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Preface

This book focuses on recent developments in dynamic network modeling (DNM)
including aspects of route guidance and traffic control as it relates to transportation
systems and other complex infrastructure networks. Dynamic network modeling is
generally understood to be the mathematical modeling of time-varying vehicular
flows on networks in a fashion that is consistent with established traffic flow theory
and travel demand theory. Presently, we estimate that there are approximately
250 scholars around the globe actively involved in research, demonstrations, and
applications pertaining to the body of knowledge related to various aspects of
dynamic network modeling.

The area of DNM is a very active one. It is not only a purely research area but
also an area with important social impacts because it can provide real-world solution
that will improve the efficiency of our transportation systems without having to build
new roads. Some of the important findings are:

1. There are many theoretical and practical aspects of the “Dynamic Route Guid-
ance and Control” problem that are being addressed by academicians, private
sector, and transportation agencies as evidenced from the list of presenters at the
workshop.

2. Development of realistic and robust mathematical models of traffic flow, control,
dynamic traffic assignment, and data processing needed for the development and
deployment of effective route guidance and control systems remains as major
challenges.

3. Different control strategies such as congestion pricing, traffic responsive signals,
diversion during nonrecurrent congestion, and speed control for different trans-
portation facilities are some important examples of real-time control strategies
that are needed. However, it is important to ensure that the deployed control
strategy would work in real time under real-world conditions. This requires ex-
tensive off-line evaluation of the capabilities of underlying control and guidance
models and strategies.

4. Increasingly, the private sector is involved in the collection and dissemination
of traffic information for real-time control of transportation systems throughout

v



vi Preface

the world. However, their current contribution to the research and development
of advanced systems is rather limited. Better coordination between the private
sector and academia will be very productive. Similarly, public agencies that are
the owners of transportation systems also need to better interface with academia
and the private sector to be able to expedite the deployment of these “Dynamic
Route Guidance and Control” systems that will drastically improve the efficiency
of their transportation networks.

5. Real-time collection of speed, travel time, flow, and other traffic data over very
large transportation networks remains to be a major challenge that is being
tackled by private companies and academicians. More work is needed to ensure
reliability and accuracy of the collected traffic data.

6. This is a long-term and wide-ranging research area that spans between the
control of individual vehicles and large multimodal transportation networks.
Moreover, successful development of such real-time online control and guidance
systems requires the interfacing of algorithms, software, and hardware in such
a way that the resulting system is robust and reliable. Thus, major research,
development, and deployment investment are needed to successfully implement
dynamic network models.

Dynamic network modeling as a field has grown over the last 30 years with
contributions from various scholars all over the field. The basic problem which
many scholars in this area have focused is related to the analysis and prediction
of traffic flows satisfying notions of equilibrium when flows are changing over time.
In addition, recent research has also focused on integrating dynamic equilibrium
with traffic control and other mechanism designs such as congestion pricing and
network design. Recently, advances in sensor deployment, availability of GPS
enabled vehicular data and social media data have rapidly contributed to better
understanding and estimating the traffic network states and have contributed to new
research problems which advance previous models in dynamic modeling.

This book mainly contains some of the papers presented at the National
Science Foundation workshop on “Dynamic Route Guidance and Traffic Control”
which was organized on June 7–8, 2010 at Rutgers University by Prof. Kaan
Ozbay, Prof. Satish Ukkusuri, Prof. Hani Nassif, and Prof. Pushkin Kachroo. This
workshop brought together various experts in this area from universities, industris,
and federal/state agencies to present recent findings in this area. Various topics
were presented at the workshop including dynamic traffic assignment, traffic flow
modeling, network control, complex systems, mobile sensor deployment, intelligent
traffic systems, and data collection issues. This book is motivated by the research
presented at this workshop and the discussion that followed where a volume that
summarizes recent advances in the aforementioned areas was seen as an important
book. The organizers invited a select set of researchers to contribute chapters to
this book. More than 15 scholars from U.S. universities and abroad have accepted
to write manuscripts for this book. The book focuses on recent methodological
advances and application of dynamic network modeling to transportation systems.
The book is divided into four sections:
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1. Recent Algorithms in Dynamic Routing and Guidance: A fundamental problem
in dynamic modeling is to develop dynamic routing algorithms which consider
various data sources and uncertainties in the system.

2. Methodological Advances in Dynamic Network Assignment and Traffic Control:
In this section, various papers related to recent mathematical programming
formulations for dynamic modeling will be compiled.

3. Applications of Dynamic Network Modeling: In this section, papers related to
various applications from evacuation and simulation-based modeling will be
compiled.

4. Data Needs for Real-Time: Dynamic Route Guidance and Traffic Control: In
this section, papers related to data needs and availability for the successful
implementation of real-time control and routing algorithms will be compiled.

The papers that were selected for this book were rigorously reviewed by various
experts in this field. We thank all authors who submitted their work for consid-
eration. In addition, we thank the dozens of referees for their important work in
reviewing the papers. We would also like to acknowledge the financial support
provided for the Dynamic Route Guidance and Traffic Control Workshop by NSF’s
Civil, Mechanical, and Manufacturing Innovation Division of the Directorate for
Engineering under the award #0951147 and Professor Robert L. Smith who was
the NSF program manager and made major contributions to the content and success
of the workshop. Additional information about the NSF workshop is available at
http://ritslab.rutgers.edu/agenda.html. Special thanks go to Prof. Terry Friesz and
editors of Springer for graciously allowing us to edit this book.

West Lafayette, IN, USA Satish V. Ukkusuri
Piscataway, NJ, USA Kaan Ozbay
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Chapter 1
Dynamic Traffic Assignment: A Survey
of Mathematical Models and Techniques

Pushkin Kachroo and Neveen Shlayan

Abstract This paper presents a survey of the mathematical methods used for
modeling and solutions for the traffic assignment problem. It covers the static
(steady-state) traffic assignment techniques as well as dynamic traffic assignment
in lumped parameter and distributed parameter settings. Moreover, it also surveys
simulation-based solutions. The paper shows the models for static assignment,
variational inequality method, projection dynamics for dynamic travel routing,
discrete time and continuous time dynamic traffic assignment, and macroscopic
dynamic traffic assignment (DTA). The paper then presents the macroscopic DTA
in terms of the Wardrop principle and derives a partial differential equation for
experienced travel time function that can be integrated with the macroscopic DTA
framework.

1.1 Introduction

Traffic assignment is an integral part of the four-stage transportation planning
process [see Gazis (1974) and Potts and Oliver (1972)] that includes:

1. Trip Generation: Trip generation models estimate the number of trips generated
at origin nodes and/or the number of trips attracted to destination nodes based on
factors such as household income, demographics, and land-use pattern. This data
is obtained using surveys conducted periodically.

P. Kachroo (�) • N. Shlayan
Department of Electrical & Computer Engineering, University of Nevada Las Vegas,
4505 S. Maryland Pkwy, Las Vegas, NV 89154-4007, USA
e-mail: pushkin@unlv.edu; neveenshlayan@gmail.com
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Transportation Systems, Complex Networks and Dynamic Systems 2,
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2 P. Kachroo and N. Shlayan

2. Trip Distribution: From the total number trips generated and attracted at each
node, trip distribution algorithms generate an origin–destination (O–D) matrix,
in which each cell entry indicates the number of trips from one specific origin to
one specific destination. Hitchcock model (Hitchcock 1941), opportunity model
(Stouffer 1940), gravity model (Voorhees 1956), and entropy models (Wilson
1967) have been used for trip distribution algorithms.

3. Modal Split: Modal split analysis takes each cell value in the O–D matrix and
divides it among various alternate modes of travel. The models are built based on
performing discrete choice analysis on survey data [see Ben-Akiva and Lerman
(1985)].

4. Traffic Assignment: This step assigns each O–D flow value onto various alternate
paths from that specific origin to the destination node. Assignments are based on
optimization, usually using either Wardrop’s user-equilibrium (Wardrop 1952;
Sheffi 1985) or system optimum.

This four-step process comes from the traditional transportation planning area
and is not designed for real-time operations, such as traffic responsive real-time
incident management. However, a lot of research has taken place in the area of traffic
assignment, especially dynamic traffic assignment that enables researchers to study
transient traffic behavior, not just the steady-state one which the static assignment is
designed for. A survey paper (Peeta and Ziliaskopoulos 2001) provides an excellent
survey for the research work that has been performed in the area of dynamic traffic
assignment. This paper, in contrast to that survey work, provides a survey of the
mathematical framework that has been used in this area and presents the results to
enable the reader to grasp the various mathematical tools that have been used to
study and analyze this problem. The models and approaches that have been used
are varied, and this review paper brings them together in order for the readers to see
them in a somewhat linear fashion.

Outline. The remainder of this article is organized as follows. Section 1.2 gives
account of various mathematical programming-based static traffic assignment
models that have been used. This section presents the user-equilibrium and system
optimal formulations of the assignment problems, followed by the numerical
schemes that have been used to solve those problems. Section 1.3 presents the
fundamentals of the variational inequality framework which subsumes the mathe-
matical programming methodology. Dynamic extension of the variational inequality
framework is presented in Sect. 1.4. Section 1.5 presents the dynamic traffic
assignment in continuous time. The discrete time and continuous time versions
of this are presented. Section 1.7 presents the macroscopic DTA model including
the new formulation and a new travel time partial differential equation. Section 1.8
presents a brief summary of the main features of simulation-based DTA. Finally,
Sect. 1.10 gives the conclusions.
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1.2 Mathematical Programming-based Static Traffic
Assignment Model

To build the mathematical framework for our paper, we will start with terminology
and framework used in Sheffi (1985). We illustrate a sample network that is also
taken from Sheffi (1985) and is shown in Fig. 1.1. The digraph shows four nodes
and four arcs. Nodes 1 and 2 are origin nodes and node 4 is the destination node.
Hence there are two O–D pairs: 1− 4 and 2− 4.

There are two main classical traffic assignment optimization problems consid-
ered. Those two are user-equilibrium and system optimum.

1.2.1 User-Equilibrium

User-equilibrium problem is based on Wardrop’s principle (Wardrop 1952) which
is stated as:

The journey times on all the routes actually used are equal, and less than those
which would be experienced by a single vehicle on any unused route.

This equilibrium condition can be obtained as a solution of a mathematical
programming problem presented below (Sheffi 1985).

1.2.1.1 Mathematical Programming Formulation

The user-equilibrium problem is stated as the mathematical programming problem
[see Sheffi (1985), Dafermos and Sparrow (1969b)] shown in Eq. (1.1).

1

2
3 4

1

2
3

4
Fig. 1.1 Sample network

Table 1.1 Network notation N Set of nodes
A Set of arcs
R Set of origin nodes
S Set of destination nodes
K Set of paths connecting O–D pair r− s, r ∈R, s ∈S

xa Flow on arc a ∈A

ta Travel time on arc a ∈A

f rs
k Flow on path k ∈ K between O–D pair r− s

crs
k Travel time on path k ∈ K between O–D pair r− s

qrs O–D Trip rate between O–D pair r− s
δ rs

a,k δ rs
a,k = 1, if a is in path k between r and s, otherwise 0
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xa

t (xa)

Fig. 1.2 BPR link
performance function

min z(x) = ∑
a

∫ xa

0
ta(ω)dω (1.1)

with the equality constraints:

∑
k

f rs
k = qrs ∀r,s (1.2)

xa = ∑
r

∑
s

∑
k

f rs
k δ rs

a,k (1.3)

and the inequality constraint

f rs
k ≥ 0∀r,s (1.4)

The formulation given in Eq. (1.1) is the Beckmann transformation (Beckmann
et al. 1955). The link performance function ta(xa) is a function of traffic flow on the
link and the link capacity ca. According to the Bureau of Public Roads (BPR), it is
given by Eq. (1.5)

ta(xa) = v f

(
1+ 0.15

(
xa

ca

)4
)

(1.5)

The plot of a BPR function is shown in Fig. 1.2

Wellposedness. The objective function is a smooth convex function (∇2(x) is
positive definite), and the feasible region is convex, hence a unique solution exists.

1.2.1.2 Equivalence with Wardrop User-Equilibrium Condition

The Kuhn–Tucker conditions for the mathematical programming problem given by
Eq. (1.1) can be obtained in terms of the Lagrangian given in Eq. (1.6).

L( f ,λ ) = z[x( f )]+∑
rs

λrs

(
qrs −∑

k

f rs
k

)
(1.6)
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Here, λrs is the Lagrangian multiplier. The Kuhn–Tucker conditions ∀k,r,s are:

f rs
k

∂L( f ,λ )
∂ f rs

k
= 0

∂L( f ,λ )
∂ f rs

k
≥ 0

∂L( f ,λ )
∂λ rs = 0 (1.7)

Applying these necessary conditions (1.7) to the mathematical program (1.1) we
obtain the Wardrop conditions ∀k,r,s as:

f rs
k (crs

k − urs) = 0

crs
k − urs ≥ 0

∑
k

f rs
k = qrs

∑
k

f rs
k ≥ 0 (1.8)

1.2.2 System Optimal Solution

System optimal solution is a solution that provides the total minimum time for
the entire network. This condition can be obtained as a solution of a mathematical
programming problem presented below (Sheffi 1985).

1.2.2.1 Mathematical Programming Formulation

The system optimal problem is stated as the mathematical programming problem
[see Sheffi (1985), Dafermos and Sparrow (1969b)] shown in Eq. (1.9).

min z(x) = ∑
a

xata(xa) (1.9)

with the equality constraints:

∑
k

f rs
k = qrs ∀r,s (1.10)

xa = ∑
r

∑
s

∑
k

f rs
k δ rs

a,k (1.11)
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and the inequality constraint

f rs
k ≥ 0∀r,s (1.12)

Wellposedness. The objective function is a smooth convex function (∇2(x) is
positive definite), and the feasible region is convex, hence a unique solution exists.

1.2.2.2 Equivalence with Marginal User-Equilibrium Condition

Applying Kuhn–Tucker conditions in this case, we get ∀k,r,s:

f rs
k (c̃rs

k − ũrs) = 0

c̃rs
k − ũrs ≥ 0

∑
k

f rs
k = qrs

∑
k

f rs
k ≥ 0 (1.13)

Here, we have

c̃rs
k =∑

a
δ rs

a,kt̃a (1.14)

where

t̃a(xa) = ta(xa)+ xa
dta(xa)

xa
(1.15)

1.2.3 Numerical Schemes

The numerical scheme for solving user-equilibrium is based on the Frank–Wolfe
algorithm that obtains the feasible direction and the maximum step-size for each
iteration in one step. In fact, for the static traffic assignment problem, this amounts
to simply applying all or nothing assignment to the shortest path for each O–D pair.
The next step for each iteration involves finding the step size in the direction of
the link flow solution of the all-or-nothing assignment step. Appropriate stopping
criterion can be applied using some convergence principle. Details of this are
provided in Sect. 5.2, pages 116–122 of Sheffi (1985).

There are heuristic numerical methods available to perform the assignment to
achieve user-equilibrium. Two of the common heuristic techniques are:

FHWA (modified capacity restraint) method In this method at each iteration an all-
or-nothing assignment of the entire OD flow is performed on a single path. Travel
times are updated by performing a weighted average of the travel time obtained
by the latest assignment and the previous one. A convergence criterion is used to
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stop the iteration steps (e.g., when the maximum difference between two iterative
steps of link flows is less than some ε). The final link flows assigned to the
network are obtained by averaging the values from the last four iterative steps.

Incremental Assignment In incremental assignment, the OD values are divided into
n parts, and then each part is assigned to the network using all or nothing
assignment based on the previous travel time values.

Dafermos and Sparrow (1969a) applied the Frank–Wolfe method to traffic
assignment problem. This method also results in an all-or-nothing assignment,
followed by a line search step in each iteration. The details can be obtained from
Sheffi (1985).

1.3 Variational Inequality-based Static Traffic
Assignment Model

Variational inequality formulation for traffic equilibrium has been used as it
generalizes the framework of mathematical programming even when the travel time
function on one link depends on the conditions on other links as well (Dafermos
1980). Once the variational inequality model has been formulated, it can be solved
using some appropriate numerical scheme, such as the ones based on projection
method, linear approximation, relaxation method, or the more general iterative
scheme of Dafermos (1983).

The variational inequality problem is stated as:

VI Problem. Given a continuous function f : K→ R
n, where K is a given closed

and convex subset of Rn, 〈·, ·〉 denotes the inner product, find x ∈K, such that

〈 f (x),y− x〉 ≥ 0,∀y ∈K (1.16)

Figure 1.3 shows a convex set and the variational inequality condition at a corner.
The relationship between variational inequalities and optimization problems is given
by the following two theorems (Kinderlehrer and Stampacchia 2000).

x

x

f

Fig. 1.3 Variational
inequality
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f (x,y)

−∇ f (x,y)

z

h (x,y) ≥ 0

y

x

Fig. 1.4 Minimizer in the interior

Theorem 1. x ∈K s.t. f (x) = min
y∈K

f (y) =⇒ 〈∇ f (x),y− x〉 ≥ 0,∀y ∈K.

Theorem 2. Convex f s.t. 〈∇ f (x),y− x〉 ≥ 0,∀y ∈K =⇒ f (x) = min
y∈K

f (y).

To understand the constrained optimization problem and its interplay with
variational inequalities, we present two figures (Figs. 1.4 and 1.5). The first quadrant
in the x− y plane is the constrained region of search where we have assumed that
h(x,y)≥ 0 is satisfied. The function to be minimized is given by f (x,y). Figure 1.4
shows the case when the minimizing point (on the x− y plane) for a given smooth
cost function f (x,y) is contained in the interior of the region K given by h(x,y)≥ 0.
For the local minimum to exist, it is necessary that the gradient of the function is
zero. Figure 1.5 shows the case when the minimizing point (on the x− y plane) for
a given smooth cost function f (x,y) is contained at the boundary of the region K

given by h(x,y) = 0. For the given point to be the minimizer, any movement from
this point in any feasible direction, i.e. in the direction of increasing h(x,y), should
increase the value of f (x,y). This is the variational inequality statement. Moreover,
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f (x,y)

−∇f (x,y)

∇h (x,y)

h(x,y) ≥ 0

y

x

z

Fig. 1.5 Minimizer on the boundary

in this case (when certain regularity conditions are satisfied (Avriel 2003)), since, the
boundary is given by h(x,y) = 0, the directional derivative of f (x,y) in the direction
of the tangent to the boundary should be zero. Moreover, the gradient of h(x,y)
as well as that of f (x,y) should be pointing in the same direction. Kuhn–Tucker
conditions (and Lagrangian method) state the condition on the relationship between
the gradient of the cost function and that of the constraint functions. However, those
are necessary conditions only if the problem satisfies certain regularity conditions
[see Avriel (2003), Bazaraa et al. (2006), and Mangasarian (1994)].

Theorems 1 and 2 demonstrate that variational inequality framework is more
general than the mathematical programming framework. The variational inequality
formulations of the traffic equilibrium (user) problems are stated below.

Theorem 3. x ∈K is a solution to the user-equilibrium problem if and only

∑
w∈W

∑
p∈Pw

Cp(x)(y− x)≥ 0,∀x ∈K

Here, Cp is the travel time for the path p from the OD pair Pw from the set of
OD pairs W . This variational inequality can also be written in terms of traffic flows
instead of link flows (Nugurney 2000).
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0

1

10

Fig. 1.6 Violation of
Kuhn–Tucker condition

To understand how the variational inequality formulation is more general than
the optimization problem, consider the variational inequality formulation again.

〈 f (x),y− x〉 ≥ 0,∀y ∈K (1.17)

Now, if f (x) = ∇θ (x), then the condition

〈∇θ (x),y− x〉 ≥ 0,∀y ∈K (1.18)

is the necessary condition for the optimization problem

minimize θ (x), x ∈K (1.19)

The variational inequality has a corresponding gradient relationship based on
the following theorem that is about the symmetry of second partial derivatives
(Facchinei and Pang 2003).

Theorem 4. Given f : K→ R
n, a continuously differentiable function on the open

convex set K⊂ R
n, then the following three conditions are equivalent.

1. ∃θ , s.t. f (x) = ∇θ (x)
2. ∇ f (x) = [∇ f (x)]T ∀x ∈K

3. f is integrable on K

Theorem 4 shows that if the function f has a symmetric Jacobian then there is a
corresponding optimization problem associated with it. However, if the Jacobian is
asymmetric, for instance, when the user-equilibrium cost is asymmetric with respect
to traffic flows, then the Wardrop solution (variational inequality) is the framework
without a corresponding mathematical programming problem.

On a cautionary note, Kuhn–Tucker conditions (and Lagrangian method) state
the condition on the relationship between the gradient of the cost function and
that of the constraint functions. However, those are necessary conditions only
if the problem satisfies certain regularity conditions [see Avriel (2003), Bazaraa
et al. (2006), and Mangasarian (1994)]. For instance Fig. 1.6 shows a function
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f (x,y) = −x to be minimized which at the minimum point (x,y) = (1,0) does not
satisfy the Kuhn–Tucker conditions for the region constrained by the first quadrant
and the curve y = 1− x3.

1.4 Projected Dynamical Systems: Dynamic Variational
Equation Model

Dynamics of route switching has been analyzed using dynamic variational inequal-
ity by Nagurney and Zhang (1996; 1995; 1997; 1996; 1988). They developed the
theory for projected dynamical systems in Zhang and Nagurney (1995) and applied
the theory to traffic assignment in Zhang and Nagurney (1996) and Nagurney and
Zhang (1997). The paper by Dupuis and Nagurney (1993) shows the main results in
the theory and applications of projected dynamical systems including its relationship
to the Skorokhod problem (Skorokhod 1961) for the study of its wellposedness.

Since variational inequality is related to the solution of a fixed point problem,
we can relate the variational inequality solution to be the equilibrium point of a
dynamic system. The stability of the equilibrium point can be studied within the
framework of this dynamic system, and then those dynamics can be used to model a
time-varying route assignment problem. This is precisely what Nagurney and Zhang
do in their various papers. We summarize the technical results here.

1.4.1 Dynamic Route Choice

The dynamics of route choice adjustment are given by (Nagurney and Zhang 1996):

ẋ = ΠK(x,−C(x)) (1.20)

where

ΠK(x,v) = lim
ε→0

PK(+εv)− x
ε

(1.21)

and

PK(x) = Argminx∈K‖x− z‖ (1.22)

Figure 1.7 shows the convex region inside which the vector field of the dynamics
is shown. The equilibrium point as well as the solution of the variational inequality
is at (0,0).

The path flow vector x∗ ∈K is the solution of

0 = ΠK(x
∗,−C(x∗)) (1.23)
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Fig. 1.7 The vector field

if and only if it satisfies

〈C(x∗),x− x∗〉 ≥ 0,∀y ∈K (1.24)

The following theorem from Nagurney and Zhang (1996) gives the condition for
asymptotic stability of the equilibrium point of the projected dynamics related to the
route adjustment process.

Theorem 5. If the link cost is a strictly monotonic continuous function of link flows,
then the equilibrium point for dynamics shown in Eq. (1.20) is asymptotically stable.

The major result from Nagurney and Zhang (1996) for applying the discrete
algorithm for the dynamic route choice problem is the following.

Theorem 6. The Euler method given by

xτ+1 = PK(x
τ − aτC(xτ )) (1.25)

when

lim
τ→∞

aτ = 0 (1.26)

and
∞

∑
τ=1

aτ = ∞ (1.27)

for K being the positive orthant converges to some traffic network equilibrium
path flow.

1.5 Dynamic Traffic Assignment

There are some nice reviews that provide summary of the models and work that has
been performed in the area of dynamic traffic assignment (DTA), such as Chiu et al.
(2009), Peeta and Ziliaskopoulos (2001), Ran and Boyce (1996), and Friesz (2001).
Our review will focus on the mathematical aspects of these developments.
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1.5.1 Dynamic Traffic Assignment: Discrete Time

Merchant and Nemhauser (1978a; 1978b) were the first to present a dynamic
traffic assignment problem where time-varying O–D flows are considered. Their
formulation uses a state difference equation to represent the link dynamics, a
conservation equation at the nodes of the digraph, and a cost function to minimize
which leads to the following mathematical programming problem.

min z(x) =
I

∑
i=1

a

∑
j=1

ti j(xi j) (1.28)

with the link discrete time dynamics as equality constraints:

x j[i+ 1] = x j[i]− g j(x j[i])+ d j[i], i = 0,1, · · · I− 1, ∀ j ∈ A (1.29)

the node conservation equation as

∑
j∈A(q)

d j[i] = Fq[i]+ ∑
j∈B(q)

g j(x j[i]), i = 0,1, · · · I− 1,∀q ∈N (1.30)

and the inequality constraints

x j[i]≥ 0 i = 0,1, · · · I − 1, ∀ j ∈ A (1.31)

d j[i]≥ 0 i = 0,1, · · · I − 1, ∀ j ∈ A (1.32)

x j[0] = x0[ j]∀ j ∈ A (1.33)

Here, x j[i] is the number of vehicles at the beginning of time period i in link j,
g j(x j[i]) is the number of vehicles exiting the link in the unit time as a function
of x j[i], and d j[i] is the number of vehicles entering the link j. This problem
formulation is a single destination network model. Fq[i] show the inflow rates as
the time-varying O–D flows. This can be extended to a multiorigin multidestination
formulation.

1.5.2 Dynamic Traffic Assignment: Continuous Time

Now we present a continuous time formulation of the DTA problem (Boyce et al.
2001) where a dynamic variational inequality is used. The traffic dynamics utilize
ordinary differential equations instead of finite difference equation as was the
case for the discrete time formulation. There are other models that use dynamic
continuous time models in optimal control or in variational setting such as Friesz
et al. (1989; 1993), and Chen (1999).
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The time-dependent Wardrop condition for the DTA are

f rs
k (t)(crs

k (t)− urs(t)) = 0

crs
k (t)− urs(t)≥ 0

∑
k

f rs
k (t) = qrs(t)

∑
k

f rs
k (t)≥ 0 (1.34)

The traffic dynamics for this DTA problem are the continuous version of the
difference equation for the Merchant Nemhauser model, and are given by the
following conservation ordinary differential equation.

ẋrs
ak(t) = urs

ak(t)− grs
ak(xa(t)) (1.35)

Here, urs
ak(t) is the time-varying inflow to link a on path k from origin r to destination

s, and grs
ak(x

rs(t)) is the corresponding time-varying outflow which is the exit
function which depends on the link density xa(t).

We have the following equality among matching constraints for various flows
and links (Boyce et al. 2001).

∑
r

∑
s

∑
k

xrs
ak(t)δ

rs
a,k = xa(t) (1.36)

Numerical techniques are available to solve this variational inequality [see Boyce
et al. (2001)]. Optimal control formulation for this problem can also be obtained
which can be solved by calculus of variations or dynamic programming methods.

1.6 Travel Time and FIFO Issue

One major issue in dynamic traffic assignment problem is that of First In First Out
(FIFO) constraint as discussed in Carey (1992). According to FIFO if xtτa > 0 where
xtτa is the traffic flow that enters link a at time t and exits at time τ , then any flow
that enters before time t cannot exit after time τ at an average. This condition is
shown to be nonconvex in Carey (1992) and is presented in Eq. (1.37).

(xtτa > 0)⇒
(

∑
t′τ ′a

xt′τ ′a|t ′ < t,τ ′ > τ

)
= 0 (1.37)

A violation of this condition is shown in Fig. 1.8. The violation essentially occurs
because of the nature of the exit function and also the time and space discretization
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of the traffic link and dynamics. Both of these issues get resolved by a proper
choice of space and time discretization that is chosen after the original modeling
is performed in a hydrodynamic setting using the dynamic distributed parameter
traffic flow theory. This theory allows for a proper development of a travel time
function as well as a travel time vector field. This development is the main original
technical contribution of this paper.

1.7 Macroscopic Model for DTA

We propose to use a hydrodynamic traffic model in the framework of the DTA
problem. The Lighthill–Whitham–Richards (LWR) model, named after the authors
in Lighthill and Whitham (1955) and Richards (1956), is a macroscopic one-
dimensional traffic model. The conservation law for traffic in one dimension is
given by

∂
∂ t

ρ(t,x)+
∂
∂x

f (ρ(t,x)) = 0 (1.38)

In this equation ρ is the traffic density (vehicles or pedestrians) and f is the flux
which is the product of traffic density and the traffic speed v, i.e. f = ρv. There are
many model researchers have proposed for how the flux should be dependent on
traffic conditions. This relationship is given by the fundamental diagram.

1.7.1 Greenshield’s Model

Greenshield’s model [see Greenshields (1935)] uses a linear relationship between
traffic density and traffic speed.

v(ρ) = v f

(
1− ρ

ρm

)
(1.39)

where v f is the free flow speed and ρm is the maximum density. Free flow speed
is the speed of traffic when the density is zero. This is the maximum speed. The
maximum density is the density at which there is a traffic jam and the speed is equal
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m
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f

Fig. 1.9 Fundamental diagram using Greenshield model

to zero. The flux function is concave as can be confirmed by noting the negative
sign of the second derivative of flow with respect to density, i.e. ∂ 2 f/∂ρ2 < 0. The
fundamental diagram refers to the relationship that the traffic density ρ , traffic speed
v, and traffic flow f have with each other. These relationships are shown in Fig. 1.9.

1.7.2 Generalized/Weak Solution for the LWR Model

The hyperbolic partial differential equation (PDE) for the LWR model given by
Eq. (1.38) can be solved by using the method of characteristics (LeVeque 1994).
Figure 1.10 shows a x− t plot for traffic density ρ(t,x). Initially the traffic density
is constant at ρ0. At time t = 0, there is a traffic light at x = 0 that turns red. We see
the shockwaves traveling backward so that there is a discontinuity between traffic
density being ρ0 to the left of the shock line and being ρm to the right of it. On the
right there is another shockwave traveling to the right between zero traffic density
and ρ0. At time t = tc, the light turns green and we see rarefaction of traffic starting
at x = 0. Corresponding to time t = tu we see the plot of traffic density ρ(tu,x) that
shows to the two shock waves as well as rarefaction of the traffic density. This shows
that the traffic solution has discontinuities and a weak solution of the LWR model is
required that allows for these discontinuous solutions.

1.7.2.1 Generalized Solutions

For a conservation law

ρt + f (ρ)x = 0 (1.40)

with initial condition

ρ(x,0) = ρ0(x), (1.41)

where u0(x) ∈ L1
loc(R;Rn), solution in the distributional sense is defined below for

smooth vector field f : Rn → Rn [see Bressan (2005)].
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Definition 1.7.1. A measurable locally integrable function ρ(t,x) is a solution
in the distributional sense of the Cauchy problem (1.40) if for every φ ∈
C∞

0 (R
+×R)�→Rn

∫∫
R+×R

[ρ(t,x)φt(t,x)+ f (ρ(t,x))φx(t,x)] dxdt +
∫

R
u0(x)φ(x,0) dx = 0 (1.42)

1.7.2.2 Weak Solutions

A measurable locally integrable function u(t,x) is a weak solution in the distribu-
tional sense of the Cauchy problem (1.40) if it is a distributional solution in the
open strip (0,T )×R, satisfies the initial condition (1.41) and if u is continuous as a
function from [0,T ] into L1

loc. We require u(t,x) = u(t,x+) and

lim
t→0

∫
R
|u(t,x)− u0(x)|dx = 0 (1.43)
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1.7.3 Scalar Initial-Boundary Problem

Consider the scalar conservation law given here.

ut + f (t,x,u)x = 0 (1.44)

with initial condition

u(0,x) = u0(x), (1.45)

and boundary conditions

u(t,a) = ua(t) and u(t,b) = ub(t), (1.46)

The boundary conditions cannot be prescribed point-wise since characteristics
from inside the domain might be traveling outside of the boundary. If there is any
data at the boundary for that time, that has to be discarded. Moreover, the data
also must satisfy entropy condition at the boundary so as to render the problem
wellposed. This is shown in Fig. 1.11 where for some time boundary data on the
left can be prescribed when characteristics from the boundary can be pushed in [see
Strub and Bayen (2006)]. However when the characteristics are coming from inside,
the boundary data cannot be prescribed.

1.7.4 Macroscopic (PDE) Traffic Network

The network problem for traffic flow has been studied by researchers (Garavello and
Piccoli 2006; Holden and Risebro 1995; Lebacque 1996; Coclite and Piccoli 2002).
They consider a traffic node with incoming n junctions and outgoing m junctions as
shown in Fig. 1.12.
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Fig. 1.12 Traffic node with
incoming and outgoing links

The traffic distribution at the junction is performed based on a traffic distribution
matrix that must be provided for the node as well as using an entropy condition at
the node that is equivalent to maximizing the flow at the node.

We present the summary of the Coclite/Piccoli model for the network (Coclite
and Piccoli 2002; Garavello and Piccoli 2005, 2006). That summary is also used in
Gugat et al. (2005). The formulation in terms of demand and supply is shown in
the work by Lebacque (1996), Lebacque and Khoshyaran (2004), and Buisson et al.
(1996). This formulation is equivalent to the Coclite/Piccoli formulation, and both
then show numerical method using the Godunov scheme.

Each arc of the traffic network is an interval [ai,bi]. The model for the network is

∂
∂ t ρ i(t,x)+ ∂

∂x f (ρ i(t,x)) = 0∀x ∈ [ai,bi], t ∈ [0,T ] (1.47)

∂
∂ t π i(t,x,k,r,s)+ vi(ρ i(t,x)) ∂

∂x π i(t,x,k,r,s) = 0∀x ∈ [ai,bi], t ∈ [0,T ] (1.48)

Here π(t,x,k,r,s) is a function whose range is [0,1] and gives the fraction of the
traffic density on path k of the OD pair (r,s) on the arc i. Hence, we have

ρ i(t,x,k,r,s) = π i(t,x,k,r,s)ρ i(t,x) (1.49)

This ensures the FIFO condition automatically since vehicle speed is a function
of traffic density, and hence vehicles don’t cross each other in this model (unless we
add lane modeling with lane change logic).

At any node the following flow conservation condition (Kirchoff’s law) must be
satisfied. This equation says that the total inflow to a node equals its outflow.

n

∑
i=1

fi(ρi(bi, t)) =
n+m

∑
i=n+1

fi(ρi(ai, t)), ∀t ≥ 0 (1.50)

At the nodes, we have traffic splitting factors α j,i that tell us what fraction of a given
incoming arc i is going to an outgoing arc j of that node. The factors α j,i have to be
consistent with π i(t,x,k,r,s).

α j,i = ∑
r

∑
s

∑
k

π i(t,bi−,k,r,s) (1.51)
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xx = 0 x =x + Δ x

Fig. 1.13 Travel time
on a link

The weak solution of the traffic density at a node is given by a collection of
functions ρi such that the following is satisfied.

n+m

∑
i

∫ ∞

0

∫ bi

ai

(
ρi

∂φi

∂ t
+ f (ρi)

∂φi

∂x

)
dxdt = 0 (1.52)

All the details of this model can be obtained from Garavello and Piccoli (2006).
The Wardrop condition for this macroscopic DTA model become the following.

(δ rs
a,kπ i(t,ai,k,r,s))(c

rs
k (t)− urs(t)) = 0

crs
k (t)− urs(t)≥ 0

∑
k

δ rs
a,kπ i(t,ai,k,r,s) = qrs(t)

∑
k

δ rs
a,kπ i(t,ai,k,r,s) ≥ 0 (1.53)

Here, i in the expression π i(t,ai,k,r,s) is the link connected to the source r for the
particular k and s. The travel time crs

k (t) is developed in the next section.

1.7.5 Travel Time Dynamics

This section provides a model for obtaining the experienced travel time function for
the hydrodynamic model that can be used for the macroscopic DTA model.

Consider a link as shown in the Fig. 1.13. We want to develop a travel time
function T (t,x) that provides the travel time for a vehicle at position x and time t to
reach x = �. It takes a vehicle time Δx/v(t,x) to move from x to x+Δx. Hence, we
have the following travel time condition.

T (t +Δt,x+Δx) = T (t,x)− Δx
v(t,x)

(1.54)

Taking the Taylor series first terms for T (t,x) and simplifying, we obtain

∂T (t,x)
∂ t

Δt +
∂T (t,x)

∂x
Δx =− Δx

v(t,x)
(1.55)
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Multiplying by v(t,x), dividing by Δx, and then taking limits and simplifying we get
the travel time partial differential equation.

∂T (t,x)
∂ t

+
∂T (t,x)

∂x
v(ρ(t,x))+ 1 = 0 (1.56)

Hence, the one-way coupled PDE system for LWR and travel time for a link is
given by

∂
∂ t ρ(t,x)+ ∂

∂x [ρ(t,x)v(ρ(t,x))] = 0 (1.57)

∂T (t,x)
∂ t + ∂T (t,x)

∂x v(ρ(t,x))+ 1 = 0 (1.58)

v(ρ(t,x)) = v f

(
1− ρ

ρm

)
(1.59)

1.8 Simulation-Based DTA

With the availability of faster processors and computers, using simulation-
based DTA is becoming more and more popular (Peeta and Ziliaskopoulos 2001;
Mahmassani et al. 1998; Ben-Akiva et al. 1998). Summary of simulation-based DTA
and the methodology is presented in Chiu et al. (2009) and Peeta and Ziliaskopoulos
(2001). In principle, the simulation of the network can be accomplished using
microscopic, mesoscopic, or macroscopic simulations. Microscopic simulation is
based on car-following models and they model the vehicle dynamics for each
individual vehicle. Macroscopic simulations are based on discretization and
numerical solutions of the macroscopic models, such as LWR-based models.
Mesoscopic simulations use the fundamental relationship for obtaining vehicle
speeds (macroscopic behavior) but also have individual vehicles (microscopic
behavior) modeled with the tracking of their location and speeds. Since the
mesoscopic modeling-based DTA is more prevalent, we will focus on that in
this section.

There are two main steps to prepare the simulation-based DTA. A three-
stage iterative process to obtain user-equilibrium behavior and a field data-based
calibration process. Once these two processes have been successful, the software
can be used for various studies.

1.8.1 Iterations for User-Equilibrium

This equilibration process is performed in three steps (Chiu et al. 2009). These
three steps are iterated till the user-equilibrium condition is obtained within some
tolerance limit.
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Network Loading. This step is obtained by running the network simulation for a
given time-varying OD and traffic assignment to various paths between each OD
pairs. The result is the set of travel times for each path.

Path Set Update. The traffic loading obtained from the previous step is used to
calculate the set of k-shortest paths between each OD pair.

Path Assignment Adjustment. In this step the OD flows are assigned to new updated
paths from the previous step.

1.8.2 Calibration from Field Data

Data obtained from field surveys and sensors can be used to calibrate the simulation-
based DTA models. Some parameters that can be tuned include the time-varying OD
values, road capacities, and vehicle speed density parameters. The calibration can
be performed in order to maximize the match between the simulated outputs and
the observed data. Various numerical optimization methods have been used such as
gradient-based methods and SPSA. The general scheme is to find the parameter
vector that will minimize the least squared error of the observations, where the
observations are yi, and the output from simulation is dependent on the parameters
as hi(θ ).

θ ∗ = Argminθ ∑
i
(yi − hi(θ ))2 (1.60)

A typical iterative scheme if it is gradient based to find the optimal parameters
can be

θ ∗[k+ 1] = θ ∗[k]−η∇θ ∑
i
(yi − hi(θ ))2 (1.61)

OD estimation has been performed [see Ben-Akiva et al. (1998)] using an auto
regressive model for OD variations from nominal values, and then applying Kalman
filter techniques on it.

1.9 Traffic Operation Design and Feedback Control

Traffic assignment problem and its solutions have very strong roots in the transporta-
tion planning process, especially the four-stage process shown in Sect. 1.1. It is very
important to keep this context in mind in order to ensure its proper use. DTA models
can help in performing before and after studies for various transportation projects.
They can also help in many other studies by enhancing its basic framework with
additional features such as environment effects of congestion and costs.

For real-time traffic operations we must use and develop techniques specifically
for real-time operations. For instance, if we have to design an isolated ramp control
at one location, the entire OD matrix obtained and calibrated from field studies



1 Dynamic Traffic Assignment: A Survey of Mathematical Models and Techniques 23

during some limited time is not relevant to that problem. Feedback control-based
methods are extremely suited for design of traffic control and real-time operations.
The details of many specific feedback control designs for traffic operations such as
real-time traffic routing and ramp metering are available in multiple publications
(Kachroo and Ozbay 1999; Kachroo and Özbay 2003, 1998, 2006, 2005).

1.10 Conclusions

This paper provided a mathematical survey of the static and dynamic traffic assign-
ment problems. It presented the macroscopic DTA model using the LWR distributed
parameter model as the basis. The paper presented a new partial differential equation
for travel time function for a link. It also provided a brief summary of simulation-
based DTA.
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Chapter 2
The Max-Pressure Controller for Arbitrary
Networks of Signalized Intersections

Pravin Varaiya

Abstract The control of an arbitrary network of signalized intersections is
considered. At the beginning of each cycle, a controller selects the duration of
every stage at each intersection as a function of all queues in the network. A stage
is a set of permissible (non-conflicting) phases along which vehicles may move at
pre-specified saturation rates. Demand is modeled by vehicles entering the network
at a constant average rate with an arbitrary burst size and moving with pre-specified
average turn ratios. The movement of vehicles is modeled as a “store and forward”
queuing network. A controller is said to stabilize a demand if all queues remain
bounded. The max-pressure controller is introduced. It differs from other network
controllers analyzed in the literature in three respects. First, max-pressure requires
only local information: the stage durations selected at any intersection depends
only on queues adjacent to that intersection. Second, max-pressure is provably
stable: it stabilizes a demand whenever there exists any stabilizing controller. Third,
max-pressure requires no knowledge of the demand, although it needs turn ratios.
The analysis is conducted within the framework of “network calculus,” which, for
fixed-time controllers, gives guaranteed bounds on queue size, delay, and queue
clearance times.

2.1 Introduction

This chapter presents the max-pressure feedback policy for the control of an
arbitrary network of signalized intersections. The cycle length at each intersection is
fixed, although it may be different at different intersections. The policy determines
at the beginning of each cycle, the fraction of the cycle that is allocated to each stage.
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(A stage is a set of permissible simultaneous movements.) The movement of traffic
is modeled as a store and forward (SF) queuing system (Aboudolas et al. 2009a).
Feedback policies based on queue measurements to control an SF model have been
extensively studied, including in (Robertson and Bretherton 1991; Mirchandani and
Head 2001; Heydecker 2004; Aboudolas et al. 2009b; Cai et al. 2009). There are
two major differences between the max-pressure policy and those proposed in these
studies.

First, the max-pressure policy is decentralized: the decision at any intersection
depends only on the queues adjacent to that intersection; the policies in the other
studies are centralized: the decision at each intersection depends on the queues
at all intersections. This distinction may be practically important, since the com-
munication infrastructure required to implement max pressure is much simpler to
build. More significantly perhaps, max pressure may be implemented incrementally:
remarkably, if a new intersection is added to the network, the max pressure policy
for the original network does not change. In the centralized control of the cited
studies, an expansion of the controlled network leads to changes in the policy of all
intersections.

Second, the max-pressure policy is provably stable. That is, if external arrivals
and turn ratios are stationary, and if there is any policy that keeps all queues
bounded, then max-pressure also keeps all queues bounded. None of the cited stud-
ies provides such a stability guarantee. Also, max-pressure requires no knowledge
of the external arrivals (but it does require knowledge of turn ratios, which can
be estimated from the queue measurements), whereas the other studies require
knowledge of the external arrivals. Consequently, max-pressure automatically
adapts to slow changes in demand patterns.

Analysis of the SF queuing system is carried out using network calculus, which
was developed to model, analyze, and control communication networks. (The
fundamental reference is (Cruz 1991); we quote results from (Chang 2000); for a
brief description see (Wikipedia 2009).) Network calculus is equally well suited for
signal control studies, as the calculus describes traffic flows in terms of cumulative
counts, commonly used in traffic studies. A flow is characterized by its average
rate ρ and the maximum burst (or platoon) size σ . The service that an intersection
provides to a flow is also characterized by two parameters: the saturation rate s and
the maximum duration r (effective red) for which no service is provided. These
parameters are easier to estimate empirically than parameters of stochastic queuing
models. (The max-pressure policy for stochastic queueing models is studied in
Varaiya (2009), which also proves stochastic stability.)

This chapter is organized as follows. The basic theory of the calculus for a single
queue is recalled in Sect. 2.2 and used in Sect. 2.3 to study an isolated signalized
intersection. The simplest case of the queue formed by a single constant flow of
arriving vehicles and its dependence on the green duration is well known (Newell
1989, pp. 33–37). But even for this case, as seen in Sect. 2.3.1, network calculus
offers a deeper analysis by providing bounds on queue length and busy period when
vehicles arrive in bursts or platoons. This analysis readily extends to an intersection
with multiple phases. The treatment in Sect. 2.3.2 of the fixed-cycle controller
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extends that of (Allsop 1972) and (Newell 1989, §2.2) by including the impact of
traffic bursts.

A fixed-cycle controller is inevitably wasteful because sometimes it actuates
phases with no queue even though other phases have queues. This waste is
eliminated by the work-conserving controllers considered in Sect. 2.3.3. In the case
that only one phase can be actuated at a time, work-conserving controllers are
always superior to fixed-cycle controllers in the sense that the former minimize a
weighted sum of queue lengths (Sect. 2.3.3.1, Theorem 3).

Two counter-examples in Sect. 2.3.3.2 show that obvious extensions of Theo-
rem 3 are false. The first example presents an unstable work-conserving single-
phase controller for a two-intersection network. The second example exhibits an
unstable work-conserving controller for a single intersection in which each stage
activates two phases. In both examples, there exist stabilizing fixed-time controllers.

These counterexamples motivates the problem: Construct a stable, adaptive,
work-conserving controller. For an isolated intersection the “max-pressure” con-
troller of Sect. 2.3.3.3 is one solution. It works as follows. At each time, the
controller calculates the pressure exerted by each stage. The pressure is defined
as the sum of the queue lengths multiplied by the saturation rates of all the phases
actuated by the stage. The max-pressure controller selects the stage that exerts the
maximum pressure. Theorem 5 states that the max-pressure controller is stabilizing
whenever there exists a stabilizing fixed-cycle controller.

The problem for an arbitrary network of signalized intersections is treated in
Sect. 2.4. The network calculus model is developed in Sect. 2.4.1. Once the model
is laid out, Corollary 1 yields performance bounds for a fixed-cycle control scheme
in Sect. 2.4.2. The max-pressure controller is described in Sect. 2.4.3. The pressure
exerted by a stage is now different: it is the sum of the upstream queue lengths
minus the downstream queue lengths (weighted by the turn ratio) multiplied by
the saturation rates of all the phases actuated by the stage. Theorem 7 extends
Theorem 5 to networks. This appears to be the first adaptive, provably stable
controller in the literature.

The discussion in Sect. 2.5 provides the mathematical intuition underlying the
max-pressure controller; compares it to other controllers presented in the literature;
outlines the major limitations of the store and forward model; and poses some
questions.

2.2 Network Calculus for a Single Queue

Time is discrete: t = 0,1, · · · . F (F0) denotes the set of all nonnegative, increasing
functions f (with f (0) = 0). Consider a queuing system with cumulative arrivals
A ∈F0, cumulative departures B ∈F0, and cumulative (virtual) service completions
C ∈ F0. See Fig. 2.1. Let q(t) denote the queue size at time t, with q(0) = 0. q(t)
satisfies Lindley’s equation,

q(t + 1) = [q(t)− c(t)]++ a(t + 1), t ≥ 0. (2.1)
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B(t)C(t)
q(t)

A(t)

Fig. 2.1 A queuing system
with arrivals A, departures B,
service C

(Notation: [x]+ = max{0,x}.) In (2.1) a(t) = A(t)− A(t − 1) and c(t) = C(t)−
C(t − 1) are respectively the numbers of arrivals and (virtual) service completions
in period t. (Take A(−1) =C(−1) = 0.)

For f ∈ F and s ≤ t, let f (t,s) = f (t)− f (s). Recall that q(0) = 0. Lemma 1 is
proved in Appendix A.

Lemma 1 ((Chang 2000, Lemma 1.3.1)). For all t ≥ 0 the queue size is

q(t) = max
0≤s≤t

[A(t,s)−C(t − 1,s)], (2.2)

and the cumulative departures B(t) = A(t)− q(t) are

B(t) = min
0≤s≤t

[A(s)+C(t − 1,s)]. (2.3)

Definition 1. The arrival process A ∈ F0 is upper-bounded by f1 ∈ F0 if A(t,s) ≤
f1(t − s) for all t ≥ s. The service process C ∈ F0 provides service f2 ∈ F0 if
C(t − 1,s)≥ f2(t − s) for all t ≥ s.

