ones. For instance, while the regularity proof for linear DAEs with well-defined
strangeness index is quite difficult because of the complex structure of the relevant
nullspaces (cf. Section 2.10), quasi-regularity is much easier to show as we are going
to do now. The DAE
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⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 K2 · · · Kκ
0 N12 · · · N1κ

0
...

. . . Nκ−1,κ
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x′+

⎡
⎢⎢⎢⎢⎢⎢⎣

W
I

. . .
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

x = q (9.44)

with full row rank blocks Ni,i+1 ∈ L(Rli+1 ,Rli), i = 1, . . . ,κ−1 and

0 < l1 ≤ ·· · ≤ li ≤ li+1 ≤ ·· · ≤ lκ

is called a DAE in S-canonical form (cf. Section 2.10). Each square DAE
Ãx̃′+C̃x̃ = q̃ with sufficiently smooth coefficients, for which the strangeness index
is well-defined and the undetermined part vanishes, can be brought into the form
(9.44) by scalings and transformations of the unknown function (cf. [130]).
With the incidence matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

I
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎦
,

the DAE (9.44) can be rewritten as DAE (9.4) with quasi-proper leading term. By
constructing quasi-admissible projectors Q0, . . . ,Qκ−1 providing a nonsingular Gκ
we show that this DAE is quasi-regular. Note once again that this DAE is even
proved to be regular in Section 2.10 and the aim here is just to demonstrate the
comfort of quasi-admissible sequences.
We start with G0 = AD = A, D− = D, R = D and choose

Q0 =

⎡
⎢⎢⎢⎢⎢⎣

0
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎦

implying G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 K2 · · · Kκ
I N12 · · · N1κ

0
. . .

...
. . . Nκ−1,κ

0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Next, we choose

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −K2

0 −N12
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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providing

Π0Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −K2

0
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 K2

0
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and

B1Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Γ2

0 0
0 I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 K(2)
2 Kκ

I N12 · · · · · · N1κ

I
...

0
...

. . . Nκ−1,κ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with K(2)
2 = Γ2 +K2, Γ2 =−WK2 +K′2. Using

Q2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
0 ∗

0 −N23
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we find

Π1Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
0

0
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Π2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 ∗ ∗
0

0
0

I
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For any i≤ κ−1 we obtain
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Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 ∗ · · · ∗
I N12 · · · N1κ

I
. . .

I
...

0
. . . Nκ−1,κ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

when choosing

Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗
0 ∗

. . .
...∗

0 −Ni,i+1
I

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally,

Gκ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 ∗ . . . ∗
I N12 . . . N1κ

. . . . . .
. . . Nκ−1,κ

I

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Observing the relations

(I−Πi−1)Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗

0
...∗. . . Ni,i+1
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for i = 1, . . . ,κ−1 we find rank((I−Πi−1)Qi) ≥ rankNi,i+1 = l1. This means that
all differentiation terms appear in the corresponding decoupled system.

(2) Quasi-regularity supposes the existence of nontrivial continuous subspaces
Ni of kerGi on each level i until a nonsingular Gκ is reached. In particular,
N0 = kerD⊆ G0 must be continuous and nontrivial. It may happen that, although
Gi has an everywhere nontrivial nullspace, there is no continuous subnullspace of
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dimension greater than or equal to one. For instance (cf. [25]), for given functions
α,β ∈ C1(I,R) such that α(t)β (t) = 0, α ′(t)β ′(t)−1 �= 0, t ∈ I, the DAE in stan-
dard form [

0 α
β 0

]

︸ ︷︷ ︸
=N(t)

x′(t)+ x(t) = q(t), t ∈ I, (9.45)

is solvable, with the solution

x(t) = (I−N(t)′)−1(q(t)− (N(t)q(t))′
)
, t ∈ I.

If one of the functions α or β vanishes identically, this DAE is in SCF, and hence
quasi-regular.
In general, N(t) has rank 1 where α(t)2 + β (t)2 �= 0, and rank 0 elsewhere. The
nullspace kerG0(t) is spanned by

[
1 0
]T, if α(t) �= 0, and spanned by

[
0 1
]T if

β (t) �= 0. If α(t) = β (t) = 0, then kerN(t) coincides with R
2. Thus, if neither α nor

β vanishes identically on I, then there is no nontrivial continuous subnullspace N0,
and the DAE cannot be put into a quasi-proper formulation.
In this example, one could turn to families of subintervals of I where the DAE is
quasi-regular. This would closely correspond to the approach discussed in [41], and
the references therein, to put the DAE into SCF on subintervals.

(3) The framework of quasi-regular DAEs was first addressed in [48]. In [59],
a comprehensive analysis of so-called index-2 DAEs with harmless critical points
is given by means of the framework of quasi-regular DAE yielding an admissible
matrix function such that G2 is nonsingular. Those DAEs comprise regularity inter-
vals with index 1 and index 2. The quasi-regular decoupling is applied for obtaining
error estimations for numerical integration methods.

(4) In contrast to investigations of singularities by means of smooth projector
extensions (e.g., [173, 174], cf. Proposition 2.76) in the more general quasi-regular
DAEs different rank values on open subsets are admitted. Then, continuous exten-
sions of the nullspace projector functions do not exist.

9.9 Hierarchy of quasi-admissible projector function sequences
for general nonlinear DAEs

The matrices Q0, . . . ,Qi are projectors, where Q j projects onto Nj = kerG j,
j = 0, . . . , i, with P0 := I − Q0, Π0 := P0 and Pj := I − Q j, Π j := Π j−1Pj,
�
N j := (N0 + · · ·+Nj−1)∩Nj, j = 1, . . . , i.
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quasi-admissible (Def. 9.9)

(N0 + · · ·+Nj−1)�
�
N j ⊆ kerQ j,

Π j−1Q jQl = 0, l < j, j = 1, . . . , i

quasi-admissible widely orthogonal (Def. 9.10)
Q0 = Q∗0,

kerQ j = [N0 + · · ·+Nj]
⊥

⊕[(N0 + · · ·+Nj−1)∩
�
N
⊥
j ], j = 1, . . . , i,

Π j =Π ∗j , j = 0, . . . , i

Nj = kerG j, j = 0, . . . , i

admissible (Def. 3.21) widely orthogonal (Def. 3.24)



Chapter 10
Nonregular DAEs

We deal with DAEs of the form

f ((D(t)x(t))′,x(t), t) = 0,

and, in particular, with linear DAEs

A(t)(D(t)x(t))′+B(t)x(t) = q(t).

These DAEs have properly involved derivatives and comprise k equations and m
unknowns. It should be emphasized once again that the prior purpose of this mono-
graph is the detailed analysis of regular DAEs. In particular, we aim for practicable
and rigorous regularity criteria, and, in this way we would like to assist in modeling
regular DAEs in applications, and in avoiding DAE models that fail to be regular.

On the other hand, several authors lay particular emphasis on the importance
of so-called rectangular DAEs and spend much time investigating those DAEs
(cf. [130]). In our view, this class of problems is less interesting, so we touch on
this topic just slightly.

At times one speaks of overdetermined systems, if k >m, but of underdetermined
systems, if k < m. However, this notion does not say very much; it simply indicates
the relation between the numbers of equations and unknown functions. It seems to
be more appropriate to speak of nonregular DAEs, that is, of DAEs not being regular.
This option also includes the square systems (with m = k) which may also contain
free variables and consistency conditions if the regularity conditions are violated.
We speak only then of an overdetermined DAE, if the DAE shows the structure of
a regular DAE subject to an additional constraint. In contrast, an underdetermined
DAE comprises a component to be chosen freely, such that, if this component is
fixed, the resulting DAE is regular.

First of all, in Section 10.1, we illustrate the latitude for interpretations concern-
ing nonregular DAEs by case studies. In Section 10.2, we provide a projector based
decoupling of linear DAEs and generalize the tractability index to apply also to
nonregular DAEs. Section 10.3 is devoted to underdetermined nonlinear DAEs.

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5 10,
© Springer-Verlag Berlin Heidelberg 2013
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10.1 The scope of interpretations

The simple constant coefficient system

x′+ x = q1, (10.1)
x = q2, (10.2)

represents an overdetermined DAE with k = 2 equations and m = 1 unknowns.
How should we interpret these equations? If one emphasizes the algebraic equa-
tion x = q2, one is led to a differentiation of q2 as well as to a consistency condition
coming from the first equation, namely

q′2 +q2−q1 = 0.

On the other hand, if one puts emphasis on the differential equation x′+ x = q1 one
can solve this equation with a constant x0 for

x(t) = e−t
(

x0 +

∫ t

0
esq1(s)ds

)

and then consider the second equation to be responsible for consistency. This leads
to the consistency condition

e−t
(

x0 +

∫ t

0
esq1(s)ds

)
−q2(t) = 0.

At a first glance this consistency condition looks quite different, but differentiation
immediately yields again q2−q1 +q′2 = 0.
The last interpretation is oriented to solve differential equations rather than to solve
algebraic equations and then to differentiate. We adopt this point of view.

A further source for deliberation can be seen when regarding the equation

(x1 + x2)
′+ x1 = q, (10.3)

which represents a DAE comprising just a single equation, k = 1, and m = 2 un-
knowns. This is an underdetermined DAE; however, should we choose x1 or x2 to
be free? One can also think of writing

(x1 + x2)
′+(x1 + x2)− x2 = q, (10.4)

or
(x1 + x2)

′+
1
2
(x1 + x2)+

1
2
(x1− x2) = q. (10.5)

As described in Subsection 2.4.1, the special structure of an admissible matrix
function sequence (cf. Definition 2.6) allows a systematic rearrangement of terms in
general linear DAEs with properly stated leading terms, among them also nonregular
ones. Subsection 2.4.1 ends up with a first glance at DAEs whose initial matrix
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function G0 = AD already shows maximal rank. We resume this discussion noting
that, in the above two examples, we have the constant matrix functions

G0 =

[
1
0

]
, resp. G0 =

[
1 1
]
,

and both already have maximal possible rank. Recall that, in this case, the DAE is
equivalent to the structured system (2.42), that is to

(Dx)′ −R′Dx+DG−0 B0D−Dx+DG−0 B0Q0x = DG−0 q, (10.6)

W0B0D−Dx =W0q, (10.7)

whose solution decomposes as x = D−Dx+Q0x.
For the overdetermined system (10.1), (10.2), we have in detail: D = D− = R = 1,
Q0 = 0,

A =

[
1
0

]
, B =

[
1
1

]
, G0 =

[
1
0

]
, G−0 =

[
1 0
]
, W0 =

[
0 0
0 1

]
, DG−0 B0D− = 1.

Inserting these coefficients, we see that equation (10.6) coincides with the ODE
(10.1), whereas the second equation (10.7) is nothing else than (10.2). This empha-
sizes the interpretation of the DAE to be primarily the explicit ODE (10.1) subject
to the consistency condition (10.2).

For the underdetermined DAE (10.3), one has A= 1, D=
[
1 1
]
, R= 1, B=

[
1 0
]
,

W0 = 0, and the equation (10.7) disappears. Various projectors Q0 are admissible,
and different choices lead to different ODEs

(Dx)′+DG−0 B0D−Dx+DG−0 B0Q0x = DG−0 q, (10.8)

as well as solution representations x = D−Dx+Q0x. We consider three particular
cases:

(a) Set and compute

D− =

[
1
2
1
2

]
, P0 =

[
1
2

1
2

1
2

1
2

]
, Q0 =

[
1
2 − 1

2

− 1
2

1
2

]
, G−0 =

[
1
2
1
2

]
,

and further DG−0 B0D− = 1
2 , DG−0 = 1, DG−0 B0Q0 =

[ 1
2 −

1
2

]
, and we see that

the corresponding ODE (10.8) coincides with (10.5).
(b) Set and compute

D− =

[
1
0

]
, P0 =

[
1 1
0 0

]
, Q0 =

[
0 −1
0 1

]
, G−0 =

[
1
0

]
,

DG−0 B0D− = 1, DG−0 = 1, DG−0 B0Q0 =
[
0 −1

]
. Now equation (10.8) coin-

cides with (10.4).
(c) Set and compute
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D− =

[
0
1

]
, P0 =

[
0 0
1 1

]
, Q0 =

[
1 0
−1 0

]
, G−0 =

[
0
1

]
,

DG−0 B0D− = 0, DG−0 = 1, DG−0 B0Q0 =
[
1 0
]
, and equation (10.8) coincides

with the version (10.3).

Observe that the eigenvalues of DG−0 B0D− depend on the choice of the projector
Q0: the eigenvalues are 1

2 , 1 and 0, in the three cases, respectively.
Each case corresponds to a particular choice of the free variable. Which is the right
one? One could restrict the variety of projectors and take just the widely orthogo-
nal ones. In our example this corresponds to item (a). However, this would be an
arbitrary action.
At this point it seems to be worth mentioning that the inherent explicit regular ODE
of a regular DAE is uniquely defined by the problem data. In particular, it is inde-
pendent of the choice of the fine decoupling projectors. Obviously, the nonregular
case is more subtle.

Admissible matrix sequences (cf. Definition 1.10) can be constructed in the same
way also for arbitrary ordered matrix pairs {E,F} = {AD,B}, and we expect the
sequence of matrices G j to become stationary as in Example 1.9. Let us have a look
at further simple special cases of constant coefficient DAEs.

We revisit the nonregular DAE

(x1 + x2)
′ + x2 = q1,

x′4 = q2,
x3 = q3,

x′3 = q4,

(10.9)

discussed in Examples 1.9 and 1.11. The solutions as well as an admissible matrix
sequence are described there. Again, as in the previous two examples (10.1), (10.2)
and (10.3), the matrix G0 already has maximal rank three, and hence the subspaces
imGi are stationary beginning with i = 0. In contrast, the sequence itself becomes
stationary at level two, which means Gi = G2 holds for all i > 2.
Now, we compare again three different projectors Q0, starting the sequence with

G0 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

(a) Choose and compute

Q0 =

⎡
⎢⎢⎣

1 0 0 0
−1 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , Π0 =

⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , G1 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ .
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(b) Choose and compute

Q0 =

⎡
⎢⎢⎣

0 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , Π0 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , G1 =

⎡
⎢⎢⎣

1 2 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ .

(c) Choose and compute

Q0 =

⎡
⎢⎢⎣

1
2 − 1

2 0 0
− 1

2
1
2 0 0

0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , Π0 =

⎡
⎢⎢⎣

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , G1 =

⎡
⎢⎢⎣

1
2

3
2 0 0

0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ .

In all three cases, G1 has rank r1 = r0 = 3 and the orthoprojector along
imG1 = imG0 is simply

W0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

How should one interpret this DAE which fails to be regular? There are different
possibilities. The one which we prefer is the following: Consider the equation picked
up by the projector W0, that is the third equation, as a consistency condition. The
remaining system of three equations can then be seen as an explicit ODE for the
components marked by the projectors Π0, i.e., for x1 + x2, x3, and x4. The com-
ponent recorded by the projector Q0 can be considered as an arbitrary continuous
function. This means that the DAE (10.9) is interpreted as having index zero (the
level μ where the maximal subspace imGμ is reached first). However, again, differ-
ent projectors Q0 fix different components to be free, in the above three cases, x1,
x2 and 1

2 (x1−x2), respectively. Furthermore, the resulting inherent ODE is affected
by this.

In contrast to our view, the questions of which variable should be the free one and
which equations should actually represent consistency conditions, can be answered
in a different way. Considering the fourth equation of system (10.9) as the consis-
tency condition and choosing x2 to be free, the remaining three equations look like
a regular index-1 DAE for the components x1 + x2,x3, and x4.
Furthermore, the last two equations of (10.9) somehow remain an index-2 problem,
which is mirrored by the strangeness index (cf. [130]) of (10.9), which equals 1.

Consider now the underdetermined DAE

x′2 + x1 = q1,
x′3 + x2 = q2,
x′4 + x3 = q3,

(10.10)

with
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G0 =

⎡
⎣

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦ , B0 =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ , Q0 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Π0 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

This matrix G0 has full row rank, and no equation should be seen as a consistency
condition. Again, the ranges imGi are stationary at the beginning. The matrix se-
quence itself becomes stationary at level 3. We treat this DAE as an index-0 DAE
for the components indicated by the projector Π0; here x2,x3,x4, and we see the vari-
able indicated by Q0, here x1, to be free. Note that any other choice of the projector
includes the variable x1, too.

In contrast, choosing instead x4 in (10.10) to be the free component, one arrives
at a regular index-3 DAE for x1,x2,x3.

Next take a look at the overdetermined DAE

x1 = q1,
x′1 + x2 = q2,
x′2 + x3 = q3,
x′3 = q4

(10.11)

for which the first matrix G0 is injective, and thus the matrix sequence is stationary
at the beginning. Seeing the first equation in (10.11), which means the equation in-
dicated by the projectorW0 = diag(1,0,0,0), as a consistency condition, the other
three equations in (10.11) can be treated as a regular index-0 DAE for the compo-
nents x1,x2,x3.

On the other hand, considering the last equation of (10.11) to be the consis-
tency condition one arrives at a regular index-3 DAE for x1,x2,x3. Note that the
DAE (10.11) has strangeness index 3, while—as we will see in Section 10.2—the
tractability index equals 0.
We stress once again the large scope of possible interpretations.

10.2 Linear DAEs

10.2.1 Tractability index

As in Chapter 2, we consider equations of the form

A(Dx)′+Bx = q, (10.12)

with continuous coefficients

A ∈ C(I,L(Rn,Rk)), D ∈ C(I,L(Rm,Rn)), B ∈ C(I,L(Rm,Rk)),
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and excitations q ∈ C(I,Rk). I ∈ R is an interval. A solution of such an equation is
a function belonging to the function space

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

which satisfies the DAE in the classical sense, that is, pointwise on the given inter-
val.
The leading term in equation (10.12) is supposed to be properly stated on the inter-
val I. This means (cf. Definition 2.1) that the transversality condition

kerA(t)⊕ imD(t) = R
n, t ∈ I, (10.13)

is valid and imD and kerA are C1-subspaces.
Furthermore, the matrix function AD is assumed to have constant rank. Denote

r := rankD(t), k̄ := rank [A(t)D(t) B(t)] t ∈ I, ρ := r+1. (10.14)

It holds that k̄ ≤ k. It would be reasonable to arrange k̄ = k when creating a DAE.

The tractability index of a regular DAE is known to be the smallest integer μ
such that an admissible matrix function sequence G0, . . . ,Gμ associated with the
DAE exists and Gμ is nonsingular (Definition 2.25). We intend to adapt this notion
to be valid for general, possibly nonregular DAEs (10.12), too.
The construction of admissible matrix functions (cf. Definition 2.6) as well as
the properties provided in Sections 2.2 and 2.3 already apply to the general DAE
(10.12). Among the basic properties we find the inclusions

imG0 ⊆ imG1 ⊆ ·· · ⊆ imGi ⊆ ·· · ⊆ im [AD B]⊆ R
k.

In the regular index-μ case, one has k = m and k̄ = k, and Gμ has maximal possible
rank m. Furthermore, the admissible matrix function sequence could be continued
up to infinity by letting Qμ+i = 0, Gμ+1+i = Gμ+i = Gμ for i≥ 0, which shows that

imG0 ⊆ imG1 ⊆ ·· · ⊆ imGμ−1 ⊂ imGμ = imGμ+1 = · · ·= im [AD B] = R
k.

For general linear DAEs (10.12), we intent to assign the tractability index to the
smallest integer μ , for which an admissible matrix function sequence exists and μ is
the smallest index such that the image inclusion becomes stationary, or, equivalently,
Gμ has the maximal possible rank.

In this sense, all examples in the previous section possess tractability index 0.
How can we practically recognize the maximal rank? The ranks of the admis-

sible matrix functions form a nondecreasing sequence r = r0 ≤ r1 ≤ ·· · ≤ ri, but
not necessarily a strictly increasing one. It may well happen that the ranks do not
change in several consecutive steps. For instance, any Hessenberg size-μ DAE is
characterized by the sequence r0 = · · ·= rμ−1 < rμ . This feature makes the task of
recognizing the maximal rank and stopping the construction of the matrix functions
in practice somewhat more subtle than previously thought.
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Of course, if imGμ = im [AD B] is reached, or equivalentlyWμB = {0}, then rμ
is maximal, and one can stop. If an injective Gμ is found, then one can stop because
of the resulting stationarity Gμ = Gμ+1 = · · ·= Gμ+i.

Before we turn to the detailed definition, we provide the following useful asser-
tion.

Proposition 10.1. Suppose we are given the DAE (10.12) with continuous coeffi-
cients, a properly stated leading term, and the constants r, k̄,ρ from (10.14).

(1) If there is an admissible matrix function sequence G0, . . . ,Gκ , such that

Gκ = Gκ+1,

then, letting Qκ+i := Qκ , Gκ+1+i := Gκ for i≥ 0, the sequences G0, . . . ,Gκ+ j
are also admissible, and it holds that

Gκ = Gκ+i, N0 + · · ·+Nκ = N0 + · · ·+Nκ+i.

(2) If G0, . . . ,Gρ+1 is an admissible matrix function sequence, then

Gρ = Gρ+1. (10.15)

Proof. (1) Nκ = Nκ+1 implies Nκ+1 ⊆ N0 + · · · + Nκ , N0 + · · · + Nκ =
N0+ · · ·+Nκ+1, N0+ · · ·+Nκ =Xκ⊕Nκ =Xκ⊕Nκ+1, hence, choosing Xκ+1 :=Xκ ,
Qκ+1 := Qκ leads to uκ+1 = uκ , DΠκ+1D− = DΠκD−, so that Q0, . . . ,Qκ , Qκ+1
are admissible, and further Bκ+1Qκ+1 = Bκ+1ΠκQκ+1 = 0, Gκ+2 = Gκ+1, and so
on.
(2) Let G0, . . . ,Gρ+1 be an admissible matrix function sequence. We decompose

Ni =
�
Ni⊕Yi, which is accompanied by (N0 + · · ·+Ni−1)∩Yi = {0}. Namely, z ∈

(N0+ · · ·+Ni−1)∩Yi yields z∈ (N0+ · · ·+Ni−1)∩Ni =
�
Ni, thus z= 0. It follows that

N0+ · · ·+Ni = N0+ · · ·+Ni−1+Yi = (N0+ · · ·+Ni−1)⊕Yi, that is, the supplement
to N0 + · · ·+Ni−1 is exactly the subspace Yi, and therefore dim(N0 + · · ·+Ni) =
dim(N0 + · · ·+Ni−1)+dimYi.
Next, if dimYi ≥ 1 for all j = 1, . . . ,ρ , then

dim(N0 + · · ·+Nρ−1)≥ dimN0 + r = m− r0 + r = m.

In consequence, the subspaces N0 + · · ·+Nρ−1 and N0 + · · ·+Nρ must coincide.
This implies Nρ ⊆ N0 + · · ·+Nρ−1, hence Πρ−1Qρ = 0, BρQρ = BρΠρ−1Qρ = 0,
Gρ+1 = Gρ .

Otherwise, if there is an index j∗ ≤ r such that dimYi = 0, then we have Nj∗ =
�
N j∗

= Nj∗ ∩ (N0 + · · ·+Nj∗−1), and the inclusion Nj∗ ⊆ N0 + · · ·+Nj∗−1 is valid. This
leads to N0 + · · ·+Nj∗−1 = N0 + · · ·+Nj∗ , and further to G j∗ = G j∗+1. ��

By Proposition 10.1 it is enough to provide an admissible matrix function sequence
at most up to level ρ . We are looking for the smallest index μ such that rμ = rankGμ
reaches the maximal possible value. Now we recognize the upper bound
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μ ≤ ρ = 1+ rankD(t). (10.16)

This bound is rigorous which is confirmed by Example 2.11 with m1 =m2 =m3 = 1,
r0 = 2, and μ = 3, i.e., μ = r0 +1 = ρ .

Definition 10.2. Let the DAE (10.12) have continuous coefficients, a properly stated
leading term and constants r, k̄, ρ from (10.14).

(1) The DAE is said to be tractable on I with index 0 if either imG0 = im [AD B]
or there is an admissible matrix function sequence G0, . . . ,Gρ such that

imG0 = · · ·= imGρ .

(2) The DAE is said to be tractable on I with index μ ∈ N, if either there is an
admissible matrix function sequence G0, . . . ,Gμ with

imGμ = im [AD B],

or there is an admissible matrix function sequence G0, . . . ,Gρ with

imGμ = · · ·= imGρ ⊂ im [AD B].

and μ is the smallest integer of this kind.
(3) The DAE is regular on I with tractability index μ ∈ N∪{0}, if it is tractable

with index μ , and, additionally m = k = k̄ and imGμ = R
m.

This definition generalizes Definition 2.25. Item (3) repeats Definition 2.25 for
completeness.
The special examples (10.1), (10.2) and (10.3) show DAEs that are tractable with
index zero.
From our point of view one should take care to attain the condition im [AD B] = R

k

during the modeling.
A case of particular interest is given if one meets a matrix functions Gμ that is

injective. This can only happen if k ≥ m. Then, the tractability index is the smallest
integer μ such that Gμ is injective, thus rμ = m. It is worth mentioning that then

u0 = · · ·= uμ−1 = 0, i.e., the intersections
�
Ni are trivial.

If the complement subspace X1 used for the construction of the admissible pro-
jector function Q1 is trivial, then it holds that Gi = G0 for all i ≥ 1, and the DAE
is tractable with index zero and therefore, if X1 = {0}, then one can stop. Namely,
X1 = {0}means N1∩N0 =N0. This implies N0 ⊆N1, and N0 = N1 because of the di-
mensions dimN0 =m−r0≥m−r1 = dimN1. Choose Q1 :=Q0. The projector func-
tions Q0, Q1 are admissible. It follows that 0 = G1Q1 = G0Q1 +B0Q0Q1 = B0Q0,
thus G1 = G0 and G2 = G1 +B1Q1 = G1 +B1P0Q1 = G1. Then we set Q2 := Q1,
and so on. In particular, it follows that Xi = {0} for all i≥ 1.
Notice that, if there is a trivial complement subspace Xκ in a matrix function se-
quence, then these subspaces Xi must be trivial for all i.
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10.2.2 General decoupling

We continue to investigate the rearranged version (2.38) of the DAE (10.12) ob-
tained in Subsection 2.4.1, and we provide a refined form which serves then as a
basis of further decouplings.

Proposition 10.3. Suppose we are given the DAE (10.12) with continuous coeffi-
cients and a properly stated leading term such that (10.14).
Then, if G0, . . . ,Gκ+1 represent an admissible matrix function sequence associated
to this DAE, κ ∈ N, the DAE can be rewritten as

GκD−(DΠκx)′+Bκx+Gκ
κ−1

∑
l=0

{
Qlx− (I−Πl)Ql+1D−(DΠlQl+1x)′

+VlDΠlx+Ul(DΠlx)′
}
= q

(10.17)

with coefficients

Ul := −(I−Πl)
{

Ql +Ql+1(I−Πl)Ql+1Pl
}
ΠlD−,

Vl := (I−Πl)
{
(Pl +Ql+1Ql)D−(DΠlD−)′ −Ql+1D−(DΠl+1D−)′

}
DΠlD−.

Before we verify this assertion, we point out that the coefficients Vl are caused by
variations in time, so that these coefficients vanish in the constant coefficient case.

The coefficients Ul disappear, if the intersections
�
N1, . . . ,

�
Nl are trivial.

If the intersections
�
N1, . . . ,

�
Nκ are trivial, then it follows (cf. Proposition 2.23) that

Vl =Vl , l = 1, . . . ,κ .

Proof. Proposition 2.23 provides the rearranged version (2.38) of the DAE (10.12),
that is

GκD−(DΠκx)′+Bκx+Gκ
κ−1

∑
l=0

{
Qlx+(I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′

}
= q.

(10.18)
For κ = 1 we compute

G1(I−Π0)(P0−Q1P0)D−(DΠ0x)′ =−G1(I−Π0)Q1D−(DΠ0x)′

=−G1(I−Π0)Q1D−(DΠ0Q1x)′ −G1(I−Π0)Q1D−(DΠ1D−DΠ0x)′

=−G1(I−Π0)Q1D−(DΠ0Q1x)′+G1V0DΠ0x+G1U0(DΠ0x)′

with

U0 = −(I−Π0)Q1Π1D− =−(I−Π0){Q0 +Q1(I−Π0)Q1P0}Π0D−,

V0 = −(I−Π0)Q1D−(DΠ1D−)′DΠ0D−.

Now we assume κ > 1. First we take a closer look at the expressions
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El := (I−Πl)(Pl−Ql+1Pl)D−(DΠlx)′, 0≤ l ≤ κ−1.

Compute

El = (I−Πl)(Pl−Ql+1Pl)D−
(
(DΠlD−)′DΠlx+DΠlD−(DΠlx)′

)

= (I−Πl)(Pl−Ql+1Pl)D−(DΠlD−)′DΠlx

+(I−Πl)(−Ql−Ql+1Pl)ΠlD−(DΠlx)′

= (I−Πl)(Pl−Ql+1Pl)D−(DΠlD−)′DΠlx− (I−Πl)QlΠlD−(DΠlx)′

− (I−Πl)Ql+1{Πl + I−Πl}Ql+1PlΠlD−(DΠlx)′

= (I−Πl)(Pl−Ql+1Pl)D−(DΠlD−)′DΠlx

− (I−Πl)(Ql +Ql+1{Πl + I−Πl}Ql+1Pl)ΠlD−(DΠlx)′

and

El = (I−Πl)(Pl−Ql+1Pl)D−(DΠlD−)′DΠlx

−(I−Πl)(Ql +Ql+1{I−Πl}Ql+1Pl)ΠlD−︸ ︷︷ ︸
Ul

(DΠlx)′

− (I−Πl)Ql+1ΠlQl+1PlΠlD−︸ ︷︷ ︸
ΠlQl+1

(DΠlx)′

= (I−Πl)(Pl−Ql+1Pl)D−(DΠlD−)′DΠlx+Ul(DΠlx)′

− (I−Πl)Ql+1D−(DΠlQl+1x)′+(I−Πl)Ql+1D−(DΠlQl+1D−)′DΠlx

= (I−Πl)
{
(Pl−Ql+1Pl)D−(DΠlD−)′+Ql+1D−(DΠlQl+1︸ ︷︷ ︸

Πl−Πl+1

D−)′
}

DΠlx

+Ul(DΠlx)′ − (I−Πl)
{

Ql+1D−(DΠlQl+1D−)′
}

= Ul(DΠlx)′ − (I−Πl)
{

Ql+1D−(DΠlQl+1D−)′
}

+(I−Πl)
{
(Pl−Ql+1Pl +Ql+1)D−(DΠlD−)′ −Ql+1D−(DΠl+1D−)′

}
DΠl︸ ︷︷ ︸

VlD

x.

In consequence, the representation (10.18) is nothing else than

GκD−(DΠκx)′+Bκx+Gκ
κ−1

∑
l=0
{Qlx− (I−Πl)Ql+1D−(DΠlQl+1x)′

+VlDΠlx+Ul(DΠlx)′}= q,

which completes the proof. ��

Throughout the rest of this section the DAE (10.12) is supposed to be tractable
with index μ , and Q0, . . . ,Qμ−1 denote admissible projector functions. We make use
of the rearranged version (10.17) of (10.12).
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Gμ−1D−(DΠμ−1x)′+Bμ−1x (10.19)

+Gμ−1

μ−2

∑
�=0
{Q�x− (I−Π�)Q�+1D−(DΠ�Q�+1x)′+V�DΠ�x+U�(DΠ�x)′}= q,

and the coefficients V�, U� are from Proposition 10.3. By expressing

Gμ−1Q� = GμQ�, Gμ−1V� = GμV�, Gμ−1U� = GμU�, �= 0, . . . ,μ−2,

Bμ−1 = Bμ−1Pμ−1 +Bμ−1Qμ−1 = Bμ−1D−DΠμ−1 +Bμ−1Qμ−1,

formula (10.19) becomes

Gμ

{
Pμ−1D−(DΠμ−1x)′+Qμ−1x (10.20)

+
μ−2

∑
�=0

{
Q�x− (I−Π�)Q�+1D−(DΠ�Q�+1x)′+V�DΠ�x+U�(DΠ�x)′

}}

+Bμ−1D−DΠμ−1x = q.

According to the definition of the tractability index μ , the matrix function Gμ has
constant rank. We find a continuous generalized inverse G−μ , and a projector function
Wμ = I−GμG−μ along imGμ . Notice that there is no need for the resulting projector
function G−μ Gμ to be also admissible. The projector functions GμG−μ andWμ split
the DAE (10.20) into two parts. Multiplication by Wμ leads to equation (10.22)
below. Multiplication by GμG−μ yields

Gμ

{
Pμ−1D−(DΠμ−1x)′+Qμ−1x

+
μ−1

∑
�=0

{
Q�x− (I−Π�)Q�+1D−(DΠ�Q�+1x)′+V�DΠ�x+U�(DΠ�x)′

}

+G−μ Bμ−1D−DΠμ−1x−G−μ q
}
= 0.

This equation, Gμ{. . .} = 0, may be rewritten as {. . .} =: y, where y denotes an
arbitrary continuous function such that Gμy = 0. Altogether this leads to the system

Pμ−1D−(DΠμ−1x)′+Qμ−1x+
μ−2

∑
�=0

{
Q�x− (I−Π�)Q�+1D−(DΠ�Q�+1x)′ (10.21)

+V�DΠ�x+U�(DΠ�x)′
}
+y = G−μ (q−Bμ−1D−DΠμ−1x),

WμBμ−1D−DΠμ−1x =Wμq, (10.22)

where y can be chosen arbitrarily such that Gμy = 0. The relation

kerGμ = (I−G−μ−1Bμ−1Qμ−1)(Nμ−1∩Sμ−1) (10.23)
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might be helpful. The undetermined part of y is actually Qμ−1y ∈ Nμ−1∩Sμ−1.
Multiplication of (10.21) by projector functions uncovers some further structures.

In particular, multiplication by Πμ−1 yields

Πμ−1D−(DΠμ−1x)′+Πμ−1y =Πμ−1G−μ (q−Bμ−1D−DΠμ−1x),

hence we recognize an inherent explicit regular ODE with respect to DΠμ−1x,
namely

(DΠμ−1x)′ − (DΠμ−1D−)′DΠμ−1x+DΠμ−1y

+DΠμ−1G−μ Bμ−1D−DΠμ−1x = DΠμ−1G−μ q.

It is worth mentioning again that, in contrast to regular DAEs, the properties of the
flow of this ODE may depend on the choice of the admissible projector functions,
as it is the case for example (10.3).
Multiplying (10.21) by Πμ−2Qμ−1 gives

Πμ−2Qμ−1x+Πμ−2Qμ−1y+Πμ−2Qμ−1G−μ Bμ−1D−DΠμ−1x =Πμ−2Qμ−1G−μ q.

Apart from the terms including y, these two formulas are the counterparts of the
corresponding ones in Section 2.6 for regular DAEs. However, the further equations
that will be derived from (10.21) by multiplication with the additional projector
functions are much more expensive to elaborate. We restrict ourselves to several
case studies. For the case of index 0 we refer once again to Subsection 2.4.1 and the
illustrative Example 2.24 therein.

10.2.2.1 Gμ has full column rank

This case can happen only if k ≥ m, and rμ = m holds true. Since Gμ is injective,
due to Proposition 2.23, all intersections (N0 + · · ·+Ni−1)∩Ni, i = 1, . . . ,μ − 1,
are trivial, the components U0, . . . ,Uμ−2 vanish, and V� simplifies to V� = V�,
�= 0, . . . ,μ−2. Moreover, Gμy = 0 implies y = 0.

The resulting special equation (10.21) reads

Pμ−1D−(DΠμ−1x)′+Qμ−1x

+
μ−2

∑
�=0

{
Q�x− (I−Π�)Q�+1D−(DΠ�Q�+1x)′+V�DΠ�x

}
(10.24)

+G−μ Bμ−1D−DΠμ−1x = G−μ q.

For k = m, that is, for regular DAEs with tractability index μ , this formula coincides
in essence with formula (2.48) (several terms are arranged in a different way).

Applying the decoupling procedure from Section 2.6, we can prove (10.24) to
represent a regular index-μ DAE. Completed by an initial condition
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D(t0)Πμ−1(t0)x(t0) = z0 ∈ imD(t0)Πμ−1(t0), (10.25)

equation (10.24) is uniquely solvable for x. This suggests the option of considering
equation (10.24) to determine the solution x, and to treat the additional equation
(10.22) as the resulting consistency condition.

Example 10.4 (Index-1 DAE). Set m = 2, k = 3, n = 1, and write the system

x′1 + x2 = q1,
x2 = q2,
x2 = q3,

(10.26)

as DAE (10.12) such that

A =

⎡
⎣

1
0
0

⎤
⎦ , D = [1 0], G0 =

⎡
⎣

1 0
0 0
0 0

⎤
⎦ , B =

⎡
⎣

0 1
0 1
0 1

⎤
⎦ , Q0 =

[
0 0
0 1

]
,

G1 =

⎡
⎣

1 1
0 1
0 1

⎤
⎦ , W1 =

⎡
⎣

0 0 0
0 0 0
0 −1 1

⎤
⎦ , G−1 =

[
1 −1 0
0 1 0

]
.

G1 already has maximal possible rank, r1 = 2, and hence this DAE is tractable with
index 1. The consistency equationW1(BΠ0x−q) = 0 means here q2 = q3. Equation
(10.24) has the form [

1
0

]
x′1 +

[
0
x2

]
=

[
q1−q2

q2

]
,

which is a regular index-1 DAE. ��

Example 10.5 (Index-1 DAE). Set m = 2, k = 3, n = 1 and put the system

x′1 + x2 = q1,
x1 = q2,
x2 = q3,

(10.27)

into the form (10.12). This leads to

A =

⎡
⎣

1
0
0

⎤
⎦ , D = [1 0], G0 =

⎡
⎣

1 0
0 0
0 0

⎤
⎦ , B =

⎡
⎣

0 1
1 0
0 1

⎤
⎦ , Q0 =

[
0 0
0 1

]
,

G1 =

⎡
⎣

1 1
0 0
0 1

⎤
⎦ , W1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , G−1 =

[
1 0 −1
0 0 1

]
.

G1 has maximal rank, r1 = 2, this DAE is tractable with index 1. The condition
W1(B0Π0x−q) = 0 now means x1 = q2, and equation (10.24) specializes to

[
1
0

]
x′1 +

[
0
x2

]
=

[
q1−q3

q3

]
,
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which is a regular index-1 DAE. ��

Example 10.6 (μ = 0). Set k = 5, m = 4, n = 4, and put the DAE

x′1 = q1,
x′2 + x1 = q2,
x′3 + x2 = q3,
x′4 + x3 = q4,

x4 = q5,

(10.28)

into the form (10.12). This yields

G0 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦
, W0 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

and μ = 0. This DAE is interpreted as an explicit ODE for the components x1, x2,
x3, x4 and the consistency condition x4 = q5. ��

Example 10.7 (μ = 2). The DAE

x′2 + x1 = q1,

x′3 + x2 = q2, (10.29)
x3 = q3,

x′3 = q′3,

results from the index-3 system

x′2 + x1 = q1,

x′3 + x2 = q2, (10.30)
x3 = q3,

by adding the differentiated version of the derivative-free equation. We may write
(10.29) in the form (2.1) with k = 4, m = 3, n = 2,

A =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 1

⎤
⎥⎥⎦ , D =

[
0 1 0
0 0 1

]
, B =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ , D− =

⎡
⎣

0 0
1 0
0 1

⎤
⎦ .

Compute
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G0 =

⎡
⎢⎢⎣

1 0 0
0 0 1
0 0 0
0 0 1

⎤
⎥⎥⎦ , Q0 =

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦ , G1 =

⎡
⎢⎢⎣

1 1 0
0 0 1
0 0 0
0 0 1

⎤
⎥⎥⎦ , Q0 =

⎡
⎣

0 −1 0
0 1 0
0 0 0

⎤
⎦ , G2 =

⎡
⎢⎢⎣

1 1 0
0 1 1
0 0 0
0 0 1

⎤
⎥⎥⎦ ,

r0 = 2, r1 = 2, r2 = 3. It follows that (10.29) has tractability index 2 while (10.30)
has tractability index 3.
System (10.29) is overdetermined, and, in our view, the subsystem W2Bx =W2q
(cf. (10.22)), which means here in essence x3 = q3, is interpreted as a consistency
condition. The main part (10.24) of the DAE reads

x′2 + x1 = q1,

x2 = q2−q′3,

x′3 = q′3,

and this is obviously a regular index 2 DAE. ��
The last example addresses an interesting general phenomenon: If one adds to a
given DAE the differentiated version of a certain part of the derivative-free equa-
tions, then the tractability index reduces.
There are several possibilities to choose appropriate derivative-free equations to be
differentiated. Here we concentrate on the part

Wμ−1Bx =Wμ−1q,

supposing the original DAE (2.1) to have tractability index μ ≥ 2.
Considering the inclusion N0⊆ S1⊆ Sμ−1 = kerWμ−1B we can write this derivative-
free part as

Wμ−1BD−Dx =Wμ−1q,

and differentiation yields

Wμ−1BD−(Dx)′+(Wμ−1BD−)′Dx = (Wμ−1q)′. (10.31)

The enlarged DAE (10.12), (10.31) is now
[

A
Wμ−1BD−

]

︸ ︷︷ ︸
=:Ã

(Dx)′+
[

B
(Wμ−1BD−)′D

]

︸ ︷︷ ︸
=:B̃

x =
[

q
(Wμ−1q)′

]
, (10.32)

with k +m =: k̃ equations. The DAE (10.32) inherits the properly stated leading
term from (10.12) because of ker Ã = kerA.
The next proposition says that the tractability index of (10.32) is less by 1 than that
of (10.12).

Proposition 10.8. If the DAE (10.12) has tractability index μ ≥ 2 and character-
istic values r0 ≤ ·· · ≤ rμ−1 < rμ = m, then the DAE (10.32) has tractability index
μ̃ = μ−1, and characteristic values r̃i = ri, i = 0, . . . , μ̃−1, r̃μ̃ = r̃μ−1 = m.
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Proof. We have N0 ⊆ kerWμ−1B = Sμ−1,

G̃0 = ÃD =

[
AD

Wμ−1BD−D

]
=

[
G0

Wμ−1B

]
, r̃0 = r0.

Set Q̃0 = Q0 and form G̃1 = G̃0 + B̃Q̃0 =

[
G1

Wμ−1B

]
.

If μ = 2, then ker G̃1 = kerG1 ∩ kerW1B = N1 ∩ S1 = {0}. Then, r̃1 = m, r̃0 < r̃1,
and hence the new DAE (10.32) has tractability index 1, and we are ready.
If μ ≥ 3 then ker G̃1 = kerG1 ∩ kerWμ−1B = N1, since N1 ⊆ S2 ⊆ Sμ−1 =
kerWμ−1B. Moreover, r̃1 = r1.
Set Q̃1 = Q1 and form

B̃1 =

[
B1

(Wμ−1BD−)′D−Wμ−1BD−(DΠ1D−)′D

]
=

[
B1

(Wμ−1BD−)′DΠ1

]
,

G̃2 =

[
G1 +B1Q1
Wμ−1B

]
=

[
G2

Wμ−1B

]
, Ñ2 = N2∩Sμ−1.

If μ = 3, then Ñ2 = N2 ∩ S2 = {0}, and r̃2 = m, i.e., G̃2 is injective, and the DAE
(10.32) has tractability index 2.
For μ > 3, as long as j ≤ μ−2, it follows that

G̃ j =

[
G j

Wμ−1B

]
, Ñ j = Nj ∩Sμ−1 = Nj, Q̃ j = Q j, r̃ j = r j,

B̃ j =

[
B j

(Wμ−1BD−)′DΠ j−1−Wμ−1BD−(DΠ jD−)′DΠ j−1

]

=

[
B j

(Wμ−1BD−)′DΠ j

]
.

Finally,

G̃μ−1 =

[
Gμ−1
Wμ−1B

]
, Ñμ−1 = Nμ−1∩Sμ−1 = {0}, r̃μ−1 = m,

that is, G̃μ−1 is injective, and the DAE (10.32) has tractability index μ̃ = μ−1. ��

We mention that W̃μ̃ =

[
Wμ−1

I−Wμ−1

]
is a projector function with

kerW̃μ̃ = im G̃μ̃ , and now the equationWμ−1Bx =Wμ−1q is interpreted as the con-
sistency condition, whereas its differentiated version is included into the main part
(10.24), as in Example 10.7.

10.2.2.2 Tractability index 1, G1 has a nontrivial nullspace

The decomposed system (10.21), (10.22) has the form



494 10 Nonregular DAEs

D−(Dx)′+Q0x+ y+G−1 B0D−Dx = G−1 q (10.33)

W1B0D−Dx =W1q, (10.34)

with G1y = 0, i.e., y = (I−G−0 B0Q0)Q0y, Q0y∈N0∩S0. The inherent explicit ODE
is here

(Dx)′ −R′Dx+Dy+DG−1 BD−Dx = DG−1 q, (10.35)

and multiplication of (10.33) by Q0 gives

Q0x+Q0y+Q0G−1 B0D−Dx = Q0G−1 q. (10.36)

For each arbitrarily fixed continuous Q0y ∈ N0 ∩ S0, equation (10.33) represents a
regular index-1 DAE.

We consider (10.34) as a consistency condition. If imG1 = R
k, m ≥ k, are true,

i.e., if G1 has full row rank, then this condition disappears.
A regular index-1 DAE is solvable for each arbitrary continuous excitation q. The
same holds true for general linear DAEs with tractability index 1 and full row-rank
matrix function G1.

Proposition 10.9. Let the DAE (10.12) have continuous coefficients, a properly
stated leading term, and the constants r, k̄, ρ from (10.14); further k̄ = k < m.
If the DAE has tractability index 1, and G1 has full row rank, then the IVP

A(Dx)′+Bx = q, D(t0)x(t0) = z0

is solvable for each arbitrary continuous excitation q and initial data z0 ∈ imD(t0).