Theorem 1 is proved in Appendix B.

Theorem 1 ((Chang 2000, Theorem 2.2.8)). If A is upper-bounded by f1 and C
provides f2,

q(t)≤ max
0≤τ≤ t

[ f1(τ)− f2(τ)], (2.4)

B(t,s)≤ A(t)−B(s)≤ max
0≤τ

[ f1(t − s+ τ)− f2(τ)]. (2.5)

The delay d(t) of the last arrival before t is bounded by

d(t)≤ min{d ≥ 0 | f1(τ)≤ f2(τ + d− 1),τ = 1, · · · , t}. (2.6)

The duration of any busy period is bounded by

BP = max{b | f1(τ)> f2(τ),τ = 1, · · · ,b}. (2.7)

Remark. From (2.4) and (2.6) the queue size and delay are respectively bounded
by the vertical and horizontal distances between f1 and f2, and from (2.7) the busy
period is bounded by the first time the graphs of f1, f2 intersect, as in Fig. 2.2a. Thus
the most important performance measures are captured by the curves f1 and f2.
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t

max delay

max queue

tr

f2(t) = c[t - r]+

f1(t) = σ+ρt

r + σ/c

σ+ρr

max busy period (σ + cr)/(c-ρ)

f1(t)

f2(t)

a b

σ

Fig. 2.2 Maximum queue size and delay: (a) general case, (b) Corollary 1

Definition 2. The arrival process A is (σ ,ρ) upper-bounded if it is upper-bounded
by f1(t) = σ +ρt. The service process C provides (c,r) service if it provides service
f2(t) = c[t − r]+. One also says that A is bounded by rate ρ with burst size σ and C
serves at rate c with delay r.

Theorem 1 is used in the paper in the simpler setting of Corollary 1.

Corollary 1. Suppose A is (σ ,ρ) upper-bounded, C provides service (c,r), and
c ≥ ρ . Then

q(t)≤ σ +ρ min{t,r} ≤ (σ +ρr), (2.8)

B is (σ +ρr,ρ) bounded. (2.9)

The maximum queue size, delay, and busy period are bounded as

q(t)≤ σ +ρr, d(t)≤ r+σ/c, BP ≤ (σ + cr)/(c−ρ). (2.10)

Proof. Using f1(t) = σ +ρt and f2(t) = c[t − r]+ in (2.4), (2.5), (2.6), and (2.7)
yield (2.8)–(2.10) as can be seen from Fig. 2.2b. ��

2.3 Performance Bounds for a Single Intersection

Consider a signalized intersection with input links l ∈ I, and output links m ∈ O.
A vehicle arriving on input link l can cross the intersection and move to one of
several output links m. A phase is any movement, denoted by the associated input–
output pair (l,m). Not every movement is permitted, e.g., U-turns or left turns may
be prohibited. A set of phases may be simultaneously permitted. Such a set U is
called a stage; U denotes the set of all stages.
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Fig. 2.3 The eight phases of a standard intersection (left) and the matrix representation for the
stage {φ1,φ5} (right)

For example, the standard intersection of Fig. 2.3 (left) has four input and four
output links, both labeled 1, . . . ,4; eight permitted phases, φ1, . . . ,φ8; and eight
stages, each actuating two phases:

{φ1,φ5},{φ1,φ6},{φ2,φ5},{φ2,φ6},{φ3,φ7},{φ3,φ8},{φ4,φ7},{φ4,φ8}. (2.11)

An intersection controller selects one stage u(t) ∈ U for each t = 0,1, · · · . If the
sequence u(t) is periodic, the controller is called pre-timed or fixed-cycle and
the period T is the cycle. No vehicle movement is permitted for some portion of
the cycle. This enforced idleness of duration L is required for pedestrian movement
or for an amber light between successive transitions in u(t). Thus within each cycle
T −L periods are available for vehicle movement.

A periodic control sequence selects stage u(t) = U for duration dU ≥ 0 within
each cycle. For performance analysis using network calculus, the parameters that
matter are the durations {dU ,U ∈U}, whereas the order within a cycle in which u(t)
takes these values is not relevant. (The order is crucial in designing signal offsets.)
Consequently, one may assume that each cycle is comprised of a fixed order of all
phases; however, the duration of the phases may change from one cycle to the next.

The nonnegative durations must satisfy

∑
U ∈U

dU ≤ T −L. (2.12)

A fixed-cycle controller is specified by the cycle T and durations {dU} satisfying
(2.12).
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We make two assumptions concerning the configuration of queues and service
rates. First, vehicles entering input link l in order to make movement (l,m) join a
separate queue dedicated to that movement. For example, the standard intersection
of Fig. 2.3 has eight queues, one for each phase. A separate queue for each phase
requires more space. For performance analysis, this assumption implies that vehicles
intending different movements join different queues and do not block each other.
Thus in Fig. 2.3, if the same queue was used by both phases φ 7 and φ4, a vehicle
intending to make a through movement φ4 may be blocked by a vehicle in front of
it intending to make a left turn φ7. Such “head of line” blocking is precluded by this
assumption. The loss of throughput due to head of line blocking could be evaluated
as in the study of “input-buffered switches” (McKeown et al. 1993), but such an
evaluation is not carried out here.

Second, it is assumed that whenever phase (l,m) is actuated, vehicles in queue
(l,m) leave this queue at a known saturation rate of s(l,m) vehicles per period,
whereas if (l,m) is not actuated, no vehicle in this queue can leave. The saturation
rate is associated with the phase and not with the stage. Thus in the standard
intersection, in both stages {φ1,φ4} and {φ1,φ6}, the queue associated with φ1 is
served at the same saturation rate.

2.3.1 Analysis of a Single Movement

The following notation is used.

(l,m) = phase with input link l and output link m

s(l,m) = saturation rate for phase (l,m)

g(l,m)(r(l,m)) = effective green (red) duration for phase (l,m)

c(l,m)(t) = service that phase (l,m) receives in period t

C(l,m)(t) = cumulative service for phase (l,m) up to t

Consider a fixed-cycle controller with cycle T and durations {dU} satisfying (2.12).
Let u(t), t ≥ 0, be the resulting periodic signal control sequence. The service
c(l,m)(t) that phase (l,m) receives depends on when u(t) actuates the phase and
its saturation rate:

c(l,m)(t) =

{
s(l,m), if (l,m) ∈ u(t)

0, if (l,m) �∈ u(t)
. (2.13)

The resulting cumulative service process is (with C(l,m)(0) = 0)

C(l,m)(t) =
t

∑
r=1

c(l,m)(r) = s(l,m)
t

∑
r=1

1[(l,m) ∈ u(r)], t ≥ 1, (2.14)
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Fig. 2.4 (a) Service rate c(t) for one phase: s is saturation rate, g, r,T are the durations of effective
green, effective red, and cycle. (b) The cumulative arrival process A(t) is (σ ,ρ) upper-bounded.
(c) The cumulative service process C(t) provides service rate c = sg/T with delay r. (d) C(t,τ) ≥
s[t − τ − r]+ for t − τ ≤ T

in which 1[·] is the indicator function. In each cycle phase (l,m) is actuated for a
(green) duration g(l,m), and it is not actuated for an effective (red) duration r(l,m):

g(l,m) = ∑{dU | (l,m) ∈U}; r(l,m) = T − g(l,m). (2.15)

So the average service rate for the queue at phase (l,m) is

lim
t→∞

C(l,m)(t)/t = s(l,m)g(l,m)/T.

Lemma 2. The cumulative service process C(l,m)(t) provides service rate s(l,m)
g(l,m)/T with delay r(l,m).

Proof. Drop the phase index and write C(t) = C(l,m)(t), s = s(l,m), g = g(l,m),
r = r(l,m), etc. Let c = sg/T be the average service rate. Assisted by Fig. 2.4a and
c one can see that if 0 ≤ t − 1− s = kT + τ for some k and τ = (t − 1− s)− kT ,

C(t −1,s) =C(t −1)−C(s) = ckT +
t−1

∑
i=t−1−τ

c(i)≥ ckT + s[τ − r]+ ≥ c[t − s− r]+,

(2.16)
so that C(t) provides (c,r) service. ��
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Suppose arriving vehicles intending to move during phase (l,m) form the (σ ,ρ)
upper-bounded process A(t):

A(t)−A(s)≤ σ +ρ(t − s), t ≥ s. (2.17)

Suppose

ρ ≤ c = sg/T. (2.18)

By Corollary 1 the queue size, the delay at the signal, and the busy period for this
movement are then bounded by

q(t)≤ σ +ρ(T − g), (2.19)

d(t)≤ (T − g)+σ/c, (2.20)

BP ≤ (σ + c(T − g))/(c−ρ). (2.21)

The departure process B(t) is (σ +ρ(T − g),ρ) upper-bounded:

B(t)−B(s)≤ σ +ρ(T − g)+ρ(t− s). (2.22)

Note that (2.16) and hence (2.19)–(2.22) hold even if the g duration is distributed
anywhere within the cycle instead of contiguously as in Fig. 2.4a.

The model is simple. According to (2.17), vehicles arrive at average rate ρ and
at most σ vehicles arrive in a “burst” or “platoon.” If the average arrival rate is
not more than the average service rate, the queue size is bounded by the maximum
number of arrivals during an effective red, namely σ + ρ(T − g); and the longest
delay is faced by the last vehicle arriving in a burst of size σ just before red, namely
(T −g)+σ/c. Lastly, the burst size of the departure process may exceed the arrival
burst size σ by the number of vehicles ρ(T − g) that can accumulate during red.

Suppose we know that the busy period never exceeds the cycle T , i.e., the queue
clears in every cycle. In this case we can see from Fig. 2.4d or (2.16) that C(t)
provides the larger service s[t − r]+, so in place of (2.21) we have the bound

BP ≤ σ + sr
s−ρ

,

which is smaller than T if

σ +ρT < gs. (2.23)

For arrivals with no bursts, σ = 0, (2.23) reduces to ρ < sg/T = c, as in (Newell
1989, Eq. (2.1.6)). In reality, because of an upstream signal, the burst σ is likely to
increase linearly with T . If σ ≈ ηT , (2.23) becomes

η +ρ < gs/T, (2.24)

which requires a larger proportion of the cycle to be green than (2.18) in order to
clear the queue in every cycle.
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Remark. The parameters of the performance bounds (2.19)–(2.21) may be
estimated if individual vehicle arrivals a(t) are measured by a detector located
sufficiently upstream of the signal so that the queue rarely reaches the location.
Then:

Cumulative arrivals A(t) = ∑t
1 a(τ)

Average arrival rate ρ ≈ A(t)/t
Burst size σ ≈ maxs≤t{[∑t

s(a(τ)]−ρ(t − s)]}
Service parameters g,r,T are known from the signal plan.

Estimating saturation rate s requires measurement of departures from the signal
during green [see, e.g., (Kwong et al. 2009, §3.3)]. But note that the max pressure
algorithm does not require knowledge of these parameters.

2.3.2 Analysis of All Movements at an Intersection

A stage U is henceforth represented by the binary I×O matrix U , with U(l,m) = 1
or 0 accordingly as U actuates phase (l,m) or not. (I (O) is the set of input (output)
links at the intersection. See Fig. 2.3 (right).) U is the set of all stages or control
matrices. Any signal controller is represented by a matrix sequence u(t), t ≥ 0, with
values in U .

Let S = {s(l,m), l ∈ I,m ∈ O} denote the matrix of saturation rates of all phases.
If phase (l,m) is not permitted, take s(l,m) = 0. The matrix S ◦U defined by
coordinate-wise multiplication, (S◦U)(l,m)= s(l,m)U(l,m), gives the service rates
of all the phases simultaneously actuated by U .

Consider a fixed-cycle controller u(t), t ≥ 0, with cycle T . During each cycle
u(t) takes the value U ∈ U for duration dU , with

∑
U

dU ≤ T −L.

Expressed as proportions of the cycle, the durations

λU = dU/T, U ∈ U ,
satisfy

∑
U ∈U

λU ≤ 1−L/T ; λU ≥ 0. (2.25)

We identify a fixed-cycle controller with the array [λU ,U ∈ U ;T ]. In each cycle, this
controller actuates phase (l,m) for an effective green duration

g(l,m) = T ∑
U ∈U

λUU(l,m),
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an effective red duration

r(l,m) = T − g(l,m) = T [1−∑
U

λUU(l,m)],

and provides average service rate

c(l,m) = s(l,m)g(l,m)/T = (S ◦∑
U

λUU)(l,m).

By Lemma 2 the fixed-cycle controller [λU ,U ∈ U ;T ] serves phase (l,m) at rate
c(l,m) with delay r(l,m).

In a discrete-time setting, each duration g(l,m) is an integer number of periods,
so the proportions λU are multiples of 1/T . If we allow the proportions to be
arbitrary real numbers in [0,1] the service that fixed-cycle controllers can provide is
characterized by Theorem 2.

Theorem 2. There is a fixed-cycle controller that serves each phase (l,m) at rate
c(l,m) with delay r(l,m) if and only if there exist λU ≥ 0, ∑U λU ≤ 1−L/T such that

c(l,m) =

(
S ◦∑

U
λUU

)
(l,m), r(l,m) = T [1−

(
∑
U

λUU

)
(l,m)]. (2.26)

If vehicle arrivals for phase (l,m) are (σ(l,m),ρ(l,m)) upper-bounded and
ρ(l,m)≤ c(l,m), these vehicles will experience a queue size, delay, and busy period
bounded by

q(l,m)(t)≤ σ(l,m)+ρ(l,m)r(l,m) (2.27)

d(l,m)≤ r(l,m)+σ(l,m)/c(l,m) (2.28)

BP(l,m)≤ [σ(l,m)+ c(l,m)r(l,m)]/[c(l,m)−ρ(l,m)] (2.29)

The departure process from phase (l,m) is bounded by rate ρ(l,m) with burst size
σ(l,m)+ρ(l,m)r(l,m).

If the burst size σ(l,m) = η(l,m)T , the queue size bound is

q(l,m)(t)≤ T

[
η(l,m)+ (1−

(
∑
U

λUU

)
(l,m))ρ(l,m)

]
, (2.30)

and the queue is cleared in each cycle if

η(l,m)+ρ(l,m)≤ c(l,m) =

(
S ◦∑

U

λUU

)
(l,m). (2.31)

Theorem 2 illustrates the use of network calculus. In a deterministic model that
ignores bursts, σ(l,m) = 0, the stability condition is ρ(l,m) ≤ c(l,m) and so, by
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(2.31), the queue must clear in every cycle; hence this deterministic model cannot
explain why vehicles may wait at the intersection for one or more cycles, except
by hypothesizing over-saturated traffic (ρ(l,m) > c(l,m)). By explicitly modeling
bursts (which, in turn, may be due to a variety of conditions upstream of the
intersection) (2.27) and (2.29) show how some vehicles may wait for a long time,
even with undersaturated traffic (ρ(l,m) < c(l,m)). One way of explaining long
delay with undersaturated traffic is to consider stochastic arrivals, whose variability
creates bursts as in (Newell 1965). However, although there is no stochastic analysis
of queues for a network of intersections, network calculus can be fruitfully used as
will seen in Sect. 2.4.

A larger cycle T increases (1−L/T), so by (2.26) it increases the set of arrival
rates ρ(l,m) that can be accommodated, i.e., ρ(l,m) ≤ c(l,m). However, a larger
T also increases the queue size bound (2.30), because it increases both the burst
entering the queue (from upstream) and the red duration during which the queue
grows (see (2.30)). Hence it is of interest to minimize T as in Corollary 2 which, for
the no-burst case σ(l,m) = 0, is due to (Allsop 1972).

Corollary 2. The shortest cycle needed by a fixed-cycle controller to accommodate
all the arrivals bounded by rate ρ(l,m) with burst size σ(l,m) = η(l,m)T and clear
all queues in every cycle is

T =
L

1−∑λ ∗
U
, (2.32)

in which {λ ∗
U} is the solution of the linear program:

min∑λU

s.t.(S ◦∑λUU)(l,m) ≥ η(l,m)+ρ(l,m), all (l,m)

λU ≥ 0 all U ∈ U . (2.33)

If ∑λ ∗
U > 1, no fixed-cycle controller can clear all queues in every cycle.

Instead of minimizing the cycle, one can formulate a linear programming problem
that minimizes (say) a linear combination of queue sizes, delays, or clearance times
using (2.27)–(2.29), thereby extending the discussion in (Newell 1989, §2.2).

Remark. In the special case that each control value or stage U actuates only one
phase (l,m), one may identify U with (l,m) and write λU = λ(l,m). The optimal
solution to (2.33) is

λ ∗
(l,m) =

ρ(l,m)+η(l,m)

s(l,m)
,

and the shortest cycle is

T =
L

1−∑(l,m)[(ρ(l,m)+η(l,m))/s(l,m)]
,

which may be compared with Webster’s rule.
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2.3.3 Work-Conserving Controllers

A fixed-cycle controller [λU ,U ∈ U ;T ] assigns the intersection to stage U for
duration λU T in each cycle. Consequently there will be time instants when stage
u(t) = U serves no queue even though there are nonempty queues at phases not
served by U . To prevent this waste (which will lead to larger delays than necessary)
the signal controller must select the control matrix as a function of the queue sizes,
i.e., it must be traffic-responsive or in feedback form. Of special interest are work-
conserving controllers, which are never idle when there is a nonempty queue. The
controller still has a fixed cycle T , for L periods of which the intersection is not used
by vehicles, but it need not be periodic.

We ignore the discrete-time restriction and allow u(t) to take a value U for an
arbitrary portion λU of a period. In effect at each t the controller selects u(t) from
the convex set [U ]:

[U ] =
{

∑λUU | λU ≥ 0, ∑λU ≤ 1−L/T
}
. (2.34)

Call [U ] the set of relaxed controls. Let u(t) = ∑λU(t)U, t ≥ 0, be a relaxed control
sequence. Suppose vehicle arrivals A(l,m)(t) for phase (l,m) are (σ(l,m),ρ(l,m))
upper-bounded. These vehicles join queue (l,m), which therefore evolves as
(q(l,m)(0) = 0)

q(l,m)(t + 1) = [q(l,m)(t)−
(
S ◦∑λU(t)U

)
(l,m)]+ + a(l,m)(t + 1), t ≥ 0. (2.35)

Here a(l,m)(t) = A(l,m)(t)−A(l,m)(t − 1).

Definition 3. The controller u(t) = ∑λU(t)U, t ≥ 0, is work-conserving if

∃U, ∀(l,m) with U(l,m) = 1 : q(l,m)(t)− (S ◦∑λU(t)U)(l,m)< 0

⇒∀(l,m) : q(l,m)(t)− (S ◦∑λU(t)U)(l,m)≤ 0.
(2.36)

In words: control U may waste service in every phase that U actuates only if no
phase has a nonzero queue.

Definition 4. The controller u(t) = ∑U λU(t)U, t ≥ 0, is stabilizing if all queues
are bounded:

max
(l,m)

sup
t≥0

q(l,m)(t)< ∞.

2.3.3.1 Actuating Single Phase Intersections

This section is devoted to single-phase intersections, in which each stage U actuates
only one phase, say (l,m), U = δ(l,m) is the I × O matrix whose (l,m)th entry
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is 1 and other entries are 0. A relaxed control matrix has the form ∑λ(l,m)δ(l,m).
Let u(t) = ∑λ(l,m)(t)δ(l,m), t ≥ 0, be the control sequence. Then (2.35) simplifies:

q(l,m)(t + 1) = [q(l,m)(t)− s(l,m)λ(l,m)(t)]++ a(l,m)(t + 1), t ≥ 0. (2.37)

Here s(l,m) is the saturation rate for phase (l,m). Equation (2.36) also simplifies:
u(t) = ∑λ(l,m)(t)δ(l,m), t ≥ 0, is work-conserving if

∃(l,m) : q(l,m)(t)− s(l,m)λ(l,m)(t)< 0

⇒ ∀(l,m) : q(l,m)(t)− s(l,m)λ(l,m)(t)≤ 0. (2.38)

Let u(t), t ≥ 0, be work-conserving and define the weighted total queue size

q(t) = ∑
(l,m)

q(l,m)(t)

s(l,m)
.

From (2.37)

q(t + 1) = ∑
[

q(l,m)(t)

s(l,m)
−λ(l,m)(t)

]
+

+∑
a(l,m)(t + 1)

s(l,m)
. (2.39)

Because of (2.38) terms within the square brackets [ ] all have the same sign,
and so

q(t + 1) =

[
∑
(

q(l,m)(t)

s(l,m)
−λ(l,m)(t)

)]
+

+∑
a(l,m)(t + 1)

s(l,m)
= [q(t)− c(t)]++a(t+1),

in which a(t) = ∑[a(l,m)(t)/s(l,m)], and

c(t) = ∑λ(l,m)(t) = 1−L/T. (2.40)

Theorem 3. The weighted arrivals A(t) = ∑[A(l,m)(t)/s(l,m)] are upper-bounded
by rate ρ = ∑[ρ(l,m)/s(l,m)] with burst size σ = ∑[σ(l,m)/s(l,m)]. The cumula-
tive service C(t) = ∑s≤t c(s) serves at rate 1−L/T with delay L. If

ρ = ∑[ρ(l,m)/s(l,m)] ≤ 1−L/T, (2.41)

the size, the delay at the signal, and the busy period of the weighted queue are
bounded by

q(t)≤ σ +ρL, (2.42)

d(t)≤ L+σ/[1−L/T], (2.43)

BP ≤ [σ +(1−L/T)L][1−L/T −ρ ] . (2.44)
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If the bursts σ(l,m) = η(l,m)T and

ρ +[∑η(l,m)/s(l,m)] ≤ 1−L/T, (2.45)

then every queue will be cleared in every cycle.
Consequently, if any fixed-cycle controller is stabilizing, then every work-

conserving controller is also stabilizing.

Proof. First, for s ≤ t,

A(t)−A(s) = ∑
A(l,m)(t)−A(l,m)(s)

s(l,m)
≤∑[σ (l,m)+ρ(l,m)(t−s)]/s(l,m) = σ+ρ(t−s).

Next, by (2.40) and Lemma 2, C(t) serves at rate [1− L/T ] with delay L. Then
(2.18)–(2.21) translate into (2.41)–(2.44), and (2.24) into (2.45). The last assertion
follows from Theorem 2. �

Consider the simplest example of an intersection with two phases, only one of
which can be actuated at any time. The controller in (Mirchandani and Zou 2007)
actuates one phase until its queue is empty, whereupon it switches to the other phase.
The controller in (Lin and Lo 2008) switches from phase 1 to phase 2 accordingly
as the ratio of the queues q1(t)/q2(t) drops below or exceeds a desired ratio. In
network calculus terms this ratio is analogous to [(ρ1 +η1)/s1]/[(ρ2+η2)/s2]. One
may consider a third controller that gives priority to say, phase 1, and actuates that
phase whenever q1(t) > 0; otherwise it actuates phase 2. (Priorities may be used
for buses or emergency vehicles.) These three controllers are all work-conserving,
and Theorem 2 gives the same bounds on the weighted queue size and delay. Of
course, bounds on individual queue lengths will be different for each controller: for
example, the queue at phase 1 will have the smallest bound for the third controller
that gives priority to phase 1.

In (Mirchandani and Zou 2007) and (Lin and Lo 2008) arrivals are Poisson
processes, and evaluating performance measures such as queue size and delay ulti-
mately requires simulation, although (Mirchandani and Zou 2007) also provides an
analytical approximation. The complexity of the analysis and simulations grows
exponentially with the number of phases. By contrast, network calculus provides
simple computable bounds for arbitrarily many phases. Furthermore, when we
consider a network of intersections, arrivals are not Poisson and standard stochastic
queuing approaches are inapplicable, even though network calculus bounds can be
constructed as in Sect. 2.4.

Condition (2.45) to clear all queues is significantly weaker than its counterpart
in (2.33) for fixed-cycle controllers, and shows the benefit of work-conserving
controllers. In fact the following result proved in Appendix C.

Theorem 4. Let Qw(t) = {qw
(l,m)(t)} be the queues for any work-conserving con-

troller and let Q(t) = {q(l,m)(t)} be the queues for any controller, with Qw(0) =
Q(0) = 0. Then for all t,
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φ2, s2

φ1, s1

φ3, s3

φ4, s4

ρ

Fig. 2.5 One phase can be
actuated at a time in each
intersection

∑
(l,m)

qw
(l,m)(t)

s(l,m)
≤ ∑

(l,m)

q(l,m)(t)

s(l,m)
. (2.46)

2.3.3.2 Two Counter-Examples

The first example shows that Theorem 3 does not extend to a network of two
intersections in which only one phase is actuated in each stage. In the network of
Fig. 2.5 phases φ1 and φ4 are fast, with saturation rates s1 = s4 = ∞; φ2 and φ3 are
slow, with s2 = s3 = 1.5. The arrival rate is ρ = 1, with no bursts. T = 1,L = 0.
Clearly there is a stabilizing fixed-time controller for this network. Now consider
work-conserving controllers that give priority to the slow phases, φ2,φ3, i.e., these
phases are served immediately if they have a nonempty queue. Consider the initial
condition: q1(0) = 1, q2(0) = q3(0) = q4(0) = 0. One can check that

q1(4) = 2, q1(8) = 4, · · · ,q1(4n) = 2n, n ≥ 1,

so that these controllers are unstable. This example is from (Lu and Kumar 1991).
There are also examples that do not require infinite service rates, but these are more
complex to describe, see, e.g., (Dai 1995).

The second example shows that Theorem 3 does not extend to the case of
the isolated intersection of Fig. 2.3 in which multiple phases may be actuated
simultaneously. The intersection depicted in Fig. 2.6 only includes part of the
standard intersection. (The example obviously extends to the standard intersection.)

There are four phases and three stages, each actuating one phase pair (cf (2.11)):

{φ1,φ2},{φ3,φ4},{φ2,φ4}.
The cumulative arrivals at each phase have the same rate ρ with burst size σ . The
saturation rate at all phases is the same, s = 1. Let α = [1− L/T ]. Consider the
fixed-cycle controller that actuates phase pairs {φ1,φ2} and {φ3,φ4} each for half
the time, i.e., for duration 0.5[T − L] = 0.5αT in each cycle. By Theorem 2, this
controller serves every phase at rate 0.5α with delay 0.5[T +L] and if

ρ ≤ 0.5α, (2.47)
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φ3φ4

φ2φ1

Fig. 2.6 The intersection
permits four of eight phases
of the standard intersection

the controller is stabilizing, and the queue in every phase is bounded by

q(t)≤ σ +ρ × 0.5[T +L].

There will be instants when vehicles simultaneously arrive for phases φ2 and φ4.
Suppose this occurs at rate δ > 0. Formally:

∑
s<i≤t

1[a2(i)> 0 and a4(i)> 0]≥ δ (t − s). (2.48)

Now consider any controller u(t), t ≥ 0, that selects stage {φ2,φ4} whenever both
q2(t) > 0 and q4(t) > 0, i.e., {φ2,φ4} gets priority in the event that vehicles are
queued up at both phases. Because of the priority and (2.48), {φ2,φ4} receives
service for duration at least δT in each cycle; hence the two remaining pairs
{φ1,φ2},{φ3,φ4} together will receive service for duration at most T − L − δT .
Consequently one of these two pairs, say {φ1,φ2}, will receive service for duration
at most 0.5(T − L− δT ) in each cycle that is at rate at most 0.5(1− L/T − δ ) =
0.5(α − δ ). Comparison with (2.47) shows that if

0.5(α − δ )< ρ ≤ 0.5α, (2.49)

every controller with this priority is unstable and the queue length at phase φ1 must
become unbounded! Note that any controller that always serves a nonempty queue
while keeping this priority is work-conserving.

A controller that gives priority to {φ2,φ4} if either q2(t) > 0 or q4(t) > 0 will
have worse performance, since the instability condition (2.49) is replaced by the
weaker inequality,

0.5(α −ρ)< ρ ≤ 0.5α.

Such a controller is commonly used to give priority to buses (Chada and Newland
2002).
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It is easy to construct a stable work-conserving controller by modifying any
stable fixed-cycle controller so that it actuates a phase with a nonempty queue
whenever the controller becomes idle. (This recalls the common practice of
terminating the green phase on a “cross street” when there is no queue.) However,
this controller is not adaptive, since constructing a stable fixed-cycle controller
requires knowledge of the demands. This suggests the following problem: Construct
a stable, adaptive, work-conserving controller. The problem is solved in the next
section for an isolated intersection.

2.3.3.3 The Adaptive Controller Problem

Here is the precise problem. For a relaxed control sequence u(t) = ∑λU(t)U , t ≥ 0,
the evolution of the intersection’s queues is given by (q(l,m)(0) = 0)

q(l,m)(t + 1) =
[
q(l,m)(t)−

(
S ◦∑λU(t)U

)
(l,m)

]
+
+ a(l,m)(t + 1), t ≥ 0. (2.50)

Let q denote the array {q(l,m)} of all the queues. The problem is to find a function
λ ∗

U(q) of q such that the feedback control sequence u(t) = ∑λ ∗
U(q(t))U stabilizes

the queues for any set of demands for which a stabilizing fixed-cycle controller
exists. We exhibit such a feedback control.

Define the pressure exerted by stage U at q by

w(q,U) = ∑
(l,m)

q(l,m)S ◦U(l,m) = ∑
(l,m)

q(l,m)s(l,m)U(l,m), (2.51)

i.e., it is the sum of the queue lengths multiplied by the saturation rates of the phases
that U actuates. Extend linearly the pressure to any relaxed control [U ] = ∑λUU ,

w(q, [U ]) = ∑λUw(q,U) = ∑q(l,m)s(l,m)[U ](l,m).

Define the max-pressure stage by

U∗(q) = argmax{w(q,U) | U ∈ U}. (2.52)

In (2.52) ties are broken arbitrarily. The name “max-pressure policy” was apparently
first introduced in (Dai and Lin 2005), although similar policies were studied earlier;
Tassiulas and Ephremides (1992) was the first study to investigate its stability
properties in the context of wireless networks.

Definition 5. The max-pressure controller u∗(t) selects the max-pressure stage
at q(t):

u∗(t) = (1−L/T)U∗(q(t)).
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Lemma 3. u∗(t) maximizes w(q, [U ]) over the set [U ] of relaxed controls.

Proof. w(q, [U ]) is linear in [U ] and [U ] is the convex hull of its vertices
{(1 − L/T )U, U ∈ U}. Hence the maximum of w(q, [U ]) is achieved at
(1−L/T)U∗(q). ��
Theorem 5. Let q(t) be the queues resulting from the max-pressure controller:

q(l,m)(t + 1) = [q(l,m)(t)− (S ◦ (1−L/T)U∗(q(t)))(l,m)]+ + a(l,m)(t + 1), t ≥ 0.
(2.53)

Suppose that in (2.53) the arrivals A(l,m) are (σ(l,m),ρ(l,m)) upper-bounded and
there exists a (fixed-cycle) relaxed control [U ] such that

c(l,m) = S ◦ [U ](l,m)> ρ(l,m), all (l,m). (2.54)

Then {q(t), t ≥ 0} is a bounded sequence, i.e., the max-pressure controller is
stabilizing.

Proof. Write c∗(l,m)(t) = (S◦(1−L/T)U∗(q(t)))(l,m), so under the max-pressure
controller

q(l,m)(t + 1) = [q(l,m)(t)− c∗(l,m)(t)]+ + a(l,m)(t + 1). (2.55)

For any q let |q|2 = ∑q2
(l,m). It is shown in Appendix D that there exist k < ∞, ε > 0,

and σ(t)≥ 0 with ∑t σ(t)< ∞, so that

|q(t + 1)|2 −|q(t)|2 ≤ k− (2ε −σ(t))|q(t)|, (2.56)

Suppose (2.56) holds. With T such that σ(t)< ε, t ≥ T , (2.56) gives

|q(t + 1)|2 −|q(t)|2 ≤ k− ε|q(t)|, t > T,

and so

|q(t + 1)|2 −|q(t)|2 < 0, |q(t)|> k/ε, t > T,

which implies that |q(t)|, t ≥ 0, is bounded. ��
The max-pressure controller is adaptive since it requires no knowledge of the

parameters (σ(l,m),ρ(l,m)) of the arrival processes. It is robust in the sense that if
any controller can keep queues bounded, so can the max-pressure controller. From
the proof of Theorem 5 one gains the intuition that the max-pressure controller
attempts at each t to minimize |q(t + 1)|2 given q(t).
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2.4 Performance Bounds for a Network of Intersections

The model of a network of signalized intersections is formulated in Sect. 2.4.1.
The performance bounds of Corollary 1 are applied to the network with fixed-
cycle controllers in Sect. 2.4.2. The extension of the max-pressure controller to an
arbitrary network is carried out in Sect. 2.4.3.

2.4.1 Network Model

This section is based on (Chang 2000, §1.7). The concept of router is needed to
extend the discussion of Sect. 2.2 to a network of intersections. A router P ∈ F
is a network element with cumulative arrivals A ∈ F and departures B ∈ F given
by B(t) = P(A(t)) for all t. The interpretation is that the router selects or samples
P(n) among its first n arrivals so that B(t) = P(A(t)) is the cumulative number of
selections by time t. Routers are used to model turn movements.

Suppose A is (σ ,ρ) upper-bounded, and P is (δ ,γ) upper-bounded. Since

B(t)−B(s) = P(A(t))−P(A(s))≤ δ + γ(A(t)−A(s))≤ (δ + γσ)+ γρ(t− s),

it follows that B is (γσ + δ ,γρ) upper-bounded.
Figure 2.7 will help explain the notation and the model.

L= {1, · · · ,L} = set of all links, elements l,m,k

N = set of nodes or intersections, elements n

In ⊂ L, set of input links to n ∈ N
On ⊂ L, set of output links from n ∈ N

El

Al

link l intersection

link m’

link m

P(l,m’ )

q(l,m’ )

(Al)

P(l,m)

C(l,m’ )

C(l,m)

B(l,m’ )

B(l,m)

q(l,m)

(Al)

B(k,l)

Fig. 2.7 El are external arrivals into link l, B(k,l) are internal arrivals routed from link k to l, and
C(l,m) is the service process for phase (l,m)
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El ,(αl ,βl) = external arrivals into link l, (αl ,βl) upper-bounded

B(l,m) = departures from l to m

C(l,m) = service for phase (l,m) at rate c(l,m) with delay r(l,m)

Al = El +∑
k

B(k,l) total arrivals into link l

P(l,m),(δ(l,m),γ(l,m)) = router from link l to link m, (δ(l,m),γ(l,m)) upper-bounded

q(l,m) = queue (in link l) for phase (l,m)

s(l,m) = saturation rate of phase (l,m)

Although P(l,m),B(l,m),C(l,m),q(l,m), etc. are only defined for permissible phases, it
will be convenient to define them for all (l,m) ∈ L×L by setting their values to
0 for phases that are not permitted.

Suppose Al is (σl ,ρl) upper-bounded (σl ,ρl are determined below). Then
P(l,m)(Al) is (δ(l,m) + γ(l,m)σl ,γ(l,m)ρl) upper-bounded. Suppose C(l,m) provides
service (c(l,m),r(l,m)) with c(l,m) ≥ γ(l,m)ρl . By Corollary 1

q(l,m)(t)≤ δ(l,m) + γ(l,m)σl + γ(l,m)ρlr(l,m),

B(l,m) is (δ(l,m) + γ(l,m)σl + γ(l,m)ρlr(l,m),γ(l,m)ρl) upper-bounded,

d(l,m)(t)≤ r(l,m)+ [δ(l,m) + γ(l,m)σl ]/c(l,m),

BP(l,m) ≤ [δ(l,m) + γ(l,m)σl + c(l,m)r(l,m)]/[c(l,m)− γ(l,m)ρl ]. (2.57)

So Al = El +∑k B(k,l) is (σl ,ρl) upper-bounded with

σl = αl +∑k[δ(k,l) + γ(k,l)σk + γ(k,l)ρkr(k, l)], (2.58)

ρl = βl +∑k γ(k,l)ρk. (2.59)

It is convenient to use vector–matrix notation. All vectors below are row vectors of
dimension L and all matrices are of dimensions L×L.

Let α = (α1, · · · ,αL), β = (β1, · · · ,βL), σ = (σ1, · · · ,σL), ρ = (ρ1, · · · ,ρL).
Define matrices Γ = {γ(l,m)}, Δ = {δ(l,m)}, R = {r(l,m)}, Γ ◦R = {γ(l,m)r(l,m)}.
Let e = (1, · · · ,1) be the row vector with all entries 1, and δ = eΔ. Write (2.58)–
(2.59) as

σ = α + δ +σΓ+ρΓ◦R

ρ = β +ρΓ
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Assume that for all l, ∑m γ(l,m) ≤ 1, and the spectral radius of Γ, which equals its
maximum eigenvalue, is strictly less than 1. (This is equivalent to the condition that
every vehicle eventually leaves the network.) Then

[I −Γ]−1 = I+Γ+Γ2+ · · · ,
ρ = β +ρΓ = β [I−Γ]−1, (2.60)

σ = α + δ +ρΓ◦R+σΓ= (α + δ +ρΓ◦R)[I−Γ]−1. (2.61)

Let q = {q(l,m)}, C = {c(l,m)}, B = {B(l,m)}, and let [σ ], [ρ ] denote diagonal
matrices with entries σl ,ρl .

Lemma 4. Suppose the external arrivals El are (αl ,βl) upper-bounded, the spec-
tral radius of the routing matrix Γ is strictly less than 1, and C(l,m) provides service
(c(l,m),r(l,m)) with c(l,m) ≥ γ(l,m)ρl . Then, with A = (A1, · · · ,AL), B = {B(l,m)},
q = {q(l,m)}, the following bounds hold:

A(t) is (σ ,ρ) upper-bounded, (2.62)

B(t) is (Δ+[σ ]Γ+[ρ ]Γ◦R, [ρ ]Γ) upper bounded, (2.63)

q(t)≤ Δ+[σ ]Γ+[ρ ]Γ◦R, (2.64)

d(l,m)(t)≤ r(l,m)+ [δ(l,m) +σlγ(l,m)]/c(l,m), (2.65)

BP(l,m) ≤ [δ(l,m) + γ(l,m)σl + c(l,m)r(l,m)]/[c(l,m)− γ(l,m)ρl ]. (2.66)

Above ρ and σ are given by (2.60) and (2.61).

2.4.2 Performance of Fixed-Cycle Controller

We extend the notation of Sect. 2.3 for a single controller to that for a network, and
use Lemma 4 to design fixed-cycle controllers for the network.

A node or intersection n ∈ N is specified by input links l ∈ In, output links
m ∈ On, and a set of In × On binary control matrices Un ∈ Un representing all
permissible stages at n. Let Sn = {s(l,m), l ∈ In,m ∈ On} be the matrix of saturation
rates of all phases at intersection n, with s(l,m) = 0 if (l,m) is not permitted. If Un

is the stage selected at intersection n, the matrix Sn ◦Un is the matrix of service rates
at t provided by Un to the phases at n.

We can take the “direct product” of the control matrices Un at each intersection
n to obtain a network stage matrix U = ∏n Un of dimension L × L for the entire
network,

U(l,m) =

{
Un(l,m), if (l,m) ∈ In ×On

0, otherwise
.
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U =

Fig. 2.8 A network stage
matrix U is a block-diagonal
matrix with intersection stage
matrices Un,Un′ along the
diagonal

One may picture U in block-diagonal form as in Fig. 2.8. Analogously, let S =∏n Sn

be the L×L matrix of the saturation rates of all phases (l,m). Let U = ∏Un be the
set of all network stage matrices. We now proceed as in Sect. 2.3.2. For simplicity,
assume that all intersections have the same cycle T and the same lost time L. (Having
different cycles at different intersections only complicates the notation.) Let

[U ] =
{

∑
U

λUU | λU ≥ 0, ∑
U

λU ≤ 1−L/T

}
, (2.67)

be the set of all relaxed controls. Theorem 6 is the network counterpart of
Theorem 2.

Theorem 6. There is a fixed-cycle network controller that serves each phase (l,m)
at rate c(l,m) with delay r(l,m) if and only if there exist λU ≥ 0, ∑U λU ≤ 1−L/T
such that

c(l,m) =

(
S ◦∑

U

λUU

)
(l,m); r(l,m) = T

[
1−

(
∑
U

λUU

)
(l,m)

]
. (2.68)

Suppose the external arrivals El are (αl ,βl) upper-bounded, and c(l,m) ≥ ρlγ(l,m)

for every (l,m), or in matrix notation

S ◦∑
U

λUU ≥ [ρ ]Γ = [β [I−Γ]−1]Γ. (2.69)

Then the performance of the controller satisfies the bounds (2.62)–(2.66).

The external arrival rates β are “inflated” by the routing matrix multiplier [I −Γ]−1

to give the aggregate arrival rates ρ = β [I − Γ]−1, as is to be expected. More
interesting is the impact of routing on transforming the bursts α in the external
arrivals into the bursts σ in (2.61). Both impacts affect the maximum queue size,
delay, and clearance times (2.64)–(2.66). Corollary 3 is the network counterpart of
Corollary 2.
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Corollary 3. The shortest cycle needed by a stabilizing fixed-cycle controller for
all external arrivals Al bounded by rate βl with burst size αl is

T =
L

1−∑λ ∗
U
, (2.70)

in which {λ ∗
U} is the solution of the linear program:

min∑λU

s.t.(S ◦∑λUU)(l,m)≥ [
β [I −Γ]−1Γ

]
(l,m), all (l,m)

λU ≥ 0 all U ∈ U . (2.71)

If ∑λ ∗
U > 1, there is no stabilizing fixed-cycle controller.

Because U and S are block-diagonal, the linear program decomposes into a set of
independent linear programs, one per intersection.

One of the L×L inequalities in (2.71), corresponding to say (l∗,m∗), will hold
as an equality in the solution. One could call (l∗,m∗) the critical phase and the
intersection n∗ for which l∗ ∈ In∗ ,m∗ ∈ On∗ as the critical intersection. Following
(Allsop 1972) one may also define the capacity of this intersection.

2.4.3 Max-Pressure Controller

The max-pressure controller of Sect. 2.3.3.3 is extended to a network in this section.
Define the pressure exerted by network stage U at q = {q(l,m)} by

w(q,U) = ∑
(l,m)

[
q(l,m)−∑

p
γ(m,p)q(m,p)

]
S ◦U(l,m), (2.72)

and linearly extend the definition to [U ] = ∑λUU ,

w(q, [U ]) = ∑λU w(q,U) = ∑
(l,m)

[
q(l,m)−∑

p
γ(m,p)q(m,p)

]
S ◦ [U ](l,m).

This definition of pressure differs from (2.51) in that for each phase (l,m) we
take the product of its queue length q(l,m) and saturation rate s(l,m) and subtract
the corresponding amount from the downstream queue q(m,p) weighted by the
average turn ratio γ(m,p). For the isolated intersection considered in Sect. 2.3.3.3
with no downstream queue, (2.72) reduces to (2.51).

Note that to calculate the pressure (2.72) exerted by a network stage one needs
to know the turn ratios {γ(l,m)} in addition to the queue lengths. (It is of course easy
to estimate turn ratios.) However, no knowledge of the parameters (αl ,βl) of the
external demands El is needed.
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Define the max-pressure stage as

U∗(q) = argmax{w(q,U) | U ∈ U}. (2.73)

In (2.73) ties are broken arbitrarily. Let q(t) = {q(l,m)(t)} be the queue length array.

Definition 6. The max-pressure network controller u∗(t) selects the max-pressure
stage at q(t):

u∗(t) = (1−L/T)U∗(q(t)).

The pressure (2.72) of a network stage is the sum of the pressures exerted at
each intersection stage, so the max-pressure network stage (2.73) is simply the
collection of the max-pressure stages at all the intersections. Hence, the max-
pressure controller is decentralized. If the network of intersections is expanded, the
max-pressure controller for the original network is unchanged, so the max-pressure
controller can be introduced incrementally.

The proof of Lemma 5 is identical to that of Lemma 3.

Lemma 5. u∗(t) maximizes w(q, [U ]) over the set [U ] of relaxed controls.

Referring to Fig. 2.7, let Ã(l,m)(t) = P(l,m)(Al(t)) be the cumulative number of
vehicles routed from link l to m. Under the max-pressure controller Ã(l,m) receives
service

c∗(l,m)(t) = S ◦ (1−L/T)U∗(q(t))(l,m),

so the evolution of the array q(t) is governed by these equations:

q(l,m)(t + 1) = [q(l,m)(t)− c∗(l,m)(t)]+ + ã(l,m)(t + 1), (2.74)

ã(l,m)(t + 1) = γ(l,m)al(t + 1)+ δ(l,m)(t), (2.75)

al(t + 1) = el(t + 1)+∑k b(k,l)(t), (2.76)

b(k,l)(t) = min{q(k,l)(t),c
∗(k, l)(t)}. (2.77)

Above as elsewhere, ã(l,m)(t +1) = Ã(l,m)(t +1)− Ã(l,m)(t), al(t +1) = Al(t +1)−
Al(t + 1), etc. Since P(l,m) is (δ(l,m),γ(l,m)) upper-bounded,

∑
t

δ(l,m)(t)≤ δ(l,m), where δ(l,m)(t) = a(l,m)(t)− γ(l,m)al(t). (2.78)

Substitution into (2.74) gives the evolution of q(t) directly in terms of the external
arrivals:

q(l,m)(t +1) =
[
q(l,m)(t)−c∗(l,m)(t)

]
+
+γ(l,m)

[
el(t+1)+∑

k

min{q(k,l)(t),c
∗(k, l)(t)}

]

+δ(l,m)(t +1). (2.79)

Theorem 7 extends Theorem 5 to the network case.
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Theorem 7. Let q(t) be the queues resulting from the max-pressure controller.
Suppose that the external arrivals El are (αl ,βl) upper-bounded, the routers P(l,m)

are (δ(l,m),γ(l,m)) upper-bounded and there exists a (fixed-cycle) relaxed network
control matrix [U ] such that

c(l,m) = S ◦ [U ](l,m)> ρlγ(l,m), all (l,m), (2.80)

in which ρ = β [I −Γ]−1. Then {q(t), t ≥ 0} is a bounded sequence and the max-
pressure controller is stabilizing.

Proof. Under the max-pressure controller the queues evolve according to (2.79). Let
|q|2 = ∑q2

(l,m). It is shown in Appendix E that there exist k < ∞, ε > 0, and σ(t)≥ 0
with ∑t σ(t)< ∞, so that

|q(t + 1)|2 −|q(t)|2 ≤ k− (2ε −σ(t))|q(t)|, (2.81)

Suppose (2.81) holds. With T such that σ(t)< ε, t ≥ T , (2.81) gives

|q(t + 1)|2 −|q(t)|2 ≤ k− ε|q(t)|, t > T,

and so

|q(t + 1)|2 −|q(t)|2 < 0, |q(t)|> k/ε, t > T, (2.82)

which implies that |q(t)|, t ≥ 0 is bounded. ��

2.4.4 Two Extensions of Max-Pressure Controller

The pressure w(q,U) defined in (2.72) treats all queues equally. It may be desirable
to treat them differently by giving them weights. Let κ(l,m) > 0 be pre-specified
weights and define the weighted pressure exerted by stage U as

wκ(q,U) = ∑
(l,m)

[
κ(l,m)q(l,m)−∑

p
γ(m,p)κ(m,p)q(m,p)

]
S ◦U(l,m), (2.83)

simply by replacing q(l,m) in (2.72) by κ(l,m)q(l,m). Define the max-pressure stage as

U∗
κ (q) = argmax{wκ(q,U) | U ∈ U},

and the max-pressure controller at q(t) by

u∗κ(t) = (1−L/T)U∗
κ (q(t)).

Theorem 7 remains true with this definition of the max-pressure controller. The
proof of Theorem 7 applies with appropriate changes.
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The weighted pressure (2.83) can be used to give preference to the clearance of
certain queues. For example, (Aboudolas et al. 2009b, Eq. (11)) suggests using

κ(l,m) = [Q(l,m)]
−1,

where Q(l,m) is the maximum permissible queue length for phase (l,m). Another
possibility is to give more weight to phases that are restricted to buses, giving them
greater priority.

The second extension might be termed max-pressure-lite. Suppose the intersec-
tion controllers already have in place several timing plans, scheduled depending on
time of day. In our notation a timing plan is just a relaxed control. Suppose K timing
plans are in place, denoted as in (2.67) by

[Ui] = ∑
U

λ i
UU, ∑λ i

U ≤ 1−L/T, i = 1, · · · ,K. (2.84)

Depending on the time of day, the controller selects one of the [Ui] without regard
to traffic conditions. If queue measurements are available, one can select the timing
plan that exerts the maximum pressure:

[U∗](q) = argmax{w(q, [Ui]) | i = 1, · · · ,K}.

The max-pressure-lite controller is given by

u∗lite(t) = [U∗](q(t)).

The following result can be proved in a way similar to Theorem 7.

Theorem 8. Suppose there exists a convex combination of the fixed timing plans
[U ] = ∑K

i=1 μi[Ui], μi ≥ 0, ∑ μi = 1 such that

S ◦ [U ](l,m)> ρlγ(l,m), all (l,m).

Then the max-pressure-lite controller is stabilizing.

2.5 Discussion

We present the intuition underlying the max-pressure controller. This is followed by
a comparison with other controller designs. Lastly, we discuss model limitations,
followed by some open problems.
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2.5.1 Intuition

For any relaxed network control sequence [U(t)] let c(l,m)(t) = S ◦ [U(t)](l,m) be
the resulting service rates. The evolution of queues in response to the control and
the external arrivals is given by (2.79):

q(l,m)(t+1) =
[
q(l,m)(t)−c(l,m)(t)

]
+
+γ(l,m)

[
el(t+1)+∑

k

min{q(k,l)(t),c(k, l)(t)}
]

+δ(l,m)(t + 1).

If the queues are sufficiently large (saturated case, q(l,m)(t) > c(l,m)(t)) this
simplifies to

q(l,m)(t + 1)− q(l,m)(t) = −c(l,m)(t)+ γ(l,m)∑
k

c(k, l)(t)+ γ(l,m) [βl +αl(t + 1)]

+δ(l,m)(t + 1). (2.85)

Regard (2.85) as a discrete-time approximation of the differential equation

d
dt

q(l,m)(t) =−c(l,m)(t)+ γ(l,m)∑
k

c(k, l)(t)+ γ(l,m)βl +ψ(l,m)(t), (2.86)

in which ψ(l,m)(t) = γ(l,m)αl(t)+ δ(l,m)(t) is a “disturbance” input. Then

1
2

d
dt
|q(t)|2 = 〈q(t), q̇(t)〉

= −∑q(l,m)(t)

[
c(l,m)(t)− γ(l,m)∑

k

c(k, l)(t)

]
+∑q(l,m)(t)γ(l,m)βl

+∑q(l,m)(t)ψ(l,m)(t)

= −w(q(t), [U(t)])+∑q(l,m)(t)γ(l,m)βl +∑q(l,m)(t)ψ(l,m)(t). (2.87)

The third term on the right is evanescent and may be ignored since ∑ψ(l,m)(t)< ∞.
The max-pressure controller selects stage [U(t)] ∈ [U ] that makes the first term as
negative as possible. The second constant forcing term is due to the average rate of
external arrivals. Theorem 7 says that if there is a stabilizing fixed-cycle controller
the first term will dominate the second term. In fact, (2.108) says that

−w(q(t), [U(t)])+∑q(l,m)(t)γ(l,m)βl <−ε|q(t)|,

which is why the max-pressure controller is stabilizing. The fact that the inequality
above does not require knowledge of the arrival rates {βl} explains why the max-
pressure controller is adaptive.
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2.5.2 Comparison with Other Designs

Previous designs of traffic-responsive controllers (Robertson and Bretherton 1991;
Mirchandani and Head 2001; Heydecker 2004; Aboudolas et al. 2009b; Cai et al.
2009) require (or make) an estimate of the arrivals over a finite or infinite horizon
and select the control that minimizes queues or delay over that horizon. The
presumption is that the longer is the horizon, the better will be the controller
performance. By contrast, the max-pressure controller is “myopic” and does not
make any estimate of the arrivals. In addition, previous designs require estimates of
the queues to be communicated to a central controller. By contrast, the max-pressure
controller requires only local communication, since the pressure of a stage at any
intersection depends only on the queues adjacent to the intersection. Lastly, none of
the cited references proves that their controller design is stabilizing as is the case
with the max-pressure controller.

We compare in some detail the max-pressure controller with that of (Aboudolas
et al. 2009b), which uses the same model as (2.85), expresses c(l,m)(t) = S ◦
[∑U λU(t)](l,m), and also takes the proportions {λU(t), U ∈ U} of the available
time (T −L) as the control vector. The control vector is decomposed as

λU(t) = λ F
U +ΔλU(t),

in which {λ F
U } is, by assumption, a known stabilizing fixed-cycle controller for the

external arrivals {βl}. With this assumption, (2.85) simplifies to

q(l,m)(t+1)−q(l,m)(t)=−S◦
[
∑
U

ΔλU (t)

]
(l,m)+γ(l,m)∑

k

S◦
[
∑
U

ΔλU (t)

]
(k, l)+ψ(l,m)(t).

(2.88)
The control deviations {ΔλU(t),U ∈ U} are selected to minimize the quadratic cost

∑
t
|q(l,m)(t)|2 + p∑

t
∑

U ∈U
|ΔλU(t)|2.

Neglecting the evanescent disturbances {ψ(l,m)(t)}, this cost is minimized by easily
calculated linear feedback rules:

ΔλU(t) = ∑
l,m

GU(l,m)q(l,m)(t), U ∈ U .

Since the resulting proportions will not satisfy the constraint

∑
U

[
λ F

U +ΔλU(t)
]≤ T −L, (2.89)

the “gain” matrices GU are changed to G̃U so that the modified deviations
{ΔλU(t)}= ∑l,m G̃U(l,m)q(l,m)(t) do meet this constraint.

Note that if the true arrivals are different from the assumed arrivals, a steady-state
bias in the queue lengths must be present to compensate for the error in the assumed
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arrivals. Of course, the linear model (2.85) will be quite inaccurate when the queues
are small. Two more complex optimization methods are considered in (Aboudolas
et al. 2009b) but not discussed here.

2.5.3 Model Limitations

We discuss four limitations. In a “store and forward” (SF) model, there is no
limit to how much a queue can grow, so the condition in which a downstream
queue blocks upstream vehicles is not modeled. It is straightforward to modify
(2.79) to model blocking. The first term on the right of (2.79), namely [q(l,m)(t)−
c(l,m)(t)]+ indicates that the queue q(l,m)(t) is decremented by the saturation
rate s(l,m) whenever the phase (l,m) is actuated, regardless of the congestion in
the downstream link m. If link m has a queue capacity of Q(m) and its average queue
size is q(m)(t) = ∑γ(m,p)q(m,p)(t), one could replace [q(l,m)(t)− c(l,m)(t)]+ by

1[q(m)(t)< Q(m)]× [q(l,m)(t)− c(l,m)(t)]+,

so that the movement of vehicles from link l to m is blocked when q(m)(t) exceeds
Q(m). Unfortunately, with this model of blocking, it is easy to construct examples
that create “gridlock” in such a way that there is no stabilizing controller. On the
other hand, (2.82) implies that the max-pressure controller is stabilizing if the Q(m)
are large enough.

Second, the model does not take into account that it takes time for vehicles to
traverse a link. If this time is constant (so called free flow travel time), it can be
modeled by a constant delay network element as in (Chang 2000, Lemma 2.3.9).
It is not difficult to see that the max-pressure controller is stabilizing in this case as
well.

The third limitation is related to the second. The store and forward model leaves
no room for signal offset. A signal offset design can be grafted on to the max-
pressure controller in the same manner as in Diakaki et al. (2003).

Fourth, the model assumes turn ratios as opposed to O–D patterns. If O–D
patterns are fixed, i.e., each O–D demand is distributed in fixed proportions over a
set of routes, the demand can be equivalently described by turn ratios. But if drivers
respond to delays by changing their route, the turn ratios will also change, and the
max-pressure controller needs to adapt to the changes. The resulting system could
be studied in a two-level control framework similarly to Wong and Yang (1997).

2.5.4 Future Work

Several questions seem worth investigation. The first concerns priorities: Which
priorities in a single-phase network or in a multiphase isolated intersection permit
stabilizing work-conserving controllers?
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The second question concerns an evacuation scenario in which there is an initial
set of queues q(0) and no external inputs, and one wishes to design a fixed-time
controller and a feedback controller that minimize ∑t q(t). How should one restrict
the phases actuated by each stage U to a subset [U ′] (i.e., U ′(l,m) = 1→U(l,m)=1)
so as to minimize ∑t q(t)? The idea here is that whereas U may permit left-turns
(say) it may be more efficient to prevent such turns.

The third question concerns over-saturated networks in which the average rates
{βl} of external arrivals {el} in (2.79) are such that there is no stabilizing controller.
How should one design an adaptive scheme to “meter” these arrivals so that the
network can be stabilized? For a macroscopic discussion see (Daganzo 2007).

2.6 Conclusion

The max-pressure controller appears to offer advantages over other adaptive
controllers. The controller at each intersection only needs to know the queues
on adjoining links and the computation required to select the max-pressure stage
is trivial. No knowledge of demand (or even the network topology) is needed,
although each intersection controller does need to know local turn ratios. Max-
pressure is provably stable whenever there exists any stabilizing controller. Lastly,
max-pressure is attractive from an implementation viewpoint: it requires less
communication and computational infrastructure than other adaptive controllers;
and it can be incrementally deployed since addition of new intersections entails
no change in the control of existing intersections.
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Appendices

A Proof of Lemma 1

By induction. Since q(0) = 0, (2.2) holds for t = 0. Suppose (2.2) holds for t. Then

q(t + 1) = max

{
0, max

0≤s≤t
[A(t,s)−C(t − 1,s)]− c(t)

}
+ a(t + 1)

= max

{
a(t + 1), max

0≤s≤t
[A(t + 1,s)−C(t,s)]

}

= max
0≤s≤t+1

[A(t + 1,s)−C(t,s)],
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so (2.2) holds for t + 1. Since the queue size is the difference between arrivals and
departures,

B(t) = A(t)− [q(t)− q(0)]

= A(t)− max
0≤s≤t

[A(t,s)−C(t − 1,s)]

= min
0≤s≤t

[A(s)+C(t − 1,s)],

which proves (2.3). ��

B Proof of Theorem 1

Equation (2.4) follows from

q(t)= max
0≤s≤t

[A(t,s)−C(t−1,s)]≤ max
0≤s≤t

[ f1(t−s)− f2(t−s)] = max
0≤τ≤t

[ f1(τ)− f2(τ)].

Since always B(t)≤ A(t),

B(t,s) ≤ A(t)−B(s)

= A(t)− min
0≤r≤s

[A(r)+C(s− 1,r)]

= max
0≤r≤s

[A(t,r)−C(s− 1,r)]

≤ max
0≤r≤s

[ f1(t − r)− f2(s− r)]

= max
0≤τ≤s

[ f1(t − s+ τ)− f2(τ)]

≤ max
0≤τ

[ f1(t − s+ τ)− f2(τ)],

which proves (2.5). Next t+d(t) is the least time by which there are A(t) cumulative
departures, so

d(t) = min{d | B(t + d)≥ A(t)}.
From (2.3),

B(t + d)−A(t) = min
s≤t+d

{A(s)+C(t + d− 1,s)}−A(t)

≥ min{0,min
s≤t

{−A(t,s)+C(t+ d− 1,s)}}, as A(s)−A(t)

+C(t + d− 1,s)≥ 0,s ≥ t

≥ min{0,min
s≤t

{− f1(t − s)+ f2(t − s+ d)}}

= min{0, min
0≤τ≤t

{− f1(τ)+ f2(τ + d)}}.
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Hence B(t + d) ≥ A(t) if f1(τ) ≤ f2(τ + d) for τ = 1, · · · t, which implies (2.6).
Lastly, a busy period starting at s lasts until t if

A(s) = B(s), A(t + 1) = B(t + 1), and A(s+ τ)> B(s+ τ), τ = 1, · · · , t − s,

and so

0 < A(s+ τ,s)−B(s+ τ,s)≤ f1(τ)− f2(τ), τ = 1, · · · , t − s,

from which (2.7) follows. ��

C Proof of Theorem 4

Proof. According to (2.39) and (2.40) ∑(l,m)[q
w
(l,m)(t)/s(l,m)] is the same for

all work-conserving controllers. So it is enough to exhibit one work-conserving
controller for which (2.46) holds. For any controller ∑λ(l,m)(t)δ(l,m) write (2.37)
in vector form (Q(t) = {q(l,m)(t)})

Q(t + 1) = f (Q(t), t).

Because of (2.38) one can construct a work-conserving feedback controller
∑λ w

(l,m)
(Q, t)δ(l,m) such that

[qw
(l,m)− s(l,m)λ w

(l,m)(Q
′w, t)]+ ≤ [q(l,m)(t)− s(l,m)λ(l,m)(t)]+ (2.90)

for all t, (l,m) and Qw ≤ Q (the vector ≤ is interpreted component-wise). Write
(2.37) for this work-conserving controller as

Qw(t + 1) = g(Qw(t), t).

It is not difficult to see that the functions f (Q, t) and g(Q, t) are both monotonic
in Q, i.e.,

Qw ≤ Q ⇒ f (Qw, t)≤ f (Q, t) and g(Qw, t)≤ g(Q, t).

We claim that if Qw(0) = Qw(0) then

Qw(t)≤ Q(t), t ≥ 0. (2.91)

Equation (2.91) is clear for t = 0. Suppose it is true for t. Then

Qw(t + 1) = g(Qw(t), t)≤ g(Q(t), t)≤ f (Q(t), t)≤ Q(t + 1),
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in which the first inequality is due to monotonicity of g and the second follows from
(2.90). Thus this, and hence all, work-conserving controllers satisfy (2.46). ��

D Proof of (2.56)

We prove (2.56) in a few steps. For arrays x = {x(l,m)} and y = {y(l,m)} write
〈x,y〉 = ∑x(l,m)y(l,m), |x|2 = 〈x,x〉, min{x,y} = {min(x(l,m),y(l,m))}, max{x,y} =
{max(x(l,m),y(l,m))}. Then (2.55) can be written as

q(t + 1) = [q(t)− c∗(t)]++ a(t + 1) = max{q(t)− c∗(t),0}+ a(t+ 1),

so

δ = q(t+1)−q(t)=max{−c∗(t),−q(t)}+a(t+1)=−min{c∗(t),q(t)}+a(t+1).

Next,

|q(t + 1)|2 −|q(t)|2 = 2〈δ ,q(t)〉+ |δ |2 = 2α +β ,say. (2.92)

We separately upper-bound α and β.

Bound on α

α = 〈δ ,q(t)〉= ∑q(l,m)(t)[a(l,m)(t + 1)−min{c(l,m)∗(t),q(l,m)(t)}] (2.93)

= ∑q(l,m)(t)[a(l,m)(t+1)−c(l,m)∗(t)+max{c(l,m)∗(t)−q(l,m)(t),0}] (2.94)

= ∑q(l,m)(t)[a(l,m)(t + 1)− c(l,m)∗(t)]

+∑q(l,m)(t)max{c(l,m)∗(t)− q(l,m)(t),0} (2.95)

= α1 +α2,say. (2.96)

Let K = max{a(l,m)(t + 1),c∗(l,m)(t)}, the maximum taken over all (l,m), t. Then

α2 ≤ ∑q(l,m)(t)c
∗(l,m)(t + 1)1[q(l,m)(t)< c∗(l,m)(t)]≤ NK2, (2.97)

in which N is the number of (l,m) pairs. Next

α1 = ∑q(l,m)(t)[a(l,m)(t + 1)− c∗(l,m)(t)]
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= ∑q(l,m)(t)[a(l,m)(t + 1)−ρ(l,m)]+∑q(l,m)(t)[ρ(l,m)− c(l,m)]

+∑q(l,m)(t)[c(l,m)− c∗(l,m)(t)]

= α11 +α12 +α13, say.

Let σ(l,m)(t +1) = a(l,m)(t +1)−ρ(l,m). Since A(l,m)(t) is (σ(l,m),ρ(l,m)) upper-
bounded,

α11 = ∑q(l,m)(t)σ(l,m)(t + 1), with ∑
t

σ(l,m)(t)≤ σ(l,m).

By (2.54) ρ(l,m)− c(l,m)< 0 for all (l,m), so there exists η > 0 such that

α12 ≤−η ∑q(l,m)(t).

Lastly, since u∗(t) maximizes the pressure w(q(t), [U ]), it follows that

α13 = ∑q(l,m)(t)[c(l,m)− c∗(l,m)(t)] = w(q(t), [U ])−w(q(t),u∗(t))≤ 0.

Combining these three estimates gives

α1 ≤ ∑(−η +σ(l,m)(t))q(l,m)(t), with ∑
t

σ(l,m)(t)≤ σ(l,m). (2.98)

Bound on β

δ(l,m) = a(l,m)(t + 1)−min{c(l,m)∗(t),q(l,m)(t)}
= a(l,m)(t + 1)− c∗(l,m)(t)1[q(l,m)(t)> c∗(l,m)(t)]− q(l,m)(t)1[q(l,m)(t)

≤ c∗(l,m)(t)]

|δ(l,m)| ≤ |a(l,m)(t + 1)− c∗(l,m)(t)|+ q∗(l,m)(t)1[q(l,m)(t)

≤ c∗(l,m)(t)]

≤ |a(l,m)(t + 1)− c∗(l,m)(t)|+ c∗(l,m)(t) ≤ 2K

So

|δ |2 = ∑δ 2
(l,m) ≤ 4NK2. (2.99)

Equation (2.56) follows from (2.92) to (2.99). ��
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E Proof of (2.81)

The proof follows the same lines as in Appendix D. Write (2.74) in vector–matrix
form as

q(t + 1) = [q(t)− c∗(t)]++ ã(t + 1).

Let

x = q(t + 1)− q(t) =−min{c∗(t),q(t)}+ ã(t + 1).

Then

|x|2 = 2〈x,q(t)〉+ |x|2 = 2μ +ν, say. (2.100)

We separately bound μ , ν .

Bound on μ

μ = 〈x,q(t)〉= ∑q(l,m)(t)[ã(l,m)(t + 1)−min{c∗(l,m)(t),q(l,m)(t)}]
= ∑q(l,m)(t)[ã(l,m)(t + 1)− c∗(l,m)(t)+max{c∗(l,m)(t)− q(l,m)(t),0}]
= ∑q(l,m)(t)[ã(l,m)(t+1)−c∗(l,m)(t)]+∑q(l,m)(t)max{c∗(l,m)(t)−q(l,m)(t),0}
= μ1 + μ2, say.

Let K = max{c∗(l,m)(t)} be the maximum over all t, (l,m). Then

μ2 = ∑q(l,m)(t)max{c∗(l,m)(t)− q(l,m)(t),0}
≤ ∑q(l,m)(t)c

∗(l,m)(t)1[c∗(l,m)(t) ≥ q(l,m)(t)]

≤ NK2, (2.101)

in which N is the number of (l,m) pairs in the network.
Using (2.74)–(2.77),

μ1 = ∑
l,m

q(l,m)(t)[ã(l,m)(t + 1)− c∗(l,m)(t)]

= ∑
l,m

q(l,m)(t)

[
el(t + 1)γ(l,m) +∑

k

b(k,l)(t)γ(l,m) + δ(l,m)(t)− c∗(l,m)(t)

]
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= ∑
l,m

q(l,m)(t)

[
el(t + 1)γ(l,m) +∑

k

min{q(k,l)(t),c
∗(k, l)(t)}γ(l,m)

+δ(l,m)(t)− c∗(l,m)(t)

]

≤ ∑
l,m

q(l,m)(t)

[
el(t + 1)γ(l,m) +∑

k

c∗(k, l)(t)γ(l,m) − c∗(l,m)(t)

]

+∑
l,m

q(l,m)(t)δ(l,m)(t)

= ∑
l,m

q(l,m)(t)

[
βlγ(l,m) +∑

k

c∗(k, l)(t)γ(l,m)− c∗(l,m)(t)

]

+∑
l,m

q(l,m)(t)
[
αl(t + 1)γ(l,m) + δ(l,m)(t)

]

= μ11 + μ12 + μ13.

Above, αl(t + 1) = el(t + 1)− βl , so ∑t αl(t) ≤ αl , since El is (αl ,βl) upper-
bounded;

μ11 = ∑
l,m

q(l,m)(t)βlγ(l,m), (2.102)

μ12 = ∑
l,m

q(l,m)(t)

[
∑
k

c∗(k, l)(t)γ(l,m) − c∗(l,m)(t)

]

= ∑
l,m

[
∑
p

q(m,p)(t)γ(m,p)− q(l,m)(t)

]
c∗(l,m)(t)

= −w(q(t),u∗(t)), (2.103)

μ13 = ∑
l,m

q(l,m)(t)
[
αl(t + 1)γ(l,m) + δ(l,m)(t)

]
. (2.104)

Substituting βl = ρl −∑k ρkγ(k,l) from (2.59) into (2.102) gives

μ11 = ∑
l,m

q(l,m)(t)

[
ρl −∑

k

ρkγ(k,l)

]
γ(l,m)

= ∑
l,m

ρlγ(l,m)q(l,m)(t)−∑
l,m

q(l,m)(t)∑
k

ρkγ(k,l)γ(l,m)

= ∑
l,m

ρlγ(l,m)q(l,m)(t)−∑
m

[
∑

l

ρlγ(l,m)

]
∑
p

q(m,p)(t)γ(m,p)

= ∑
l,m

ρlγ(l,m)

[
q(l,m)(t)−∑

p
q(m,p)(t)γ(m,p)

]
. (2.105)
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By (2.80) there exists [U ] ∈ [U ] such that S ◦ [U ]> [ρ ]Γ. Since 0 ∈ [U ], this implies
that [ρ ]Γ is in the interior of S ◦ [U ]. Hence there exist (possibly different) [U ] and
η > 0 such that

S ◦ [U ](l,m) =

{
ρlγ(l,m) +η , if q(l,m)(t)−∑p q(m,p)(t)γ(m,p) > 0

ρlγ(l,m)−η , if q(l,m)(t)−∑p q(m,p)(t)γ(m,p) ≤ 0
,

and so
w(q, [U ])≥ μ11 +η ∑

l,m

|q(l,m)(t)−∑
p

q(m,p)(t)γ(m,p)|. (2.106)

The linear transformation {q(l,m)} �→ {q(l,m) − ∑p q(m,p)γ(m,p)} is 1:1 from the
conditions imposed on Γ. Hence (2.106) implies that there exists ε > 0 so that

w(q(t), [U ])≥ μ11 + ε|q(t)|,

which together with (2.103) gives

μ11 + μ12 ≤ w(q(t), [U ])−w(q(t),u∗(t))− ε|q(t)| ≤ −ε|q(t)|, (2.107)

since the pressure w(q, [U ] is maximized at u∗(t). Together with (2.104) we get the
bound

μ1 ≤−ε|q(t)|+σ(t)|q(t)|, (2.108)

for some σ(t)≥ 0, ∑σ(t)< ∞.

Bound on ν

From (2.100), ν = ∑l,m |x(l,m)|2, and

x(l,m) = ã(l,m)(t + 1)−min{c∗(l,m)(t),q(l,m)(t)}
= ã(l,m)(t + 1)− c∗(l,m)(t)−min{q(l,m)(t)− c∗(l,m)(t),0},

so

|x(l,m)| ≤ |ã(l,m)(t + 1)− c∗(l,m)(t)|+ |c∗(l,m)(t)| ≤ |ã(l,m)(t + 1)|+ 2|c∗(l,m)(t)|.

From (2.75) to (2.77) it follows that |ã(l,m)(t +1)| is bounded. Hence there is k < ∞
such that ν ≤ k, which together with (2.108) and (2.101) yield (2.81) as required.

��
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Chapter 3
Coordinated Feedback-Based Freeway Ramp
Metering Control Strategies “C-MIXCROS
and D-MIXCROS” that Take Ramp Queues
into Account

Ilgin Gokasar, Kaan Ozbay, and Pushkin Kachroo

Abstract In this paper, C-MIXCROS and D-MIXCROS, two feedback-based
coordinated ramp metering strategies that explicitly consider ramp queues, are
proposed. They are evaluated using both macroscopic (Rutgers Macroscopic Sim-
ulation Environment) and microscopic (PARAMICS) simulation models (on an
11-mile-long corridor of I-295 in South Jersey) under different demand conditions.
In addition to the newly proposed coordinated ramp metering strategies, a well-
known coordinated strategy (METALINE [Papageorgiou et al. Transport Res.
1990;24A:361–370]) and three other local strategies (ALINEA [Papageorgiou et
al. Transportation research record, No. 1320, Washington, D.C.: TRB, National
Research Council; 1991. p. 58–64], New Control [Kachroo and Ozbay. Feedback
ramp metering in intelligent transportation systems. New York: Kluwer Academics;
2003], and MIXCROS [Kachroo and Ozbay. Feedback ramp metering in intelligent
transportation systems. New York: Kluwer Academics; 2003) are also implemented
using the same network and results are compared. The proportional-derivative state
feedback control logic and direct regulation of on-ramp queues are employed in the
derivation of this new proposed coordinated ramp metering strategy. The simulation
results are consistent with the macroscopic simulation results, where D-MIXCROS
and C-MIXCROS both perform more competently than all other control strategies
tested for every demand scenario. The deteriorating effect of enormous on-ramp
queues on the total travel time is observed especially in METALINE results; the
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total travel time for METALINE is approximately 22% greater compared with
C-MIXCROS. MIXCROS also successfully maintains the on-ramp queues at a
reasonable level for each ramp. However, because it is a local ramp metering
strategy, coordinated versions of MIXCROS are observed to be more beneficial both
for the ramp system and at the network level.

3.1 Introduction

The continuous rise in traffic demand has led to increasingly severe congestion,
both recurrent (occurring daily during rush hours) and nonrecurrent (resulting from
incidents). One of the most efficient and direct control measures typically employed
in freeway networks is ramp metering. Ramp metering provides improvement on
freeway flow by dispersing platoons of vehicles and accommodating more efficient
merging, as well as reducing accidents and fuel consumption. Freeway control
can be categorized as open-loop (in general, time-of-day–dependent) or closed-
loop (traffic-responsive) control. In the first case, controls are derived from a
priori known traffic data such as demands and occupancies (e.g., Demand Capacity
[Masher et al. 1975]), whereas closed-loop controls directly react to existing traffic
conditions (e.g., ALINEA and MIXCROS).

There are basically two types of ramp metering, namely, local and coordinated.
Local ramp metering considers an isolated section of the network consisting of a
freeway segment with one on-ramp, and the controller responds only to changes in
the local conditions. Coordinated ramp metering is applied to a series of entrance
ramps with the goal of coordinating the response of all the ramps in the system.

Coordinated traffic-responsive ramp metering was first implemented in the 1970s
and has been gradually adopted by the USA and countries around the world
for many freeway control systems. It is used to control a series of ramps in
order to optimize the performance of a freeway facility at the network level.
The coordination of the controls allows the metering rate at any ramp to be
influenced by conditions at other locations within the network. Circumstances such
as multiple bottlenecks on the freeway, nonrecurrent congestion problems (e.g.,
incidents and environmental conditions), the urgency for optimization of throughput
on freeway corridors, and the need for flexibility in addressing changing conditions
over time more rapidly lead to the selection of coordinated ramp metering strategies
versus isolated ramp metering strategies.

A number of coordinated traffic-responsive control strategies have been proposed
but few have been implemented. Some of the implemented coordinated ramp
metering strategies include the Zone algorithm (Stephanedes 1994) along I-35 East
in Minneapolis/St. Paul, Minnesota, in 1970; Helper ramp algorithm (Lipp et al.
1991) along the I-25 freeway in Denver, Colorado, in March 1981; Bottleneck
algorithm (Jacobsen et al. 1989) on I-5, north of the Seattle central business district
in Seattle, Washington; Sperry ramp metering algorithm (VDOT) along I-395 and
I-66 in northern Virginia during 1985; Fuzzy logic algorithm (Meldrum and Taylor
1995) along I-405 in Seattle, Washington, in 1999; Linear programming algorithm
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(Yoshino et al. 1995) in Kobe, Japan; FLOW (Jacobsen et al. 1989) in Seattle,
Washington, on September 30, 1981; METALINE (Papageorgiou et al. 1990)
in Paris (France), Milwaukee (Wisconsin), and Amsterdam (Netherlands); and
SWARM (Paesani et al. 1997) in Orange County, California. There are also more
sophisticated new ramp metering algorithms that combine feedback-based control
with online learning such as the “iterative learning approach” proposed by Hou et al.
(2008).

The Zone algorithm divides the freeway facility into zones with a variable length
of 3–6 miles. These zones may contain several metered or non-metered on-ramps.
The upstream end of a zone is a free-flow area, and the downstream end of a zone
is usually a critical bottleneck. The system-level metering rate is determined by
volume control of each zone. The basic concept of the algorithm is to balance
the volume of traffic leaving the zone. Comprehensive evaluations of the Zone
algorithm show increased freeway speeds, as well as reduced freeway accidents
and air pollution, after 10 years of operation. A recent enhancement of the system
is the stratified zone algorithm, which is capable of considering maximum queue
constraints while the ramp metering rates are calculated. However, the dynamic
nature of the traffic flow process is not appraised in the Zone algorithm; therefore,
it may not perform efficiently under incident conditions when fast changes of traffic
flow occur. Also, the parameters for the algorithm have to be tuned carefully to
reflect the local traffic and freeway characteristics; this is laborious to accomplish
because the relation between the control parameters and the control objective is
not clear in the Zone algorithm (Bogenberger and May 1999; Zhang et al. 2001;
Kotsialos et al. 2004).

Helper ramp algorithm is the local traffic-responsive metering algorithm
combined with a centralized coordinated operational override feature. The local
ramp metering strategies belong to the class of demand capacity. The coordination
is achieved through a heuristic site-specific logic. The on-ramps being controlled are
divided into six location groups containing 1–7 on-ramps. Based on the localized
conditions, each meter selects 1 of 6 available metering rates. Predetermined queue
thresholds are used, and, when activated, upstream on-ramps are assigned restrictive
metering rates. However, the algorithm requires experience with local traffic
patterns to ascertain the superior performance measures. According to the field
implementations, HELPER ramp algorithm is found to be very effective in reducing
congestion when speeds are less than 90 km/h. However, when the local traffic-
responsive control can maintain a speed of 90 km/h, centralized control offer
limited or no benefit (Zhang et al. 2001; Kotsialos et al. 2004).

Bottleneck algorithm uses both local traffic-responsive upstream occupancy data
and bottleneck data to determine a local metering rate (from historical data) and a
bottleneck metering rate. The more restrictive of the two rates is then implemented
at each ramp. Queue override is used to prevent spillback onto the arterial street
network. A 6-year Bottleneck algorithm (Jacobsen et al. 1989) evaluation study
is performed, consisting of 17 southbound ramps during the AM peak and five
northbound during the PM peak along a 6.9-mile test corridor in Seattle, Washington.
Over the study period, it is reported that travel time drops from 22 to 11.5 min
after metering despite higher volumes (mainline volumes increased by more than
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86% northbound and 62% southbound). The accident rate drops by about 39%, and
average metering delays at each ramp remain at or below 3 min (Zhang et al. 2001;
Bogenberger and May 1999; Kotsialos et al. 2004).

Sperry ramp metering algorithm is based on the demand capacity strategy.
It attempts to maintain centralized demand below the capacity at each detector
station to maximize freeway vehicle miles of travel. It uses only flow measurements
and estimated capacities as input. The strategy operates at two distinct modes, the
restrictive and the nonrestrictive when ramp spillbacks occur. Algorithm implemen-
tation begins with the entrance ramp furthest downstream in the section and then
continues upstream, one ramp at a time (Bogenberger and May 1999; Kotsialos
et al. 2004).

Fuzzy logic algorithm is based on rules that incorporate human expertise;
in this way, it can balance several performance objectives simultaneously and
consider many types of information. Fuzzy logic control is especially suitable
when an accurate system model is unavailable. Evaluation of the Fuzzy logic
algorithm in 9 m locations (1989–1995) on the A12 freeway between Utrecht and
Hague (Zoetermeer, Netherlands) reveals higher speeds during congested periods
and shorter travel times within the 11-km study area. However, ramp delays are
increased. According to Zhang et al. (2001), this algorithm is theoretically very
attractive but too complicated to configure, requiring concentrated effort to calibrate
the tuning rules and membership functions. It performs poorly when not configured
properly, which limits the practical value of this algorithm in the field (Bogenberger
and May 1999; Zhang et al. 2001).

Linear programming algorithm identifies an objective function that needs to
be minimized/maximized and a series of constraint equations to work within
while optimizing this function. Although mathematically more complex than most
algorithms, linear programming algorithm can be solved very efficiently using off-
the-shelf software programs. One drawback of this algorithm is that its performance
relies heavily on accurate origin–destination data. Furthermore, it is static; that is,
it neglects the variation of travel time in its computation of ramp metering rates
(Zhang et al. 2001).

FLOW is an integrated, traffic-responsive metering algorithm in which metering
rates are calculated in real time based on system and local capacity conditions.
In addition, queuing conditions on the ramps are also incorporated in the final
calculation of metering rates. Hence, the metering algorithm has three components:
local metering rate, bottleneck metering rate, and metering rate based on on-ramp
queue lengths. The bottleneck metering rate is computed to achieve coordination
among ramp meters, and it accounts for the interdependencies among entrance ramp
operations. A brief description of FLOW, including its limitations and advantages,
is presented in Jacobsen et al. (1989), and Hasan et al. (2002).

METALINE is the coordinated version of the local ramp metering strategy
ALINEA. The control logic of METALINE is proportional-integral state feedback.
The main challenge to the successful operation of METALINE is the proper choice
of the control matrices and the target occupancy vector. There is no direct consid-
eration of on-ramp queues in METALINE (Papageorgiou et al. 1990). According
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to Zhang et al. (2001), this algorithm is theoretically sound and potentially robust;
however, it is difficult to calibrate and operate. Based on the field implementations,
it is reported that METALINE performs slightly more effectively for nonrecurrent
congestion compared with ALINEA (Papageorgiou et al. 1991).

SWARM (System-wide adaptive ramp metering) seeks to maximize the overall
flow of cars on the freeway. The algorithm consists of two levels. The local control
determines ramp metering rates based on the local density. The global control
determines the overall volume reduction from the ramps upstream a critical bottle-
neck and then distributes it to upstream ramps according to a set of predetermined
fractions to obtain a new set of ramp metering rates. The more restrictive of
the two is selected for each ramp. SWARM uses predicted volumes, rather than
solely measured conditions, to locate bottlenecks. Therefore, its performance is
very sensitive to the accuracy of the predictions (Zhang et al. 2001). SWARM is
tested off-line extensively in the Caltrans District 12 Traffic Management Center
but is never implemented due to the operational and functional problems, as well
as lack of an operator’s manual. Caltrans did not detect any evidence that SWARM
had affected any ramps (Bogenberger and May 1999; Zhang et al. 2001; Kotsialos
et al. 2004).

Kwon et al. (2001) performed a macroscopic simulation evaluation of the Zone
algorithm, Fuzzy logic algorithm, and a coordinated algorithm used in Colorado.
Because the Zone algorithm did not use queue control, it resulted in the most
restrictive metering rates, the least mainline congestion, but the longest ramp
queues. In contrast, analysis of Fuzzy logic demonstrated that queue control could
reduce mainline efficiency. However, this test also indicated that the Fuzzy logic
algorithm is very sensitive to the weights used for each rule.

Chu et al. (2001) evaluated three adaptive ramp metering algorithms, namely,
ALINEA, Bottleneck, and Zone, over a stretch of freeway I-405, California, using
PARAMICS. It was reported that the two coordinated ramp metering algorithms
Bottleneck and Zone performed more satisfactorily than the current fixed-time
control and ALINEA algorithm under both morning and afternoon scenarios.

Another simulation study evaluated two ramp control algorithms, a local
control algorithm (ALINEA) and a coordinated algorithm (FLOW), using the
MITSIM microscopic traffic simulator on a network including part of the Central
Artery/Tunnel (CA/T) Project in Boston (Hasan 2002). The performance of
ALINEA was satisfactory when there was not a bottleneck downstream of the
metered ramps. FLOW outperformed ALINEA under a downstream bottleneck
scenario. The improvements of total travel time in FLOW were greater compared
with ALINEA when demand was elevated. The study indicated the superiority of
system-wide optimization of ramp meter control.

Some of the proposed coordinated ramp metering strategies, which have not
been implemented, include Ball Aerospace/FHWA, ARMS (Advanced Real-time
Metering System; Liu et al. 1993) and coordinated metering using artificial neural
networks (Wei and Wu 1996).

On the other hand, there have been some new papers reporting results from field
evaluation of various ramp metering algorithms. For example, Bhouri et al. (2011)
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compare isolated and coordinated ramp metering strategies based on the field data.
They report major travel time around 24–37% for both isolated and coordinatedramp
metering. While coordinated ramp metering is observed to improve travel time
reliability, isolated ramp metering has not been found to have an impact on travel
time reliability. The ramp metering controls that are evaluated in this paper, namely,
ALINEA, New Control, METALINE, MIXCROS, and the coordinated version of
MIXCROS, are briefly described below.

ALINEA, a closed-loop local ramp metering strategy recommended by
Papageorgiou et al. (1991), to be applied at the time instants kT,k = 0,1, 2, . . .,
for any sample time interval T (e.g., T = 60s) is

r(k) = r(k− 1)+K [ô− oout(k)] ,

where K > 0 is a regulator parameter, ô is a set (desired) value for the downstream
occupancy (typically, but not necessarily, ô = ocr may be set, in which case the
downstream freeway flow approaches the value of qcap; refer to Fig. 3.1), r(k−1) is
the last on-ramp volume, and r(k) is the current ramp volume.

Most of the ramp control strategies proposed so far, such as ALINEA and a new
section-based control law (New Control) introduced in Kachroo and Ozbay (2003)
shown below, do not directly consider on-ramp queues. They are therefore handled
through overriding restrictive metering rates where the metering rate is set to
maximum when the on-ramp queue reaches a predetermined level:

r(k) =−K [o(k)− ocr]+ [qout(k)− qin(k)] ,

where o(k) is the current downstream occupancy at time step k, ocr is the set
occupancy value, qin(k) is the flow entering the freeway section at time step k,
and qout(k) is the flow leaving the freeway section at time step k. This control
law guarantees that limk→∞(ρ −ρcr)

2 → 0, which is the objective of the controller.
In fact, it guarantees that the rate of convergence of o− ocr is geometric at a rate
dictated by the control gain K.
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METALINE (Papageorgiou et al. 1990) control law is

�u(k) =�u(k− 1)−K1 [�o(k)−�o(k− 1)]−K2

[
�O(k)− �Ocr

]
,

where �u(k) ∈ ℜm is the vector of metering rates for the m controlled ramps at time
step k; �o(k) ∈ ℜn is the vector of n measured occupancies within the directional
freeway segment at time step k; and �O, �Ocr ∈ ℜn are, respectively, the measured
and desired occupancy downstream of m controlled ramps. K1 and K2 are two gain
matrices. The main challenge to the successful operation of METALINE is the
proper choice of the control matrices K1 and K2 and the target occupancy vector
�Ocr. There is no direct consideration of queue overflow, which could be handled by
override tactics as in ALINEA.

MIXCROS, a traffic-responsive local ramp metering control law proposed by
Ozbay and Kachroo (2003), is developed to maximize the throughput on the freeway
without creating long queues on the ramp via the use of carefully calibrated weight
parameters for the freeway and ramp, namely, w1 and w2. The control logic of
MIXCROS is proportional-derivative state feedback. MIXCROS proved to be very
effective in reducing the congestion on the ramp system while keeping the on-ramp
queue at an acceptable level. However, because it is a local feedback-based ramp
metering strategy, it produced meager improvement at the network level (Ozbay
et al. 2004).

The control objective is defined as

e(k) = w1 |ρ(k)−ρcr|+w2queueramp,

where ρ is the density of the freeway section (veh/mi), ρcr is the critical density
of the freeway section (veh/mi), and queueramp is the queue length on the ramp
(veh/mi). The error function, which takes these two objectives (term 1 and term
2) into account, determines how much significance should be attributed to freeway
density and queue length on the ramp with the aid of weights w1 and w2. Appropriate
values for w1 and w2 are determined by carefully scrutinizing the control objective
of the system. The system can be categorized in two regions. In one region,
the traffic density is greater than the critical density and in the other region, the
traffic density is less than or equal to the critical density.

These two regions can be combined to devise an integrated control law (i.e., one
that is applicable in both regions). The overall control law is therefore given by

u(k) = G−1 [−F −Ke(k)] ,

where

F = sign(ρ(k)−ρcr)w1

[
ρ(k)−ρcr+

T
Lf

( f1(k)− qout(k))

]

+w2

[
queueramp(k)+

T
Lr

f2(k)

]
,
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and

G = sign(ρ(k)−ρcr)w1
T
Lf

−w2
T
Lr

.

The variable f1 (veh/hr) is the flow entering the freeway section, f2 is the flow
entering the ramp (veh/hr), and Lf and Lr are the length of the freeway and ramp
section (mi), respectively; moreover, T is the time step duration (hr), and K is the
control gain (0 < K < 1),k is the time step (k = 0,1, . . .) The variable sign(ρ(k)−
ρcr) equals 1 when ρ(k) is greater than ρcr. Otherwise, sign(ρ(k)−ρcr) equals -1.
The complete derivation of the above control law, which is beyond the scope of this
paper, is provided by Kachroo and Ozbay (2003).

3.2 Motivation

3.3 Description of the Coordinated Version of MIXCROS

The coordinated ramp metering problem refers to a freeway system that has ramps
on it at various points. The challenge lies in how the ramp metering should be
designed while taking into account the interactions among the different ramps.
The coordinated ramp problem is illustrated in Fig. 3.1 below. In designing this new
feedback-based ramp metering strategy, the coordinated ramp metering problem is
expressed as the problem of controlling the traffic density on the mainline while
minimizing the on-ramp queues through the use of assiduously calibrated weight
parameters for the freeway and each on-ramp, namely, w1(i) and w2(i). Decoupled or
coupled approaches (D-MIXCROS and C-MIXCROS, respectively) can be used as
a solution.

3.4 Freeway Traffic Model

The basic model used for the design of the coordinated MIXCROS control law is
shown in Fig. 3.1.

In this figure, n is the number of freeway sections, fi (veh/hr) is the flow entering
the freeway at the first section, qi is the flow leaving the freeway section i (veh/hr),
ri is the flow entering the ramp (veh/hr), ui is the metered flow (veh/hr), ρi is the
freeway density (veh/mi), ρc(i) is the critical density (veh/mi), T is the time step
duration (hr), w1(i) and w2(i) are the weight factors (w1(i) +w2(i) = 1), queuerampi is
the queue length on the ramp (veh/mi), Ki is the control gain (0 < K < 1), and Lfi

and Lri are the length of the freeway and ramp section i(mi), respectively.
In time Δ t, the traffic density of the section of length Δxfi changes from ρi(t) to

ρi(t+Δ t). This change is caused by the effective inflow at the section. The effective
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inflow is given by the sum of the freeway and ramp inflows after removing the
outflow from the sum. This relationship in an equation form is

ρi(t +Δ t)−ρi(t) = Δ t
(−qi+1(t)+ ui(t)+ qi(t))

Δxfi
.

By placing the function for infinitesimal time on the left-hand side of the equation
and taking the limits, the following equation is created

lim
Δ t→∞

ρi(t +Δ t)−ρi(t)
Δ t

=
(−qi+1(t)+ ui(t)+ qi(t))

Δxfi
.

This can be expressed as the following ordinary differential equation:

ρ̇i =
dρi(t)

dt
=

1
Δxfi

(−qi+1(t)+ ui(t)+ qi(t)).

The ramp dynamics is derived using conservation equation on the ramp. In time Δ t,
the “amount” of vehicles that have entered the ramp is expressed by queuerampi(t +
Δ t)− queuerampi(t). Due to the conservation law, this should equal the change

caused by the inflow and outflow during the same time, given by (ri(t)−ui(t))
Δxri

Δ t. By
equating both as

queuerampi(t +Δ t)− queuerampi(t) =
(ri(t)− ui(t))

Δxri
Δ t

and observing limits, the ramp dynamics are obtained:

lim
Δ t→0

queuerampi(t +Δ t)− queuerampi(t)

Δ t
= lim

Δ t→0

(ri(t)− ui(t))
Δxri

,

(queueramp)
′ =

(ri(t)− ui(t))
Δxri

.

Here (queuerampi)
′ indicates differentiation with respect to time. Combining the

above equations, the overall system dynamics can be written as

System Dynamics :

⎧⎪⎨
⎪⎩

ρ̇i =
dρi(t)

dt = 1
Δx f i

(−qi+1(t)+ ui(t)+ qi(t))

(queuerampi)
′ = 1

Δxri
(−ri(t)− ui(t))

, (3.1)

Initial conditions :

⎧⎨
⎩

ρi(0) = ρ0(i)

queuerampi(0) = queueramp0(i)

.

The flow relationship is

qi(t) = ρi(t)vi(t),
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The speed relationship is taken as

vi(t) = v f

(
1− ρi(t)

ρjam(i)

)

3.5 The Control Objective

The control objective for this new control law is to make the error term approaches
the value 0 asymptotically. That is,

Lim
t→∞

e(t) = 0.

This can be achieved by designing a control law that makes the system follow the
below closed-loop dynamics:

ė(t)+Ke(t) = 0(0 < K < 1). (3.2)

The coordinated version of MIXCROS is applied to several on-ramps to provide
network-wide improvements. It aims to maximize the throughput on all the freeway
sections without creating extensive queues on all the metered ramps. Therefore, the
error variable that accomplishes this is designed as

e(t) =
n

∑
i=1

(∣∣w1(i)x1(i)(t)
∣∣+ ∣∣w2(i)x2(i)(t)

∣∣)
i
, (3.3)

where x1(i)(t) = ρi(t) − ρcr(i), x2(i)(t) = queuerampi(t), and i = 1,2, . . . ,n,
(“i”=section index).

The proportional-derivative state feedback control logic (3.2) and direct regula-
tion of on-ramp queues (3.3) are employed in the derivation of this newly proposed
coordinated ramp metering strategy.

The critical value for the density of the freeway section “i” is ρcr(i) (Fig. 3.1), in
which case the freeway flow approaches the value of qcapacity (Fig. 3.2).

This system can be represented in a vector form as

x(t) = [x1(t)x2(t)]
T.

Hence, substituting x1(i) and x2(i) into the control objective (3.3) yields

e(t) = w1(1)|ρ1(t)−ρcr(1)|+w2(1)queueramp1(t)+w1(2)|ρ2(t)−ρcr(2)|
+w2(2)queueramp2(t)+ . . .+w1(n)|ρn(t)−ρcr(n)|+w2(n)queuerampn(t). (3.4)
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Fig. 3.2 The fundamental
diagram (May 1990)

The error function is defined as the sum of the absolute values of the state variables,
x1(i) and x2(i). The state variable x1(i) represents the freeway section of the network,
and x2(i) represents the on-ramp queues. This function takes these state variables into
account and determines how much importance should be given to freeway density
and queue length on the ramp with the help of weights, w1(i) and w2(i).

Appropriate values of the parameters w1(i) and w2(i) are determined by taking
the two objectives of the system into consideration simultaneously. That is, these
parameters are selected in such a way that they ensure maximization of the
throughput on the freeway (w1(i)) without creating long queues (w2(i)) on the ramp.

When w1(i) is greater than w2(i) (i.e., 0.5 < w1(i) ≤ 1), in order to minimize
the error function, the amount of variance from the critical density on the freeway
segment is restricted by decreasing the amount of vehicles released from the on-
ramp. In other words, choosing w1(i) as greater than w2(i) improves the freeway
throughput. However, it can eventually lead to increased on-ramp delays.

If w2(i) is excluded by setting it to zero, then the term that considers the queue
length on the ramp disappears from the error equation. This way, the queue length
on the ramp is no longer included in the control law.

3.6 Coordinated MIXCROS Control Law

Coordinated MIXCROS control law can be best described with the assistance of
a block representation of the algorithm (Fig. 3.3). The process under control is the
traffic flow on n freeway sections with one on-ramp (Fig. 3.1).