Proof. There is no consistency condition (10.34) in this case. Put y = 0 in the inher-
ent ODE (10.35) and in expression (10.36). In this way, taking any solution of the
explicit ODE (10.35), satisfying the initial condition, and computing then Q0x from
(10.36), one obtains with x := D−Dx+Q0x a solution of the DAE. ��

Example 10.10 (Strangeness-reduced form). Set m=m1+m2+m3, k = k1+k2+k3,
n = m1, m1 = k1, m2 = k2, k3 ≥ 0, m3 ≥ 0, and consider the DAE (10.12) with the
coefficients

A =

⎡
⎣

I
0
0

⎤
⎦ , D =

[
I 0 0

]
, D− =

⎡
⎣

I
0
0

⎤
⎦ , B =

⎡
⎣

0 0 B13
0 I 0
0 0 0

⎤
⎦ ,

which has the detailed form
x′1 +B13x3 = q1,

x2 = q2,
0 = q3.

This special DAE plays its role in the strangeness index framework (e.g., [130]).
Derive
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G0 =

⎡
⎣

I 0 0
0 0 0
0 0 0

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 I 0
0 0 I

⎤
⎦ , G1 =

⎡
⎣

I 0 B13
0 I 0
0 0 0

⎤
⎦ , W1 =

⎡
⎣

0 0 0
0 0 0
0 0 I

⎤
⎦ ,

and r0 = m1, r1 = m1 +m2 and imG1 = im [AD B] = R
m1 ×R

m1 ×{0}. Therefore,
G1 has maximal possible rank, and hence the problem is tractable with index 1.
The consistency condition (10.34) means simply 0 = q3, if k3 > 0. It disappears for
k3 = 0.
Moreover, here we have N0 = {z ∈ R

m : z1 = 0}, S0 = {z ∈ R
m : z2 = 0},

N0∩S0 = {z ∈ R
m : z1 = 0, z2 = 0}. G1y = 0 means y1 + B13y3 = 0, y2 = 0. The

free component Q0y ∈ N0 ∩ S0 is actually y3 (if m3 > 0), so that y1 = −B13y3 fol-
lows.
It results that

G−1 =

⎡
⎣

I
I

0

⎤
⎦ , G−1 B0D− = 0,

and equation (10.33) reads in detail

x′1−B13y3 = q1,

x2 = q2,

x3 + y3 = 0.

For each given function y3, this is obviously a regular index-1 DAE. ��

The characteristic values ri as well as the tractability index are invariant under reg-
ular scalings and transformations of the unknown function (cf. Section 2.3). We
derive a result on the special structure of an index-1 DAE via transformations.

Proposition 10.11. Let m > k, and let the DAE (10.12) have tractability index 1.
Then there are nonsingular matrix functions L ∈ C(J,L(Rk)), L∗ = L−1,
K ∈ C(J,L(Rm)), K∗ = K−1, such that the premultiplication by L and the trans-

formation of the unknown function x = Kx̄, x̄ =
[

x̄1
x̄2

]
} r1
} m− r1

, lead to the equivalent

DAE

Ā1(D̄1x̄1)
′+ B̄11x̄1 + B̄12x̄2 = q̄1, (10.37)

B̄21x̄1 = q̄2, (10.38)

with

LA =

[
Ā1
0

]
, DK =

[
D̄1 0

]
, LBK =

[
B̄11 B̄12
B̄21 0

]
, Lq =

[
q̄1
q̄2

]
} r1
} k− r1

,

and equation (10.37) is a regular DAE with tractability index 1 with respect to x̄1. If
r1 = k, i.e., if G1 has full row rank, then the second equation (10.38) disappears. In
general, it holds that ker B̄21 ⊇ ker D̄1.
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Proof. We choose Q0, W0 to be the orthogonal projectors onto N0 and imG0, and
consider the matrix function

G1 = G0 +W0BQ0,

which has constant rank r1. Compute L so that

LG1 =

[
Ǧ1
0

]
} r1
} k− r1

, rank Ǧ1 = r1.

Then we provide a K to obtain

Ǧ1K = [ S︸︷︷︸
r1

0︸︷︷︸
m−r1

] , S nonsingular.

This yields

L(G0 +W0BQ0)K =

[
S 0
0 0

]
, L(G0 +W0BQ0)K

[
0 0
0 I

]
= 0,

and further G0K
[

0 0
0 I

]
= 0,W0BQ0K

[
0 0
0 I

]
= 0, P0K

[
0 0
0 I

]
= 0, DK

[
0 0
0 I

]
= 0.

In particular, D̄ := DK = [D̄1 0] must be true, and im D̄1 = imD. Denoting

P̃0 := D̄+
1 D̄1, Q̃0 := I − P̃0 ∈ C(I,L(Rr1)) we find Q̄0 = K∗Q0K =

[
Q̃0 0
0 I

]
to be

the orthogonal projector onto ker D̄ = K∗kerD.
Next we scale the DAE (10.12) by L and transform x=Kx̄. Because of imA⊆ imG1,
we must have

Ā := LA =

[
A1
0

]
} r1
} k− r1

, ker Ā = kerA = kerA1.

From imBQ0 ⊆ imG1 = imG1 we derive, with B̄ := LBK =

[
B̄11 B̄12
B̄21 B̄22

]
} r1
} k− r1︸︷︷︸

r1

︸︷︷︸
m−r1

, that

im B̄Q̄0 ⊆ imLG1, hence B̄Q̄0 has the form
[
∗ ∗
0 0

]
, and B̄21Q̃0 = 0, ker D̄1 ⊆ ker B̄21,

B̄22 = 0 must hold.
It remains to show that (10.37) has regular index 1 as a DAE for x1 in R

r1 . Obviously,
this DAE for x1 has a properly stated leading term, too. If we succeed in showing
Ā1D̄1 +W̃0B̄11Q̃0 to be nonsingular, where W̃0 := I− Ā1Ā+

1 , we are done. Notice
that W̄0 := LW0L−1 is the orthoprojector onto im Ḡ⊥0 = im Ā⊥. Because of Ā =[

A1
0

]
, we have W̄0 =

[
W̃0 0
0 I

]
. Derive
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Ā1D̄1 +W̃0B̄11Q̃0 =
[
I 0
]

LADK
[

I
0

]
+
[
I 0
]
W̄0LBKQ̄0

[
I
0

]

=
[
I 0
]

L(AD+W0BQ0)K
[

I
0

]

=
[
I 0
][S 0

0 0

][
I
0

]
= S,

and S is nonsingular. ��

10.2.2.3 Tractability index 2, G2 has a nontrivial nullspace

The decomposed system (10.21), (10.22) now reads

P1D−(DΠ1x)′+Q1x+Q0x−Q0Q1D−(DΠ0Q1x)′+V0Dx+U0(Dx)′

+G−2 B1D−DΠ1x+ y = G−2 q, (10.39)

W2B1D−DΠ1x =W2q, (10.40)

with coefficients (cf. Proposition 2.23)

U0 = −Q0{Q0 +Q1Q0Q1P0}Π0D− =−Q0Q1Q0Q1D−,

V0 = Q0{(P0 +Q1Q0)D−R′ −Q1D−(DΠ1D−)′}DD− =−Q0Q1D−(DΠ1D−)′DD−

and an arbitrary continuous function y such that

G2y = 0. (10.41)

We multiply (10.39) by DΠ1, Q1 and Q0P1, and obtain the system

(DΠ1x)′ − (DΠ1D−)′DΠ1x+DΠ1G−2 B1D−DΠ1x+DΠ1y = DΠ1G−2 q, (10.42)

Q1x+Q1Q0x−Q1Q0Q1D−(DΠ0Q1x)′+Q1V0Dx+Q1U0(Dx)′ (10.43)

+Q1G−2 B1D−DΠ1x+Q1y = Q1G−2 q,

Q0P1Q0x+Q0P1D−(DΠ1x)′ −Q0P1Q0Q1D−(DΠ0Q1x)′+Q0P1V0Dx (10.44)

+Q0P1U0(Dx)′+Q0P1G−2 B1D−DΠ1x+Q0P1y = Q0P1G−2 q,

which is a decomposed version of (10.39) due to Π0+Q0P1+Q1 = I, Π0 =D−DΠ0.
Multiplying equation (10.43) by Π0 and taking into account the property
Π0Q1Q0 = 0 we derive

Π0Q1x+Π0Q1G−2 B1D−DΠ1x+Π0Q1y =Π0Q1G−2 q. (10.45)

Now it is evident that, for given y, and the initial condition



498 10 Nonregular DAEs

D(t0)Π1(t0)x(t0) = z0 ∈ imD(t0)Π1(t0), (10.46)

there is exactly one solution of the explicit ODE (10.42), that is, the solution compo-
nent Π0x = D−DΠ0x of the IVP for the DAE is uniquely determined. Having DΠ1x,
we obtain the next componentΠ0Q1x from (10.45), and thus Dx=DΠ1x+DΠ0Q1x.
Then, formula (10.44) provides an expression for Q0P1Q0x in terms of the previous
ones. Finally, multiplying (10.43) by Q0 we find an expression Q0Q1x+Q0Q1Q0x=
E with E depending on the already given terms y, DΠ0Q1x, DΠ1x, and Dx. In turn,
this yields an expression for Q0Q1Q0x, and then for Q0x = Q0Q1Q0x+Q0P1Q0.
In summary, for each function y that satisfies condition (10.41), the system (10.42)–
(10.44), completed by the initial condition (10.46), determines a unique solution
x = D−DΠ1x+Π0Q1x+Q0x of the DAE.

With regard of the discussion above (cf. (10.23)) the actual arbitrary part of y is
Q1y ∈ N1∩S1.

We mention that, for solvability, the component DΠ0Q1x must be continuously
differentiable. Equation (10.45) shows the terms being responsible for that. For in-
stance, if Π0Q1G−2 B1D− is a continuously differentiable matrix function, then the
difference DΠ0Q1(G−2 q− y) must be continuously differentiable.

Example 10.12 (G2 has full row rank). Set k = 3, m = 4, n = 2, and consider the
DAE (10.12) given by the coefficients

A =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ , D =

[
1 0 0 0
0 1 0 0

]
, D− =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ , B =

⎡
⎣

1 0 0 0
0 0 1 1
0 1 0 0

⎤
⎦ ,

which means in detail
x′1 + x1 = q1,

x′2 + x3 + x4 = q2,
x2 = q3.

(10.47)

We provide the sequence

G0 =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 0

⎤
⎦ , Q0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

G1 =

⎡
⎣

1 0 0 0
0 1 1 1
0 0 0 0

⎤
⎦ , Q1 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 −1 −1 0

⎤
⎥⎥⎦ , B1 =

⎡
⎣

1 0 0 0
0 0 0 0
0 1 0 0

⎤
⎦ ,

G2 =

⎡
⎣

1 0 0 0
0 1 1 1
0 1 0 0

⎤
⎦ , G−2 =

⎡
⎢⎢⎣

1 0 0
0 0 1
0 1 −1
0 0 0

⎤
⎥⎥⎦ , W2 = 0.
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Hence the projector Q1 satisfies the admissibility condition X1 ⊂ kerQ1 with
X1 := {z ∈ R

4 : z1 = 0, z2 = 0, z3 = 0} and N0 = (N0 ∩N1)⊕X1. G2 has maximal
rank, r2 = k = 3, thus the DAE is tractable with index 2. The consistency condition
(10.40) disappears. Compute further Vl = 0 and Ul = 0, so that equation (10.39)
simplifies to

P1D−(DΠ1x)′+Q1x+Q0x−Q0Q1D−(DΠ0Q1x)′+G−2 B1D−DΠ1x+ y = G−2 q,

with

P1D− =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ , Q0Q1D− =

⎡
⎢⎢⎣

0 0
0 0
0 0
0 −1

⎤
⎥⎥⎦ , G−2 B1D−DΠ1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Taking into account that G2y = 0 is equivalent to y1 = 0, y2 = 0, y4 =−y3, we find
equation (10.39) to be in detail:

x′1 + x1 = q1,

x2 = q3,

2x3 + y3 = q2−q3,

x4− x3− x2 + x′2− y3 = 0.

For each function y3, this is a regular DAE with tractability index 2. Its solutions are
the solutions of the original DAE. ��

10.3 Underdetermined nonlinear DAEs

The discussion in Sections 3.1, 3.2 and 3.4 applies to general systems (3.1) compris-
ing k equations and m unknown functions. In particular, we can construct admissi-
ble matrix function sequences in the same way as we used to do for regular DAEs.
Lemma 3.27 offers the possibility to make use of linearizations.
In nonregular DAEs, we have to expect many more difficulties than in regular DAEs.
Already for nonregular linear DAEs, there is much space left for different interpre-
tations.
Though it seems to be straightforward now to generalize the tractability index for
general nonlinear DAEs, we do not go this way. So far we have no idea how one
could benefit from such a definition. We restrict our interest to underdetermined
DAEs having tractability index 0 or 1, since this kind of system plays a certain role
in optimal control problems with DAE constraints.

Consider DAEs of the form

f ((D(t)x(t))′,x(t), t) = 0, (10.48)
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consisting of k equations for m > k unknown functions, and which satisfies the basic
Assumption 3.16. We continue to use the denotations introduced in Sections 3.1 and
3.2.

Definition 10.13. Let the DAE (10.48) satisfy the basic Assumption 3.16 and
rank [ fyD fx] = k < m.

(1) The DAE (10.48) is said to be underdetermined with tractability index 0, if
the matrix function G0 has maximal rank, that is r0 = k.

(2) The DAE (10.48) is said to be underdetermined with tractability index 1, if
r0 < k and the matrix function G1 has maximal rank r1 = k.

Example 10.14 (Strangeness-free reduced DAE). In [130] the strangeness-free re-
duced DAE

x′1(t)+L(x1(t),x2(t),x3(t), t) = 0, (10.49)
x2(t)+R(x1(t),x3(t), t) = 0, (10.50)

plays its role. By means of

A =

[
I
0

]
, D =

[
I 0 0

]
, G0 =

[
I 0 0
0 0 0

]
, Q0 =

⎡
⎣

0 0 0
0 I 0
0 0 I

⎤
⎦ , G1 =

[
I � �
0 I �

]

we check this DAE to be underdetermined with tractability index 1. ��

If the matrix function G0 = AD has full row rank k, then A is invertible, and D
has full row rank k, too. Then we find a continuous orthogonal matrix function
K = [ K1︸︷︷︸

k

K2︸︷︷︸
m−k

], such that

D(t)K(t) = [D(t)K1(t) D(t)K2(t)] = [D̃(t) 0], t ∈ I f .

Transforming the unknown function x = K1x̃+K2ũ within the DAE (10.48) yields

f ((D̃(t)x̃(t))′,K1(t)x̃(t)+K2(t)ũ(t), t) = 0. (10.51)

We regard this equation as a DAE with respect to the unknown function x̃, and the
function ũ as an arbitrary continuous control. In order to meet the basic Assump-
tion 3.16, for obtaining a continuously differentiable matrix function D̃ in (10.51),
we suppose K1 to be sufficiently smooth, which is, in turn, ensured by a sufficiently
smooth coefficient AD. Since the matrix function AD̃ is nonsingular, our equation
(10.51) is an implicit regular ODE, and a regular DAE with tractability index 0.
One could get along with transformations K being just continuous by adapting the
theory for the special case of equations (10.48) with just continuous D, and fyD
having full row rank. Notice at this point, that the linear theory in Chapter 2 is made
with continuous coefficient D.



10.3 Underdetermined nonlinear DAEs 501

An analogous partition of the unknown function into two parts, one of which can
be considered as an arbitrary control, is provided for linear DAEs that are tractable
with index 1 by Proposition 10.11. For nonlinear DAEs, we obtain a local version
of this property below.

Let the DAE (10.48) be underdetermined with index 1. Owing to Lemma 3.27,
each linearization of this DAE along a function x∗ ∈ C2

∗(D f ×I f ) inherits the prop-
erty of beeing underdetermined with tractability index 1. We fix such a function x∗
and the corresponding linearization

A∗(t)((D(t)x(t))′+B∗(t)x(t) = q(t), t ∈ I∗. (10.52)

Let Q0 denote the orthoprojector function onto kerD, and W∗0 denote the ortho-
projector function onto imG⊥∗0, with G∗0 = A∗D. The asterisk indicates the pos-
sible dependence upon x∗. The matrix functions G∗1 = G∗0 + B∗Q0 and G∗1 =
G∗0 +W∗0B∗Q0 = G∗1(I−G−∗0B∗Q0) both have full row rank k. Therefore, there
is a matrix function K∗ ∈ C(I∗,L(Rm)) that is pointwise orthogonal such that

G∗1K∗ = [ S∗︸︷︷︸
k

0︸︷︷︸
m−k

], S∗ nonsingular.

With the partition K∗ = [K∗1︸︷︷︸
k

K∗2︸︷︷︸
m−k

], this leads to the relations

G∗1K∗1 = S∗, G∗1K∗2 = 0, DK∗2 = 0.

Denote by Q̃∗0 the orthoprojector function onto kerDK∗1. Then we have
[

Q̃∗0 0
0 I

]
= K−1

∗ Q0K∗,
[

Q̃∗0
0

]
= K−1

∗ Q0K∗1, K∗1Q̃∗0 = Q0K∗1.

Next we apply the transformation x = K∗1x̃+K∗2ũ arising from the linearized DAE
to its nonlinear origin (10.48):

f ((D(t)K∗1(t)x̃(t))′,K∗1(t)x̃(t)+K∗2(t)ũ(t), t) = 0. (10.53)

Denote
[

x̃∗
ũ∗

]
:= K−1

∗ x∗.

Assumption 3.16 requires DK∗1 to be continuously differentiable. Here we sup-
pose this to be given. This can be ensured by a sufficiently smooth f . On the other
hand, a more specific theory would get along with K∗ being just continuous.
Equation (10.53) regarded as a DAE for x̃ fulfills the basic Assumption 3.16. We
indicate the terms associated with this DAE by a tilde. With
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f̃ (y, x̃, ũ, t) := f (y,K∗1(t)x̃+K∗2(t)ũ, t),

D̃(t) := D(t)K∗1(t),

Ã(x̃1, x̃, t, ũ) := fy(D̃(t)x̃1 + D̃′(t)x̃,K∗1(t)x̃+K∗2(t)ũ, t),

B̃(x̃1, x̃, t, ũ) := fx(D̃(t)x̃1 + D̃′(t)x̃,K∗1(t)x̃+K∗2(t)ũ, t)K∗1(t),

it follows that

Ã∗(t) := Ã(x̃′∗(t), x̃∗(t), t, ũ∗(t)) = A∗(t),

B̃∗(t) := B̃(x̃′∗(t), x̃∗(t), t, ũ∗(t)) = B∗(t)K∗1(t),

W̃∗0(t) =W∗0(t),

and further, for the matrix function G̃∗1 := ÃDK∗1 +W̃0B̃Q̃∗0,

G̃∗1(x̃′∗(t), x̃∗(t), t, ũ∗(t)) = Ã∗(t)D(t)K∗1(t)+W̃∗0(t)B̃∗(t)Q̃∗0(t)

= A∗(t)D(t)K∗1(t)+W∗0(t)B∗(t)K∗1(t)Q̃∗0(t)

= A∗(t)D(t)K∗1(t)+W∗0(t)B∗(t)Q0(t)K∗1(t)

=
(
A∗(t)D(t)+W∗0(t)B∗(t)Q0(t)

)
K∗1(t)

= S∗.

Since S∗ is nonsingular, the matrix function G̃∗1, and at the same time the matrix
function G̃∗1, remain nonsingular in a neighborhood of the graph of (x̃∗, ũ∗). This
means that the DAE (10.53) is regular with tractability index 1 there. We summarize
what we have shown:

Proposition 10.15. If the DAE (10.48), with sufficiently smooth data f , is underde-
termined with tractability index 1, then it can be transformed locally by a linear
transformation into a regular index 1 DAE (10.53) for one component x̃ whereas the
other part ũ can be regarded as a kind of control function.

We mention that, in our construction, kerG∗1 = N0∩S∗0 is a particular subspace
associated with the linearized DAE (10.51), and the orthoprojector function onto
this subspace reads K∗diag(0, I)K−1

∗ .
If the intersection subspace N0∩S0 associated with the nonlinear DAE does not vary
with the arguments x1,x, then the corresponding orthoprojector function
K∗diag(0, I)K−1

∗ is actually independent of the reference function x∗.

10.4 Notes and references

(1) The material of this chapter is to a large extent new. Proposition 10.11 is a modi-
fied version of [36, Proposition 3.2] and Proposition 10.15 is a slight generalization
of [36, Proposition 5.1] where quasi-linear DAEs are considered.
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A different version of a singular tractability index for the characterization of not
necessarily regular DAEs is proposed in [62]. There, the level at which the admis-
sible matrix function sequence becomes stationary is assigned to the tractability
index. The paper deals then with index-1 DAEs.

(2) At least in the constant coefficient case, in admissible matrix (function) se-
quences, the Gi themselves as well as the subspaces N0+ · · ·+Nj become stationary.
It is open how one could benefit from this property.

(3) We do not quote the various literature dealing with general DAEs and treat-
ing them by reduction into special forms. We refer to [130, 20] and the references
therein for an overview. Applied to nonregular DAEs, the strangeness concept and
the concept behind the tractability index follow widely different interpretations.
They are so to say unrelated to each other.
Theorem 2.79, which relates the strangeness characteristics and the tractability char-
acteristics for regular linear DAEs to each other, cannot be extended for nonregular
DAEs. Whereas, for regular DAEs, the tractability index equals 1+ strangeness in-
dex, in the case of nonregular DAEs, the strangeness index can be equal to the
tractability index but can also be arbitrarily higher.

(4) Proposition 10.11 precisely reflects the inherent structure of the system
(10.33), (10.34) which has been obtained by the projector based decoupling.
The statement of Proposition 10.11 itself is a well-known fact in the context of
control selection and feedback regularization (see the discussion, e.g., in [36]).



Chapter 11
Minimization with constraints described by
DAEs

This chapter collects results obtained by means of the projector based approach to
DAEs, which are relevant in view of optimization. We do not at all undertake to
offer an overview concerning the large field of control and optimization with DAE
constraints. We do not touch the huge arsenal of direct minimization methods.
We address the basic topics of adjoint and self-adjoint DAEs in Section 11.1 and
provide extremal conditions in Sections 11.2 and 11.3. Section 11.4 is devoted to
linear-quadratic optimal control problems (LQP) including also a generalization of
the Riccati feedback solution. In each part, we direct particular attention to the prop-
erties of the resulting optimality DAE. If one intends to apply indirect optimization,
that is, to solve the optimality DAE, then one should take great care to ensure appro-
priate properties, such as regularity with index 1, in advance by utilizing the scope
of modeling. By providing criteria in terms of the original problem data we intend
to assist specialists in modeling.
We direct the reader attention to several different denotations used in the sections of
this chapter. In each case, the relevant denotations and basic assumptions are given
at the beginning of the section.

11.1 Adjoint and self-adjoint DAEs

Adjoint and self-adjoint linear equations play an important role in various math-
ematical fields, in particular in the theory of ODEs. Usually in this context, one
includes the investigation of the complex-valued case, and we do so, too. In the
present section, K stands for the real numbers R or the complex numbers C. We
denote the inner product of the vector space K

s by 〈., .〉. We consider linear DAEs

A(t)(D(t)x(t))′+B(t)x(t) = 0, t ∈ I, (11.1)

with coefficients A(t) ∈ L(Kn,Kk), D(t) ∈ L(Km,Kn), and B(t) ∈ L(Km,Kk) being
continuous on the given interval I. The DAE comprises k equations, whereas the
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unknown function x has m components.
A solution of this DAE is a function x which belongs to the function space

C1
D(I,Km) := {x ∈ C(I,Km) : Dx ∈ C1(I,Kn)}

and which satisfies the DAE pointwise on I.
For each pair of functions x ∈ C1

D(I,Km), y ∈ C1
A∗(I,Kk), it results that

〈
A(t)(D(t)x(t))′+B(t)x(t),y(t)

〉

=
〈
(D(t)x(t))′,A(t)∗y(t)

〉
+
〈
x(t),B(t)∗y(t)

〉

= (
〈
D(t)x(t),A(t)∗y(t)

〉
)′ −
〈
D(t)x(t),(A(t)∗y(t))′

〉
+
〈
x(t),B(t)∗y(t)

〉

= (
〈
D(t)x(t),A(t)∗y(t)

〉
)′+
〈
x(t),−D(t)∗(A(t)∗y(t))′+B(t)∗y(t)

〉
, t ∈ I.

If x is a solution of the DAE (11.1) and y is a solution of the DAE

−D(t)∗(A(t)∗y(t))′+B(t)∗y(t) = 0, t ∈ I, (11.2)

then it follows that (〈D(t)x(t),A(t)∗y(t)〉)′ vanishes identically, such that

〈D(t)x(t),A(t)∗y(t)〉= constant , t ∈ I. (11.3)

In the particular case if n = m = k, A = I, D = I, if equation (11.1) is actually an
explicit regular ODE, equation (11.2) is the adjoint ODE to (11.1), and the relation
(11.3) is known as the Lagrange identity. We adopt these designations also in the
general case.

Definition 11.1. The DAEs (11.1) and (11.2) are said to be adjoint to each other,
and the identity (11.3) is called their Lagrange identity.

In minimization problems with DAE constraints, the DAEs usually have less equa-
tions than unknowns, that is k < m. Then, the adjoint DAE has more equations than
unknowns, which makes the solvability problem highly nontrivial.

Definition 11.2. The DAE (11.1) is said to be self-adjoint, if k = m,
C1

D(I,Km) = C1
A∗(I,Kk), and

A(Dx)′+Bx =−D∗(A∗x)′+B∗x for all x ∈ C1
D(I,Km).

Example 11.3 (Self-adjoint DAE). The DAE

i (D(t)∗(D(t)x(t)))′+B(t)x(t) = 0,

with B(t) = B(t)∗, which is introduced and discussed in [1], is obviously self-
adjoint.

The following assertion generalizes this example and provides a wider criterion of
self-adjointness, which is of particular interest for minimization problems.
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Proposition 11.4. If m = k, J is a constant matrix such that J∗ = −J and J2 = −I,
A(t) = D(t)∗J, B(t) = B(t)∗ for t ∈ I, then the DAE (11.1) is self-adjoint.

Proof. Because of m = k, A∗ = J∗D and D = JA∗ the function spaces C1
D(I,Km)

and C1
A∗(I,Kk) coincide. Moreover, for each x ∈ C1

D(I,Km) it holds that

A(Dx)′+Bx = D∗J(JA∗x)′+B∗x =−D∗(A∗x)′+B∗x.

��

As in Chapters 2 and 10 we intend to make use of proper formulations of the leading
term of the DAEs. Though the material of these chapters is described for real valued
functions, it applies analogously also in the complex valued case. For easier reading,
here we again consider certain aspects separately. We emphasize the consistency
with Chapters 2 and 10.

Definition 11.5. The DAE (11.1) has a properly stated leading term, if the transver-
sality condition

kerA(t)⊕ imD(t) =K
n, t ∈ I, (11.4)

holds and the projector valued function R : I → L(Kn) uniquely defined by imR =
imD, kerR = kerA is continuously differentiable. The projector function R is named
the border projector of the leading term of the DAE.
The DAE (11.1) has a full rank proper leading term, if

kerA(t) = {0}, imD(t) =K
n, t ∈ I. (11.5)

The full rank proper leading term is associated with the trivial border projector
R = I.

Proposition 11.6. If the DAE (11.1) has a properly stated leading term, then its
adjoint equation (11.3) also has a properly stated leading term.
If the DAE (11.1) has a full rank proper leading term, then its adjoint equation
(11.3) has also a full rank proper leading term.

Proof. The decomposition (11.4) can be written as (imA(t)∗)⊥ ⊕ (kerD(t)∗)⊥ =
K

n, and it follows that kerD(t)∗ ⊕ imA(t)∗ = K
n. Furthermore, R(t)∗ is the pro-

jector onto imA(t)∗ along kerD(t)∗. The projector valued function R∗ inherits the
continuous differentiability from R. ��

Admissible matrix function sequences can be built in the same way as given for
the real valued case in Chapter 2. Also, as it is done there, one assigns characteristic
values, regularity and the tractability index. The decouplings and the IERODEs keep
their meaning. In particular, the so-called IERODE of a regular DAE is uniquely
determined in the scope of fine decouplings. The IERODE of a regular index-1 DAE
(11.1) is uniquely determined to have the form

u′ = R′u−DG−1
1 BD−u, (11.6)

with u = Dx, see Section 2.4.
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The next assertion characterizes an important class of DAE whose IERODEs
show Hamiltonian structure.

Theorem 11.7. Let the DAE (11.1) have the particular form described in Proposi-
tion 11.4 and be regular with tractability index 1. Additionally, let its leading term
be full rank proper. Then, the IERODE of the DAE (11.1) applies to the component
u = Dx and has the form

u′(t) = J∗E(t)u(t), with E(t) = E(t)∗. (11.7)

Proof. This assertion is verified for K = R in [8, Theorem 4.4], however, all argu-
ments apply also in the complex valued case. ��

The full rank proper leading term can be achieved by appropriate refactorizations
of the leading term. The following example demonstrates that unless there is a full
rank leading term, the Hamiltonian property (11.7) can get lost. Therefore, it is quite
reasonable to ensure full rank proper leading terms.

Example 11.8 (Non-Hamiltonian IERODE). The DAE
⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 t 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A(t)

(⎡⎢⎢⎣
0 0 0 t 0
0 0 0 1 0
0 0 0 0 0
0 −1 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
D(t)

x(t)

)′
+

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 −2 0
−1 0 0 0 −1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B(t)

x(t) = 0

is self-adjoint, it meets the conditions A = D∗J and B = B∗ for

J =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ . We choose D(t)− =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 −t −1
0 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

and we compute

R(t) = D(t)D(t)− =

⎡
⎢⎢⎣

0 t 0 0
0 1 0 0
0 0 0 0
0 0 t 1

⎤
⎥⎥⎦ , P0(t) = D(t)−D(t) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

Regarding the relations imR = imD and kerR = kerA we see that the DAE has a
properly stated leading term. However, A(t) and D(t) fail to have full rank, and the
two-dimensional subspaces imD(t) and kerA(t) vary in R

4 with t. Compute further
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G1(t) =

⎡
⎢⎢⎢⎢⎣

0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 −1 0 0 0
−1 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, D(t)G1(t)−1B(t)D(t)− =

⎡
⎢⎢⎣

0 −t 0
0 −1 0 0
0 0 0 0
0 −2 t 1

⎤
⎥⎥⎦ ,

so that the DAE is seen to be regular with tractability index 1. Its IERODE
u′ −R′u+DG−1

1 BD−u = 0 reads in detail

u′(t) =

⎡
⎢⎢⎣

0 t +1 0 0
0 1 0 0
0 0 0 0
0 2 1− t −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
M(t)

u(t).

The resulting

E(t) := JM(t) =

⎡
⎢⎢⎣

0 0 0 0
0 2 1− t −1
0 −1− t 0 0
0 −1 0 0

⎤
⎥⎥⎦ ,

fails to be symmetric. The lack of symmetry is caused by the time-varying border
projector R(t). In this context, also a properly stated leading term with nontrivial
border projector appears to be somewhat unqualified.
A corresponding refactorization of the leading term (see Section 2.3) improves the
situation. Such a refactorization does not change the characteristic values including
the tractability index of a regular DAE. Choose

H =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ , H− =

[
0 1 0 0
0 0 0 1

]
,

such that H− is a reflexive generalized inverse of H and the relation RHH−R = R
is fulfilled. The refactorized DAE has the coefficients Ā = AH, D̄ = H−D and
B̄ = B−ARH(H−R)′D, which means here

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ā(t)

([0 0 0 1 0
0 −1 0 0 0

]

︸ ︷︷ ︸
D̄(t)

x(t)
)′
+

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 −2 0
−1 0 0 0 −1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B̄(t)=B(t)

x(t) = 0. (11.8)

The new DAE (11.8) has a full rank proper leading term. With
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J̄ =

[
0 1
−1 0

]

it holds that D̄∗J̄ = Ā. The new IERODE applies to ū = D̄x. It reads

ū′(t) =
[

1 0
2 −1

]

︸ ︷︷ ︸
M̄(t)

ū(t),

and the resulting

Ē(t) := J̄M̄(t) =
[

2 −1
−1 0

]
,

is symmetric according to the theory. ��

We finish this section by turning briefly to regular DAEs (11.1). We conjecture that
regular DAEs and their adjoints share their characteristic values, in particular their
tractability index. To date, the conjecture is approved for index 1 and index 2 cases.
In any case, a regular DAE (11.1) and its adjoint (11.2) share the first level charac-
teristic value r0 = rankG0 = rankAD = rankD∗A∗.

Theorem 11.9. The DAE (11.1) is regular with tractability index 1 and the charac-
teristic values r0 < r1 = m, only if the adjoint DAE (11.2) is so.
The DAE (11.1) is regular with tractability index 2 and the characteristic values
r0 ≤ r1 < r2 = m, only if the adjoint DAE (11.2) is so.

Proof. Let the DAE (11.1) be regular with tractability index 1. Denote by Q0 and W0
the orthoprojector functions onto kerG0, respectively imG⊥

0 = kerG∗0. The matrix
function G0 +W0BQ0 is nonsingular together with G1 = G0 +BQ0. Further, also
−G0 +W0BQ0, thus (−G0 +W0BQ0)

∗ = −D∗A∗+Q0B∗W0 are nonsingular. This
implies the invertibility of −D∗A∗ + B∗W0 which means that the adjoint DAE is
regular with index 1.
The index-2 case is verified in [12, Theorem 5.1]. ��

11.2 Extremal conditions and the optimality DAE

11.2.1 A necessary extremal condition and the optimality DAE

Consider the cost functional

J(x) = g(D(t f )x(t f ))+

t f∫

t0

h(x(t), t)dt (11.9)

to be minimized on functions x ∈ C1
D(I,Rm), I = [t0, t f ], subject to the constraints
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f ((D(t)x(t))′,x(t), t) = 0, t ∈ I, (11.10)

and
D(t0)x(t0) = z0 ∈ R

n. (11.11)

For easier later use we collect the basic assumptions.

Assumption 11.10. The function f : Rn×R
m×I →R

k is continuous and has con-
tinuous partial derivatives fy, fx with respect to the first two variables y ∈ R

n,
x ∈ R

m. D : I → L(Rm,Rn) is continuous.
The DAE (11.10) comprises k < m equations. It has a full rank proper leading term,
that is, n ≤ m, n ≤ k and fy has full column rank n, and D has full row rank n on
their definition domains.
The functions h and g are continuously differentiable.

For a given function x∗ ∈ C1
D(I,Rm) we consider the linearization of the nonlinear

DAE (11.10) along x∗ to be the linear DAE

A∗(t)(D(t)x(t))′+B∗(t)x(t) = q(t), t ∈ I, (11.12)

with continuous coefficients

A∗(t) := fy((D(t)x∗(t))′,x∗(t), t), B∗(t) := fx((D(t)x∗(t))′,x∗(t), t), t ∈ I.

The linear DAE (11.12) inherits the full rank proper leading term from (11.10). The
following definition adapts Definition 10.13 to the present situation.

Definition 11.11. Let the DAE (11.10) satisfy Assumption 11.10. Let G ⊆ R
n ×

R
m×I be an open set.

(1) The DAE is said to be underdetermined with tractability index 0 if n = k.
(2) The DAE is said to be underdetermined with tractability index 1 on G if n < k

and the rank condition

rank
[

fy(y,x, t)D(t)+ fx(y,x, t)(I−D(t)+D(t))
]
= k, (y,x, t) ∈G, (11.13)

is fulfilled.

It is evident that, in the index-1 case, the linearization (11.12) inherits the rank
condition

rank
[
A∗(t)D(t)+B∗(t)(I−D(t)+D(t))

]
= k, (y,x, t) ∈G, (11.14)

supposing the graph of x∗ resides in G. This means that the linearization is also
an underdetermined DAE with tractability index 1, if the nonlinear DAE is so in a
neighborhood of the graph of x∗.

Theorem 11.12. Let Assumption 11.10 be valid. Let x∗ ∈ C1
D(I,Rm) be a local so-

lution of the optimization problem (11.9), (11.10), (11.11). Let the DAE (11.10) be



512 11 Minimization with DAE-constraints

underdetermined with tractability index 1 at least on an open set around the graph
of x∗.
Then the terminal value problem

−D(t)∗(A∗(t)∗λ (t))′+B∗(t)∗λ (t) = hx(x∗(t), t)∗, t ∈ I, (11.15)
D(t f )

∗A∗(t f )
∗λ (t f ) = (gη(D(t f )x∗(t f ))D(t f ))

∗ (11.16)

possesses a solution λ∗ ∈ C1
A∗∗
(I,Rk).

Proof. Owing to Proposition 10.9, the linear IVP

A∗(t)(D(t)x(t))′+B∗(t)x(t) = q(t), t ∈ I, D(t0)x(t0) = z0,

is solvable for each arbitrary continuous q and z0 ∈ R
n. This means that the con-

straint operator F : C1
D(I,Rm)→C(I,Rm)×R

n defined by

(Fx)(t) := ( f ((D(t)x(t))′,x(t), t), D(t0)x(t0)), t ∈ I,

has a surjective derivative Fx(x∗) (cf. Section 3.9).
For the case of quasi-linear DAEs with f (y,x, t) = A(x, t)y+b(x, t) the assertion is
proved in [6, pages 121–139] by applying the famous Lyusternik theorem [151],
then providing a representation of functionals on C1

D(I,Rm), and further a repre-
sentation of the Lagrange multiplier. The same arguments apply also in the slightly
more general case discussed now. We emphasize the essential part of the surjectivity
(closed range property) of Fx(x∗) in this context. ��
Example 11.13 (A simple LQP). The linear-quadratic optimization problem given
by the cost

J(x) =
1
2

x1(T )2 +

T∫

0

x2(t)2dt

and the constraints

x′1(t)− x2(t) = 0, x1(0) = a �= 0,

possesses the unique solution

x∗(t) =
[

a− a
T+2 t

− a
T+2 ,

]

such that J(x∗)= ( a
T+2 )

2. Theorem 11.12 applies. The resulting terminal value prob-
lem

−
[

1
0

]
λ ′(t)+

[
0
−1

]
λ (t) =

[
0

2x∗2(t)

]
,

[
1
0

]
λ (T ) =

[
1
0

]
x∗1(T )

is uniquely solvable. ��
The condition (11.14) is necessary for the existence of a solution of the terminal
value problem (11.15), (11.16), as the following example demonstrates.
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Example 11.14 (Backes’ example). Consider the minimization problem
(cf. [6, pages 50–52]) given by the cost functional

J(x) =
1
2

x1(T )2 +
1
2

T∫

0

(x3(t)2 + x4(t)2)dt

and the constraints
⎡
⎣

1 0
0 1
0 0

⎤
⎦
([1 0 0 0

0 1 0 0

]
x(t)
)′
+

⎡
⎣

0 0 0 −1
0 0 1 −1
0 1 0 0

⎤
⎦x(t) = 0, x1(0) = a �= 0, x2(0) = 0.

This problem has the unique solution

x∗(t) =

⎡
⎢⎢⎢⎣

a− a
T+2 t
0

− a
T+2

− a
T+2 ,

⎤
⎥⎥⎥⎦

which can easily be shown by reducing the problem to Example 11.13. However, in
the setting given now the resulting terminal value problem

−

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦
([1 0 0

0 1 0

]
λ (t)

)′
+

⎡
⎢⎢⎣

0 0 0
0 0 1
0 1 0
−1 −1 0

⎤
⎥⎥⎦λ (t) =

⎡
⎢⎢⎣

0
0

x∗3(t)
x∗4(t)

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎦λ (T ) =

⎡
⎢⎢⎣

x∗1(T )
0
0
0

⎤
⎥⎥⎦

has no solution. In particular, the terminal condition λ2(T ) = 0 contradicts the equa-
tion λ2 = x∗3 �= 0. ��

Corollary 11.15. Let the Assumption 11.10 be fulfilled. If x∗ ∈ C1
D(I,Rm) is a lo-

cal solution of the optimization problem (11.9), (11.10), (11.11), and the full rank
condition (11.14) is satisfied, then the terminal value problem (11.15), (11.16) is
solvable on C1

A∗∗
(I,Rk).

Proof. The rank condition (11.14) implies the rank condition (11.13) to be given in
a neighborhood G of the graph of x∗. Then the assertion is a direct consequence of
Theorem 11.12. ��

Indirect optimization methods rely on the boundary value problem (BVP) for the
composed so-called optimality DAE
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f ((D(t)x(t))′,x(t), t) = 0, (11.17)
−D(t)∗( fy((D(t)x(t))′,x(t), t)∗λ (t))′+

fx((D(t)x(t))′,x(t), t)∗λ (t) = hx(x(t), t)∗, (11.18)

completed by the boundary conditions (11.11) and (11.16). Owing to Theorem 11.12
this BVP is solvable. By introducing the new function y = (Dx)′ and collecting the
components λ ,x,y in x̃, the DAE (11.17), (11.18) can be put into the more prevalent
form

f̃ ((d̃(x̃(t), t))′, x̃(t), t) = 0,

with properly involved derivative and nonlinear derivative term. This kind of equa-
tions is investigated in Chapter 3. Here we restrict our further interest to the easier
quasi-linear case

f (y,x, t) = A(t)y+b(x, t), (11.19)

which naturally comprises all semi-explicit systems.
In the case of the particular form (11.19), the optimality DAE simplifies to

A(t)(D(t)x(t))′+b(x(t), t) = 0, (11.20)
−D(t)∗(A(t)∗λ (t))′+bx(x(t), t)∗λ (t) = hx(x(t), t)∗. (11.21)

The optimality DAE combines k+m equations for the same number of unknown
functions. In view of a reliable practical treatment, when applying an indirect op-
timization method, it would be a great advantage to know whether the optimality
DAE is regular with index 1. For this aim we consider the linearization of the DAE
(11.20), (11.21) along (λ∗,x∗), namely
[

A(t) 0
0 D(t)∗

]
(

[
0 D(t)

−A(t)∗ 0

][
λ (t)
x(t)

]
)′+

[
0 B∗(t)

B∗(t)∗ −H∗(t)

][
λ (t)
x(t)

]
= 0, (11.22)

with the continuous matrix functions

H∗(t) := hxx(x∗(t), t)− (b∗x(x, t)λ∗(t))x(x∗(t), t), B∗(t) := bx(x∗(t), t). (11.23)

Theorem 11.16. Let the Assumptions 11.10 be satisfied and let the DAE (11.10)
have the special form given by (11.19). Let the functions b and h have the additional
second continuous partial derivatives bxx, hxx. Set

Q0(t) = I−D(t)+D(t), W0(t) = I−A(t)A(t)+, t ∈ I.

Let x∗ ∈ C1
D(I,Rm) be a local solution of the optimization problem (11.9), (11.10),

(11.11) and let the rank condition (11.14) be satisfied, that is, with the denotation
(11.23)

rank [A(t)D(t)+B∗(t)Q0(t)] = k, t ∈ I. (11.24)



11.2 Extremal conditions 515

If, additionally, λ∗ denotes the resulting solution of the terminal value problem
(11.15), (11.16), then

(1) the optimality DAE (11.20), (11.21) is regular with index 1 in a neighborhood
of the graph of (λ∗,x∗), exactly if

(A(t)D(t)+W0(t)B∗(t)Q0(t))z = 0,

H∗(t)Q0(t)z ∈ ker(A(t)D(t)+W0(t)B∗(t)Q0(t))⊥

imply z = 0, for all t ∈ I; (11.25)

(2) the linearized DAE (11.22) is self-adjoint and its inherent regular ODE has
Hamiltonian structure such that

Θ ′ =
[

0 −In
In 0

]
EΘ , Θ :=

[
Dx
−A∗λ

]
, (11.26)

with a symmetric continuous matrix function E of size 2n×2n, supposing also
condition (11.25) is given.

Furthermore, if Q0(t)H∗(t)Q0(t) is semidefinite for all t ∈ I, then condition (11.25)
simplifies to the full rank condition

rank
[

A(t)D(t)+W0(t)B∗(t)Q0(t)
Q0(t)H∗(t)Q0(t)

]
= m, t ∈ I. (11.27)

Proof. (1) Set G = AD. The proper formulation of the leading term yields kerG =
kerD and imG = imA, therefore Q0 = I−D+D = I−G+G, W0 = I−GG+ = I−
AA+. Introduce the (m+ k)× (k+m) matrix function

Ĝ∗1 =
[

0 G+B∗Q0
−G∗+B∗∗W0 −H∗Q0

]
.

The optimality DAE (11.20), (11.21) is regular with index 1 around the graph of
(x∗,λ∗), exactly if Ĝ∗1 is nonsingular on I. Compute the relations

G+B∗Q0 = (G+W0B∗Q0)(I +G+B∗Q0),

−G∗+B∗∗W0 = (−G∗+Q0B∗∗W0)(I−G+∗B∗∗W0),

im(G+W0B∗Q0) = imG⊕ imW0B∗Q0,

im(−G∗+Q0B∗∗W0) = imG∗ ⊕ imQ0B∗∗W0 = im(G∗+Q0B∗∗W0).

From condition (11.24) it now follows that rank(−G∗+B∗∗W0)= rank(G+B∗Q0)=
k, and hence ker(−G∗+B∗∗W0) = {0}.
The matrix function Ĝ∗1 is nonsingular if, for v ∈ R

m and w ∈ R
k, the system

(G+B∗Q0)v = 0, (11.28)
−H∗Q0v+(−G∗+B∗∗W0)w = 0 (11.29)
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has only the trivial solution. Since −G∗+B∗∗W0 has full column rank and

im(−G∗+B∗∗W0) = ker(G+W0B∗Q0)
⊥,

equation (11.29) is equivalent to

−H∗Q0v ∈ ker(G+W0B∗Q0)
⊥, w = (−G∗+B∗∗W0)

+H∗Q0v.