Control systems are affected by certain process inputs called disturbances,
which cannot be manipulated. In this system, represented by the block diagram in
Fig. 3.3, qi and ri are the measurable disturbances, or freeway and ramp demands,
respectively. The values for qi and ri are real-time data gathered from the detectors
located on the upstream portion of the freeway and on the ramp, respectively.
The states of the system, x1(i) and x2(i), are functions of these disturbances (i.e., qi

and ri). Traffic density of the section and queue length on the ramp, both of which
constitute the system outputs, are obtained using sensors located on the upstream
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Process (Figure 1)

Regulator =
  Coordinated MIXCROS

Disturbance =  qi (t),ri (t),i =1,2,..., n

Output =  ri (t),queuerampi (t),i =1,2,..., n

Set value = rcr(i), i =1,2,..., n

Input = ui (t), i =1,2,..., n

Fig. 3.3 The proposed traffic-responsive ramp metering control system

and downstream of the freeway and ramp sections. Then, these output data are fed
back into the controller to obtain a new value for the system input ui, which is the
metered ramp flow. In the following section, the derivation of the discrete version
of the feedback-based coordinated ramp metering strategies, namely, D-MIXCROS
and C-MIXCROS, is introduced.

3.7 Derivation of the Discrete Version of Coordinated
MIXCROS Control Law

The derivation of the discrete version of coordinated MIXCROS control law
is obtained by time-discretizing the model. By time-discretizing Eq. (3.1), the
following difference equation dynamics is obtained, which is still valid after
replacing the time t variable by time instant k variable:

System Dynamics :

⎧⎨
⎩

ρi(k+1)−ρi(k)
T = 1

Δx f i
(−qi+1(t)+ ui(t)+ qi(t))

queuerampi(k+1)−queuerampi(k)
T = 1

Δxri
(ri(k)− ui(k))

.

In the above equation, T is the sampling time. Therefore, the system dynamics
becomes

System Dynamics :

⎧⎨
⎩

ρi(k+ 1) = ρi(k)+ T
Δx f i

(−qi+1(t)+ ui(t)+ qi(t))

queuerampi(k+ 1) = queuerampi(k)+ T
Δxri

(ri(k)− ui(k)).

(3.5)
The feedback control design commences by incrementing Eq. (3.4). The system can
be in 2n regions, where n is the number of freeway sections in the network based on
the first term in the error function

(∣∣w1(i)(ρi(t)−ρcr(i))
∣∣). These 2n regions can be

combined to form a control law that is applicable to all regions with the help of a
function sign such that
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sign =

⎧⎨
⎩

1 if ρi(t)> ρcr(i)

−1 else.

So, the error function Eq. (3.4) becomes

e(k) = w1(1)sign
[
ρ1(k)−ρcr(1)

]
+w2(1)queueramp1(k)+w1(2)sign

[
ρ2(k)−ρcr(2)

]
+w2(2)queueramp2(k)+ . . .+w1(n)sign

[
ρn(k)−ρcr(n)

]
+w2(n)queuerampn(k).

(3.6)

Incrementing Eq. (3.6), the following is obtained:

w1(1)sign
[
ρ1(k+ 1)−ρcr(1)

]
+w2(1)queueramp1(k+ 1)+

e(k+ 1) = w1(2)sign
[
ρ2(k+ 1)−ρcr(2)

]
+w2(2)queueramp2(k+ 1)+ . . .

+w1(n)sign
[
ρn(k+ 1)−ρcr(n)

]
+w2(n)queuerampn(k+ 1).

Using the dynamics here,

e(k+ 1) = w1(1)sign

[
ρ1(k)−ρcr(1) +

T
Δx f 1

(−q1(k)+ u1(k)+ q0(k))

]

+w2(1)

[
queueramp1(k)+

T
Δxr1

(r1(k)− u1(k))

]
+ . . .

+w2(n)

[
queuerampn(n)+

T
Δxrn

(rn(k)− un(k))

]
.

+w1(n)sign

[
ρn(k)−ρcr(n) +

T
Δx f n

(−qn(k)+ un(k)+ qn−1(k))

]

e(k+ 1) = w1(1)sign

[
ρ1(k)−ρcr(1) +

T
Δx f 1

(−q1(k)+ q0(k))

]

Arranging terms on the right-hand side of the above equation gives

+w2(1)

[
queueramp1(k)+

T
Δxr1

r1(k)

]

+

[
w1(1)sign

T
Δx f 1

−w2(1)
T

Δxr1

]
u1(k)+ . . .

+w1(n)sign

[
ρn(k)−ρcr(n) +

T
Δx f n

(−qn(k)+ qn−1(k))

]
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+w2(n)

[
queuerampn(k)+

T
Δxrn

rn(k)

]

+

[
w1(n)sign

T
Δx f n

−w2(n)
T

Δxrn

]
un(k).

This difference equation can be written in an organized form as

e(k+ 1) = F(k)+ u(k), (3.7)

where

F(k) = w1(1)sign

[
ρ1(k)−ρcr(1) +

T
Δx f 1

(−q1(k)+ q0(k))

]
, (3.8)

u(k) =

[
w1(1)sign

T
Δx f 1

−w2(1)
T

Δxr1

]
u1(k)+ . . .

+

[
w1(n)sign

T
Δx f n

−w2(n)
T

Δxrn

]
un(k)

+w2(1)

[
queueramp1(k)+

T
Δxr1

r1(k)

]
+ . . .

+w1(n)sign

[
ρn(k)−ρcr(n) +

T
Δx f n

(−qn(k)+ qn−1(k))

]

+w2(n)

[
queuerampn(k)+

T
Δxrn

rn(k)

]
. (3.9)

In order to obtain Eq. (3.2), the coordinated MIXCROS control law is designed as

u(k) =−F(k)−Ke(k). (3.10)

Substituting Eq. (3.10) in Eq. (3.7) satisfies the desired dynamics (3.2) in all 2n

regions. In truth, Eq. (3.10) does not accord the control laws, but it provides the
condition that the control variables should satisfy. The control law can be designed
in a decoupled way or coupled way.

3.7.1 Decoupled Control: D-MIXCROS

The control law can be designed in a decoupled fashion by ignoring the ramp
connections totally and treating each ramp as an isolated problem. Therefore, the F
(Eq. (3.8)) term in the control law condition equation (Eq. (3.10)) is divided into n
components, where n is the number of freeway section with one on-ramp (Fig. 3.1):

F(k) = F1(k)+F2(k)+ . . .+Fn(k),



3 Coordinated Feedback-Based Freeway Ramp Metering Control Strategies . . . 81

where

F1(k) = w1(1)sign

[
ρ1(k)−ρcr(1) +

T
Δx f 1

(−q1(k)+ q0(k))

]

+w2(1)

[
queueramp1(k)+

T
Δxr1

r1(k)

]
,

Fn(k) = w1(n)sign

[
ρn(k)−ρcr(n) +

T
Δx f n

(−qn(k)+ qn−1(k))

]

+w2(n)

[
queuerampn(k)+

T
Δxrn

rn(k)

]
.

Then, using Eq. (3.9), decoupled coordinated control law, namely, D-MIXCROS,
for each on-ramp can be derived as

u1(k) =

(
sign(ρ1(k)−ρcr(1))w1(1)

T
Δx f 1

−w2(1)
T

Δxr1

)−1

(−F1(k)−Ke1(k)),

un(k) =

(
sign(ρn(k)−ρcr(n))w1(n)

T
Δx f n

−w2(n)
T

Δxrn

)−1

(−Fn(k)−Ken(k)), (3.11)

where

e(k) = e1(k)+ e2(k)+ . . .+ en(k).

The error terms are defined as

e1(k) = w1(1)|ρ1(k)− ñcr(1)|+w2(1)queueramp1(k),

en(k) = w1(n)|ρn(k)−ρcr(n)|+w2(n)queuerampn(k).

The following n decoupled closed-loop dynamics is obtained by the application of
Eq. (3.11):

e1(k+ 1)+Ke1(k) = 0,

en(k+ 1)+Ken(k) = 0.

3.7.2 Coupled Control: C-MIXCROS

By substituting Eq. (3.10) in Eq. (3.9), the following equation is obtained:

−F(k)−Ke(k) =

[
w1(1)sign

T
Δx f 1

−w2(1)
T

Δxr1

]
u1(k)+ . . .

+

[
w1(n)sign

T
Δx f n

−w2(n)
T

Δxrn

]
un(k). (3.12)
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Table 3.1 Calibration parameters for each ramp control implementation

Ramp metering strategy
Calibration parameters
for each on-ramp

Total number of calibration
parameters for 6 on-ramps

ALINEA KR 6
New Control KR 6
MIXCROS KR,w1, and w2 12
METALINE KR1 and KR2 12
D-MIXCROS KR,w1, and w2 7
C-MIXCROS KR,α ,w1, and w2 13

Using Eq. (3.12), the control effort among the n on-ramps can be distributed as:

α1(−F(k)−Ke(k)) =

(
sign(ρ1(k)−ρcr(1))w1(1)

T
Δx f 1

−w2(1)
T

Δxr1

)
u1(k),

.

.

.

αn(−F(k)−Ke(k)) =

(
sign(ρn(k)−ρcr(n))w1(n)

T
Δx f n

−w2(n)
T

Δxrn

)
un(k),

where
α1 +α2 + . . .+αn = 1.

Therefore, the coupled control laws for the coordinated version of MIXCROS,
namely, C-MIXCROS, can be written as

u1(k) =

(
sign(ρ1(k)−ρcr(1))w1(1)

T
Δx f 1

−w2(1)
T

Δxr1

)−1

α1(−F(k)−Ke(k)),

un(k) =

(
sign(ρn(k)−ρcr(n))w1(n)

T
Δx f n

−w2(n)
T

Δxrn

)−1

αn(−F(k)−Ke(k)).

In Table 3.1, the calibration parameters for each ramp metering strategy are pre-
sented. As it is evident from this table, local controls, namely, ALINEA and New
Control, require the least amount of parameters. On the other hand, coordinated
control, namely, D-MIXCROS, has only seven calibration parameters, rendering it
advantageous compared with the other coordinated control evaluated, METALINE.
The juxtaposition of the performances of each ramp metering strategy is provided in
the following section based on the macroscopic simulation environment modeling.

D-MIXCROS is similar to the local version of MIXCROS because it takes each
on-ramp system into account separately. However, it differs from the local version
because D-MIXCROS uses the same control gain KR for all the ramps, which
ensures a unity in the actions of metered ramps. From a practical view, it is more
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manageable to implement D-MIXCROS than the local version of MIXCROS on a
number of ramps. D-MIXCROS implementation on six on-ramps requires seven
parameters to be calibrated, whereas MIXCROS uses 12 calibration parameters
(Table 3.1). Hence, it is less complicated to install D-MIXCROS compared with
the local version of both MIXCROS and C-MIXCROS on a number of ramps.

In C-MIXCROS, the control effort is apportioned among all on-ramps using
distribution factor αi, which provides the communication between on-ramp systems.
With this allocation ratio αi, the nature of the congestion in each ramp system
can be handled meticulously. For example, if the congestion on the second ramp
is propagating toward the other on-ramp locations, the allocation ratio, α2, for the
second on-ramp can be reduced, making it less than the other ratios (α2 < α1,α3).

3.8 Macroscopic Simulation Model

The proposed coordinated ramp metering strategies, C-MIXCROS and D-
MIXCROS, and ALINEA, MIXCROS, and METALINE are tested on six
consecutive ramps along a corridor. Each ramp system consists of a 1-lane (1 mi)
freeway link and a 1-lane (0.5 mi) ramp link. The simulation duration for each
tested case is 300 min.

In both macroscopic and microscopic simulation models, for ALINEA, New
Control, and METALINE implementations, a queue threshold of 35 vehicles is
used. New Control and METALINE, as well as all versions of MIXCROS, perform
satisfactorily without a queue override strategy that shuts off the ramp metering
and creates unwanted fluctuations. In ALINEA implementation, for the values
of parameter KR above 240 veh/hr, on-ramp queues are decreased, whereas ramp
metering provides no improvement on the downstream traffic conditions in the ramp
systems. Thus, the purpose of the control, which is to maintain the downstream
freeway section at the set level, is not accommodated. Therefore, the regulator
parameter, KR, is limited between 70 veh/hr and 240 veh/hr for all the ramps.

All the tested ramp metering strategies maintain the freeway outflow close to
the capacity while keeping the traffic density below critical density. All the controls
except D-MIXCROS and C-MIXCROS experience high fluctuations in the traffic
density within the first 50 min of simulation. Queue override tactics employed in
these controls mainly induce this problem. That is, these controls use the storage
capacity of the on-ramps, which leads to increased traffic flow on the freeway
sections. This increased traffic flow results in congestion in downstream locations,
causing more restrictive ramp metering rates so as to serve additional throughput
from the upstream ramp systems.

Among all tested controls, METALINE has the largest on-ramp queues owing to
its restrictive metering. Decreasing freeway demand by 5.26% (Demand Scenario 1)
leads to increase in the freeway maximum outflow (throughput) with each ramp
metering strategy. With reduced freeway demand, each ramp metering strategy
results in approximately the same total travel time. To observe the behavior of
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Table 3.2 Overall network results for four demand scenarios

Base demand Demand Scenario 1 Demand Scenario 2 Demand Scenario 3

A B A B A B A B

ALINEA 13.73 247.17 13.02 239.58 19.62 239.70 15.21 198.29
New Control 12.70 246.21 12.22 238.36 19.24 239.57 15.29 198.60
MIXCROS 11.92 248.65 12.06 238.44 18.37 238.77 14.91 198.17
METALINE 79.87 314.61 13.44 243.43 459.95 680.33 19.55 201.43
D-MIXCROS 11.92 248.65 12.08 238.43 18.37 238.76 14.91 198.17
C-MIXCROS 11.92 244.56 12.06 238.44 18.37 238.77 14.91 198.18

the controls in the presence of heavy ramp demand (Demand Scenario 2), the
ramp demand is increased by 67% compared with the base demand scenario,
lowering the freeway demand by 33% because of the limited capacity of the freeway
segments. With this demand configuration, all versions of MIXCROS provide
superior individual ramp performance results (e.g., increased average freeway
downstream flow, speed, and density) compared with all the strategies tested. In
Demand Scenario 3, ramp demand is increased only by 33%, whereas freeway
demand is lowered by 33%; all ramp metering strategies, both local and coordinated,
provide almost the same improvements at the network level. Because of light ramp
demand, METALINE is also able to keep the on-ramp queues at reasonable levels
with the help of a queue override tactic (Table 3.2). In this table, “A” refers to the
total travel time on all 6 ramps (veh.hr/hr) and “B” stands for the total travel time in
the network (veh.hr/hr).

3.9 Microscopic Simulation Model

Figure 3.4 shows a screen capture of the PARAMICS model of model of the section
of I-295 in South Jersey, created using the available geometric and traffic demand
data.

A PARAMICS model of the section of I-295 in South Jersey is created using the
available geometric and traffic demand data. The calibrated and validated model
of the 11-mile-long 3-lane freeway section includes the junctions of I-295 with
Route 38, State HWY 73, State HWY 70, and Berlin Rd. Each on-ramp has 1 lane.
Then, an Application Programming Interface (API) is coded to assign green times
based on each tested control law to all 4 on-ramps in PARAMICS. In the API file,
it is ascertained that the calculated green phase duration is within specified limits
(i.e., minimum and maximum values are 2 and 15 s, respectively). Statistics are
collected for 3-h simulations from the detectors located downstream and upstream
of the ramp and two additional detectors, one at the exit and one at the entrance
of the ramp. In the microscopic simulation model, the proposed ramp metering
controls (namely, D-MIXCROS and C-MIXCROS), ALINEA, and MIXCROS are
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Fig. 3.4 PARAMICS model of the study network

Table 3.3 Congestion levels on each ramp

1st Ramp (%) 2nd Ramp (%) 3rd Ramp (%) 4th Ramp (%)

1st Demand Level 27 60 68 20
2nd Demand Level 53 39 58 9
3rd Demand Level 0 17 35 24

evaluated and compared with the No Control scenario using three demand scenarios,
whose congestion levels are listed in Table 3.3. The congestion level is the percent
of time that the downstream link occupancy is greater than the critical occupancy.
All simulations are run for 3 h with different seed values for the statistical analysis
of the results (which ensures a 95% confidence level).

Ramp metering controls seem to be more effective under certain demand
patterns than others. As traffic demand increases, ramp metering tends to more
consistently reduce the system travel time. The reason for reduced ramp metering
performance is that the third demand scenario represents the low level of congestion
on each ramp system. It was also claimed in other studies that the effectiveness of
ramp control varies depending on the severity of congestion (Papageorgiou 1988).
Table 3.4 summarizes the main findings of this implementation. All controls tested
except ALINEA reduced the average travel time regardless of the demand scenario
compared with No Control. For the demand scenarios tested, both C-MIXCROS and
D-MIXCROS led to maximum improvement for all the performance criteria.



86 I. Gokasar et al.

T
ab

le
3.

4
O

ve
ra

ll
ne

tw
or

k
re

su
lt

s
fo

r
th

re
e

de
m

an
d

sc
en

ar
io

s

D
em

an
d

Sc
en

ar
io

1
D

em
an

d
Sc

en
ar

io
2

D
em

an
d

Sc
en

ar
io

3
To

t.
T

ra
ve

l
M

ea
n

Sp
ee

d
(m

ph
)

To
t.

T
ra

ve
lT

im
e

(v
eh

.h
r)

M
ea

n
Sp

ee
d

(m
ph

)
To

t.
T

ra
ve

lT
im

e
(v

eh
.h

r)
M

ea
n

Sp
ee

d
(m

ph
)

N
o

C
on

tr
ol

37
23

.5
7

55
41

19
.1

8
49
.6

34
08

.1
5

57
.8

A
L

IN
E

A
39

01
.7

3
52

.1
3

41
37

.1
4

49
.4

3
33

68
.0

8
58

.2
3

C
ha

ng
e

(%
)

4.
78

−5
.2

3
0.

44
−0

.3
5

−1
.1

8
0.

74
M

IX
C

R
O

S
36

74
.0

4
55

.6
3

39
76

.0
6

51
.4

33
54

.7
4

58
.2

5
C

ha
ng

e
(%

)
−1

.3
3

1.
14

−3
.4

7
3.

63
−1

.5
7

0.
78

D
-M

IX
C

R
O

S
35

52
.7

1
57

.2
8

38
01

.3
5

54
.1

33
94

.7
5

57
.8

3
C

ha
ng

e
(%

)
−4

.5
9

4.
14

−7
.7

2
9.

07
−0

.3
9

0.
43

C
-M

IX
C

R
O

S
35

46
.9

4
57

.2
5

39
38

.8
6

52
.1

5
33

54
.9

8
58

.0
5

C
ha

ng
e

(%
)

−4
.7

4
4.

09
−4

.3
8

5.
14

−1
.5

6
0.

43



3 Coordinated Feedback-Based Freeway Ramp Metering Control Strategies . . . 87

3.10 Conclusions

Evaluation of the new coordinated ramp metering strategy is performed to demon-
strate its characteristics and eventually its impact on the ramp system and whole
network in two phases. The first phase includes the macroscopic testing of the
proposed coordinated ramp metering controls using RMSE (Rutgers Macroscopic
Simulation Environment) to compare it with three local (ALINEA, New Control,
and MIXCROS) ramp metering controls, as well as one coordinated (METALINE),
under the various demand scenarios. The second phase involves evaluating the
proposed methodology using a microscopic simulation environment (PARAMICS)
under three different demand scenarios.

From these implementations, it is found that the system performs more compe-
tently after the implementation of the coordinated version of MIXCROS, namely,
C-MIXCROS and D-MIXCROS, compared with other ramp metering controls.
As expected, the mainline freeway experiences more favorable traffic conditions
when any tested ramp metering control is implemented. However, when the queue
thresholds are used in ALINEA, New Control, and METALINE to prevent the
ramps from being overloaded, the system benefits of these strategies are reduced. C-
MIXCROS and D-MIXCROS significantly improve system performance compared
with other controls under various demand conditions, and they are proven to be quite
effective in general. Well-tuned parameters are critical to achieve successful ramp
metering performance. As opposed to some coordinated ramp metering controls
that employ optimization techniques, parameter calibration for C-MIXCROS and
D-MIXCROS is comparatively unburdensome.
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Chapter 4
Solving the Integrated Corridor Control
Problem Using Simultaneous Perturbation
Stochastic Approximation

Jingtao Ma, Yu (Marco) Nie, and H. Michael Zhang

Abstract Integrating various control measures within a transportation corridor
promises to improve the overall operational performance of the entire corridor.
In this study, we formulate a corridor traffic control problem that considers two
control actions: signal timing and ramp metering, and propose a solution method
for the formulated problem. In the formulation, traffic dynamics within a general
corridor is modeled on a coherent platform based on the kinematic wave traffic
flow model, and the traffic control actions of urban street signals and ramp meters
are embedded in the platform. The solution algorithm based on the simultaneous
perturbation stochastic approximation (SPSA) scheme is developed to solve the
integrated control problem. Numerical experiments show that the SPSA algorithm
strikes a better balance between computational efficiency and solution quality
compared to other heuristics such as the genetic algorithm (GA) and the hill-
climbing algorithm.
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4.1 Introduction

A transportation corridor is operationally (rather than geographically or organi-
zationally) defined as “a combination of discrete parallel surface transportation
networks (e.g., freeway, arterial, transit networks) that link the same major origins
and destinations” (Federal Highway Administration 2005). A corridor usually
includes various types of facilities (e.g., freeway sections, ramps, and urban streets),
which are typically managed by different agencies and jurisdictions. In the current
practice, most corridors are operated separately with little consideration to the
coordination of individual facilities (Wood 1994; Zhang 2001), although it has long
been recognized that integrating the control measures can improve the operational
performance of the entire corridor (e.g., (van Zuylen and Taale 2003)).

Two components are fundamental to modeling an integrated corridor control
system (e.g., Chang and Stephanedes 1993). The first is the traffic flow model that
realistically represents traffic evolution, and the other is the optimization method
that generates optimal control plans. Three major categories of traffic flow models
have been developed and applied in traffic control studies: the point-queue (P-Q)
or vertical queue model, the spatial queue (S-Q) or horizontal queue model and the
Lighthill–Whitham–Richards (LWR) model. Most studies, including the classical
ones such as Webster’s (1958) and later HCM methods, used the P-Q model. In this
model the vehicles are assumed to travel at the design speed uniformly along the
road section and arrive at the stop line at a constant rate. The vehicles behind
the stop line take no physical space and will be discharged at the saturation flow
rate during the effective green time. The platoon dispersion model in TRANSYT
(Robertson 1969) uses an empirical formula to depict the cyclic flow profiles (CFP)
on road sections and thus relaxes the constant arrival assumption, but vehicles are
still queued at the stop line. TRANSYT version 8 (Vincent et al. 1980) allows
vehicles to join at the end of the stopped queue. Link storage capacity constraint
is enforced and no traffic can enter a link if it is occupied by stopped vehicles.
This model, known as the spatial queue (S-Q) model, has seen more applications
recently in other traffic control studies (Diakaki et al. 2000; Papageorgiou 1995;
Shelby 2001).

Both the P-Q and S-Q models can provide good estimates of the queue size,
i.e., the number of stopped vehicles, particularly under low to medium traffic loads.
When the traffic load is high enough to keep the intersection near or over saturated,
the traffic densities behind the stop line will be in frequent transitions due to
varying arrival rates and intermittent signal services (Stephanopoulos et al. 1979).
Shockwaves and acceleration waves, interfaces between two differing traffic states,
will be generated in such a complicated way that neither the P-Q nor the S-Q
model could capture the spatial extent of queue formations and dissipations.
Consequently, queue lengths cannot be estimated accurately. In this study, queue
length is stated as “the length of the roadway section behind the stop line where
traffic conditions are in the congested region of the flow-density curve, i.e., they
range from capacity to jammed.” (Stephanopoulos et al. 1979). Michalopoulos and
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Stephanopoulos (1977) argued that under these circumstances the control action
would be dictated by minimizing queue length instead of delay. Stephanopoulous
et al. (1979) incorporated the more elaborate LWR model to analyze the compli-
cated queuing phenomena at the signal intersections. In their analysis the linear
speed-density relation (Greenshields 1934) and the resulting parabola fundamental
diagram (flow-density curve) were used to compute the maximum queue length
analytically. Using the triangular fundamental diagram, Helbing (2003) recently
derived the formula for queue dynamics and travel time variations with respect to
the arrival and departure flow rates, but the derivation simplifies the LWR model
into de facto spatial queue (S-Q) model. A self-organized control method was later
developed for urban signals based on these results (Helbing et al. 2005).

Researchers have made use of finite difference solution schemes to the LWR
model, such as the cell transmission model (CTM) (Daganzo 1994; 1995), in
traffic control studies. A linear transformation of the CTM model has been
carefully designed to study the global optimal ramp metering strategies (Gomez
and Horowitz 2004a; 2004b). In an earlier work, Lo (1999; 2001) also modified the
original CTM to formulate the signal control problem into a mixed integer program.
The program only considered the intersections without turns. He later applied a
genetic algorithm (GA)-based solution algorithm to optimize control plans for more
general intersection layouts (Lo et al. 2001b).

The optimization methods used to compute the optimal controls plans are highly
tied to the underlying traffic flow models. For instance, in (Diakaki et al. 2000;
Papageorgiou 1995), the researchers used the store-and-forward approach to depict
the flow dynamics of urban streets, ramps, and freeway mainline. This approach is
essentially similar to the S-Q model, and the formulated integrated corridor control
problem is a linear one with a sparse constraint set, for which highly efficient
algorithms exist. But typically the store-and-forward approach requires the control
updating time period to be no less than the common cycle length; this feature
rules out the possibility of synchronizing the control actions and thus make the
model only suitable as a strategic queue-management tool (Papageorgiou 1995).
Papageorgiou et al. adopted the high-order flow model in METANET (Messmer
and Papageorgiou 1990) and studied integrated ramp metering and variable message
sign (VMS) controls, where conjugate gradient algorithms were deployed to solve
the integrated control problem (Kotsialos et al. 2002). The same algorithm was
applied in (Chang and Stephanedes 1993) as well, where a forward time centered
space method was used to model traffic evolution. Similar to the work of (Kotsialos
et al. 2002), the resulting system state equations are also twice-differentiable.
However, both studies can only guarantee local optima, which can be sensitive to
the initial guess of the solution (Chang and Stephanedes 1993).

To summarize, mathematical programming methods (e.g., Chang and
Stephanedes 1993, Diakaki et al. 2000, Papageorgiou 1995, and Kotsialos
et al. 2002) usually require the traffic flow models to be simplified so that the
gradient information can be computed. Unfortunately such a simplification often
compromises the fidelity of the underlying traffic flow models. On the other
hand, heuristic optimization methods such as the genetic algorithm can search for
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a near-global optimal control plan while allowing more realistic representation
of traffic flow (e.g., Lo et al. 2001b). However, heuristic methods usually need
a large number of evaluations of system performance and usually lead to high
computational costs.

In this paper, we explore a stochastic approximation technique that can be
viewed as a compromise of the above two types of approaches. The proposed
simultaneous perturbation stochastic approximation (SPSA) has been used in other
fields (Spall 1998) and demonstrated encouraging performances. In this study, an
SPSA-based algorithm is developed to compute the time-of-day optimal corridor
control plan, while the corridor operational performances under various control
plans are evaluated on a CTM-based platform. The platform embeds signal control
and ramp metering and can be easily applied to any general traffic corridor network.
Numerical examples are used to investigate the effectiveness of the method as
compared to other heuristics methods. Practical guidelines of applying the SPSA
method are also discussed before we conclude the study.

4.2 Modeling Dynamic Network Flow

This section introduces a network flow model based on cell transmission model
(CTM), in which the control actions from traffic signals and ramp meters are
embedded.

4.2.1 Flow Dynamics on a General Corridor Roadway Section

The LWR model states the following:

∂q
∂x

+
∂ρ
∂ t

= 0 q = f (x, ρ , t) (4.1)

where q is the flow rate on a road section, ρ is the density, x and t are the space
and time variables, respectively. In (Daganzo 1994) Daganzo developed a stable
numerical scheme that solves the LWR model. He shows that if the relationship
between traffic flow q and density ρ is in the form

q = min{vρ , qmax, w(ρ j −ρ)} (4.2)

where v is the free flow speed, qmax is the maximum flow rate, w is the backward
shockwave speed and ρ j is the jam density, then LWR model can be approximated
by a set of difference equations. The model discretizes the entire time horizon T
(assignment period) into small intervals t, called the loading interval in this paper.
Conforming to the loading interval, the model divides every road section of the
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network into homogeneous segments called cells, in a way that the cell length
equals the distance traversed by one typical vehicle at free flow speed in one loading
interval. The flows are updated by the following difference equations:

yi(t) = min{ni−1(t), qi,max, δ (Ni − ni(t))} (4.3)

and

ni(t + 1) = ni(t)+ yi(t)− yi+1(t) (4.4)

where yi(t), yi+1(t)are the number of vehicles entering cell i and i+ 1 at time t,
respectively, ni−1(t), ni(t), ni+1(t) are the numbers of vehicles in the cell (i− 1),
i and i+ 1 at time t, respectively, qi,max is the capacity flow into i at t, Ni − ni is the
space available in i, δ = w/v.

Essentially Eq. (4.4) states that the number of vehicles staying in cell i at loading
interval t + 1 is the number of vehicles from interval t plus the incoming vehicles
and minus the outgoing vehicles. Daganzo (1995) extended the model to a general
network by classifying roadway junctions into basic merges and diverges. Since
control actions take places at junctions, we mainly focus on the flow updating rules
at general junctions including signalized intersections and metered ramps.

4.2.1.1 Flow Updating at Signalized Urban Intersections

In (Lo 1999), Lo employed CTM to model the flow updates at urban intersections
with a few changes. If the flow capacity qmax in Eq. (4.2) is replaced by one that
depends on the signal timing variable gi(t),

qmax(t) =

{
qmax t ∈ green

0 otherwise
, (4.5)

where it switches between qmax (green) and zero (red), the end cell of an intersection
approach will serve as a functioning signal, and the flow dynamics still approximates
the LWR model. At a typical intersection, traffic is grouped into movements or
streams. At a generalized intersection (Fig. 4.1), the traffic movements can be
decomposed into simple merges and diverges, where different flow updating rules
must apply.

4.2.1.2 Signalized Diverges

The diverging flows occur where the traffic stream on a single link splits into left
turn, through and right turn movements. Left or right turn bays are common to store
the incoming vehicles, and these short sections must also be accommodated in the



94 J. Ma et al.

a b

Fig. 4.1 A general representation of cell-based intersection movements

generalized model. Denote the end cell C j
s of a link j approaching a signalized

intersection, the flow conservation equation then reads:

ns(t + 1) = ∑
m=L,R,T

nm
s−1(t)+ ym

s−1,s(t)− ∑
m=L,R,T

ym
s (t) (4.6)

The superscripts of L, R, T denote the left turn, right turn and through movement,
respectively. The cell C j

s−1 is the preceding cell of C j
s . The numbers of vehicles into

and out of cell s are stated as:

ym
s−1,s(t + 1) = min{ns−1(t), qs, max, δs(N

m
s − nm

s )} (4.7)

ym
s,s+1(t + 1) = min{nm

s (t), qs,max(t), δs+1(N
m
s+1(t)− nm

s+1(t))}, m = L, R, T,

(4.8)

where the notation naming convention follows (4.3) and (4.4). Note that Nm
s+1,

m = L, R, T in Eq. (4.7) are the different storage capacities for various movements,
ensuring that different sizes of turning bays can be modeled accurately.

4.2.1.3 Signalized Merges

In this study, the right turns are explicitly considered in the signal timing optimiza-
tion. In this way, the flow updating at intersections is simplified to be the same as a
set of coupled consecutive links, which then reads:

ni+1(t + 1) = ni+1(t)+ yi+1(t)− yi+2(t), (4.9)
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where (i+ 1) is the start cell index for the downstream link, i.e., the first cell of the
downstream link that receives the stream with cell index of i serviced by the signal.
The incoming flux yi+1(t) is then determined by the signal timing plan but shares
the same updating rules as in (4.3) with qi,max replaced by qi,max(t) in (4.5). One
may notice that this simplified treatment has also been used in Lo’s study (Lo 1999;
2001; 2001b).

The above defined flow dynamics model can conveniently accommodate all four
types of signal control actions, namely cycle length C, phase sequencing, phase
duration g and offset Δ between two adjacent signalized intersections. In this study,
the offset is in reference with respect to the start of the analysis horizon; the
numerical values of each variable are also calculated in the multiples of the loading
interval t.

4.2.1.4 Metered Freeway Onramp

Modeling ramp meters has only one control variable to deal with, the metering rate
at on-ramp link j at time t. For notational simplification, the ramp subscript j is
omitted in the following development. Modifying the demand-supply method for
merges (Daganzo 1995), we apply one generic flow updating rule to represent the
flow dynamics at a freeway merge section (Jin and Zhang 2003):

yi(t) = min{ni(t), qi,max(t), δ (Ni − ni)} (4.10)

Dt
R = min(Dt

R, Rt) (4.11)

Dt = Dt
M +Dt

R (4.12)

St = min(St
M, Dt) (4.13)

f t
M =

Dt
M

Dt St (4.14)

f t
R =

Dt
R

Dt St (4.15)

where the ramp metering Rt is embedded, and other notations are:
Dt

R: Ramp demand at time t.
Dt : Demand upon the beginning cell of the link downstream of the ramp.
Dt

M: Competing demand on mainline.
St

M: Supply of the beginning cell of the downstream link.
St : Total service flow rate.
f t
R: Outflow from ramp.

f t
M : Outflow from upstream mainline.
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Fig. 4.2 Flow updating by priority control (e.g., Yield Sign)

The modification mainly lies in two aspects: (a) the ramp demand to the merge
point is bounded not only by actual demand and the flow capacity but also by the
metering rate executed at that time step (4.11); (b) in the overflow or congestion
situation, the freeway mainline and ramp flows will be distributed proportionally to
their relative demand (4.13)–(4.15) (Jin and Zhang 2003). The ramp metering takes
effect in the form of Rt .

4.2.1.5 Priority Rule Controlled Merges and Diverges: All-way STOP
and Yield Merge

In addition to the junctions controlled by traffic lights, a large number of junctions
are controlled by the rules that drivers must follow in order to go through the
junction. Adapted into this study framework, these priority rule-based flow controls
can be classified into two categories: all-way stops and yielding merges. Different
flow updating mechanisms follow at these two types.

Stop sign control operates on a “first-come-first-serve” basis, where the flow is
thus discharged in an ordered manner. At each loading interval, the right-of-way
(ROW) is allocated according to the order the flow at each approach arrives. Once
the approach gets the ROW, the flow will be discharged according to (4.3) and
(4.4) again. However, some exceptions such as the zero-demand approach at certain
interval must be handled separately. One flow updating algorithm for this all-way
stop sign has been developed in (Ma 2008) and will not be detailed here.

The updating rule for competing flows at yield sign control is essentially merges
under priority rules (Fig. 4.2).

Under a yield sign, the yielding flow will only be able to take the remainder of the
available space at each loading interval. At any loading interval t, the flow updates
at a yield sign will be specified by:

yt
13 = min{nt

1, N3 − nt
3, q1, max} (4.16)

yt
23 = min{nt

2, max{N3 − nt
3 − yt

13, 0}, q2,max} (4.17)

where the flow on approach 1 has the priority and the flow on 2 has to yield to flow 1.
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One may note that the above flow dynamics model cover most vehicle traffic
network layout sufficiently. To gain maximum computing performance, however,
some network links could be simplified with either the P-Q or the S-Q models as in
the introduction. A polymorphic link flow dynamics model has been developed and
implemented within the same framework (Nie et al. 2008). This framework allows
for heterogeneous link flow models: for example, if some links serve merely as flow
exchange between more important facilities, these links can be modeled using P-Q
or S-Q models; but if the queuing dynamics is critical to the subarea e.g., closely
spaced controlled junctions within the same interchange area, it is better to apply
the above flow dynamics model.

4.2.2 Traffic Demand Input and Vehicle Routing

In the model, the traffic demand is given externally at any source node j:

Q j(t) = ∑
r

∑
s

Dr,s(t),∀(r, s) ∈ {(R, S)} (4.18)

where Q j(t) is the sum of the time-dependent demands entering the source node j.
Because our main focus is the development of optimal control plans, the discus-

sion of users’ route choice behavior is reduced to a minimum. In the later numerical
examples, only one pre-determined time-dependent shortest path is utilized for any
path flow Dr,s. The network flow pattern and the resulting performance measure will
only be determined by the specified control plan. Nevertheless, one needs to note
that the proposed framework can be easily adapted to study the interaction between
users’ route choice and control strategies (e.g., Chen 1998, Yang and Yagar 1995).

4.2.3 Minimizing Total Delay for Integrated Corridor Control

The performance of a control plan is often evaluated through delays and the
number of stops. In this study, we select minimizing delay as the control objective.
The fundamental diagram depicts two regions that traffic flow status can fall into,
the free flow region and the forced flow region. Once the flow falls in the forced flow
region, the vehicles will not operate at the free flow speed any more, and delays are
incurred to the vehicles. In the model, the total delay is the accumulation of the
delay at the cell level, while the latter is conveniently expressed as the following:

di(t) = d(ni(t)− yi(t)) = (ni(t)− yi(t))• t (4.19)

where di(t) is the delay occurring at cell i during time interval t, ni(t) and yi(t)
are the numbers of vehicles in i at t and the number of vehicles that can go out of
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i at t, and • represents dot product. When the loading interval t is a unit time one,
the delay can simply be numerically represented by ni(t)− yi(t). That is, the delay
is the time that ni(t)− yi(t) vehicles are forced to stay in cell i during time step t
(because CTM dictates the movement of vehicles from only one cell into the next
one at each time step). The objective function is then the summation over all cells
and the overall time horizon:

D min(C,Δ, g, R) = min∑
t

∑
i

di(t) (4.20)

where D(·) is the total delay of the system, and (C, Δ, g, R) is the vector of the cycle,
offset, phase duration of all street signals, and R is the vector of metering rates of
all ramp meters in concern.

4.2.4 Practical Control Constraints

In this study, we aim at computing the control plan for the corridor network with
time-of-day control devices. In practice, the traffic controls usually enforce some
physical constraints, including the maximum and minimum duration of the cycle
length and green duration for any phase, and the max/min metering rates as follows:

Ci, min ≤Ci ≤Ci, max (4.21)

gi, min ≤ gi ≤ gi, max (4.22)

Ri, min ≤ Ri ≤ Ri, max (4.23)

The cycle length constraint for any intersection then reads:

N

∑
h=1

g j
h =C j −NL (4.24)

It states that the sum of the effective green duration of the phases h = 1 . . .N at
intersection j has to be equal to the available green time C j −NL, i.e., the cycle
length deducted by the loss time of all phases.

Note that the choice of the loading interval length can impact both the computing
performance and the solution quality. The network representation by cells requires
a minimum length unit to adequately characterize the junction layout e.g., turn
bays or taper lanes (usually smaller a few hundred feet). At the same time, the
control parameters even in their simplified forms (green time and red time durations
including loss time) are typically set at the 0.1 s level. The authors have developed
a numerical solution schema for further dividing the traffic demand into particles
and thus allowing for finer resolution of both network representation and control
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parameters; however, it was concluded that the loading interval of 1 s or 2 s provides
a satisfying balance between the computing overhead and the solution quality.

4.3 The SPSA Method and SPSA-based Integrated Control

Optimization techniques based on stochastic perturbation apply in virtually all
engineering areas where a closed-form solution to the problem is not available,
or the input information into the model could be contaminated with noise. One
of these techniques is the simultaneous perturbation stochastic approximation
(SPSA) method that uses only the objective function information to compute
approximated gradient information. This method has been used in many areas
such as industrial quality control, neural network training, sensor placement, and
configuration (Spall 1998). In the formulated corridor control problem (4.1)–(4.24),
the complexity of the traffic dynamics model precludes direct computation of
the gradient information and heuristic method is thus considered more suitable.
Because of its high computational efficiency proved in other studies, SPSA method
is employed in this study to solve the integrated corridor control problem. The
introduction of SPSA method here draws largely on the theoretical development
of the SPSA method in (Chin 1994; Sadegh 1997; Sadegh and Spall 1998).

4.3.1 Introduction of the SPSA Method

For a general SPSA procedure, the general objective function L(θ ) as D(C, Δ,
g, R) in (4.20) is a scalar-valued performance measure of the system, and θ is
a continuous-valued p-dimensional vector of parameters, i.e., (C, Δ, g, R) in the
corridor control context. It could happen that noises ε occur when measuring the
system performance measure z(θ ):

z(θ ) = L(θ )+ ε (4.25)

As a matter of fact, the SPSA method is mostly superior in the context of
optimization with noisy measurements of the system of interest.

The SPSA method starts from an initial guess of θ (one feasible solution) and by
a sequential “simultaneous perturbation” over the solution path, the approximation
of the gradient ϕ(θ ) ≡ ∂L(θ)

∂θ will converge to zero, under several regularity
conditions over the sequence.

Assume that L(θ ) is differentiable over θ and the minimum is obtained at a zero
point of the gradient, i.e.,

ϕ(θ ) =
∣∣∣∣∂L(θ )

∂θ

∣∣∣∣
θ=θ∗

= 0 (4.26)
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The recursive updating of θ takes the standard form:

θ̂k+1 = θ̂k − akϕ̂(θ̂k) (4.27)

where the gain sequence{ak} must satisfy certain regularity conditions.
The perturbation is performed upon evaluating ϕ(θ̂k). First define a p-

dimensional mutually independent mean-zero random variable vector Δk ∈
Rp{Δk1, · · · , Δkp} satisfying certain conditions, the most important of which is
that E(|Δ−1

ki |) is bounded above by some constant α1, E(|Δ−1
ki |) ≤ α1. An optimal

distribution of Δk is symmetric Bernouli (Sadegh 1997), i.e., P(Δki = ±1) = 1
2 .

Furthermore, {Δk} is a mutually independent sequence that is also independent of
θ̂0, θ̂1, · · · , θ̂k. Let

z(+)
k (θk) = L(θ̂k + ckΔk)+ ε

(+)
k (4.28)

z(−)
k (θk) = L(θ̂k − ckΔk)+ ε

(−)
k (4.29)

where ck is a positive scalar satisfying the regularity conditions, and z(+)
k (θk),

z(−)
k (θk) are the measurements of the system under the perturbation θ̂k + ckΔk and

θ̂k − ckΔk, respectively.
The approximation of the gradient will then become:

ϕ̂k(θ̂k) =
z(+)k − z(−)

k

2ck

⎡
⎢⎢⎢⎣

Δ−1
k1

...

Δ−1
kp

⎤
⎥⎥⎥⎦ (4.30)

Spall (1992) showed that by recursively updating θk, the gradient will converge to
a zero point. The basic recursive form (4.27) and gradient approximation (4.30)
ensure that the approximation will settle down at a local minimum at least.

4.3.2 Regularity Conditions Assuring Convergence

Five assumptions are made upon the gain sequence ak to ensure θk to converge
almost surely to at least a local optimum θ ∗. We refer to (Spall 1992) for the full
derivation. A brief description of the assumptions (called “regularity conditions”)
is given below:

A1: ak, ck > 0∀k; ak → 0, ck → 0 as k → ∞; ∑∞
k=0 ak = ∞; ∑∞

k=0

(
ak
ck

)2
= 0;

A2: For some α0, α1, α2 > 0 and ∀k, Eε(±)2 ≤ α0, EL(θ̂ ± Δ̄k)
2 ≤ α1, EΔ−2

kl ≤
α2, l = 1, · · · , p;

A3: ||θ̂k||< ∞,∀k;
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A4: θ ∗ is an asymptotically stable solution of the differential equation dx(t)/dt =
−ϕ(x).

A5: Let D(θ ∗) = {x0 : limt→∞ x(t|t0) = θ ∗} where x(t|x0) denotes the solution
to the differential equation of A4 based on initial conditions x0, there exists a
compact set S ⊆ D(θ ∗) such that (θ̂k) ∈ S infinitely often for almost all sample
points.

The gain sequences of {ak} and {ck} generally take the power functions:

ak =
a

(1+A+ k)α , ck =
1

(1+ k)γ (4.31)

where k is the iterator, and A is a constant introduced to stabilize the optimization
process.

It is argued (Sadegh and Spall 1998) that the asymptotically optimal values of α
and γ are 1 and 1

6 , respectively. But Spall (1998) pointed out that α < 1.0 usually
produces a better finite-sample performance. Hence another set of values of 0.602
and 0.101 that are the lowest allowable to satisfy the regularity conditions (A1–A5)
were recommended.

It is observed that for most engineering problems these conditions are almost
automatically satisfied with only A3 being hard to verify for general cases
(Spall 1992). In the corridor control problem, the violation of A3 implies that
the transportation system leads to a complete gridlock. As this could be partly
avoided by placing the practical constraints over the control (4.19)–(4.21), it does
not impose difficulties in the solution as indicated in the numerical example.

4.3.3 Constrained Optimization via Stochastic Approximation

The SPSA procedure introduced above is suitable for solving unconstrained
optimization problems, which is not directly applicable to our optimal corridor
control problem. Sadegh (1997) proposed a projection method to restrict θk ∈ Rp

at each iteration k to fall in the feasibility range of the control variables by simply
replacing any violating θ̂k with the nearest point θk ∈ G(θ ) where G(θ ) is the
feasibility set of the control vector:

θ̂k+1 = P(θk − akĝk(θ̂k)) (4.32)

The perturbed vectors θ̂k − ckΔk and θ̂k + ckΔk in evaluating the loss function
(4.28)–(4.29) will also be projected such that these two perturbed vectors lie
in the feasibility range. By forcing another restriction (Assumption 1) over the
constraints, SPSA can still converge to a Karash–Kuhn–Tucker point almost surely
(a.s.) [Proposition 1 in Sadegh (1997)].
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The set G = {θ : fi(θ ) ≤ 0, i = 1, . . . , s} is nonempty and bounded, and the
functions qi(θ ), i = 1, . . . , s, are continuously differentiable. At each θ ∈ col(G)
where col denotes the boundary; the gradients of the active constraints are linearly
independent. Furthermore, there exists an ξ < 0 such that the set G− = {θ : fi(θ )≤
r, i = 1, . . . , s} is nonempty for ξ ≤ r < 0 (i.e., the set G has a nonempty interior).

Because the parameter vector θ may have various numerical magnitudes (e.g.,
the ramp metering rate R is measured in hundreds of vehicles per hour and the
green duration g is measured in seconds), they have to be normalized during the
decaying process. The following normalization process is then introduced:

gn
i =

gi − gi,min

gi,max − gi,min
(4.33)

where gn
i can be any control variable with the physical boundary in (4.19)–(4.21).

The following proposition examines whether the normalization process would affect
the performance of SPSA.

Proposition 1. A normalized version of the projection method in constrained
SPSA can assure a convergence to at least a local optimum a.s.

Proof: It is trivial to verify the nonemptiness of the control feasibility set
G(θ ) since any points that fall in the box constraints (4.21)–(4.23) will fulfill
the conditions. Since all constraints including the box constraints and summation
constraint (4.24) are all linear, the following equation holds:

∂ fi(θ )
∂θ j

= 1or− 1, i = 1, . . . , s, j = 1, . . . , q (4.34)

As gi, max, gi,min are constants, the linear transformation (4.33) does not change the
above argument; then Assumption 1 for the control feasibility set after the linear
transformation still holds.

With the assumptions A1–A5 and the above verification of Assumption 1,
we conclude that after the linear transformation (4.33) as k → ∞ with ĝk(θ̂k) =
ĝSP

k (Pk(θ̂k)), θ̂k → θ̂ ∗ �

4.4 Solution Algorithm

The iterative SPSA solution algorithm for the time-of-day corridor control has the
following steps.

SPSA Algorithm for Integrated Network Traffic Control

Step 1: Initialization and Coefficient Selection.

1.0 Set iterator k =0
1.1 Generate the control vector and normalize it via (4.33) as θ N

1.2 Pick an initial feasible solution of θ N
0

1.3 Select nonnegative coefficients a, c, A, α and γ
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Step 2: Simultaneous Perturbation.

Generate a p-dimensional random perturbation vector Δk, where each compo-
nent is mutually independent Bernoulli ±1 distributed with probability of 1/2 for
each ±1 outcome.