Introduce ṽ = (I+G+bxQ0)v so that Q0v = Q0ṽ. Now it is clear that Ĝ∗1 is nonsin-
gular exactly if

(G+W0B∗Q0)ṽ = 0, (11.30)

−H∗Q0ṽ ∈ ker(G+W0B∗Q0)
⊥ (11.31)

imply z̃1 = 0. This proves (1).
(2) The linearized DAE (11.22) is self-adjoint. As a self-adjoint index-1 DAE it has
Hamiltonian structure.
It remains to verify the last assertion concerning condition (11.27). Equation (11.30)
decomposes to Gṽ = 0 and W0bxQ0ṽ = 0, thus ṽ = Q0ṽ and ṽ∈ kerW0B∗. Moreover,
regarding condition (11.31), ṽ and H∗ṽ are orthogonal, 0= 〈H∗ṽ, ṽ〉= 〈Q0H∗Q0ṽ, ṽ〉.
Since Q0H∗Q0 is symmetric and semidefinite, it follows that Q0H∗Q0v = 0, and we
are done. ��
Example 11.17 (Driving a point to a circle). [6, p.144–146] Minimize the cost

J(x) =
1
2

t f∫

0

(x3(t)2 +(x4(t)−R2)2)dt

subject to the constraint

x′1(t)+ x2(t) = 0, x1(0) = r,

x′2(t)− x1(t)− x3(t) = 0, x2(0) = 0,

−x1(t)2− x2(t)2 + x4(t) = 0,

with constants r > 0, R > 0. If x3(t) vanishes identically, the remaining IVP has
a unique solution. Then the point (x1(t),x2(t)) orbits the origin with radius r and
x4(t) = r. By optimizing in view of the cost, the point (x1(t),x2(t)) becomes driven
to the circle of radius R, with low cost of x3(t).
The resulting optimality DAE is everywhere regular with index 1. Namely, we have
m = 4, n = 2, k = 3, and

A =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ , b(x, t) =

⎡
⎣

x2
−x1− x3

−x2
1− x2

2 + x4

⎤
⎦ , D =

[
1 0 0 0
0 1 0 0

]
,

and condition (11.27) is satisfied, since
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AD+bx(x, t)(I−D+D) =

⎡
⎣

1 0 0 0
0 1 −1 0
0 0 0 1

⎤
⎦

has full row rank. The adjoint system comprises four equations and three unknown
functions λ1, λ2, λ3. The resulting optimality DAE

x′1(t)+ x2(t) = 0,
x′2(t)− x1(t)− x3(t) = 0,

−x1(t)2− x2(t)2 + x4(t) = 0,
−λ ′1(t)−λ2(t)−2x1(t)λ3(t) = 0,
−λ ′2(t)+λ1(t)−2x2(t)λ3(t) = 0,

−λ2(t) = x3(t),

λ3(t) = x4(t)−R2,

has dimension 7 and is everywhere regular with index 1. Here we have

H∗(t) =

⎡
⎢⎢⎣

2λ∗(t) 0 0 0
0 2λ∗(t) 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Q0(t)H∗(t)Q0(t) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

so that condition (11.27) applies. ��

The next example emphasizes that the only property that matters for the necessary
extremal condition is the surjectivity of the respective operator, that is, the full rank
condition (11.25). However, for obtaining a regular index-1 optimality DAE (11.20),
(11.21), additionally, the cost must be somehow consistent with the DAE describing
the constraint.

Example 11.18 (Consistency of cost and DAE constraint). Minimize the cost

J(x) =
1
2
γ x2(t f )

2 +
1
2

t f∫

0

(α (x1(t)+ x3(t))2 +β x2(t)2 )dt

subject to the constraint

x′2(t)+ x2(t)+ x3(t) = 0, x2(0) = 1,
x′2(t)+ sin t = 0,

with constants α, β , γ ≥ 0, α2 +β 2 + γ2 > 0. The optimal solution is

x∗1(t) =−sin t + cos t, x∗2(t) = cos t, x∗1(t) = sin t− cos t.

We have
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A =

[
1
1

]
, b(x, t) =

[
x2 + x3

sin t

]
, D =

[
0 1 0

]
, AD+bx(x, t)Q0 =

[
0 1 1
0 1 0

]
,

so that condition (11.14) is satisfied for all α, β , γ . The optimality DAE reads

x′2(t)+ x2(t)+ x3(t) = 0,
x′2(t)+ sin t = 0,

−α(x1(t)+ x3(t)) = 0,
−(λ1(t)+λ2(t))′+λ1(t)−βx2(t) = 0,

λ1(t)−α(x1(t)+ x3(t)) = 0.

This square DAE of dimension 5 is regular with index 1 exactly if α does not vanish.
This condition reflects condition (11.27). Namely, we have

H∗(t) = hxx(x∗(t), t) =

⎡
⎣
α 0 α
0 β 0
α 0 α

⎤
⎦ , Q0(t)H∗(t)Q0(t) =

⎡
⎣
α 0 α
0 0 0
α 0 α

⎤
⎦ ,

G+W0B∗Q0 =

[
0 1 0
0 1 0

]
+

[ 1
2 − 1

2
− 1

2
1
2

][
0 1 1
0 0 0

]⎡
⎣

1 0 0
0 0 0
0 0 1

⎤
⎦=

[
0 1 1

2
0 1 − 1

2

]
.

In contrast, the optimality DAE fails to be regular for α = 0.
In this example, the constraint DAE (11.10) consists of two equations for three

unknown functions. If one regards x3 as a control, the resulting controlled DAE
(with respect to x1,x2) fails to be regular. In contrast, regarding x1 as control, the
resulting controlled DAE (with respect to x2,x3) is regular with index 1. This em-
phasizes that, in the context of minimization with DAE constraints the only property
that matters for the extremal condition is the surjectivity of the operator representing
the linearization (11.12). Moreover, for obtaining a regular index-1 optimality DAE
(11.20), (11.21), the cost functional must be somehow consistent with the DAE de-
scribing the constraint. ��

For BVPs in regular index-1 DAEs approved numerical solution methods are avail-
able such that indirect optimization can be expected to work well in practice. How-
ever, one should take great care to ensure the conditions are responsible for the nice
properties. Otherwise one can go into trouble. Though the optimization problem is
uniquely solvable and the associated optimality BVP is also solvable, if the BVP
solution (x∗,λ∗) does not stay in a index-1 regularity region of the optimality DAE,
then it can be hopeless to solve the optimality DAE numerically.

Example 11.19 (The optimality DAE has several regularity regions). Minimize the
cost

J(x) =
1
2

2π∫

0

((x1(t)− sin t)2 +(x2(t)− cost)2 + γx3(t)2 + x4(t)2 )dt
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subject to the constraint

x′1(t)− x2(t)+ x3(t) = 0, x1(0) = 0,
x′2(t)+ x1(t) = 0, x2(0) = 1,

x1(t)3 +α(x1(t))x3(t)− (sin t)3− x4(t) = 0,

with a constant γ ≥ 0 and the real function α given by

α(s) :=
{s3 if s > 0

0 if s≤ 0.

The minimization problem has the unique optimal solution

x∗1(t) = sin t, x∗2(t) = cos t, x∗3(t) = 0, x∗4(t) = 0.

We have m = 4, k = 3, n = 2, and

A =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ , b(x, t) =

⎡
⎣

−x2 + x3
x1

x3
1 +α(x1)x3− (sin t)3− x4

⎤
⎦ , D =

[
1 0 0 0
0 1 0 0

]
,

such that the matrix function

AD+bx(x, t)(I−D+D) =

⎡
⎣

1 0 1 0
0 1 0 0
0 0 α(x1) −1

⎤
⎦

results, which has full row rank independently of the behavior of α(x1). Therefore,
the associated terminal value problem and hence the optimality BVP are solvable.
The optimality DAE reads in detail

x′1(t)− x2(t)+ x3(t) = 0,
x′2(t)+ x1(t) = 0,

x1(t)3 +α(x1(t))x3(t)− (sin t)3− x4(t) = 0,

−λ ′1(t)+λ2(t)+(3x1(t)2 +α ′(x1(t))x3(t))λ3(t) = x1(t)− sin t,

−λ ′2(t)−λ1(t) = x2(t)− cost,

λ1(t)+α(x1(t))λ3(t) = γx3(t),

−λ3(t) = x4(t).

It holds that
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AD+W0B∗Q0 =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 α(x1) −1

⎤
⎦ ,

H∗(t) =

⎡
⎢⎢⎣

1−6x∗1(t)λ∗3(t) 0 −α ′(x∗1(t))λ∗3(t) 0
0 1 0 0

−α ′(x∗1(t))λ∗3(t) 0 γ 0
0 0 0 1

⎤
⎥⎥⎦ ,

Q0H∗(t)Q0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 γ 0
0 0 0 1

⎤
⎥⎥⎦ .

Condition (11.27) requires γ+(α(x1))
2 �= 0. Therefore, the optimality DAE is glob-

ally regular with index 1 in case of γ > 0.
In contrast, if γ = 0, then merely the set

G1 = {(z, t) ∈ R
7× (t0, t f ) : z1 > 0}

is a regularity region with index μ = 1, but there are two further regularity regions

G2 =
{
(z, t) ∈ R

7× (t0, t f ) : z1 < 0,
9z4

1 +1
6z1

> z7

}
,

G3 =
{
(z, t) ∈ R

7× (t0, t f ) : z1 < 0,
9z4

1 +1
6z1

< z7

}

with tractability index 3. Unfortunately, the optimal solution does not remain in the
index-1 region but shuttles between G1 and G3. This is accompanied by a discontinu-
ous neighboring flow and causes numerical difficulties. In practice, these difficulties
are reflected also in case of small γ . ��

Altogether, when intending to apply an indirect optimization method, it seems to be
a good idea to make use of the modeling latitude and to reach an optimality DAE
which is regular with index-1 or, at least, to reach the situation that the expected
solution stays in an index-1 regularity region. Only in this way can the indirect
optimization work safely.

11.2.2 A particular sufficient extremal condition

Consider the quadratic cost functional

J(x) =
1
2
〈V D(t f )x(t f ),D(t f )x(t f )〉+

1
2

t f∫

t0

〈W (t)x(t),x(t)〉dt (11.32)
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to be minimized on functions x ∈ C1
D(I,Rm), subject to the constraints

A(t)(D(t)x(t))′+B(t)x(t)−q(t) = 0, t ∈ I = [t0, t f ], (11.33)

and
D(t0)x(t0) = z0 ∈ R

n. (11.34)

The matrices V and W (t), t ∈ I, are supposed to be symmetric, positive semidefi-
nite. Let the pair (x∗,λ∗) ∈ C1

D(I,Rm)×C1
A∗(I,Rk) be a solution of the BVP

A(t)(D(t)x(t))′+B(t)x(t)−q(t) = 0, (11.35)
−D(t)∗(A(t)∗λ (t))′+B(t)∗λ (t) =W (t)x(t), (11.36)

D(t0)x(t0) = z0, (11.37)
D(t f )

∗A(t f )
∗λ (t f ) = D(t f )

∗V D(t f )x(t f ). (11.38)

Then, for any x ∈ C1
D(I,Rm) and Δx := x− x∗, it holds that

J(x)− J(x∗) (11.39)

=
1
2

∫ t f

t0
〈W (t)Δx(t),Δx(t)〉dt +

1
2
〈V D(t f )Δx(t f ),D(t f )Δx(t f )〉+E+F,

with

E :=
∫ t f

t0
〈W (t)Δx(t),x∗(t)〉dt, F := 〈V D(t f )Δx(t f ),D(t f )x∗(t f )〉.

The expression E+F vanishes. To verify this, we derive

E=

∫ t f

t0
〈Δx(t),W (t)x∗(t)〉dt

=

∫ t f

t0
〈Δx(t),−D(t)∗(A(t)∗λ∗(t))′+B(t)∗λ∗(t)〉dt

=

∫ t f

t0
{−〈D(t)Δx(t),(A(t)∗λ∗(t))′〉+ 〈B(t)Δx(t),λ∗(t)〉}dt

=
∫ t f

t0
{−〈D(t)Δx(t),(A(t)∗λ∗(t))′〉− 〈(D(t)Δx(t))′,A(t)∗λ∗(t)〉}dt

=−
∫ t f

t0
(〈D(t)Δx(t),A(t)∗λ∗(t)〉)′dt

=−〈D(t f )Δx(t f ),A(t f )
∗λ∗(t f )〉,

further

E+F=−〈D(t f )Δx(t f ),A(t f )
∗λ∗(t f )〉+ 〈V D(t f )Δx(t f ),D(t f )x∗(t f )〉

= 〈Δx(t f ),D(t f )
∗{−A(t f )

∗λ∗(t f )+V D(t f )x∗(t f )}〉= 0.
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Proposition 11.20. Let all coefficients in the minimization problem (11.32)–(11.34)
be continuous. Let V and W be symmetric, positive semidefinite.
Then, if the optimality BVP (11.35)–(11.38) possesses a solution (x∗,λ∗) ∈
C1

D(I,Rm)×C1
A∗(I,Rk), the component x∗ is a solution of the minimization prob-

lem. If W is even positive definite, then x∗ is the only solution of the minimization
problem.

Proof. Relation (11.39) yields the inequality J(x)≥ J(x∗) for all x ∈ C1
D(I,Rm).

If there are two minimizers x∗ and x̄∗, J(x̄∗) = J(x∗), with Δ∗ := x̄∗ − x∗, it results
that 〈W (t)Δ∗(t),Δ∗(t)〉= 0 for all t ∈ I. Owing to the positive definiteness of W (t)
it follows that Δ∗(t) vanishes identically. ��

In Proposition 11.20 no restrictions concerning the constraint DAE and the optimal-
ity DAE are required. Neither properly stated leading terms nor index conditions are
prescribed.

The DAE (11.35), (11.36) looks like the optimality DAE (11.20), (11.21) spec-
ified for the minimization problem considered now. In contrast to (11.20), (11.21),
here we dispense with the requirements concerning the full rank proper leading term
and condition (11.14).

11.3 Specification for controlled DAEs

In this section we specify results from Section 11.2 for easier application to the
important case of constraints described by controlled DAEs. Here the DAE and the
cost functional depend on a pair of functions, the state x∈ C1

D(I,Rm) and the control
u ∈ C(I,Rl). Now the DAE comprises m equations so that, for each fixed control, a
square m-dimensional DAE results. Consider the cost functional

J(x,u) = g(D(t f )x(t f ))+

t f∫

t0

h(x(t),u(t), t)dt (11.40)

to be minimized on pairs (x,u) ∈ C1
D(I,Rm)×C(I,Rl), subject to the constraints

f ((D(t)x(t))′,x(t),u(t), t) = 0, t ∈ I, (11.41)

and
D(t0)x(t0) = z0 ∈ R

n. (11.42)

We suppose an analogous setting as in Assumption 11.10, but with different deno-
tations.

Assumption 11.21. The function f : Rn ×R
m ×R

l ×I → R
m is continuous and

has continuous partial derivatives fy, fx, fu with respect to the first three variables
y ∈ R

n, x ∈ R
m, u×R

l . The matrix function D : I → L(Rm,Rn) is continuous.
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The DAE (11.10) comprises m equations. It has a full rank proper leading term, that
is, n≤m, and fy has full column rank n, and D has full row rank n on their definition
domains.
The functions h and g are continuously differentiable.

Denote

A∗(t) = fy((Dx∗)′(t),x∗(t),u∗(t), t),

B∗(t) = fx((Dx∗)′(t),x∗(t),u∗(t), t),

C∗(t) = fu((Dx∗)′(t),x∗(t),u∗(t), t), t ∈ I,

such that now the linearization along (x∗,u∗) reads

A∗(t)(D(t)x(t))′+B∗(t)x(t)+C∗(t)u(t) = q(t), t ∈ I. (11.43)

Our present problem constitutes a special case with partitioned variables of the gen-
eral optimization problem considered in the previous sections. The following nec-
essary extremal condition is a straightforward consequence of Theorem 11.12.

Theorem 11.22. Let the Assumption 11.21 be given. If the optimization problem
(11.40), (11.41), (11.42) has the local solution (x∗,u∗) ∈ C1

D(I,Rm)×C(I,Rl) and
if the full rank condition

rank
[
A∗(t)D(t)+B∗(t)(I−D(t)+D(t)), C∗(t)

]
= m, t ∈ I, (11.44)

is valid, then the terminal value problem

−D(t)∗(A∗(t)∗λ (t))′+B∗(t)∗λ (t) = hx(x∗(t),u∗(t), t)∗, (11.45)
C∗(t)∗λ (t) = hu(x∗(t),u∗(t), t)∗, t ∈ I (11.46)

D(t f )
∗A∗(t f )

∗λ (t f ) = D(t f )
∗(gη(D(t f )x∗(t f )))

∗ (11.47)

possesses a solution λ∗ ∈ C1
A∗∗
(I,Rm).

If the controlled DAE is regular with index ≤ 1, then A∗D+B∗(I−D+D) is nec-
essarily nonsingular such that condition (11.44) is valid independently of what C∗
looks like. However, in all other cases, condition (11.44) entails structural require-
ments concerning C∗.

On the other hand, no regularity and index conditions for the given controlled
DAE are required. For instance, in Example 11.17, one might consider x3 or x4 to
serve as the control. In the first case, the resulting controlled DAE is regular with
index 1, and in the second case it is regular with index 2 on the two regularity
regions given by x2 > 0 and x2 < 0. Both versions result in the same regular index-1
optimality DAE.

Owing to Theorem 11.22, the BVP composed from the IVP (11.41), (11.42) and
the terminal value problem (11.45)–(11.47) is solvable. Indirect optimization relies



524 11 Minimization with DAE-constraints

on this BVP. Then, for practical reasons, the question arises whether the associated
optimality DAE is regular with index 1. We answer for the quasi-linear case.

f (y,x,u, t) = A(t)y+b(x,u, t), (11.48)

so that the optimality DAE simplifies to

A(t)(D(t)x(t))′+b(x(t),u(t), t) = 0, (11.49)
−D(t)∗(A(t)∗λ (t))′+bx(x(t),u(t), t)∗λ (t) = hx(x(t),u(t), t)∗, (11.50)

bu(x(t),u(t), t)∗λ (t) = hu(x(t),u(t), t)∗. (11.51)

The optimality DAE (11.49)–(11.51) has the linearization (the argument t is
dropped)

⎡
⎣

A 0
0 D∗

0 0

⎤
⎦
([ 0 D 0
−A∗ 0 0

]⎡
⎣
λ
x
u

⎤
⎦
)′
+

⎡
⎣

0 B∗ C∗
B∗∗ −W∗ −S∗
C∗∗ −S∗∗ −R∗

⎤
⎦
⎡
⎣
λ
x
u

⎤
⎦= 0, (11.52)

with continuous matrix functions

W∗(t) : = hxx(x∗(t),u∗(t), t)− (bx(x,u, t)∗λ∗(t))x(x∗(t),u∗(t), t),

S∗(t) : = hxu(x∗(t),u∗(t), t)∗ − (bx(x,u, t)∗λ∗(t))u(x∗(t),u∗(t), t),

R∗(t) : = huu(x∗(t),u∗(t), t)− (bu(x,u, t)∗λ∗(t))u(x∗(t),u∗(t), t),

B∗(t) : = bx(x∗(t),u∗(t), t), C∗(t) = bu(x∗(t),u∗(t), t), t ∈ I.

Theorem 11.23. Let Assumption 11.21 be valid, let the DAE in (11.41) have the
special form given by (11.48), and let the functions b and h have the necessary
additional second continuous partial derivatives.
Denote Q0(t) = Im−D(t)+D(t), W0(t) = Im−A(t)A(t)+, t ∈ I.
Let (x∗,u∗) ∈ C1

D(I,Rm)×C(I,Rl) be a local solution of the optimization problem
(11.40), (11.41), (11.42) and let the full rank condition (11.44) be satisfied. Denote
by λ∗ the solution of the terminal value problem (11.45)–(11.47).

(1) Then the optimality DAE (11.49)–(11.51) is regular with index 1 in a neigh-
borhood of the graph of (λ∗,x∗,u∗), exactly if

[A(t)D(t)+W0(t)B∗(t)Q0(t), W0(t)C∗(t)]z = 0,[
W∗(t)Q0(t) S∗(t)
S∗(t)∗Q0(t) R∗(t)

]
z ∈ ker [A(t)D(t)+W0(t)B∗(t)Q0(t), W0(t)C∗(t)]⊥

imply z = 0, for all t ∈ I. (11.53)

(2) If condition (11.53) is valid, then the linearized DAE (11.52) is self-adjoint
and its inherent regular ODE has Hamiltonian structure such that
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Θ ′ =
[

0 −In
In 0

]
EΘ , Θ :=

[
Dx
−A∗λ

]
, (11.54)

with a symmetric continuous matrix function E of size 2n×2n.
(3) If the matrix [

Q0(t)W∗(t)Q0(t) Q0(t)S∗(t)
S∗(t)∗Q0(t) R∗(t)

]

is semidefinite for all t ∈ I, then condition (11.53) simplifies to the full rank
condition

rank

⎡
⎣

A(t)D(t)+W0(t)B∗(t)Q0(t) W0(t)C∗(t)
Q0(t)W∗(t)Q0(t) Q0(t)S∗(t)
S∗(t)∗Q0(t) R∗(t)

⎤
⎦= m+ l, t ∈ I. (11.55)

Proof. These assertions are special cases of the corresponding assertions in Theo-
rem 11.16. ��

11.4 Linear-quadratic optimal control and Riccati feedback
solution

We deal with the quadratic cost functional

J(u,x) :=
1
2
〈x(t f ),V x(t f )〉 (11.56)

+
1
2

t f∫

0

{〈x(t),W(t)x(t)〉+2〈x(t),S(t)u(t)〉+ 〈u(t),R(t)u(t)〉}dt

to be minimized on pairs (u,x) ∈ C(I,Rl)×C1
D(I,Rm), satisfying the IVP

A(t)(D(t)x(t))′+B(t)(t)x(t)+C(t)u(t) = 0, t ∈ I = [0, t f ], (11.57)

A(0)D(0)x(0) = z0. (11.58)

Equation (11.57) comprises k equations and m+ l unknowns. We agree upon the
following basic assumptions.

Assumption 11.24. The cost matrices W(t) ∈ L(Rm,Rm), R(t) ∈ L(Rl ,Rl),
S(t) ∈ L(Rl ,Rm), as well as the coefficients A(t) ∈ L(Rn,Rk), D(t) ∈ L(Rm,Rn),
B(t) ∈ L(Rm,Rk), C(t) ∈ L(Rl ,Rk) depend continuously on t ∈ I.
The DAE (11.68) has a properly stated leading term with the border projector R.
The cost matrices satisfy the standard assumptions: V ∈ L(Rm,Rm) is symmetric,
positive semidefinite, and it holds that kerV = kerD(t f ). W(t) and R(t), are sym-

metricR(t) is positive definite, and
[
W(t) S(t)
S(t)∗ R(t)

]
is positive semidefinite for all t ∈ I.
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We use the symbols C, C1
D, and C1

A∗ for the function spaces C(I,Rl), C1
D(I,Rm), and

C1
A∗(I,Rk), respectively.

A pair (u,x) ∈ C×C1
D that satisfies the IVP (11.57), (11.58) is said to be admissible.

We introduce the projector valued functions Q,Q∗,P,P∗ by

Q(t),P(t) ∈ L(Rm,Rm), Q(t) = Q(t)∗,

imQ(t) = kerA(t)D(t), P(t) = I−Q(t),

Q∗(t),P∗(t) ∈ L(Rk,Rk), Q∗(t) = Q∗(t)∗,

imQ∗(t) = kerD(t)∗A(t)∗, P∗(t) = I−Q∗(t), t ∈ I.

The projector functions Q,P,Q∗, and P∗ are continuous owing to the properly stated
leading term. Note that now Q and Q∗ stand for Q0 and W0 used in previous sections.

For brevity and greater transparency we almost always drop the argument t. Then
the relations are meant pointwise for t ∈ I.

Having the projectors R,P, and P∗, we introduce the generalized inverses D− of
D and A∗− of A∗ by

D−DD− = D−,

A∗−A∗A∗− = A∗−,

DD−D = D,

A∗A∗−A∗ = A∗,

DD− = R,

A∗A∗− = R∗,

D−D = P,

A∗−A∗ = P∗.
(11.59)

The generalized inverses D− and A∗− are uniquely determined by (11.59). They are
continuous on I. It holds further that

D−R = D−, A = AR, A∗ = R∗A∗, D−∗ = R∗D−∗. (11.60)

11.4.1 Sufficient and necessary extremal conditions

The so-called optimality DAE (cf. (11.52))
⎡
⎣

A 0
0 D∗

0 0

⎤
⎦(
[

0 D 0
−A∗ 0 0

]⎡
⎣
λ
x
u

⎤
⎦)′+

⎡
⎣

0 B C
B∗ −W −S
C∗ −S∗ −R

⎤
⎦
⎡
⎣
λ
x
u

⎤
⎦= 0 (11.61)

is closely related to the minimization problem (11.67), (11.68), (11.69). Complete
this DAE by the boundary conditions

A(0)D(0)x(0) = z0, D(t f )
∗A(t f )

∗λ (t f ) =V x(t f ). (11.62)

The DAE (11.61) is self-adjoint. It comprises k + m + l equations and the same
number of unknowns.
SinceR is invertible, the equation C∗λ −S∗x−Ru = 0 can be solved for
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u =R−1(C∗λ −S∗x), (11.63)

and then u can be eliminated. The resulting DAE
[

A 0
0 D∗

]
d
dt

([
0 D
−A∗ 0

][
λ
x

])
+

[
CR−1C∗ B−CR−1S∗

B∗ −SR−1C∗ −W+SR−1S∗
][

λ
x

]
= 0

(11.64)
is also self-adjoint and has dimension k+m. If (11.57) is actually an explicit ODE,
that is, A = D = I, then system (11.64) is also an explicit ODE which is called
a Hamiltonian system associated to the minimization problem . Then this explicit
system shows a Hamiltonian flow. We adopt this name for the general system (11.64)
which is a DAE. At least, if A and D have full column rank, respectively full row
rank, and the DAE is regular with index 1, then the IERODE of this ODE shows a
Hamiltonian flow.

Theorem 11.25. Let the Assumption 11.24 be valid.

(1) If the triple (λ∗,x∗,u∗)∈C1
A∗ ×C

1
D×C is a solution of the BVP (11.61), (11.62),

then (x∗,u∗) ∈ C1
D × C is a solution of the minimization problem (11.56),

(11.57), (11.58).
(2) Conversely, if (x∗,u∗)∈ C1

D×C is an optimal pair of the minimization problem
(11.56), (11.57), (11.58) and the condition

im [A(t)D(t)+B(t)Q(t) C(t)] = R
k, t ∈ I, (11.65)

is satisfied, then there exists a λ∗ ∈ C1
A∗ such that the triple (λ∗,x∗,u∗) is a

solution of the BVP (11.61), (11.62).
(3) The DAE (11.61) is regular with tractability index 1, exactly if the condition

(11.65) is satisfied and, additionally,

im
[

D(t)∗A(t)∗+B(t)∗Q∗(t) W(t)Q(t) S(t)
C(t)∗Q∗(t) S(t)∗Q(t) R(t)

]
=R

m×R
l , t ∈ I. (11.66)

Proof. (1) is immediately verified along the lines of Proposition 11.20.
(2) is already given for k = m and a DAE (11.57) with full rank proper leading term
by Theorem 11.22. The general assertion is proved in [6, Theorem 3.22].
(3) is equivalent to Theorem 3.3 in [8]. ��

11.4.2 Riccati feedback solution

Feedback solutions via Riccati differential equations are a known and proven tool
for solving linear-quadratic optimal control problems given by the cost functional

J(u,x) :=
1
2
〈x(t f ),V x(t f )〉+

1
2

t f∫

0

〈[
x(t)
u(t)

]
,

[
W(t) S(t)
S(t)∗ R(t)

] [
x(t)
u(t)

]〉
dt (11.67)
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and the side conditions

x′(t)+B(t)x(t)+C(t)u(t) = 0, t ∈ [0, t f ], (11.68)
x(0) = z0. (11.69)

Solving the terminal value problem for the Riccati matrix differential equation

Y ′ = Y B+B∗Y +(S −YC)R−1(S∗−C∗Y )−W , (11.70)
Y (t f ) =V, (11.71)

whose solution Y is symmetric, the minimization problem is traced back to the linear
IVP

x′ =−Bx+CR−1(S∗−C∗Y )x, x(0) = z0. (11.72)

The solution x∗ of the IVP (11.72) together with u∗ := −R−1(S∗ −C∗Y )x∗ solve
the minimization problem (11.67), (11.68), (11.69). The minimal cost is then
J(u∗,x∗) = 〈z0,Y (0)∗z0〉.

If the explicit ordinary differential equation in (11.68) is replaced by the DAE
(11.57) the situation is much more challenging. Different kinds of generalizations of
the Ricatti approach can be imagined. Here, we work with the differential equation

D∗(A∗Y D−)′D = Y ∗B+B∗Y +(S −Y ∗C)R−1(S∗−C∗Y )−W (11.73)

and the terminal value condition

A(t f )
∗Y (t f )D(t f )

− = D(t f )
−∗V D(t f )

−, (11.74)

which generalize the terminal value problem (11.70), (11.71). However, whereas
the standard Riccati ODE (11.70) applies to a square matrix function Y , we are now
looking for a rectangular one with k rows and m columns. The standard Riccati ODE
is an explicit matrix differential equation, with continuously differentiable solutions.
In contrast, equation (11.73) rather looks like a DAE so that we adopt the name
Riccati DAE. The solution Y of the Riccati DAE is expected to be continuous with
a continuously differentiable component A∗Y D−.

We prepare a symmetry property to be used later on.

Lemma 11.26. If Y : [0, t f ]→ L(Rm,Rk) is continuous with a continuously differ-
entiable part A∗Y D−, and if it satisfies the terminal value problem (11.73), (11.74),
then the symmetry relation

A∗Y D− = D−∗Y ∗A (11.75)

becomes true.
If, additionally, Y satisfies the condition A∗Y Q = 0, then it follows that

D∗A∗Y = Y ∗AD. (11.76)
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Proof. Multiplying (11.73) by D−∗ from the left, and by D− from the right, leads to

R∗(A∗Y D−)′R = D−∗
{

Y ∗B+B∗Y +(S −Y ∗C)R−1(S∗−C∗Y )−W
}

D− =: A,

where A= A∗, and, further (cf. (11.60)),

(A∗Y D−)′ = A+R∗
′
A∗Y D−+A∗Y D−R′.

It becomes clear that U := A∗Y D− satisfies the ODE U ′ = A+R∗
′
U +UR′ as well

as the condition U(t f ) = D(t f )
−∗V D(t f )

−. Obviously, U∗ is a further solution of the
same final value problem; i.e., U =U∗ must be true.
Finally, condition A∗Y Q = 0 yields A∗Y P = A∗Y and Y ∗A = Y ∗AP, thus
0 = D∗{A∗Y D−−D−∗Y ∗A}D = D∗A∗Y P−PY ∗AB = D∗A∗Y −Y ∗AB. ��

In turn, relation (11.76) implies A∗Y Q = 0.

Theorem 11.27. Let Assumption 11.24 be valid. Let Y be a solution of the terminal
value problem (11.73), (11.74), and let the condition A∗Y Q = 0 be fulfilled. Let
x∗ ∈ C1

D be a solution of the IVP

A(Dx)′ =−Bx+CR−1(S∗−C∗Y )x, A(0)D(0)x(0) = z0, (11.77)

and
u∗ :=−R−1(S∗−C∗Y )x∗. (11.78)

Then, for each admissible pair (u,x) ∈ C×C1
D it holds that

J(u,x)≥ J(u∗,x∗) =
1
2
〈z0,A(0)∗−D(0)−∗Y (0)∗z0〉;

i.e., (u∗,x∗) is an optimal pair and (11.78) describes the optimal feedback.

Proof. It holds that A∗Y = A∗Y P = A∗Y D−D, and that D−∗Y ∗AD = A∗Y . Given an
admissible pair (u,x), we derive

d
dt
〈Dx,A∗Y x〉 = 〈(Dx)′,A∗Y x〉+ 〈Dx,(A∗Y D−Dx)′〉

= 〈(Dx)′,A∗Y x〉+ 〈Dx,(A∗Y D−)′Dx〉+ 〈Dx,A∗Y D−(Dx)′〉
= 〈(Dx)′,A∗Y x〉+ 〈Dx,(A∗Y D−)′Dx〉+ 〈A∗Y x,(Dx)′〉
= 2〈(Dx)′,A∗Y x〉+ 〈x,D∗(A∗Y D−)′Dx〉
= 2〈A(Dx)′,Y x〉+ 〈x,D∗(A∗Y D−)′Dx〉.

Taking into account (11.57) and (11.73) we obtain the expression

d
dt
〈Dx,A∗Y x〉=−{〈Wx,x〉+2〈Su,x〉+ 〈Ru,u〉}

+ 〈R(u+R−1(S∗x−C∗Y x)),u+R−1(S∗x−C∗Y x)〉.

By this we find
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J(u,x) =
1
2
〈x(t f ),V x(t f )〉−

1
2

∫ t f

0

d
dt
〈D(t)x(t),A(t)∗Y (t)x(t)〉dt +B(u,x),

B(u,x) =
1
2

∫ t f

0
〈R(t)(u(t)+R(t)−1(S(t)∗ −C(t)∗Y (t))x(t)),u(t)

+R(t)−1(S(t)∗ −C(t)∗Y (t))x(t)〉dt.

From the positive definiteness of R(t) it follows that B(u,x) ≥ 0. Notice that
B(u∗,x∗) = 0. Compute further

J(u,x) =
1
2
〈x(t f ),V x(t f )〉−

1
2
〈D(t f )x(t f ),A(t f )

∗Y (t f )x(t f )〉

+
1
2
〈D(0)x(0),A(0)∗Y (0)x(0)〉+B(u,x).

Using the conditions (11.58) and (11.74), as well as the relations V = V P(t f ) and
A∗Y = A∗Y D−D, and (11.76), we arrive at

J(u,x) =
1
2
〈z0,A(0)∗−D(0)−∗Y (0)∗z0〉+B(u,x).

Since the first term on the right-hand side is independent of the admissible pair
(u,x), we conclude that

J(u,x)≥ 1
2
〈z0,A(0)∗−D(0)−∗Y (0)∗z0〉= J(u∗,x∗).

��

The crucial question is now whether the terminal value problem for the Riccati DAE
is solvable and the solution has the property A∗Y Q= 0. We turn to the terminal value
problem

D∗(A∗Y D−)′D = Y ∗B+B∗Y +(S −Y ∗C)R−1(S∗−C∗Y )−W , (11.79)
P∗Y Q = 0, (11.80)

A(t f )
∗Y (t f )D(t f )

− = Ṽ := D(t f )
−∗V D(t f )

−. (11.81)

Each solution Y can be decomposed by means of the projector functions as

Y = P∗Y P+Q∗Y P+Q∗Y Q

= A∗−A∗Y D−D+Q∗Y P+Q∗Y Q.

Also the DAE itself decouples by means of the projector functions. More precisely,
multiplying (11.79) by Q from the left and right, then by Q from the left and P from
the right, and also by D−∗ from the left and D− from the right, we obtain the system
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0 = (Y Q)∗BQ+QB∗Y Q+(QS − (Y Q)∗C)R−1(S∗Q−C∗Y Q)−QWQ, (11.82)

0 = (Y Q)∗BP+QB∗Y P+(QS − (Y Q)∗C)R−1(S∗P−C∗Y P)−QWP, (11.83)

R∗(A∗Y D−)′R = (Y D−)∗BD−+D−∗B∗Y D− (11.84)

+(D−∗S − (Y D−)∗C)R−1(S∗D−−C∗Y D−)−D−∗WD−.

Since multiplication of (11.79) by P from the left and Q from the right yields again
(11.83), we know (11.79) to be equivalent to (11.82)–(11.84). Obviously, the com-
ponent Z = Q∗Y Q = Y Q satisfies (cf. (11.82)) the algebraic Riccati equation

0 = Z∗Q∗BQ+QB∗Q∗Z +(QS −Z∗Q∗C)R−1(S∗Q−C∗Q∗Z)−QWQ (11.85)

and the trivial conditions P∗Z = 0, ZP = 0. Denote

M :=−QB∗+(QS −Z∗Q∗C)R−1C∗, M = QM. (11.86)

Advancing the structural decoupling of the Riccati system one finds (see [135]) the
components

U :=A∗Y D−∈C1, V :=Q∗Y P, Z :=Q∗Y Q = Y Q∈C (11.87)

satisfy a standard Riccati differential equation, a linear equation, and an algebraic
Riccati equation, respectively. The structural decoupling is the background of the
following solvability result.

Theorem 11.28. Let the Assumption 11.24 be valid. Let the algebraic Riccati system

0 = Z∗Q∗BQ+QB∗Q∗Z +(QS −Z∗Q∗C)R−1(S∗Q−C∗Q∗Z)−QWQ

P∗Z = 0,
ZP = 0

have a continuous solution Z that satisfies the conditions

imZ = imQ∗, kerZ = kerQ, (11.88)
imMQ∗ = imQ, kerMQ∗ = kerQ∗. (11.89)

Then, the terminal value problem for the Riccati DAE (11.79)–(11.81) has a contin-
uous solution Y whose component A∗Y B− is continuously differentiable and sym-
metric. Additionally, it holds that A∗Y Q = 0.

Proof. See [135, pages 1284–1289]. ��

To confirm the existence of an optimal control u∗ with the minimal cost J(u∗,x∗)
from Theorem 11.59, in addition to the existence of a Riccati DAE solution Y, one
necessarily needs to confirm the existence of a solution of the resulting closed loop
DAE, that is (cf. (11.77)),
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A(Dx)′ =−Bx+CR−1(S∗−C∗Y )x, (11.90)

which satisfies the initial condition

A(0)D(0)x(0) = z0, (11.91)

where z0 ∈ im(A(0)D(0)) is fixed but chosen arbitrarily.
Clearly, if A and D are nonsingular, then the IVP (11.90), (11.91) always has

a uniquely determined solution for each arbitrary z0. In the case of singular A and
D the situation is different, and so for time-invariant descriptor systems (see, e.g.,
[16]) one takes care to obtain a closed loop system that has no so-called impulsive
behavior for any z0. Within the scope of DAE theory, this means that one should
have closed loop systems (11.90) that are regular with tractability index 1. Next we
provide conditions ensuring the index-1 property for the DAE (11.90).

Theorem 11.29. Let the conditions of Theorem 11.28 be given and let Y be a solu-
tion of the terminal value problem for the Riccati DAE (11.79)–(11.81).

(1) If m = k, then the DAE (11.90) is regular with tractability index 1, and there
is exactly one solution x∗ ∈ C1

D of the IVP (11.90), (11.91).
(2) If m > k, then there are solutions x∗ ∈ C1

D of the IVP (11.90), (11.91).

Proof. (1) The IVP solvability is a consequence of the index-1 property. We prove
the DAE (11.90) to be regular with index 1. By Theorem 11.7, a DAE is regular
with index 1, exactly if its adjoint is so. The adjoint equation to (11.90) reads

−D∗(A∗y)′ =−B∗y+(−Y ∗C+S)R−1C∗y. (11.92)

The DAE (11.92) is regular with index 1 if the subspaces kerD∗A∗ = imQ∗ and
kerQ{−B∗ + (−Y ∗C + S)R−1C∗} =: S∗ intersect trivially. Because of QY ∗ =
(Y Q)∗ = (ZQ)∗ = QZ∗ we have S∗ = ker{−QB∗ + (−QZ∗C + QS)R−1C∗} =
kerM. This means that the DAE (2.3) is regular with index 1 if kerM and imQ∗
intersect trivially, but this is in turn a consequence of condition (11.89).
(2) Compute G1 := AD−{−B+CR−1(S∗ −C∗Y )}Q and ask whether this matrix
function has full row rank k. This is in fact the case if Q∗{−BQ+CR−1(S∗Q−
C∗ZQ)} = Q∗M∗ = (MQ∗)∗ has the same range as Q∗, i.e., if im(MQ∗)∗ = imQ∗.
However, this is ensured by (11.89). Then, solvability is ensured by Proposi-
tion 10.9. ��

The following example demonstrates the appropriate solvability behavior of the in-
troduced Riccati DAE.

Example 11.30 (Case study from [128]). We deal with the very special case of
k = m = 2, n = 1, l = 1, t f = 1,

J(u,x) =
1
2

1∫

0

(αx1(t)2 +βx2(t)2 +u(t)2)dt, (11.93)
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where α ≥ 0, β ≥ 0 , W =
(
α 0
0 β

)
, R = 1, V = 0, S = 0, and the DAE describing

the side condition is

x′1(t) = c12(t)x2(t),
0 = c21(t)x1(t)+ c22(t)x2(t)+u(t), (11.94)

i.e.,

A =

[
1
0

]
, D = [1 0], D− =

[
1
0

]
, R = 1, C =

[
0
−1

]
, B =−

[
0 c12

c21 c22

]
.

The initial condition for (11.94) reads

x1(0) = z0. (11.95)

We have taken this problem from [128] and discuss the same three cases as consid-
ered there. In the first two cases, optimal controls exist, and we obtain them via our
Riccati DAE system, whereas the Riccati DAE system used in [128] has no solu-
tions. In the third case, if z0 �= 0, there is no optimal control, which is reflected by
the failure of conditions (11.88) and (11.89). Notice that just in this case the Riccati
DAE in [128] may have solutions.
To be more precise we consider the Riccati DAE system (11.79)–(11.81) for the
2×2 matrix function Y =

[
Y11 Y12
Y21 Y22

]
. We describe (11.79) by means of the following

three equations (cf. (11.82), (11.83), (11.84)), taking into account that we have here

Q = Q∗ =
[

0 0
0 1

]
, P = P∗ =

[
1 0
0 0

]
, and dropping the equations “0 = 0”,

0 =−β − (Y12c12 +Y22c22)− (c12Y12 + c22Y22)+Y 2
22, (11.96)

0 =−c21Y22− (c12Y11 + c22Y21)+Y22Y21, (11.97)

Y ′11 =−α− c21Y21− c21Y21 +Y 2
21. (11.98)

The terminal value condition (11.81) is

Y11(1) = 0, (11.99)

and condition (11.80) here means that

Y12 = 0. (11.100)

Applying (11.100), (11.96) simplifies to

0 =−β +(Y22− c22)
2− c2

22. (11.101)

This algebraic equation has the solutions

Y22 = c22±
√
β + c2

22, (11.102)
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and the resulting matrix functions Z = Q∗Y Q and MQ∗ (cf. (11.86)) are

Z =

[
0 0
0 Y22

]
, MQ∗ =

[
0 0
0 c22−Y22

]
.

In this case the conditions (11.88) and (11.89) are equivalent to the conditions that

Y22(t) has no zeros (11.103)

and

Y22(t)− c22(t) =±
√
β + c22(t)2 has no zeros, respectively. (11.104)

Case (1) c12 and c21 vanish identically, and β > 0.
Here, both Y22 and Y22− c22 do not have zeros; i.e., the conditions (11.88) and

(11.89) are fulfilled. Equation (11.97) is simply 0 = (Y22− c22)Y21, which leads to
Y21 = 0. Equation (11.98) yields Y ′11 =−α . Hence, in this case

Y (t) =
[
−α(t−1) 0

0 c22(t)±
√
β + c22(t)2

]

solves the system. The feedback optimal control is given by

u =−(c22±
√
β + c2

22)x2.

The optimal trajectory, i.e., the solution of the IVP (11.90), (11.91) (cf. (11.77)) is
x∗(t)≡

(z0
0

)
, the optimal control is u∗ = 0, and the optimal cost is J(u∗,x∗) = 1

2αz2
0.

Case (2) c22 vanishes identically, c12 and c21 have no zeros, and β > 0. Again,
both Y22 =±

√
β and Y22− c22 = Y22 have no zeros, and the conditions (11.88) and

(11.89) are fulfilled. This time, (11.97) leads to

Y21 = c21±
1√
β

c12Y11. (11.105)

From (11.98) and (11.105) we derive the ODE

Y ′11 =−α−2c21

(
c21±

1√
β

c12Y11

)
+

(
c21±

1√
β

c12Y11

)2

.

For example, for c12 = c21 = 1, z0 = 1, the result is that
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Y ′11 = −(α+1)+
1√
β

Y 2
11,

Y11(t) = βγ
1− e2γ(t−1)

1+ e2γ(t−1) with γ =

√
1+α
β

.

Then, u = (∓ 1√
β

Y11 − 1)x1 ∓
√
βx2 is an optimal feedback control. The DAE

(11.90) is of the form

x′1 = x2, 0 =
1√
β

Y11x1 +
√
βx2,

and the optimal pair (u∗,x∗) consists of

u∗(t) =−x∗1(t), x∗1(t) =
eγt + eγ(2−t)

1+ e2γ , x∗2(t) =−
1
β

Y11(t)x∗1(t).

The minimal costs are

J(u∗,x∗) =
βγ
2
· 1− e−2γ

1+ e−2γ .

Case (3) β = 0, c22 vanishes identically, and c12,c21 have no zeros. Here, (11.101)
implies Y22 = 0, and hence, Z = 0, MQ∗ = 0, and the conditions (11.88) and (11.89)
fail to be valid. Equation (11.97) simplifies to c12Y11 = 0, and hence Y11 = 0 must

be true. By (11.98) we find Y21 = c21±
√
α+ c2

21. Therefore, the matrix function

Y =

[
0 0

c21±
√
α+ c2

21 0

]

solves system (11.79)–(11.81); however, the conditions (11.88) and (11.89) do not

hold. The resulting closed loop DAE (11.90) is now x′1 = c12x2, 0 =
√
α+ c2

21x1,
and it has only the trivial solution. Consequently, for z0 �= 0, there is no solution of
the IVP (11.90), (11.91). If z0 = 0, then the trivial pair u∗ = 0, x∗ = 0 is optimal in
accordance with Theorem 11.27. If z0 �= 0, then the linear-quadratic optimal control
problem has no solution at all.

The Hamiltonian system (11.64) corresponding to our special problem (11.93)–
(11.95) is the following:

x′1 = c12x2,
0 = c21x1 + c22x2−λ2,

−λ ′1 = αx1 + c21λ2,
0 = βx2 + c12λ1 + c22λ2.