Step 3: Loss Function Evaluation by Dynamic Network Loading (DNL).

3.1 Perturb the normalized control vector with θ̂k ± ckΔk;
3.2 Project the perturbed control vectors onto G(θ ) from (4.32);
3.3 Transform the projected control vector back to the real valued control
variables;
3.4 Evaluate the system performances by loading the demand onto the network
under both set of control variables and obtain (4.28)–(4.29);

Step 4: Gradient Approximation.

Calculate the approximated gradient from (4.30).

Step 5: Control Update.
Update θ̂k with (4.27).

Step 6: Convergence Check.
If the convergence criteria are met, stop. Otherwise, set k= k+1 and go to step 2.

As with any other heuristic method, the selection of appropriate parameters
including the gain sequence ak and ck is crucial. A few selection guidelines are
discussed after the numerical experiments.

4.5 Numerical Examples

4.5.1 A Simple Network to Investigate the Convergence
of SPSA

A typical diamond interchange is first constructed, where the freeway traffic travels
from 1 to 2 and the surface street traffic 3–4 can go both ways (Fig. 4.3). One ramp
meter and two intersection signal groups control the traffic flow. Both ramp meter
and signal controllers are assumed pre-timed, and the phasing diagram is shown in
Fig. 4.3. For illustrative purpose, only fifteen minutes of demand is set up and the
hourly trip rates are also shown.

One may notice that only two independent control variables are present in the
sample network, corresponding to the normalization procedure in (4.33), namely
the green ratio g1 for phase 1 (the green ratio for phase 2 will be 1− g1 if we omit
the loss time for the time being) and the metering rate R. The maximum/minimum
green time is set to be 50 and 10 s respectively, and the range for the metering
rates is set to be 300–1,500 vph. To locate the possible global optimal control plan,
an exhaustive search through the feasibility solution space is performed. In this
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Fig. 4.3 Geometric layout and demand of sample network I

example, the network loading interval t is 1 s; thus the increment of the phase
duration is set equal to t, while an increment of 20 vph is selected to scan the range
of metering rates. Therefore, the exhaustive search goes through a total number of
2,400 (40×60)gi−R combinations, and the contour of the objective function (total
travel time) under various combinations is plotted in Fig. 4.3a). The contour implies
only one global optimal solution in the search space at (g1, R) = (0.61, 1500), with
a total travel time of 312 veh-hr. In the example, the optimal metering rate is the
upper bound of the feasible range, that is, allowing as many flows as possible into
the freeway mainline during this 15-min period.

Two SPSA processes with different initial feasible “guesses” (θ0) are experi-
mented and plotted in Fig. 4.4. The first starts with (g1, R) = (0.30, 300) and
stabilizes itself at (g1, R) = (0.58, 1473); the second starts with (g1, R) =
(0.80, 600) and stabilizes itself at (g1, R) = (0.57, 1498). Generally both processes
can reach the near-global optimal solution along a different path. Figure 4.3b shows
that the convergence process of SPSA has a feature of quick drop at the first few
iterations; after less than forty iterations in the example, both processes reach near-
global optima. This example confirms the ability of the constrained SPSA method
can be applied to study the corridor control problem.

4.5.2 A Real Network to Investigate the Effectiveness
of the SPSA Algorithm

4.5.2.1 Network Background and Preliminary Work

The other network is a real one of SR-81 corridor at Fort Worth, Texas.
A DynaSmart-P network has been developed elsewhere (Mahamassani et al. 2004)
and is converted into the CTM representation. The geometric layout is illustrated
in Fig. 4.5.

Due to the differences in the network representation [e.g., the travel demand
releasing mechanisms in DynaSmart-P are different from the network dynamics
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Fig. 4.4 SPSA convergence process under various initial feasible solutions (network I)

model characterized by Eq. (4.1)–(4.18)] and lack of further data support, the
network was slightly modified in the conversion. The most important modification
is the controller type changes. In the original network, the signals are most vehicle-
actuated controllers. Since herein only time-of-day corridor control is considered,
all controllers are assumed pre-timed. The phasing sequence and phase diagrams for
each of the signal controllers are inherited from the original settings.

Selecting an appropriate initial control setting θ0 is the first step to compute the
optimal control plan. The preliminary experimentations indicate that the constructed
network is heavily loaded if the controls are not properly set. An arbitrary control
plan then cannot act as θ0 because the performance index cannot be evaluated if a
gridlock happens under the control plan. A “good” control plan that at least allows
the traffic flows smoothly through the network must be found before the SPSA
optimization process could start.

The signal timing design procedure in HCM is followed to compute a feasible
control plan. First the demand is loaded onto the network and the network flow
pattern is obtained. Then the cycle length and green splits at each intersection
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Fig. 4.5 Geometric layout of Dallas Fort Worth network

is computed under the “equi-saturation” logic (Chin 1994). The resulting timing
plans and an initial offset of zero for each intersection and a no-meter [R = qmax in
Eq. (4.11)] solution does not cause a gridlock. This HCM control plan is taken as θ0

for the successive SPSA optimization process.
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4.5.2.2 SPSA Application in the Dallas Network

A two-level procedure is taken to compute the optimal corridor control plan for the
Fort Worth network. First the green splits and metering rates at each intersection or
metered ramp are optimized; based on this and an adjusted common cycle length,
the offsets are then computed. The first level of optimization has a total of 209
control variables encoded as the vector θ . For the second level, the offset for each
intersection is all referenced to the start of the study period, and altogether 46
decision variables are encoded.

Two more well-documented heuristics methods are also implemented in this
study to compare their relative computational performances. For the first level, the
genetic algorithm (GA) in (Lo et al. 2001b) is extended to accommodate ramp
metering controls. The “hill-climbing” method in TRANSYT (Robertson 1969)
is used to compute the offset of the second level of optimization. On the one
hand, choosing these two methods for benchmarking SPSA was mainly because
of their legacy value and acceptance in the community of traffic control researchers
and practitioners; on the other hand, these two methods each can assist in better
understanding SPSA searching when compared to intuitive rules (hill-climbing) or
random generation of candidate solutions (GA).

The selection of parameters is important to the GA algorithm as well. The most
important parameters in this algorithm include population size at each generation,
and mutation rate. In this study, we apply a real-value gene-coding scheme
instead of the commonly used binary-coding scheme (e.g., Sadegh and Spall 1998
and Lo 2001b). The real-value coding scheme is considered more efficient and
accurate (Wright 1991). However, no empirical formula is available to estimate an
appropriate population size as in the case of binary coding; a trial-and-error process
then has to be used to come up with the following GA parameters: population
size is 50; mutation rate 0.1; a predefined maximum generation number of 80.
The convergence process with these two algorithms is shown in Fig. 4.6.

The computation time is mostly consumed by the evaluation of the system
performance, that is, the dynamic network loading (DNL) as in Step 3 of the SPSA
algorithm. For example, a single DNL process for the half-hour demand of Dallas
Forth Worth network generally takes 7–10 s on an up-to-date PC (Pentium-4 3G
CPU, 1G RAM). Then the total number of z(θ ) evaluations determines the amount
of computational resources when computing the optimal control plan. In Fig. 4.5, the
total network travel time (TNTT) for GA is averaged over each generation; while
the TNTT in SPSA process are sampled every 20 DNL evaluations. It can be seen
that SPSA only needs about 350 performance evaluations to reach a stable solution,
while GA needs 3,200 evaluations. It also illustrates that the objective function value
can get a very sharp drop in early SPSA iterations, and this advantage can be utilized
in other optimization applications to perform a quick search for a good starting
solution. However, SPSA was slightly outperformed by GA in terms of the stable
solutions they reached. SPSA does not jump out of an inferior “stable” solution
(323.1 veh-hr) in the later process, while GA-based optimization obtained a better
stable solution (317.2 veh-hr) in terms of the TNTT.
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Fig. 4.6 Computational performances of SPSA- vs. GA-based optimization of green splits/
metering rates for network II

The second level, offset optimization, is also conducted using both the SPSA
algorithm and genetic algorithm based on the green splits obtained from their
corresponding first level of optimization. The longest cycle length calculated from
the critical intersection is used as the common cycle length. The cycle length and
phase durations of the rest intersections are scaled accordingly. For the purpose of
comparison, the classic “hill-climbing” algorithm is also implemented to compute
the offset for each intersection.

The hill-climbing method proceeds as a sequence of adjusting the offset at each
intersection. First a step size is selected; the adjustments are then performed by a
line search to find an improved global objective function that is also computed from
network loading. The adjustments are incremental by the selected step size as long
as the search improves the objective function. If the search degrades the objective
function, the direction of adjustments will be reversed and continued at the same
step size. In this way, a better offset is achieved for the intersection. Then the search
proceeds to the remaining intersections. An optimization decision is made for each
of several step sizes.

The optimization results of GA, SPSA, and hill-climbing methods are shown
in Fig. 4.7. While all three methods can reduce the TNTT further by adjusting
the offset for each intersection, hill-climbing method can only reach an inferior
solution compared to the other two. Furthermore, the SPSA method outperforms
both GA and hill-climbing methods using less DNL evaluations. The solutions and
performances at both levels are summarized in Table 4.1. It is interesting to note
that the optimal solutions after the successive optimization processes from GA and
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Fig. 4.7 Computational performances of SPSA- vs. Hill-climbing based optimization of offset for
network II

SPSA are now very close (TNTT-GA 306.9 vs. TNTT-SPSA 307.5); it implies that
various (local) optima could exist when searching for the optimal corridor control
plan for a real network. Even though no method can guarantee a global optimal
solution to the formulated corridor control problem, SPSA and GA can reach stable
solutions that are comparable to each other.

4.5.2.3 Integrated Corridor Control under Different
Network Traffic Loads

Corridor networks serve as the backbone for surface transportation systems and are
usually heavily used. Integration of control measures as proposed in this study can
improve the operational performance as illustrated in the above numerical examples.
Yet, it is unknown whether integrated control can perform equally well under
various traffic loads. For this purpose, the above experimentation process is repeated
under another set of traffic demand. The new demand is uniformly decreased to be
80% of the original, which is considered a congested network. The following table
indicates the extent to which the network performances are improved (Table 4.2).

It is clearly seen that the improvement is higher under the decreased demand,
which may represent the low to medium network load. It may imply that integrated
control may see diminishing benefits when the network becomes more congested.
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Table 4.2 Network operational performance improvements under different traffic loads

Level of Greensplits and Metering Rates Offsets Overall

Demand (%) z(θ0) z(θ ∗) ±% z(θ0) z(θ ∗) ±% Improvement

100 364.4 323.1 11% 323.1 308.2 4% 15%
80 313.2 256.8 18% 256.8 250.6 2% 20%

4.6 Guidelines for Selecting SPSA Parameters

Selection of appropriate parameters for the gain sequence ak and ck is important to
the performance of SPSA process. Spall (1998) provided a few guidelines for the
choice of the related parameters, i.e., α, γ, a, A and c.

With the Bernoulli ±1 distribution for Δk, c can be set at a level approximately
equal to the standard deviation of the measurement noise in z(θ ) so that the
magnitude of the approximated gradient ĝk(θ̂k) does not go excessively large. In our
study, the system performance evaluation is deterministic from (4.1) to (4.24); in this
case, c can be some small positive number. In our experimentations with various
networks in the normalization scheme, it is found that 0.05 provides acceptable
results, namely the change in each element of θ in the initial iterations is in the
magnitude of around 5%.

It is also suggested that a “stability constant” A should be used for the sequence
of ak when large noises or variations of system performance measures are observed.
A useful guideline for choosing A is to set to 10% (or less) of the maximum number
of expected or allowed iterations. Meanwhile, Spall (1998) also suggested running
a few preliminary replications of ĝ0(θ̂0), and choosing a such that a

(A+1)α times the

magnitudes of ĝ0(θ̂0) should be approximately equal to the smallest change in θ .
It is found that a larger a could lead to faster convergence to the optimal solution, but
it may also run into the risk of reaching infeasible solutions (gridlock in our corridor
control context). Following the above guidelines, we have found that the initial
changes of 3–4 s in phase duration or offset values can generally provide smoother
SPSA convergence. One may also notice from the above numerical experiments
particularly with the real world network that some extra efforts could be necessary
to get the initial feasible solution for different corridor networks.

4.7 Conclusions

An integrated corridor control problem is formulated and solved in this study. Based
on the cell transmission model, the platform can capture the queuing phenomena
within a general corridor network under all traffic conditions. Urban signal control
and ramp metering are embedded in the platform generically. A new heuristics
solution algorithm is developed using the simultaneous perturbation stochastic
approximation method. The algorithm can compute a near-global optimal control
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plan more efficiently compared to other heuristics methods, even if it may not
guarantee global optima. Our results indicate that SPSA can be used to solve in-
tegrated corridor control problems for large-scale networks. Numerical experiments
also indicated that integrated corridor control can perform well under various traffic
loads but appears to see higher improvements under medium congestion.
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Chapter 5
Analyses of Arterial Travel Times Based
on Probe Data

Isaac Kumar Isukapati, George F. List, Stacy Eisenman, Jeffrey Wojtowicz,
and William Wallace

Abstract This paper presents an analysis of arterial travel times based on AVI
(automatic vehicle identification) data from vehicles that were equipped with toll
tags. The source is a six-month experiment conducted on a small arterial network
in upstate New York. Data were collected using wireless, solar-powered toll tag
readers. The paper explores and examines trends by time of day, day of the week,
and as affected by weather and other conditions. The results point toward the value
of using such data for travel time prediction, travel time reliability monitoring,
incident detection, and overall performance monitoring.

5.1 Introduction

Travel times have always been an important aspect of transportation systems
(Berry 1952; Greenshields 1934; Greenshields et al. 1947). People and shippers
want to know how long it will take to get from point A to B and whether the
trip will be completed on time. Technological advances in the past two decades
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have made it possible to more effectively monitor trip times and their variability,
especially AVI and AVL technology. As the paper demonstrates, useful insights can
be developed today by studying the trip times that these technologies provide. In
fact, observability has risen to the point where the Federal Highway Administration
has issued a notice of proposed rulemaking in which it expects States to “monitor, in
real-time, the traffic and travel conditions of the major highways of the United States
and to share these data with State and local governments and with the traveling
public. This rule establishes minimum parameters and requirements for States to
make available and share traffic and travel conditions information via real-time
information programs.” Hence, not only has it become possible to monitor the
effects of recurring and nonrecurring congestion, but also to report the findings to
the public. This leads to challenging questions that transportation researchers have
been trying to answer for a long time: “Can the reliability or unreliability of travel
times be predicted or observed?”

Traditionally, travel times have been studied “indirectly” from field-based
observations of counts and occupancy transformed into spot speeds or observed
in snippets via license plate surveys and other techniques. But with the advent
of AVI (automatic vehicle identification) and AVL (automatic vehicle location)
technologies, it has become much easier to observe travel times directly.

The purpose of this study was to see what could be learned about arterial travel
times based on data from AVI-equipped vehicles (automatic vehicle identification,
often used for toll tags). It presents the findings from six months of data collected
on a small arterial network in upstate New York.

5.2 Prior Work

The oldest analyses of travel times made use of license plate surveys
(Oppenlander 1976; Schaefer 1988; Shuldiner 1996; Williams 1986). Oppenlan-
der (1976) developed a methodology for sample size determination applicable
to travel time studies for both license-plate and test-car techniques, whereas
Williams (1986) created a license-plate survey technique to develop travel time
measures and other metrics for traffic monitoring. The latter provided information
to the system operator on topics such as the number of vanpools, origin and
destinations, travel and trip time lengths, and traffic assignment. Schaefer (1988)
provided guidance on the mathematical and statistical considerations that should be
employed when conducting license-plate matching surveys.

Shuldiner (1996) used video technology for reading and processing vehicle
license plate images. Vehicle license-plate images were acquired by video cam-
corders. They concluded that video and machine vision analysis is an effective
means of conducting a wide variety of traffic engineering and traffic management
studies such as understanding travel time and micro-scale origin–destination pat-
tern analyses. List (1993) used handheld tape recorders to study the travel time
improvements from time-based signal coordination. Observers with accurate clocks
recorded the times when vehicle license plates were observed at various locations
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and then point-to-point (P2P) travel times were derived from these data by matching
the license plate numbers. The sample sizes were small and matching the license
plate numbers was a challenge. Observers would mistake one letter for another
(“E’s” for “F’s”) and they would only capture a few of the characters in the license
plate (e.g., only the first or last few characters).

The ADVANCE project in Chicago was one of the first studies where travel
times were characterized using probes (Boyce et al. 1991; 2002). Vehicles equipped
with dead reckoning equipment recorded travel times across northeast Chicago,
principally between Evanston and O’Hare airport. These travel times were then
used to help motorists determine the best paths to choose in traversing this largely
arterial-based urban network. The project was moderately successful, although it
pushed the limits of the then-available technology.

After ADVANCE, List et al. were the next researchers to use probes to share
travel time data. They placed 200 probes in service in a peer-server-peer ATIS
system in upstate New York (Demers et al. 2006a). The main focus was on journey-
to-work trips for people traveling to a cluster of business in a single area. The
experiment demonstrated that such a system could and would be used to help drivers
determine the best routes to use through congested and incident-impacted networks.

At this point, many examples exist of using AVL equipment to monitor travel
times although there have been many other efforts to explore use GPS equipment
in transportation (Bertini et al. 2005; Byon et al. 2006; Pan et al. 2007; Quiroga
and Bullock 1998). Byon et al. (2006) developed GISTT (GPS-GIS Integrated
System) for Travel Time Surveys. This system enables one to match GPS data with
spatial map features using GIS for monitoring traffic conditions on specific links.
Pan et al. (2007) proposed GPS-based methodology for collecting historical travel
time data that includes link travel time and information on intersection signal delay,
for an arterial. Furthermore, they developed a post-trip map-matching algorithm to
project GPS data onto an arterial network.

Taxis have been used to collect traffic data in such wide-ranging locations as
Japan, Germany, and Malaysia. In Berlin, the taxis served as floating cars and
their travel time observations were processed into traffic information that other
services then offered to clients (Pan et al. 2007). In addition, trucking companies
use AVL technologies to manage their truck fleets (Morris et al. 1998). Information
about the truck movements are retrieved in real time; and the dispatcher switches
load assignments and re-routes the trucks to maximize quality of service while
minimizing the impacts of congestion. Transit operators use AVL technology to
track buses and improve system performance. They improve the system’s ability to
keep the buses on time, alert riders to bus arrival times and locations, and make it
easier for the system to meet rider demands.

Furthermore, the buses are sometimes used as probes to evaluate traffic con-
ditions on arterials (Berkow et al. 2008; Bertini et al. 2005; Chakroborty and
Kikuchi 2004; Hellinga and Fu 2002). Berkow et al. (2008) developed techniques
for constructing the shape of the congested regime in time and space along
urban arterial, combining signal system detectors and buses as probe vehicles.
Chakroborty and Kikuchi (2004) developed a model for predicting travel times
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for automobile using transit vehicles as probes. Hall and Nilesh(2000) compared
automobile and transit vehicle trajectories to explore alternative methods for
detecting congestion on arterials.

Yamamoto et al. (2006) studied the variability of travel time estimates using
probe vehicle data. Hellinga and Fu (2002) developed insights into reducing the
bias on link travel time estimates from probe data. Cetin et al. (2005) suggested the
factors affecting minimum number of probes required for reliable travel time and
Quiroga and Bullock (1998) created guidelines for determining the sample size for
travel time studies.

AVI technology is as old as AVL, but it has only more recently been used
to monitor travel times. The use of AVI technology became more popular when
toll tags were put into service by agencies such as the New York State Thruway
and companies such as Mark IV (Vavra 1999). With AVI probes, as with AVL, it
becomes possible to monitor point-to-point (P2P) travel times on both freeways and
arterials. Li et al. (2006) used automatic vehicle identification (AVI) data to gain
insight into travel time variability and its causes.

Freeways have been studied heavily in terms of understanding the travel time
distributions. However, most of the investigations have had an objective of predict-
ing future (or current) travel times. Arterials have been studied far less in terms of
understanding the travel time distributions, where prediction has been an objective
(Lin et al. 2003). Wasson et al. (2008) suggested media access control (MAC)
matching for estimating travel time in real time. There were also several efforts to
create probe-based real-time route guidance systems (Demers et al. 2006a, 2006b;
Fontaine and Smith 2005; List et al. 2005a, 2005b; List and Demers 2006; Ma and
Koutsopoulos 2012; Dion and Rakha 2006). This paper focuses on observations
about arterial travel times from AVI probe data.

5.3 The Data

The data were obtained during a field test of a portable, wireless, solar-powered tag
reader. Studying travel times was not the main intent. However, in this analysis, the
data have been repurposed for that objective.

The test of the portable readers was conducted for six months during the fall of
2007 and the winter of 2008. The location was North Greenbush Road (US-4) in
North Greenbush, NY, just east of Albany as shown in Fig. 5.1. North Greenbush
Road passes by Hudson Valley Community College (located just above reader #5);
a minor league baseball field (next to HVCC); the Rensselaer Technology Park (just
west of reader #1); and other residential and commercial areas.

Five tag readers were stationed at the locations shown. (A sixth tag reader, #4,
not shown, was moved from place to place and collected very little data.) Data were
captured using wireless, solar-powered tag readers, mounted on side of the road. An
encrypted tag ID, the tag reader ID, and a time stamp were collected with every tag
read. The percentage of vehicles with toll tags ranged from 22.5% to 30%.
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Fig. 5.1 Reader deployment locations

Table 5.1 Breakdown of the data records

Reader

Item #1 #2 #3 #5 #6 Total Percent

Duplicates 2,000 582 2,041 9 799 5,431 0.87
Multiple records 151 142 840 98 0 1,231 0.20
Test records 61 54 19 21 36 191 0.03
Records after cleaning 76,991 162,802 184,607 55,814 137,910 618,124 98.90
Total records 79,203 163,580 187,507 55,942 138,745 624,977 100.00

More than 620,000 tag reads were collected from more than 54,000 different
tags. Each data point represents a specific tag being observed at one of the five
locations on a given day at a specific time. More than 39,000 (about 72%) of the
tags were seen more than once. Over 1,200 of the tags were seen more than 100
times. Table 5.1 indicates that more than 98% of these observations were useful.
The others were duplicates or testing observations.

Except for reader #1, just one direction of travel was recorded by each reader.
For example, reader #6 was used to capture data for vehicles traveling southbound
on Route 4; reader #5 was used for vehicles traveling north. Reader #1 was used
for vehicles going in both directions on Jordan Road (into and out of the Rensselaer
Technology Park, which the road serves). The reader (trailer) was placed in the
median just west of the intersection.
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Fig. 5.2 Number of observed tag-reads at individual readers (5-min time bins)

To simplify analysis of the data collected by reader #1, a virtual tag reader #7 was
created in the database for the outbound (eastbound) reads on Jordan Road. Thus, in
the discussions that follow, the reader #1 tag reads are for vehicles entering the tech
park (going west on Jordan Road), while the reader #7 tag reads are for vehicles
leaving the tech park (going east on Jordan Road).

Figure 5.2 plots the number of tag-reads observed in each 5-min bin at four of
the readers for the entire data set. (The patterns for readers 2 and 3 are the same as
5 and 6.) Readers 5 and 6 show pronounced AM, midday, and PM peaks on top of
a general level of activity that begins in early morning and diminishes late at night.
Reader 1 shows a peak at 8 AM and another around 12:30–1:00 PM, whereas Reader
7 has peaks around 12:00 Noon and 5:00 PM. It can be inferred that people start their
work day at Tech Park around 8 AM; some of them go out for lunch around Noon
(first peak at Reader-7) and come back to Tech Park between 12:30 and 1:00 PM
(second peak at Reader-1); and then they leave Tech Park at the end of workday
around 5:00 PM (second peak at Reader-7).
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Table 5.2 Breakdown of the from/to times observed

From\To 1 2 3 5 6 7 Total

1 2,914 2,236 10,368 196 896 20,944 37,554
2 18,251 27,205 49,782 20,457 32,374 4,699 152,768
3 3,695 87,203 33,782 6,083 28,406 2,468 161,637
5 561 8,098 5,248 13,363 22,050 590 49,910
6 6,922 13,913 65,926 6,301 30,762 7,034 130,858
7 4,604 3,438 13,005 5,294 8,831 3,787 38,959

Total 36,947 142,093 178,111 51,694 123,319 39,522 571,686

To create trip times between reader pairs, the roughly 620,000 tag reads were
sorted by tag ID, date, and time. Trip times tk(i, j) = tk( j) − tk(i) were then
computed for each successive pair of reads (i, j) observed for vehicle k—where
tk(i) and tk(j) are in chronological order. More than 570,000 such tk(i, j) times
were computed. As shown in Table 5.2, they cover all 36 of the possible (i, j)
combinations including those where i and j are the same.

The reader might wonder why the (i, j) pairs of tag reads are not just for the
pairs that make sense, such as (6,1), (6,3), and (7,3) for vehicles going southbound.
The answer is: (1) the readers were not in operation all of the time, (2) low-power
readers were used—intentionally—so some tags were not seen when they passed
the readers, and (3) the network is an open network, so there are paths the vehicles
can follow that do not involve passing the readers that might seem logical. What is
true is that the (i, j) pairs do represent the sequence of tag reads observed for the
vehicles.

Hence, the challenge is one of interpretation. For example, the times for which i
and j are the same, arise because (1) double reads a couple seconds apart (these were
intentionally not scrubbed), (2) missed intermediate reads (which means the time
between the reads tends to be long), and (3) reads (unintentional) for vehicles going
in the opposite direction. Moreover, the observations for readers that are adjacent—
(1,7), (7,1), (2,3), (3,2), (5,6), and (6,5)—arose either because a tag was read at
nearly the same time by both readers—which happened infrequently—or the vehicle
was observed first leaving the network—e.g., passing reader #5 going northbound
out of the network—and then subsequently re-entering the network—e.g., traveling
southbound at reader #6. These latter tk(i, j) times tend to be quite long.

Six of the (i, j) pairs represent origin–destination (OD) pairs for trips through the
network that fit the classical manner in which that word is used:

• 6–3: the southbound through move on Route 4
• 6–1: the southbound right turn into the tech park
• 7–3: the southbound right out of the tech park
• 2–5: the northbound through move on Route 4
• 2–1: the northbound left turn into the tech park
• 7–5: the northbound left turn out of the tech park

These are the (i, j) studied in detail in the rest of the paper.
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5.4 Analysis #1: All of the Trip Times

This analysis looks at all of the tk(i, j) values for the six OD pairs. The main question
is: how short are the trip times; how long; and how are they distributed? What are
the 15th, 50th, 85th, and 95th percentiles, the mean, and other values, and how do
those percentiles vary from one day to another? Are they consistent from one day
to another or do they change? Are the values affected by weather and other factors?
Also, how do the trip times vary from one day to another. (It is important to keep
in mind that the AVI system does not have a direct way to separate travel times
from trip times because it is not possible to directly distinguish between vehicles
that have made nonstop trips and those that have stopped due to intermediate stops
or incidents.)

Figure 5.3 plots all of the (i, j) times for (6,3)—the southbound OD pair on Route
4. The x axis shows the time of day when the first tag read occurred—i.e., at reader
#6. Almost 66,000 data points are plotted. Notice that the y-axis is in days. Some
of these “trip” times are very long. The largest is 192 days—effectively the tag was
seen at the beginning of the experiment and then not again until the end. In sharp
contrast, the 95th percentile is 1.9 days, the 80th percentile is 8.7 min, and the 50th
percentile is only 3.3 min (the distance is 2.1 miles). Clearly, most of the “trip” times
really are trip times in the classical sense of the word. However, some of them are
very long—because there is no restriction on how much time can transpire between
the tag reads. The purpose in presenting these data is to make sure the readers of the
paper understand how wide ranging the (i, j) times can be.

Since the focus of this analysis is on travel times—not trip-making patterns—
while Fig. 5.2 is helpful in understanding the nature of the data, a more detailed

Fig. 5.3 Typical distribution of all (i, j) times observed
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Fig. 5.4 Typical multi-day pattern in the (i, j) times observed

analysis is needed to understand travel times. Dropping down first to about three
days, first, Fig. 5.4 shows the roughly 63,000 times that were less than 80-h long for
reader pair (6,3). The x-axis again uses the time of the observation at reader #3.

Three patterns are immediately evident. The first is that in the early hours of the
morning very few people are making trips. Very few observations exist and the trip
times tend to be very short (near 0).

The second pattern is a triangular cluster of trip times that descends from a
maximum of about 12 h at 7 am down to zero at midnight. Moreover, there are dense
clusters within this cluster: one between 7 and 10 am that has times descending from
5 h to 3 reflecting people who work a half day and then go home or to lunch; a second
again from 7 to 10 am that descends from 10 h down to 8 reflecting people who
work the whole day without leaving. There is a third subcluster from 1 until 3 pm
that descends from 5 h down to about 3 h reflecting people who work the afternoon
and/or return to work from lunch.

The third large pattern is the descending bands of times greater than a day that
start about 7 am and extend until midnight. The first band starts at between 24 and
36 h at 7 am and descends to 7–16 h just before midnight. The second starts at 48–
60 h and descends to 30–48 h. The reason why these bands exist is mostly missed
reads. The second read (in this case at reader #3) that should have occurred did
not; it did not happen until the next day. Another reason, less likely, is that the tag
was somewhere in the vehicle where it could not be detected. The third is that the
vehicle made a trip that used other local roads and did not take it past another reader
(in this case, reader #3) until the next day. The fourth is that the vehicle was not
moving between the first and second reads. The bottom line is that the bands of
observations that span multiple days are mostly noise and can be ignored in the
context of analyzing travel times.
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Fig. 5.5 Typical diurnal pattern based on the “To” time

Another important point to make is that pattern in the plot depends on whether
the “from” time or the “to” time is used on the x-axis to plot the data. Figure 5.5
uses the “to” time instead of the “from” time that was used in Fig. 5.3—that is, the
time when the vehicle was observed passing the “from” reader while instead. Only
the times less than 24 h are plotted. While the lower-triangular daily pattern is again
evident, it is flipped horizontally.

Focusing now on only the much shorter trip times, a fairly severe truncation is
helpful. IT also helps to focus to trip rates—trip times per unit distance—rather than
trip times themselves so that data from different (i, j) pairs can be compared. For
reader pair (6,3) this means dividing by 2.1 miles, for example. If the cutoff rate is
set at 4 min/mile or 15 miles per hour, then about 85% of observations with a trip
time less than a day are kept.

Figure 5.6 shows the diurnal distribution of the trip rates less than 4 min/mile
(speeds down to 15 mph). This includes weekends and holidays. For this (i, j)
pair the minimum rate is just above 1 min/mile (the speed limit is 45 mph or
1.33 min/mile; 55 mph is 1.1 min/mile and 50 mph is 1.2 min/mile).

It is clear that the spread in trip rates is much larger during the day than it is at
night. This makes sense: congestion is present as well as signal delay. The spread
during the morning peak is about 1.2–2.5 miles/min; it drops to about 1.2–1.7 min at
about 10 am; climbs back to 1.2–2.0 min by noontime; stays there until about 5 pm;
and then drops to 1.2–1.5 min around midnight.

Figure 5.7 shows the difference between the daily patterns on the weekdays and
the weekends. The weekdays look very much like the pattern shown in Fig. 5.4,
while the weekends have no morning peak and the rates in general are lower.
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Fig. 5.6 Typical trip rates by time of day

Fig. 5.7 Typical trip rates on weekdays and weekends

Now that a general understanding of the trip times has been obtained by studying
Figs. 5.2–5.6, attention can be shifted to an analysis of the travel times. More
analysis is needed to see what the travel time trends are. One way to do this is to
use cumulative histograms. A cumulative histogram is like a cumulative probability
density function except that the actual counts are used—the total is not normalized
to 100%.



126 I.K. Isukapati et al.

Fig. 5.8 Typical cumulative histograms of the trip rates for a day

Figure 5.8 shows typical cumulative histograms based on the southbound move-
ments 6–3 (through), 6–1 (southbound right), and 7–3 (eastbound right on Jordan
Drive). For each day and each OD pair (τ-CHs), the observed trip rates have been
sorted by day, OD pair and travel rate; and the number of vehicles n having trip rates
less than or equal to τ has been computed. The maximum trip rate considered was
20 min/mile (3 mph). The value of the trip rate τ is plotted on the x-axis and the
number of vehicles n with a trip rate less than or equal to τ is plotted on the y-axis.

These plots show the information about travel times that is of interest, but the
scaling focuses too much on the long trip times. The shape of the τ-CHs near
the origin is hard to see; yet it is that portion which is of greatest interest in
differentiating between trip times and travel times. Using log–log plots is better
(logarithmic scales on both axes).

Figure 5.9 presents log–log plots of the τ-CHs. Notice that the τ-CHs for
the northbound ODs on Thursdays show similar values for both τ and n. The
northbound left into Jordan Road (2–1) has the smallest value of τ , followed by the
northbound left (7–5) and then the through (2–5). This order is the same on Sundays,
but the locus of the τ-CH in terms of the n values are different; the northbound left
has fewer vehicles (less than 100) while the northbound through is upwards of 300.

Figure 5.10 shows the τ-CHs for the southbound flows. Notice that on Thursdays,
the values of τ for the southbound right (6–1) and eastbound right (7–3) are the
shortest and nearly identical while the τ values for the southbound through are
larger. The n values for the two right turns (6–1 and 7–3) are nearly identical while
the n value for the southbound through is almost an order of magnitude larger.
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Fig. 5.9 Typical τ-CHs for northbound trips for a weekday and a weekend day

Fig. 5.10 Typical τ-CHs for southbound trips for a weekday and a weekend

On Sundays the same trends for the τ values still pertain, but the right turn volumes
are an order of magnitude smaller (about 100) than on Tuesdays, while the through
is half the Thursday value (about 5,000 instead of 10,000).

It is also useful to study the percentiles of the trip rates and see how they vary
from day to day. These percentiles, and their ratios to other metrics like the mean,
are commonly used to characterize travel time reliability. Figure 5.11 plots trends
in the 10th, 50th (median), and 95th percentiles for the Tuesday and Sunday data.
(The trends in the mean are also plotted). The sequential number of the Tuesday (or
Sunday) is plotted in the x direction and the value of the percentiles is plotted in the
y direction. It is apparent that:

• The 10th and 50th percentiles are quite consistent except on days when some-
thing is amiss (e.g., the 2nd Tuesday for movement 2–1).

• The 95th percentile varies widely. It follows a pattern very different from the
10th and 50th percentiles. It appears to be noisy and random. It could be that the
people making stops have the most influence on this value, not the behavior of
the arterial. The signals may also be having an effect; and that effect may also
vary widely from one day to another.
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Fig. 5.11 Percentile trip rates (NB)

It is very important to recognize that these τ-CHs are based on observations of
individual vehicles, not average travel times for groups of vehicles—as is the case
for freeway detectors—across short time intervals—such as 5 min. The popular
“travel time index” as it is often called is based on the 95th percentile of these
observed average travel times divided by the average of those average travel times.
The difference is akin to the contrast between the statistics relating to the random
variable x versus statistics related to its mean x̄.

Tables 5.3 and 5.4 present numerical data for the northbound OD pairs on
Tuesdays and Sundays shown in Fig. 5.10 plus the southbound data.
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Fig. 5.12 Percentile travel time graphs for SB

Figure 5.12 shows trends in the 10th, 50th, and 95th percentiles for the south-
bound OD pairs (6–3, 6–1, and 7–3) for the Thursdays (instead of Tuesdays) during
the experiment. (Remember that 6–1 is the inbound right onto Jordan Road and
7–3 is the outbound right.) The dramatically higher percentile values on the 12th
Thursday immediately stand out. It turns out there was a snowstorm on this day and
traffic was snarled; so perhaps low percentiles can be used to identify incidents and
changes in network performance due to other factors.

Table 5.5 shows the numerical values for the southbound OD pairs for the
Thursday data presented in Fig. 5.12.

5.5 Analysis #2: Trends within Days

This analysis focuses on trends within individual days. It asks: how do the short-run
τ-CHs vary as a function of congestion, weather impacts, etc. Of course, as Fig. 5.5
shows, there is a tendency for the long-valued trip times to become increasingly
more prevalent across the course of a given day; so this trend needs to be taken into
account; but what other trends do the data show?

To do this analysis the trip time observations are sorted by OD pair and then
placed in chronological order based on the “D” time (for the entire five months).
This allows us to look at trends in the trip rates over time.
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Table 5.5 Summary of trip rate statistics for Thursdays for the southbound OD pairs

O–D Pair Date Shortest TT 10th% 50th% Mean 85th% 95th%

26-Jul 75 82 92 100 100 107
2-Aug 72 78 86 87 95 103
9-Aug 74 85 93 95 105 109
4-Oct 69 84 92 94 104 109
11-Oct 65 73 82 83 92 97
18-Oct 69 78 88 90 99 105

6-1 (1.1 mile) 25-Oct 71 83 94 110 111 181
1-Nov 80 95 102 103 112 115
8-Nov 72 81 91 97 103 110
15-Nov 68 77 90 108 108 121
29-Nov 74 76 88 102 97 127
13-Dec 311 363 497 544 700 841
20-Dec 80 85 96 109 109 125

6-3 (2.1 mile) 26-Jul 67 79 92 134 109 319
2-Aug 56 70 81 115 97 325
9-Aug 69 80 92 132 107 316
4-Oct 43 78 90 112 103 228
11-Oct 73 80 91 133 114 293
18-Oct 74 84 95 110 108 199
25-Oct 79 90 100 125 115 232
1-Nov 63 86 100 129 115 253
8-Nov 68 81 96 129 118 339
15-Nov 63 80 93 115 109 222
29-Nov 70 82 97 131 118 282
13-Dec 116 157 524 456 622 719
20-Dec 70 83 96 134 113 322

7-3 (1 mile) 26-Jul 86 94 100 132 109 351
2-Aug 67 79 88 146 105 463
9-Aug 87 93 106 152 118 182
4-Oct 71 80 92 121 120 366
11-Oct 79 92 106 124 132 156
18-Oct 104 111 122 143 140 304
25-Oct 85 92 107 138 130 338
1-Nov 74 88 102 134 126 332
8-Nov 86 95 111 131 130 178
15-Nov 74 86 102 138 124 356
29-Nov 92 104 119 147 149 174
13-Dec 136 170 232 249 302 381
20-Dec 84 95 110 147 135 303

The first subanalysis looks at variations in the τ-CHs for every half hour. The
fifty most recent trip rate observations are used to do this. Since 50 observations
are being used, each one is a two-percentile point in the τ-CH. For completeness,
all the trip times observed are examined first, not just those with trip rates under
1,200 s/mile (refer back to Fig. 5.3).
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Fig. 5.13 Trip rate percentiles across a week

Across a single week, there is a clear pattern in these trip rates. As Fig. 5.13
shows, the values for the shortest trip rate, the 15th and 50th percentile hold
steady while the values for the mean, 85th, 95th, and maximum vary widely. Our
conclusion is that the values up to the 50th percentile reflect travel rates while the
other percentiles reflect trip rates.

The next subanalysis involves seeing what happens within individual days.
Rather than using Fig. 5.13 to do this, where the results are present but hard to see, a
second figure is created. Figure 5.14 shows trends in the τ-CHs for August 1, 2007.
Each τ-CH is labeled to show the half hour to which it pertains (e.g., 8:30, 9:00,
etc.) and the “D” time of the oldest observation in the set of 50.

The top-left plot shows τ-CHs for every half hour from 8:30 to 12:00 noon; the
top right one shows τ-CHs from 12:30 to 16:00; etc.; the last τ-CH pertains to 23:00,
encompassing observations from 20:40 to 23:00.

Notice that the first τ-CH is labeled 5:59–8:30 am. This means the τ-CH pertains
to the most recent 50 observations seen at 8:30 am on this day and the earliest
of these was observed at 5:59 am. It is unfortunate that the 50 observations span
more than the half hour from 8:00 to 8:30 am, but the density of AVI-equipped
probes is not high enough to do that. The extent to which the observations are
reused decreases during the peak periods. For example, the second τ-CH is based on
observations from 7:37 to 9:00 am, so the observations reused are those from 7:37
to 8:30 am.

The τ-CHs show that the minimum trip rate remains fairly consistent at about
150 s. This means some vehicles always traverse the network without significant
delay; 150 s/mile is equivalent to about 24 mph. As the morning peak progresses,
the percentage of vehicles that experience this minimum trip rate becomes smaller,
dropping to only about half (20–25 out of 50) midday. Rather than this being a
change in the trip rate for the OD pair, this more likely reflects an increase in
the percentage of vehicles that are stopping between the two readers; so these
observations are not evidence of a slowdown in the travel, it shows changes in
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Fig. 5.14 Trends in the T −Chs across a day (All Data)

activity patterns. There are still vehicles that can achieve the minimum trip rate
(consistent with the findings for the Thursday analysis presented before). The
number of vehicles that have these large trip rates seems to peak at about 3:00 pm
(12:38–15:00 and 12:43–15:30) and then by 6:00 pm (e.g., 16:27–18:00) there are
far fewer. Later in the evening, nearly all of the trip rates are at or near the minimum
value.

Another subanalysis asks what happens if the trip rates greater than 1,200 s/mile
are omitted. Figure 5.15 presents the results.

The same trends are evident but the breakpoint where the distribution tails off to
larger values is much higher; the long trip times are a much smaller percentage of
the total. It is also apparent that the span of time involved in the 50 observations
changes. In the early hours and late at night, the spans change considerably, but in
the middle of the day, they do not change much. Notice that the span of observations
at 14:00 changes only from 12:32 in the case of using all the observations to 12:29
when only those under 1,200 s/mile are employed.

The third subanalysis asks: can incidents and other events be spotted using these
τ-CH plots? The answer seems to be “yes.” Figure 5.16 shows the τ-CHs for OD pair
6–3 on December 13, 2007, a day when there was a snowstorm. In this instance, all
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Fig. 5.15 Trends in the T −Chs across a day (T ≤ 1,200s/mile)

Fig. 5.16 Trends in the T −Chs on a snow day (All Data)

of the data are employed so that truncation does not filter out our ability to see what
happened. It is possible to see that the minimum trip rate increases substantially,
the long trip rates are all but absent—probably because far fewer people stop at
intermediate locations; and the τ-CHs are stretched out across a greater range of τ
values—maybe showing that the drivers are being more risk averse because of the
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slippery, snowy conditions. This suggests that incident detection algorithms based
on tracking the low-percentile values of the τ-CHs may have promise.

As with the previous investigation, it is interesting to see how these τ-CHs change
if the 1,200 s/mile trip rate cutoff is applied. The result is shown in Fig. 5.17. The
same trends are present, but the tailing off is less apparent and are less because the
long trip intensity observations are omitted. (Please note that the scales are very
different on the horizontal axis when comparing the graphs.)

The final subanalysis in this “trends within days” study examines the relationship
between the half-hourly τ-CHs and the histogram for the average trip times. To be
clear about the difference, Fig. 5.12 shows the patterns in the shortest, 15th, 50th,
etc. percentiles for the individual vehicle trip rates across the week of August 1;
while the focus here is on the histogram for the averages of each of those half-hourly
distributions across the week. This is akin to comparing the cumulative histograms
for individual speeds observed across all lanes of a freeway count station within
each 5-min period of a week with the histogram of the averages for those 5-min
observations.

Figure 5.18 shows the histogram for the average values of τ observed across
the week of August 1, 2007 without the 1,200 s/mile filter being applied. Notice
that the values are quite large. The average of these averages is 2,137 s/mile, which
shows the significant impact of the large trip rates—equivalent to 1.7 mph—and the
95th percentile is 3,848 s/mile—equivalent to 0.93 mph! The insight is that these
averages, which include all of the observations, are not particularly useful in terms
of indicating what the travel times might be; the long trip times have too significant
an impact. In contrast, the 50th percentile values for these CHs during the same
week (not shown in the figure) have an average τ of 289 s/mile—equivalent to
12.4 mph—and a 95th percentile of 126 s/mile—equivalent to 28.4 mph—and less
than the average—which is evidence of the impact of the very large values—out
of the 182 observations of these 50th percentile values across the week, almost all
of them are in the range of 80–100 s/mile, but seven of them are in the range of
4,500–6,000s/mile.
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In contrast, Fig. 5.19 shows the distribution of the average trip times when the
1,200 s/mile filter is applied. As would be expected, all the values are much smaller.
In fact, the average of these averages is only 114 s/mile, more than an order of
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Fig. 5.20 “Spot” trip rates from spot speed data collected at readers 3 and 6

magnitude smaller than the result when all the observations are employed. This
is equivalent to 31.6 mph, a value which is far more likely to be reflective of the
space mean speeds that occur between readers 6 and 3—and the 95th percentile is
157 s/mile—equivalent to 22.9 mph. That being said, the 50th percentile still offers
a compelling alternative to the mean; it has an average of 86 s/mile—equivalent
to 41.9 mph and a 95th percentile of 95 s/mile—equivalent to 37.9 mph—both of
which are probably even more typical of the space mean speeds between readers
6 and 3.

As a closing subanalysis, spot speeds that were collected adjacent to Readers 3
and 6 were inverted to create “spot” trip rates. They ranged from 90 to 130 s/mile
at those locations as shown in Fig. 5.20, values that are slightly larger than, but
consistent with the 50th percentile values shown in Fig. 5.18. Whether these spot
rates can be used to gain insights about travel times or travel time reliability is an
open question; but they are comparable to the distance-based rates observed from
the toll tag data.

5.6 Key Findings and Conclusions

The most important finding is that the AVI data are very valuable. The data reveal
important trends in the trip times and travel times. They can be used to estimate
travel times, watch for incidents, monitor travel time reliability, etc., albeit with
some care. The data are clearly not as valuable as AVL data, where the entire vehicle
trajectories can be observed, but compared with point detectors where the status of
the network can only be observed at the instrumented locations, AVI data are much
better; they provide an opportunity for a major improvement in system observability.

The next observation is that the arterial trip times are richly varied; with a clear
daily pattern in the longest trip times (at least for this network). Whether this is a
tendency for all arterial trip times is, of course, unknown, but it seems likely that
many arterials may have similar patterns. These trip times were expected, but not
their significance.
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The presence of these long trip times makes it important to understand how to
both filter them and use them. It is not just a filtering issue. The data do need to be
filtered so that travel times can be discerned (instead of trip times). However, the
long values may be useful in detecting incidents; so not filtering the data is a useful
idea. It may be that two data processing algorithms are needed—one to estimate
travel times and the other to look for evidence of incidents.

It is also important to understand how the time of revelation affects these
thoughts. The trip times only become observable when the second reader is passed—
when the trip ends, not when it starts. Effectively, a detection lag exists; one that
cannot be overcome without more readers. Incidents might happen before they are
observable because the second tag read has not yet occurred. On the other hand,
expected downstream reads (from upstream observations) could be compared with
actual downstream reads to get an early sense that something may have happened.

These observations suggest that AVL systems will add significant value over
AVI-based systems. They will provide better information about travel times than
AVI systems. With AVL systems, it will be easier to filter out the travel times for the
extended trips.

Incident detection and characterization will also be more difficult with AVI
systems. Since with AVI systems the whole trajectory is not known, it will be
difficult to distinguish between vehicles that are delayed due to incidents and those
that have simply made roadside stops. It will also be difficult to tell exactly where
the incident has occurred (if one has) because the only information available will
be travel times between AVI readers. In contrast, with AVL systems, it will be easy
to spot vehicles that have made a roadside stop and distinguish them from ones
involved in or affected by incidents. It will also be a lot easier to see where the
incident has occurred because it will be possible to see the AVL vehicles that have
been stopped by the incident.

The trends in the percentiles for the trip time density functions suggest the
following:

• The 10th and 50th percentile values are likely to be very consistent.
• But the 95th percentile values vary dramatically.
• Moreover, the mean travel times vary more than the 50th percentile times because

they are affected by, and are sensitive to, the long trip times.
• This means travel time metrics predicted on ratios to the mean will be confounded

by the variations in the mean.
• It would likely be better to use metrics predicted on the 50th percentile or the

free flow travel time.

It may be that the 95th percentile will not be the best metric to use as an indicator of
travel time reliability. A lower percentile, like the 10th or 50th, might be better. All
of the percentiles are affected when there are incidents; and the lower percentiles
seem to be affected only when there are incidents, whereas the 95th percentile has a
lot of volatility, seemingly caused by other factors.

That having been said, the 95th percentile values can perhaps still be used
to provide guidance to travelers about what travel times to expect; but that 95th
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percentile needs to be based on the travel times, not the trip times. Based on the
plots reviewed so far, one can make statements like: half of the travelers will need
X minutes, so allowing that much time will be fine if you are someone who drives
faster than about half of the population; but if you want to be sure you are not late,
you should allow Y minutes. You are likely to be quite early, but you will not be late.

A final observation is that the movements are slightly different in trends they
portray. Some OD pairs show very stable values, as with the ones involving right
turns where the impacts of signal timing or congestion is likely to be low. The ones
with left turns show more variation. This finding has not been stressed heavily in
the results presented, but it can be seen in the differences between the southbound
OD pairs—that involve two right turns—and the northbound OD pairs—that involve
two left turns.
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Chapter 6
A Multibuffer Model for LWR Road Networks

Mauro Garavello and Benedetto Piccoli

Abstract This paper introduces a new model for describing intersections in road
networks, whose load dynamics is governed by the Lighthill–Whitham–Richards
model. More precisely we define a solution for intersections using a multibuffer, i.e.
a set of buffers, one for each outgoing road. We compare the obtained dynamics
with those of some models previously introduced in the literature. In particular, we
are able to respect the preferences of drivers and to not block the intersection when
only one outgoing road is full. This improves some weaknesses of previous models.

6.1 Introduction

The modeling of traffic at a macroscopic level is nowadays a well-established
approach in the transportation engineering community, which has its roots in the
fundamental model proposed independently by Lighthill and Whitham (1955),
and Richards (1956). Their work introduced to the traffic community the kinematic
wave theory, which enables one to reconstruct macroscopic features of traffic flow,
in particular tracing backward queues propagation. The model, consisting in a single
conservation law for car density, is referred to as LWR model and is based on
expressing the average velocity as function only of the car density. Greenshields
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(1935) empirically measured a relation between the density and the flow of vehicles,
now known as the fundamental diagram. There is a wide literature of studies on
the fundamental diagram; for a review, see Garavello and Piccoli (2006). The
numerics for such model was addressed in various papers; see Lebacque (1996).
The supply demand approach there proposed is equivalent to the classical Godunov
numerical scheme for general conservation laws (Godunov 1959). Notice also that
such approach is intimately related to the cell transmission model of Daganzo
(1994), which can be seen as a discretization of the LWR model.

More recently, a growing attention has been devoted to extensions of the same
model to networks; see, for instance, (Chitour and Piccoli 2005; Coclite et al. 2005;
Garavello and Piccoli 2005; Helbing et al. 2007; Holden and Risebro 1995). The
interest was also motivated by other applications: data networks (D’apice et al.
2006), supply chain (D’Apice and Manzo 2006; Göttlich et al. 2005), air traffic
management (Sun et al. 2007). Here we focus on the LWR model on a network, but
the results are of use to other research domains.

To define a dynamics on the whole network, one first considers Riemann
problems at nodes, which are Cauchy problems with constant initial data on each
arc. Notice that the only conservation of cars is not sufficient to determine a unique
dynamics. Thus one has to prescribe solutions for every initial data and we call the
relative map a Riemann solver at nodes. Then it is possible to construct approximate
solutions, via wave front tracking (see Garavello and Piccoli 2009), using classical
self-similar entropic solutions for Riemann problems inside arcs and an assigned
Riemann solver at nodes.

Various ways to define solutions at intersections were proposed in the literature;
see, for instance, (Chitour and Piccoli 2005; Coclite et al. 2005; Garavello and
Piccoli 2006; Herty et al. 2009; Marigo and Piccoli 2008).

This paper introduces a new model for describing dynamics at junctions in road
networks. Due to finite speed of waves, we can reduce to the case of a simple road
network, composed by a single junction with an arbitrary number of incoming and
outgoing roads. On each road, the evolution of the car traffic is governed by the
LWR model.

In the same spirit as (Göttlich et al. 2006; Herty et al. 2007, 2009), we suppose
that, inside the crossroad, there are some buffers, with finite size. More precisely,
we assume that there is a buffer in front of each outgoing road, so that the number
of buffers equals that of outgoing roads. The basic idea behind this construction
is that a car exiting an incoming road enters the buffer associated with its desired
destination and then it passes to the corresponding outgoing road by a FIFO policy.
Since the number of buffers is equal to the number of outgoing roads, our model
is able to capture the preferences of drivers. On the contrary, the model proposed
in Herty et al. (2009) contains only one buffer inside the junction and so all the cars
enter the same buffer losing the information about their origins and destinations.

In Sect. 6.2, in order to justify the study, we illustrate, with a simple example, the
main differences of our approach with respect to those introduced in Coclite et al.
(2005) and Herty et al. (2009). In Sect. 6.3, after introducing the basic assumptions
and definitions about conservation laws, we recall the construction of the Riemann
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solver introduced in Coclite et al. (2005). The latter is defined for a model without
buffers and makes use of a traffic distribution matrix together with maximization
of the through flux. In Sect. 6.5, we describe in detail the Riemann solver with
multibuffer.

Moreover we provide an analytic comparison of our model with an ODE-PDE
ones defined in Herty et al. (2007) for supply chains and networks and with that
of Herty et al. (2009). The paper ends with Sect. 6.7, which contains the conclusions.

6.2 Model Justification

In this section, we present some examples to show the behaviors of solutions of
different models in literature. More precisely, we consider a junction J with a single
incoming road I1 and two outgoing roads I2 and I3. The initial loads of the roads are
given by

ρl,0 =

{
σ , if l = 1,

1, if l = 2
and σ < ρ3,0 < 1, (6.1)

where ρmax = 1 denotes the maximal possible density in the roads, f (ρ) is the
flux when density is ρ , while σ ∈ (0,1) is the critical density between the free
and congested traffic flow. In the following paragraphs, we consider three different
types of solutions at junctions: the first one, denoted by RSCGP, is that introduced
in Coclite et al. (2005), the second one was proposed by Herty et al. (2009) and,
finally, the last one is that introduced in this paper. The last two models use buffers
to describe the dynamics; in this case we also assume that buffers are initially empty.

The solution RSCGP introduced in Coclite et al. (2005). It is simple to see
that the solution at the junction J, with respect to RSCGP, is given by the triple
(ρ1,ρ2,ρ3) defined by

ρ1(t,x) =

{
σ , if x < λ̄1 t,

1, if λ̄1 t < x < 0,
ρ2(t,x) = 1

ρ3(t,x) =

{
0, if 0 < x < λ̄2 t

ρ3,0, if x > λ̄2 t

where λ̄1 =− f (σ)
1−σ and λ̄2 =

f (ρ3,0)
ρ3,0

; see Fig. 6.1. A complete description of RSCGP

is done in Sect. 6.4. This example shows that, if an outgoing road is full, then no car
crosses the junction. This implies that the road I3 empties and in the incoming road
I1 it appears a shock with negative speed, connecting σ with the maximum possible
density. It is questionable that the model does not allow any car going to the empty
road I3.
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Fig. 6.1 The solutions to the Riemann solver RSCGP in I1, I2 and I3

The solution with buffer of Herty et al. (2009). In this part we describe the
solution at J using the model of a junction with a buffer, as introduced in Herty
et al. (2009). For a detailed description of this model, we refer to Herty et al.
(2009). Assume that the capacity of the buffer μ is greater than or equal to f (σ).

For 0 < t < t̄
(

t̄ = rmax
f (σ)− f (ρ3,0)

)
the solution is given by

ρ1(t,x) = σ
ρ2(t,x) = 1

ρ3(t,x) = ρ3,0

r(t) = [ f (σ)− f (ρ3,0)] t

while, if t > t̄,

ρ1(t,x) =

{
σ , if x < λ̄1 (t − t̄),

ρ3,0, if λ̄1 (t − t̄)< x < 0,
ρ2(t,x) = 1

ρ3(t,x) = ρ3,0

r(t) = rmax;

see Fig. 6.2. Here r(t) denotes the load of the buffer at time t.
Note that in this case the queue in the buffer increases and when it reaches the

maximum value, then a shock with negative speed appears in I1 and connects the
states σ and ρ3,0.
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Fig. 6.2 The solutions to the Riemann solver of Herty et al. (2009) in I1, I2, and I3 and the load of
the buffer

Notice that all cars will finally reach road ρ3,0 for every time. Therefore, the
presence of a unique buffer erases the original will of drivers. This phenomenon is
a drawback from modeling point of view.

The solution with multibuffer. Assume that the capacities of the buffers are given
by μ2 = μ3 ≥ f (σ). Call (α21,α31) the traffic distribution matrix. For simplicity, we

further assume that α31 f (σ) < f (ρ3,0). Define t̄ =
rmax
2

α21 f (σ) . Then, for 0 < t < t̄, the
solution is given by

ρ1(t,x) = σ
ρ2(t,x) = 1

ρ3(t,x) =

{
ρ3,0, if x > λ̄3t

ρ̄3, if 0 < x < λ̄3t
r2(t) = α1,2 f (σ)t

r3(t) = 0

where ρ̄3 < σ , f (ρ̄3) = α31 f (σ) and λ̄3 =
f (ρ3,0)− f (ρ̄3)

ρ3,0−ρ̄3
. For t > t̄, the solution is

given by
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Fig. 6.3 The solutions to the Riemann solver with multibuffer in I1, I2, and I3

ρ1(t,x) =

{
σ , if x ≤ λ̄1(t − t̄)

1, if λ̄1(t − t̄)< x ≤ 0
ρ2(t,x) = 1

ρ3(t,x) =

⎧⎪⎨
⎪⎩

0, if 0 ≤ x < λ̃3(t − t̄)

ρ̄3, if λ̃3(t − t̄)≤ x < λ̄3t

ρ3,0, if λ̄3t < x
r2(t) = rmax

2

r3(t) = 0

where λ̄1 =− f (σ)
1−σ and λ̃3 =

f (ρ̄3)
ρ̄3

; see Figs. 6.3 and 6.4. Here r j(t) denotes the load
of the j-th buffer at time t.

Notice that cars flow to road I3 meanwhile the buffer of road I2 is not yet full,
then they stop. Finally, the situation is intermediate between the two above solvers.
More precisely, the flow is neither stopped immediately nor continued for all time.
Moreover, cars going through the junction are not redirected, but travel towards the
outgoing roads or buffers according to drivers’ preferences, expressed by the traffic
distribution matrix.

The fact that the inflow stops after some time, even if one exiting road may
still allow some outflow, is a limitation due to the use of the Lighthill–Whitham–
Richards model for multiple lanes. However, such choice describes in an accurate
way the links in highways with respect to the junctions in urban networks;
see Newell (1993a,b,c). We summarize the key results of this section in Table 6.1.
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r2

t̄

r3

t t

Fig. 6.4 The solutions to the Riemann solver with multibuffer for the buffers r2 and r3

Table 6.1 Comparison between different Riemann solvers according to
the example of Sect. 6.2

RSCGP RS-buffer RS-multibuffer

Stopping of the Yes: at t = 0 No Yes: when
flow r2 = rmax

Redirection of cars No Yes No
Number of buffers 0 1 2

Asymptotic densities
ρ1 = 1 ρ1 = ρ3,0 ρ1 = 1
ρ2 = 1 ρ2 = 1 ρ2 = 1
ρ3 = 0 ρ3 = ρ3,0 ρ3 = 0

Asymptotic
r = rmax

r2 = rmax

buffers’ loads r3 = 0

6.3 Basic Definitions and Notations

Consider a junction J with n incoming roads I1, . . . , In and m outgoing roads
In+1, . . . , In+m. We model each incoming road Ii (i ∈ {1, . . . ,n}) of the junction
with the real interval Ii =]− ∞,0]. Similarly we model each outgoing road I j

( j ∈ {n+ 1, . . . ,n+m}) of the junction with the real interval I j = [0,+∞[. On each
road Il (l ∈ {1, . . . ,n+m}) we consider the partial differential equation

(ρl)t + f (ρl)x = 0, (6.2)

where ρl = ρl(t,x) ∈ [0,ρmax] is the density of cars, vl = vl(ρl) is the velocity of
cars, and f (ρl) = vl(ρl)ρl is the flux. Hence the datum is given by a finite collection
of functions ρl defined on [0,+∞[×Il. For simplicity, we put ρmax = 1. On the flux
f we make the following assumption

(F ) f : [0,1]→ R is piecewise smooth, concave (i.e., almost everywhere f ′′ ≤ 0),
f (0) = f (1) = 0 and there exists a unique a point of maximum σ ∈]0,1[.
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Definition 6.3.1. A function ρl ∈ C([0,+∞[;L1
loc(Il)) is an entropy-admissible

solution to (6.2) in the road Il if the following holds.

1. For every function ϕ : [0,+∞[×Il → R smooth with compact support in]
0,+∞[×(Il \ {0})

∫ +∞

0

∫
Il

(
ρl

∂ϕ
∂ t

+ f (ρl)
∂ϕ
∂x

)
dxdt = 0. (6.3)

2. For every k ∈ R and every ϕ̃ : [0,+∞[×Il → R smooth, positive with compact
support in ]0,+∞[×(Il \ {0})

∫ +∞

0

∫
Il

(
|ρl − k|∂ ϕ̃

∂ t
+ sgn(ρl − k)( f (ρi)− f (k))

∂ ϕ̃
∂x

)
dxdt ≥ 0. (6.4)

We now want to describe preferences of drivers. This is done defining a traffic
distribution matrix, whose coefficients represent percentages of incoming fluxes
which distribute to each outgoing road. Consider the set

A :=

⎧⎪⎨
⎪⎩A = {α ji} i=1,...,n

j=n+1,...,n+m
:

0 < α ji < 1 ∀i, j,
n+m
∑

j=n+1
α ji = 1 ∀i

⎫⎪⎬
⎪⎭ . (6.5)

Here the coefficient α ji indicates the portion of cars coming from incoming road Ii

which goes to outgoing road I j.
Let {e1, . . . ,en} be the canonical basis of Rn. For every i = 1, . . . ,n, we denote

Hi = {ei}⊥. If A ∈ A, then we write, for every j = n + 1, . . . ,n + m, α j =
(α j1, . . . ,α jn) ∈ R

n and Hj = {α j}⊥. Let K be the set of indices k = (k1, . . . ,k�),
1 ≤ �≤ n− 1, such that 0 ≤ k1 < k2 < · · ·< k� ≤ n+m and for every k ∈ K define

Hk =
�⋂

h=1

Hkh .

Writing 1 = (1, . . . ,1) ∈ R
n and following Coclite et al. (2005) we define the set

N :=
{

A ∈A : 1 /∈ H⊥
k for every k ∈ K

}
. (6.6)

Notice that if n ≥ m, then N = /0. The matrices of N will give a unique solution to
the Riemann problem at J.

Remark 1. If n ≥ m, or more generally A /∈ N, one can resort to right of way
parameters to determine a unique solution. The construction is similar to the one
used later in Sect. 6.5. For a detailed description, we refer the reader to Chitour and
Piccoli (2005). An alternative approach, for incoming roads which share junction
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area but not necessarily lead to same outgoing roads as it happens in T -junctions, we
refer to Marigo and Piccoli (2008). Finally, for traffic data with source–destination
patterns, a complete theory is available in Garavello and Piccoli (2005).

Define also the set:

P =

{
P = {p ji} i=1,...,n

j=n+1,...,n+m
: 0 < p ji < 1 ∀i, j,

n

∑
i=1

p ji = 1 ∀ j

}
.

A matrix P ∈ P represents priority coefficients among incoming roads to enter each
outgoing road.

6.4 The Riemann Problem at J Without Buffers

In this section, we recall the concept of Riemann problem at the junction and the
solution, proposed for traffic, in Coclite et al. (2005). Fix ρ1,0, . . . ,ρn+m,0 ∈ [0,1],
then the corresponding Riemann problem at J is given by:

{
∂
∂ t ρl +

∂
∂x f (ρl) = 0,

ρl(0, ·) = ρl,0,
l ∈ {1, . . . ,n+m}, (6.7)

namely the Cauchy problem with initial data constant on each road.
To define the dynamics on the whole network, we need to determine solutions

at junctions. In particular, we want to describe the solution to Riemann problems
at J. This is achieved by describing solutions via a map which to initial conditions
associates boundary data for all roads of the junction. More precisely, we define:

Definition 6.4.1. A Riemann solver RS is a function

RS : [0,1]n+m −→ [0,1]n+m

(ρ1,0, . . . ,ρn+m,0) �−→ (ρ̄1, . . . , ρ̄n+m)

satisfying:

1. For every i ∈ {1, . . . ,n}, the classical Riemann problem

⎧⎪⎨
⎪⎩

ρt + f (ρ)x = 0, x ∈R, t > 0,

ρ(0,x) =

{
ρi,0, if x < 0,

ρ̄i, if x > 0,

is solved with waves with negative speed.
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2. For every j ∈ {n+ 1, . . . ,n+m}, the classical Riemann problem
⎧⎪⎨
⎪⎩

ρt + f (ρ)x = 0, x ∈R, t > 0,

ρ(0,x) =

{
ρ̄ j, if x < 0,

ρ j,0, if x > 0,

is solved with waves with positive speed.
3. ∑n

i=1 f (ρ̄i) = ∑n+m
j=n+1 f (ρ̄ j).

Remark 2. In the above definition the first two conditions ensure that boundary
value problems on each road are solved in a strong sense. This means that weak
solutions will indeed achieve the prescribed boundary value as a trace. This is not
the case for general weak solutions to boundary value problems, see, for instance,
Bardos et al. (1979).
Condition 3. then guarantees conservation of cars through the junction, imposing
equality between total incoming and outgoing fluxes.

We need another property to ensure that a Riemann solver is well defined. Indeed,
it may happen that a value attained by RS is not a fixed point for RS itself.
Therefore, one may need to reapply RS thus not giving rise to a well-defined
procedure. We then define:

Definition 6.4.2. We say that a Riemann solver RS satisfies the consistency
condition if, for every (ρ1, . . . ,ρn+m) ∈ [0,1]n+m, then

RS (RS(ρ1, . . . ,ρn+m)) =RS(ρ1, . . . ,ρn+m).

We are now ready to give the definition of solution at the junction:

Definition 6.4.3. Given a Riemann solver RS , a solution to the Riemann prob-
lem (6.7) is a collection of functions (ρ1, . . . ,ρn+m) such that:

1. For every l ∈ {1, . . . ,n+m}, the function ρl is an entropy-admissible solution
to (6.2) in the road Il , in the sense of Definition 6.3.1.

2. For every l ∈ {1, . . . ,n+m} and for a.e. t > 0, the function x �→ ρl(t,x) has a
version with bounded total variation.

3. For every l ∈ {1, . . . ,n+m}, ρl(0,x) = ρl,0 for a.e. x ∈ Il .
4. For a.e. t > 0, it holds

RS (ρ1(t,0−), . . . ,ρn+m(t,0+)) = (ρ1(t,0−), . . . ,ρn+m(t,0+)) .

There are some general properties which hold for all Riemann solvers. To
describe the latter, introduce the following sets:

1. For every i ∈ {1, . . . ,n}, define

Ωi =

{
[0, f (ρi,0)], if 0 ≤ ρi,0 ≤ σ ,

[0, f (σ)], if σ ≤ ρi,0 ≤ 1.
(6.8)
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2. For every j ∈ {n+ 1, . . . ,n+m}, define

Ω j =

{
[0, f (σ)], if 0 ≤ ρ j,0 ≤ σ ,

[0, f (ρ j,0)], if σ ≤ ρ j,0 ≤ 1.
(6.9)

3. For every l ∈ {1, . . . ,n+m}, define

γmax
l = maxΩl . (6.10)

Proposition 6.4.1. The following statements hold.

1. For every i ∈ {1, . . . ,n}, an element γ̄ belongs to Ωi if and only if there exists
ρ̄i ∈ [0,1] such that f (ρ̄i) = γ̄ and point 1 of Definition 6.4.1 is satisfied.

2. For every j ∈ {n+ 1, . . . ,n+m}, an element γ̄ belongs to Ω j if and only if there
exists ρ̄ j ∈ [0,1] such that f (ρ̄ j) = γ̄ and point 2 of Definition 6.4.1 is satisfied.

The proof is trivial and hence omitted. Here we recall the construction of the
Riemann solver, introduced for traffic in Coclite et al. (2005). For simplicity in this
paper, we denote it with the symbol RSCGP.

1. Fix a matrix A ∈N and consider the closed, convex and not empty set

Ω =

{
(γ1, · · · ,γn) ∈

n

∏
i=1

Ωi : A · (γ1, · · · ,γn)
T ∈

n+m

∏
j=n+1

Ω j

}
. (6.11)

2. Find the point (γ̄1, . . . , γ̄n) ∈ Ω which maximizes the function

E(γ1, . . . ,γn) = γ1 + · · ·+ γn, (6.12)

and define (γ̄n+1, . . . , γ̄n+m)
T := A · (γ̄1, . . . , γ̄n)

T. Since A ∈ N, the point
(γ̄1, . . . , γ̄n) is uniquely defined.

3. For every i ∈ {1, . . . ,n}, set ρ̄i either by ρi,0 if f (ρi,0) = γ̄i, or by the solution to
f (ρ) = γ̄i such that ρ̄i ≥ σ . For every j ∈ {n+1, . . . ,n+m}, set ρ̄ j either by ρ j,0

if f (ρ j,0) = γ̄ j, or by the solution to f (ρ) = γ̄ j such that ρ̄ j ≤ σ . Finally, define
RSCGP : [0,1]n+m → [0,1]n+m by

RSCGP(ρ1,0, . . . ,ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m) . (6.13)

Remark 3. The previous rules 1 and 2 of the construction of RSCGP correspond
to conditions (A) and (B) in Coclite et al. (2005). In particular, 1 describes the
preferences of drivers, while 2 implies that drivers behave as to maximize the sum of
incoming fluxes. Clearly these are modeling conditions and their choice is somehow
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γ1

γ2

3
4γ1 + 1

3γ2 = 3
4

1
4γ1 + 2

3γ2 = 1

Ω

1

1

3
4

Fig. 6.5 The set Ω of Example 1

arbitrary. In D’Apice and Piccoli (2008), there are some other possible Riemann
solvers at J, some of which not based on maximization procedures.

Let us now illustrate with an example the Riemann solver RSCGP in the case of
two incoming and two outgoing roads.

Example 1. Let J be a junction with two incoming roads I1 and I2 and two outgoing
ones I3 and I4. Fix a distribution matrix A ∈ N such that α31 = 1/4, α32 = 2/3,
α41 = 3/4, and α42 = 1/3. Let us assume that the flux f (ρ) is equal to 4ρ(1−ρ)
and the initial conditions for the Riemann problem (6.7) are given by

ρ1,0 =
1
4
, ρ2,0 = 1, ρ3,0 =

1
2
, ρ4,0 =

3
4
.

We easily deduce that

Ω1 =

[
0,

3
4

]
, Ω2 = [0,1] , Ω3 = [0,1] , Ω4 =

[
0,

3
4

]

and so

Ω =

{
(γ1,γ2) ∈

[
0,

3
4

]
× [0,1] : 0 ≤ 1

4
γ1 +

2
3

γ2 ≤ 1, 0 ≤ 3
4

γ1 +
1
3

γ2 ≤ 3
4

}
;

see Fig. 6.5. Therefore the point of maximum in Ω for the function E , defined
in (6.12), is given by (γ̄1, γ̄2) =

( 5
9 ,1

)
and consequently (γ̄3, γ̄4) =

( 29
36 ,

3
4

)
. Finally

we have
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ρ̄1 =
1
2
+

√
1
4
− 5

36
, ρ̄2 =

1
2
, ρ̄3 =

1
2
+

√
1
4
− 29

144
, ρ̄4 =

3
4
.

6.5 Riemann Solver with Multibuffer

In this section we introduce a new way to solve the Riemann problem at the junction
J. We imagine that the junction J is composed of n incoming roads, m outgoing
roads and m different buffers in front of each outgoing road; see Fig. 6.6. Let us
index buffers by j ∈ {n+ 1, . . . ,n+m}. Then a function r j(t), which represents
the load of the j-th buffer at time t > 0, is associated with each buffer. Moreover,
for every j ∈ {n+1, . . . ,n+m}, the numbers μ j > ∑i α ji f (σ) and rmax

j > 0 denote,
respectively, the maximum number of cars, which can enter or exit the j-th buffer per
unit of time, and the maximum number of cars which can be stored in the j-th buffer;
hence we deduce the constraints 0 ≤ r j(t)≤ rmax

j for every j ∈ {n+ 1, . . . ,n+m}.

Remark 4. Notice that the assumption μ j > ∑i α ji f (σ) means that buffers have
large capacities w.r.t. maximal road flux. This is a necessary assumption to obtain
a consistent solution to Riemann problems at junctions. Such situation is illustrated
in Example 2.

If one of the buffers is full, then we impose that no car passes through the
junction. If instead all the buffers are not full, then every car enters into the buffer
associated with the desired destination and, finally, it enters into the outgoing road
by FIFO policy.

Remark 5. Note that if one of the buffers is full, then it is necessary to not allow
cars to cross J, otherwise the preferences of the drivers may not be satisfied. Indeed
every buffer should receive a nonzero percentage of the flux entering the junction J.
However, if some buffer is full, then it cannot receive any car; therefore, the only
way to respect the constraints, imposed by the matrix A, is to block the intersection.

I1

I2

I3

I4

I5

I6

I7
Fig. 6.6 A junction with
multibuffer
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Let A ∈ N, P ∈ P be the matrices of the preferences of drivers and of priority
coefficients among incoming roads.

We define a Riemann solver with multibuffer

RS : [0,1]n+m ×∏n+m
j=n+1

[
0,rmax

j

]
−→ [0,1]n+m × [0,n f (σ)]m

(ρ1,0, . . . ,ρn+m,0,rn+1, . . . ,rn+m) �−→ (
ρ̄1, . . . , ρ̄n+m, f in

n+1, . . . , f in
n+m

) (6.14)

as follows.

1. For every i ∈ {1, . . . ,n} and j ∈ {n+ 1, . . . ,n+m}, define

γmax
i, j = α jiγmax

i ,

i.e., the maximum flux, which can exit from Ii and enter into I j.
2. For every j ∈ {n+ 1, . . . ,n+m}, define

f̂ in
j = min

{
n

∑
i=1

γmax
i, j ,μ j

}
and f̂ out

j = min
{

γmax
j ,μ j

}
,

respectively, the maximum flux which can enter into the j-th buffer and which
can enter into the road I j.

3. If minn+m
j=n+1

{
rmax

j − r j

}
> 0 (i.e., no buffer is full), then define the convex set:

R
n×m ⊃ K =

{
{k ji} i=1,...,n

j=n+1,...,n+m
: 0 ≤ k ji ≤ γmax

i, j ,
n

∑
i=1

k ji = f̂ in
j ∀ j

}
,

and the point Q̃ ∈ R
n×m by setting q̃ ji = p ji f̂ in

j . Let Q = projK(Q̃) ∈ K, where
projK is the orthogonal projection over the convex set K. Finally, for every i ∈
{1, . . . ,n}, we set

γ̄i =
n+m

∑
j=n+1

q ji,

where q ji are the components of Q and represent the number of cars going from
Ii to the j-th buffer.

4. If minn+m
j=n+1

{
rmax

j − r j

}
= 0 (i.e., at least one buffer is full), we set γ̄i = 0 for

every i ∈ {1, . . . ,n}.
5. For every j ∈ {n+ 1, . . . ,n+m}, we set

γ̄ j =

{
f̂ out

j , if r j > 0,

min{ f̂ in
j , f̂ out

j }, if r j = 0.
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6. For every j ∈ {n+ 1, . . . ,n+m}, define

f in
j =

⎧⎨
⎩

∑n
i=1 q ji if minn+m

j=n+1

{
rmax

j − r j

}
> 0,

0 if minn+m
j=n+1

{
rmax

j − r j

}
= 0.

7. For every i ∈ {1, . . . ,n}, define ρ̄i either by ρi,0 if f (ρi,0) = γ̄i, or by the solution
to f (ρ) = γ̄i such that ρ̄i ≥ σ .

8. For every j ∈ {n+1, . . .,n+m}, define ρ̄ j either by ρ j,0 if f (ρ j,0) = γ̄ j, or by the
solution to f (ρ) = γ̄ j such that ρ̄ j ≤ σ .

9. Define

RS(ρ1,0, . . . ,ρn+m,0,rn+1, . . . ,rn+m) = (ρ̄1, . . . , ρ̄n+m, f in
n+1, . . . , f in

n+m).

Remark 6. Let us comment on the various steps to define the Riemann solver with
multibuffer. Steps 1 and 2 define maximal fluxes from incoming roads to buffers and
from buffers to outgoing roads. In Step 3, if all buffers are not full, we define fluxes
from incoming roads by projecting a vector representing priorities over the set of
admissible fluxes. If, on the contrary, at least one buffer is full, then in Step 4 we
simply set all fluxes from incoming roads to vanish. Then Step 5 determine fluxes
from buffers to outgoing roads, which values depend on the status of the buffer:
empty or non empty. Step 6 defines fluxes entering buffers. Finally, Steps 7 and 8
describe how to compute the boundary values both for incoming and outgoing roads.

Remark 7. The Riemann solver with multibuffer can be slightly modified in order
to cover also the case of junctions with traffic lights. For example, putting some
time-dependent switches in the coefficients of the distribution matrix A realizes this
aim. Moreover it is also possible to consider a different flux function for each road
of the junction; the only constraint is that each flux function satisfies hypothesis
(F). Finally, as in Garavello and Piccoli (2009), it is possible to consider Riemann
solvers at J, which depend on the time evolution of certain parameters. This permits
to treat the case of varying the capacity of the links. All these extensions are just
technical; hence for clarity we prefer to not consider them in the paper.

Example 2. Consider a junction with one incoming road I1 and two outgoing roads
I2 and I3 and distribution matrix (α21,α31). For initial conditions we assume 0 <
ρ1,0 = ρ2,0 = ρ3,0 < σ and empty buffers, while capacities satisfy μ2 < α21 f (ρ1,0)
while μ3 > f (σ). Applying the Riemann solver with multibuffer we get:

f̂ in
2 = μ2, f̂ in

3 = α31 f (ρ1,0),

thus

RS(ρ1,0,ρ2,0,ρ3,0,0,0) = (ρ̄1, ρ̄2, ρ̄3,μ2,α31 f (ρ1,0)),
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where f (ρ̄1) = μ2 +α31 f (ρ1,0), f (ρ̄2) = μ2, f (ρ̄3) = α31 f (ρ1,0). Now if we apply
RS to the initial conditions (ρ̄1, ρ̄2, ρ̄3,0,0) we get

RS(ρ̄1, ρ̄2, ρ̄3,0,0) = (ρ̂1, ρ̄2, ρ̂3,μ2,α31 f (σ)),

where f (ρ̂1) = μ2 +α31 f (σ), f (ρ̂3) = α31 f (σ). This proves that if μ j is below
∑i α ji f (σ), then the Riemann solver lacks of consistency.

We give the following definition of solution to Riemann problems with multi-
buffer.

Definition 6.5.1. Let rn+1,0, . . . ,rn+m,0 be the initial loads of the buffers. A solution
to the Riemann problem (6.7) with multibuffer is given by

(ρ1, . . . ,ρn+m) ∈ C
(
[0,+∞[;∏n+m

l=1 L1
loc(Il)

)
(rn+1, . . . ,rn+m) ∈ W 1,∞ ([0,+∞[;Rm)

such that:

1. For every l ∈ {1, . . . ,n+m}, ρl is an entropy-admissible solution to (6.2) on I j

and, for a.e. t > 0, ρl(t, ·) has a version with finite total variation.
2. For every l ∈ {1, . . . ,n+m}, ρl(0,x) = ρ0,l for a.e. x ∈ Il .
3. For a.e. t > 0

RS (ρ1(t,0), . . . ,ρn+m(t,0),rn+1(t), . . . ,rn+m(t))

=
(

ρ1(t,0), . . . ,ρn+m(t,0), f in
n+1(t), . . . , f in

n+m(t)
)

and

r j(t) = r j,0 +

∫ t

0

(
f in

j (s)− f (ρ̄ j(t,0))
)

ds

for every j ∈ {n+ 1, . . . ,n+m}.

6.6 Comparison with Other Models with Buffers

The idea of using roads, or in general arcs, with buffers in front was used by various
authors. Here we compare our model with those used in recent literature.

In Göttlich et al. (2006), a coupled ODE-PDE model for supply chains (and net-
works) was proposed. It consists of arcs with dynamics described by a conservation
law for part density and ODEs for buffers in front of each arc. More precisely the
conservation law is of the type:

ρt +(min{vρ ,μ})x = 0,
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where ρ is the part density, v the constant velocity, and μ the processing rate. Notice
that such model produces waves having only positive speed. Thus, the evolution of
part density affects the network only in the forward direction.

The ODEs for buffers are of the type:

ṙ = f in − f out (6.15)

where f in is the flux entering the buffer from the previous arc and f out is the flux
exiting the buffer to the next arc. f in depends only on the density of the previous arc
and is independent from the buffer status, thus the buffer is necessarily with infinite
size. f out is defined similarly to our case, namely it is equal to f in, if the buffer is
empty (and f in is below the processing capacity of next arc), otherwise it is equal to
the processing capacity of next arc.

Summarizing the main differences with our model are the following:

• The conservation laws admits only waves with positive velocity, so no backward
effect is possible.

• Consequently fluxes entering buffers cannot depend on buffer status, therefore
buffers are necessarily of infinite size.

In Herty et al. (2009), authors propose a model for vehicular traffic, which
considers junctions with an arbitrary number of incoming and outgoing roads and a
buffer in between. Conservation laws are of the same type we considered here. On
the other side, the equation for the buffer is of the type (6.15).
The buffer has limited size, thus fluxes from incoming roads will stop when the
buffer is full. If the buffer is not full, then fluxes from incoming roads enter the
buffers, possibly limited by a maximal processing rate. Finally, the flux exiting the
buffer distribute over outgoing roads according to traffic distribution coefficients.
The main differences with our model are the following:

• There is a unique buffer for all outgoing roads, opposed to our multibuffer.
• The traffic from incoming road is stopped only when the common buffer is full,

while in our case a single full buffer will stop the traffic.
• The traffic distribution coefficients do not depend on incoming roads. Indeed a

traffic distribution matrix cannot be respected as shown by example of Sect. 6.2.

6.7 Conclusions

We have proposed a new way for describing dynamics at intersections in road
networks, when car density evolution is governed by the Lighthill–Whitham–
Richards model. Due to finite speed of waves in the LWR model, we can focus
on a single junction. We supposed that a buffer is attached in front of each outgoing
road of the junction, and we completely described the dynamics inside the buffers
and between roads and buffers by means of a Riemann solver with multibuffer.
Moreover we provided examples and analytical comparisons between our approach
and some previously introduced in the literature.
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Chapter 7
Cell-Based Dynamic Equilibrium Models

W.Y. Szeto

Abstract Cell-based dynamic equilibrium models are one class of dynamic traffic
assignment (DTA) models that can capture equilibrium conditions and realistic
traffic dynamics, such as queue spillback, queue formulation, and queue dissipation.
However, compared with point-queue DTA models or DTA models using whole-
link delay models for flow propagation, cell-based equilibrium models are often
more computational demanding. This may raise issues for actual applications, in
particular, for the implementation for real-time traffic control and route guidance
applications, because the solution must be obtained quickly. Moreover, recent cell-
based dynamic equilibrium models tend to capture more realistic travel behavior
and traffic dynamics but this made the resulting models even more complicated and
more difficult to solve for optimal solutions. Hence, this article aims at reviewing
the recent development of cell-based dynamic equilibrium models, the formulation
approaches, solution methods used, and the components of these models so as to
point out the implementation issues of the latest cell-based dynamic equilibrium
model with the consideration supply stochasticity for traffic control and route
guidance applications as well as some gaps for future research directions.

7.1 Introduction

Traditionally, transportation planning and traffic operations relied on static traffic
assignment models for analysis and policy evaluation. To improve the fidelity and
accuracy, dynamic traffic assignment (DTA) models were employed for these pur-
poses. Lo and Szeto (2004) use examples to show that the static traffic assignment
and DTA models can produce diametrically opposite results. More importantly,
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the impacts of transport management policies evaluated by static models could be
ill-represented. In some cases, the management schemes such determined could
actually worsen the congestion problem. These findings illustrate the importance
of adopting the DTA models for planning and operation control policy evaluation,
despite that DTA models are more complex and computationally more demanding
than the static traffic assignment models

DTA models can be developed based on the simulation approach (e.g., Ben-
Akiva et al. 2003; Mahmassani and Liu 1997; Ziliaskopoulos and Rao 1999).
This approach emphasizes microscopic traffic flow characteristics. However, the
computation burden can be quite high.

DTA models can also be developed through an analytical approach. This
approach usually has well-defined properties, in terms of optimality conditions,
adherence to a dynamic version of Wardrop’s first or second principle (1952).
Compared with static traffic assignment models, analytical DTA models can capture
the time-varying demands and other temporal effects. However, some analytical
DTA models cannot capture realistic traffic dynamics and the spatial effect of queues
such as queue spillovers (Peeta and Ziliaskopoulos 2001) because these models
adopt either dynamic link performance functions (e.g., Ban et al. 2008; Chow 2009;
Friesz et al. 1993; Jayakrishnan et al. 1995; Ran and Boyce 1996), the bottleneck
model (e.g., Ramadurai et al. 2010), or exit flow models (e.g., Carey 1987; Wie
et al. 1994; Lam and Huang 1995) for modeling flow propagation.

Encapsulating the cell transmission model (CTM), a macroscopic simulation
traffic flow model proposed by Daganzo (1994, 1995), into the DTA framework
opens a new way to model and analyze the problem. The advantage of this approach
is that traffic dynamics such as queue spillback and traffic interaction across links
can be captured. One line of research direction is on incorporating the CTM, into a
system-optimal DTA framework (e.g., Li et al. 1999, 2003; Ziliaskopoulos 2000).
The model can be formulated as a linear program but the traffic can be holding
back, which is sometimes considered as an undesirable property. Hence, current
efforts focus on how to eliminate this undesirable property. For example, Lin and
Wang (2004) propose a penalizing method to address this holding-back problem.
Shen et al. (2007) suggest an iterative approach to address this problem. Ramadurai
(2009) transforms the CTM model into a linear complementarity formulation but
the resultant model cannot address the diverging cell. Pavlis and Recker (2009) and
Zhang et al. (2010) reformulate the linear constraints of Ziliaskopoulos (2000) to a
mixed integer programming model but their resultant models may not solve large-
scale networks. Nie (2011) shows that the algorithm of Ho (1980) can solve the
holding-back problem for the cell transmission-based Merchant–Nemhauser model.
Zheng and Chang (2011) propose a network flow algorithm to handle the holding-
back problem. Doan and Ukkusuri (2012) provide an excellent summary on the
existing approaches to address the holding back problem and propose a simulation-
based system-optimal DTA formulation that can solve a general network of multiple
O–D pairs with multiple paths.

Another line of research is developing equilibrium models with the CTM
included. The models have well-defined properties, in terms of adherence to a
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dynamic version of Wardrop’s first principle (1952) or its extensions. These models
can be formulated by different approaches. For example, Lo (1999) proposes a
user equilibrium-based DTA framework that encapsulates the CTM. The framework
models the CTM using mixed integer constraints but it is difficult to efficiently solve
such framework. Lo and Szeto (2002a,b) reformulate the user equilibrium-based
DTA problem as a variational inequality problem and a nonlinear complementarity
problem, respectively. Both formulations model travel time as a function of route
flows, and the travel time is obtained by the CTM simulation and average travel
time extraction procedure. This approach allows a wide range of solution methods
to solve the cell-based DTA models. However, compared with point-queue DTA
models or DTA models using whole-link models for flow propagation, these cell-
based dynamic equilibrium models are more computational demanding since more
than one cell is required to model one link in general. Ukkusuri and Waller (2008)
formulate the cell-based user-equilibrium problem as the linear programming
problem. The nonlinear propagation of flow is approximated by linear inequalities.
Their model is computational efficient but it suffers from the “holding back”
problem.

The framework of Lo and Szeto (2002a,b) is extended to further capture more
realistic travel behavior and traffic dynamics. For example, Szeto and Lo (2004)
and Ukkusuri et al. (2012) consider both route and departure time choices. Szeto and
Lo (2005) further consider stochastic dynamic user equilibrium. Han et al. (2011)
consider user heterogeneity.

The above studies assumed that travelers select routes/departure based on
nominal travel times/costs and the models require cell lengths to be uniform as
in the CTM. Szeto and Sumalee (2009) adopt the concept of travel time budget
proposed by to capture the risk-averse behavior of travelers—extra time for travel is
reserved to avoid late arrival. They also extend the CTM to consider stochasticity in
supply by using Monte Carlo simulation. Szeto et al. (2011) modify the framework
of Szeto and Sumalee (2009) to avoid the overlapping problem in route choice by
C-Logit model. Their models also allow cell lengths being non-uniform. However,
some implementation issues are needed to address in order to apply their model for
traffic management and route guidance in realistic networks.

In general, capturing more realistic travel and traffic behaviors made the resulting
cell-based equilibrium models more complicated and more difficult to solve for
optimal solutions. This may raise issues in the implementation for real-time traffic
control and route guidance applications because computation time required in these
applications is short. Hence, this article aims at reviewing the two building blocks
of the cell-based dynamic equilibrium models—namely traffic flow component and
the travel choice principle—formulation approaches to the models, and the major
solution methods used in the literature in order to point out the implementation
issues of the cell-based dynamic equilibrium model proposed by Szeto et al. (2011)
for the large-scale, real-time applications of route guidance and traffic control and
to identify research gaps for further research.

The rest of article is organized as follows. Section 7.2 depicts the travel flow
component of the cell-based dynamic equilibrium models, which relies on the
CTM or its extensions. Section 7.3 describes the travel choice principles adopted in
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the existing cell-based dynamic equilibrium models. Section 7.4 reviews the major
formulation approaches of the models and the major solution methods. Section 7.5
discusses the implementation issues and presents some related research directions.
Finally, Sect. 7.6 gives some concluding remarks.

7.2 Traffic Flow Component

7.2.1 Basic Concept

The traffic-flow component depicts how traffic propagates inside a transport network
and hence governs the network performance in terms of travel time. This component
can be modeled as a set of side constraints (e.g., Lo 1999). However, representing
the traffic-flow component as side constraints explicitly is cumbersome and makes
the resultant DTA formulation difficult to obtain solutions efficiently (Lo and
Szeto 2002a).

Modeling the traffic-flow component as a unique mapping of route flows (e.g.,
Lo and Szeto 2002a, b; Ramadurai and Ukkusuri 2010; Szeto et al. 2011) opens up
a new way to model and analyze DTA problems. The outputs of this mapping are
route travel times. Mathematically, the unique mapping can be expressed as:

n = Φ(f), (7.1)

where f is the vector of route flows; n is the vector of route travel times, and Φ(f) is
a unique travel time mapping from route flows. There are two advantages of this
approach. First, it can automatically ensure the consistency between link travel
times and link exit flows in DTA because link travel times are uniquely derived
from exit link flows. Second, this approach allows us to determine the existence
and uniqueness of solutions of DTA problems directly by simply checking whether
the unique mapping is continuous and strictly monotonic, respectively. The existing
cell-based dynamic equilibrium models adopt this approach to model the traffic flow
components in which the CTM or its stochastic extensions are used to describe the
traffic flow propagation.

7.2.2 Cell Transmission Model

The CTM is a convergent numerical approximation scheme to the Lighthill and
Whitham (1955) and Richards (1956) (LWR) model, which is a hydrodynamic
(or kinematic wave) traffic flow model. It covers the full range of the trapezoidal
fundamental diagram as shown in Fig. 7.1 and can capture traffic dynamics such as
queue formulation, queue dissipation, and queue spillback. It requires highways to
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be discretized into many homogenous cells, and time to be discretized into many
intervals such that the cell length is equal to the distance traveled by free-flowing
traffic in one time interval. Then, the CTM can approximate the LWR results by this
set of recursive equations (Daganzo 1994, 1995):

n j (ω + 1) = n j (ω)+ y j (ω)− y j+1 (ω) , (7.2)

y j (ω) = min
{

S j−1 (ω) ,R j (ω)
}
, (7.3)

S j−1 (ω) = min
{

n j−1 (ω) , Q j−1 (ω)
}
, (7.4)

R j (ω) = min
{

Q j (ω) , (W/V ) [Nj (ω)− n j (ω)]
}
, (7.5)

where the subscript j refers to cell j, and j+1 ( j−1) represents the cell downstream
(upstream) of j. The variables n j(ω), y j(ω),Nj(ω) denote the number of vehicles,
the actual inflow, and holding capacity—the maximum number of vehicles that can
be held in cell j at time ω , respectively. Q j(ω) denotes the inflow capacity of cell
j or the maximum number of vehicles that can flow into cell j during time ω . W
and V are, respectively, the backward wave speed and the free flow speed. S j−1(ω)
is the sending function of cell j− 1, which defines the number of vehicles leaving
the upstream cell j− 1 during time ω . R j(ω) is the receiving function of cell j and
determines the number of vehicles entering cell j during time ω .

It is important to differentiate between Q j(ω) and y j(ω): the former is the inflow
capacity while the latter is the actual inflow. Because (7.2)–(7.5) provide a numerical
approximation to the LWR equations, all the traffic phenomena demonstrated in the
LWR model are replicated in the CTM. The key objective is to determine y j(ω) from
the minimization (7.3)–(7.5). Once this is accomplished, n j(ω) can be determined
recursively from the linear equation (7.2). Equations (7.2)–(7.5) provide the basic
principle of modeling traffic flow on a series of straight cells.
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To apply this principle to a general network with multiple origin–destination
(OD) pairs, three extensions are required: (a) modeling merge and diverge junctions;
(b) differentiating the OD-specific traffic; (c) maintaining the first-in-first-out
(FIFO) property. To maintain the intended routes of traffic and the FIFO property,
traffic in each cell is disaggregated by route (p), and waiting time at the cell (τ).
The route variable is used to direct traffic along its route. By tracking τ , the FIFO
property at the cell level is maintained by ensuring that earlier arrivals (with a
larger τ) will leave sooner. The detailed mathematical operations for ensuring these
conditions were addressed in Daganzo (1995). The description of which is lengthy;
in the interest of space, we do not repeat the analysis here but illustrate it with an
example through the origin cell.

For the construction of an origin cell, we create a cell just upstream of an origin
cell with an infinite capacity to store the traffic that intends to enter the network.
Let’s call this cell r− 1. To load traffic into the network according to the departing
demand or the flow f rs

p (t) on route p between OD pair rs departing at time t, we set
the inflow into this cell at the time instance ω = t such that:

yr−1,p (ω) = f rs
p (t) ,

nr−1,p (ω + 1) = nr−1,p (ω)+ yr−1,p (ω)− yr,p (ω) . (7.6)

The subscripts r and p extend the definitions of inflow and occupancy for each
cell under these conditions: cell location—r, route—p. Note that yr,p is the outflow
of r − 1 but the inflow to the origin cell r, which is subject to the congestion and
flow restriction effects at r similar to the expression in (7.3)–(7.5). Once the traffic
is loaded to the network, the basic principles of (7.2)–(7.5) and the conditions for
merges and diverges (not shown here) hold to ensure proper dynamics of traffic
propagation.

In brevity, given a set of time-sequenced inflow f rs
p (t) as in (7.6), based on the

traffic propagation conditions [i.e., such as the recursive equations (7.2)–(7.5)], one
can obtain a set of unique occupancy counts n j,p(ω) for traffic in cell j on route p
at any time instance ω . Such information on cell occupancy is used to determine the
actual route travel times for the entire modeling horizon.