(11.106)

For this system, the initial and terminal conditions

x1(0) = z0, λ1(1) = 0 (11.107)
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have to be taken into account. This linear DAE with respect to x,λ is regular with
index 1 exactly if β + c2

22 �= 0. This index-1 condition is valid in Cases (1) and (2).
In Case (3), the BVP (11.106), (11.107) has no solution for z0 �= 0. For z0 = 0 it has
the trivial solution. It may be checked that this DAE has index 2.
Let us add that, for the solvability of the corresponding Riccati DAE treated in
[128], it is necessary to require β = 0, i.e., unfortunately, this Riccati DAE is no
longer solvable in the unproblematic cases (1) and (2). In Case (3), the terminal
value problem may or may not have solutions. From this point of view, those Riccati
DAEs in [128] seem not to be appropriate tools for constructing optimal feedback
solutions. ��

11.5 Notes and references

(1) This chapter collects and slightly modifies results from [12, 8, 6, 135, 36]. An
informative overview concerning extremal conditions is given in [6]. We refer to
[8, 6, 172, 36] for further index relations and for discussions concerning the con-
sistency with well-known facts in the context of linear-quadratic optimal control
problems. Furthermore, different proposals to generalize the Riccati feedback are
reported in [135].

(2) We have shown that optimal feedback controls of linear-quadratic optimal
control problems with constraints described by general linear DAEs with variable
coefficients can be obtained by suitably formulating a Riccati DAE system, similarly
to the classical example in which the constraints are described by explicit ODEs.
Compared to earlier results and some less suitable Riccati DAEs, one can now do
without previous restrictive assumptions.
Furthermore, we would like to stress that it is not necessary and probably not even
reasonable to transform the DAE describing the constraints (the descriptor system)
or the DAE describing the Hamiltonian system with great expense into a special
canonical form.

(3) One could surmise that the DAE

−E(t)∗y′(t)+F(t)∗y(t) = 0

is adjoint to the standard form DAE

E(t)x′(t)+F(t)x(t) = 0,

however, this is only true for constant matrix functions E. In general, the adjoint
equation of this standard form DAE looks like

− (E(t)∗y(t))′+F(t)∗y(t) = 0. (11.108)

If E is continuously differentiable, this can be written as
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−E(t)∗y′(t)+(F(t)∗ −E ′(t)∗)y(t) = 0.

Whereas the standard form DAE and its adjoint look quite different, the DAE (11.1)
and its adjoint are formally of the same type, and show nice symmetries. At this
point it should be mentioned that the motivation for introducing DAEs with properly
stated leading terms in [11] was inspired by these symmetries.

(4) If the full rank condition (11.14) is not given in an optimization problem, then
it might be a good idea to reformulate or reduce the problem so that the reduced
DAE meets the condition. A different way consists in exploiting given structural
peculiarities with the aim of obtaining surjectivity of the operatorFx(x∗) in specially
adjusted function spaces, for instance, in the case of controlled Hessenberg size-2
DAEs, cf. [92, 91, 35]. Note that different function spaces may lead to different
representations of the Lagrange multiplier, and hence yield another terminal value
problem than (11.15), (11.16).

(5) We stress that our optimality criteria are clearly represented algebraic condi-
tions in terms of the original optimization problem. In contrast, in [131] an analo-
gous optimization problem with DAE constraint

f(x′(t),x(t),u(t), t) = 0, t ∈ I,

is treated by transforming this equation first into the so-called reduced form

x′1(t)−L(x1(t),x2(t),u(t), t), x2(t) =R(x1(t),u(t), t), (11.109)

and not till then formulating an extremal condition and the optimality DAE in terms
of (11.109). This pre-handling is based on demanding assumptions (e.g., [130, Hy-
pothesis 1]) and it needs considerable effort. In turn, the reduced system (11.109)
represents a special case of a semi-explicit controlled regular index-1 DAE, such
that condition (11.44) is given. The optimality DAE for the optimization problem
with constraint DAE (11.109) is then the corresponding special case of the DAE
(11.49)–(11.51).

(6) For linear-quadratic optimal control problems for descriptor systems

Ex′ =Cx+Du, (11.110)

with E being a singular constant square matrix, in the famous paper [16] it was first
noted that the Riccati modification

E∗Y ′E =−E∗YC−C∗Y E +(S+E∗Y D)R−1(S∗+D∗Y E)−W , (11.111)

which is considered to be obvious, leads to unacceptable solvability conditions.
Consequently, more specific Riccati approaches that skillfully make use of the in-
herent structures find favor with [16]. Starting from a singular value decomposition
UEV = diag(Σ ,0) and certain rank conditions, lower dimensional Riccati equations
of the form ΣY ′Σ = · · · are introduced. From the point of view of DAE theory the
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rank conditions used in [16] imply that the related Hamilton–Lagrange system is a
regular DAE with tractability index 1 (cf. [8]).
For example, in [134] (in a more general Hilbert space setting, with S = 0) a differ-
ent ansatz was followed with Riccati equations of the form

E∗Y ′ =−Y ∗C−C∗Y +(S+Y ∗D)R−1(S∗+D∗Y )−W . (11.112)

The solutions of the terminal value problem for (11.112) with the condition

E∗Y (T ) =V (11.113)

have the symmetry property E∗Y =Y ∗E. Like (11.111), also (11.112) is primarily a
matrix DAE, however, (11.112) is approved to be better solvable.
In [128] the Riccati DAE

(E∗Y E)′ =−E∗YC−C∗Y E +(S+E∗Y D)R−1(S∗+D∗Y E)−W , (11.114)

which generalizes (11.111) for time-dependent coefficients E is introduced. How-
ever, this equation is as unsuitable as its time-invariant version (11.111), and the
authors have to admit that, unfortunately, this approach can be used only in very spe-
cial cases since, for E(t) singular, the solutions of (11.114) and the Euler–Lagrange
equation are not related via u =−R−1(S+D∗Y E)x, as in the case of nonsingular
E(t).

(7) In the theory of explicit ODEs, the fundamental solution matrix X(t) of the
ODE

x′(t)+B(t)x(t) = 0

and the fundamental solution matrix Y (t) of its adjoint ODE

−y′(t)+B∗(t)y(t) = 0,

both normalized at t0, X(t0) = I,Y (t0) = I, are related to each other by the identity

Y (t)∗ = X(t)−1. (11.115)

Since fundamental solution matrices of regular DAEs are singular, an appropriate
generalization of (11.115) should involve special generalized inverses. For regular
index-1 and index-2 DAEs with properly stated leading term, such a generalization
is derived in [11]. For standard form DAEs and their adjoints, various results are
obtained, e.g., in [7].

(8) For an overview of the state of the art on the general field of optimization
with DAE constraints we refer to [20].

(9) In [65], [66] optimal control problems with ODE and inequality restrictions
are considered. The necessary solvability conditions lead to DAEs whose properties
are investigated in detail using the tractability concept.



Chapter 12
Abstract differential-algebraic equations

This chapter is devoted to abstract differential-algebraic equations (ADAEs). We
consider differential-algebraic equations operating in Hilbert spaces. Such a frame-
work aims to provide a systematic approach for coupled systems of partial differen-
tial equations (PDEs) and differential-algebraic equations (DAEs).

We introduce abstract differential-algebraic equations as

A(t)
d
dt

d(x(t), t)+b(x(t), t) = 0 for t ∈ I (12.1)

with I ⊆ R being a bounded time interval. This equation is to be understood as an
operator equation with operators A(t), d(·, t) and b(·, t) acting in real Hilbert spaces.
More precisely, let X , Y , YW , Z be Hilbert spaces and

A : YW → Z, d(·, t) : X → Y, b(·, t) : X → Z. (12.2)

In [166, 140], the case YW = Y has been analyzed, which is adequate for coupled
systems containing classical PDE formulations. In order to cover weak PDE formu-
lations, it is useful to consider the case YW = Y ∗.

Systems with A and d being invertible have already been studied in [79]. How-
ever, the classical formulation as well as the generalized formulation of the coupled
system lead to abstract differential-algebraic systems with operators A or d that are
not invertible. Such systems are also called degenerate differential equations (see
e.g. [133, 74]).

In Section 12.1, we introduce an index concept for abstract differential-algebraic
systems that orients towards the time domain behavior of a differential-algebraic
system. One can compare it with the time index introduced in [149] and the modal
index introduced in [47] for linear partial differential algebraic equation systems
(PDAEs) with constant coefficients. By a few case studies in Section 12.2, we
demonstrate the potential of the general approach for ADAEs for solving coupled
systems with different types of differential and/or integral equations.
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A general theory for the existence and uniqueness of solutions for abstract
differential-algebraic equations does not exist so far. Since already all types of PDEs
can be considered as an ADAE, we cannot expect to find an approach treating all
ADAEs in one framework. We need a classification of ADAEs reflecting the clas-
sification of PDEs as well as the index classification for DAEs. We do not have an
answer providing a general classification. But we provide a starting point for such
a classification in Section 12.3. We consider a class of linear ADAEs which cov-
ers parabolic PDEs and index-1 DAEs as well as couplings thereof. We treat this
ADAE class by a Galerkin approach yielding an existence and uniqueness result for
ADAE solutions as well as an error estimation for perturbed systems. In contrast to
Galerkin methods for parabolic differential equations, the choice of the basis func-
tions is more restricted since they have to satisfy certain constraints as we know
from the theory of DAEs.

12.1 Index considerations for ADAEs

From the finite-dimensional case we know that the sensitivity of solutions of DAEs
with respect to perturbations depends on their index, cf. Example 1.5. Since we are
interested in the transient behavior of solutions of the coupled system, we follow the
concept in [140]. We consider systems of the form

A(t)
d
dt

d(x(t), t)+b(x(t), t) = 0 for t ∈ I (12.3)

with operators A(t), d(·, t) and b(·, t) acting in Hilbert spaces X , Y and Z as follows:

A(t) : Y → Z, b(·, t) : X → Z, d(·, t) : X → Y.

We assume the existence of the Fréchet derivatives of the operators b(·, t) and d(·, t).
More precisely, we assume the existence of linear, continuous operators B(x, t) and
D(x, t) satisfying

b(x+h, t)−b(x, t)−B(x, t)h = o(‖h‖), h→ 0,
d(x+h, t)−d(x, t)−D(x, t)h = o(‖h‖), h→ 0,

for all h in some neighborhood of zero in X , all x ∈ X and all t ∈ I. Furthermore,
we assume that

imD(x, t) and kerD(x, t) do not depend on x and t. (12.4)

Since D(x, t) is bounded, we find N0 := kerD(x, t) to be a closed subspace in X .
Finally, A and D are assumed to be well-matched in the sense that

kerA(t)⊕ imD(x, t) = Y (12.5)
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forms a topological direct sum for all x ∈ X and t ∈ I.
We introduce G0(x, t) := A(t)D(x, t) for all x ∈ X and t ∈ I. Since we are in-

terested in abstract differential-algebraic systems containing equations without time
derivatives, we assume that dim(N0)> 0.

Since A and D are assumed to be well-matched, the relations

imG0(x, t) = imA(t) and kerG0(x, t) = kerD(x, t) (12.6)

are fulfilled for all x ∈ X and t ∈ I. Indeed, there is a constant, bounded projection
operator R : Y → Y satisfying

imR = imD(x, t) and kerR = kerA(t)

for all x∈ X and t ∈ I because kerA(t) and imD(x, t) form a topological direct sum.
Consequently,

imG0(x, t) = imA(t)R = imA(t)

and
kerG0(x, t) = kerRD(x, t) = kerD(x, t).

Considering the formulation of the DAE (12.3), it is natural that solutions belong to
the set

C1
d(I,X) := {x ∈C(I,X) : d(x(·), ·) ∈C1(I,Y )}.

For a linearization

A(t)
d
dt
(D∗(t)x(t))+B∗(t)x(t) = q(t)

of the DAE (12.3) at a given function x∗ ∈ C1
d(I,X) with D∗(t) := D(x∗(t), t) and

B∗(t) := B(x∗(t), t) for all t ∈ I, the natural solution space is given by

C1
D∗(I,X) := {x ∈C(I,X) : D∗(·)x(·) ∈C1(I,Y )}.

It is an analogon of the solution space for DAEs in finite dimensions (cf. Theo-
rem 3.55). The next proposition shows that both solution sets coincide.

Proposition 12.1. Let D(x, t) depend continuously differentiably on x, t and sat-
isfy (12.4). Additionally, assume the partial derivative dt(x, t) to exist and to be
continuous. Moreover it is assumed that d(x, t) ⊆ imR. Then, we have C1

d(I,X) =
C1

D∗(I,X).

Proof. Since N0 is a closed subspace of X , we find a projection operator P0 : X → X
with

imP0 = N⊥0 and kerP0 = N0.

Using the mean value theorem in Banach spaces, we get

d(x, t)−d(P0x, t) =
∫ 1

0
D(sx+(1− s)P0x, t)(I−P0)xds = 0 (12.7)
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for all x ∈ X and t ∈ I. Additionally, D(x, t) acts bijectively from N⊥0 to imR for all
x ∈ X and t ∈ I. Applying the implicit function theorem to

F : Y ×N⊥0 ×I → imR with F(v,w, t) := d(w, t)−Rv

at v = d(x(t), t) and w = P0x(t) for x ∈C1
d(I,X), we obtain a continuously differen-

tiable function g(·, t) : Y → N⊥0 satisfying F(v,g(v, t), t) = 0 for v in a neighborhood
of d(x(t), t). In particular, we have

P0x(t) = g(d(x(t), t), t).

Due to the smoothness assumptions, g is also continuously differentiable with re-
spect to t. Consequently,

d(x(·), ·) ∈C1(I,Y ) ⇔ P0x(·) ∈C1(I,N⊥0 ) (12.8)

if we regard equation (12.7). Analogously, we obtain

D(x, t) = D(P0x, t)

for all x ∈ X and t ∈ I. This implies D(x∗(·), ·) ∈C1(I,L(X ,Y )) for x∗ ∈C1
d(I,X).

Thus,
D(x∗(·), ·)x(·) ∈C1(I,Y ) ⇔ P0x(·) ∈C1(I,N⊥0 )

since kerD(x∗(·), ·) = kerP0 and D(x∗(·), ·) acts bijectively from imP0 to imR. Re-
garding the equivalence relation (12.8), the proposition is proved. ��

As the tractability index for finite-dimensional differential-algebraic systems, the
following index concept for ADAEs is based on linearizations.

Definition 12.2. The abstract differential-algebraic system (12.3) has index 0 if
G0 := G is injective and cl(imG0(x, t)) = Z for all x ∈ X and t ∈ I.

The abstract differential-algebraic system (12.3) has index 1 if there is a projec-
tion operator Q0 : X → X onto the constant space kerG0(x, t) such that the operator

G1(x, t) := G0(x, t)+B(x, t)Q0

is injective and cl(imG1(x, t)) = Z for all x ∈ X and t ∈ I.

The definition is independent of the choice of the projection operator Q0. If Q̃0
is another projection operator onto kerG0(t), then

G̃1(x, t) = G0(x, t)+B(x, t)Q̃0 = G1(x, t) · (I+Q0Q̃0P0)

holds for P0 := I−Q0 since

Q0 = Q̃0Q0 and Q̃0 = Q0Q̃0.

The operator I+Q0Q̃0P0 is continuous and injective. Its inverse operator is given by
I−Q0Q̃0P0 and, thus, is also continuous. Consequently,
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ker G̃1(x, t) = kerG1(x, t) and im G̃1(x, t) = imG1(x, t).

Remark 12.3. Since the definition is independent of the choice of the projector and
N0 is bounded, we can easily characterize index-1 DAEs by using the orthoprojec-
tion operator onto N0. The abstract DAE (12.3) has index 1 if and only if Q∗0 is the
orthogonal projection onto N0 and

G1(x, t) := G0(x, t)+B(x, t)Q∗0

is injective and cl(imG1(x, t)) = Z for all x ∈ X and t ∈ I.

This index definition characterizes the behavior of abstract differential-algebraic
systems with respect to perturbations of the right-hand side. It should not be con-
fused with the Fredholm index of operators.

A general index definition for nonlinear abstract differential-algebraic systems is
still a challenge of research. Formally, one could extend the index definition from
Chapter 3 to abstract systems. But an index definition should give us some informa-
tion about the solution and perturbation behavior of abstract DAEs. So far, such a
general characterization is known only for abstract DAEs with constant coefficients.
In [193, 191] the following theorem has been shown.

Theorem 12.4. Let X, Z be Hilbert spaces and let (A,B) be a regular operator
pair, i.e., the generalized resolvent is nontrivial, ρ(A,B) �= {0}. Let A : X → Z be
bounded and B : domB→ Z be densely defined. Moreover, let the projector sequence
Qi ∈ Lb(X)∩Lb(domB), Pi = I−Qi with

G0 = A, B0 = B,

imQi = kerGi,
i−1

∑
j=0

kerG j ⊂ kerQi,

Gi+1 = Gi +BiQi, Bi+1 = BiPi

exist and be stagnant, i.e., there exists a μ ∈ N such that kerGμ = {0}. Further, let

imA+B

(
domB∩

μ−1

∑
k=0

kerGk

)

be closed. Then, there exist Hilbert spaces X1, X2, X3 and bounded mappings W ∈
Lb(Z,X1×X2×X3), T ∈ Lb(X1×X2,X), where T is bijective and W is injective and
has dense range such that
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WAT =

⎡
⎣

N 0
0 I
0 0

⎤
⎦ : X1×X2 → X1×X2×X3, (12.9)

WBT =

⎡
⎣

I K
0 L
0 M

⎤
⎦ : X1×domK ∩domL∩domM → X1×X2×X3. (12.10)

In particular, N ∈ Lb(X1) is a nilpotent operator with nilpotency index μ .

Notice that the space of bounded linear operators from X to Z is denoted by Lb(X ,Z)
and Lb(X) := Lb(X ,X).

The nilpotency index μ takes the role of the Kronecker index for matrix pairs
(A,B). Regarding the index definition for DAEs with constant coefficients (see
Chapter 1), Theorem 12.4 justifies the definition of the index of abstract DAEs

Ax′(t)+Bx(t) = q(t)

with constant operators A, B satisfying the properties supposed in Theorem 12.4 by
the first index μ with kerGμ = 0.

In contrast to the finite dimensional case, additional operators K and M appear
in (12.10). The operator M has its interpretation as a boundary control term. The
coupling operator K is not always removable. [193, 191] present examples of ab-
stract DAEs that do not possess a decoupling form with K = 0. Sufficient criteria
for disappearing operators K are given in [191].

The decoupling form (12.10) for abstract DAEs provides structural information
about the solution behavior and makes it possible to formulate perturbation results
as well as consistent initializations, see [191, 192].

12.2 ADAE examples

This section demonstrates various application types of differential equation sys-
tems that are covered by the abstract differential-algebraic systems introduced in
this chapter. First, we see that this approach not only includes (finite-dimensional)
differential-algebraic systems as considered in the chapters before but also partial
differential equations and integral equations as well as couplings thereof.

Aiming at unique solutions we have to equip such problems with appropriate
initial and boundary conditions. As soon as we consider coupled systems, it is no
longer clear for which components we have to provide initial and boundary condi-
tions for unique solvability. We see that the index concept presented in Section 12.1
supports us in posing appropriate initial and boundary conditions.
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12.2.1 Classical partial differential equations

In this section we consider the roots of some classical partial differential equations
as they appear in applications. They, naturally, represent abstract DAEs. Applying
the extended index analysis of DAEs to such abstract DAEs gives us an understand-
ing of abstract DAEs. In particular, it provides guidance for forming appropriate
function spaces for the solution as well as advice for finding consistent initial and
boundary conditions.

12.2.1.1 Wave equation

The flow in an ideal gas is determined by three laws (cf. e.g., [22]). As usually, we
denote the velocity by v, the density by ρ , and the pressure by p.

1. Continuity equation
∂ρ
∂ t

=−ρ0 div v. (12.11)

Due to the conservation of mass, the variation of the mass in a (sub)volume V is
equal to the flow over the surface, i.e.,

∫
∂V ρv ·ndO. The Gaussian integral the-

orem implies the above equation, where ρ is approximated by the fixed density
ρ0.

2. Newton’s theorem

ρ0
∂v
∂ t

=−grad p. (12.12)

The pressure gradient induces a force field causing the acceleration of particles.
3. State equation

p = c2ρ . (12.13)

In ideal gases the pressure is proportional to the density under constant tempera-
ture.

From the three laws above the wave equation

∂ 2

∂ t2 p = c2 ∂ 2ρ
∂ t2 =−c2 ∂

∂ t
ρ0 div v = c2 divρ0

∂v
∂ t

= c2 div grad p = c2Δ p

is deduced. Considering equations (12.11)–(12.13) to form a system of equations
we know that this is an abstract DAE of index 1. Namely, choosing

x(t) =

⎡
⎣
ρ(t, ·)
v(t, ·)
p(t, ·)

⎤
⎦ , A =

⎡
⎣

1 0
0 ρ0I
0 0

⎤
⎦ , D =

[
1 0 0
0 I 0

]
,

D− =

⎡
⎣

1 0
0 I
0 0

⎤
⎦ , B =

⎡
⎣

0 ρ0div 0
0 0 grad
−c2 0 1

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ ,
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we find, independently of the special function spaces,

G0 =

⎡
⎣

1 0 0
0 ρ0I 0
0 0 0

⎤
⎦ , G1 = G0 +BQ0 =

⎡
⎣

1 0 0
0 ρ0I grad
0 0 1

⎤
⎦ .

Obviously, G1 is always nonsingular and its inverse is given by

G−1
1 =

⎡
⎣

1 0 0
0 1

ρ0
I − 1

ρ0
grad

0 0 1

⎤
⎦ .

Corresponding to the decoupling procedure for the finite-dimensional case (see [11,
167]) we compute

DG−1
1 BD =

[
0 ρ0div

c2

ρ0
grad 0

]
, Dx =

[
ρ
v

]
.

Hence, not surprisingly, the inherent regular differential equation reads

ρ ′+ρ0 div v = 0,

v′+
c2

ρ0
gradρ = 0

(12.14)

while ⎡
⎣

0
0
p

⎤
⎦= Q0x = Q0G−1

1 BD−Dx =

⎡
⎣

0
0

c2ρ

⎤
⎦

represents the constraint. The initial condition for the resulting DAE (12.3) consists
of the initial condition for the inherent regular equation (12.14). Boundary condi-
tions for (12.14) should be incorporated by specifying the function space X and the
definition domain DB ⊂ X .

12.2.1.2 Heat equation

Let T (x, t) be the distribution of temperature in a body. Then the heat flow reads

F = −κ grad T, (12.15)

where the diffusion constant κ represents a material constant. Due to the conserva-
tion of energy, the change of energy in a volume element is composed of the heat
flow over the surface and the applied heat Q. Now it follows that
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∂E
∂ t

= −div F +Q

= divκ grad T +Q

= κΔu+Q, (12.16)

if κ is assumed to be constant. With the specific heat a = ∂E/∂T (a further material
constant) we finally obtain the heat equation

∂T
∂ t

=
κ
a
ΔT +

1
a

Q. (12.17)

On the other hand, we may consider the original equations

a
∂T
∂ t

= −div F +Q,

F = −κ grad T
(12.18)

to form an abstract index-1 DAE (12.3) for x(t) =
[

T (t, ·)
F(t, ·)

]
with

A =

[
a
0

]
, D =

[
1 0
]
, D− =

[
1
0

]
, Q0 =

[
0 0
0 1

]
,

B =

[
0 div

κ grad 1

]
, G1 =

[
a div
0 1

]
.

Also in this case, G1 is always nonsingular. Following again the decoupling pro-
cedure for the description of the inherent regular differential equation and the con-
straints, we obtain

G−1
1 =

[
1
a −

1
a div

0 1

]
, DG−1

1 BD− =−κ
a

div grad , Dx = T,

which implies the inherent regular differential equation to be

T ′ − κ
a

div grad T =
1
a

Q

and [
0
F

]
= Q0x = −Q0G−1

1 BD−Dx+Q0G−1
1

[
Q
0

]
=

[
0

−κ grad T

]

to represent the constraint. Again, the function spaces and incorporated boundary
conditions as well as an initial condition for the inherent regular differential equation
should enable us to obtain unique solvability.
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12.2.2 A semi-explicit system with parabolic and elliptic parts

Let Ω ⊂ R
d and I ⊂ R be regular open domains. Consider the system

ut +b1Δu+b2Δv+ c1u+ c2v = r,

b3Δu+b4Δv+ c3u+ c4v = s
(12.19)

with the Laplacian Δ , unknown functions u = u(z, t) and v = v(z, t) and given func-
tions r = r(z, t) and s = s(z, t) defined on Ω ×I. We assume

b1b4−b2b3 �= 0. (12.20)

Regarding the system (12.19) in variation formulation and describing it as an ab-
stract DAE (12.1) we choose X = Z = L2(Ω)×L2(Ω), Y = L2(Ω) and

A =

[
1
0

]
, D =

[
1 0
]
, Q0 =

[
0 0
0 1

]
, D− =

[
1
0

]

with the identity operator in L2(Ω) represented as 1 and the zero operator in L2(Ω)
represented as 0. Further, we have

b(x) =
[

b1Δu+ c1u+b2Δv+ c2v
b3Δu+ c3u+b4Δv+ c4v

]

and

B = bx(x) =
[

b1Δ + c1 b2Δ + c2
b3Δ + c3 b4Δ + c4

]
.

Of course, even in variation formulation, b is not defined for all x ∈ X = L2(Ω)×
L2(Ω). But it is defined on D(1)

B := H1(Ω)×H1(Ω). The question we want to
discuss here is a proper choice of boundary conditions on Ω such that the system
(12.19) has a unique solution.

Let σ(Δ) denote the spectrum of the Laplacian. It naturally depends on the region
Ω . Injectivity of the operator

G1 =

[
1 b2Δ + c2
0 b4Δ + c4

]

requires the operator b4Δ + c4 to be injective. Assuming

b4γ+ c4 �= 0 for all γ ∈ σ(Δ) (12.21)

we find G1 to be injective on D(1)
B . This means that the system (12.19) has index

μ = 1 and no boundary condition for v has to be posed for v if the condition (12.21)
is satisfied. If c4 = 0 then condition (12.21) is violated. But we still obtain G1 to
be injective if b4 �= 0 and if we choose D(2)

B := H1(Ω)×H1
0 (Ω) as the definition
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domain for b. This means that we have to suppose boundary conditions on Ω for v
if c4 = 0 and b4 �= 0.

In both cases, the corresponding inherent regular differential equation is related
to the component Dx = u. In order to obtain unique solvability, boundary and initial
conditions for u have to be added. Hence, we selectDB = H1

0 (Ω)×H1(Ω) if condi-
tion (12.21) is satisfied and DB = H1

0 (Ω)×H1
0 (Ω) if b4 �= 0 and c4 = 0. The initial

condition is stated to be

Dx(0) = u(0) ∈ DDB = H1
0 (Ω).

Next, consider the case that b4 = 0, c4 = 0. This implies that b2 �= 0, b3 �= 0 because
of assumption (12.20). Obviously,

G1 =

[
1 b2Δ + c2
0 0

]

is no longer injective. We form the next subspace

kerG1 =

{[
u
v

]
∈ D(1)

B : u+(b2Δ + c2)v = 0
}
.

Provided that
b2γ+ c2 �= 0 for all γ ∈ σ(Δ) (12.22)

is valid, we get

kerG1 =

{[
u
v

]
∈ D(1)

B : v =−(b2Δ + c2)
−u
}

with (b2Δ+c2)
− being a generalized inverse of the operator b2Δ+c2. The operator

Q1 =

[
1 0

−(b2Δ + c2)
− 0

]

is a bounded idempotent map acting on X = L2(Ω)×L2(Ω),

imQ1 = N1 = cl kerG1 =

{[
u
v

]
∈ X : u ∈ L2(Ω), v =−(b2Δ + c2)

−u
}
.

Note that Q1Q0 = 0 is satisfied. Compute

G2 = G1 +BP0Q1 =

[
1+ c1 +b1Δ c2 +b2Δ

c3 +b3Δ 0

]

and turn to DB = H1
0 (Ω)×H1(Ω). Assuming

c3 +b3γ �= 0 for all γ ∈ σ(Δ) (12.23)
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to be also satisfied, G2 is injective and densely solvable. Hence, if b4 = c4 = 0 and
the conditions (12.22), (12.23) are satisfied, then the resulting abstract DAE has
index μ = 2. The corresponding inherent regular differential equation is trivially
0 = 0, since the component DP1x = 0 disappears. Consequently, no initial condition
on I is allowed.

Finally, we deal with the case b4 �= 0 and c4 �= 0, but there is a γ∗ ∈ σ(Δ) such
that

b4γ∗+ c4 = 0.

Then, with D(1)
B , we have that

kerG1 =

{[
u
v

]
∈ D(1)

B : u+(b2Δ + c2)v = 0,v =Π∗v
}
,

where Π∗ denotes the spectral projection onto the eigenspace of Δ corresponding to
the eigenvalue γ∗, thus

ΔΠ∗ = γ∗Π∗, Π∗Δ(I−Π∗) = 0.

Now, if b2γ∗+ c2 = 0, we find N1 = 0× imΠ∗ and

Q1 =

[
0 0
0 Π∗

]
, G2 = G1 +BP0Q1 = G1, N2 = N1,

and so on. There is no injective G j in the resulting sequence. Therefore, system
(12.19) is no longer a regular abstract DAE. The operator pair {AD,B} behaves like
a singular matrix pencil. Typical for this situation is the particular case of b1 =−1,
b2 = 1, b3 = 0, b4 = 1, c1 = 0, c2 = c4 =−γ∗, c3 = 0, i.e., system (12.19) reads

ut −Δu + (Δ − γ∗)v = r,

(Δ − γ∗)v = s,

which is no longer solvable for all sufficiently smooth functions s : I → L2(Ω) and
which does not determine the component Π∗v. Notice that this case is forbidden in
[149] by means of the condition

(b1 + γc1)(b4 + γc4)− (b2 + γc2)(b3 + γc3) �= 0, γ ∈ σ(Δ). (12.24)

Next we assume that

b4γ∗+ c4 = 0, b2γ∗+ c2 =: α �= 0. (12.25)

We derive
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kerG1 =

{[
u
v

]
∈ D(1)

B : v =− 1
α

u, u =Π∗u
}
,

N1 =

{[
u
v

]
∈ X : u =Π∗u, v =− 1

α
u
}
,

Q1 =

[
Π∗ 0
− 1

αΠ∗ 0

]
, Q1Q0 = 0,

further

G2 =

[
1+(b1Δ + c1)Π∗ b2Δ + c2
(b3Δ + c3)Π∗ b4Δ + c4

]
=

[
1+(b1γ∗+ c1)Π∗ b2Δ + c2
(b3γ∗+ c3)Π∗ b4Δ + c4

]
.

The homogeneous equation G2

[
u
v

]
= 0 reads in detail

u+(b1γ∗+ c1)Π∗u+(b2Δ + c2)v = 0, (12.26)

(b4Δ + c4)v =−(b3γ∗+ c3)Π∗u. (12.27)

If b3γ∗+ c3 = 0, then equations (12.26), (12.27) yield

v =Π∗v, u =Π∗u, v =− 1
α
(1+b1γ∗+ c1)u,

but Π∗u is not determined and G2 is not injective,

kerG2 =

{[
u
v

]
∈ D(1)

B : u =Π∗u, v =− 1
α
(1+b1γ∗+ c1)u

}
,

Q2 =

[
Π∗ 0

− 1
α (1+b1γ∗+ c1)Π∗ 0

]
, Q2Q1 = Q2, Q2Q0 = 0,

G3 = G2, and so on. Again, we arrive at a singular problem. This situation, too, is
excluded by condition (12.24), cf. [149].

Provided that

b4γ∗+ c4 = 0, b2γ∗+ c2 =: α �= 0, b3γ∗+ c3 =: β �= 0, (12.28)

equation (12.27) leads to Π∗u = 0, v = Π∗v since the Laplacian, as a symmetric
operator on H1

0 (Ω), does not have generalized eigenfunctions. Then, from (12.26),
we obtain that u =Π∗u and v =− 1

α (1+b1γ∗+ c1)u, hence u = 0, v = 0, i.e., G2 is

injective. G2 is defined on D(1)
B and we have imG2 = Y ,

G−1
2 =

[
I−Π∗ 1

β Π∗ − (b2Δ + c2)(b4Δ + c4)
−
∗ (I−Π∗)

1
αΠ∗ (b4Δ + c4)

−
∗ (I−Π∗)− 1

αβ (1+b1γ∗+ c1)Π∗

]
,



552 12 Abstract differential-algebraic equations

where (b4Δ + c4)
−
∗ denotes the solution operator for (b4Δ + c4) f = g, g ∈ im(I−

Π∗), f ∈H1
0 (Ω), Π∗ f = 0. Now we are able to formulate the corresponding inherent

regular differential equation that is related to the component DP1x = (I−Π∗)u. We
have DP1D− = I−Π∗, Q1G−1

2 BP0 = Q1,

DP1G−1
2 BD− =

(I−Π∗)(b1Δ + c1)− (I−Π∗)(b2Δ + c2)(b4Δ + c4)
−
∗ (I−Π∗)(b3Δ + c3)

and

DP1G−1
2

[
r
s

]
= (I−Π∗)r− (I−Π∗)(b2Δ + c2)(b4Δ + c4)

−
∗ (I−Π∗)s.

Therefore, the inherent regular equation is

((I−Π∗)u)t +{(b1Δ + c1)− (b2Δ + c2)(b4Δ + c4)
−
∗ (b3Δ + c3)}(I−Π∗)u

= (I−Π∗)r− (b2Δ + c2)(b4Δ + c4)
−
∗ (I−Π∗)s.

This equation has to be completed by boundary conditions by choosing D(2)
B , but

also by an initial condition (I−Π∗)u(0) ∈ H1
0 (Ω). The part to be differentiated is

DQ1

[
u
v

]
=Π∗u = DQ1G−1

2

[
r
s

]
=
[
0 1

β Π∗
][r

s

]
=

1
β
Π∗s.

Finally, the solutions of (12.19) can be expressed as
[

u
v

]
=

[
1
0

]
((I−Π∗)u+

1
β
Π∗s)+

[
0
v

]
,

[
0
v

]
= Q0P1G−1

2

[
r
s

]
−Q0P1G−1

2 BD−(I−Π∗)u+
[

0
1
αβ (Π∗s)t

]
.

Consequently, provided condition (12.28) is satisfied, the abstract formulation of the
system (12.19) has index μ = 2.

12.2.3 A coupled system of a PDE and Fredholm integral
equations

Given a linear Fredholm integral operator F : L2(Ω)s → L2(Ω)s, ‖F‖< 1, a linear
differential operator

K : C2
0(Ω)→ L2(Ω), Kw :=−Δw+ cw for w ∈C2

0(Ω), c≥ 0,

with linear bounded coupling operators L : L2(Ω)s → L2(Ω), E : L2(Ω)→ L2(Ω)s,
the system to be considered is ([26])
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x′1(t)+Kx1(t)+Lx2(t) = q1(t),
Ex1(t)+(I−F)x2(t) = q2(t), t ∈ [0,1]. (12.29)

Using the corresponding matrix representations for A, D, B, with X := L2(Ω)×
L2(Ω)s, Y := X , Z := L2(Ω), we rewrite (12.29) in the form (12.3). Namely, we
have

A =

[
1
0

]
, D =

[
1 0
]
, G0 = AD = P0 =

[
1 0
0 0

]
, D− =

[
1
0

]
, R = 1

and B =

[
K L
E I−F

]
. By construction B is defined on DB := C2

0(Ω)× L2(Ω)s.

Clearly, it holds that N0 = 0×L2(Ω)s. Choosing

Q0 =

[
0 0
0 I

]
, W0 =

[
0 0
0 I

]

we obtain

W0B =

[
0 0
E I−F

]
, G1 =

[
1 L
0 I−F

]

defined on X (as trivial extensions of bounded maps). G1 is a bijection such that this
abstract DAE has the index 1. This implies

G−1
1 =

[
1 −L(I−F)−1

0 (I−F)−1

]
, DG−1

1 BD− = K−L(I−F)−1E.

Each solution of the DAE is given by the expression

x(t) = D−u(t)+Q0x(t),

Q0x(t) = Q0G−1
1 q(t)−Q0G−1

1 BD−u(t),

where u(t) is a solution of the abstract regular differential equation

u′(t)+DG−1
1 BD−u(t) = DG−1

1 q(t),

which corresponds to

x′1(t)+(K−L(I−F)−1E)x1(t) = q1(t)−L(I−F)−1Eq2(t). (12.30)

Obviously, one has to state an appropriate initial condition for (12.30), i.e., x1(0) =
x0

1 ∈ C2
0(Ω). Better solvability will be obtained by defining B (respectively K) on

H1
0 (Ω) instead of C2

0(Ω) and using weak solutions.
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12.2.4 A PDE and a DAE coupled by a restriction operator

Here we consider systems where PDE and DAE model equations are coupled via
certain boundary conditions. Such systems often arise by multiphysical modeling,
for instance, when coupling circuit and electromagnetic simulation. Consider the
system

ũt(y, t)− ũyy(y, t)+ cũ(y, t)=f (y, t), y ∈Ω , t ≥ 0, ũ|∂Ω = 0, (12.31)
Ã(t)(D̃(t)x̃(t))′+ B̃(t)x̃(t)+ r(t)ũ(·, t)=g(t), t ≥ 0. (12.32)

Assume the linear restriction map r(t) : H1(Ω)→ R
m (usually describing bound-

ary conditions for ũ) to be bounded and to depend continuously on t. Rewrite

the system (12.31)–(12.32) as an abstract DAE for x(t) =
[

ũ(·, t)
x̃(t)

]
and choose

X = Y = L2(Ω)×R
m, Z = L2(Ω)×R

n,

A =

[
1 0
0 Ã

]
, D =

[
1 0
0 D̃

]
, AD =

[
1 0
0 ÃD̃

]
, Q0 =

[
0 0
0 Q̃0

]
,

D− =

[
1 0
0 D̃−

]
, R =

[
1 0
0 R̃

]
, B =

[
−Δ + c 0

r B̃

]
,

where DB := H1
0 (Ω)×R

m. G1 =

[
1 0
0 G̃1

]
is defined on X , N1 = 0× Ñ1, imG1 =

L2(Ω)× im G̃1, S1 = {x ∈ X : rx1 + B̃P̃0x2 ∈ im G̃1}. Supposing that the operator
r(t) maps into im G̃1(t) it holds that

S1 = {x ∈ X : B̃P̃0x2 ∈ im G̃1}= L2(Ω)× S̃1.

Then, Q1 =

[
0 0
0 Q̃1

]
is the projector onto N1 along S1, G2 =

[
1 0
0 G̃2

]
.

In the general case the projector Q1 onto N1 along S1 is more difficult to con-
struct. Obviously, we have N1 ∩ S1 = 0× (Ñ1 ∩ S̃1). G2 is a bijection if G̃2 is so.
Consequently, the coupled system (12.31)–(12.32) interpreted as an abstract DAE
has the same index as the DAE (12.32).

12.3 Linear ADAEs with monotone operators

The goal is to obtain existence and uniqueness of solutions for abstract differential-
algebraic equations of the form

A(Dx)′(t)+B(t)x(t) = q(t) for almost all t ∈ I (12.33)
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with I := (t0,T ) and with linear operators A, D and B(t) acting in linear Hilbert
spaces. They naturally arise by a generalized formulation of coupled systems of
differential-algebraic equations and partial differential equations of elliptic and
parabolic type. Here, (Dx)′ denotes the generalized derivative of Dx in the sense
of distributions.

Obviously, if A and D represent identity mappings and B is an elliptic opera-
tor, then the system (12.33) represents a system of parabolic differential equations.
Usual approaches to obtain existence results in the theory of parabolic differential
equations are the theory of semigroups and the Galerkin method (see e.g., [217]).
From the numerical point of view, the Galerkin method is preferable. First, it pro-
vides canonically a numerical method for solving the ADAE. Secondly, the theory
of semigroups treats the abstract system as an evolution on a manifold. However,
this manifold is unknown at the outset and must be calculated when solving the
system numerically. But, already in the finite-dimensional case, a calculation of the
manifold (for a description see, e.g., [11, 189]) would be connected with signifi-
cant computational expense, in particular for systems of higher index. Furthermore,
it would be necessary to investigate the influence of perturbations of the manifold
onto solutions, since we cannot expect to calculate the manifold exactly.

We follow the ideas in [207] and consider the following approach as a starting
point for a general treatment of ADAEs. Existence proofs for nonlinear differential
equations are often based on the construction of suitable fixed point mappings using
the existence of solutions for linear differential equation systems. Therefore, we
consider unique solvability statements for linear ADAEs as a substantial basis for a
general approach treating abstract differential-algebraic systems.

12.3.1 Basic functions and function spaces

We start with the following assumptions.

Assumption 12.5. The spaces V , Y and H are real Hilbert spaces. Y ⊆ H ⊆ Y ∗ is
an evolution triple. The mapping

D : V → Y

is linear, continuous and surjective. The mapping

A : Y ∗ →V ∗

represents the dual mapping of D, which means

〈A f ,v〉V = 〈 f ,Dv〉Y for all v ∈V.

The mapping
B(t) : V →V ∗
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is linear, uniformly bounded and uniformly strongly monotone for all t ∈ I. More
precisely, there are constants c1,c2 > 0 such that

〈B(t)x,v〉V ≤ c1‖x‖‖v‖, 〈B(t)x,x〉V ≥ c2‖x‖2

for all x,v ∈V and t ∈ I. Furthermore we assume the mapping

t %→ 〈B(t)x,v〉V

to be measurable for all x,v ∈V .

The assumption also implies that the operator AJD is monotone with J : Y → Y ∗

being the embedding operator mapping elements y of Y to the functional fy ∈ Y ∗

satisfying fy(z) = 〈y,z〉Y for all z ∈ Y and being well defined by the Riesz represen-
tation theorem. It is a simple consequence of

〈AJDv,v〉V = 〈JDv,Dv〉Y = (Dv,Dv)H = ‖Dv‖2
H

for all v ∈ V . We consider finite time intervals I := (t0,T ) with t0 < T < ∞. For
evolution equations, the natural solution space is given by the Sobolev space

W 1
2 (I,V,H) = {x ∈ L2(I,V ) : x′ ∈ L2(I,V ∗)}

with x′ being a generalized derivative of x satisfying

∫ T

t0
ϕ ′(t)x(t)dt = −

∫ T

t0
ϕ(t)x′(t)dt for all ϕ(t) ∈C∞

0 (t0,T ).

For linear ADAEs of the form (12.33), we have to modify it, since we need the
generalized derivative of (Dx)(t) which belongs to Y and not to V . Consequently,
we define

W 1
2,D(I,V,Y,H) := {x ∈ L2(I,V ) : (Dx)′ ∈ L2(I,Y ∗)}

where (Dx)′ denotes the generalized derivative of Dx, which means

∫ T

t0
ϕ ′(t)Dx(t)dt = −

∫ T

t0
ϕ(t)(Dx)′(t)dt for all ϕ(t) ∈C∞

0 (t0,T ).

Here, Dx : I → Y is defined by (Dx)(t) = Dx(t) for all t ∈ I.

Proposition 12.6. The space W 1
2,D(I,V,Y,H) forms a real Banach space with the

norm
‖x‖W 1

2,D
:= ‖x‖L2(I,V ) +‖(Dx)′‖L2(I,Y ∗).

Proof. Obviously, ‖ · ‖W 1
2,D

is a norm since ‖ · ‖L2(I,V ) and ‖ · ‖L2(I,Y ∗) are norms. It

remains to show that W 1
2,D(I,V,Y,H) is complete. Let (xn) be a Cauchy sequence

in W 1
2,D(I,V,Y,H). Since L2(I,V ) and L2(I,Y ∗) are Banach spaces, we find x ∈
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L2(I,V ) and v ∈ L2(I,Y ∗) with

xn → x and (Dxn)
′ → v.

Since D : V → Y is continuous, we have

Dxn → Dx in L2(I,Y ).

The continuous embedding Y ⊆ Y ∗ yields the continuous embedding L2(I,Y ) ⊆
L2(I,Y ∗). Consequently,

Dxn → Dx in L2(I,Y ∗).

Since L2(I,Y ∗)⊆ L1(I,Y ∗), we get

Dxn → Dx and (Dxn)
′ → v in L1(I,Y ∗). (12.34)

For ϕ ∈C∞
0 (I), we have

∫ T

t0
ϕ ′Dxn dt =−

∫ T

t0
ϕ(Dxn)

′ dt.

(12.34) allows us to apply the limit n→ ∞ which yields

∫ T

t0
ϕ ′Dx dt =−

∫ T

t0
ϕv dt.

But this means v = (Dx)′ and hence x ∈W 1
2,D(I,V,Y,H). ��

Proposition 12.7. If x ∈W 1
2,D(I,V,Y,H), then Dx belongs to the classical Sobolev

space
W 1

2 (I,Y,H) = {v ∈ L2(I,Y ) : v′ ∈ L2(I,Y ∗)}.

Proof. Let x belong to W 1
2,D(I,V,Y,H). This implies x∈ L2(I,V ). Since D : V →Y

is continuous, Dx belongs to L2(I,Y ) and the proposition is proved. ��

The last proposition implies immediately two important properties of the function
Dx if x ∈W 1

2,D(I,V,Y,H). The first one is a simple conclusion of the continuous
embedding

W 1
2 (I,Y,H)⊆C(I,H).

Corollary 12.8. If x∈W 1
2,D(I,V,Y,H), then there exists a uniquely determined con-

tinuous function y : I → H which coincides almost everywhere on I with the func-
tion Dx. Furthermore,

max
t0≤t≤T

‖y(t)‖H ≤ const‖Dx‖W 1
2
.
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As a consequence of the generalized integration by parts formula, we obtain the next
corollary.