In addition to modeling network traffic, the CTM can be easily modified to handle
signalized networks as well as the occurrence of incident or link blockage. Traffic
signals and incidents can be modeled by modifying the values of the flow capacity
Q j(ω) of the affected cells. Specifically, for the case of traffic signals, the inflow
capacity of the signalized cells can be altered according to whether the time is in a
green or red phase:

Q j (ω) = s f for ω ∈ green phase and j ∈ a signalized cell, (7.7)

Q j (ω) = 0 for ω ∈ red phase and j ∈ a signalized cell, (7.8)

where s f is the saturation flow rate. One can model both fixed and dynamic timing
plans with the CTM, as demonstrated in Lo (2001). The treatment of incident
modeling is similar.
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7.2.3 Modified Cell Transmission Model
and Switching-mode Model

The modified cell transmission model (MCTM) uses cell densities instead of cell
occupancies which permits the CTM to adopt non-uniform cell lengths and leads
to greater flexibility in partitioning highways. In the MCTM, the density of cell j
evolves according to the conservation of vehicles:

ρ j(ω + 1) = ρ j(ω)+
Ts

l j
(q j(ω)− q j+1(ω)), (7.9)

where ρ j(ω) is the vehicle density of cell j at time ω ; q j(ω) is the total inflows (in
vehicles per unit time) entering cell j during the time interval [kTs,(k+ 1)Ts), Ts is
the sampling duration, k is the time index, and l j is the length of cell j. The model
parameters, including the free-flow speed V , the backward congestion wave speed
W , the maximum allowable flow Q, the jam density ρJ and the critical density ρc,
are depicted in the trapezoidal fundamental diagram of Fig. 7.1. These parameters
can vary from cell to cell over time. Following Daganzo (1994, 1995), q j(ω) is
determined by the following:

q j (ω) = min
{

S j−1 (ω) ,R j (ω)
}
, (7.10)

S j−1 (ω) = min
{

Vj−1ρ j−1 (ω) ,Q j−1 (ω)
}
, and (7.11)

R j (ω) = min
{

Q j (ω) ,Wj [ρJ, j −ρ j (ω)]
}
. (7.12)

Equations (7.9)–(7.12) are the density-based equivalents of (7.2)–(7.5).
Although the MCTM is much simpler than many other higher order

hydrodynamics-based partial differential models, the nonlinear nature of the flow-
density relationships (7.10)–(7.12) still makes the MCTM difficult to be analyzed
and used as a basis for the design of traffic controllers (Munoz et al. 2003). To
avoid the nonlinearity, the switching mode model (SMM) is proposed by Munoz
et al. (2003). The SMM is a hybrid system (or switched linear system) that switches
among different sets of linear difference equations (representing different traffic
states of the highway), depending on the mainline boundary data and the congestion
status of the cells in a highway segment.

The SMM formulation avoids the nonlinearity of the MCTM at the cost of
using the same triangular flow-density relationship for all the cells along the whole
freeway segment, and introducing the switching condition based on the at-most-
one-wavefront assumption. Based on this assumption, the cell can be in one of the
five modes:

1. “Free flow–Free flow (FF)” in which all cells in the freeway segment have free-
flow status.

2. “Congestion–Congestion (CC)” in which all cells in the freeway segment have
congested status.



170 W.Y. Szeto

3. “Congestion–Free flow (CF)” in which the upstream part of the freeway segment
is congested and the downstream part has free-flow status.

4. “Free flow–Congestion 1 (FC1)” in which the upstream part of the freeway
segment has free-flow status, the downstream part has congested status, and the
boundary (i.e., wave front) separating the two regions is moving downstream.

5. “Free flow–Congestion 2 (FC2)” in which the upstream part of the freeway
segment has free-flow status, the downstream part has congested status, and the
wave front separating the two regions is moving upstream.

At each time step, the SMM determines its mode based on the measured mainline
boundary data and the congestion status of the cells in the freeway segment. If both
the measured density at the upstream and downstream of the freeway have free flow
status (i.e., both densities are below ρc), the FF mode is selected, and if both of
these densities are congested (i.e., both densities are at or above ρc), the CC mode is
selected. If both measured densities are of opposite status, then the SMM performs a
search over the ρ j to determine whether there is a status transition inside the section.
This wave front search consists of searching through the cells, in order, looking for
the first status transition between adjacent cells.

According to Munoz et al. (2003), the SMM does not fully replicate the CTM
merge and diverge laws described in Daganzo (1995). While the on-ramp entering
and off-ramp exiting flows are represented in the SMM, the ramps are not modeled
by cells; hence, the traffic densities on the ramps are not represented.

7.2.4 Stochastic Cell Transmission Model

The CTM assumes a steady-state speed-density relationship which adopts a number
of deterministic parameters (e.g., free-flow speed, jam-density, and capacity) and
does not allow fluctuations around the equilibrium (nominal) fundamental flow-
density diagram (FD). However, research and empirical studies on the FD have
revealed that the FD admits large variations (see Fig. 7.2) due to the variabilities
in driving behavior and the characteristics (e.g., acceleration and deceleration
abilities) of vehicles, the changing weather conditions, estimation errors, and others
(Ngoduy 2011). Therefore, the stochastic cell transmission model (SCTM) is
developed by Sumalee et al. (2008) to capture the random evolution of traffic states
for freeways.

The SCTM extends the CTM by defining parameters governing sending and
receiving functions explicitly as random variables as well as by specifying the
dynamics of the basic model parameters of the FD including free flow speed,
backward wave speed, saturation flow rate, and jam density in each cell. The SCTM
employs a triangular flow-density relation and uses densities as state variables
instead of cell occupancies. As in the SMM, the SCTM allows variable cell lengths.
As shown in Sumalee et al. (2011), the SCTM is able to give a good estimate
on the mean actual traffic flow on freeways. The SCTM has been extended for
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Fig. 7.2 A fundamental flow density diagram of traffic flow with the 24-h traffic flow data of
interstate 210 West in Los Angeles collected on April 22, 2008

modeling traffic flow propagation in general networks by Sumalee et al. (2010)
and for capturing spatial and temporal correlation by Pan et al. (2010). To have the
Markovian property, the SCTM adopts some local white noise assumptions, which
restricts the choice of distributions for modeling the parameters.

7.2.5 Monte-Carlo-based Stochastic Cell Transmission Model

Szeto and Sumalee (2009) propose the Monte-Carlo-based stochastic cell trans-
mission model (MC-SCTM). The MC-SCTM does not restrict the choice of
distributions for modeling the parameters of trapezoidal flow-density relationships
at the expense of the increase in computation time. Unlike the SCTM, the MC-
SCTM relies on the Monte Carlo simulation to generate traffic states for network
loading and collect travel time statistics from each network loading. The network
loading is done by the network version of the enhanced lagged CTM (Szeto 2008),
which is extended from the lagged CTM (Daganzo 1999) that uses densities as
state variables and allows cells having unequal lengths. This network version also
requires the cell occupancy information deduced from the cell density for two
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purposes: (a) to direct traffic at junctions using the merge and diverge concepts
proposed by Daganzo (1995) and (b) to deduce route travel time using the averaging
scheme proposed by Lo and Szeto (2002a).

Szeto et al. (2011) simplify the formulation of the MC-SCTM by solely using cell
occupancies as state variables. The network loading is done by the occupancy-based
modified CTM (OM-CTM), which is extended from the existing network version of
the CTM (Daganzo 1995). In the OM-CTM, a highway is discretized into many cells
and the study horizon is discretized into many equal length intervals. The length of
each cell is equal to the product of the maximum free flow speed for that cell and
the length of each time interval. The basic equations in the CTM still apply to the
OM-CTM except the definitions of S j−1(ω), and R j(ω):

S j (ω) = min

{
Q j (ω) ,n j (ω) ,

Nj (ω)

d j/d0

}
and (7.13)

R j (ω) = min

{
Q j (ω) ,

wj (ω)

v j (ω)
[Nj (ω)− n j (ω)] ,

Nj (ω)

d j/d0

}
. (7.14)

wj(ω) and v j(ω) are, respectively, the backward wave speed and the free flow speed
of cell j during time ω . d j is the length of cell j. d0 is the length of a standard
cell. Equations (7.13)–(7.14) assume that any cell is made up of many “ imaginary”
standard cells connected in series. According to (7.13), the sending flow of cell j is
constrained by the inflow capacity, the cell occupancy, and the holding capacity of
the last “imaginary” standard cell of cell j. Equation (7.14) states that the available
capacity of cell j is the minimum of the inflow capacity of cell j, the product of
the vacant space [Nj(ω)− n j(ω)] and the factor wj(ω)/v j(ω) that accounts for the
effect of shockwave on the vacant space in cell j, and the holding capacity of the
first “imaginary” standard cell embedded in cell j.

To avoid vehicles traveling at a speed higher than the free flow speed, according
to the Courant–Friedrichs–Levy condition (Courant et al. 1967), the minimum
waiting time a j(ω), or equivalently the minimum number of time intervals required
by a vehicle to stay in cell j, must be at least equal to the minimum number of time
intervals required to leave cell j, t j(ω):

a j (ω)≥ t j (ω) . (7.15)

The latter depends on the length and actual free flow speed of the cell as follows:

t j (ω) =
d j

d0
· vmax, j

v j (ω)
, (7.16)

where v j(ω) and vmax, j, respectively, denote the actual and maximum free flow
speeds of cell j with v j(ω)≤ vmax, j, and v j(ω) = vmax, j when there is no uncertainty
for v j(ω). d j and d0, respectively, denote the lengths of cell j and the shortest cell.
They represent the distance traveled by a vehicle at the maximum free flow speed
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Fig. 7.3 The cumulative vehicle counts of origin cell r and destination cell s

during one time interval. Equation (7.16) states that t j(ω) is directly proportional
to the length of cell j and inversely proportional to the actual free flow speed
v j(ω). In the extreme case, when d j = d0 and v j(ω) = vmax, j,∀ j,ω , the OM-CTM
is reduced to the CTM.

7.2.6 Determination of Actual Route Travel Time
from the CTM Output

Knowing the occupancy of each package of traffic on route p in origin cell r and
destination cell s at each time instance, the actual en route travel time ηrs

p (t) of
flow f rs

p (t) can be determined through the use of cumulative counts. Let λ r
p(t) be

the cumulative traffic departing from cell r on route p at time t and λ s
p(ω) be the

cumulative traffic arriving at cell s on route p at time ω , defined by:

λ r
p (t) = ∑

t′≤t

nr,p
(
t ′
)
,and (7.17)

λ s
p (ω) = ∑

ω ′≤ω
ns,p

(
ω ′). (7.18)

Figure 7.3 shows that the cumulative count curves λ r
p(t) and λ s

p(ω) on route p
between OD pair rs. The actual en route travel time of traffic departing at t (i.e.,
f rs
p (t)) is the horizontal distance between the two cumulative curves as shown

in Fig. 7.3. If time is discretized, subject to the en route conditions, there is no
guarantee that the entire packet f rs

p (t) will arrive at the destination s in the same
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discretized time tick ω . As shown in Fig. 7.3, the front part of the packet has an
actual travel time of η whereas the latter parts have longer actual travel times.
The extent of this difference in en route travel times of the same departing packet
depends on the length of the discretized time. In general, higher accuracy can be
achieved by using finer discretized time length. However, using finer discretized
time length will lead to more cells, more time intervals, and eventually higher
computational efforts, because TsV = ls has to be held in the CTM.

Lo and Szeto (2002a) propose an averaging scheme so that the entire departing
traffic f rs

p (t) has one uniquely determined average en route travel time ηrs
p (t).

Mathematically, this scheme can be stated as:

ηrs
p (t) =

∫ λ r
p(t)

λ r
p(t−1)

[
λ s−1

p (υ)−λ r−1
p (υ)

]
dυ

λ r
p(t)−λ r

p(t − 1)
, (7.19)

where

f rs
p (t) = λ r

p(t)−λ r
p(t − 1). (7.20)

The numerator on the right-hand side of (7.19) is the area of the shaded region in
Fig. 7.3 or the total en route travel time of the entire packet f rs

p (t). The denominator
is the packet departing at time t as defined in (7.20). The above averaging scheme is
well defined for used routes with positive departure flows. For an unused route with
f rs
p (t) = 0, we define its actual route travel time to be equal to that of lim

σ→0+
f rs
p (t) =

σ . For an infinitely small σ , the whole packet shall arrive at the same discretized
tick. According to (7.19), ηrs

p (t) =
η·σ
σ = η or ω − t.

Lo (1999) adopts the round off scheme instead of the averaging scheme. If the
cumulative count in r at time t is bounded by the cumulative counts in s between
ω and ω + 1, then the path travel time is set to be ω − t as illustrated in Fig. 7.4
The maximum error in this estimation is one time interval. Mathematically, it can
be stated as:

If λ s
p (ω)≤ λ r

p (t)< λ s
p (ω + 1) then ηrs

p (t) = ω − t. (7.21)

Han et al. (2011) propose a scheme based on maximum travel time. To compute the
maximum travel time, they define an indicator variable τ p

t,ω that indicates whether or
not the cumulative departures on path p up to time t are greater than the cumulative
arrivals on the same path up to time ω namely,

τ p
t,ω =

⎧⎪⎪⎨
⎪⎪⎩

1 if λ r
p(t)> λ s

p(ω)

0 if λ r
p(t)< λ s

p(ω)

[0,1] if λ r
p(t) = λ s

p(ω)

. (7.22)
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Fig. 7.4 An illustration of the round-off scheme

The travel time of the vehicles departing in time interval t taking path p is given by

ηrs
p (t) = ∑

ω
τ p

t,ω . (7.23)

Notice that when λ r
p(t) = λ s

p(ω), the indicator can take any value between 0 and 1,
and hence is not uniquely defined. This is due to the “convexifaction” method
applied to deal with the possible discontinuity when the maximum travel time
scheme is adopted.

7.3 Route Choice Component

The travel choice principle models travelers’ propensity to travel, and if so, how they
select their routes, departure times, modes, or destinations. In making such choices,
travel time is one important element of their considerations. The commonly adopted
travel choice principles in the cell-based dynamic equilibrium models include

• The dynamic user optimal (DUO) or dynamic user equilibrium route choice
principle

• The DUO route/departure time choice principle
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• The stochastic dynamic user optimal (SDUO) route choice principle
• The SDUO route/departure time choice principle
• The reliability-based stochastic dynamic user optimal route choice principle

7.3.1 The DUO Route Choice Principle

The DUO route choice principle is the simplest dynamic extension of
Wardrop’s (1952) first principle, and states that for each origin-destination pair, any
routes used by travelers departing at the same time must have equal and minimal
travel time. Mathematically, this principle can be expressed as the following
conditions:

f rs
p (t)

[
ηrs

p (t)−π rs (t)
]
= 0, ∀rs, p, t,and (7.24)

ηrs
p (t)−π rs (t)≥ 0, ∀rs, p, t, (7.25)

where f rs
p (t) and ηrs

p (t) are, respectively, the flow on route p between OD pair rs
departing at time t and its travel time; π rs(t) is the lowest travel time between OD
pair rs for flows departing at time t. According to (7.24), if route p carries a positive
flow at time t (i.e., f rs

p (t) > 0), then its associated route travel time ηrs
p (t) must be

equal to the lowest travel time π rs(t) through the condition [ηrs
p (t)−π rs(t)] = 0.

Equation (7.25) ensures π rs(t) to be the lowest travel time among all the possible
routes between OD pair rs for flows departing at time t.

7.3.2 The DUO Route/Departure Time Choice Principle

The DUO route/departure time choice principle considers the departure time choice
in additional to route choice and considers generalized travel cost instead of travel
time. This principle states that for each OD pair, the generalized travel costs incurred
by travelers departing at any time are equal and minimal. Mathematically, this
principle can be written as follows:

f rs
p (t)

[
φ rs

p (t)−φ rs
min

]
= 0, ∀rs, p, t, and (7.26)

φ rs
p (t)−φ rs

min ≥ 0, ∀rs, p, t, (7.27)

where φ rs
min represents the minimal generalized travel cost during the modeling

horizon and is independent of t, and φ rs
p (t) denotes the generalized travel cost

incurred by travelers entering route p at time t
The generalized travel cost of each traveler is equal to:

φ rs
p (t) = αsηrs

p (t)+ cs (t)+ τrs
p (t)+κ , ∀rs, p, t, (7.28)
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Fig. 7.5 The schedule delay cost as a function of arrival time

where αs is the cost of unit travel time for travelers heading to destination s. κ
and τrs

p (t) are, respectively, the fixed and variable out-of-pocket cost, including
toll, parking cost, fuel cost, etc. cs(t) is the schedule delay cost. Travelers acquire
no schedule delay cost cs(t) if they arrive within the desired arrival time window.
Otherwise, they incur schedule delay costs for both early and early arrivals outside
of this arrival time window. For illustration purposes, the piece-wise linear schedule
delay cost function cs(t) is given below:

cs (t) =

⎧⎪⎪⎨
⎪⎪⎩

ρs
[
(t̃s −Δs)− (t +ηrs

p (t))
]

if t̃s −Δs > t +ηrs
p (t)

0 if t̃s −Δs ≤ t +ηrs
p (t)≤ t̃s +Δs

ψs
[
(t +ηrs

p (t))− (t̃s+Δs)
]

if t̃s +Δs < t +ηrs
p (t)

, (7.29)

where ρs and ψs correspond to the unit costs of early and late arrivals for travelers
heading to destination s. t̃s is the desired arrival time and Δs is the interval of
arrival time flexibility. [t̃s −Δs, t̃s +Δs] is therefore the desired arrival time interval.
Figure 7.5 shows the schedule delay cost as a function of arrival time.

Two points are worthwhile mentioning. First, αs, ρs, ψs, Δs, and t̃s are inde-
pendent of origin r but only dependent on destination s, meaning that travelers
heading to the same destination have the same desired arrival time window and
the same schedule delay cost function. This assumption, as proposed by Yang and
Meng (1998), is reasonable for morning commute traffic. Second, the empirical
results found in Small (1982) shows that

ψs > αs > ρs > 0. (7.30)

That is, the unit cost of late arrival (ψs) is higher than the unit cost of travel time
(αs), which is in turn higher than the unit cost of early arrival (ρs).
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7.3.3 The SDUO Route Choice Principle

The SDUO route choice principle is the dynamic extension of the Daganzo and
Sheffi’s (1977) stochastic user equilibrium principle and states that for each origin-
destination pair at each instant of time, the actual travel times perceived by travelers
departing at the same time are equal and minimal, where the perceived travel time
is equal to the sum of actual travel time and the perception error. Mathematically,
the SDUO route choice principle can be formulated as

f rs
p (t) = wrs

p (t) ·qrs (t) , (7.31)

where wrs
p (t) is the proportion of travelers on route p between OD pair rs departing

at time t; qrs(t) is the demand of travelers between OD pair rs at time t. Note that
(7.31) only ensures the perceived travel times (not the actual travel times) on all
used routes to be the same. The actual travel times on all used routes are not the
same because of the perception error.

If the perception errors on each travel time are independently and identically
distributed Gumbel variates, the flow proportion can be described by a multinomial
logit model. This model has been adopted by Lo and Szeto (2004) for calculating
the flow proportion:

wrs
p (t) =

exp
(−θ ·ηrs

p (t)
)

∑
k

exp
(−θ ·ηrs

k (t)
) , (7.32)

where the parameter θ represents the perception variations of travelers. A higher
value of θ means smaller travel time perception variations, and hence, better infor-
mation quality. In the limiting case when θ approaches infinity, the corresponding
route flow pattern approaches that as modeled by the DUO conditions, in which
travelers are assumed to have perfect information about the network status.

7.3.4 The SDUO Route/Departure Time Choice Principle

The SDUO route/departure time choice principle is the generation of the DUO
route/departure time choice principle but assumes that the travelers have imperfect
information on the network status as in the SDUO route choice principle. This
principle states that for each OD pair, the generalized costs φ rs

p (t) perceived by
travelers departing at any time are equal and minimal. Mathematically, this principle
can be characterized by the following equation:

f rs
p (t) = wrs

p (t) ·Qrs,∀rs, p, t, (7.33)

where Qrs is the total demand between OD pair rs in the study horizon.
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In Szeto and Lo (2005), a nested logit model is used for determining the
proportion:

wrs
p (t) =

exp
(−θR ·φ rs

p (t)
)

∑
k

exp
(−θR ·φ rs

k (t)
) × exp(−θT ·φ rs∗ (t))

∑
j

exp(−θT ·φ rs∗ ( j))
,∀rs, p, t, (7.34)

and φ rs∗ (t) =− 1
θR

ln∑
p

exp
(−θR ·φ rs

p (t)
)
,0 < θT ≤ θR, (7.35)

where θT and θR are, respectively, parameters representing perception variations on
the departure time and route.

The above assumes that first, travelers decide on the departure time, which
forms the top-level nest. The probability of choosing a particular departure time
t is expressed by the term:

exp(−θT ·φ rs∗ (t))

∑
j

exp(−θT ·φ rs∗ ( j))
,∀rs, p, t. (7.36)

Note that in deciding the departure time, the performances of all the routes leaving
at all the possible departure times are considered. Specifically, the log-sum term
φ rs∗ ( j) represents the expected maximum utility of all the routes leaving at time j.
The expression in (7.36) determines the probability for travelers choosing departure
time t after considering all the possible departure times j.

After choosing a particular departure time t, travelers decide on the route, as
expressed by the following term in (7.37):

exp
(−θR ·φ rs

p (t)
)

∑
k

exp
(−θR ·φ rs

k (t)
) ,∀rs, p. (7.37)

Combining (7.36) and (7.37), we obtain the expression in (7.34). This formulation
provides the flexibility of modeling different perception variations on the departure
time (θT ) and on the route (θR). In the special case, when both parameters
on perception variations are equal (i.e., θT = θR = θ ), the above nested logit
formulation can be simplified to this standard logit model:

wrs
p (t) =

exp
(−θ ·φ rs

p (t)
)

∑
k

∑
j

exp
(−θ ·φ rs

k ( j)
) ,∀rs, p, t. (7.38)

7.3.5 The RSDUO Route Choice Principle

The RSDUO route choice principle adopted by Szeto and Sumalee (2009) and
Szeto et al. (2011) considers the attitude of travelers towards the risk of late
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arrivals due to uncertain travel time in addition to perception variations of the travel
times. Travelers are assumed to select routes based on the dynamic extension of
the reliability-based stochastic user equilibrium principle (Shao et al. 2006). This
RSDUO principle states that for each travelers departing at any time, they select
routes with the minimum perceived effective travel time at the time of departure.
The effective route travel time (or travel time budget) is defined as the sum of the
mean route travel time and the safety margin:

η̂rs
p (t) = ηrs

p (t)+ srs
p (t) , (7.39)

where η̂rs
p (t) and srs

p (t) denote the effective travel time and safety margin of route
p between OD pair rs for travelers departing at t, respectively. ηrs

p (t) is the mean
travel time on route p between OD pair rs.

The safety margin srs
p (t) in (7.39) is a linear function of the standard deviation

(SD) σ rs
p (t) of the travel time on route p:

srs
p (t) = Zσ rs

p (t) , (7.40)

where Z is the parameter describing the degree of the risk aversion of travelers. The
larger is the value of Z, the greater is the degree of the risk aversion of travelers. In
particular, Z > 0 if travelers are risk-averse and depart earlier to allow additional
time to avoid late arrivals; Z = 0 if travelers are risk-neutral and ignore σ rs

p (t)
when selecting routes. Of course, Z can also be related to the importance of the
trip, i.e. by trip purpose (a higher Z value for a more important trip and vice
versa).

Szeto and Sumalee (2009) adopt a logit model to determine the flow proportion,
where the travel time in (7.32) is replaced by the effective travel time to determine
the proportion. To handle path correlation, Szeto et al. (2011) adopt C-logit model
for determining the proportion. The modified effective route travel time instead of
effective travel time is used to determine the flow proportion and is defined as the
sum of the commonality factor and actual effective route travel time:

V rs
p (t) = CFrs

p + η̂rs
p (t) , (7.41)

where CFrs
p is the commonality factor of route p between OD pair rs, and V rs

p (t)
denotes the modified effective travel time on route p between OD pair rs for travelers
departing at time t.

The commonality factor in (7.41) is used to capture the degree of similarity
between paths as in Cascetta et al. (1996). It is expressed as follows:

CFrs
p = λ · ln∑

h

(
Lhp

L1/2
h ·L1/2

p

)ψ

, (7.42)
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where Lhp is the “length” of links or free flow travel time on links common to both
paths h and k. Lh and Lp are, respectively, the free flow travel times on paths h and
p belonging to the same OD pair. λ and ψ are parameters.

It is not difficult to see that the RSDUO principle includes the SDUO and DUO
conditions as special cases. When Z = 0, the flow pattern satisfying the RSDUO
principle is also the SDUO flow pattern. When θ approaches infinity and Z = 0,
the corresponding route flow pattern approaches that as modeled by the DUO
conditions.

7.4 Formulation and Algorithmic Approaches

The cell-based dynamic equilibrium models can be formulated by at least three
approaches:

• Variational Inequality Problem (VIP)
• Nonlinear Complementarity Problem (NCP), and
• Fixed-Point Problem (FPP).

The VIP is to find f∗ = [ f rs∗
p (t)] such that

(f− f∗)T H(f∗)≥ 0,∀f ∈ Ω , (7.43)

where H(f) represents a general vector function of f, and Ω represents the feasible
solution set of the problem. The superscript “∗” refers to a solution of f that fulfills
the travel choice conditions. The existence of solutions to the VIP (7.43) requires
that (i) H(f) is a continuous function of f and (ii) Ω is a nonempty compact convex
set (Theorem 1.4 in Nagurney 1993). The uniqueness of the solution further requires
the mapping function to be strictly monotonic (Theorem 1.8 in Nagurney 1993).
When the SDUO or RSDUO route choice principle is adopted in the cell-based
dynamic equilibrium model, H(f) = [ f rs

p (t)−wrs
p (t) ·qrs(t),∀rs, p, t] and Ω is the

nonnegative orthant, where wrs
p (t) is a function of route travel time, which in turn

is a function of flows f through the unique mapping (7.1) According to Szeto and
Lo (2006), the route travel time may not be a continuous function of route flows,
leading to the possibility of the nonexistence of solutions to the cell-based dynamic
equilibrium models.

The NCP is indeed a special form of the VIP; their equivalency conditions are
discussed in Proposition 1.4 of Nagurney (1993)—the solutions to these problems
are equivalent when the feasible solution region is the nonnegative orthant. Based on
this proposition, one can express the VIP as an NCP. The NCP is to find an optimal
vector f∗ ≥ 0 such that:

f∗T ·H(f∗) = 0 and H(f∗)≥ 0. (7.44)
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As mentioned before, when the SDUO or RSDUO route choice principle is adopted
in the cell-based dynamic equilibrium model, H(f)= [ f rs

p (t)−wrs
p (t) ·qrs(t),∀rs, p, t].

Since wrs
p (t) is always nonnegative, all routes carry flows at optimality (i.e., f∗ > 0).

It is therefore not difficult to see that H(f∗) = 0, which is the SDUO route choice
conditions.

The FPP is to find f∗ = [ f rs∗
p (t)] such that

f∗ = Y(f∗) , (7.45)

where Y(f) represents a general vector function of f. Let the projection oper-
ator PΩ (y) = argmin

z∈Ω
‖y− z‖, κ > 0, and Ω is closed and convex. If Y(f) =

PΩ (f−κH(f)), then the FPP (7.45) and the VIP (7.43) have the same set of optimal
solutions (Theorem 1.3 in Nagurney 1993). When the SDUO or RSDUO route
choice principle is adopted in the cell-based dynamic equilibrium model, Ω is the
nonnegative orthant. By putting κ = 1 into Y(f) = PΩ (f−κH(f)) and simplifying
the resultant expression, we can get the SDUO or RSDUO route choice condition
(7.31).

The choice of the formulation approach highly depends on the solution method
adopted. In Lo and Szeto (2002b) and Szeto and Sumalee (2009), the NCP formu-
lation is adopted to describe the DUO route choice problem and the RSDUO route
choice problem respectively. The formulation is transformed into an unconstrained
optimization problem via a gap function proposed by Lo and Chen (2000). The
optimization problem derived from the DUO route choice problem is then solved
by the genetic algorithm (GA), which is used to find a nearly global optimal
solution. The optimization problem derived from the RSDUO route choice problem
is solved by their stochastic gradient-based solution algorithm that only relies on
the statistical estimate of the gap function. Han et al. (2011) formulate the cell-
based DUO route/departure time choice problem with elastic demand and user
heterogeneity as a complementary problem and use PATH and KNITRO, two
well-known state-of-the-art solvers for complementarity problems, for obtaining
solutions.

In Lo and Szeto (2002a) and Szeto and Lo (2004, 2005), the VIP formulation
is adopted to depict the DUO route choice problem, the DUO route/departure time
choice problem, and the SDUO route/departure time choice problem respectively.
The first problem is solved by the projection method proposed by Han and Lo (2002)
whereas the second and third problems are solved by the projection method
proposed by Han and Lo (2004). The convergence of all these methods is guaranteed
when the mapping function G(f) is co-coercive. Ukkusuri et al. (2012) reformulate
the cell-based DUO route/departure time choice problem as a VIP and solve it by a
projection method.

In Szeto et al. (2011), the fixed point formulation is adopted to describe the
RSDUO route choice problem, and is solved by the self-regulated averaging
method (SAM) proposed by Liu et al. (2009). This method includes the method
of successive averages as a special case.
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Indeed, many solution algorithms such as swapping algorithms, the method
of successive averages (MSA), the decent direction algorithms, feasible direction
algorithm, and other algorithms tailored for solving the VIPs, FPPs, and NCPs
are available to solve the cell-based dynamic equilibrium formulations although
the convergence can be achieved under some conditions. Nie and Zhang (2010)
compare the performance of some of these algorithms for solving the cell-based
DUO route/departure time choice problem. They find that introducing line searches
provides relatively faster and more stable convergence, compared MSA. When
appropriately implemented, the feasible direction algorithms can outperform MSA
in terms of computational overhead.

For some special problems such as the DUO route choice problem, cell-based
dynamic equilibrium models (e.g., Ukkusuri 2002) can be directly represented as
optimization models and solved by combinatorial optimization algorithms pro-
posed by Golani and Waller (2004) for solving the multi-destination case and by
Waller and Ziliaskopoulos (2006) for the single-destination case. The algorithm for
solving the single-destination case is exact but the algorithm for solving the multi-
destination case is a heuristic.

7.5 Implementation Issues and Future Research Directions

Clearly, the RSDUO route choice model that encapsulates the MC-SCTM is more
realistic and can be easily extended to consider departure time choice, mode choice
(by using nested logit model), activity location choice, activity duration, time of
participation (by using the supernetwork representation proposed in Ramadurai
and Ukkusuri 2010), and demand elasticity (by using elastic demand functions
as in Szeto and Lo 2004). However, the model is associated with the following
implementation issues for the applications in dynamic route guidance and traffic
control, leading to some future research directions.

7.5.1 Nonexistence and Nonuniqueness of RSDUO Solutions

Due to the effect of physical queues and traffic signals, travel time may not be a
continuous function of flows and hence there is a possibility that there is no solution
for the cell-based equilibrium model. The relaxation of the DUO condition to the
SDUO and RSDUO conditions may not be able to address the problem. Existence
of a solution is a fundamental requirement of a model for actual applications.
Szeto and Lo (2006) provide some initial thinking on developing a framework to
accommodate this. They allow the travel times of all used routes to be unequal
but their maximum difference lie within a tolerance or an aspiration level, where
the tolerance level is purely a function of the behavior of the network users and
can be calibrated through surveys. This relaxation acknowledges the fact that, in
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reality, the travel times of the used routes between the same origin-destination
pair are rarely exactly the same, and that travelers will stop exploring new routes
when they perceive no appreciable differences between their current routes and the
candidate ones. This relaxation matches the bounded-rationality behavioral notion
in Simon (1955) and can be easily generalized to capture departure time, mode, and
destination choices, the learning effect of travelers’ tolerance over time, imperfect
traffic information perceived by travelers, and the risk aversive behavior of travelers.
Under this relaxation, Szeto and Lo (2006) show that the existence of a stable
solution under the spatial queue consideration depends on the network topology,
the demand pattern, and also travelers’ behavior on travel time tolerance. Using
their proposed day-to-day route swapping algorithm, they further demonstrate that
for a small tolerance, the system can keep on evolving without converging to a
stable equilibrium. In particular, periodicity in terms of total system travel time and
traffic pattern can be observed under varied parameters and initial solution settings.
These raise interesting and important questions to be answered in future research
on theoretical explorations of the network behavior under non-equilibrium, bounds
of the changes in the total system travel time, periodicity of the changes, and their
relations to travelers’ aggressiveness in route swapping, etc. in the RSDUO context.
It is also likely that there are multiple optimal solutions. How to design and manage
the network when the solution is nonuniqueness is an important research question.

7.5.2 A Large Time-Dependent Path Set

Actual networks are often large and involve many paths, although most of them
are unused. A large path set makes path enumeration impossible. However, to
deal with queue spillback properly, we must use path-based DTA models and
hence path-based algorithms if alternative formulations for handling queue spillback
information do not exist. How to deal with this problem is an important issue for
actual model implementation. A simple approach to deal with this problem is to
assume that the path set is fixed and can be deduced from GPS data. This path set
can be changed over time of day. How to extract a reliable path set from the GPS
data deserves further investigation.

Another possible but more complicated approach to deal with the large path set
is to generate a small path set in the path-based solution algorithm. Compared with
the path-based solution algorithms for static traffic assignment models, an additional
effort on the path set generation for DTA models is required because we need to
consider time-dependent paths. In particular, the effect of junction blockages can
cause the network configuration temporally change, which must be duly handled.
This raises questions: Can the path set generation rules used in the static traffic
assignment be modified and extended to the dynamic case? Are there any other
methods to efficiently deal with the temporally changing network configuration
under the effects of physical queues? How does the choice of path set generation
rules affect the solution speed and convergence of the algorithm? These questions
require further study.
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The third approach to handle the large path set is to develop the network loading
procedure similar to Dial’s algorithm (1971) or the origin-based approach (Bar-Gera
2002) that can avoid the path set information but still can handle the queue spillback
information. This again is left for future research.

7.5.3 Time-Consuming Monte Carlo Simulation

The MC-SCTM requires the Monte Carlo simulation that can lead to long computa-
tion times for large network applications. This is clearly unacceptable for real-time
deployment. Szeto et al. (2011) have tested the idea of using smaller sample sizes
for early stages of solution processes and using larger ones at the later stages.
The results are quite promising in terms of saving computation time. Although the
optimal parameter for triggering switching varies case by case, this strategy can be
used for reducing the computation time to solve large problems by selecting a nearly
optimal switching triggering value.

Another strategy for speeding up the computation process is to use the analytical
SCTM (e.g., Pan et al. 2010 and Sumalee et al. 2010, 2011) to approximately solve
the problem in the early or some stages of the solution process. This strategy has
not been tested and is left for further testing.

The third strategy is to use antithetic sampling technique, Latin hypercube
sampling technique, and single point approximation techniques to reduce the sample
sizes and hence the computation time while maintaining an acceptable level of
solution quality. According to Sharma et al. (2011), using Antithetic Sampling can
reduce the sample size 10 times to solve in their problem about the Network of Fort
Area, Mumbai while reducing the computation time to 20% of the original time
required. Using single point approximations can further lead to a 99% computation
time saving. We expect the computation time can be reduced significantly by
introducing these techniques in the SAM, but the exact reduction magnitudes may be
slightly different. The evaluation of the benefit of introducing these approximations
is left for future studies.

The fourth strategy is implementing parallel computing. Given that each M-CTM
simulation can be done independently, each simulation can be performed in one
computer. The computation time can be reduced by a factor of the sample size. The
efficiency of this approach can be tested in the future.

One more strategy is to develop travel time functions to approximate the unique
mapping (which involves the MC-SCTM simulation) at some stages to speed up
the solution processes. The question is whether this approximation can guarantee
convergence and how to develop the travel time function. This question has not
been answered yet.



186 W.Y. Szeto

7.5.4 Nonexistence of Efficient and Convergent
Solution Methods

The properties of discontinuity and non-monotonic route travel time lead to devel-
oping efficient and convergent solution methods for real-time deployment difficult.
The SAM proposed by Liu et al. (2009), the projection methods proposed by Han
and Lo (2002, 2004) and the projection method used by Ukkusuri et al. (2012)
can be treated as heuristics as the mathematical requirements of the convergence
may not be satisfied. It seems to imply that the RSDUO problem has to be
solved by the method proposed by Lo and Szeto (2002b) in which the problem
is reformulated into an unconstrained optimization problem and is solved by some
less restrictive global optimization methods. GA is definitely one option to solve the
reformulated problem. However, GA has to evaluate the objective values of each
trial solution, which is a time-consuming process as the objective function value is
obtained through the MC-SCTM simulation. To increase the computation efficiency,
a possible approach is implementing parallelized genetic algorithm (e.g., Wong
et al. 2001) for solving these models. This approach makes good use of the inherent
nature of GA that the evaluation of each trial solution can be done independently,
and hence the performance of GA can be greatly improved by means of parallel
computing.

The performance of GA highly depends on the parameter setting. However, there
is no clue on how to set the parameter value. Moreover, GA may not be the most
efficient solution method to solve the RSDUO problem. Other meta-heuristics can
also be used to solve the model. It is unclear which meta-heuristic is relatively more
efficient to solve the model. Computation tests have been performed in the future to
answer these questions.

7.5.5 Ignoring Lane-Changing Behavior, Moving Bottlenecks,
and Interaction between Different Types of Vehicles

The MC-SCTM or even SCTM does not consider lane changing traffic behavior
and moving bottlenecks. The question is whether it is acceptable to ignore them
for the real-time implementation. This can be partially answered by performing
validation in the future. If the results show that there is a significant loss of accuracy
in predicting the traffic flow pattern, we may need to consider to extend the multiple-
pipe and variational theories as well as the modeling theories for lane-changing
behavior and moving bottlenecks (see Daganzo and Laval 2005, Daganzo 2006,
Leclercq 2007) for the general traffic networks and incorporate them into the MC-
SCTM or the SCTM.

Existing cell-based equilibrium models currently adopted either the CTM or the
MC-SCTM, but they cannot capture the traffic interaction between different vehicle
classes. Enhancing the CTM and SCTM to capture this realistic behavior can be
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another research direction. One can also validate the resulting model and estimate
the gain in modeling accuracy to justify whether to incorporate this behavior in the
SCTM or its extension.

7.5.6 Requirement on the Quality of the OD Matrix

The RSDUO route choice model requires a fairly accurate time-dependent OD
matrix for actual implementation. If this matrix is not accurate enough, one can
consider extending the model to consider departure time choice as well, as the
simultaneous route and departure time choice model only requires an OD matrix like
the one for the static traffic assignment. The cost is to estimate the desirable arrival
time and desirable arrival time interval of travelers. For the peak hour traffic, this
information is not difficult to obtain from surveys. Alternatively, one can consider
time-dependent OD matrix with a larger discretized time interval and the demand for
each larger interval is assumed to be equally split into several smaller time intervals
for network loading. In the worse case, we can calibrate a distribution for each OD
demand and relax the assumption of deterministic OD demand in the formulation.
All these approaches can be studied in the future.

7.5.7 Missing OD Matrix and Travel Time Updating
Components for Teal-Time, Large-Scale Applications

One of the applications of RSDUO model is to predict the real-time traffic flow
estimate travel time, and update the time-dependent OD matrix for route guidance
and traffic control based on historical and real-time traffic count information.
However, not all junctions can provide traffic counts. Szeto et al. (2009) propose
a cell-based travel time prediction method that does not require traffic counts to
be obtained at every junctions. This method can be used in the route guidance
application. However, this method has not considered the random traffic state and
random demand arrivals. On the other hand, Lo (2001) developed a cell-based
dynamic signal control formulation. Again, other than equilibrium principles, the
random traffic states and random demand arrivals have not been captured. In the
future, these two methods can be extended and incorporated into the roll-horizon
framework proposed by Ran et al. (2002) for OD matrix updating and into the large-
scale implementation method of Ziliaskopoulos et al. (2004) in order to develop
a framework for estimating travel time and flow patterns online as well as for
managing traffic.
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7.5.8 Calibration Issues

The RSDUO route choice model that encapsulates the MC-SCTM is more realistic
but at the same time introduces more parameters to calibrate. How to calibrate these
parameters becomes an important question and has not been done yet. One off-line
method that can be used in the future is to break down the calibration process into
three sequential steps. The first step calibrates Z using the method of Jackson and
Jucker (1982). The second step calibrates the parameters in the fundamental diagram
as in Sumalee et al. (2011). The last step is to calibrate the parameters associated
with C-logit model by the maximum likelihood estimation method. When real-time
data is available, the parameters in the fundamental diagram can be adjusted in
real time. However, an online calibration procedure is also missing at the moment.
Moreover, the issues mentioned in Sect. 7.5.4 are still applied here and needed to
address.

7.6 Concluding Remarks

There is no doubt that cell-based dynamic equilibrium models have received atten-
tion recently. Over time, more advanced cell-based dynamic models are proposed
and analyzed. However, the resulting models become even more complicated and
harder to solve for exact solutions, and some implementation issues, especially for
the cell-based models with the consideration of stochasticity in the fundamental
diagram, have not been addressed. It is time for us to review these models and point
out the implementation issues for future research. Hence, this article reviews the
details of the two building blocks of the existing cell-based dynamic equilibrium
models, the major formulation and algorithmic approaches, the development of cell-
based equilibrium models, and some implementation issues of the latest version
of cell-based equilibrium models that can capture stochasticity in the fundamental
diagram. Some initial thinking for handling these issues and some related future
research directions are also provided in this article.
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Chapter 8
Information Impacts on Traveler Behavior
and Network Performance: State of Knowledge
and Future Directions

Ramachandran Balakrishna, Moshe Ben-Akiva, Jon Bottom, and Song Gao

Abstract Advanced Traveler Information Systems (ATIS) have the potential to
maximize the operating efficiency of existing transportation infrastructure. Such
systems rely on the generation and dissemination of guidance in order to allow
drivers to make informed choices about travel mode, route and departure time,
etc. The evaluation of the effectiveness of ATIS requires multidimensional study
encompassing the analysis of various choice situations arising in the real world,
constructing models that explain driver response to information in different contexts,
and developing algorithms that can generate traveler information. Since driver
confidence in the ATIS is directly related to the accuracy, relevance, and usefulness
of the information, a key aspect is the collection of relevant field data that can
instruct model development and ATIS evaluation before real-world deployment.
This chapter aims to provide a synthesis of both the state of the art and the state
of the practice of ATIS modeling and evaluation. We review the literature related
to data collection and driver response model development, and classify the same
according to the specific choice situations they address. We provide a conceptual
discussion of the general framework within which traveler information may be
generated, including key ATIS design parameters that may impact the performance
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of (and consequently, driver confidence in) the system. We also present brief
empirical results from past simulation-based evaluations of ATIS, and conclude with
recommendations for future research directions in order to further real-world ATIS
deployment.

8.1 Introduction

With steadily growing levels of vehicle ownership and vehicle miles traveled,
traveler information has been identified as a potential strategy towards managing
travel demand, optimizing transportation networks, and better utilizing available
capacity. Towards this goal, Advanced Traveler Information Systems (ATIS) have
been conceptually designed with sophisticated travel behavior models and high-
fidelity network performance models, made increasingly feasible through the rapid
advances in computing power. Crucial components of this problem domain are
the modeling of individual drivers’ response to traveler information, and the
development of algorithms that can generate accurate guidance of relevance to real-
world trip-makers. In this chapter, we (a) undertake a detailed literature review to
conceptually explore the multifarious dimensions of driver response to information
and models of driver response, (b) discuss the key issues in information provision
and the factors critical to the successful generation of such information, and
(c) provide a flavor for the state of the art of research evaluating the potential benefits
of ATIS.

The remainder of this chapter is structured as follows: Sect. 8.2 undertakes a
broad discussion of the different types of route guidance as well as key ATIS
design parameters that are likely to impact the effectiveness of the guidance system.
Section 8.3 is a detailed review of the state of the art and practice dealing with the
collection of driver response data, the estimation of mathematical models of said
choices, and various real-world situations that might allow drivers the opportunity
to respond to guidance. Section 8.4 illustrates the process of evaluating the effects
and phenomena associated with the provision of route guidance, mostly with the use
of traffic simulation modeling tools. Section 8.5 concludes with a summary of the
state of the art, and suggests directions for research on appropriate data collection,
driver response modeling, ATIS evaluation and testing.

8.2 Generation of Travel Information

This section discusses the generation of information intended to assist travelers
make better travel choices. In other words, the principle underlying the provision
of information involves the improvement of the decision making of individual
travelers, rather than improvement of network performance overall.
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In the discussion below, the term “message” will generally be used to refer to
the content disseminated by a travel information provider to its users. However, the
terms “information” and “guidance” will also be used interchangeably, and are not
meant to imply a particular type (e.g., descriptive, prescriptive or other) of message
content. Further, as a majority of the studies in the literature focus on the auto mode,
we use the words “traveler” and “driver” interchangeably.

The discussion in this section considers in turn travel information attributes,
guidance based on prevailing conditions, and guidance based on predicted condi-
tions. The presentation of these two specific guidance approaches highlights the
advantages and disadvantages of each, as well as technology and models typically
used in their implementation.

8.2.1 Information Attributes

In this section we briefly describe some of the information attributes that can
characterize the messages provided by different travel information systems. This
discussion serves to prepare a more detailed discussion below of two specific
information generation approaches.

Based on historical, prevailing, predicted conditions: Messages provided to a trav-
eler can be based on typical conditions that have been observed in the past, on
measurements and estimates of conditions prevailing at the time the request for
information is made, or on predictions of what future conditions will be at the
time the traveler is at a particular location.

Descriptive, prescriptive, mixed: The messages provided to a driver can describe
network conditions, or recommend a particular action based on the network
conditions, or both (“Take route XYZ, severe congestion ahead”).

Network coverage: A travel information system might cover only the major trans-
portation facilities in an area, or alternatively might attempt to take into account
all facilities.

Information precision: Messages provided by an ATIS will typically provide time
and/or delay information intentionally rounded to some level of precision,
commensurate with the accuracy of the data sources and processing, to avoid
saturating drivers with excessive details.

Information accuracy: Accuracy will be limited by the nature and extent of the data
collected and used to generate travel information, and by the ways in which the
information is processed.

Information latency: The information disseminated to travelers may not be com-
pletely up to date because of lags in data collection, time required for data
processing, and compliance with a periodic information update cycle: for
example the guidance generator might have a policy of updating messages every
15 min in non-incident conditions.
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Other: A variety of other information attributes can be mentioned: push or pull
access mode (information that is disseminated automatically to travelers or
that must be specifically requested by them); message medium (graphical, text,
spoken); the specific message format; etc.

8.2.2 Guidance Based on Prevailing Conditions

As noted above, one approach to guidance generation consists of providing informa-
tion based on the conditions that prevail over the network at approximately the time
that the information is generated (Chen and Mahmassani 1991). This information
might simply report on those conditions (descriptive guidance), or might suggest
travel options based on the conditions (prescriptive guidance), or both. In any case,
the messages sent to travelers reflect the guidance system’s estimate of conditions
prevailing over the network at the time of guidance generation: there is no attempt
to forecast future conditions, although the estimation of prevailing conditions might
well combine real-time sensor measurements with historical information on typical
traffic conditions.

8.2.2.1 Advantages of This Type of Guidance

With experience, a user of a transportation system is likely to develop a more-or-less
accurate mental model that extrapolates from a “snapshot” of prevailing network
conditions to an estimate of what the experience is likely to be on alternative travel
options. (This model involves both the user’s understanding of network dynamics
and her interpretation and assessment of the messages received from the information
system.) Thus, upon receiving messages about prevailing conditions, the user may
be able to transform these into a valid basis for a travel choice.

Advanced traveler information systems that focus on prevailing conditions, while
not simple, are arguably less complex than those that attempt to provide guidance
messages based on forecast future conditions, as discussed below.

8.2.2.2 Disadvantages of This Type of Guidance

The mental models that users apply to extrapolate from prevailing to experienced
conditions are, almost by definition, unlikely to be accurate in many situations of
nonrecurrent congestion. (There are of course exceptions to this.) Thus, in these
situations providing guidance on prevailing conditions may not be as helpful to
travelers as it is under “normal” travel conditions.
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8.2.2.3 Technology and Models for Guidance Generation

Guidance generation technology for systems based on prevailing conditions must
collect real-time data from a variety of deployed traffic sensors, and process these
data into an estimate of the prevailing network state that is sufficient to base the
generation of guidance messages on. Depending on the nature of the system and
its messages, the estimated network state might be characterized by attributes at
the link level (travel times, delays, queue lengths) or route level, with disseminated
messages reflecting these attributes (Ben-Akiva et al. 2001).

The sophistication with which the network state estimates are prepared can
vary considerably, from local estimates of link speeds based, e.g., on inductive
loop detectors, to processing systems that combine multiple types of real-time data
(local speeds and volumes from loop detectors, point-to-point volumes and travel
times from toll tags, video feeds from traffic management applications, etc.) with
historical data in a network-level filtering approach.