Corollary 12.9. The integration by parts formula is satisfied for all u, v ∈
W 1

2,D(I,V,Y,H) and arbitrary s, t with t0 ≤ s≤ t ≤ T , which means

(
Du(t)|Dv(t)

)
H
−
(
Du(s)|Dv(s)

)
H

=
∫ t

s
〈(Du)′(τ),Dv(τ)〉Y + 〈(Dv)′(τ),Du(τ)〉Y dτ . (12.35)

Here, the values of Du and Dv are the values of the continuous functions zu, zv : I →
H in the sense of Corollary 12.8.

All statements and arguments of this section remain true if D depends on t provided
that D(·, t) : V → Y is uniformly Lipschitz continuous for almost all t ∈ I, i.e.,

‖D(u, t)−D(v, t)‖Y ≤ c‖u− v‖V ∀u,v ∈V, for almost all t ∈ I

with a constant c > 0 being independent of t.

12.3.2 Galerkin approach

As explained in the section before, the natural solution space for ADAEs of the
form (12.33) is given by W 1

2,D(I,V,Y,H). Therefore, we consider the initial value
problem

A[Dx(t)]′+B(t)x(t) = q(t) for almost all t ∈ I, (12.36)
Dx(t0) = y0 ∈ H (12.37)

with x ∈W 1
2,D(I,V,Y,H). The initial condition (12.37) is to be understood as fol-

lows. For each x ∈W 1
2,D(I,V,Y,H) we can modify Du on a subset of I such that

the mapping Du : I → H is continuous. This continuous representative Du makes
(12.37) meaningful.

Additionally, we need the following assumption for the choice of basis functions.
It ensures that the basis functions in the spaces V and V are consistent with each
other.

Assumption 12.10. Let y0 ∈ H and q ∈ L2(I,Y ∗) be given. Furthermore, let
{w1,w2, . . .} be a basis in V and {y1,y2, . . .} be a basis in Y such that, for all n ∈N,

∃mn ∈ N : {Dw1, . . . ,Dwn} ⊆ span{y1, . . . ,ymn}.

Furthermore, we require (yn0) to be a sequence from H with

yn0 → y0 in H as n→ ∞,
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where
yn0 ∈ span{Dw1, . . . ,Dwn} for all n.

In order to formulate the Galerkin method, we set

xn(t) =
n

∑
i=1

cin(t)wi.

Additionally, we use the formulation

〈A[Dx(t)]′,v〉V + 〈B(t)x(t),v〉V = 〈q(t),v〉V ∀v ∈V (12.38)

which is equivalent to (12.36) for almost all t ∈ I. Then, we obtain the Galerkin
equations if we replace x by xn and v by wi:

〈A[Dxn(t)]′,wi〉V + 〈B(t)xn(t),wi〉V = 〈q(t),wi〉V, (12.39)
Dxn(t0) = yn0, (12.40)

for all i = 1, . . . ,n. By Assumption 12.5, equation (12.39) reads as

〈[Dxn(t)]′,Dwi〉Y + 〈B(t)xn(t),wi〉V = 〈q(t),wi〉V. (12.41)

Regarding the continuous embedding H ⊆ Y ∗, we may also write
(
[Dxn(t)]′|Dwi

)
H + 〈B(t)xn(t),wi〉V = 〈q(t),wi〉V.

Consequently, the Galerkin equations are given by
(

n

∑
j=1

[c jn(t)Dw j]
′|Dwi

)

H

+
n

∑
j=1
〈B(t)w j,wi〉Vc jn(t) = 〈q(t),wi〉V, (12.42)

Dxn(t0) = yn0, (12.43)

for all i = 1, . . . ,n. If we take into account Assumption 12.10, then we find coeffi-
cients aik with i = 1, . . . ,n and k = 1, . . . ,mn such that

Dwi =
mn

∑
k=1

aikyk ∀ i = 1, . . . ,n.

Note that the coefficients are simply given by aik =(Dwi|yk)H if the basis {y1,y2, . . .}
is an orthonormal basis in Y .

Consequently, equation (12.42) is equivalent to

mn

∑
k=1

(
n

∑
j=1

[c jn(t)Dw j]
′|aikyk

)

H

+
n

∑
j=1
〈B(t)w j,wi〉Vc jn(t) = 〈q(t),wi〉V

for all i = 1, . . . ,n. This can be rewritten as
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mn

∑
k=1

aik
d
dt

(
n

∑
j=1

(Dw j|yk)Hc jn(t)

)
+

n

∑
j=1
〈B(t)w j,wi〉Vc jn(t) = 〈q(t),wi〉V.

Furthermore, equation (12.43) is equivalent to

n

∑
j=1

c jn(t0)(Dw j|yk)H =
n

∑
j=1

α jn(Dw j|yk)H ∀k = 1, . . . ,mn,

where yn0 = ∑n
j=1α jnDw j. The existence of the coefficients α jn and the second

equivalence are ensured by Assumption 12.10. Hence, the Galerkin equations rep-
resent an initial value differential-algebraic equation

An(Dncn(t))′+Bn(t)cn(t) = r(t) (12.44)
Dncn(t0) = Dnαn (12.45)

for the coefficients cn j(t) if we introduce the vector function cn(·) as

cn(t) = (cn j(t)) j=1,...,n for all t ∈ I

and the vector αn = (α jn(t)) j=1,...,n. The matrices An, Dn and Bn(t) are given by

An = (aik) i=1,...,n
k=1,...,mn

, Dn = (dk j)k=1,...,mn
j=1,...,n

, Bn(t) = (bi j(t)) i=1,...,n
j=1,...,n

with
dk j = (Dw j|yk)H and bi j(t) = 〈B(t)w j,wi〉V

for i, j = 1, . . . ,n and k = 1, . . . ,mn. Finally, the vector function for the right-hand
side reads as

r(t) = (r j(t)) j=1,...,n

with r j(t) = 〈q(t),w j〉V for j = 1, . . . ,n.

Proposition 12.11. The differential-algebraic equation (12.44) arising from the
Galerkin approach for the IVP (12.36)–(12.37) has a properly stated leading term,
which means

kerAn⊕ imDn = R
mn .

Proof. We shall show first that the intersection of the spaces kerAn and imDn is
trivial. We assume z ∈ R

mn to belong to this intersection, which means

mn

∑
k=1

aikzk = 0 for all i = 1, . . . ,n.

Furthermore there exist p j ∈ R
n for j = 1, . . . ,n such that

zk =
n

∑
j=1

(Dw j|yk)H p j for all k = 1, . . . ,mn.
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Multiplying the last equations by aik and summing over k = 1, . . . ,mn we get

n

∑
j=1

(Dw j|
mn

∑
k=1

aikyk)H p j = 0 for all i = 1, . . . ,n.

This implies

(
n

∑
j=1

p jDw j|Dwi)H = 0 for all i = 1, . . . ,n,

because of the definition of the coefficients aik. Multiplying this by pi and building
the sum over i = 1, . . . ,n we obtain

‖
n

∑
j=1

p jDw j‖2
H
= 0, which implies

n

∑
j=1

p jDw j = 0.

Consequently,

zk =
n

∑
j=1

(p jDw j|yk)H = 0 for all k = 1, . . . ,mn.

It remains to show that the sum of the spaces kerAn and imDn spans the whole space
R

mn . For this, it is enough to verify that

dimkerAn ≥ mn−dimimDn.

Let d be the dimension of imDn. If d = mn we are done. If d < mn, then, without
loss of generality, let the first d rows of Dn be linearly independent. Then, we find
for all k with d < k ≤ mn real values λk1, . . . ,λkd such that

dki =
k

∑
j=1

λk jd ji ∀ i = 1, . . . ,mn.

Regarding the definition of dki we may rewrite this equation as

(Dwi|yk−
k

∑
j=1

λk jy j)H = 0 ∀ i = 1, . . . ,mn.

Using the definition of An we find

mn

∑
l=1

ail(yl |yk−
k

∑
j=1

λk jy j)H = 0 ∀ i = 1, . . . ,mn.

This implies Anzk = 0 for zk = (zkl)l=1,...,mn with
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zkl = (yl |yk−
k

∑
j=1

λk jy j)Y ∀ l = 1, . . . ,mn.

Consequently, dimkerAn ≥ mn−d holds if {zk; k = d +1, . . . ,mn} is linearly inde-
pendent. We assume linear dependence, which means, we find μd+1, . . . ,μmn such
that

mn

∑
k=d+1

μkzk = 0.

This implies

mn

∑
k=d+1

μk(yl |yk−
k

∑
j=1

λk jy j)H = 0 ∀ l = 1, . . . ,mn.

Defining

ξk j :=

⎧
⎪⎨
⎪⎩

−λk j if 1≤ j ≤ d
1 if j = k
0 else

for all k = d +1, . . . ,mn, the last equation reads as

(yl |
mn

∑
k=d+1

μk

mn

∑
j=1

ξk jy j)H = 0 ∀ l = 1, . . . ,mn.

This yields

(
mn

∑
l=1

mn

∑
k=d+1

μkξklyl |
mn

∑
j=1

mn

∑
k=d+1

μkξk jy j)H = 0

and hence
mn

∑
j=1

mn

∑
k=d+1

μkξk jy j = 0.

Since {y1, . . . ,ymn} is linearly independent, we get

mn

∑
k=d+1

μkξk j = 0 ∀ j = 1, . . . ,mn.

Considering the definition of ξk j, we obtain that μ j = 0 for j = d+1, . . . ,mn, which
means {zk; k = d +1, . . . ,mn} is linearly independent. ��

Proposition 12.12. For the leading term matrix functions of the differential-
algebraic equation (12.44):

(1) (imAn)
⊥ = kerDn,

(2) AnDn is positive semidefinite,
(3) Bn(t) is positive definite for all t ∈ I.

Proof. (1) Any vector z ∈ R
n belongs to kerDn if and only if
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n

∑
j=1

(Dw j|yl)Hz j = 0 ∀ l = 1, . . . ,mn

or, equivalently,

n

∑
j=1

(
mn

∑
k=1

a jkyk|zl)Hz j = 0 ∀ l = 1, . . . ,mn.

This is equivalent to
mn

∑
k=1

n

∑
j=1

z ja jkyk = 0,

which means, ∑n
j=1 z ja jk = 0 for all k = 1, . . . ,mn, since {yk;k = 1, . . . ,mn} is lin-

early independent. But this means nothing else than z ∈ (kerAn)
⊥.

(2) For any z ∈ R
n we have

zTAnDnz =
mn

∑
k=1

n

∑
i=1

n

∑
j=1

aikdk jziz j =
n

∑
i=1

n

∑
j=1

(Dw j|Dwi)Hziz j

= (
n

∑
j=1

z jDw j|
n

∑
i=1

ziDwi)H = ‖
n

∑
j=1

z jDw j‖2
H
≥ 0.

(3) Let z �= 0 be any vector in R
n. Then we get

zTBn(t)z =
n

∑
i=1

n

∑
j=1

zi〈B(t)w j,wi〉Vz j = 〈B(t)(
n

∑
j=1

z jw j),
n

∑
i=1

ziwi〉V > 0

since B(t) is strongly monotone and w1, . . . ,wn are linearly independent. ��

Proposition 12.13. The differential-algebraic equation (12.44) arising from the
Galerkin approach for the IVP (12.36)–(12.37) has at most index 1.

Proof. If AnDn is singular, then let Qn be any projector onto kerAnDn. We shall
show that the matrix

G1n := AnDn +Bn(t)Qn

is nonsingular. We assume z to belong to the nullspace of G1n, i.e.,

AnDnz+Bn(t)Qnz = 0. (12.46)

Multiplying the equation by (Qnz)T we get

(Qnz)TBn(t)Qnz = 0

since kerQT
n = imAn (see Proposition 12.12). The positive definiteness of Bn yields

Qnz = 0 and, regarding (12.46), we have AnDnz = 0. But the latter equation means
nothing else than z = Qnz and, finally, z = 0. ��
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12.3.3 Solvability

In order to obtain unique solutions via the Galerkin method we shall need, addition-
ally, the following assumption.

Assumption 12.14. Let Q : V →V be a projection operator with imQ = kerD. The
existence of such an operator is ensured by the continuity of D implying kerD to be
closed in V . Then, we assume that the basis {w1,w2, . . .} of V is chosen such that
there are index sets I1, I2 ⊂ N with

span{wi ∈V | i ∈ I1}= kerQ and span{wi | i ∈ I2}= imQ = kerD.

This assumption guarantees that the dynamic part of the solution will be approxi-
mated by linear combinations of the basis functions wi for i ∈ I1. Correspondingly,
the nondynamic part of the solution will be approximated by linear combinations of
the basis functions wi for i ∈ I2. In applications, it should not be a problem to fulfill
Assumption 12.14.

In the proof of the existence and uniqueness of solutions, we will need some
properties of the adjoint operator of the projection operator Q. Therefore, we sum-
marize them in the following lemma.

Lemma 12.15. Let V and Y be Banach spaces. Furthermore, let D be a linear, con-
tinuous, and surjective operator D : V → Y .

If Q : V → V is a projection operator onto kerD, then the adjoint operator
Q∗ : V ∗ →V ∗ defined by

〈Q∗v̄,v〉V = 〈v̄,Qv〉V ∀ v̄ ∈V ∗, v ∈V

is a projection operator along imD∗ for the adjoint operator D∗ : Y ∗ →V ∗ defined
by

〈D∗ȳ,v〉V = 〈ȳ,Dv〉Y ∀ ȳ ∈ Y ∗, v ∈V.

Proof. (i) Q∗2 = Q∗. For all v̄ ∈V ∗ and v ∈V , we have

〈Q∗2v̄,v〉V = 〈Q∗v̄,Qv〉V = 〈v̄,Q2v〉V = 〈v̄,Qv〉V = 〈Q∗v̄,v〉V.

(ii) Continuity. Let v �= 0 belong to V and v̄ ∈V ∗. This implies
∣∣∣∣
〈

Q∗v̄,
v
‖v‖

〉∣∣∣∣=
∣∣∣∣
〈

v̄,
Qv
‖v‖

〉∣∣∣∣=
∣∣∣∣
〈

v̄,
Qv
‖Qv‖

〉∣∣∣∣
‖Qv‖
‖v‖ ≤ const‖v̄‖V ∗

since Q is continuous. But this means ‖Q∗v̄‖V ∗ ≤ const‖v̄‖V ∗ .
(iii) imD∗ ⊆ kerQ∗. For all ȳ ∈ Y ∗, we get

〈Q∗(D∗ȳ),v〉V = 〈D∗ȳ,Qv〉V = 〈ȳ,D(Qv)〉Y = 0.

(iv) kerQ∗ ⊆ imD∗. Let v̄ ∈ kerQ∗, i.e.,
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0 = 〈Q∗v̄,v〉V = 〈v̄,Qv〉V (12.47)

for all v ∈ V . Since D is surjective, we find, for all y ∈ Y , a v ∈ V such that
y = Dv. This allows us to define a functional ȳ ∈ Y ∗ by

〈ȳ,y〉Y := 〈v̄,v〉V

for any v ∈V with y = Dv. The functional ȳ is well defined since, for any v1,
v2 ∈V with

Dv1 = y = Dv2,

it follows that v1− v2 ∈ kerD = imQ and, consequently,

〈v̄,v1〉V = 〈v̄,v2〉V

if we regard (12.47). Finally, for all v ∈V ,

〈D∗ȳ,v〉V = 〈ȳ,Dv〉Y = 〈v̄,v〉V,

which yields v̄ = D∗ȳ ∈ imD∗. ��

Note that the surjectivity of D is needed for the relation kerQ∗ ⊆ imD∗ only.

Theorem 12.16. Let the Assumptions 12.5, 12.10 and 12.14 be satisfied. Then, the
ADAEs (12.36)–(12.37) have exactly one solution x ∈W 1

2,D(I,V,Y,H).

The following proof is oriented towards the existence proof for first-order linear
evolution equations presented in [217]. The main differences are the following.

1. We are looking for solutions x ∈W 1
2,D(I,V,Y,H) instead of x ∈W 1

2 (I,V,H).
2. The Galerkin equations represent a differential-algebraic equation instead of an

explicit ordinary differential equation.
3. Appropriate initial conditions are given only for Dx(t0) instead of the whole of

x(t0).
4. Assumption 12.14 is needed to ensure the existence of the generalized derivative

(Dx)′.

Proof. For brevity we set W =W 1
2,D(I,V,Y,H).

Step 1: Uniqueness. We suppose x1 and x2 to be two solutions of the system
(12.36)–(12.37). Then, the difference x = x1− x2 satisfies the initial value problem

A[Dx(t)]′+B(t)x(t) = 0 for almost all t ∈ (t0,T ),

Dx(t0) = 0

with x ∈W . This yields

∫ T

t0

〈
A[Dx(t)]′,x(t)

〉
V

dt +
∫ T

t0

〈
B(t)x(t),x(t)

〉
V

dt = 0.

Regarding Assumption 12.5, we have
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〈
A(Dx)′(t),x(t)

〉
V
=
(
(Dx)′(t)|Dx(t)

)
H
.

By the integration by parts formula (12.35) we get

1
2‖Dx(T )‖2

H
− 1

2‖Dx(t0)‖2
H
= −

∫ T

t0

〈
Bx(t),x(t)

〉
V

dt.

Since B(t) is uniformly strongly monotone, there is a constant c > 0 such that

1
2‖Dx(T )‖2

H
− 1

2‖Dx(t0)‖2
H
≤ − c

∫ T

t0
‖x(t)‖2

V
dt.

The initial condition Dx(t0) = 0 implies

1
2‖Dx(T )‖2

H
+ c
∫ T

t0
‖x(t)‖2

V
dt ≤ 0,

and, consequently, x(t) = 0 for almost all t ∈ (t0,T ).
Step 2: Existence proof via the Galerkin method.

(I) Solution of the Galerkin equations. The Galerkin equations (12.44)–(12.45)
represent an initial value differential-algebraic equation with index 1 (see
Proposition 12.13). Since q ∈ L2(I,V ∗), the right-hand side r of the
Galerkin equations belongs to L2(I,Rn). Applying Proposition 2.83, the
Galerkin equations have a unique solution in

H1
D(I,Rn) = {x ∈ L2(I,Rn) : Dx ∈ H1(I,Rmn)}.

(II) A priori estimates for the Galerkin solution. Multiplying the Galerkin
equations (12.42) by cn j(t) and summing over j = 1, . . . ,n, we obtain

(
(Dxn)

′(t)|Dxn(t)
)

H
+
〈
B(t)xn(t),xn(t)

〉
V
=
〈
q(t),xn(t)

〉
V
.

Due to the product formula for real valued functions we get

d
dt

(
Dxn(t)|Dxn(t)

)
H
= 2
(
(Dxn)

′(t)|Dxn(t)
)

H
.

This implies

d
dt
‖Dxn(t)‖2

H
+2
〈
B(t)xn(t),xn(t)

〉
V
= 2
〈
q(t),xn(t)

〉
V
.

Integration over t yields

‖Dxn(T )‖2
H
−‖Dxn(t0)‖2

H

+2
∫ T

t0

〈
B(t)xn(t),xn(t)

〉
V

dt = 2
∫ T

t0

〈
q(t),xn(t)

〉
V

dt.
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Since B(t) is strongly monotone with a constant C0 independent of t, we
get

‖Dxn(T )‖2
H
+2C0

∫ T

t0
‖xn(t)‖2

V
dt ≤

‖Dxn(t0)‖2
H
+2
∫ T

t0

〈
q(t),xn(t)

〉
V

dt.

Using the classical inequality

2|xy| ≤C−1
0 x2 +C0y2,

and the assumption that q belongs to L2(I,V ∗), we find

‖Dxn(T )‖2
H
+2C0

∫ T

t0
‖xn(t)‖2

V
dt ≤

‖Dxn(t0)‖2
H
+C−1

0

∫ T

t0
‖q‖2

V∗ dt +C0

∫ T

t0
‖xn(t)‖2

V
dt.

Consequently, there is a constant C such that

∫ T

t0
‖xn(t)‖2

V
dt ≤C

(
‖Dxn(t0)‖2

H
+

∫ T

t0
‖q‖2

V∗ dt
)
. (12.48)

(III) Weak convergence of the Galerkin method in L2(I,V ). Because of
Dxn(t0) = yn0 → y0 in H as n→ ∞, the a priori estimate (12.48) yields the
boundedness of the sequence (xn) in the Hilbert space L2(I,V ). Therefore
there is a weakly convergent subsequence (xn′) with

xn′ ⇀ x in L2(I,V ) as n→ ∞. (12.49)

The goal is now to show that x belongs to W and that x is a solution of
the original equation (12.36)–(12.37). If this done, then we know because
of uniqueness (see Step 1) that all weakly convergent subsequences (xn′)
have the same limit x and thus

xn ⇀ x in L2(I,V ) as n→ ∞.

(III-1) We shall show the key equation

−
(
y0|Dv

)
H
ϕ(t0) −

∫ T

t0

(
Dx(t)|Dv

)
H
ϕ ′(t) dt

+
∫ T

t0

〈
B(t)x(t),v

〉
V
ϕ(t) dt =

∫ T

t0

〈
q(t),v

〉
V
ϕ(t) dt (12.50)

for all v ∈V and real functions
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ϕ ∈C1(I) with ϕ(T ) = 0. (12.51)

Let ϕ be as in (12.51). We multiply the Galerkin equations (12.42) by ϕ
and use the integration by parts formula (12.35) in order to get

−
(
y0|Dwi

)
H
ϕ(t0) −

∫ T

t0

(
Dxn(t)|Dwi

)
H
ϕ ′(t) dt

+
∫ T

t0

〈
B(t)xn(t),wi

〉
V
ϕ(t) dt =

∫ T

t0

〈
q(t),wi

〉
V
ϕ(t) dt (12.52)

for all i = 1, . . . ,n. In order to be able to apply the weak limit, we shall
show that the integral terms on the left-hand side are linear continuous
functionals on the space L2(I,V ). Using the Hölder inequality and the
continuity of D, we get

∣∣∣∣
∫ T

t0

(
Dxn(t)|Dwi

)
H
ϕ ′(t) dt

∣∣∣∣≤
∫ T

t0
‖Dxn(t)‖H‖Dwi‖H|ϕ

′(t)| dt

≤C1‖wi‖V

(∫ T

t0
‖xn(t)‖2

V
dt
) 1

2
=C1‖wi‖V‖xn‖L2(I,V ) (12.53)

for all i = 1, . . . ,n. Since B(t) is bounded with a constant independent of t,
we find

∣∣∣∣
∫ T

t0

〈
B(t)xn(t),wi

〉
V
ϕ(t) dt

∣∣∣∣ ≤ C2

∫ T

t0
‖xn(t)‖V‖wi‖V|ϕ(t)| dt

≤ C3‖wi‖V‖xn‖L2(I,V ) (12.54)

for all i = 1, . . . ,n. Applying now the weak limit (12.49) to equation
(12.52), we obtain

−
(
y0|Dwi

)
H
ϕ(t0) −

∫ T

t0

(
Dx(t)|Dwi

)
H
ϕ ′(t) dt

+

∫ T

t0

〈
B(t)x(t),wi

〉
V
ϕ(t) dt =

∫ T

t0

〈
q(t),wi

〉
V
ϕ(t) dt (12.55)

for all i = 1, . . . ,n. By Assumption 12.10, there exists a sequence (vn) with

vn → v in V as n→ ∞,

where each vn is a finite linear combination of certain basis elements wi.
Regarding the continuity of D, the inequalities (12.53), (12.54), and q ∈
L2(I,V ∗), we obtain that equation (12.55) is also satisfied if we replace wi
by v, which means the key equation (12.50) is satisfied.

(III-2) Proof that x belongs to W 1
2,D(I,V,Y,H). Considering Assumption 12.14,

the Galerkin equations (12.39) with basis elements with wi for i ∈ I2 imply
that
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〈q(t)−B(t)xn(t),wi〉V = 〈A[Dxn(t)]′,wi〉V
= 〈[Dxn(t)]′,Dwi〉Y = 0 (12.56)

for all n = 1,2, . . . and almost all t ∈ (t0,T ). Recall that wi ∈ imQ = kerD
for i∈ I2. Due to (12.54), we may again apply the weak limit, which means

∫ T

t0
〈q(t),wi〉Vϕ(t) dt−

∫ T

t0
〈B(t)x(t),wi〉Vϕ(t) dt = 0

for all ϕ ∈C∞
0 (I). Applying the variational lemma, we get

〈q(t),wi〉V−〈B(t)x(t),wi〉V = 0

for almost all t ∈ I. For any v ∈ imQ, we find a sequence (vn) with

vn → v in V as n→ ∞

where each vn is a linear combination of the basis elements wi with i ∈ I2.
Consequently,

〈q(t),v〉V−〈B(t)x(t),v〉V = 0 (12.57)

for all v ∈ imQ. This allows us to define a functional ȳ(t) ∈ Y ∗ such that

〈ȳ(t),y〉Y = 〈q(t)−B(t)x(t),v〉V (12.58)

for almost all t ∈ I and for all y ∈ Y with y = Dv for some v ∈ V . Since
D is surjective, the functional is defined for all y ∈ Y . Furthermore, ȳ(t) is
well defined since

〈ȳ(t),Dv1〉Y = 〈ȳ(t),Dv2〉Y
for any v1, v2 ∈ V with Dv1 = Dv2. This is a conclusion from the fact
that v1− v2 belongs to imQ and (12.57). We shall show that ȳ belongs to
L2(I,Y ∗). We have

‖ȳ(t)‖Y∗ = sup
‖z‖Y≤1

∣∣〈ȳ(t),y〉Y
∣∣ = sup

‖Dv‖Y≤1, v∈kerQ

∣∣〈q(t)−B(t)x(t),v〉V
∣∣

≤ sup
‖Dv‖Y≤1, v∈kerQ

‖q(t)−B(t)x(t)‖V∗‖v‖V.

Note that D is bijective from kerQ to Y . Using the open mapping theorem
and recalling that D is also linear and continuous, we find a constant C≥ 0
such that

‖v‖V ≤C‖Dv‖Y for all v ∈ kerQ.

This implies
‖ȳ(t)‖Y∗ ≤C‖q(t)−B(t)x(t)‖V∗ (12.59)

for almost all t ∈ I. Since q ∈ L2(I,V ∗), x ∈ L2(I,V ), and B(t) is uni-
formly bounded, we obtain z̄ ∈ L2(I,Y ∗). Using the key equation (12.50)
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and (12.58), we arrive at

−
∫ T

t0

(
Dx(t)|Dv

)
H
ϕ ′(t) =

∫ T

t0

〈
ȳ(t),Dv

〉
V
ϕ(t) dt

for all v ∈V and ϕ ∈C∞
0 (I). Since D is surjective, we have

−
∫ T

t0
〈Dx(t),y〉Yϕ

′(t) =
∫ T

t0
〈ȳ(t),y〉Yϕ(t) dt

for all y ∈ Y . This is equivalent to
〈
−
∫ T

t0
Dx(t)ϕ ′(t)−

∫ T

t0
ȳ(t)ϕ(t) dt,y

〉

Y

= 0 ∀y ∈ Y

since ϕ ′Dx and ϕz belong to L2(I,Y ∗) for all ϕ ∈C∞
0 (I). But this means

that

−
∫ T

t0
Dx(t)ϕ ′(t) =

∫ T

t0
ȳ(t)ϕ(t) dt,

and, finally, Dx has the generalized derivative ȳ ∈ L2(I,Y ∗). Hence, x be-
longs to W 1

2,D(I,V,Y,H).
(III-3) Proof that x fulfills (12.36). Since ȳ = (Dx)′, we have, by (12.58),

〈(Dx)′(t),Dv〉Y = 〈q(t)−B(t)x(t),v〉V (12.60)

for all v ∈V and almost all t ∈ I. By Assumption 12.5, we get

〈A(Dx)′(t),v〉V = 〈q(t)−B(t)x(t),v〉V.

But this means that (12.36) is satisfied.
(III-4) Proof that x fulfills (12.37). Since x ∈W 1

2,D(I,V,Y,H), we can apply the
integration by parts formula (12.35). This yields

(Dx(T ),ϕ(T )Dv)H− (Dx(t0),ϕ(t0)Dv)H =
∫ T

t0
〈(Dx)′(t),ϕ(t)Dv〉Y +(Dx(t)|ϕ ′(t)Dv)H dt

for all ϕ ∈C1I and v ∈ V . In particular, if ϕ(t0) = 1 and ϕ(T ) = 0, then
equation (12.50) along with (12.60) yields

(Dx(t0)− y0|Dv)H = 0 for all v ∈V.

Since D is surjective and Y is dense in H, we get Dx(t0) = y0.
��
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12.3.4 Continuous dependence on the data

Lemma 12.17. [177] Let W, Y be Banach spaces. Let Y ⊆ H ⊆ Y ∗ be an evolution
triple. Let D : W → Y be linear, continuous and bijective. Define G : W →W ∗ as
follows:

〈Gw̃,w〉W := (Dw̃|Dw)H for all w̃, w ∈W.

Then G is linear and continuous and cl(imG) =W ∗.

Proof. The linearity of G is clear and

〈Gw̃,w〉W ≤ ‖Dw̃‖H‖Dw‖H ≤ c̄‖w̃‖W‖w‖W

because the embedding Y ⊆ H is continuous and D is continuous. We have to show
that for all w̄ ∈W ∗ there is a sequence (w̄n)⊆ imG such that

‖w̄− w̄n‖W∗ → 0 as n→ ∞.

Since D is bijective the adjoint operator D∗ : Y ∗ →W ∗ is linear, continuous and
bijective. Let w̄ ∈W ∗ be arbitrary then there exists a ȳ ∈ Y ∗ such that D∗ȳ = w̄.
Since H∗ ⊆ Y ∗ dense there is a sequence (ūn)⊆ H∗ such that

∀ε > 0∃N ∈ N∀n≥ N : ‖ȳ− ūn‖Y∗ ≤
ε
2
.

By the Riesz representation theorem there is a unique un ∈ H such that 〈ūn,u〉H =
(un|u)H for all u ∈ H. Since also Y ⊆ H dense there exists yn ∈ Y such that

‖yn−un‖H ≤
ε
2c

where c > 0 is the constant from the continuous embedding Y ⊆ H. We define

〈ȳn,y〉Y := (yn|y)H for all y ∈ Y.

Clearly ȳn ∈ Y ∗ because the embedding Y ⊆ H is continuous and we have for y ∈ Y

〈ȳ− ȳn,y〉Y = 〈ȳ− ūn,y〉Y + 〈ūn,y〉Y− (yn|y)H
= 〈ȳ− ūn,y〉Y +(un− yn|y)H
≤ ‖ȳ− ūn‖Y∗‖y‖Y + c‖un− yn‖H‖y‖Y ≤ ε‖y‖Y.

We conclude that ‖ȳ− ȳn‖Y∗ → 0 as n→ ∞. Since D is bijective there is a unique
wn ∈W such that Dwn = yn. We define

〈w̄n,w〉W := 〈ȳn,Dw〉Y for all w ∈W.

Clearly w̄n ∈W ∗ and also w̄n ∈ imG because

〈w̄n,w〉W = 〈ȳn,Dw〉Y = (Dwn|Dw)H = 〈Gwn,w〉W.
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Finally we see

〈w̄− w̄n,w〉W = 〈ȳ,Dw〉Y−〈ȳn,Dw〉Y
≤ c̃‖ȳ− ȳn‖Y∗‖w‖W

for a c̃ > 0 because D is continuous. This completes the proof.

Theorem 12.18. [177] Let the Assumptions 12.5, 12.10 and 12.14 be satisfied.
Then, the ADAE (12.36)–(12.37) has at most index 1, which means that the map
G1(t) : V →V ∗ defined as

〈G1(t)x,v〉V := 〈A(Dx),v〉V + 〈B(t)Qx,v〉V for all v ∈V

is injective and densely solvable for all x ∈V . The system has index 0 if and only if
D is injective. Here, Dx is considered as the unique element of Y ∗ satisfying

〈Dx,y〉Y = (Dx|y)H ∀y ∈ Y.

Proof. Step 1. Injectivity of G1(t). Let x belong to the nullspace of G1(t). This
implies

〈A(Dx),v〉V + 〈B(t)Qx,v〉V = 0 for all v ∈V.

Due to Assumption 12.5 we have

(Dx|Dv)H + 〈B(t)Qx,v〉V = 0 for all v ∈V. (12.61)

In particular, for v = Qx, we get

〈B(t)Qx,Qx〉V = 0.

Since B(t) is strictly monotone, we have Qx = 0. This yields Dx = 0 if we use v := x
in (12.61), i.e. x ∈ imQ. Consequently, x = Qx = 0.

Step 2. Fix t ∈ [t0,T ]. We have to show that cl(imG1(t)) = V ∗, i.e. that for all
v̄ ∈V ∗ there is a sequence (v̄n)⊆ imG1(t) such that

‖v̄− v̄n‖V ∗ → 0 as n→ ∞.

Let v̄ ∈V ∗. U := imQ is a closed subspace of V because Q is a projection operator.
Hence U is a reflexive Banach space with the norm ‖ · ‖V. We define the operator
B̃(t) : U →U∗ as follows

〈B̃(t)ũ,u〉U := 〈B(t)Qũ,u〉V for all ũ,u ∈U.

Surely B̃(t) is well defined. It is coercive and bounded because B(t) is and the norm
on U is ‖ · ‖V. Define furthermore

〈ū,u〉U := 〈v̄,Qu〉V
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and clearly ū ∈U∗ because v̄ ∈V ∗. With the Browder–Minty theorem, cf. [218], we
can uniquely solve the equation

〈B̃(t)ũ,u〉U = 〈v̄,Qu〉V (12.62)

on U with ũ ∈U . Let P := I−Q be the complementary projection operator of Q
and define W := imP. W is a Banach space with the norm ‖ · ‖V. Furthermore we
introduce

〈w̄,w〉W := 〈v̄−B(t)Qũ,Pw〉V for all w ∈W. (12.63)

Clearly w̄ ∈W ∗ because v̄ ∈V ∗ and B(t) is bounded. The map

D|W : W → Y

is bijective because D is surjective and kerD = imQ = kerP. Setting G : W →W ∗

as
〈Gw̃,w〉W := (D|W w̃|D|W w)H = (Dw̃|Dw)H for all w̃,w ∈W

we can apply Lemma 12.17. So there is a sequence (w̄n)⊆ imG such that

‖w̄− w̄n‖W∗ → 0 as n→ ∞.

w̄n ∈ imG means that there exists a w̃n ∈W such that

(Dw̃n|Dw)H = 〈Gw̃n,w〉W = 〈w̄n,w〉W for all w ∈W. (12.64)

We define now ṽn := Pw̃n +Qũ ∈V and set

〈v̄n,v〉V := 〈G1(t)ṽn,v〉V for all v ∈V.

By definition v̄n ∈ imG1(t) and we observe for all v ∈V :

〈v̄− v̄n,v〉V = 〈v̄,v〉V−〈G1(t)ṽn,v〉V
= 〈v̄,v〉V− (Dw̃n|Dv)H−〈B(t)Qũ,v〉V
= 〈v̄,Pv〉V−〈B(t)Qũ,Pv〉V− (Dw̃n|Dv)H + 〈v̄−〈B(t)Qũ,Qv〉V
= 〈w̄− w̄n,Pv〉W
≤ c̃‖w̄− w̄n‖W∗‖v‖V .

Here we used (12.62), (12.63) and (12.64). So we obtain ‖v̄− v̄n‖V ∗ → 0 as n→ ∞.
Step 3. If D is injective, then Q is the zero mapping and G0(t) = G from

Lemma 12.17. Hence G0(t) is then densely solvable and G0(t) is injective because
of step 1. Conversely, injectivity of G0(t) implies injectivity of D. Consequently,
(12.36)–(12.37) has index 0 if and only if D is injective. ��

From the theory of DAEs we know that index-1 systems have solutions which de-
pend continuously on the data. The following theorem shows that this is also the
case for the solution of the index-1 ADAE (12.36)–(12.37).
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Theorem 12.19. Let the Assumptions 12.5, 12.10 and 12.14 be satisfied. Further-
more, let x ∈W 1

2,D(I,V,Y,H) be the unique solution of the ADAE (12.36)–(12.37).
Then, the map

(y0,q) %→ x

is linear and continuous from Y ×L2(I,V ∗) to W 1
2,D(I,V,Y,H), i.e., there is a con-

stant C > 0 such that

‖x‖W 1
2,D
≤C(‖y0‖H +‖q‖L2(I,V ∗)),

for all y0 ∈ H and q ∈ L2(I,V ∗).

Proof. In the proof of Theorem 12.16 we see that

xn ⇀ x in L2(I,V ) as n→ ∞.

From the Banach–Steinhaus theorem it follows that

‖x‖L2(I,V ) ≤ lim
n→∞
‖xn‖L2(I,V ).

Using the a priori estimate (12.48), the continuity of D and Assumption 12.10, we
find a constant C1 ≥ 0 such that

‖x‖L2(I,V ) ≤C1
(
‖y0‖H +‖q‖L2(I,V∗)

)
. (12.65)

Using inequality (12.59), we obtain

‖(Dx)′‖L2(I,Y ∗) ≤C2
(
‖x‖L2(I,V ) +‖q‖L2(I,V ∗)

)

if we recall that ȳ = (Dx)′ in the proof of Theorem 12.16. Together with (12.65),
this implies the assertion with the constant C =C1C2 +C1 +C2 > 0. ��

12.3.5 Strong convergence of the Galerkin method

Theorem 12.20. Let the Assumptions 12.5, 12.10 and 12.14 be satisfied. Then, for
all n = 1,2, . . ., the Galerkin equations (12.44)–(12.45) have exactly one solution

xn ∈W 1
2,D(I,V,Y,H).

The sequence (xn) converges as n→ ∞ to the solution x of (12.36)–(12.37) in the
following sense:

xn → x in L2(I,V ) and max
t0≤t≤T

‖Dxn(t)−Dx(t)‖H → 0.
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Proof. In the proof of Theorem 12.16, the Galerkin equations (12.44)–(12.45) are
shown to have a unique solution xn ∈W 1

2,D(I,V,Y,H). Furthermore, it was shown
that the unique solution x of (12.36)–(12.37) belongs to W 1

2,D(I,V,Y,H).
Step 1. We shall show that max

t0≤t≤T
‖Dxn(t)−Dx(t)‖H → 0. We refer here to [175]

where this is proven in a more general setting.
Step 2. Strong convergence of (xn) in L2(I,V ). From Theorem 12.16 we know

that
xn ⇀ x in L2(I,V ) as n→ ∞.

Since B is linear and uniformly continuous, we get

Bxn ⇀ Bx in L2(I,V ∗) as n→ ∞

and, hence, ∫ T

t0
〈Bxn,x〉V →

∫ T

t0
〈Bx,x〉V as n→ ∞. (12.66)

Furthermore, the assumption q ∈ L2(I,V ∗) yields

∫ T

t0
〈q,xn〉V →

∫ T

t0
〈q,x〉V as n→ ∞. (12.67)

From the integration by parts formula (12.35), we have

1
2‖(Dx(T )−Dxn(T )‖2

H
− 1

2‖(Dx(t0)−Dxn(t0)‖2
H
=

∫ T

t0
〈(Dx)′(t)− (Dxn)

′(t),Dx(t)−Dxn(t)〉Y dt

and
(
Dxn(T )|Dx(T )

)
H
−
(
Dxn(t0)|Dx(t0)

)
H

=
∫ T

t0
〈(Dxn)

′(t),Dx(t)〉Y + 〈(Dx)′(t),Dxn(t)〉Y dt.

Using again (12.58) for the generalized derivative (Dx)′ = ȳ, we obtain

1
2‖(Dx(T )−Dxn(T )‖2

H
− 1

2‖(Dx(t0)−Dxn(t0)‖2
H
=

∫ T

t0
〈q(t)−B(t)x(t),x(t)− xn(t)〉V−〈(Dxn)

′(t),Dx(t)−Dxn(t)〉Y dt (12.68)

as well as
(
Dxn(T )|Dx(T )

)
H
−
(
Dxn(t0)|Dx(t0)

)
H

=
∫ T

t0
〈(Dxn)

′(t),Dx(t)〉Y + 〈(q(t)−B(t)x(t),xn(t)〉V dt. (12.69)
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From the Galerkin equations (12.41) we get

〈(Dxn)
′(t),Dxn(t)〉Y + 〈B(t)xn(t),xn(t)〉V = 〈q(t),xn(t)〉V. (12.70)

The strong monotonicity of B(t) implies

C‖x− xn‖2
L2(I,V ) ≤

∫ T

t0
〈B(t)x(t)−B(t)xn(t),x(t)− xn(t)〉Vdt,

where C is a positive constant. Applying (12.68), we obtain

C‖x− xn‖2
L2(I,V ) ≤

∫ T

t0
〈q(t)−B(t)xn(t),x(t)− xn(t)〉Vdt

−
∫ T

t0
〈(Dxn)

′(t),Dx(t)−Dxn(t)〉Ydt + 1
2‖Dx(t0)−Dxn(t0)‖2

H .

Regarding (12.70), this yields

C‖x− xn‖2
L2(I,V ) ≤

∫ T

t0
〈q(t)−B(t)xn(t),x(t)− xn(t)〉Vdt

−
∫ T

t0
〈(Dxn)

′(t),Dx(t)〉Ydt + 1
2‖Dx(t0)−Dxn(t0)‖2

H .

Using (12.69), we get

C‖x− xn‖2
L2(I,V ) ≤

∫ T

t0
〈q(t)−B(t)xn(t),x(t)〉Vdt

+

∫ T

t0
〈q(t)−B(t)x(t),xn(t)〉Vdt− (Dxn(T ),Dx(T ))H

+(Dxn(t0),Dx(t0))H + 1
2‖Dx(t0)−Dxn(t0)‖2

H . (12.71)

If we apply (12.66) and (12.67), we see that the right-hand side of inequality (12.71)
converges to

2
∫ T

t0
〈q(t)−B(t)x(t),x(t)〉Vdt− (Dx(T ),Dx(T ))H +(Dx(t0),Dx(t0))H (12.72)

as n→ ∞. Note that we have already proved in step 1 that

‖Dx(t0)−Dxn(t0)‖H → 0 as n→ ∞.

Applying once more the integration by parts formula (12.35) and regarding (12.58)
for the generalized derivative (Dx)′ = ȳ, we get
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(Dx(T ),Dx(T ))H − (Dx(t0),Dx(t0))H =

2
∫ T

t0
〈(Dx)′(t),Dx(t)〉Ydt = 2

∫ T

t0
〈q(t)−B(t)x(t),x(t)〉Vdt. (12.73)

Summarizing (12.71)–(12.73), we obtain

‖x− xn‖2
L2(I,V )→ 0 as n→ ∞

which implies the assertion. ��

12.4 Notes and references

(1) In [176], the results for linear abstract differential systems

A(Dx)′(t)+B(t)x(t) = q(t)

satisfying Assumption 12.5 presented in Section 12.3 have been extended to abstract
differential-algebraic equations with

A = (T D)∗

with T :Y →Y being linear, continuous and bijective. The unique extension operator
TH : H→H, TH |V = T is self-adjoint on H and there is a linear, continuous operator
S : H → H with TH = S∗S.

(2) Approaches to extend the perturbation index concept to partial differential al-
gebraic equations have been presented in [47], [149] and [190]. The various exam-
ples discussed there show that one has to characterize the solution behavior not only
with respect to time-varying perturbations but also with respect to space-varying
perturbations.

(3) In [74], systems of the form (12.1) with linear operators have been studied.
More precisely, initial value systems of the form

A
d
dt

Dx+Bx = Ag(t) for t ∈ (0,T ], (12.74)

Dx(0) = v0 ∈ imD, (12.75)

with X = Y = Z and A = I are treated by a semigroup approach. I denotes the
identity operator. The system (12.74)–(12.75) is reduced to multivalued differential
equations of the form

dv
dt
∈ Av+ f (t) for t ∈ (0,T ], (12.76)

v(0) = v0, (12.77)
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where A :=−BD−1. Here, the operator D−1 is defined as the (multivalued) function
satisfying

D−1v = {x ∈ GD : Dx = v} for all v ∈ imD

with GD being the definition domain of D. The existence and uniqueness of classical
solutions of (12.74)–(12.75) satisfying

Dx ∈C1([0,T ];X) and Bx ∈C([0,T ];X)

is shown provided that g ∈C1([0,T ];X), Bx(0) ∈ imA,

Re(−Bx|Dx)X ≤ β‖Dx‖2
X , for all x ∈ GB ⊆ GD (12.78)

as well as the operator

λ0AD+B : GB → X is bijective for some λ0 > β . (12.79)

A similar result is obtained for systems of the form (12.74)–(12.75) with A = D∗ or
D = I.

This approach via multivalued differential equations concentrates on the dynamic
part of the system. It is limited to systems with special constraints. So, for instance,
condition (12.78) implies

Re(Bw,Dv) = 0 for all w ∈ kerD∩GB, v ∈ GD.

Together with condition (12.79), we obtain, for the finite-dimensional case, a DAE
of index 1 with the constraint

(BQ)∗Bx = (BQ)∗g(t)

where Q denotes a projector onto kerD. This is obvious since (BQ)∗D = 0 if we use
the Euclidean norm.

(4) The semigroup approach has been extended to linear systems with time-
dependent operators in [74] supposing that A = I or D = I. There, it is assumed
that the operator D(t)(λD(t) + B(t))−1 or (λD(t) + B(t))−1D(t), respectively, is
bounded in a certain way for λ from a specific region in C. However, it is usually
quite difficult to verify this condition for coupled systems in practice. Additionally,
having DAEs in mind, we think that we should not concentrate on the pencil op-
erators λD(t)+B(t) in the nonstationary case. Even in the finite-dimensional case,
it is not reasonable to demand nonsingularity of λD(t) + B(t) for existence and
uniqueness of solutions (see, e.g., [25, 96], also Example 2.4). Regarding the trivial
example

([
− t − t2

1 t

]
x
)′

+

[
1 0
0 1

]
x = f (t),
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we see that λD(t)+B(t) is nonsingular for all λ but a solution exists only if f1(t)+
t f2(t) = 0. On the other hand, considering the example

([
t 0
1 0

]
x
)′

+

[
0 t
0 1

]
x =
[
− t
0

]
,

the matrix pencil λD(t) +B(t) is singular of all λ but there is a unique solution
satisfying

x1(t) =−t, x2(t) = 1.

Hence, investigating time-dependent differential-algebraic equations, one has turned
away from matrix pencils.

(5) Using an operational method developed in [184], more general linear systems
of the form (12.74)–(12.75) with either A = I or D = I are treated in [74]. But it is
restricted to systems with constant injective operators B having a bounded inverse.

(6) Nonlinear abstract systems of the form

d
dt
(Dx)+Bx = F(t,Kx), t ∈ [0,T ]

where D, B, K are linear closed operators from a complex Banach space X into a
Banach space Y , have been investigated in [71, 72, 13, 73]. The theory developed
there is based mainly on properties of the operator

T := D(λD+B)−1,

λ being a regular point of the operator pencil λD+B. Most results are presented
for problems with the resolvent operator (T −ξ I)−1 having a simple pole at ξ = 0.
In the finite-dimensional case, such problems are DAEs of index 1. In [73] also
problems are investigated where (T − ξ I)−1 has a pole of multiple order at ξ = 0.
Considering again the finite-dimensional case, these are problems of higher index.
Existence and uniqueness of solutions of such problems are obtained by a study of
the transformed problem

d
dt
(T v)+ v = f (t,Nv), t ∈ [0,T ]

with N =K(λD+B)−1, f (t,w) = e−λ tF(t,eλ tw) and

v(t) = e−λ t(λD+B)x(t).

Besides certain smoothness conditions and consistent initial conditions, the nonlin-
ear function f has to fulfill a structural condition of the form

πk f (t,Nv) = πk f (t,N
m−1

∑
j=k

Π jv), k = m−1, . . . ,1
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for certain projectors Π j satisfying Πkv = Πk(Pv)ϕk if m is the order of the pole
of (T − ξ I)−1 in ξ = 0 and kerT m is spanned by {ϕk = T m−1−kϕn}m−1

k=0 . Although
the assumptions are shown to be satisfied for a sample circuit with an LI-cutset in
[73], we do not know the network topological conditions for general networks that
guarantee all assumptions. In particular, the determination of the order of the pole
of the operator (T −ξ I)−1 in ξ = 0 often becomes a problem for coupled systems.

Nevertheless, the order of the pole plays a significant role for the characterization
of the systems. Indeed, in the linear, finite-dimensional case, the pole order equals
the index of the DAE.



Appendix A
Linear algebra – basics

In this appendix we collect and complete well-known facts concerning projectors
and subspaces of Rm (Section A.1), and generalized inverses (Section A.2). Sec-
tion A.3 provides material on matrix and projector valued functions with proofs,
since these proofs are not easily available. In Section A.4 we introduce Ck-subspaces
of Rm via Ck-projector functions. We show Ck-subspaces to be those which have lo-
cal Ck bases.

A.1 Projectors and subspaces

We collect some basic and useful properties of projectors and subspaces.

Definition A.1. (1) A linear mapping Q ∈ L(Rm) is called a projector if Q2 = Q.
(2) A projector Q ∈ L(Rm) is called a projector onto S⊆ R

m if imQ = S.
(3) A projector Q ∈ L(Rm) is called a projector along S⊆ R

m if kerQ = S.
(4) A projector Q ∈ L(Rm) is called an orthogonal projector if Q = Q∗.

Example A.2. The m-dimensional matrix Q =

⎡
⎢⎢⎢⎣

1 0 . . . 0
∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0

⎤
⎥⎥⎥⎦ with arbitrary entries for

∗ becomes a projector onto the one-dimensional subspace spanned by the first col-

umn of Q along the (m−1)-dimensional subspace
{

v : v =

⎡
⎢⎢⎢⎣

v1
v2
...

vm

⎤
⎥⎥⎥⎦ ,v1 = 0

}
. ��

Lemma A.3. Let P and P̄ be projectors, and Q := I−P, Q̄ := I− P̄ the complemen-
tary projectors. Then the following properties hold:

R. Lamour et al., Differential-Algebraic Equations: A Projector Based Analysis,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-642-27555-5,
© Springer-Verlag Berlin Heidelberg 2013
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(1) z ∈ imQ ⇔ z = Qz.
(2) If Q and Q̄ project onto the same subspace S, then Q̄ = QQ̄ and Q = Q̄Q are

valid.
(3) If P and P̄ project along the same subspace S, then P̄ = P̄P and P = PP̄ are

true.
(4) Q projects onto S iff P := I−Q projects along S.
(5) Each matrix of the form I+PZQ, with arbitrary matrix Z, is nonsingular and

its inverse is I−PZQ.
(6) Each projector P is diagonalizable. Its eigenvalues are 0 and 1. The multiplic-

ity of the eigenvalue 1 is r = rankP.

Proof. (1) z = Qy → Qz = Q2y = Qy = z.
(2) Q̄z ∈ im Q̄ = S = imQ, also Q̄z = QQ̄z ∀z.
(3) P̄P = (I− Q̄)(I−Q) = I− Q̄−Q+ Q̄Q = I− Q̄ = P̄.
(4) P2 = P ⇔ (I − Q)2 = I − Q ⇔ −Q + Q2 = 0 ⇔ Q2 = Q and

z ∈ kerP ⇔ Pz = 0⇔ z = Qz ⇔ z ∈ imQ.
(5) Multiplying (I+PZQ)z= 0 by Q⇒Qz= 0. Now with (I+PZQ)z= 0 follows

z = 0.
(I +PZQ)(I−PZQ) = I−PZQ+PZQ = I.

(6) Let P̄1 be a matrix of the r linearly independent columns of P and Q̄2 a matrix
of the m− r linearly independent columns of I − P. Then by construction

P
[
P̄1 Q̄2

]
=
[
P̄1 Q̄2

][I
0

]
. Because of the nonsingularity of

[
P̄1 Q̄2

]
we have

the structure P =
[
P̄1 Q̄2

][I
0

][
P̄1 Q̄2

]−1. The columns of P̄1, respectively

Q̄2 are the eigenvectors to the eigenvalues 1, respectively 0. ��

Lemma A.4. Let A ∈ L(Rn,Rk), D ∈ L(Rm,Rn) be given, and r := rank(AD). Then
the following two implications are valid:

(1) kerA∩ imD = 0, im(AD) = imA⇒ kerA⊕ imD = R
n.

(2) kerA⊕ imD = R
n ⇒

• kerA∩ imD = {0},
• imAD = imA,
• kerAD = kerD,
• rankA = rankD = r.

Proof. (1) Because of im(AD) = imA, the matrix A has rankr and kerA has di-
mension n− r. Moreover, rankD ≥ r must be true. The direct sum kerA⊕ imD is
well-defined, and it has dimension n− r+ rankD≤ n. This means that D has rankr.
We are done with (1).

(2) The first relation is an inherent property of the direct sum. Let R ∈ L(Rn) de-
note the projector onto imD along kerA. By means of suitable generalized inverses
D− and A− of D and A we may write (Appendix A.2) R = A−A = DD−, D = RD,
A = AR. This leads to
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imAD⊆ imA = imADD− ⊆ imAD,

kerAD⊆ kerA−AD = kerD⊆ kerAD.

The remaining rank property now follows from (1). ��

Lemma A.5. [94, Ch. 12.4.2]
Given matrices G, Π , N ,W of suitable sizes such that

kerG = imN ,

kerΠN = imW ,

then it holds that

kerG∩kerΠ = kerNW .

Proof. For x ∈ kerG∩kerΠ we find x =N y,Πx = 0, further ΠN y = 0, and hence
y =Wz, x =NWz ∈ imNW .
Conversely, each x =NWz obviously belongs to kerG, and Πx =ΠNWz = 0. ��

Lemma A.6. N,M ⊆ R
m subspaces⇒ (N +M)⊥ = N⊥ ∩M⊥.

Proof.

(N +M)⊥ = {z ∈ R
m : ∀w ∈ N +M : 〈z,w〉= 0}

= {z ∈ R
m : ∀wN ∈ N,∀wM ∈M : 〈z,wN +wM〉= 0}

= {z ∈ R
m : ∀wN ∈ N,∀wM ∈M : 〈z,wN〉= 0, 〈z,wM〉= 0}

= N⊥ ∩M⊥.

��

Lemma A.7. (1) Given two subspaces N,X ⊆ R
m, N ∩ X = {0}, then

dimN +dimX ≤ m, and there is a projector Q ∈ L(Rm) such that imQ = N,
kerQ⊇ X.

(2) Given two subspaces S,N ⊆ R
m. If the decomposition

R
m = S⊕N

holds true, i.e., S and N are transversal , then there is a uniquely determined
projector P ∈ L(Rm) such that imP = S, kerP = N.

(3) An orthoprojector P projects onto S := imP along S⊥ = kerP.

(4) Given the subspaces K,N ⊆ R
m,

�
N := N ∩K, if a further subspace X ⊆ R

m

is a complement of
�
N in K, which means K =

�
N⊕X, then there is a projector

Q ∈ L(Rm) onto N such that

X ⊆ kerQ. (A.1)
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Let dK ,dN ,u denote the dimensions of the subspaces K,N,
�
N, respectively.

Then

dK +dN ≤ m+u (A.2)

holds.
(5) If the subspace K in (4) is the nullspace of a certain projector Π ∈ L(Rm),

that is K = kerΠ = im(I−Π), then

ΠQ(I−Π) = 0 (A.3)

becomes true.
(6) Given the two projectors Π ,Q ∈ L(Rm), further P := I − Q, N := imQ,

K := kerΠ , then, supposing (A.3) is valid, the products ΠP, ΠQ, PΠP,
P(I−Π), Q(I−Π) are projectors, too. The relation

kerΠP = kerPΠP = N +K (A.4)

holds true, and the subspace X := imP(I − Π) is the complement of
�
N := N ∩K in K, such that K =

�
N⊕X.

Moreover, the decomposition

R
m = (N +K)⊕ imPΠP = N⊕X⊕ imPΠP︸ ︷︷ ︸

imP

is valid.
(7) If the projectors Π ,Q in (6) are such that Π ∗ = Π , (ΠP)∗ = ΠP,

(P(I−Π))∗ = P(I−Π) and QΠP = 0, then it follows that

X = K∩
�
N⊥, imP = X⊕ (N +K)⊥.

Proof. (1) Let x1, . . . ,xr ∈ R
m and n1, . . . ,nt ∈ R

m be bases of X and N. Because of
X ∩N = {0} the matrix

F := [x1 . . .xrn1 . . .nt ]

has full column rank and r+ t = dimX +dimN ≤ m. The matrix F∗F is invertible,
and

Q := F
[

0
I

]
(F∗F)−1F∗

r t

is a projector we looked for. Namely,

Q2 = F
[

0
I

]
(F∗F)−1F∗F

[
0

I

]
(F∗F)−1F∗ = Q, imQ = imF

[
0

I

]
= N,
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and z ∈ X implies that it has to have the structure z = F
[
α
0

]
}r
}t , which leads to

Qz = 0.
(2) For transversal subspaces S and N we apply Assertion (1) with t = m− r, i.e., F
is square. We have to show that P is unique. Supposing that there are two projectors
P, P̄ such that kerP = ker P̄ = N, imP = im P̄ = S, we immediately have P = (P̄+
Q̄)P = P̄P+ Q̄P = P̄P = P̄.
(3) Let S := imP and N := kerP. We choose a v ∈ N and y ∈ S. Lemma A.3 (1)
implies y = Py, therefore 〈v,y〉 = 〈v,Py〉 = 〈P∗v,y〉. With the symmetry of P we
obtain 〈P∗v,y〉= 〈Pv,y〉= 0, i.e., N = S⊥.
(4) X has dimension dK−u. Since the sum space K+N = X⊕N ⊆R

m may have at
most dimension m, it results that dim(K +N) = dimX +dimN = dK−u+dN ≤ m,
and assertion (1) provides Q.
(5) Take an arbitrary z∈ im(I−Π) = K and decompose z = z�

N
+zX . It follows that

ΠQz =ΠQz�
N
+Π QzX︸︷︷︸

=0

=Πz�
N
= 0, and hence (A.3) is true.

(6) (A.3) means ΠQ =ΠQΠ and hence

ΠQΠQ =ΠQQ =ΠQ,

ΠPΠP =Π(I−Q)ΠP =ΠP−Π QΠP︸ ︷︷ ︸
=0

=ΠP,

(PΠP)2 = PΠPΠP = PΠP,

(P(I−Π))2 = P(I−Π)(I−Q)(I−Π) = P(I−Π)−P(I−Π)Q(I−Π)

= P(I−Π)+PΠQ(I−Π)︸ ︷︷ ︸
=0

,

(Q(I−Π))2 = Q(I−Π)−QΠQ(I−Π) = Q(I−Π).

The representation I−Π = Q(I−Π)+P(I−Π) corresponds to the decomposition

K =
�
N⊕X .

Next we verify (A.4). The inclusion kerΠP⊆ kerPΠP is trivial. On the other hand,
PΠPz = 0 implies ΠPΠPz = 0 and hence ΠPz = 0, and it follows that kerΠP =
kerPΠP. Now it is evident that K +N ⊆ kerΠP. Finally, ΠPz = 0 implies Pz ∈
K,z = Qz+Pz ∈ N +K.
(7) From QΠP = 0 and the symmetry of ΠP we know that PΠP =ΠP, imPΠP =

(N+K)⊥, imP = X⊕(N+K)⊥. Next using Lemma A.6, compute
�
N⊥ = N⊥+K⊥,

and further

K∩
�
N⊥ = K∩ (N⊥+K⊥)

= {z ∈ R
m : Πz = 0,z = zN⊥ + zK⊥ ,zN⊥ ∈ N⊥,zK⊥ ∈ K⊥}

= {z ∈ R
m : z = (I−Π)zN⊥ ,zN⊥ ∈ N⊥}= (I−Π)N⊥

= im(I−Π)P∗ = im(P(I−Π))∗ = imP(I−Π) = X .

��
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Lemma A.8. Let D∈ L(Rm,Rn) be given, and let M ⊆R
m be a subspace. Let D+ ∈

L(Rn,Rm) be the Moore–Penrose inverse of D. Then,

(1) kerD∗ = imD⊥, imD = kerD∗⊥, kerD = kerD+∗, imD = imD+∗.
(2) kerD⊆M⇒ (DM)⊥ = (imD)⊥⊕D+∗M⊥.
(3) kerD⊆M⇒M⊥ = D∗(DM)⊥.

Proof. (1) The first two identities are shown in [15] (Theorem 1, p.12).
If z ∈ kerD = im I−D+D with Lemma A.3(1) it is valid that z = (I−D+D)z or
D+Dz = 0. With (A.11) it holds that 0 = D+Dz = (D+D)∗z = D∗D+∗z⇔D+∗z = 0
because of (A.8) for D∗ and we have that z ∈ kerD+∗. We prove imD = imD+∗

analogously.
(2) Let T ∈ L(Rm) be the orthoprojector onto M, i.e., imT = M, kerT = M⊥, T ∗ =
T .
⇒ DM = imDT ,

(DM)⊥ = (imDT )⊥ = ker(DT )∗ = kerT D∗ = {z ∈ R
n : D∗z ∈M⊥}

= kerD∗︸ ︷︷ ︸
=imD⊥

⊕{v ∈ imD : D∗v ∈M⊥}.

It remains to show that

{v ∈ imD : D∗v ∈M⊥}= D+∗M⊥.

From v ∈ imD = imDD+ we get with Lemma A.3(1) v = DD+v = (DD+)∗v =
D+∗D∗v. Because of D∗v ∈M⊥ it holds that v ∈ D+∗M⊥. Conversely with Lemma
A.3(4), u ∈ D+∗M⊥ = imD+∗(I − T ) implies u ∈ imD+∗ = imD, and ∃w : u =
D+∗(I−T )w, D∗u = D∗D+∗(I−T )w = D+D(I−T )w. Since im(I−T ) = M⊥ ⊆
kerD⊥ = kerD+D⊥ = im(D+D)∗ = imD+D, it holds that D+D(I− T ) = I− T ,
hence D∗u = (I−T )w ∈M⊥.
(3) This is a consequence of (2), because of

D∗(DM)⊥ = D∗[(imD)⊥⊕D+∗M⊥] = D∗D+∗M⊥ = D+DM⊥ = M⊥.

��

Lemma A.9. [96, Appendix A, Theorem 13]
Let A,B ∈ L(Rm), rankA = r < m, N := kerA, and S := {z ∈ R

m : Bz ∈ imA}. The
following statements are equivalent:

(1) Multiplication by a nonsingular E ∈ L(Rm) such that

EA =

[
Ā1
0

]
, EB =

[
B̄1
B̄2

]
, rank Ā1 = r,

yields a nonsingular
[

Ā1
B̄2

]
.
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(2) N∩S = {0}.
(3) A+BQ is nonsingular for each projector Q onto N.
(4) N⊕S = R

m.
(5) The pair {A,B} is regular with Kronecker index 1.
(6) The pair {A,B+AW} is regular with Kronecker index 1 for each arbitrary

W ∈ L(Rm).

Proof. (1)⇒ (2): With N̄ := ker Ā1 = kerEA = kerA = N,

S̄ := ker B̄2 = {z ∈ R
m : EBz ∈ imEB}= S,

we have

0 = ker
[

Ā1
B̄2

]
= N̄∩ S̄ = N∩S.

(2)⇒ (3): (A+BQ)z = 0 implies BQz = −Az, that is Qz ∈ N ∩ S, thus Qz = 0,
Az = 0, therefore z = Qz = 0.

(3)⇒ (4): Fix any projector Q ∈ L(Rm) onto N and introduce Q∗ := Q(A +
BQ)−1B. We show Q∗ to be a projector with imQ∗ = N, kerQ∗ = S so that the
assertion follows. Compute

Q∗Q = Q(A+BQ)−1BQ = Q(A+BQ)−1(A+BQ)Q = Q,

hence Q2
∗ = Q∗, imQ∗ = N. Further, Q∗z = 0 implies (A+BQ)−1Bz = (I−Q)(A+

BQ)−1Bz, thus

Bz = (A+BQ)(I−Q)(A+BQ)−1Bz = A(A+BQ)−1Bz,

that is, z ∈ S. Conversely, z ∈ S leads to Bz = Aw and

Q∗z = Q(A+BQ)−1Bz = Q(A+BQ)−1Aw = Q(A+BQ)−1(A+BQ)(I−Q)w = 0.

This proves the relation kerQ∗ = S.
(4) ⇒ (5): Let Q∗ denote the projector onto N along S, P∗ := I −Q∗. Since

N ∩S = 0 we know already that G∗ := A+BQ∗ is nonsingular as well as the repre-
sentation Q∗ = Q∗G−1

∗ B. It holds that

G−1
∗ A = G−1

∗ (A+BQ∗)P∗ = P∗,

G−1
∗ B = G−1

∗ BQ∗+G−1
∗ BP∗ = G−1

∗ (A+BQ∗)Q∗+G−1
∗ BP∗ = Q∗+G−1

∗ BP∗.

Consider the equation (λA+B)z = 0, or the equivalent one (λG−1
∗ A+G−1

∗ B)z = 0,
i.e.,

(λP∗+G−1
∗ BP∗+Q∗)z = 0. (A.5)

Multiplying (A.5) by Q∗ and taking into account that Q∗G−1
∗ BP∗ = Q∗P∗ = 0 we

find Q∗z = 0, z = P∗z. Now (A.5) becomes

(λ I +G−1
∗ B)z = 0.
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If λ does not belong to the spectrum of the matrix−G−1
∗ B, then it follows that z= 0.

This means that λA+B is nonsingular except for a finite number of values λ , hence
the pair {A,B} is regular.
Transform {A,B} into Weierstraß–Kronecker canonical form (cf. Section 1.1):

Ā := EAF =

[
I 0
0 J

]
, B̄ := EBF =

[
W 0
0 I

]
, Jμ = 0, Jμ−1 �= 0.

We derive further

N̄ := ker Ā = F−1kerA, S̄ := {z ∈ R
m : B̄z ∈ im Ā}= F−1S,

N̄ ∩ S̄ = F−1(N∩S) = {0}, and

N̄ ∩ S̄ =
{[z1

z2

]
∈ R

m : z1 = 0, Jz2 = 0, z2 ∈ imJ}.

Now it follows that J = 0 must be true since otherwise N̄∩ S̄ would be nontrivial.

(5)⇒ (1): This follows from Ā = EAF =

[
I 0
0 0

]
, B̄ = EBF =

[
W 0
0 I

]
, N̄ ∩ S̄ = 0

and N̄∩ S̄ = F−1(N∩S) = {0}.
(6)⇒ (5) is trivial.
(2)⇒ (6): Set B̃ := B+AW, S̃ := {z ∈ R

m : B̃z ∈ imA}= S. Because of S̃∩N =
S∩N = {0}, and the equivalence of assertion (2) and (5), which is proved already,
the pair {A, B̃} is regular with Kronecker index 1. ��

Lemma A.10. Let A,B ∈ L(Rm) be given, A singular, N := kerA, S := {z ∈ R
m :

Bz ∈ imA}, and N ⊕ S = R
m. Then the projector Q onto N along S satisfies the

relation
Q = Q(A+BQ)−1B. (A.6)

Proof. First we notice that Q is uniquely determined. A+BQ is nonsingular due to
Lemma A.9. The arguments used in that lemma apply to show Q(A+BQ)−1B to be
the projector onto N along S so that (A.6) becomes valid. ��

For any matrix A ∈ L(Rm) there exists an integer k such that

R
m = imA0 ⊃ imA⊃ ·· · ⊃ imAk = imAk+1 = · · · ,

{0} = kerA0 ⊂ kerA⊂ ·· · ⊂ kerAk = kerAk+1 = · · · ,

and imAk⊕kerAk = R
m. This integer k ∈ N∪{0} is said to be the index of A, and

we write k = indA.

Lemma A.11. [96, Appendix A, Theorem 4]
Let A ∈ L(Rm) be given, k = indA, r = rankAk, and let s1, . . . ,sr ∈ R

m and
sr+1, . . . ,sm ∈R

m be bases of imAk and kerAk, respectively. Then, for S = [s1 . . .sm]
the product S−1AS has the special structure
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S−1AS =

[
M 0
0 N

]

where M ∈ L(Rr) is nonsingular and N ∈ L(Rm−r) is nilpotent, Nk = 0, Nk−1 �= 0.

Proof. For i ≤ r, it holds that Asi ∈ A imAk = imAk+1 = imAk, therefore Asi =
r
∑
j=1

s jm ji. For i≥ r+1, it holds that Asi ∈ kerAk+1 = kerAk, thus Asi =
m
∑

j=r+1
s jn ji.

This yields the representations A[s1 . . .sr] = [s1 . . .sr]M with M = (mi j)
r
i, j=1, and

A[sr+1 . . .sm] = [sr+1 . . .sm]N, with N = (ni j)
m
i, j=r+1. The block M is nonsingular.

Namely, for a z ∈ R
r with Mz = 0, we have A[s1 . . .sr]z = 0, that is,

r

∑
j=1

z js j ∈ imAk ∩kerA⊆ imAk ∩kerAk = {0},

which shows the matrix M to be nonsingular. It remains to verify the nilpotency of N.

We have AS = S
[

M 0
0 N

]
, hence A�S = S

[
M� 0
0 N�

]
. From Aksi = 0, i≥ r+1 it follows

that Nk = 0 must be valid. It remains to prove the fact that Nk−1 �= 0. Since kerAk−1

is a proper subspace of kerAk there is an index i∗ ≥ r+1 such that the basis element

si∗ ∈ kerAk does not belong to kerAk−1. Then, S
[

Mk−1 0
0 Nk−1

]
ei∗ = Ak−1si∗ �= 0,

that is, Nk−1 �= 0. ��

A.2 Generalized inverses

In [15] we find a detailed collection of properties of generalized inverses for theory
and application. We report here the definitions and relations of generalized inverses
we need for our considerations.

Definition A.12. For a matrix Z ∈ L(Rn,Rm), we call the matrix Z− ∈ L(Rm,Rn) a
reflexive generalized inverse, if it fulfills

ZZ−Z = Z and (A.7)
Z−ZZ− = Z−. (A.8)

Z− is called a {1,2}-inverse of Z in [15].

The products ZZ− ∈ L(Rm) and Z−Z ∈ L(Rn) are projectors (cf. Appendix A.1).
We have (ZZ−)2 = ZZ−ZZ− = ZZ− and (Z−Z)2 = Z−ZZ−Z = Z−Z. We know that
the rank of a product of matrices does not exceed the rank of any factor. Let Z have
rankrz. From (A.7) we obtain rankrz ≤ rankrz− and from (A.8) the opposite, i.e.,
that both Z and Z− and also the projectors ZZ− and Z−Z have the same rank.

Let R ∈ L(Rn) be any projector onto imZ and P ∈ L(Rm) any projector along
kerZ.
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Lemma A.13. With (A.7), (A.8) and the conditions

Z−Z = P and (A.9)
ZZ− = R (A.10)

the reflexive inverse Z− is uniquely determined.

Proof. Let Y be a further matrix fulfilling (A.7), (A.8), (A.9) and (A.10). Then

Y
(A.8)
= Y ZY

(A.7)
= Y ZZ−ZY

(A.10)
= Y RZY

(A.10)
= Y R

(A.10)
= Y ZZ−

(A.9)
= PZ−

(A.8)
= Z−.

��

If we choose for the projectors P and R the orthogonal projectors the conditions
(A.9) and (A.10) could be replaced by

Z−Z = (Z−Z)∗, (A.11)
ZZ− = (ZZ−)∗. (A.12)

The resulting generalized inverse is called the Moore–Penrose inverse and denoted
by Z+.

To represent the generalized reflexive inverse Z− we want to use a decomposition
of

Z =U
[

S
0

]
V−1

with nonsingular matrices U , V and S. Such a decomposition is, e.g., available using
an SVD or a Householder decomposition of Z.
A generalized reflexive inverse is given by

Z− =V
[

S−1 M2
M1 M1SM2

]
U−1 (A.13)

with M1 and M2 being matrices of free parameters that fulfill

P = Z−Z =V
[

I 0
M1S 0

]
V−1

and

R = ZZ− =U
[

I SM2
0 0

]
U−1

(cf. also [219]). There are two ways of looking at the parameter matrices M1 and M2.
We can compute an arbitrary Z− with fixed M1 and M2. Then also the projectors P
and R are fixed by these parameter matrices. Or we provide the projectors P and R,
then M1 and M2 are given and Z− is fixed, too.
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A.3 Parameter-dependent matrices and projectors

For any two continuously differentiable matrix functions of appropriate size F :
I → L(Rm.Rk) and G : I → L(Rl .Rm), I ⊆ R, an interval, the product FG : I →
L(Rl .Rk) is defined pointwise by (FG)(t) := F(t)G(t), t ∈ I, and the product rule
applies to the derivatives, i.e.,

(FG)′(t) = F ′(t)G(t)+F(t)G′(t).

In particular, this is valid for projector valued functions.
Let P ∈ C1(I,L(Rm)) be a projector valued function and Q = I−P the complemen-
tary one. The following three simple rules are useful in computations:

(1) Q+P = I, and hence Q′ =−P′.
(2) QP = PQ = 0, and hence Q′P =−QP′, P′Q =−PQ′.
(3) PP′P =−PQ′P = PQP′ = 0 and, analogously, QQ′Q = 0.

Lemma A.14. (1) If the matrix function P ∈ C1(I,L(Rm)) is projector valued,
that is, P(t)2 = P(t), t ∈ I, then it has constant rank r, and there are r
linearly independent functions η1, . . . ,ηr ∈ C1(I,Rm) such that imP(t) =
span{η1(t), . . . ,ηr(t)}, t ∈ I.

(2) If a time-dependent subspace L(t) ⊆ R
m, t ∈ I, with constant dimension r is

spanned by functions η1, . . . ,ηr ∈ C1(I,Rm), which means L(t) =
span{η1(t), . . . ,ηr(t)}, t ∈ I, then the orthoprojector function onto this sub-
space is continuously differentiable.

(3) Let the matrix function A ∈ Ck(I,L(Rm)) have constant rank r. Then, there is
a matrix function M ∈ Ck(I,L(Rm)) that is pointwise nonsingular such that
A(t)M(t) = [Ã(t)︸︷︷︸

r

0], rank Ã(t) = r for all t ∈ I.

Proof. (1) Denote Q = I−P, and let r be the maximal rank of P(t) for t ∈ I. We fix
a value t̄ ∈ I such that rankP(t̄) = r. Let η̄1, . . . , η̄r be a basis of imP(t̄).
For i = 1, . . . ,r, the ordinary IVP

η ′(t) = P′(t)η(t), t ∈ I, η(t̄) = η̄i,

is uniquely solvable. The IVP solutions η1, . . . ,ηr remain linearly independent on
the entire interval I since they are so at t̄.
Moreover, the function values of these functions remain in imP, that is, ηi(t) =
P(t)ηi(t). Namely, multiplying the identity ηi = P′ηi by Q gives (Qηi)

′ =−Q′Qηi,
and because of Q(t̄)ηi(t̄) = Q(t̄)η̄i = 0, the function Qηi must vanish identically.
It follows that span{η1(t), . . . ,ηr(t)} ⊆ imP(t) for all t ∈ I, and r ≤ rankP(t), and
hence r = rankP(t) and span{η1(t), . . . ,ηr(t)}= imP(t).
(2) The matrix function Γ := [η1 ηr], the columns of which are the given func-
tions η1, . . . ,ηr, is continuously differentiable and injective, and Γ ∗Γ is invertible.
Then P := Γ (Γ ∗Γ )−1Γ ∗ is continuously differentiable. The value P(t) is an or-



592 A Linear algebra – basics

thoprojector, further imP ⊆ imΓ by construction, and PΓ = Γ , in consequence
imP = imΓ = L.
(3) See [61]. ��

For matrix functions depending on several variables we define products point-
wise, too. More precisely, for F : Ω → L(Rm.Rk) and G : Ω → L(Rl .Rm), Ω ⊆R

p,
the product FG : Ω → L(Rl .Rk) is defined pointwise by (FG)(x) := F(x)G(x), x ∈
Ω .
We speak of a projector function P :Ω → L(Rl), if for all x∈Ω , P(x)2 = P(x) holds
true, and of an orthoprojector function, if, additionally, P(x)∗ = P(x). Saying that P
is a projector function onto the subspace L we mean that P and L have a common
definition domain, say Ω , and imP(x) = L(x), x ∈Ω .

Lemma A.15. Given a matrix function A∈Ck(Ω ,L(Rm,Rn)), k∈N∪{0}, Ω ⊆R
p

open, that has constant rank r, then

(1) The orthoprojector function onto imA is k times continuously differentiable.
(2) The orthoprojector function onto kerA is also k times continuously differen-

tiable.

Proof. (1) Let x̄ ∈ Ω be fixed, and z̄1, . . . , z̄r be an orthonormal basis of imA(x̄)⊥.
Denote ūi := A(x̄)z̄i, i = 1, . . . ,r. By construction, ū1, . . . , ūr are linearly indepen-
dent.
We form ui(x) := A(x)z̄i for i = 1, . . . ,r, and then the matrix U(x) := [u1(x) ur(x)],
x ∈Ω . The matrix U(x̄) has full column rank r. Therefore, there is a neighborhood
Nx̄ of x̄ such that U(x) has full column rank r on Nx̄. The Gram–Schmidt orthogo-
nalization yields the factorization

U(x) = Q(x)R(x), Q(x) ∈ L(Rr,Rn), Q(x)∗Q(x) = Ir, x ∈Nx̄,

with R(x) being upper triangular and nonsingular. It follows that imU(x) = imQ(x)
is true for x ∈Nx̄.
Further, U = A[z̄1 z̄r] shows that U is k times continuously differentiable to-
gether with A. By construction, Q is as smooth as U . Finally, the matrix function
RA := Q(Q∗Q)−1Q∗ is k times continuously differentiable, and it is an orthoprojec-
tor function, imRA = imQ = imU = imA.
(2) This assertion is a consequence of (1). Considering the well-known relation
kerA⊥ = imA∗ we apply (1) and find the orthoprojector function PA onto kerA⊥

along kerA to be k times continuously differentiable, and I−PA has this property,
too. ��
Remark A.16. By Lemma A.14 the orthogonal projector function P∈ C1(I,L(Rm)),
I ⊆ R an interval, generates globally on I defined bases η1, . . . ,ηr
∈ C1(I,L(Rm)), r = rankP(t), imP(t) = im [η1(t), . . . ,ηr(t)], t ∈ I.
In the higher dimensional case, if P ∈ C1(Ω ,L(Rm)), Ω ⊆ R

p open, p > 1, the sit-
uation is different. By Lemma A.20, item (8), there are local bases. However, in
general, global bases do not necessarily exist.
For instance, the orthoprojector function onto the nullspace of the matrix function
M(x) = [x1,x2,x3], x ∈ R

3 \{0}, reads
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P(x) =
1

x2
1 + x2

2 + x2
3

⎡
⎣

x2
2 + x2

3 −x1x2 −x1x3
−x1x2 x2

1 + x2
3 −x2x3

−x1x3 −x2x3 x2
1 + x2

2

⎤
⎦ .

This projector function is obviously continuously differentiable. On the other hand,
the nullspace kerM(x) = {z ∈ R

3 : x1z1 + x2z2 + x3z3 = 0} allows only locally dif-
ferent descriptions by bases, e.g.,

kerM(x) = im

⎡
⎣
− x2

x1
− x3

x1
1 0
0 1

⎤
⎦ if x1 �= 0,

kerM(x) = im

⎡
⎣

1 0
0 − x3

x2
0 1

⎤
⎦ if x1 = 0, x2 �= 0,

kerM(x) = im

⎡
⎣

1 0
0 1
0 0

⎤
⎦ if x1 = 0, x2 = 0, x3 �= 0.

Proposition A.17. For k ∈ N∪{0}, let the matrix function D ∈ Ck(Ω ,L(Rm,Rn))
have constant rank on the open set Ω ⊆ R

p.

(1) Then the Moore–Penrose generalized inverse D+ of D is as smooth as D.
(2) Let R ∈ Ck(Ω ,L(Rn)) be a projector function onto imD, and P ∈

Ck(Ω ,L(Rm)) be a projector function such that kerP = kerD. Then the four
conditions

DD−D = D, D−DD− = D, D−D = P, DD− = R,

determine uniquely a function D− that is pointwise a generalized inverse of
D, and D− is k times continuously differentiable.

Proof. The first assertion is well-known, and can be found, e.g., in [49].
The second assertion follows from the first one. We simply show the matrix function
D− := PD+R to be the required one. By Lemma A.13, the four conditions define
pointwise a unique generalized inverse. Taking into account that imD = imR =
imDD+ and kerD = kerD+D = kerP we derive

D(PD+R)D = DD+R = R,

(PD+R)D(PD+R) = PD+DD+R = (PD+R),

(PD+R)D = PD+D = P,

D(PD+R) = DD+R = R,

so that the four conditions are fulfilled. Obviously, the product PD+R inherits the
smoothness of its factors. ��
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For what concerns the derivatives, the situation is more difficult, if several vari-
ables are involved. We use the symbols Fx(x, t), Ft(x, t) for the partial derivatives and
partial Jacobian matrices of the function F ∈ C1(Ω ×I,L(Rm,Rk)) with respect to
x ∈ R

p and t ∈ R, taken at the point (x, t) ∈Ω ×I.
For the two functions F ∈ C1(Ω×I,L(Rm,Rk)) and G∈ C1(Ω×I,L(Rl ,Rm)), the
product FG ∈ C1(Ω ×I,L(Rl ,Rk)) is defined pointwise. We have

(FG)x(x, t)z = [Fx(x, t)z]G(x, t)+F(x, t)Gx(x, t)z for all z ∈ R
p.

Besides the partial derivatives we apply the total derivative in jet variables. For the
function F ∈ C1(Ω ×I,L(Rm,Rk)), Ω ×I ⊆R

p×R, the function F ′ ∈ C(Ω ×I×
R

p,L(Rm,Rk)) defined by

F ′(x, t,x1) := Fx(x, t)x1 +Ft(x, t), x ∈Ω , t ∈ I, x1 ∈ R
p,

is named the total derivative of F in jet variables. For the total derivative, the product
rule

(FG)′ = F ′G+FG′

is easily checked to be valid.

Lemma A.18. The total derivatives in jet variables P′ and Q′ of a continuously
differentiable projector function P and its complementary one Q = I−P satisfy the
following relations:

Q′ =−P′,

Q′P =−QP′,

PP′P = 0.

Proof. The assertion follows from the identities Q+P = I and QP = 0 by regarding
the product rule. ��

Notice that, for each given function x∗ ∈ C1(I∗,Rp), I∗ ⊆ I, with values in Ω ,
the resulting superposition F(x∗(t), t) is continuously differentiable with respect to
t on I∗, and it possesses the derivative

(F(x∗(t), t))′ := (F(x∗(.), .))′(t) = F ′(x∗(t), t,x′∗(t)).

A.4 Variable subspaces

Definition A.19. Let Ω ⊆R
P be open and connected, and L(x)⊆R

m be a subspace
for each x ∈Ω . For k ∈N∪{0}, L is said to be a Ck-subspace on Ω , if there exists a
projector function R ∈ Ck(Ω ,L(Rm)) which projects pointwise onto L, i.e., R(x) =
R(x)2, imR(x) = L(x), x ∈Ω . We write imR = L.
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It should be mentioned at this point that the notion of smooth subspace (smooth
stands for C1) is applied in [96], Subsection 1.2.1, to subspaces depending on one
real variable (p = 1) in the same way.

Lemma A.20. Let k ∈ N∪{0}.

(1) A Ck-subspace on an open connected Ω has constant dimension.
(2) The orthoprojector function onto a Ck-subspace belongs to Ck.
(3) If L is a Ck-subspace, so is L⊥.
(4) If L and N are Ck-subspaces, and L∩N has constant dimension, then L∩N is

a Ck-subspace, too.
(5) If N and L are Ck-subspaces, and N⊕L =R

m, then the projector onto N along
L belongs to Ck.

(6) If L and N are Ck-subspaces, and L∩N has constant dimension, then there is
a Ck-subspace X such that X ⊆ L, and

L = X⊕ (N∩L),

as well as a projector R ∈ Ck(Ω ,L(Rm)) with imR = N, kerR⊇ X.
(7) If L and N are Ck-subspaces, and N∩L = 0, then L⊕N is a Ck-subspace, too.
(8) L is a Ck-subspace on Ω ⇔ for each x̄ ∈ Ω there is a neighborhood Ux̄ ⊆ Ω

and a local Ck-basis η1, . . . ,ηr(x̄) ∈ Ck(Ux̄,R
m) spanning L on Ux̄, i.e.,

span{η1(x), . . . ,ηr(x̄)(x)}= L(x), x ∈Ux̄.

Proof. (1) Let x0 ∈ Ω , and let the columns of ξ 0 := [ξ 0
1 , . . . ,ξ

0
rx0

] form a basis of

L(x0), i.e., L(x0) = imξ 0. ξ (x) := R(x)ξ 0 is a Ck matrix function, and since ξ (x0) =
R(x0)ξ 0 = ξ 0 has full column rank rx0 , there is a neighborhood Ux0 ⊂ Ω such that
ξ (x) has rank rx0 for all x ∈Ux0 . This means imξ (x)⊆ imR(x),

rankR(x)≥ rankξ (x) = rx0 , x ∈Ux0 .

Denote by rmin, rmax the minimal and maximal ranks of R(x) on Ω , 0 ≤ rmin ≤
rmax ≤ m, and by xmin,xmax ∈ Ω points with rankR(xmin) = rmin, rankR(xmax) =
rmax.
Since Ω is connected, there is a connecting curve of xmin and xmax belonging to Ω .
We move on this curve from xmax to xmin. If rmin < rmax, there must be a x∗ on this
curve with

r∗ := rankR(x∗)< rmax,

and in each arbitrary neighborhood of x∗ there are points x̂ with rankR(x̂) = rmax.
At each x ∈ Ω , as a projector, R(x) has only the eigenvalues 1 and 0 (cf. Lemma
A.3(6)). Hence, R(x∗) has eigenvalue 1 with multiplicity r∗, and eigenvalue 0 with
multiplicity m− r∗, R(x̂) has eigenvalue 1 with multiplicity rmax and eigenvalue 0
with multiplicity m− rmax.
Since eigenvalues depend continuously on the entries of a matrix, and the entries of
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R(x) are Ck-functions in x, the existence of x∗ contradicts the continuity of eigenval-
ues. Therefore, rmin = rmax must be valid.

(2) If L is a Ck-subspace, by definition, there is a projector R ∈ Ck(Ω ,L(Rm))
onto L, and the rankR(x) is constant on Ω . By Lemma A.15, the orthoprojector
function onto imR = L is k times continuously differentiable.

(3) If L is a Ck-subspace, the orthoprojector R onto L belongs to Ck. Then, I−R
is a Ck-projector onto im(I−R) = L⊥.

(4) Suppose L, N are Ck-subspaces in R
m, and RL, RN corresponding projectors

onto L and N. Then F :=
[

I−RL
I−RN

]
is a Ck-function, and kerF = L∩N. Since L∩N

has constant dimension, F has constant rank, and therefore F+ and F+F are Ck-
functions. F+F is the orthoprojector onto kerF , thus kerF = L∩N is a Ck-subspace.

(5) Let N, L be Ck-subspaces, N ⊕ L = R
m. For each arbitrary x ∈ Ω , R(x) is

uniquely determined by imR(x) = L(x), kerR(x) = N(x), R(x)2 = R(x). We have to
make sure that R belongs to Ck. To each fixed x0 ∈ Ω we consider bases ξ 0

1 , . . . ,ξ
0
r

of L(x0), and η0
1 , . . . ,η

0
m−r of N(x0), and consider

ξ (x) := RL(x)ξ 0, η(x) := RN(x)η0, x ∈Ω ,

where
ξ 0 = [ξ 0

1 , . . . ,ξ
0
r ], η0 = [η0

1 , . . . ,η
0
m−r],

and RL, RN are Ck-projectors according to the Ck-subspaces L and N. There is a
neighborhood Ux0 ⊂ Ω of x0, such that the columns of ξ (x) and η(x), for x ∈Ux0 ,
are bases of L(x) and N(x), and the matrix F(x) := [ξ (x),η(x)] is nonsingular for
x ∈Ux0 . Define, for x ∈Ux0 ,

R̃(x) := F(x)
[

Ir
0

]
F(x)−1,

such that

R̃ ∈ Ck(Ω ,L(Rm)), im R̃(x) = L(x), ker R̃(x) = N(x).

Since the projector corresponding to the decomposition N(x)⊕L(x)=R
m is unique,

we have R(x) = R̃(x), x ∈Ux0 , and hence R is Ck on Ux0 .
(6) Let L, N be Ck-subspaces, dim(N∩L) = constant =: u. By (d), N∩L is a Ck-

subspace. We have Rm = (L∩N)⊕(L∩N)⊥, L= (L∩N)⊕(L∩(L∩N)⊥), and X :=
L∩ (L∩N)⊥ is a Ck-subspace, too. Further (cf. Lemma A.6), (N +L)⊥ = N⊥ ∩L⊥

is also a Ck-subspace. With N +L = N⊕X we find

R
m = (N +L)⊥⊕ (N +L) = (N +L)⊥⊕X⊕N = S⊕N, S := (N +L)⊥⊕X .

Denote by R⊥ and RX the orthoprojectors onto the Ck-subspaces (N +L)⊥ and X .
Due to X ⊆ N +L, (N +L)⊥ ⊆ X⊥, hence imRX ⊆ kerR⊥, imR⊥ ⊆ kerRX , it holds
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that RX R⊥ = 0, R⊥RX = 0, hence RS := R⊥+RX is a projector and belongs to Ck,
imRS = imR⊥+ imRX = S. This makes it clear that S is also a Ck-subspace.
Finally, due to R

m = S⊕N, there is a projector R ∈ Ck(Ω ,L(Rm)) with imR = N,
kerR = S⊃ X .

(7) By (6), due to N ∩ L = 0, there are projectors RL,RN ∈ Ck(Ω ,L(Rm)) such
that imRL = L, N ⊂ kerRL, imRN = N, L⊂ kerRN , thus RLRN = 0, RNRL = 0, and
R := RL +RN is a Ck-projector, too, and finally imR = imRL + imRN = L⊕N.

(8) If L is a Ck-subspace then the orthogonal projector R on L along L⊥ is Ck.
For each x0 ∈ Ω and a basis ξ 0

1 , . . . ,ξ
0
r of L(x0), the columns of ξ (x) := R(x)ξ 0,

ξ = [ξ 0
1 , . . . ,ξ

0
r ], form a Ck-basis of L(x) locally on a neighborhood Ux0 ⊂Ω of x0.

Conversely, if there is a local Ck-basis on the neighborhood Ux̄ of x̄, then one can
show that the orthoprojector onto L(x), x ∈Ux̄, can be represented by means of this
basis. That means, L is Ck on Ux̄. ��

Corollary A.21. Any projector function being continuous on an open connected set
has constant rank there.

Proof. The continuous projector function, say P : Ω → L(Rp), defines the C-space
imP. Owing to Lemma A.20 item (1), imP has constant dimension, and hence P
has constant rank. ��



Appendix B
Technical computations

B.1 Proof of Lemma 2.12

Lemma 2.12
If two projector function sequences Q0, . . . ,Qk and Q̄0, . . . , Q̄k are both admis-

sible, then the corresponding matrix functions and subspaces are related by the
following properties:

(a) kerΠ̄ j = N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj = kerΠ j, j = 0, . . . ,k,
(b) Ḡ j = G jZ j,

B̄ j = B j−G jZ jD̄−(DΠ̄ jD̄−)′DΠ j +G j
j−1
∑

l=0
QlA jl , j = 1, . . . ,k,

with nonsingular matrix functions Z0, . . . ,Zk+1 given by
Z0 := I, Zi+1 := Yi+1Zi, i = 0, . . . ,k,

Y1 := I +Q0(Q̄0−Q0) = I +Q0Q̄0P0,

Yi+1 := I +Qi(Π̄i−1Q̄i−Πi−1Qi)+
i−1

∑
l=0

QlAil Q̄i, i = 1, . . . ,k,

and certain continuous coefficientsAil that satisfy the conditionAil =AilΠ̄i−1,
(c) Zi(N̄i∩ (N̄0 + · · ·+ N̄i−1)) = Ni∩ (N0 + · · ·+Ni−1), i = 1, . . . ,k,
(d) Ḡk+1 = Gk+1Zk+1, N̄0 + · · ·+ N̄k+1 = N0 + · · ·+Nk+1,

Zk+1(N̄k+1∩ (N̄0 + · · ·+ N̄k)) = Nk+1∩ (N0 + · · ·+Nk).

Proof. We have G0 = AD = Ḡ0, B0 = B = B̄0, kerP0 = N0 = N̄0 = ker P̄0, hence
P0 = P0P̄0, P̄0 = P̄0P0.
The generalized inverses D− and D̄− of D satisfy the properties DD− = DD̄− = R,
D−D = P0, D̄−D = P̄0, and therefore D̄− = D̄−DD̄− = D̄−DD− = P̄0D−,
D− = P0D̄−.
Compare G1 = G0 +B0Q0 and
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Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 +B0Q̄0 = G0 +B0Q0Q̄0

= (G0 +B0Q0)(P0 + Q̄0) = G1Z1,

where Z1 :=Y1 := P0 + Q̄0 = I+Q0Q̄0P0 = I+Q0(Q̄0−Q0). Z1 is invertible, and it
has inverse Z−1

1 = I−Q0Q̄0P0.
The nullspaces N1 and N̄1 are, due to Ḡ1 = G1Z1, related by N̄1 = Z−1

1 N1 ⊆N0+N1.
This implies N̄0 + N̄1 = N0 +(Z−1

1 N1) ⊆ N0 +N1. From N1 = Z1N̄1 ⊆ N0 + N̄1 =
N̄0 + N̄1, we obtain N̄0 + N̄1 = N0 +N1.
Since the projectors Π1 = P0P1 and Π̄1 = P̄0P̄1 have the common nullspace
N0 +N1 = N̄0 + N̄1, we may now derive

DP̄0P̄1D̄− = DP̄0P̄1P0P1P̄0D− = DP̄0P̄1P0P1D− = DP̄0P̄1D̄−DP0P1D−,

DP0P1D− = DP0P1D−DP̄0P̄1D̄−.

Next we compute

B̄1 = B̄0P̄0− Ḡ1D̄−(DP̄0P̄1D̄−)′DP̄0

= B0(P0 +Q0)P̄0−G1Z1D̄−(DP̄0P̄1D̄−DP0P1D−)′D

= B0P0 +B0Q0P̄0−G1Z1D̄−(DP̄0P̄1D̄−)′DP0P1−G1Z1P̄0P̄1D̄−(DP0P1D−)′D

= B1 +G1D−(DP0P1D−)′D−G1Z1D̄−(DP̄0P̄1D̄−)′DP0P1

−G1Z1P̄0P̄1D−(DP0P1D−)′D+B0Q0P̄0

= B1−G1Z1D̄−(DP̄0P̄1D̄−)′DP0P1 +B1

with B1 := G1Q0P̄0 +G1(I−Z1Π̄1)D−(DΠ1D−)′D.
The identity 0 = Ḡ1Q̄1 = G1Z1Q̄1 = G1Q̄1 + G1(Z1 − I)Q̄1 leads to
G1Q̄1 =−G1(Z1− I)Q̄1 and further to

G1(I−Z1Π̄1) = G1(I− Π̄1− (Z1− I)Π̄1) = G1(Q̄1 + Q̄0P̄1−Q0Q̄0P0Π̄1)

= G1(−Q0Q̄0P0Q̄1 + Q̄0P̄1−Q0Q̄0P0P̄1) = G1(−Q0Q̄0P0 + Q̄0P̄1)

= G1(−Q0Q̄0 +Q0 +Q0Q̄0P̄1) = G1(−Q0Q̄0Q̄1 +Q0).

Inserting into the expression for B1 yields B1 = G1Q0P̄0 −
G1Q0Q̄0Q̄1D−(DΠ1D−)′D = G1Q0A10 with A10 := P̄0 − Q̄0Q̄1D−(DΠ1D−)′D
and A10 = A10P̄0.
In order to verify assertions (a) and (b) by induction, we assume the relations

N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj,

Ḡ j = G jZ j,

B̄ j = B j−G jZ jD̄−(DΠ̄ jD̄−)′DΠ j +G j

j−1

∑
l=0

QlA jl (B.1)

to be valid for j = 1, . . . , i, i < k, with nonsingular Zi as described above.
By construction, Zi is of the form Z j = YjZ j−1 = YjYj−1 · · ·Y1. By carrying out the
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multiplication and rearranging the terms we find the expression

Z j− I =
j−1

∑
l=0

QlC jl (B.2)

with continuous coefficients C jl .
It holds that Y1− I = Q0Q̄0P0 and

Yj− I = (Yj− I)Π j−2, j = 2, . . . , i, (B.3)

such that (Yj−I)(Z j−1−I) = 0 must be true. From this it follows that Yj(Z j−1−I) =
Z j−1− I, and Z j = YjZ j−1 = Yj +Yj(Z j−1− I) = Yj +Z j−1− I = Yj− I +Z j−1, i.e.,

Z j = Yj− I + · · ·+Y1− I +Z0,

Z j−Z0 = Z j− I =
j

∑
l=1

(Yl− I). (B.4)

From (B.4) one can obtain special formulas for the coefficients C jl in (B.2), but in
our context there is no need for these special descriptions.
Now we compare Ḡi+1 and Gi+1. We have

Ḡi+1 = Ḡi + B̄iQ̄i = GiZi + B̄iQ̄i.

Because of B̄i = B̄iΠ̄i−1 we may write

B̄iQ̄i(Zi− I) = B̄iΠ̄i−1Q̄i(Zi− I) = B̄iΠ̄i−1Q̄iΠ̄i−1(Zi− I)

and using (B.2) and Qi = Q̄iQi we obtain B̄iQ̄i(Zi− I) = 0, i.e., B̄iQ̄i = B̄iQ̄iZi. This
yields

Ḡi+1 = (Gi + B̄iQ̄i)Zi.

Derive further

Ḡi+1Z−1
i = Gi + B̄iQ̄i = Gi+1 +(B̄iQ̄i−BiQi)

and using (B.1) and Q̄i = QiQ̄i we obtain

= Gi+1 +Bi(Q̄i−Qi)+Gi

i−1

∑
l=0

QlAil Q̄i

= Gi+1 +Bi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i

= Gi+1 +BiQi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i

= Gi+1Yi+1,
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and Ḡi+1 = Gi+1Yi+1Zi = Gi+1Zi+1, that is, Ḡi+1 and Gi+1 are related as demanded.
Next we show the invertibility of Yi+1 and compute the inverse. Consider the linear
equation Yi+1z = w, i.e.,

z+Qi(Π̄i−1Q̄i−Πi−1Qi)z+
i−1

∑
l=0

QlAil Q̄iz = w.

Because of (B.3) we immediately realize that

Πiz =Πiw, z = w− (Yi+1− I)Πi−1z,

and
Πi−1z+Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi)z =Πi−1w.

Taking into account that

Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi) =Πi−1QiQ̄i−Πi−1Qi =−Πi−1QiP̄i

=−Πi−1QiΠ̄i−1P̄i =−Πi−1QiP̄iΠi

we conclude
Πi−1z =Πi−1w−Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi)w

and

z = w− (Yi+1− I)(I−Qi(Π̄i−1Q̄i−Πi−1Qi))w,

Y−1
i+1 = I− (Yi+1− I)(I−Qi(Π̄i−1Q̄i−Πi−1Qi)).

The inverse Z−1
i+1 = (Yi+1 · · ·Y1)

−1 = Y−1
1 · · ·Y−1

i+1 may be expressed as

Z−1
i+1 = I +

i

∑
l=0

QlEi+1,l

with certain continuous coefficients Ei+1,l . We have

N̄i+1 = Z−1
i+1Ni+1 ⊆ N0 + · · ·+Ni+1,

N̄0 + · · ·+ N̄i+1 = N0 + · · ·+Ni + N̄i+1 ⊆ N0 + · · ·+Ni+1,

N0 + · · ·+Ni+1 = N0 + · · ·+Ni +(Zi+1N̄i+1)

⊆ N0 + · · ·+Ni + N̄i+1 = N̄0 + · · ·+ N̄i+1,

thus N̄0 + · · ·+ N̄i+1 = N0 + · · ·+Ni+1. It follows that

DΠ̄i+1D̄− = DΠ̄i+1D̄−DΠi+1D−.

Now we consider the terms B̄i+1 and Bi+1. We have
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B̄i+1 = B̄iP̄i− Ḡi+1D̄−(DΠ̄i+1D̄−)′DΠ̄i

= B̄iP̄i− Ḡi+1D̄−(DΠ̄i+1D̄−DΠi+1D−)′DΠ̄i

= B̄iP̄i−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1−Gi+1Zi+1Π̄i+1D̄−(DΠi+1D−)′DΠ̄i

= B̄iP̄i−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1

−Gi+1Zi+1Π̄i+1D̄−{(DΠi+1D−)′DΠi−DΠi+1D−(DΠ̄iD̄−)′DΠi}

= B̄iP̄i−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1

−Gi+1Zi+1Π̄i+1D−(DΠi+1D−)′DΠi +Gi+1Zi+1Π̄i+1D̄−(DΠ̄iD̄−)′DΠi.

Taking into account the given result for B̄i we obtain

B̄i+1 = {Bi−GiZiD̄−(DΠ̄iD̄−)′DΠi +Gi

i−1

∑
l=0

QlAil}(Pi +Qi)P̄i

−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1−Gi+1Zi+1Π̄i+1D−(DΠi+1D−)′DΠi

+Gi+1Zi+1Π̄i+1D̄−(DΠ̄iD̄−)′DΠi

= BiPi−Gi+1D−(DΠi+1D−)′DΠi +Gi+1D−(DΠi+1D−)′DΠi +BiQiP̄i

−GiZiD̄−(DΠ̄iD̄−)′DΠi +Gi

i−1

∑
l=0

QlAil P̄i−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1

−Gi+1Zi+1Π̄i+1D−(DΠi+1D−)′DΠi +Gi+1Zi+1Π̄i+1D̄−(DΠ̄iD̄−)′DΠi,

hence
B̄i+1 = Bi+1−Gi+1Zi+1D̄−(DΠ̄i+1D̄−)′DΠi+1 +Bi+1

with

Bi+1 = BiQiP̄i +Gi

i−1

∑
l=0

QlAil P̄i +Gi+1(I−Zi+1Π̄i+1)D−(DΠi+1D−)′DΠi

−Gi+1(PiZi−Zi+1Π̄i+1)D̄−(DΠ̄iD̄−)′DΠi.

It remains to show that Bi+1 can be expressed as Gi+1
i
∑

l=0
QlAi+1 l . For this purpose

we rewrite

Bi+1 = Gi+1QiP̄i +Gi+1

i−1

∑
l=0

QlAil P̄i

+Gi+1(I− Π̄i+1− (Zi+1− I)Π̄i+1)D−(DΠi+1D−)′DΠi

−Gi+1(Zi− I−QiZi + I− Π̄i+1− (Zi+1− I)Π̄i+1)D̄−(DΠ̄iD−)′DΠi.

Take a closer look at the term Gi+1(I − Π̄i+1) = Gi+1(Q̄i+1 + (I − Π̄i)P̄i+1). By
means of the identity 0 = Ḡi+1Q̄i+1 = Gi+1Zi+1Q̄i+1 = Gi+1Q̄i+1+
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Gi+1(Zi+1− I)Q̄i+1 we obtain the relation

Gi+1Q̄i+1 =−Gi+1(Zi+1− I)Q̄i+1

and hence

Gi+1(I− Π̄i+1) = Gi+1(−(Zi+1− I)Q̄i+1 +(I− Π̄i)P̄i+1).

This yields

Bi+1 = Gi+1QiP̄i +Gi+1

i−1

∑
l=0

QlAil P̄i

+Gi+1{−(Zi+1− I)Q̄i+1 +(I− Π̄i)P̄i+1)− (Zi+1− I)Π̄i+1}×
×D−(DΠi+1D−)′DΠi−Gi+1{Zi− I−QiZi− (Zi+1− I)Q̄i+1

+(I− Π̄i)P̄i+1− (Zi+1− I)Π̄i+1}D̄−(DΠ̄iD̄−)′DΠi.

With

Zi+1− I =
i

∑
l=0

QlCi+1 l , Zi− I =
i−1

∑
l=0

QlCil ,

I− Π̄i = (I−Πi)(I− Π̄i) = Qi +Qi−1Pi + · · ·+Q0P1 · · ·Pi)(I− Π̄i),

by rearranging the terms we arrive at

Bi+1 = Gi+1

i

∑
l=0

QlAi+1 l ,

e.g., with

Ai+1 i := P̄i +{−Ci+1 i(Q̄i+1 + Π̄i+1)+(I− Π̄i)P̄i+1}D−(DΠi+1D−)′DΠi

−{−Zi−Ci+1 i(Q̄i+1 + Π̄i+1)+(I− Π̄i)P̄i+1}D̄−(DΠ̄iD̄−)′DΠi.

It is evident that all coefficients have the required property Ai+1 l = Ai+1 lΠ̄i.
Finally, we are done with assertions (a), (b). At the same time, we have proved the
first two relations in (d).
Assertion (c) is a consequence of (a), (b) and the special form (B.2) of the nonsin-
gular matrix function Zi. Namely, we have Zi(N0 + · · ·+Ni−1) = N0 + · · ·+Ni−1,
ZiN̄i = Ni, thus

Zi(N̄i∩ (N̄0 + · · ·+ N̄i−1)) = (ZiN̄i)∩ (Zi(N̄0 + · · ·+Ni−1)) =

Ni∩ (Zi(N0 + · · ·+Ni−1)) = Ni∩ (N0 + · · ·+Ni−1).

The same arguments apply for obtaining the third relation in (d). ��
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B.2 Proof of Lemma 2.41

Lemma 2.41 Let the DAE (2.44) with sufficiently smooth coefficients be regular with
tractability index μ ≥ 3, and let Q0, . . . ,Qμ−1 be admissible projector functions.
Let k ∈ {1, . . . ,μ − 2} be fixed, and let Q̄k be an additional continuous projector
function onto Nk = kerGk such that DΠk−1Q̄kD− is continuously differentiable and
the inclusion N0 + · · ·+Nk−1 ⊆ ker Q̄k is valid. Then the following becomes true:

(1) The projector function sequence

Q̄0 := Q0, . . . , Q̄k−1 := Qk−1,

Q̄k,

Q̄k+1 := Z−1
k+1Qk+1Zk+1, . . . , Q̄μ−1 := Z−1

μ−1Qμ−1Zμ−1,

is also admissible with the continuous nonsingular matrix functions
Zk+1, . . . ,Zμ−1, determined below.

(2) If, additionally, the projector functions Q0, . . . ,Qμ−1 provide an advanced de-
coupling in the sense that the conditions (cf. Lemma 2.31)

Qμ−1∗Πμ−1 = 0, . . . , Qk+1∗Πμ−1 = 0

are given, then also the relations

Q̄μ−1∗Π̄μ−1 = 0, . . . , Q̄k+1∗Π̄μ−1 = 0, (B.5)

are valid, and further

Q̄k∗Π̄μ−1 = (Qk∗ − Q̄k)Πμ−1. (B.6)

The matrix functions Zi are consistent with those given in Lemma 2.12, however,
for easier reading we do not access this general lemma in the proof below. In the
special case given here, Lemma 2.12 yields simply Z0 = I,Y1 = Z1 = I,. . . ,Yk = Zk =
I, and further

Yk+1 = I +Qk(Q̄k−Qk)+
k−1

∑
l=0

QlAklQ̄k = (I +
k−1

∑
l=0

QlAklQk)(I +Qk(Q̄k−Qk)),

Zk+1 = Yk+1,

Yj = I +
j−2

∑
l=0

QlA j−1lQ j−1, Z j = YjZ j−1, j = k+2, . . . ,μ .

Besides the general property kerΠ̄ j = kerΠ j, j = 0, . . . ,μ−1, which follows from
Lemma 2.12, now it additionally holds that

im Q̄k = imQk, but ker Q̄ j = kerQ j, j = k+1, . . . ,μ−1.
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Proof (of Lemma 2.41). (1) Put Q̄i = Qi for i = 0, . . . ,k−1 such that Q̄0, . . . , Q̄k are
admissible by the assumptions and the following relations are valid:

Πk =ΠkΠ̄k, Π̄k = Π̄kΠk,

Q̄kPk = Q̄kΠk,

QkP̄k = Qk(I− Q̄k) = Qk− Q̄k = Q̄kQk− Q̄k =−Q̄kPk,

Π̄k =Πk−1(Pk +Qk)P̄k =Πk +Πk−1QkP̄k = (I−Πk−1Q̄k)Πk.

We verify the assertion level by level by induction. Set Ḡi = Gi,Zi = I, B̄i = Bi, for
i = 0, . . . ,k−1, Ḡk = Gk, Zk = I, and derive

B̄k = Bk−1Pk−1−GkD−(DΠ̄kD−)′DΠk−1

= Bk−1Pk−1−GkD−{DΠ̄kD−(DΠkD−)′+(DΠ̄kD−)′DΠkD−}DΠk−1

= Bk−1Pk−1−GkΠ̄kD−(DΠkD−)′DΠk−1−GkD−(DΠ̄kD−)′DΠk

= Bk +Gk(I− Π̄k)D−(DΠkD−)′DΠk−1−GkD−(DΠ̄kD−)′DΠk

= Bk +Gk

k−1

∑
l=0

QlAk,l−GkD−(DΠ̄kD−)′DΠk,

where we have used GkQ̄k = 0 and I− Π̄k = Q̄k +Qk−1P̄k + · · ·+Q0P1 · · ·Pk−1P̄k
and with coefficients

Ak,l = QlPl+1 · · ·Pk−1P̄kD−(DΠ̄kD−)′DΠk−1.

Next we compute

Ḡk+1 = Gk + B̄kQ̄k = Gk +BkQ̄k +Gk

k−1

∑
l=0

QlAk,l Q̄k

= Gk+1 +Bk(Q̄k−Qk)+Gk

k−1

∑
l=0

QlAk,l Q̄k = Gk+1Zk+1,

Zk+1 = I +Qk(Q̄k−Qk)+
k−1

∑
l=0

QlAk,l Q̄k = (I +
k−1

∑
l=0

QlAk,lQk)(I +Qk(Q̄k−Qk)),

Z−1
k+1 = (I−Qk(Q̄k−Qk))(I−

k−1

∑
l=0

QlAk,lQk) = I−Qk(Q̄k−Qk)−
k−1

∑
l=0

QlAk,lQk.

Put Q̄k+1 = Z−1
k+1Qk+1Zk+1 = Z−1

k+1Qk+1 such that

Q̄k+1Pk+1 = 0, Q̄k+1 = Q̄k+1Πk−1, ΠkQ̄k+1 =ΠkQk+1,
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Π̄kQ̄k+1 = Π̄kΠkQk+1 is continuous and DΠ̄kQ̄k+1D− = DΠ̄kD−DΠkQk+1D− is
continuously differentiable, and hence Q̄0, . . . , Q̄k, Q̄k+1 are admissible. It holds that

Πk+1 =Πk+1Π̄k+1, Π̄k+1 = Π̄k+1Πk+1, Π̄k+1 = (I−Πk−1Q̄k)Πk+1.

We obtain the expression

B̄k+1 = Bk+1− Ḡk+1D−(DΠ̄k+1D−)′DΠk+1 +Gk+1

k

∑
l=0

QlAk+1,l ,

with continuous coefficients Ak+1,l = Ak+1,lΠk = Ak+1,lΠ̄k, and then

Ḡk+2 = Ḡk+1 + B̄k+1Q̄k+1 = (Gk+1 + B̄k+1Qk+1)Zk+1

= (Gk+1 +Bk+1Qk+1 +Gk+1

k

∑
l=0

QlAk+1,lQk+1)Zk+1

= Gk+2(I +
k

∑
l=0

QlAk+1,lQk+1)Zk+1 =: Gk+2Zk+2,

with the nonsingular matrix function

Zk+2 = (I +
k

∑
l=0

QlAk+1,lQk+1)Zk+1

= I +Qk(Q̄k−Qk)+
k−1

∑
l=0

QlAk,l Q̄k +
k

∑
l=0

QlAk+1,lQk+1

such that

Zk+1Z−1
k+2 = I−

k

∑
l=0

QlAk+1,lQk+1.

Letting Q̄k+2 = Z−1
k+2Qk+2Zk+2 = Z−1

k+2Qk+2 we find

Qk+2Q̄k+2 = Qk+2, Q̄k+2Qk+2 = Q̄k+2, Q̄k+2 = Q̄k+2Πk+1 = Q̄k+2Π̄k+1,

Π̄k+1Q̄k+2 = Π̄k+1Πk+1Qk+2, DΠ̄k+1Q̄k+2D− = DΠ̄k+1D−DΠk+1Qk+2D−,

so that Q̄0, . . . , Q̄k+2 are known to be admissible.
Further, we apply induction. For a certain κ ≥ k + 2, let, the projector functions
Q̄0, . . . , Q̄κ be already shown to be admissible and, for i = k+2, . . . ,κ ,
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B̄i−1 = Bi−1− Ḡi−1D−(DΠ̄i−1D−)′DΠi−1 +Gi−1

i−2

∑
l=0

QlAi−1,l ,

Ai−1,l = Ai−1,lΠi−2,

Ḡi = GiZi, Zi = (I +
i−2

∑
l=0

QlAi−1,lQi−1)Zi−1,

Q̄i = Z−1
i QiZi = Z−1

i Qi, Π̄i = (I−Πk−1Q̄k)Πi.

Now we consider

B̄κ = B̄κ−1P̄κ−1− ḠκD−(DΠ̄κD−)′DΠ̄κ−1

= B̄κ−1Pκ−1− ḠκD−(DΠ̄κD−)′DΠκ − ḠκΠ̄κD−(DΠκD−)′DΠ̄κ−1

= Bκ − ḠκD−(DΠ̄κD−)′DΠκ +Gκ
κ−2

∑
l=0

QlAκ−1,lPκ−1 +Cκ ,

with

Cκ := GκD−(DΠκD−)′DΠκ−1− ḠκΠ̄κD−(DΠκD−)′DΠ̄κ−1

− Ḡκ−1D−(DΠ̄κ−1D−)′DΠκ−1

= GκD−(DΠκD−)′DΠκ−1− ḠκΠ̄κD−{(DΠκD−)′ −DΠκD−(DΠ̄κ−1D−)′}×
×DΠκ−1− Ḡκ−1D−(DΠ̄κ−1D−)′DΠκ−1

= Gκ(I−ZκΠ̄κ)D−(DΠκD−)′DΠκ−1

−Gκ(Pκ−1Zκ−1−ZκΠ̄κ)D−(DΠ̄κ−1D−)′DΠκ−1.

Regarding the relations ΠκZκ =Πκ and ΠκZκ−1 =Πκ we observe that

Πκ(I−ZκΠ̄κ) = 0, Πκ(Pκ−1Zκ−1−ZκΠ̄κ) = 0.

The representation I−Πκ = Qκ +Qκ−1Pκ + · · ·+Q0P1 · · ·Pκ admits of the expres-
sions

I−ZκΠ̄κ =
κ

∑
l=0

QlEκ ,l , Pκ−1Zκ−1−ZκΠ̄κ =
κ

∑
l=0

QlFκ ,l .

Considering GκQκ = 0, this leads to the representations

Cκ =
κ−1

∑
l=0

Ql{Eκ ,lD−(DΠκD−)′DΠκ−1−Fκ ,lD−(DΠ̄κ−1D−)′DΠκ−1},

and hence

B̄κ = Bκ − ḠκD−(DΠ̄κD−)′DΠκ +Gκ
κ−1

∑
l=0

QlAκ ,l ,

with continuous coefficients
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Aκ ,l = Aκ ,lΠκ−1, l = 0, . . . ,κ−1.

It follows that

Ḡκ+1 = Ḡκ + B̄κ Q̄κ = GκZκ + B̄κ+1Z−1
κ QκZκ

= {Gκ +BκQκ +Gκ
κ−1

∑
l=0

QlAκ ,lQκ}Zκ

= Gκ+1{I +
κ−1

∑
l=0

QlAκ ,lQκ}Zκ =: Gκ+1Zκ+1.

Letting Q̄κ+1 = Z−1
κ+1Qκ+1Zκ+1 = Z−1

κ+1Qκ+1 we find

Q̄κ+1 = Q̄κ+1Πκ = Q̄κ+1ΠκΠ̄κ = Q̄κ+1Π̄κ ,

Π̄κ Q̄κ+1 = Π̄κΠκQκ+1 DΠ̄κ Q̄κ+1D− = DΠ̄κD−DΠκQκ+1D−,

which shows the sequence Q̄0, . . . , Q̄κ+1 to be admissible and all required relations
to be valid. We are done with Assertion (1).

(2) Owing to Lemma 2.31, the functions

Qμ−1∗ = Qμ−1G−1
μ Bμ−1,

Qi∗ = QiPi+1 · · ·Pμ−1G−1
μ {Bi +GiD−(DΠμ−1D−)′DΠi−1}︸ ︷︷ ︸

=:Bi

, i = 1, . . . ,μ−2,

are continuous projector-valued functions such that

imQi∗ = imQi = kerGi, Qi∗ = Qi∗Πi−1, i = 1, . . . ,μ−1.

Since Q0, . . . ,Qμ−1 are admissible, for j = 1, . . . ,μ−2, it holds that

Q jPj+1 · · ·Pμ−1G−1
μ G j = Q jPj+1 · · ·Pμ−1Pμ−1 · · ·Pj = Q jPj+1 · · ·Pμ−1Pj

= Q jPj+1 · · ·Pμ−1−Q j =−Q j(I−Pj+1 · · ·Pμ−1)

=−Q j{Q j+1 +Pj+1Q j+2 + · · ·+Pj+1 · · ·Pμ−2Qμ−1}.
(B.7)

Property (B.7) immediately implies

Q jPj+1 · · ·Pμ−1G−1
μ G j = Q jPj+1 · · ·Pμ−1G−1

μ G jΠ j, (B.8)

Q jPj+1 · · ·Pμ−1G−1
μ G jΠμ−1 = 0, (B.9)

Q jPj+1 · · ·Pμ−1G−1
μ Gi = Q jPj+1 · · ·Pμ−1G−1

μ G j for i < j. (B.10)

Analogous relations are valid also for the new sequence Q̄0, . . . , Q̄μ−1, and, addi-
tionally,
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Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1
μ Ḡ j = Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1

μ G j, (B.11)

Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1
μ Ḡ j = Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1

μ Ḡ jΠ j. (B.12)

Noting that Q̄l = Q̄lQl , Ql = QlQ̄l for l ≥ k+1, we have further

Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1
μ Ḡ jΠμ−1 = 0, for j ≥ k. (B.13)

Now, assume the projector function sequence Q0, . . . ,Qμ−1 provides an already
advanced decoupling such that

Qμ−1∗Πμ−1 = 0, . . . ,Qk+1∗Πμ−1 = 0.

Recall that k ≤ μ − 2. Taking into account the relation Qμ−1G−1
μ Gμ−1 =

Qμ−1Pμ−1 = 0, we immediately conclude

Q̄μ−1∗Π̄μ−1 = Q̄μ−1Ḡ−1
μ B̄μ−1Π̄μ−1 = Q̄μ−1 Qμ−1Z−1

μ︸ ︷︷ ︸
=Qμ−1

G−1
μ B̄μ−1Πμ−2Π̄μ−1︸ ︷︷ ︸

=Πμ−1

= Q̄μ−1Qμ−1G−1
μ Bμ−1Πμ−1 = Q̄μ−1Qμ−1∗Πμ−1 = 0.

Next, for k ≤ i≤ μ−2, we investigate the terms

Q̄i∗Π̄μ−1 = Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ B̄iΠ̄μ−1

= Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ BiΠ̄μ−1 +Di,

with Di := Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ {B̄i−Bi}Π̄μ−1. First we show that Di = 0 thanks to

(B.11)–(B.13). Namely, we have by definition

Di = Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ {B̄i + ḠiD−(DΠ̄μ−1D−)′DΠ̄i−1−Bi

−GiD−(DΠμ−1D−)′DΠi−1}Π̄μ−1

= Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ {−ḠiD−(DΠ̄iD−)′DΠi +Gi

i−1

∑
l=0

QlAi,l

+ ḠiD−(DΠ̄μ−1D−)′DΠ̄i−1−GiD−(DΠμ−1D−)′DΠi−1}Π̄μ−1,

yielding

Di = Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ ḠiΠiD−{−(DΠiD−−DΠk−1Q̄kD−DΠiD−)′DΠi

+(DΠμ−1D−−DΠk−1Q̄kD−DΠμ−1D−)′(DΠi−1D−−DΠk−1Q̄kD−DΠi−1)

− (DΠμ−1D−)′DΠi−1}Π̄μ−1

= Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ ḠiΠiD−{(DΠk−1Q̄kD−)′DΠi +(DΠμ−1D−)′DΠi−1

− (DΠμ−1D−)′DΠk−1Q̄kD−DΠi−1− (DΠk−1Q̄kD−)′DΠμ−1

− (DΠμ−1D−)′DΠi−1}Π̄μ−1.
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Due to ΠiΠ̄μ−1 =Πμ−1 we arrive at

Di = Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ ḠiΠiD−{−(DΠμ−1D−)′DΠk−1Q̄kD−DΠi−1}Π̄μ−1

= Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ ḠiΠiD−DΠμ−1D−(DΠk−1Q̄kD−)′DΠi−1Π̄μ−1

= Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ ḠiΠμ−1D−(DΠk−1Q̄kD−)′DΠi−1Π̄μ−1 = 0,

which proves the relation

Q̄i∗Π̄μ−1 = Q̄iP̄i+1 · · · P̄μ−1Ḡ−1
μ BiΠ̄μ−1 (B.14)

for k ≤ i≤ μ−2. By means of the formula

Z jZ−1
j+1 = I−

j−1

∑
l=0

QlA j,lQ j

being available for j = k+1, . . . ,μ−1, we rearrange the terms in (B.14) as

Q̄i∗Π̄μ−1 = Q̄iZ−1
i+1Pi+1Zi+1Z−1

i+2Pi+2 · · ·Z−1
μ−1Pμ−1Zμ−1Z−1

μ G−1
μ BiΠ̄μ−1

= Q̄iZ−1
i+1Pi+1 · · ·Pμ−1G−1

μ BiΠ̄μ−1

+
μ−2

∑
j=i+1

Ei, jQ jPj+1 · · ·Pμ−1G−1
μ BiΠ̄μ−1 +Ei,μ−1Qμ−1G−1

μ BiΠ̄μ−1.

The very last term in this formula disappears because of

Qμ−1G−1
μ BiΠ̄μ−1 = Qμ−1G−1

μ BiΠ̄μ−1 = Qμ−1G−1
μ Bμ−1Π̄μ−1

= Qμ−1∗(I−Πk−1Qk)Πμ−1 = Qμ−1∗Πμ−1 = 0.

Next we prove the involved sum also vanishes. For this aim we consider the relation

(B j−Bi)Πμ−1 =−
j

∑
l=i+1

GlD−(DΠlD−)′DΠμ−1, for j ≥ i+1. (B.15)

We first assume i > k leading to BiΠ̄μ−1 =BiΠi−1Πμ−1 =BiΠμ−1 and further

Q jPj+1 · · ·Pμ−1G−1
μ BiΠμ−1

= Q jPj+1 · · ·Pμ−1G−1
μ B jΠμ−1︸ ︷︷ ︸

=Q j∗Πμ−1=0

+Q jPj+1 · · ·Pμ−1G−1
μ (Bi−B j)Πμ−1

= Q jPj+1 · · ·Pμ−1G−1
μ {

j

∑
l=i+1

GlD−(DΠlD−)′DΠμ−1

+(G j−Gi)(DΠμ−1D−)′DΠμ−1}.

Applying once more the properties (B.8) and (B.10), we derive
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Q jPj+1 · · ·Pμ−1G−1
μ BiΠμ−1

= Q jPj+1 · · ·Pμ−1G−1
μ {

j

∑
l=i+1

GlD−(DΠlD−)′DΠμ−1

+(G j−Gi)(DΠμ−1D−)′DΠμ−1}

= Q jPj+1 · · ·Pμ−1G−1
μ G jΠ jD−

j

∑
l=i+1

(DΠlD−)′DΠμ−1 = 0.

Now, for i > k, it results that

Q̄i∗Πμ−1 = Q̄iZ−1
i+1Pi+1 · · ·Pμ−1G−1

μ BiΠμ−1 = Q̄iQiPi+1 · · ·Pμ−1G−1
μ BiΠμ−1

= Q̄iQi∗Πμ−1 = 0,

which verifies property (B.5). By the same means one obtains

Q̄k∗Πμ−1 = Q̄kZ−1
k+1︸ ︷︷ ︸

=Qk

Pk+1 · · ·Pμ−1G−1
μ BkΠμ−1 = QkPk+1 · · ·Pμ−1G−1

μ BkΠμ−1

= Qk∗Πμ−1.

Finally, it remains to investigate the expression Q̄k∗Π̄μ−1. Since Q̄k∗ also projects
onto im Q̄k = kerGk, it follows that Q̄k∗Q̄k = Q̄k. This proves property (B.6), namely

Q̄k∗Π̄μ−1 = Q̄k∗(I−Πk−1Q̄k)Πμ−1 = Q̄k∗Πμ−1− Q̄k∗Πk−1Q̄kΠμ−1

= Qk∗Πμ−1− Q̄kΠμ−1 = (Qk∗ − Q̄k)Πμ−1.

��

B.3 Admissible projectors for Nx′+ x = r

In this part, admissible projectors are generated for the DAE (B.16) with a nilpo-
tent matrix function N typical for the normal form in the framework of strangeness
index (cf. [130]). Our admissible projectors are given explicitly by formulas (B.26)
below; they have upper block triangular form corresponding to the strict upper block
triangular form of N.
Roughly speaking Lemma B.1 below is the technical key when proving that any
DAE which has a well-defined regular strangeness index is at the same time reg-
ular in the tractability-index framework, and, in particular, the constant-rank re-
quirements associated to the strangeness index are sufficient for the constant-rank
conditions associated to the tractability index.
We deal with the special DAE

Nx′+ x = r, (B.16)
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given by a matrix function N ∈C(I,L(Rm)), I ⊆R an interval, that has strict upper
block triangular structure uniform on I

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 N12 . . . N1μ

0
. . .

...
. . .

...
0 Nμ−1μ

0

⎤
⎥⎥⎥⎥⎥⎥⎦

} �1

} �μ−1
} �μ

,

1 ≤ �1 ≤ ·· · ≤ �μ , �1 + · · ·+ �μ = m, μ ≥ 2. The blocks Nii+1, i = 1, . . . ,μ−1, are
supposed to have full row rank each, i.e.,

rankNii+1 = �i, i = 1, . . . ,μ−1. (B.17)

This implies that all powers of N have constant rank, namely

rankN = �1 + · · ·+ �μ−1,

rankNk = �1 + · · ·+ �μ−k, k = 1, . . . ,μ−1, (B.18)
rankNμ = 0.

N is nilpotent with index μ , i.e., Nμ−1 �= 0, Nμ = 0. For i = 1, . . . ,μ−1, we intro-
duce projectors V [1]

i+1,i+1 ∈ C(I,L(R�i+1)) onto the continuous subspace kerNi,i+1,

and U [1]
i+1,i+1 := I�i+1 −V

[1]
i+1,i+1. V [1]

i+1,i+1 and U [1]
i+1,i+1 have constant rank �i+1− �i

and �i, respectively. Exploiting the structure of N we build a projector V [1] ∈
C(I,L(Rm)) onto the continuous subspace kerN, which has a corresponding up-
per block triangular structure

V [1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
V [1]

22 ∗ . . . ∗
. . . . . .

...
. . . ∗
V [1]
μμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

} �1

} �μ−1
} �μ

. (B.19)

The entries indicated by “∗” are uniquely determined by the entries of N and gener-
alized inverses N−i,i+1 with

N−i,i+1Ni,i+1 = V [1]
i+1,i+1, Ni,i+1N−i,i+1 = I�i , i = 1, . . . ,μ−1.

In the following, we assume the nullspace kerN to be just a C1 subspace, and
the projector V [1] to be continuously differentiable. Obviously, the property N ∈
C1(I,L(Rm)) is sufficient for that but might be too generous. For this reason, we do
not specify further smoothness conditions in terms of N but in terms of projectors
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and subspaces.
Making use of N = NU [1], U [1] := I−V [1], we reformulate the DAE (B.16) as

N(U [1]x)′+(I−NU [1]′)x = r. (B.20)

The matrix function NU [1]′ is again strictly upper block triangular, and I−NU [1]′ is
nonsingular, upper block triangular with identity diagonal blocks.

M0 := (I−NU [1]′)−1N =
μ−1

∑
�=0

(NU [1]′)�N

has the same strict upper block triangular structure as N, the same nullspace, and
entries (M0)i,i+1 =Ni,i+1, i= 1, . . . ,μ−1. Scaling equation (B.20) by (I−NU [1]′)−1

yields
M0(U [1]x)′+ x = q, (B.21)

where q := (I−NU [1]′)r. By construction, the DAE (B.21) has a properly stated
leading term (cf. Definition 2.1). Written as a general linear DAE

A(Dx)′+Bx = q

with A = M0, D = U [1], B = I, we have kerA = kerM0 = kerN = kerU [1], imD =
imU [1], R = U [1].
Next we choose D− = U [1], and, correspondingly P0 = U [1], Q0 = V [1]. With these
projectors, Π0 =P0, and G0 =AD=M0U [1] =M0, B0 = I, we form a matrix function
sequence and admissible projectors Q0, . . . ,Qκ for the DAE (B.21) as described in
Section 2.2.2. In particular, we shall prove this DAE to be regular with tractability
index μ .
The first matrix function (cf. Section 2.2.2) G1 is

G1 = M0 +Q0,

and G1z = 0, i.e., (M0 +Q0)z = 0, leads to P0M0z = 0, Q0z =−Q0M0P0z, z = (I−
Q0M0)P0z, z∈ kerP0M. Because of P0M0 =M−

0 M0M0, M2
0 =M0P0M0 the nullspaces

of P0M0 and M2
0 coincide. The inclusion kerM0 ⊂ kerM2

0 = kerP0M0 allows for the
decomposition kerM2

0 = kerM0⊕P0 kerM2
0 . If V [2] denotes a projector onto kerM2

0 ,
U [2] := I−V [2], then it follows that

imV [2] = imV [1]⊕ imU [1]V [2],

V [2]V [1] = V [1], (U [1]U [2])2 = U [1]U [2],

(Π0V [2])2 = Π0V [2],

rankU [2] = rankM2
0 = �1 + · · ·+ �μ−2,

rankV [2] = �μ−1 + �μ ,

rankΠ0V [2] = rankV [2]− rankV [1] = �μ−1.
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The matrix function
Q1 := (I−Q0M0)Π0V [2] (B.22)

has the properties

Q1Q0 = (I−Q0M0)Π0V [2]V [1] = (I−Q0M0)Π0V [1] = (I−Q0M0)Π0Q0 = 0,

hence Q1 ·Q1 = Q1, and

G1Q1 = (M0 +Q0)(I−Q0M0)Π0V [2] = (M0−Q0M0 +Q0)Π0V [2]

= P0M0Π0V [2] = P0M0V [2] = 0.

It becomes clear that Q1 is actually the required projector onto kerG1, if rankQ1 =
m− rankG1. I−Q0M0 is nonsingular, and Q1 has the same rank as Π0V [2], that
is, rankQ1 = �μ−1. Proposition 2.5(3) allows for an easy rank determination of the
matrix function G1. With

W0 :=

⎡
⎢⎢⎢⎣

0
. . .

0
I

⎤
⎥⎥⎥⎦
} �μ

we find imG1 = imG0⊕ imW0B0Q0 = imM0⊕ imW0Q0, thus r1 = r0+rankV [1]
μμ =

m− �μ + �μ − �μ−1 = m− �μ−1. It turns out that Q0, Q1 are admissible, supposing
π1 = U [1]U [2] is continuously differentiable.
Next, due to the structure of M2

0 , the projector V [2] can be chosen to be upper block
triangular,

V [2] =

⎡
⎢⎢⎢⎢⎢⎣

I
I
∗ . . . ∗

. . .
...
∗

⎤
⎥⎥⎥⎥⎥⎦
, U [2] = I−V [2] =

⎡
⎢⎢⎢⎢⎢⎣

0
0
∗ . . . ∗

. . .
...
∗

⎤
⎥⎥⎥⎥⎥⎦
.

The entries in the lower right corners play their role in rank calculations. They are

V [2]
μμ = I−U [2]

μμ , U [2]
μμ = (Nμ−2,μ−1Nμ−1,μ)

−Nμ−2,μ−1Nμ−1,μ .

To realize this we just remember that the entry (μ − 2,μ) of M2
0 is [M2

0 ]μ−2,μ =
Nμ−2,μ−1Nμ−1,μ . Both Nμ−2,μ−1 and Nμ−1,μ have full row rank �μ−2, respectively
�μ−1. Therefore, the product Nμ−2,μ−1Nμ−1,μ has full row rank equal to �μ−2. From
this it follows that

rankV [2]
μμ = dimkerNμ−2,μ−1Nμ−1,μ = �μ − �μ−2.
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Taking into account the inclusion

imV [1]
μμ = kerNμ−1,μ ⊆ kerNμ−2,μ−1Nμ−1,μ = imV [2]

μμ

we find
rankU [1]

μμV [2]
μμ = rankV [2]

μμ − rankV [1]
μμ = �μ−1− �μ−2.

By Proposition 2.5(3), with the projector along imG1

W1 :=

⎡
⎢⎢⎢⎣

0
. . .

0
U [1]
μμ

⎤
⎥⎥⎥⎦ , W1 =W0U [1],

we compute (before knowing G2 in detail)

imG2 = imG1⊕ imW1Q1, W1Q1 =W0U [1]V [2],

r2 = r1 + rankW1Q1 = r1 + rankU [1]
μμV

[2]
μμ = m− �μ−1 + �μ−1− �μ−2 = m− �μ−2.

We compute G2 = G1 +(B0Π0−G1D−(DΠ1D−)′DΠ0)Q1 (cf. Section 2.2.2) itself
as

G2 = M0 +Q0 +Π0Q1− (M0 +Q0)P0Π ′1Π0Q1

= M0 +Q0 +Π0Q1−M0F1Π0Q1,

where F1 := P0Π ′1Π0Q1 is upper block triangular as are all its factors. It follows that

G2 = M0 +Q0 +(I−M0F1)P0(I−Π1),

and G2 is upper block triangular. Due to the nonsingularity of I−M0F1, as well as
the simple property (I−M0F1)Q0 = Q0, we may use the description

G2 = (I−M0F1)
−1{M1 + I−Π1},

where M1 := (I−M0F1)
−1M0 again has the strict upper block triangular structure

of N, and entries [M1]ii+1 = Nii+1, i = 1, . . . ,μ−1. From the representation

Π1M1 = Π1P0M1 =Π1P0(I +M0F1 + · · ·+(M0F0)
μ−1)M0

= Π1(I +M0F1 + · · ·+(M0F1)
μ−1)P0M0

we know the inclusion kerΠ0M0 ⊆ kerΠ1M1 to be valid. Furthermore, we have
kerM2

0 M1 = kerΠ1M1 because of the representations kerU [2] = kerM2
0 = kerP0M0,

Π1M1 = P0U [2]M1 = P0(M2
0)
−M2

0 M1, and M2
0 M1 = M2

0U [2]M1 = M2
0 P0U [2]M1 =

M2
0Π1M1.
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The next lemma shows that we may proceed further in this way to construct
admissible projectors for the DAE (B.21). We shall use certain auxiliary continuous
matrix functions which are determined from level to level as

F0 := 0,

Fi := Fi−1 +
i

∑
�=1

P0Π ′�Πi−1Qi =
i

∑
j=1

j

∑
�=1

P0Π ′�Π j−1Qi, i≥ 1, (B.23)

H2 := H1 := H0 := 0,

Hi := Hi−1 +
i−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πi−1Qi

=
i

∑
j=3

j−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Π j−1Q j, i≥ 3. (B.24)

These matrix functions inherit the upper block triangular structure. They disappear if
the projectors Π1, . . . ,Πi do not vary with time (what is given at least in the constant
coefficient case).
It holds that Fi = FiP0, Hi = HiP0. The products FiM0 are strictly upper block trian-
gular so that I−M0Fi is nonsingular, and

Mi := (I−M0Fi)
−1M0 (B.25)

again has strict upper block triangular structure. The entries ( j, j+1) of Mi coincide
with those of N, i.e.,

[Mi] j, j+1 = Nj, j+1. (B.26)

If the projectors Π0, . . . ,Πi are constant, then we simply have Mi = M0 = N.

Lemma B.1. Let N be sufficiently smooth so that the continuous projectors Πi
arising below are even continuously differentiable. Let k ∈ N, k ≤ μ − 1, and let
Q0 := V [1] be given by (B.19), and, for i = 1, . . . ,k,

Qi :=
(

I−
i−1

∑
j=0

Q j(I−Hi−1)
−1Mi−1

)
Πi−1V [i+1], (B.27)

V [i+1] ∈ C(I,L(Rm)) an upper block triangular projector onto kerM2
0 M1 · · ·Mi−1,

U [i+1] := I−V [i+1]. Then, the matrix functions Q0, . . . ,Qk are admissible projectors
for the DAE (B.21) on I, and, for i = 1, . . . ,k, it holds that

Πi−1Qi =Πi−1V [i+1], Πi = U [1] · · ·U [i+1], (B.28)
kerΠi−1Mi−1 ⊂ kerΠiMi, (B.29)
kerΠiMi = kerM2

0 M1 . . .Mi, (B.30)
Gi+1 = M0 +Q0 +(I−M0Fi)(I−Hi)P0(I−Πi), (B.31)
ri+1 = rankGi+1 = m− �μ−i−1, imGi+1 = imGi⊕ imW0Πi−1Qi,
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and I−Hi is nonsingular.

Before we turn to the proof of Lemma B.1 we realize that it provides admissi-
ble projectors Q0, . . . ,Qμ−1 and characteristics r0 = m−�μ , . . . ,rμ−1 = m−�1 < m.
Because of the strict upper block triangular structure of M0, . . . ,Mμ−2, the prod-
uct M2

0 M1 · · ·Mμ−2 disappears (as Nμ does). This leads to V [μ ] = I, U [μ ] = 0, thus
Πμ−1 = 0, and

Gμ = M0 +Q0 +(I−M0Fμ−1)(I−Hμ−1)P0(I−Πμ−1)

= M0 +Q0 +(I−M0Fμ−1)(I−Hμ−1)P0

= (I−M0Fμ−1)(I−Hμ−1){(I−Hμ−1)
−1Mμ−1 + I}.

The factors I −M0Fμ−1 and I − Hμ−1 are already known to be nonsingular.
(I−Hμ−1)

−1Mμ−1 inherits the strict upper block triangular structure from Mμ−1,
but then I+(I−Hμ−1)

−1Mμ−1 is nonsingular, and so is Gμ . Hence we have proved
an important consequence of Lemma B.1:

Proposition B.2. Let N be sufficiently smooth to make the continuous projectors
Π0, . . . ,Πμ−2 even continuously differentiable. Then the DAE (B.21) is on I regular
with tractability index μ and characteristic values

ri = m− �μ−i, i = 0, . . . ,μ−1, rμ = m.

It holds that Πμ−1 = 0, and there is no inherent regular ODE within the DAE.

To prepare the proof of Lemma B.1 we give the following lemma

Lemma B.3. Let Vi ∈ L(Rm) be idempotent, Ui := I−Vi, Li := imVi, νi := rankVi,
i = 1, . . . ,k, and Li ⊆ Li+1, i = 1, . . . ,k−1.
Then the products U1V2, . . . ,U1 · · ·Uk−1Vk,U1U2, . . . ,U1 · · ·Uk are projectors, too,
and it holds that

U1 · · ·UiVi+1V j = 0, 1≤ j ≤ i, i = 1, . . . ,k−1,
kerU1 · · ·Ui = Li, i = 1, . . . ,k,
Lk = L1⊕U1L2⊕·· ·⊕U1 · · ·Uk−1Lk,

dimU1 · · ·Uk−1Lk = νk−νk−1. (B.32)

Proof. The inclusions L1 ⊆ L2 ⊆ ·· · ⊆ Li+1 lead to Vi+1V j = V j, for j = 1, . . . , i.
Compute

U1V2U1V2 = U1V2(I−V1)V2 = U1V2−U1V1V2 = U1V2,

U1U2U1U2 = U1(I−V2)(I−V1)U2 = U1(I−V1−V2 +V1)U2 = U1U2.

L2 = imV2 ⊆ kerU1U2 holds trivially. z ∈ kerU1U2 means (I−V1)(I−V2)z = 0,
hence z = V1z+V2z−V1V2z ∈ L2, so that kerU1U2 = L2 is true.
By induction, if U1 · · ·Ui−1Qi, U1 · · ·Ui are projectors, kerU1 · · ·Ui = Li, then these
properties remain valid for i+1 instead of i. Namely,
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U1 · · ·Ui+1U1 · · ·Ui+1 = U1 · · ·Ui(I−Vi+1)U1 · · ·Ui+1

= U1 · · ·UiU1 · · ·Ui+1 = U1 · · ·Ui+1,

U1 · · ·UiVi+1U1 · · ·UiVi+1 = U1 · · ·UiVi+1,

Li+1 = kerUi+1 ⊆ kerU1 · · ·Ui+1,

and z ∈ kerU1 · · ·Ui+1 implies Ui+1z ∈ imU1 · · ·Ui = Li, z− Vi+1z ∈ Li, hence
z ∈ Li +Li+1 = Li+1. Now we can decompose

L2 = L1⊕U1L2,

L3 = L1⊕U1L2⊕U1U2L3 = L2⊕U1U2L3,

Li+1 = L1⊕U1L2⊕·· ·⊕︸ ︷︷ ︸
= Li

U1 · · ·UiLi+1 = Li⊕U1 · · ·UiLi+1,

and it follows that dimU1 · · ·UiLi+1 = vi+1− vi, i = 1, . . . ,k−1. ��

Proof (of Lemma B.1). We apply induction. For k = 1 the assertion is already
proved, and the corresponding projector Q1 is given by (B.22).
Let the assertion be true up to level k. We are going to show its validity for level
k+1. We stress once more that we are dealing with structured triangular matrices.
We already know that Q0, . . . ,Qk are admissible, and, in particular, it holds that
QiQ j = 0, for 0 ≤ j < i ≤ k. A closer look at the auxiliary matrix functions Hi (cf.
(B.24)) shows that HiQ1 = 0, HiQ2 = 0, further HiΠi = 0, and Πi−2Hi = 0.
Namely, Π1H3 =Π1P0(I−Π1)Π ′2Π1Q2 = 0, and Π j−3Hj−1 = 0, for j ≤ i, implies
Πi−2Hi = 0 (due to Πi−2H� = 0, Πi−2P0(I−Π�−1) = 0, �= 1, . . . , i−1).
The functions F1, . . . ,Fk (cf. (B.23)) are well-defined, and they have the properties

(Fk−Fj)Πk = 0, (Fk−Fj)Π j = Fk−Fj, for j = 1, . . . ,k. (B.33)

It follows that, for j = 1, . . . ,k,

(I−M0Fk)
−1(I−M0Fj) = I +(I−M0Fk)

−1M0(Fk−Fj)Π j.

Next we verify the property

Π j−1MkQ j = 0, j = 0, . . . ,k. (B.34)

From G jQ j = 0, j = 0, . . . ,k, we know

M0Q j +Q0Q j +(I−M0Fj−1)(I−Hj−1)P0(I−Π j−1)Q j = 0. (B.35)

Multiplication by (I−M0Fk)
−1 leads to

MkQ j+Q0Q j+{I+(I−M0Fk)
−1M0(Fk−Fj−1)Π j−1}(I−Hj−1)P0(I−Π j−1)Q j =0,

and further, taking account of Π j−1Hj−1 = 0, Π j−1P0(I−Π j−1) = 0,



620 B Technical computations

MkQ j +Q0Q j +(I−Hj−1)P0(I−Π j−1)Q j = 0, (B.36)

and hence Π j−1MkQ j = 0, i.e., (B.34). Now it follows that ΠkMkQ j = 0, for
j = 0, . . . ,k, hence

ΠkMk =ΠkMkΠk, (B.37)

a property that will appear to be very helpful.
Recall that we already have a nonsingular I−Hk, as well as

Gk+1 = M0 +Q0 +(I−M0Fk)(I−Hk)P0(I−Πk)

= (I−M0Fk)(I−Hk){(I−Hk)
−1Mk + I−Πk}, (B.38)

and Gk+1 has rank rk+1 = m− �μ−k−1. We have to show the matrix function

Qk+1 :=
(

I−
k

∑
j=0

Q j(I−Hk)
−1Mk

)
ΠkV [k+2]

to be a suitable projector. We check first whether Gk+1Qk+1 = 0 is satisfied. Derive
(cf. (B.38))

Gk+1Qk+1 = (I−M0Fk){Mk +(I−Hk)(I−Πk)}
(

I−
k

∑
j=0

Q j(I−Hk)
−1Mk

)
ΠkV [k+2]

= (I−M0Fk)
{

Mk−
k

∑
j=1

MkQ j(I−Hk)
−1Mk

−(I−Hk)
k

∑
j=0

Qi(I−Hk)
−1Mk

}
ΠkV [k+2]

= (I−M0Fk)
{

I−Hk−
k

∑
j=1

MkQ j− (I−Hk)
k

∑
j=0

Q j

}
× (B.39)

× (I−Hk)
−1MkΠkV [k+2].

From (B.36) we obtain, for j = 1, . . . ,k,

MkQ j +(I−Hk)Q j = −Q0Q j− (I−Hj−1)P0(I−Π j−1)Q j +(I−Hk)Q j

= P0Q j−HkQ j− (I−Hj−1)(I−Π j−1)P0Q j

= P0Q j−HkQ j− (I−Hj−1)P0Q j +Π j−1Q j

= −(Hk−Hj−1)P0Q j +Π j−1Q j

and, therefore,
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k

∑
j=1

(MkQ j +(I−Hk)Q j) =
k

∑
j=1

Π j−1Q j−
k

∑
j=1

(Hk−Hj−1)P0Q j

=
k

∑
j=1

Π j−1Q j−Hk.

The last relation becomes true because of (Hk−H0)Q1 = 0, (Hk−H1)Q2 = 0, and
the construction of Hi (cf. (B.24)),

k

∑
j=1

(Hk−Hj−1)P0Q j =
k

∑
j=3

(Hk−Hj−1)P0Q j

=
k

∑
j=3

[ k

∑
ν= j

ν−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πν−1Qν

]
P0Q j

=
k

∑
j=3

j−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Π j−1Q j = Hk.

Together with (B.39) this yields

Gk+1Qk+1 = (I−M0Fk)
{

I−Hk−
( k

∑
j=1

Π j−1Q j−Hk

)
−Q0

}
(I−Hk)

−1MkΠkV [k+2]

= (I−M0Fk)
{

I−Q0−
k

∑
j=1

Π j−1Q j

}
(I−Hk)

−1MkΠkV [k+2]

= (I−M0Fk)Πk(I−Hk)
−1MkΠkV [k+2]. (B.40)

For more specific information on (I−Hk)
−1 we consider the equation (I−Hk)z=w,

i.e. (cf. (B.24))

(I−Hk−1)z−
k−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πk−1Qkz = w. (B.41)

Because of Πk−1Hk−1 = 0, Πk−1H�−1 = 0, Πk−2P0(I−Π�−1) = 0, multiplication of
(B.41) by Πk−1Qk =Πk−1QkΠk−1 yields Πk−1Qkz =Πk−1Qkw, such that

z = (I−Hk−1)
−1
{

w+
k−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πk−1Qkw
}

results, and further,

(I−Hk)
−1 = (I−Hk−1)

−1
(

I−
k−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πk−1Qk

)
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= (I−H3)
−1
(

I +
3

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Π3Q4

)
×·· ·

· · ·×
(

I +
k−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πk−1Qk

)

= (I +P0Q1Π ′2Π2Q3)×·· ·×
(

I +
k−1

∑
�=2

(I−H�−1)P0(I−Π�−1)Π ′�Πk−1Qk

)
.

This shows that Πk(I−Hk)
−1 = Πk holds true. On the other hand FkΠk = 0 is also

given, which leads to
Gk+1Qk+1 =ΠkMkΠkV [k+2].

With the help of (B.37), and taking into account that kerΠkMk = kerM2
0 M1 · · ·Mk,

we arrive at
Gk+1Qk+1 =ΠkMkV [k+2] = 0,

that is, the matrix function Qk+1 satisfies the condition imQk+1 ⊆ kerGk+1. The
inclusions (cf. (B.29), (B.30))

kerΠi−1Mi−1 = kerM2
0 M1 · · ·Mi−1 ⊂ kerΠiMi = kerM2

0 M1 · · ·Mi

are valid for i = 1, . . . ,k. This leads to

imV [1] ⊂ imV [2] ⊂ ·· · ⊂ V [κ+2]

which allows an application of Lemma B.3. We make use of the structural properties

rankM2
0 M1 · · ·Mi = rankNi+2 = �1 + · · ·+ �μ−i−2,

rankV [i+2] = m− (�1 + · · ·+ �μ−i−2) = �μ−i−1 + · · ·+ �μ ,

so that Lemma B.3 yields

rankU [1] · · ·U [k+1]V [k+2] = rankV [k+2]− rankV [k+1] = �μ−k−1.

Writing Qk+1 in the form

Qk+1 =
(

I−
k

∑
j=0

Q j(I−Hk)
−1MkΠk

)
ΠkV [k+2],

and realizing that the first factor is nonsingular, we conclude

rankQk+1 = rankΠkV [k+2] = �μ−k−1 = m− rankGk+1.

Applying Lemma B.3 again we derive, for j = 0, . . . ,k,
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Qk+1Q j =
(

I−
k

∑
j=0

Q j(I−Hk)
−1Mk

)
ΠkV [k+2]Q j,

ΠkV [k+2]Q j = U [1] · · ·U [k+1]V [k+2]Q j

= U [1] · · ·U [k+1]V [k+2]U [1] · · ·U [ j]Q j

= U [1] · · ·U [k+1]V [k+2]U [1] · · ·U [ j]V [ j+1] = 0,

such that Qk+1Q j = 0, j = 0, . . . ,k, and furthermore Qk+1Qk+1 = Qk+1. This com-
pletes the proof that Qk+1 is a suitable projector function, and that Q0, . . . ,Qk,Qk+1
are admissible.
It remains to verify (B.29)–(B.31) for i = k+1, to consider the rank of Gk+2 as well
as to show the nonsingularity of I−Hk+1.
First we consider the rank of Gk+2. Following Proposition 2.5(3) it holds that

imGk+2 = imGk+1⊕ imWk+1ΠkQk+1,

with a projectorWk+1 such that kerWk+1 = imGk+1. Because of

imGk+1 = imGk⊕ imW0Πk−1Qk

= imG0⊕ imW0Q0⊕·· ·⊕ imW0Πk−1Qk

= imG0⊕ imW0(Q0 + · · ·+Πk−1Qk)

= imG0⊕ imW0(I−Πk)

we may choose the projector

Wk+1 =W0Πk =W0ΠkW0.

This leads to
imGk+2 = imGk+1⊕ imW0ΠkQk+1,

as well as to

rk+2 = rk+1 + rankW0ΠkQk+1 = rk+1 + rank [ΠkQk+1]μμ

= rk+1 + rankU [1]
μμ · · ·U [k+1]

μμ V [k+2]
μμ = m− �μ−k−1 +(�μ−k−1− �μ−k−2)

= m− �μ−k−2.

Therefore, to show that rankU [1]
μμ · · ·U [k+1]

μμ V [k+2]
μμ = �μ−k−1− �μ−k−2 we recall that

V [1]
μμ projects onto kerNμ−1,μ ,

V [2]
μμ projects onto kerNμ−2,μ−1Nμ−1,μ ,

. . .

V [k+1]
μμ projects onto kerNμ−k−1,μ−k · · ·Nμ−1,μ
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and
V [k+2]
μμ projects onto kerNμ−k−2,μ−k−1 · · ·Nμ−1,μ ,

and

imV [1]
μμ ⊂ imV [2]

μμ ⊂ ·· · ⊂ imV [k+2]
μμ ,

rankV [i]
μμ = �μ − �μ−i, i = 1, . . . ,k+2.

Here, Lemma B.3 applies again, and it follows that

rankU [1]
μμ · · ·U [k+1]

μμ V [k+2]
μμ = rankV [k+2]

μμ − rankV [k+1]
μμ

= �μ − �μ−k−2− (�μ − �μ−k−1) = �μ−k−1− �μ−k−2.

So we are done with the range and rank of Gk+2.
In the next step we provide Gk+2 itself (cf. Section 2.2.2). Compute

Gk+2 = Gk+1 +ΠkQk+1−
k+1

∑
j=1

G jP0Π ′jΠkQk+1

= M0 +Q0 +(I−M0Fk)(I−Hk)P0(I−Πk)+ΠkQk+1−M0Π ′1ΠkQk+1

−
k+1

∑
j=2
{M0 +(I−M0Fj−1)(I−Hj−1)P0(I−Π j−1)}Π ′jΠkQk+1

= M0 +Q0 +(I−M0Fk)P0(I−Πk)− (I−M0Fk)Hk +ΠkQk+1

−
k+1

∑
j=1

M0Π ′jΠkQk+1−
k+1

∑
j=2

(I−M0Fj−1)(I−Hj−1)P0(I−Π j−1)Π ′jΠkQk+1

and rearrange (cf. (B.23), (B.24)) certain terms to

(I−M0Fk)P0(I−Πk)+ΠkQk+1−M0

k+1

∑
j=1

P0Π ′jΠkQk+1 = (I−M0Fk+1)P0(I−Πk+1)

and

(I−M0Fk)Hk +
k

∑
j=2

(I−M0Fj−1)(I−Hj−1)P0(I−Π j−1)Π ′jΠkQk+1

= (I−M0Fk)
{

Hk +
k

∑
j=2

(I−M0Fk)
−1(I−M0Fj−1)(I−Hj−1)×

×P0(I−Π j−1)Π ′jΠkQk+1

}

= (I−M0Fk)
{

Hk +
k

∑
j=2

(I−Hj−1)P0(I−Π j−1)Π ′jΠkQk+1

}

= (I−M0Fk)Hk+1 = (I−M0Fk+1)(I−M0Fk+1)
−1(I−M0Fk)Hk+1
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= (I−M0Fk+1)Hk+1 = (I−M0Fk+1)Hk+1P0(I−Πk+1),

which leads to

Gk+2 = M0 +Q0 +(I−M0Fk+1)P0(I−Πk+1)− (I−M0Fk+1)Hk+1P0(I−Πk+1)

= M0 +Q0 +(I−M0Fk+1)(I−Hk+1)P0(I−Πk+1),

and we are done with Gk+2 (cf. (B.31)).
Next, I −Hk+1 is nonsingular, since (I −Hk+1)z = 0 implies ΠkQk+1z = 0, thus
(I−Hk)z = 0, and, finally z = 0 due to the nonsingularity of (I−Hk).
To complete the proof of Lemma B.1 we have to verify (B.29) and (B.30) for
i = k + 1, supposing kerΠk−1Mk−1 ⊆ kerΠkMk, kerΠkMk = kerM2

0 M1 · · ·Mk are
valid. From ΠkMk = ΠkMkΠk (cf. (B.37)) and kerM2

0 M1 · · ·Mk = kerΠkMk =

kerU [k+2] we obtain the relations

Πk+1Mk+1 = ΠkU [k+2]Mk+1 =Πk(M2
0 M1 · · ·Mk)

−M2
0 M1 · · ·MkMk+1,

M2
0 M1 · · ·Mk+1 = M2

0 M1 · · ·MkU [k+2]Mk+1

= M2
0 M1 · · ·Mk(ΠkMk)

−ΠkMkU [k+2]Mk+1

= M2
0 M1 · · ·Mk(ΠkMk)

−ΠkMkΠkU [k+2]Mk+1

= M2
0 M1 · · ·Mk(ΠkMk)

−ΠkMkΠk+1Mk+1,

hence kerΠk+1Mk+1 = kerM2
0 M1 · · ·Mk+1 holds true. Additionally, from

Πk+1Mk+1 = Πk+1(I−M0Fk+1)
−1(I−M0Fk)Mk

= Πk+1[I +(I−M0Fk+1)
−1M0(Fk+1−Fk)Πk]Mk

= Πk+1[I +(I−M0Fk+1)
−1M0(Fk+1−Fk)Πk]ΠkMk

we conclude the inclusion

kerΠkMk ⊆ kerΠk+1Mk+1.

��



Appendix C
Analysis

C.1 A representation result

Proposition C.1. Let the function d :Ω×I →R
n, Ω ⊆R

m open, I ⊆R an interval,
be continuously differentiable, and let the partial Jacobian dx(x, t) have constant
rank r on Ω ×I. Let x∗ : I∗ → R

m, I∗ ⊆ I, be a continuous function with values in
Ω , i.e., x∗(t) ∈Ω , t ∈ I∗. Put u∗(t) := d(x∗(t), t), t ∈ I∗.
Then, if u∗ is continuously differentiable the inclusion

u′∗(t)−dt(x∗(t), t) ∈ imdx(x∗(t), t), t ∈ I∗ (C.1)

is valid, and there exists a continuous function w∗ : I∗ → R
m such that

u′∗(t)−dt(x∗(t), t) = dx(x∗(t), t)w∗(t), t ∈ I∗. (C.2)

If dx(x∗(t), t) is injective, then w∗(t) is uniquely determined by (C.2).

Proof. Derive, for t ∈ I∗,

u′∗(t) = lim
τ→0

1
τ
(d(x∗(t + τ), t + τ)−d(x∗(t), t))

= lim
τ→0

{1
τ
(d(x∗(t + τ), t + τ)−d(x∗(t), t + τ))

+
1
τ
(d(x∗(t), t + τ)−d(x∗(t), t))

}
.

Since the expression 1
τ (d(x∗(t), t + τ) − d(x∗(t), t)) has, for τ → 0, the limit

dt(x∗(t), t), the other difference must possess a limit, too, i.e.

e∗(t) := lim
τ→0

1
τ
(d(x∗(t + τ), t + τ)−d(x∗(t), t + τ))

is well-defined, and u′∗(t) = e∗(t)+dt(x∗(t), t). Rewrite, for fixed t ∈ I∗,
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e∗(t) = lim
τ→0

∫ 1

0
dx(x∗(t)+ s(x∗(t + τ)− x∗(t)), t + τ)ds

1
τ
(x∗(t + τ)− x∗(t))

=: lim
τ→0

E(τ)g(τ),

with

E(τ) :=
∫ 1

0
dx(x∗(t)+ s(x∗(t + τ)− x∗(t)), t + τ))ds,

g(τ) :=
1
τ
(x∗(t + τ)− x∗(t)), τ ∈ (−ρ ,ρ), ρ > 0 small.

Recall that g(τ) has not necessarily a limit for τ → 0, but we can make use of the
existing limits lim

τ→0
E(τ)g(τ) = e∗(t) and lim

τ→0
E(τ) = dx(x∗(t), t) = E(0). The matrix

E(τ) ∈ L(Rm,Rn) depends continuously on τ , and E(0) has rank r, so that, at least
for all sufficiently small τ , it holds that rankE(τ) ≥ r. On the other hand, for all
sufficiently small τ and z ∈ R

m, the decomposition

[imdx(x∗(t), t)]⊥⊕ imdx(x∗(t)+ z, t + τ) = R
n (C.3)

is valid. If V∗ ∈ L(Rn) denotes the projector onto [imdx(x∗(t), t)]⊥ according to the
decomposition (C.3), then we have, for all sufficiently small τ , that

V∗E(τ) =
∫ 1

0
V∗dx(x∗(t)+ s(x∗(t + τ)− x∗(t)), t + τ)ds = 0.

V∗ has rank n− r, hence V∗E(τ) = 0 implies rankE(τ) ≤ r for all τ being suffi-
ciently small.
Now, E(τ) is, for small τ , a constant-rank matrix, so that E(τ)+ and U(τ) :=
E(τ)E(τ)+ are also continuous in τ . This leads to

e∗(t) = lim
τ→0

E(τ)g(τ) = lim
τ→0
U(τ)E(τ)g(τ)

= lim
τ→0
U(τ) · lim

τ→0
E(τ)g(τ) = U(0) · e∗(t),

which means e∗(t) ∈ imdx(x∗(t), t), or, equivalently,

u′∗(t)−dt(x∗(t), t) ∈ imdx(x∗(t), t), t ∈ I∗,

that is, we are done with the inclusion (C.1). Next, taking any continuous reflexive
generalized inverse dx(x, t)− to dx(x, t), the function w∗ : I∗ → R

m,

w∗(t) := dx(x∗(t), t)−(u′∗(t)−dt(x∗(t), t)), t ∈ I∗,

is continuous and satisfies

dx(x∗(t), t)w∗(t) = dx(x∗(t), t)dx(x∗(t), t)−(u′∗(t)−dt(x∗(t), t))

= u′∗(t)−dt(x∗(t), t),
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since (C.1) is valid, and dx(x∗(t), t)dx(x∗(t), t)− is a projector onto imdx(x∗(t), t).
Finally, (C.2) together with (C.1) define w∗(t) uniquely, if dx(x∗(t), t) is injective,
since then dx(x∗(t), t)−dx(x∗(t), t) = I, independently of the special choice of the
generalized inverse. ��
Notice that one can also choose w∗(t) = x′∗(t) to satisfy (C.2) supposing x∗ is known
to be continuously differentiable.

C.2 ODEs

Proposition C.2. Let the function g ∈ C(I,Rm), I = [0,∞), satisfy the one-sided
Lipschitz condition

〈g(x, t)−g(x̄, t),x− x̄〉 ≤ γ|x− x̄|2, x, x̄ ∈ R
m, t ∈ I, (C.4)

with a constant γ ≤ 0.
Then the ODE

x′(t) = g(x(t), t) (C.5)

has the following properties:

(1) The IVP for (C.5) with the initial condition

x(t0) = x0, t0 ∈ I, x0 ∈ R
m,

is uniquely solvable, and the solution is defined on I.
(2) Each pair of solutions x(.), x̄(.) satisfies the inequality

|x(t)− x̄(t)| ≤ eγt |x(0)− x̄(0)|, t ∈ I.

(3) The ODE has at most one stationary solution.

Proof. (1), (2): Let x(.), x̄(.) be arbitrary solutions defined on [0,τ), with τ > 0.
Derive for t ∈ [0,τ):

d
dt
|x(t)− x̄(t)|2 = 2〈g(x(t), t)−g(x̄(t), t),x(t)− x̄(t)〉

≤ 2γ|x(t)− x̄(t)|2.

By means of Gronwall’s lemma we find

|x(t)− x̄(t)| ≤ eγt |x(0)− x̄(0)|, t ∈ [0,τ). (C.6)

The inequality

|x(t)|− |x(0)− x̄(0)| ≤ |x̄(t)| ≤ |x(t)|+ |x(0)− x̄(0)|, t ∈ [0,τ)
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is a particular consequence of (C.6). It shows that x(t) grows unboundedly for t→ τ
if x̄(t) does, and vice versa.
This means that all solutions of the ODE can simultaneously be continued through
τ or not.
Assume that τ∗ > 0 exists such that all IVPs for (C.5) and x(0) = x0 have solutions
x(.,x0) defined on [0,τ∗), but x(t,x0) grows unboundedly, if t→ τ∗. Fix x∗ ∈R

m and
put x∗∗ := x( 1

2τ∗,x∗).
The solution x(.,x∗∗) is also defined on [0,τ∗), in particular at t = 1

2τ∗. However,
this contradicts the property x( 1

2τ∗,x∗∗) = x(τ∗,x∗). In consequence, such a value τ∗
does not exist, and all solutions can be continued on the infinite interval.
(3): For two stationary solutions c and c̄, (2) implies

|c− c̄| ≤ eγt |c− c̄| → 0 (t → ∞),

and hence c = c̄. ��

Lemma C.3. Given a real valued m×m matrix C, then:

(1) If all eigenvalues of C have strictly negative real parts, then there exist a con-
stant β < 0 and an inner product 〈·, ·〉 for Rm, such that

〈Cz,z〉 ≤ β |z|2, for all z ∈ R
m, (C.7)

and vice versa.
(2) If all eigenvalues of C have nonpositive real parts, and the eigenvalues on the

imaginary axis are nondefective, then there is an inner product 〈·, ·〉 for R
m,

such that

〈Cz,z〉 ≤ 0, for all z ∈ R
m, (C.8)

and vice versa.

Proof. Let σ1, . . . ,σm ∈ C denote the eigenvalues of C, and let T ∈ L(Cm) be the
transformation into Jordan canonical form J such that, with entries δ1, . . . ,δm−1 be-
ing 0 or 1,

J = T−1CT =

⎡
⎢⎢⎢⎢⎣

σ1 δ1
. . . . . .

. . . δm−1
σm

⎤
⎥⎥⎥⎥⎦

is given. For ε > 0, we form further

Jε = D−1
ε JDε =

⎡
⎢⎢⎢⎢⎣

σ1 εδ1
. . . . . .

. . . εδm−1
σm

⎤
⎥⎥⎥⎥⎦
, Dε =

⎡
⎢⎢⎢⎣

ε
ε2

. . .
εm

⎤
⎥⎥⎥⎦ .
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Jε and C are similar, Jε = D−1
ε T−1CT Dε = (T Dε)

−1C(T Dε).
By 〈z,y〉ε := 〈(T Dε)

−1z,(T Dε)
−1y〉2 and |z|ε := |(T Dε)

−1z|2, z,y ∈ C
m, we intro-

duce an inner product and the corresponding norm for Cm. Moreover, the expression

aε(u,v) := Re〈(T Dε)
−1u,(T Dε)

−1v〉2, u,v ∈ R
m,

defines an inner product for Rm.
Recall that the relation

Re〈Mz,z〉2 = 〈
1
2
(M+M∗)z,z〉2 ≤ λmax(

1
2
(M+M∗))|z|22, z ∈ C

m,

is valid for each arbitrary matrix M ∈ L(Cm), and, in particular,

Re〈Jεz,z〉2 ≤ λmax(
1
2
(Jε + J∗ε ))|z|22, z ∈ R

m.

We have

1
2
(Jε + J∗ε ) =

⎡
⎢⎢⎢⎢⎣

Reσ1
ε
2δ1

ε
2δ1

. . . . . .

. . . . . . ε
2δm−1

ε
2δm−1 Reσm

⎤
⎥⎥⎥⎥⎦
−−→
ε→0

⎡
⎢⎢⎢⎢⎣

Reσ1
. . .

. . .
Reσm

⎤
⎥⎥⎥⎥⎦

and λmax(
1
2 (Jε + J∗ε ))−−→ε→0

max
i=1,...,m

Reσi.

If all eigenvalues of C have strictly negative real parts, that is, max
i=1,...,m

Reσi =: 2β <

0, then choose a value ε > 0 such that λmax(
1
2 (Jε + J∗ε ))≤ β < 0.

If the eigenvalues σ1, . . . ,σm have zero real part, but these eigenvalues are nonde-
fective, and Reσ j < 0, j = s, . . . ,m, then it holds that

1
2
(Jε + J∗ε ) =

⎡
⎢⎢⎢⎢⎢⎣

0
. . .

0

1
2 (J̌ε + J̌∗ε )

⎤
⎥⎥⎥⎥⎥⎦
−−→
ε→0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
Reσs

. . .
Reσm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

J̌ε =

⎡
⎢⎢⎢⎢⎣

σs δs
. . . . . .

. . . δm−1
σm

⎤
⎥⎥⎥⎥⎦
∈ L(Cm−s+1).

Now we fix an ε > 0 such that λmax(
1
2 (J̌ε + J̌∗ε ))≤ 0, λmax(

1
2 (Jε + J∗ε )) = 0.

In both cases it results that
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aε(Cx,x) = Re〈(T Dε)
−1Cx,(T Dε)

−1x〉2
= Re〈(T Dε)

−1C(T Dε)︸ ︷︷ ︸
Jε

(T Dε)
−1x,(T Dε)

−1x〉2

≤ λmax(
1
2
(Jε + J∗ε ))|(TDε)

−1x|22

= λmax(
1
2
(Jε + J∗ε ))|x|2ε ,

and hence the inequalities (C.7) and (C.8) are proved to follow from the given prop-
erties of C.
The converse assertions become evident if one considers the homogeneous ODE
x′(t) =Cx(t). All its solutions satisfy

d
dt
|x(t)|2 = 2〈Cx(t),x(t)〉 ≤ 2β |x(t)|2, t ≥ 0,

thus |x(t)| ≤ eβ t |x(0)|, t ≥ 0 in the first case, and

d
dt
|x(t)|2 = 2〈Cx(t),x(t)〉 ≤ 0, t ≥ 0,

thus |x(t)| ≤ |x(0)|, t ≥ 0 in the second case. ��

C.3 Basics for evolution equations

This section summarizes basic spaces and their properties for the treatment of evo-
lution equations (see, e.g., [217]).

1. Dual space. Let V be a real Banach space. Then, V ∗ denotes the set of all linear
continuous functionals on V , i.e., the set of all linear continuous maps f : V →R.
Furthermore,

〈 f ,v〉 := f (v) for all v ∈V

and
‖ f‖V ∗ := sup

‖v‖V≤1
|〈 f ,v〉|.

In this way, V ∗ becomes a real Banach space. It is called the dual space to V .
2. Reflexive Banach space. Let V be a real Banach space. Then, V is called reflexive

if V =V ∗∗.
3. Evolution triple. The spaces V ⊆ H ⊆V ∗ are called an evolution triple if

(i) V is a real, separable, and reflexive Banach space,
(ii) H is a real, separable Hilbert space,
(iii) the embedding V ⊆ H is continuous, i.e.,
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‖v‖H ≤ const‖v‖V for all v ∈V,

and V is dense in H.

Below, Proposition C.5 explains how the inclusion H ⊆V ∗ is to be understood.
4. The Lebesgue space Lp(t0,T ;V ) of vector valued functions. Let V be a Banach

space, 1 < p <∞, and t0 < T <∞. The space Lp(t0,T ;V ) consists of all measur-
able functions v : (t0,T )→V for which

‖v‖p :=
(∫ T

t0
‖v(t)‖p

V
dt
) 1

p

< ∞.

The dual space of Lp(t0,T ;V ) is given by Lq(t0,T ;V ∗) where p−1 +q−1 = 1.
5. Generalized derivatives. Let X and Y be Banach spaces. Furthermore, let u ∈

L1(t0,T ;X) and w ∈ L1(t0,T ;Y ). Then, the function w is called the generalized
derivative of the function u on (t0,T ) if

∫ T

t0
ϕ ′(t)u(t) dt = −

∫ T

t0
ϕ(t)w(t) dt for all ϕ ∈C∞

0 (t0,T ).

The last equation includes the requirement that the integrals on both sides belong
to X ∩Y .

6. The Sobolev space W 1
2 (t0,T ;V,H). Let V ⊆ H ⊆ V ∗ be an evolution triple and

t0 < T < ∞. Then, the Sobolev space

W 1
2 (t0,T ;V,H) := {u ∈ L2(t0,T ;V ) : u′ ∈ L2(t0,T ;V ∗)}

forms a Banach space with the norm

‖u‖W 1
2
= ‖u‖L2(t0,T ;V ) +‖u′‖L2(t0,T ;V ∗).

The following proposition is a consequence of the Riesz theorem.

Proposition C.4. Let H be a Hilbert space. Then for each u ∈ H, there is a unique
linear continuous functional Ju on V with

〈Ju,v〉= (u|v) for all u,v ∈V,

where (·|·) denotes the scalar product of H. The operator J : V → V ∗ is linear,
bijective, and norm isomorphic, i.e.,

‖Ju‖V ∗ = ‖u‖V for all u ∈V.

Therefore, one can identify Ju with u for all u ∈V . This way we get H = H∗ and

〈u,v〉= (u|v) for all u,v ∈V.

The next proposition explains how the relation H ⊆V ∗ is to be understood.
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Proposition C.5. Let V ⊆ H ⊆ V ∗ be an evolution triple. Then, the following is
satisfied

(i) To each u ∈ H, there corresponds a linear continuous functional ū ∈V ∗ with

〈ū,v〉V = (u|v)H for all v ∈V.

(ii) The mapping u %→ ū from H into V ∗ is linear, injective, and continuous.

Proof. (i) Let u ∈ H. Then:

|(u|v)H| ≤ ‖u‖H‖v‖H ≤ const‖u‖H‖v‖V

is fulfilled for all v ∈V . Therefore, there exists a ū ∈V ∗ with

〈ū,v〉V = (u|v)H and ‖ū‖V ∗ ≤ const‖u‖H.

(ii) The mapping u %→ ū is obviously linear and continuous. In order to show injec-
tivity, we assume that ū = 0. This implies

(u|v)H = 0 for all v ∈V.

Since V is dense in H, we get u = 0. ��
This allows us to identify ū with u such that

〈u,v〉V = (u|v)H for all u ∈ H, v ∈V,

‖u‖V ∗ ≤ const‖u‖H for all u ∈ H.

In this sense, the relation H ⊆V ∗ is to be understood. Obviously, this embedding is
continuous.

The next theorem extends the solvability results for linear systems from Chap-
ter 2 to distributions on the right-hand side. We consider DAEs of the form

A(t)(D(t)x(t))′+B(t)x(t) = q(t), (C.9)
D(t0)x0 = z0 ∈ imD(t0). (C.10)

Theorem C.6. If q ∈ L2(t0,T ;Rn), then the index-1 IVP (C.9)–(C.10) has a unique
solution x in

L2
D(t0,T ;Rn) := {x ∈ L2(t0,T ;Rn) : Dx ∈C([t0,T ],Rm)}.

Equation (C.9) holds for almost all t ∈ [t0,T ]. Furthermore, Dx is differentiable for
almost all t ∈ [t0,T ] and there is a constant C > 0 such that

‖x‖L2(t0,T ;Rn) +‖Dx‖C([t0,T ],Rm) +‖(Dx)′‖L2(t0,T ;Rm) ≤C
(
‖z0‖+‖q‖L2(t0,T ;Rn

)
.

For continuous solutions, the right-hand side belonging to the nondynamical part
has to be continuous. The next theorem describes this more precisely.
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Theorem C.7. If q ∈ L2(t0,T ;Rn) and Q0G−1
1 q ∈ C([t0,T ];Rn), then the solution

x of the index-1 IVP (C.9)–(C.10) belongs to C([t0,T ];Rn) and we find a constant
C > 0 such that

‖x‖C([t0,T ],Rn) +‖(Dx)′‖L2(t0,T ;Rm) ≤C
(
‖z0‖+‖q‖L2(t0,T ;Rn) +‖Q0G−1

1 q‖C([t0,T ],Rn)

)
.

Proof (of Theorems C.6 and C.7). The proof is straightforward. We simply have to
combine standard techniques from DAE and Volterra operator theory. Due to the
index-1 assumption, the matrix

G1(t) = A(t)D(t)+B(t)Q0(t)

is nonsingular for all t ∈ [t0,T ]. Recall that Q0(t) is a projector onto kerA(t)D(t).
Multiplying (C.9) by D(t)G−1(t) and Q0(t)G−1(t), respectively, we obtain the sys-
tem

(Dx)′(t)−R′(t)(Dx)(t)+(DG−1
1 BD−)(t)(Dx)(t) = (DG−1

1 r)(t), (C.11)

(Q0x)(t)+(Q0G−1
1 BD−)(t)(Dx)(t) = (Q0G−1

1 r)(t), (C.12)

which is equivalent to (C.9). Here, we have used the properties

(DG−1
1 A)(t) = R(t), (G−1

1 BQ0)(t) = Q0(t)

for all t ∈ [t0,T ]. Recall that R(t) = D(t)D−(t) is a continuously differentiable pro-
jector onto imD(t) along kerA(t) and D−(t) is a generalized inverse that satisfies
D−(t)D(t) = P0(t).
For z :=Dx, equation (C.11) together with (C.10) represents an ordinary initial value
problem of the form

z′(t) = Â(t)z(t)+b(t), z(t0) = z0 (C.13)

with Â ∈C([t0,T ],L(Rm,Rm)) and b ∈ L2(t0,T ;Rm). Since Â is linear and continu-
ous, the map

x %→ Â(t)x

is Lipschitz continuous as a map from L2(t0,T ;Rm) into L2(t0,T ;Rm) with a Lips-
chitz constant that is independent of t. Consequently (see, e.g., [79], pp. 166–167),
the IVP (C.13) has a unique solution z ∈C([t0,T ],Rm) with z′ ∈ L2(t0,T ;Rm). The
solution z satisfies (C.13) for almost all t ∈ [t0,T ] and it is differentiable for almost
all t ∈ [t0,T ]. Furthermore, there is a constant C1 > 0 such that

‖z‖C([t0,T ],Rm) +‖z′‖L2(t0,T ;Rm) ≤C1
(
‖z0‖+‖b‖L2(t0,T ;Rm)

)
. (C.14)

In [79], this was proven not only for maps into the finite-dimensional space R
m

but also for maps into any Banach space. In the finite-dimensional case, the unique
solvability of (C.13) and the validity of the estimation (C.14) follow also from the
theorem of Carathéodory (see, e.g., [218], [121]), an a priori estimate and the gen-
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eralized Gronwall lemma (see, e.g., [216]). For convenience, we omit an extended
explanation of the second way.
Multiplying (C.11) by I−R(t), we obtain that

((I−R)z)′(t) = −R′(t)((I−R)z)(t)

for the solution z and almost all t ∈ [t0,T ]. Since z0 belongs to imD(t0), we get

((I−R)z)(t0) = 0.

Using again the unique solvability, we obtain that

((I−R)z)(t) = 0 for almost all t ∈ [t0,T ]. (C.15)

From (C.12), we see that all solutions of (C.9)–(C.10) are given by

x(t) = D−(t)z(t)− (Q0G−1
1 BD−)(t)z(t)+(Q0G−1

1 r)(t), (C.16)

where z is the unique solution of (C.13). Obviously, Dx= z belongs to C([t0,T ],Rm).
Since D, R and P0 are continuous on [t0,T ], the generalized inverse D− is continu-
ous. This implies x ∈ L2(t0,T ;Rn) since r ∈ L2(t0,T ;Rn). Recall that G1 is continu-
ous due to the index-1 assumption. If, additionally, Q0G−1r is continuous on [t0,T ],
then the whole solution x belongs to C([t0,T ],Rn). The estimations of Theorems
C.6 and C.7 are a simple conclusion of the solution representation (C.16) and the
estimation (C.14). ��
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1-full matrix, 53

absorbing set, 385
abstract differential-algebraic equation, 539,
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adjoint DAE, 506
admissible
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matrix function sequence, 65, 203, 277
matrix sequence, 14, 23, 46
on G, 278
pair, 526
projector, 14, 203, 277
projector function, 66, 203, 277

almost proper leading term, 154

BDF, 352, 356, 360, 361
border projector, 197, 507

canonical subspace, 109, 138
characteristic value, 19, 69, 138, 203, 209, 278,
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charge/flux oriented MNA, 312
completely decoupling projector, 33
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consistent

initial value, 188, 334
initialization, 424
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hidden, 189, 426
obvious, 191

contractivity, 376, 378, 379
on an invariant subspace, 377
strong, 376, 379

conventional MNA, 312
critical point, 155

of type, 156
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adjoint, 506
dissipative, 385
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Hessenberg form, 229
nonregular, 4, 9
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quasi-regular, 452
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asymptotically stable, 127
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tractability index μ , 209
tractability index 0, 209
uniformly asymptotically stable, 128
uniformly stable, 127

self-adjoint, 506
solution, 300
standard form, 50
strong contractive, 379
tractable with index, 485
underdetermined, 511

decoupling
basic, 90
complete, 108
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derivative
properly involved, 197
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dual space, 632

equation
quasi-linear, 187

evolution triple, 632
exponential dichotomy, 129

fine DAE, 118
form

Hessenberg, 229
numerically qualified, 373
S-canonical, 161
T-canonical, 141
Weierstraß–Kronecker, 6

full rank proper leading term, 507
fundamental solution matrix, 122

maximal of size, 122
minimal of size, 122
normalized at t0, 123

Galerkin method, 558–560
general linear method, 350, 355, 356, 360, 369

stiffly accurate, 356
generalized

derivative, 556, 633
eigenvalue, 4
eigenvector, 4
inverse, 589

geometric reduction, 308
GLM, see general linear method

Hamiltonian system, 527
Hessenberg form DAE, 229
hidden constraint, 189, 426

IERODE, 323
ill-posed problem, 284
index

for ADAEs, 542
Kronecker, 6
of a matrix, 588
perturbation, 136
strangeness, 165
tractability, 91, 138, 485

index-1 regularity region, 319
inherent explicit regular ODE, 323
integration by parts formula, 558
invariant set

positively, 385
inverse

generalized reflexive, 589
Moore–Penrose, 590

IRK(DAE), 350, 364, 372, 378

Lagrange identity, 506
leading term

full rank proper, 507
properly stated, 52, 507

linearization, 282
of nonlinear DAE, 195

matrices
well matched, 52

matrix
1-full, 53

matrix function sequence
admissible, 65
quasi-admissible, 449

matrix pair
regular, 4

matrix pencil, 341
matrix sequence

admissible, 14, 23, 46
regular admissible, 14, 66, 203

MNA
charge/flux oriented, 312
conventional, 312

nonregular
DAE, 4
pair, 4

numerically qualified form, 373

obvious
constraint, 191
restriction set, 191

optimality DAE, 513, 526

pair
nonregular, 4
regular, 46
singular, 49

pencil
matrix, 4
regular, 4
singular, 4

perturbation index, 136
positively invariant set, 385
projector, 581

admissible, 14, 16, 23, 203, 277
along, 581
border projector, 197, 507
complementary, 581
completely decoupling, 33
onto, 581
orthogonal, 581
regular admissible, 14, 18, 66, 203
spectral, 48, 110
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widely orthogonal, 15, 76, 205, 409
quasi-admissible, 450

projector function
admissible, 66, 203, 277
canonical, 110
complete decoupling, 108
fine decoupling, 108

properly
involved derivative, 186, 197
stated, 58, 402

leading term, 52, 186, 507

quasi-
admissible

matrix function sequence, 449
projector functions, 449

linear equation, 187
proper leading term, 154, 304, 442
regular, 452

standard form DAE, 461
regularity region, 452

refactorization, 80
of the leading term, 81

reference
function, 195
function set, 198

reflexive Banach space, 632
regular, 91

admissible matrix sequence, 14, 66, 203
DAE, 4

index-1, 319
index μ

jet, 278
point, 278

jet, 278
matrix pair, 4
point, 155, 209

tractability index, 91
tractability index μ , 138, 485

regularity, 178
domain, 209
interval, 155
region, 209, 276, 278, 305

Riccati DAE, 528
RK, see Runge–Kutta method
Runge–Kutta method, 353, 356, 360, 378

S-canonical form, 161
self-adjoint DAE, 506
solution, 184, 442

of a DAE, 300
with stationary core, 380

solvable systems, 177
stable solution, 377, 388

asymptotically, 377, 388
Lyapunov, 377, 388

standard canonical form, 161
strong, 161

stiffly accurate, 372
strangeness index, 165
structural

characteristic value, 19
restriction, 288

subspace
Ck-, 594
transversal, 583

sufficiently smooth, 284

T-canonical form, 141, 161

underdetermined
tractability index 1, 500

underlying ODE, 292

well-posed problem, 284
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