8.2.3 Guidance Based on Predicted Conditions

An alternative approach to guidance generation involves predicting future network
conditions, and basing the guidance messages on these predictions (Kaysi 1992;
Papageorgiou et al. 2007). More specifically, predictive guidance attempts to reflect
in its messages the conditions that are expected to prevail at network locations at the
time the traveler will actually arrive there, rather than those that prevail at the time
the guidance is disseminated.

8.2.3.1 Guidance Consistency

Guidance that is based on predicted conditions must confront a fundamental
problem: when travelers receive the guidance and react to it, their reactions may
invalidate the predictions on which the guidance was based, thus rendering the
guidance irrelevant or worse. For example, guidance that is based on predictions
of impending congestion on one of two parallel routes may cause travelers to shift
to and congest the other route, leaving the original route relatively uncongested and
leading to overall higher levels of delay (Ben-Akiva et al. 1991). Guidance is said
to be consistent when it is based on predictions that are realized (within the limits
of modeling accuracy) after the guidance is disseminated and travelers react to it
(Bottom 2000). Note that this definition does not necessarily require that travelers
comply with prescriptive guidance messages, only that their reactions, whatever
they might be, are correctly anticipated when forecasting the conditions that were
used to generate the guidance messages.

If relatively few travelers are affected by guidance, then their reactions to it are
unlikely to have a significant effect on future network conditions, and consistency
may not be an important issue. On the other hand, if many travelers react to
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guidance, and if their reactions affect network conditions in a significant way, then,
as noted, failure to ensure predictive guidance consistency may result in ineffective
or counterproductive travel guidance.

8.2.3.2 Advantages of This Type of Guidance

It seems intuitive that, other things being equal, guidance that accurately reflects the
conditions at a network location at the time a traveler actually reaches there is likely
to be a more relevant basis for decision making than guidance that simply reflects
the prevailing or historical conditions at that location at the time the guidance is
disseminated. In a dynamic network, such changes can be significant enough that
guidance based on conditions prevailing at or around the time the messages are
disseminated may be a seriously inaccurate reflection of the actual conditions that
would be encountered during a trip on the various travel options available (Bottom
et al. 1999; Rathi et al. 2008).

A number of currently active commercial travel information services provide
guidance based on predictions of travel conditions (although it does not appear,
based on publicly available information from these services, that guidance consis-
tency is a concern). The commercial viability of these offerors suggests that the
market recognizes a value in predictive guidance.

8.2.3.3 Disadvantages of This Type of Guidance

Predictive guidance is considerably more complex to generate than other forms of
guidance. The discussion below of technologies and models used for this type
of guidance explains some of the requirements. As a related matter, the accuracy of
network flow and conditions forecasts will almost inevitably be lower than that of
estimates of the prevailing network state, although it does not necessarily follow that
the effectiveness and usefulness to travelers of guidance based on such forecasts will
also be lower than guidance based on state estimates.

Although there is increasing recognition of the potential of predictive guidance,
relatively few currently deployed systems provide such information. Those that do
appear to be based on models that combine data on prevailing conditions with
information on historical travel conditions and patterns, and current and near-
term perturbations (weather, special events) in an extrapolation model, but do not
consider the effect of the guidance itself on future network flows and conditions—
in part, because the penetration of these systems in the market is still too low to
produce significant impacts on the network.

This being the case, there is currently no empirical evidence on the effectiveness
of consistent predictive guidance in practice. Assessments of such systems, or of
alternative designs for them, must currently rely on simulation testing, as discussed
in Sect. 8.4 below.
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8.2.3.4 Technology and Models for Guidance Generation

Predictive guidance generation is based on estimates of prevailing conditions and so,
as noted, requires the deployment of the same sorts of sensor and communications
technology that would be required by a system for generating network-level
guidance based on prevailing conditions (Kaysi et al. 1995).

Guidance generation systems that are not concerned with consistency would
extrapolate future conditions in any of a variety of ways, typically taking account of
historical traffic patterns and conditions (using a database that is continually updated
with information from the real-time data feed and network state estimation), as
well as available information on current and near-term perturbations (weather, work
zones, incidents, special events, etc.) There is no explicit attempt to account for
traveler reactions to the guidance, or for the impacts of those reactions on network
conditions. Guidance messages (descriptive, prescriptive, or mixed) are generated
from the predicted conditions.

Systems for generating consistent guidance require data processing capabilities
that include (a) forecasting models capable of predicting the evolution over time
of future network flows and conditions from their prevailing state following the
dissemination of particular guidance messages; and (b) algorithms for generating
guidance messages in a way that ensures mutual consistency between them and
the condition and flow forecasts that they reflect (Kaysi et al. 1993). It is worth
noting that travel forecasting models that are sensitive to the effects of guidance
messages on traveler behavior are still the subject of research, and that algorithms
for generating consistent guidance can be quite computationally intensive.

8.2.4 Summary

This section summarized attributes of traveler information and discussed the fea-
tures and technological characteristics of information systems based on prevailing
and on predicted travel conditions. We now present a review of literature relevant
to drivers’ response to various types of information, and under different choice
circumstances.

8.3 Driver Response to Travel Information

In this section, we present a synthesis of empirical studies of individual traveler
response to ATIS, including both revealed preference (RP) and stated preference
(SP) studies.

A traveler makes decisions based on her knowledge of the available alternatives
and their attributes, subject to time and cognitive capacity constraints. Such knowl-
edge is obtained through both personal experience and exogenous information,
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and is usually limited by the inability to explore all available alternatives, the
inherent uncertainties of external influences (e.g., bad weather, incidents), and
the collective effects of other travelers’ decisions in the system. ATIS provides
exogenous information that could potentially expand travelers’ knowledge of the
decision environment, and improve decision quality.

Travel information can be characterized by its attributes (see Sect. 8.2 for a
detailed discussion of information typology) along many dimensions. We focus on
real-time (or dynamic) information that reflects travel conditions at or close to the
decision time, in contrast to static information that usually describes the average
decision environment over a relatively long period. However, as both dynamic and
static information contribute to the formation of the traveler’s knowledge and are
usually not separable, we also have some discussions of static information when
appropriate. Note that the time scale is by nature continuous and thus the notion of
dynamic and static information is also relative.

In the remainder of this section, we start with a discussion of data collection
methods for the study of traveler response to ATIS. Next we discuss travelers’
valuation of and willingness to pay for real-time information. We then present
evidence of information impacts on travelers’ learning process. Next we turn to
how drivers respond to ATIS, both in the short run and in the long run. Note that this
is not intended as a comprehensive literature review; rather we focus on empirical
studies since 2000, unless the last major development of a research area was before
2000. For pre-2000 studies on driver response to ATIS, the reader is referred to
Lappin and Bottom (2001).

8.3.1 Data Collection Methods

Due to the relatively limited deployment of ATIS on a large enough scale, most col-
lected data suitable for modeling come from SP surveys or laboratory experiments.
RP questions are usually simple qualitative ones, and used for summary statistics
rather than modeling. SP and RP data are combined in some situations to improve
the model estimation efficiency (e.g., Polydoropoulou et al. 1996). Some researchers
have made an effort to validate SP data against RP data (e.g., Khattak et al. 1994;
Bonsall et al. 1997).

Notable data collection efforts and studies that have used the data include:

• RP and SP surveys from TravInfo field operation test (San Francisco): Khattak
et al. (1999), Mehndiratta et al. (2000a), Yim et al. (2002), Khattak et al. (2003),
and Wolinetz and Khattak (2004).

• RP and SP surveys from Puget Sound Regional Council’s panel travel diary
study: Mehndiratta et al. (2000b), Tsirimpa et al. (2007).

• Route choice simulator experiments developed by Bonsall and collaborators:
Bonsall et al. (1997).
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• Laboratory experiments in a three-route highway network developed by
Mahmassani and collaborators: Mahmassani and Liu (1999), Srinivasan and
Mahmassani (2003).

• Laboratory experiments in a relatively more realistic network developed by
Abdel-Aty and collaborators: Abdel-Aty and Abdalla (2004, 2006).

8.3.2 Valuation of and Willingness to Pay for Information

Some common questions about ATIS are: What kind of information do users
want? How much are users willing to pay for the information? These questions
are related. A traveler responds to information as the information changes the
decision environment. For example, it could suggest route alternatives unknown
to the traveler or indicate a work zone downstream. Changed decisions suggest that
the traveler perceived benefits from the change, otherwise she would not have made
the change. In addition, information might provide benefits even though no changes
are made, such as reduced anxiety or the validation of a choice already made. The
valuation of and willingness to pay (WTP) for information are conceivably directly
related to the perceived benefits of information, which in turn depend on a variety of
information attributes. It is thus probably more informative to talk about the WTP
for a certain information attribute.

For example, Mehndiratta et al. (2000a) estimated the WTP for information
attributes such as update frequency, coverage, and customization using the 1998
survey carried out among a small sample of people who had called TravInfo in
April 1997. More frequent updates were found to be the highest priority among
the range of possible information enhancements explored in the survey, followed
by an extension of coverage to include major arterials in addition to freeways. The
authors also cautioned that the absolute values of WTP should not be used to inform
pricing decisions due to the nature of the data. Molin and Timmermans (2006)
collected SP data on a number of categories of attributes for transit information,
including ticket pricing, transfers, real-time information, private transport, walking
route, destination, on-board comfort and service, and planning options. Attitudinal
questions about the importance of the attributes were asked and the WTP for
each attribute category was estimated from trade-off questions. The rankings of
information attributes from the two approaches were the same, with real-time
information being the first and additional planning options the second.

Broadly speaking, three approaches have been used to estimate the WTP for
information, almost all based on hypothetical situations (with the advent of for-fee
ATIS markets, more RP studies could become available). A direct question was
asked in Aultman-Hall et al. (2000) about the most a user would pay per call before
she would stop using the traffic advisory telephone service (TATS) in the Greater
Cincinnati and northern Kentucky area. Most WTP studies ask the user to make
choices involving tradeoffs among systematically varied combinations of price and
information attribute levels, and estimate a utility maximization model based on the
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data. The WTP can then be derived as the negative ratio of the marginal utilities
of a certain information attribute and price. Khattak et al. (2003) used a slightly
different approach with a similar idea, where the stated frequency of using TATS
was regressed over combinations of information price and attributes, among others.
The authors concluded that respondents were willing to accept a small per-call
fee for customized travel information services based on the positive coefficient of
the indicator variable of customized travel information priced at 25 cents/call. The
third is the experimental economics approach, where human subjects participate in
laboratory experiments and are granted an initial endowment to buy information, as
is done in Denant-Boemont and Petiot (2003). All three methods potentially suffer
from the deficiency of SP data, which is that due to the lack of actual commitment
subjects tend to overstate their WTP. The third approach potentially has less of a
problem as real monetary transactions are involved, though still in a hypothetical
situation.

8.3.3 Information Impacts on Day-to-Day Learning

Exogenous information directly influences a traveler’s perception of her travel de-
cision environment; combined with personal experience it could alter the traveler’s
habits and knowledge of the transportation system. Polydoropoulou and Ben-Akiva
(1999) described successive stages in the learning process of ATIS users including:
awareness, consideration set formation, choice set formation, trial use, repeat use,
and travel response. Conventional travel behavior analysis has been mainly done in
a static framework, most notably using random utility models estimated on cross-
sectional data. In this work, the level of knowledge is not explicitly considered
and simplified assumptions of perfect information are made. In the study of
traveler response to ATIS, however, information has to be explicitly considered.
Thus it is only natural that we abandon the perfect information assumption and
model the process of forming habit and establishing knowledge and how it is
affected by different types of information. Mahmassani and Chang (1986), Iida
et al. (1992), and Mahmassani and Liu (1999) are among the earlier efforts in
studying empirically the day-to-day learning process. In the past decade there
has been an increasing level of interest in this problem, from both transportation
professionals and researchers in psychology and economics, e.g., Barron and Erev
(2003), Srinivasan and Mahmassani (2003), Avineri and Prashker (2005), Avineri
and Prashker (2006), Selten et al. (2007), Ben-Elia et al. (2008), Ziegelmeyer et al.
(2008), Bogers (2009), Lu et al. (2011).

To the best of our knowledge, all empirical studies of day-to-day learning in
the literature are based on laboratory experiments, which is not surprising given the
difficulty in collecting long-term longitudinal disaggregate data. We also distinguish
between two types of experimental settings: competitive and noncompetitive. In a
noncompetitive experiment, the alternative attribute values (e.g., route travel times)
are generated through an underlying sampling process by the experimenter, and are
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usually unknown to the subject and not affected by her decisions. In a competitive
(game-like) experiment, many subjects make decisions simultaneously and the
alternative attributes are determined collectively by a group of subjects’ decisions.
For example, in a route choice experiment, underlying link volume-delay functions
are specified by the experimenter, but the actual travel times are determined by
applying the number of subjects choosing a particular route as an input to the delay
functions.

Some of the major research questions to be answered from a day-to-day learning
study include: How fast do users learn (usually indicated by the declining number of
switches among alternatives)? Do users eventually behave “rationally” as speculated
in most static choice behavior or traffic equilibrium assignment models? All studies
provide users with immediate feedback on chosen alternatives (usually routes in a
route choice context) to emulate the reality that a traveler always knows her own
travel time after the trip is finished. In addition, various types of pre-trip, post-trip,
and en-route information were provided.

A subject switches among alternatives mainly for two purposes: exploration
and exploitation. Intuitively more information in addition to personal experience
(pre-trip, en-route, or post-trip) should reduce the extent of exploration as it helps
the subject learn about the decision environment faster, as was shown in, e.g.,
Avineri and Prashker (2006), Ben-Elia et al. (2008), Lu et al. (2011), and Iida et al.
(1992). However, post-trip information on unchosen alternatives could also generate
regret and actually increase the switch propensity, as shown in, e.g., Srinivasan
and Mahmassani (2003) and Lu et al. (2011). As for pre-trip or en-route real-
time information on prevailing traffic conditions, it generally increases the switches
at the point of information provision, as a subject is provided the opportunity to
exploit better alternatives revealed by the information, especially in the case of
an accident [see, e.g., Mahmassani and Liu (1999), Srinivasan and Mahmassani
(2003), Bogers (2009), Lu et al. (2011)]. However, route switches upstream of the
information provision node might actually decrease since the information reduces
the uncertainty level of the network in general, as shown in Lu et al. (2011).

Information other than personal experience could potentially give the subject
a better picture of the decision environment and make the “perfect information”
assumption usually needed for utility-maximization choice models or equilibrium
traffic assignment models more valid. However in reality our decision environment
can never be completely deterministic, and risk attitude is an important factor in
decision making. The impacts of information on subjects’ revealed risk attitudes
vary considerably, and do not necessarily result in a trend towards an “optimal
choice” as predicted in a “perfect information” based model. In a noncompetitive
environment, for example, Avineri and Prashker (2006) found that pre-trip static
information on expected route travel times in a noncompetitive environment did
not result in more subjects minimizing expected travel times; rather it increased
the heterogeneity in risk attitudes, and actually decreased the propensity to choose
the route with the less expected travel time, while Bogers (2009) found that the
most elaborate information scenario, with both post-trip information on unchosen
routes (often dubbed foregone payoff, or FP information) and en-route real-time
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information, produced the highest travel time savings. In a competitive environment,
Ziegelmeyer et al. (2008) found that FP information did not significantly increase
the subjects’ ability to find optimal departure times, and Lu et al. (2011) found that
FP information either increased or decreased the average travel time depending on
whether en-route real-time information was provided, and suggested that informa-
tion impacts in a competitive route choice environment depended to a large extent
on the network structure, and more information could make things worse off as in a
conventional Braess paradox.

8.3.4 Traveler Response to Real-Time Information

Individuals make travel and travel-related decisions at various time scales. Travel
demand is derived from the need to participate in social and economic activities,
such as going to work and visiting friends. The locations of these activities thus
determine the origins and destinations of trips, and in particular residential and
employment location choices that are usually made in the long run. The scheduling
of daily activities includes travel as an integral part, and real-time travel information
potentially will affect activity schedules. Mode choice is a relatively shorter-term
decision, while departure time and route decisions are made in an even shorter term.
Further down along the time scale, real-time adjustments of some of these decisions
are made possible by ATIS, for example, route diversion to avoid an incident. These
decisions are inter-related, and individual traveler response to ATIS potentially
spans across all of them. We first give an overview of the likely responses in the short
term, namely, temporary deviations from habitual travel and schedule decisions, and
then discuss how ATIS could potentially influence long-term decisions.

8.3.4.1 Short-Term Response

Real-time traveler information provided by ATIS potentially reduces the level of
uncertainty in the decision environment of a traveler, and could prompt a traveler to
change her previous choices that were made without the updated information. Since
the decisions have to be made in real-time, the traveler has to rely on options at her
disposal at that time and her existing knowledge of the environment, if no exogenous
guidance is available. Therefore the likelihood of a choice change depends on,
among others, the availability of alternatives and traveler’s familiarity with them.

Departure time choice. Many RP surveys show that departure time and route
changes are among the most frequent responses to ATIS, see, for example, Aultman-
Hall et al. (2000), Yim et al. (2002), and Martin et al. (2005). Furthermore, a
Mitretek study (Shah et al. 2001) provides evidence from simulated yoked driver
experiments involving the Washington DC area that pre-trip ATIS is more likely to
produce departure time changes than route choice changes. These findings are not
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surprising, given that alternative departure times are always available, and a traveler
is most likely familiar with the consequence of choosing an alternative departure
time if she sticks to the same mode/route.

One of the major benefits of real-time information is to avoid schedule delay
(defined as the difference between the preferred arrival time and the actual arrival
time for a given commute) at the destination, especially for trips with a rigid
arrival time requirement. A traveler usually has to reserve enough “buffer” time
by leaving home early to account for the unexpected trip delay to ensure arriving
on time. With pre-trip real-time information, the departure time can be adaptive to
actual traffic conditions, and as a result, the traveler might be able to depart just
in time in any situation to arrive on time. This flexibility in departure time enables
better use of the previous “buffer” time at home, and/or reduce expected schedule
delay (Shah et al. 2001), which is a major explanatory variable in departure time
choice studies (Mahmassani and Liu 1999; Jou 2001).

Route choice. It is straightforward to change routes, if the traffic network is dense
enough to provide viable alternative routes and the traveler is familiar with them.
However the level of network knowledge potentially varies significantly among the
traveler population (Ramming 2002), and it is conceivable that in some situations,
a traveler does not feel like deviating from her familiar route(s) and stepping into
the unknown.

Many surveys have the respondents’ reported route choice changes as one of the
major responses to ATIS, see, e.g., Aultman-Hall et al. (2000), Yim et al. (2002),
Dai (2002), and Martin et al. (2005). Route choice is arguably the most researched
area of traveler response to ATIS, with a particularly large body of research in binary
route switching decision-making in response to VMS or radio information in real
life, or more advanced hypothetical ATIS in SP surveys. However as we mentioned
in the introductory paragraphs, there is a lack of generalizable model or method to
predict that x% of travelers receiving information with an array of attributes a, b,
c, . . ., d will switch to route y.

Some researchers (Razo and Gao 2010, 2011; Tian et al. 2011) study the response
even before the information is received for travelers with look-ahead abilities.
A traveler does not need to commit to a particular route, but can decide later at
a switching point based on then revealed traffic conditions, and pick the route with
a lower travel time for the remaining trip. The option value of downstream real-
time information thus could potentially make a collection of alternatives that share
a common starting link more attractive than other links out of the same decision
node. Therefore the travelers respond to the information upstream of the actual
point where it is received. Empirical studies of the look-ahead behavior have been
carried out with SP data only. On the other hand, there have been a large number
of algorithmic studies, which generate optimal routing decisions depending on
traffic conditions revealed by real-time information in a stochastic network (Hall
1986; Polychronopoulos and Tsitsiklis 1996; Pretolani 2000; Miller-Hooks and
Mahmassani 2000; Waller and Ziliaskopoulos 2002; Gao and Chabini 2006; Gao
and Huang 2011), and a recent and comprehensive literature review can be found in
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Gao and Chabini (2006). These algorithmic studies are potentially useful for choice
set generation in RP studies of such look-ahead behavior in real networks.

Such deficiency is largely due to the lack of detailed field observations of route
choice changes. Earlier field observations focused on switchings at VMS locations,
see, e.g., Emmerink et al. (1995b), Chatterjee and McDonald (2004). Richards and
McDonald (2007) showed that it was difficult to capture a meaningful sample size of
respondents passing an “active” VMS in a real-life incident scenario. Less than 1%
of the commuter sample stated that they had diverted to an alternative route during
the travel diary week as a result of VMS information, although this did correspond
to 53% of those 45 drivers originally intending to travel past the incident location.
More detailed tracking of individual route choices has been made possible by the
advent of Global Positioning System (GPS) technologies. For example, Papinski
et al. (2009) compared travelers’ planned and actually taken routes (observed by
GPS) and found that 20% of surveyed travelers switch routes for various reasons
(one of them was ATIS). There have been a large number of GPS data collection
efforts throughout the world, especially with the ever increasing popularity of
GPS-enabled smart phones, and it is expected that better empirical evidence of
route choice response to ATIS can result from these efforts and more quantitative
conclusions can be drawn.

Mode choice. Generally real-time information is not found as the major drive of
mode switch in many surveys, e.g., Henk and Kuhn (2000), Yim et al. (2002).
Aultman-Hall et al. (2000) found that mode change happened only 5.7% of the
time after the callers received information from a TATS, lowest among all inquired
trip-making changes. There results are intuitive, as mode switch on the spot requires
the immediate availability of an alternative mode and enough familiarity with both
modes. An en-route traveler virtually cannot have these conditions met, and only
pre-trip changes are possible. Conceivably a regular commuter with spare vehicles
in an urban area with well-developed transit system might be able to change mode
after receiving real-time information; however the frequency of such changes must
be much lower than that of departure time or route changes. Dziekan and Kottenhoff
(2007) studied the benefits of displaying real-time information at stops of public
transport, and found that although passengers appreciated the benefits, empirical
evidence of actual mode switching was still lacking.

There are a number of experimental studies of mode choice changes in response
to ATIS, e.g., Abdel-Aty and Abdalla (2006) and Chorus et al. (2011). However,
it is questionable how realistic the settings were, given that mode choice is mostly
habitual and significantly affected by the context (e.g., the availability of a spare
vehicle and/or a viable transit route).

Destination choice and trip cancellation. The change of destination and cancel-
lation of the trip could happen only when the trip is discretionary, since generally
there are no alternative work locations and not going to work is not an option, see,
e.g., Henk and Kuhn (2000), Aultman-Hall et al. (2000), Yim et al. (2002), Martin
et al. (2005).
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For discretionary trips, the effects of ATIS on shopping trip destination choice
was investigated in a set of Internet-based stated preference surveys by Kraan et al.
(2000) and Mahmassani et al. (2003). In the survey, respondents were asked to
make a (simulated) shopping trip from a central location in Austin, Texas to a
major suburban mall. It was found that respondents who were less familiar with
the Austin area were more likely to switch destination, but not route. We postulate
that this result might be explained by the fact that individuals are more likely to have
landmark knowledge than route knowledge, as defined in Freundschuh (1992) and
reviewed in Ramming (2002).

Yim et al. (2002) summarized empirical evidence from several behavioral
surveys conducted in the San Francisco Bay Area between 1995 and 1999, and
found that noncommuting drivers changed their travel choices more than commuting
drivers, including the occasional cancellation of trips, perhaps reflecting the flexi-
bility inherent in nonwork trips.

Daily activity schedule adjustment. As travel is part of a daily activity schedule,
the impact of real-time information can potentially extend beyond the trip-making
itself and reach related activities.

With a more precise estimate of trip time, travelers could make minor changes
to activities at both ends of the trip and derive more utility from the given amount
of time. For example, if a bus rider knows that the bus is delayed from a real-time
bus location information system, she could stay at office and make good use of
the time (say, finish up a report) rather than wait at the bus stop (especially when
the weather is bad). Similarly, if a driver learns of a severe incident downstream
on her way to an appointment, she could notify relevant people to make other
arrangements. Empirical evidence of minor activity adjustments at trip ends is
generally connected to departure time choice change, see, e.g., Shah et al. (2001),
Dziekan and Kottenhoff (2007).

A major change of activity schedules might be related to trip cancellation,
destination change, and/or a major change of departure time (e.g., moving the trip
from AM to PM, rather than from 7:00 am to 7:30 am). People schedule the activities
that they need to accomplish in a day based in part on the time taken by each
activity and the time required to travel between activities in different locations,
thus a major change of the timing and/or locations of a trip usually accompanies
rearrangements of other activities. Although conceivable, such empirical evidence is
not as common, with only two studies in the literature to the best of our knowledge.
Sun (2006) conducted a laboratory experiment, where activity rescheduling is
explicitly explored as one of the responses to ATIS. Subjects were found to be
willing to reschedule activities as well as change travel choices when notified
of abnormal traffic conditions. Tsirimpa (2010) developed a model system that
includes two models for travelers’ response to ATIS estimated on RP and SP
data from the Athens metropolitan area. The first model incorporates decisions
(including modifying activity daily schedule) before or during the first primary
tour, after acquiring traffic information from current traffic information systems.
The second model concerns en route traffic information acquisition from ATIS and
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incorporates decisions, such as add activity, delete activity, and change the sequence
of activities. The model estimation results indicate that travelers are willing to
change their daily activity pattern, provided that they would be confident of the
reliability of the information content.

Stress and anxiety reduction. Many surveys have found that trip-makers appre-
ciate having travel information available even if they do not or cannot modify their
trip-making behavior in any way because of it, see, e.g., Yim et al. (1999), Petrella
and Lappin (2004). Lee (2000) has attempted to make the notion of travel stress
relief more precise by arguing that the value of time spent in travel includes at least
two distinct components: the opportunity cost of the activities foregone by traveling,
and the disutility of the travel experience itself. Reduced stress and anxiety improve
the travel experience, and likely reduce the value of time.

8.3.4.2 Long-Term Response

Habitual trip-making behavior adjustments. The responses discussed in the
previous section are temporary deviations from regular travel choices and/or activity
schedules. If real-time information is available for a long time period, a traveler’s
habitual choices might change as well. Real-time information provides a traveler
with more flexibility in travel choices and activity schedules, which will result
in more efficient use of time. The option value of information in route choice
as discussed in the previous section on short-term responses could potentially be
realized in the context of all travel choices and activity schedules, provided that
alternative travel options or schedules exist and it is feasible to switch in real-time.
In addition, even if a change is impossible due to the lack of alternatives, real-time
information could have psychological benefits (e.g., reduced anxiety), which over
time might also encourage a habitual preference to the alternatives with real-time
information.

The study of habitual behavior requires longitudinal behavioral data at the
individual level and is generally lacking. Among the limited RP evidence, Uchida
et al. (1994) surveyed commuters in a three-route corridor in Osaka, Japan,
following the installation of a variable message sign (VMS) network that provided
predicted travel time information, and found that drivers showed a reluctance to
switch away from their habitual route, but over time, roughly 40% of respondents
reported that they had changed their habitual route as a result of the ATIS.

Historical information might be useful in influencing habitual choices. Bogers
(2009) conducted a series of laboratory experiments on binary route choice where
subjects were provided with post-trip information of the travel time on unchosen
routes. Such information might affect habitual choice, as travelers were provided
the opportunity to evaluate both their chosen and unchosen alternatives. Kenyon
and Lyons (2003) worked with a number of focus groups in the UK on mode
choice and found that mode choice was mostly automatic and habitual, based on
subconscious perceptions of the viability and desirability of travel by modes other



8 Response to Traveler Information 209

than the dominant mode. Their results suggested that presentation of a number of
modal options for a journey in response to a single enquiry could challenge previous
perceptions of the utility of non-car modes, overcoming habitual and psychological
barriers to consideration of alternative modes.

Residence and/or employment location choice. The variety of changes brought
about by ATIS in the trip-making context could lead people to reconsider their
decisions regarding residential and/or employment location. As one example, if
more predictable travel times became available from an ATIS, households could
move farther away from job locations while still maintaining the same average
commute time. Again, rearrangements in daily activity schedules brought about by
ATIS could allow more time for outdoor activities, and incite households to take
advantage of this by moving. Through these kinds of effect, ATIS could ultimately
have an impact on urban form and structure. Boyce (1988), in an early paper, evoked
this possibility.

However there is little empirical evidence, largely due to the limited deployment
of ATIS. Argiolu (2008) (see also Argiolu et al. (2008)) studied how three ITS-
related concepts affect office location choice, namely, automatic car lane, automatic
bus lane, and people mover from park and ride, which potentially increased
the accessibility of office locations. ATIS however was not explicitly studied.
Rodriguez et al. (2011) found that in a laboratory experiment, providing multimodal
accessibility information to people who were relocating enhanced the attractiveness
of locations that support multiple travel modes.

8.3.5 Summary of Driver Response Literature

Our review of the driver response literature indicates that the available information
tends to be highly specific to particular situations. In the data analysis and modeling
efforts, an indicator variable is usually used to represent a specific information
system, leading to results that are difficult to generalize. As mentioned before
and also discussed in Sect. 8.2, there are a large number of information types,
and presumably a general model should include an array of ATIS attributes that
characterize the information type. To calibrate such a model, however, will require
more deployments, more experience with deployed systems, and more research and
analysis.

8.4 Evaluating the Effectiveness of ATIS

Owing to their complexity ATIS should be evaluated thoroughly before being imple-
mented. ATIS evaluation can take place either through field tests or in a laboratory.
Well-conducted field tests are more likely to reveal the ground truth reliably, since
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they are based on real-world conditions and actual drivers. However, such tests are
generally very expensive and potentially disruptive, restricting the range and scope
of strategies that might be evaluated. Public officials and administrators may also be
wary of the potential for adverse effects resulting from some or all of the proposed
strategies. Laboratory evaluation thus has many advantages, since it can take place
in a controlled environment and identify issues before the ATIS is actually deployed.
Traffic simulation tools provide unique opportunities for laboratory testing and
evaluation, owing to their rich and flexible modeling capabilities that can capture
time-varying travel demand, detailed driver behavior, demand–supply interactions,
and network performance. Such flexibility nevertheless comes with the need to en-
sure that the models are accurate reflections of observed processes and phenomena.
Simulation-based ATIS evaluation is therefore conditional on the availability of
well-calibrated choice models that faithfully capture individual drivers’ response to
the range of situations observed in the field. This topic is naturally rather complex,
relying on specialized data collection and model estimation methodologies. The
reader is referred to Polydoropoulou (1997) and Polydoropoulou and Ben-Akiva
(1999) for an in-depth review and treatment of this subject, one that continues to
generate significant research interest.

8.4.1 Evaluating the Economic Benefits of ATIS

The economic benefits that an ATIS user derives from ATIS services are very closely
tied to the user’s response to ATIS: they are both aspects of the same internal
evaluation and decision-making process. The discussion in Sect. 8.3 covered many
aspects of ATIS user response, ranging from relatively simple behavioral responses
like route switching to complex responses such as rearranging the daily activity
schedule. This range exceeds the gamut of responses conventionally considered in
transportation benefit evaluation exercises, which tend to focus on travel cost and
time savings, and indicates that considerable care must be taken in thinking about
and quantifying ATIS benefits.

For example, travelers’ rearrangement of their daily activity schedules may lead
to more rather than less time being spent in travel, as they are able to carry out more
activities because of more precise trip planning information. If one were to ask such
travelers if they were better off because of ATIS, they would reply affirmatively,
even though they spend more time traveling: the benefits that they derive from the
additional things they do more than offset the disutility of the time spent traveling.

Because understanding of individual traveler response to ATIS is still relatively
primitive, research into the impacts of ATIS tends to focus on network-level effects,
using simulation tools that incorporate assumptions about traveler response. The
remainder of this section discusses current research in this area.
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8.4.2 Evaluation Parameters

ATIS are characterized by a host of models, modeling assumptions, input parame-
ters, and design criteria. ATIS evaluation should therefore consider the effects of the
associated modeling, design, and operational choices.

The surveillance system is characterized by the location, type, and number of
sensors in the field. Sensors can also have measurement errors. The detection and
communication of incidents and their severity will also impact the effectiveness of
the ATIS. Typically, there may be delays in obtaining and transmitting information
about an incident, and uncertainty about its duration. The importance of such
design characteristics of the surveillance system can thus be evaluated. The data
and guidance communication interfaces between different ATIS entities can be
modeled and their performance assessed. Some important aspects include latency
in information transmission and errors in the information.

ATIS design parameters such as the estimation and prediction horizon lengths,
the frequency of information updating, and the time resolution of the provided
guidance influence ATIS effectiveness. The computational time required to generate
predictive guidance depends on the size of the network and the available compu-
tational resources (this time also determines the minimum feasible time between
information updates). The information generation module may also use a number
of models to simulate demand aspects of the transportation system (such as route
choice and departure times) and network performance (such as queue formation and
dissipation). These models can be imperfect reflections of the ground truth, and the
associated modeling errors must be studied and their impact on the effectiveness of
the generated guidance assessed.

8.4.3 Evaluation Frameworks

Different frameworks for the evaluation of ATIS are described in Balakrishna et al.
(2005). ATIS can be evaluated either in a (simulation) laboratory or in the real
world. A real-world test uses real-time traffic data directly from the surveillance
system. In contrast, a laboratory test replaces online communications with either an
archived data set of past surveillance observations, or a simulator of the real world
surveillance system.

The evaluation can be either without guidance dissemination (open loop) or
closed loop. When guidance is not disseminated to any drivers, the evaluation
compares estimated and predicted network performance measures (which form
the basis for the generation of guidance) with corresponding real-world traffic
measurements. When some or all drivers have access to the information generated
by the ATIS, the evaluation provides a feedback mechanism for informing equipped
drivers of the current guidance strategy and for evaluating the resulting driver
response to the disseminated information.
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8.4.3.1 Experimental Design

The previous classification results in four possible evaluation approaches:

1. Laboratory evaluation without ATIS. Archived surveillance data are used to
estimate current network state. State predictions for future time periods are eval-
uated through comparisons with the corresponding observations in the archived
data set. A simulation laboratory (such as a microscopic traffic simulator) may
also be used to compare the predicted network state with the ground truth
to establish the benefits of prediction. This step is critical in assessing the
appropriateness of the models within the guidance module and could provide
valuable feedback for model refinement. Such validation tests with the DynaMIT
system have been conducted on networks in Irvine, California (Balakrishna
et al. 2004), lower Westchester County, New York (Antoniou et al. 2004), and
Hampton Roads, Virginia. Similar studies with DYNASMART have focused on
networks in Fort Worth, Texas (Huynh et al. 2003) and Knoxville, Tennessee.
Several papers have also addressed the impacts and benefits of variable message
signs, high occupancy tolls, and hybrid DTA approaches on network performance
(Chiu and Mahmassani 2002; Doan et al. 1999; Murray et al. 2001).

2. Laboratory evaluation with ATIS. A simulation laboratory replaces the real
world. Traffic data from the simulated surveillance system are transmitted in real
time to the guidance generation system. Prediction-based guidance is delivered
to equipped drivers in the microscopic simulator, and network performance
measures are computed to ascertain the effectiveness of the guidance. This test
helps validate the models that capture route choice and response to information
but requires that the simulation laboratory first be calibrated against real data.
Laboratory evaluations with the dissemination of guidance are limited. Yang
et al. (2000) report on MITSIMLab for the evaluation of ATIS. Mahmassani and
Jayakrishnan (1991), Stephanedes et al. (1989), and Jayakrishnan et al. (1994)
study simulation-based evaluations of route diversion. Jayakrishnan et al. (2001)
provide a brief qualitative discussion on the possibility of coupling the meso-
scopic simulator DYNASMART with the microscopic program PARAMICS.
In their framework, DYNASMART uses a simplified network abstracted from
the PARAMICS model to generate paths. These paths are subsequently input to
PARAMICS. Guidance about these paths may be used by PARAMICS drivers,
thus allowing for the testing of ATIS.

3. Real-world evaluations without ATIS. Traffic data received in real-time from
the actual surveillance system in the field are used to perform state estima-
tion, state prediction, and guidance generation. The predicted network state
is compared with actual sensor measurements as they become available, to
validate the congestion reduction capability of the guidance generation system.
This step also involves the testing of the communication interfaces between
the surveillance system and the guidance module. Real-world evaluations of
DTA-based prediction models, without actually disseminating guidance, have
been documented on large-scale networks: DynaMIT has been applied in



8 Response to Traveler Information 213

lower Westchester County, New York; downtown Los Angeles, California; and
Hampton Roads, Virginia. DYNASMART has been tried in Houston, Texas.
These tests are steps towards real-world, closed-loop ATIS operations in a traffic
management center (discussed next).

4. Real-world evaluations with ATIS. The feedback loop is closed with real
equipped drivers on the network receiving the generated guidance. Limited field
tests with guidance dissemination have been reported. Smith and Perez (1992)
present the evaluation of INFORM, a traffic management system designed for
Long Island, New York. Similar evaluations of ATIS include TravInfo (Miller
1998) and ADVANCE (Saricks et al. 1997).

Few papers discuss detailed simulation tests designed to objectively assess the
quality of route guidance. Some such papers are reviewed next, and their primary
results and conclusions summarized.

8.4.3.2 Select Results

Kaysi et al. (1993; 1995) considered ATIS design and identified the importance to
system effectiveness not only of accurate real-time traffic information, but also of
a predictive capability able to forecast the effects on traffic conditions of drivers’
reactions to ATIS messages that they receive. Simulation methods were used to
investigate the impact on congestion reduction of system design parameters such as
message update frequency and routing strategy. They recognized the phenomenon
of overreaction, in which a significant number of motorists respond similarly to
ATIS messages, and so exacerbate or displace congestion, and showed that it could
be reduced through frequent updates or strategies that explicitly attempt to spread
traffic over multiple routes.

Emmerink et al. (1995a) provide an early attempt to quantify the network impacts
of ATIS under nonrecurrent congestion. The paper provides a qualitative discussion
on the factors and issues, including expectations about drivers’ psychological
behavior that might determine the effectiveness of ATIS. Using a network with a
single OD pair and several routes, the authors empirically analyze the effects of
ATIS market penetration and information update frequency. The findings illustrate
the concept of over-reaction: as more drivers begin to use the ATIS, network benefits
increase before tapering off or even worsening (Fig. 8.1).

Figure 8.1 further indicates that over-reaction at higher ATIS usage levels may be
minimized or even eliminated by the providing more frequent information updates,
so that drivers may adapt their route choice decisions more closely with the evolving
network conditions. A maximum travel time improvement of about 25% is reported.

Levinson (1999) reviews several studies that assess the impact of ATIS on
network travel times. His discussion reveals that travel time savings have been
found to vary over a wide range, between 2.7% and 55%. Wunderlich et al. (2001)
analyze a survey for the Washington DC area, concluding that ATIS improved on-
time reliability without a significant reduction of in-vehicle travel time.
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Fig. 8.1 ATIS impacts by usage level and update frequency (Emmerink et al. 1995a)

Bottom et al. (1999) discuss consistent, anticipatory route guidance in the
framework of fixed-point problems and present a detailed analysis of different
solution algorithms to tackle the same. The paper evaluates various guidance
generation parameters by using a microscopic traffic simulator to reflect real-world
drivers and their reactions to guidance generated in a rolling horizon. The study
confirmed that shorter guidance recomputation intervals (the time between two
successive horizons) led to higher speeds and lower travel times. A similar effect
was observed when more frequent updates were initiated within each guidance
recomputation interval. It was found, however, that the overall benefits of guidance
dissemination reduced on either side of a horizon length of 30 min. The authors
hypothesize that very short prediction horizons are unable to account for demand
patterns that change in the future, while poorer quality forecasts further in the future
also somehow reduce the overall quality of the generated guidance.

Balakrishna et al. (2005) analyze the impact of several key ATIS parameters by
using an evaluation framework similar to the one in Bottom et al. (1999). The paper
focuses on three aspects: the frequency with which new guidance is disseminated
to drivers, the market penetration of ATIS services, and the extent of errors in
predicting future demand. DynaMIT, a simulator designed to generate consistent,
anticipatory route guidance, was applied to an incident scenario on a freeway
network from Boston, Massachusetts. A greater update frequency (or a shorter
update interval) was found to significantly decrease travel times (Fig. 8.2(a)). The
results also indicate that the marginal benefit of a very high update frequency may
not justify the additional computational resources required to support it. The choice
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Fig. 8.2 (a) Impact of update frequency (b) Impact of guidance penetration

of update frequency may thus depend on other factors, such as the computational
power available or the desired level of network performance.

Figure 8.2(b) illustrates the effect of market penetration rates on the effectiveness
of ATIS. While the average travel time generally decreases with greater ATIS
usage, there is evidence of slight over-reaction with high market penetration.
However, over-reaction may be reduced or even eliminated through more frequent
guidance dissemination. Differences between these results and those from previous
studies may reflect the impact of the network, demand characteristics, assumptions
regarding ATIS design, and the overall structure of the evaluation methodology
(which underlines the importance of establishing a simulation-based laboratory for
detailed testing).

Prediction-based ATIS must assess the short-term evolution of future demand in
order to predict the evolution of network congestion. Demand prediction models
adjust historical demand patterns according to recent sensor measurements, usually
a two-step process involving state estimation (to match immediately previous time
intervals to real-time sensor data) followed by demand prediction that extrapolates
these deviations into the future. Balakrishna et al. (2005) study the impact of demand
prediction errors on guidance quality. Figure 8.3 shows that systematically over- or
underpredicting network demand results in a deterioration in the benefit of ATIS.
Further, it is better to overpredict the demand rather than estimate fewer vehicles for
the short-term future.

Florian et al. (2006) evaluate the impact of ATIS using an incident scenario on a
simple network with two route alternatives. The simulation experiments focused on
varying levels of guidance penetration. The paper reports that the mean travel times
improve only until about 50% guidance penetration. Mean travel times are mostly
flat beyond this point, with only a slight degradation in performance. An analysis of
the distribution of mean travel times between guided and unguided drivers (Fig. 8.4)
indicates that the mean travel time for guided drivers approaches that for unguided
drivers at higher levels of ATIS market penetration. Further, DynaMIT guidance is
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Fig. 8.3 Impact of demand prediction error
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beneficial to both guided and unguided drivers. However, as more guided drivers
switch to the alternative path, they impose increasing congestion costs on each
other, and must therefore share the benefits. Travel time reliability for guided drivers
remained higher (with lower standard deviation) than for unguided drivers.
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Fig. 8.5 Lower Westchester County network and incidents [source: Google]

In recent work, Paz and Peeta (2009a; 2009c) propose a route guidance gen-
eration method that integrates both the information provider’s network control
objectives and its real-time estimation of driver response behavior. The model of
traveler response to guidance has a fuzzy multinomial logit structure, where the
systematic utility component is obtained using aggregate if–then rules. In Paz and
Peeta (2009b), the authors describe an online approach to calibrate and refine the
behavior model based on discrepancies between the dynamic actual and estimated
system states. They use simulation experiments of the Borman expressway network
in Indiana to test the effectiveness of the proposed approach.

A recent application (Rathi et al. 2008) involves the simulation-based evaluation
of predictive route guidance disseminated through variable message signs (VMS)
on the Lower Westchester County network in New York state. The paper attempts
to reduce network travel times when incidents disrupt highly congested commuter
traffic traveling north to south on freeways and parkways. Figure 8.5 shows the
study network and the locations of the incidents that were considered. The two
1-hour incidents were modeled as separate scenarios to isolate the impacts on
the surrounding OD pairs. VMS locations (shown as triangles in the figure) were
selected to provide drivers with route switching options upstream of the incidents.

The evaluation was closed-loop—DynaMIT’s travel time guidance generated
with a prediction horizon of 30 min was disseminated to those drivers in
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Table 8.1 Lower Westchester County: incident scenarios and statistics

Scenario Mean TT (sec) Vehicle Hrs Vehicle Hrs Saved

No Incident 956.4 53,533 –
Incident 1532.6 85,852 –
VMS - 1 Pred Iter 1261.8 70,673 15,179
VMS - 2 Pred Iters 1266.2 70,920 14,932
VMS - 3 Pred Iters 1239.4 69,419 16,433
VMS - 4 Pred Iters 1246.9 69,841 16,011
VMS - 5 Pred Iters 1239.9 69,451 16,401

Fig. 8.6 Lower Westchester County: results by departure time

MITSIMLab who had access to en-route information. The use of VMS to
disseminate guidance had the expected effect of reducing the impact of the incident,
indicated by Table 8.1. Performing three prediction iterations was found to yield the
maximum savings in travel time and vehicle hours traveled.

A comparison of trip frequencies by travel time indicated that a significant
number of vehicles with lower travel times had shifted to a higher travel time
range due to the incident. VMS guidance caused a substantial drop in the number
of trips with large travel times. Predictive route guidance significantly decreased
the average travel times for those departing in time intervals most affected by the
incident (Fig. 8.6). The Lower Westchester County case study thus reinforces the
congestion mitigating potential of route guidance on congested, real networks.
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8.4.4 Summary of Results

Given that real-world ATIS implementations are bound to be expensive, it is not
surprising that the laboratory evaluation of ATIS has drawn considerable research
interest. While several papers have focused on determining the network impacts
of ATIS, the quantitative benefits are hard to generalize. Contributing factors
include case study situations that vary in the ATIS market penetration, network size
and topology and demand characteristics, and the type of guidance disseminated.
However, the results largely seem to agree on the qualitative aspects of the said
benefits, and advocate for predictive information at a suitably high update frequency.
Given the speculative nature of the studies thus far encountered, a natural direction
for the future is in the rigorous and objective testing of ATIS on real-world networks
with a strong focus on collecting detailed behavioral response data to support the
various hypotheses, rather than relying on often uncalibrated simulation tools to fill
this current gap.

8.5 Conclusion

This chapter undertook a detailed review of three key aspects in the modeling,
design, evaluation, and deployment of ATIS: (a) models of drivers’ behavioral
response to ATIS under diverse contexts, (b) ATIS design concepts and parameters,
and (c) the mostly simulation-based evaluation of ATIS properties and network
performance. Our review illustrates that ATIS research methodologies are largely
based on limited field data supported by an assortment of simulation models and
outputs. Key limitations of the current state of the art are the lack of substantial RP
data about drivers’ real-world responses to ATIS, and the rudimentary nature of the
choice models embedded in most simulation tools. These two drawbacks in effect
reinforce each other, since more complex behavioral models require RP data for
calibration and validation.

The future, however, looks promising. Technological advances are lowering the
traditional barriers to collecting large volumes of relevant information at the level of
individual users of the transportation infrastructure. Rapid adoption of instrumented
devices such as GPS navigation units, bluetooth devices, and smart phones can help
boost sample sizes as well as the accuracy with which driver choices are reported
back to the modelers and planners. It is hoped that such rich RP datasets will
facilitate the move from simplistic, hypothetical driver response models to realistic,
well-calibrated, and validated models that may then be integrated into network
simulation tools for practical analyses that reflect the ground reality. Such models
may include an array of ATIS attributes, each with multiple levels, introducing
unprecedented sensitivity and fidelity into the driver response models. A comparison
of subsequent results similar to those reviewed in this chapter should be highly
interesting and instructive.
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Chapter 9
Modeling Within-Day Activity Rescheduling
Decisions under Time-Varying Network
Conditions

Yunemi Jang, Yi-Chang Chiu, and Hong Zheng

Abstract The within-day activity rescheduling decision process is an integral part
of the travel choices when a traveler fulfills his/her daily travel activities. The within-
day activity rescheduling decision takes place when the currently executed activity
schedule is being interrupted and time pressure or time surplus is being created by
traffic condition and/or activity attribute changes. Adjustment may also be triggered
by changes that reduce time pressure and create time surplus.

It is postulated in this research that a traveler aims to maximize his/her
utility while rescheduling the remaining activities. A utility maximization activity
rescheduling model is proposed to depict this decision process. Moreover, time-
varying travel times between activity locations are explicitly incorporated in the
proposed activity adjustment model and solution algorithm, establishing consistency
between the adjusted activities, schedules and the time-varying traffic conditions.
Numerical studies demonstrate the solution properties of the proposed activity
rescheduling model.

9.1 Introduction

It is well understood that the traveling public makes trips to fulfill daily activities in
order to satisfy certain desires and needs. The travel decisions include both long-
term and short-term choices. Those choices are often made by considering the
interrelationship between the start time and the duration of the activities as well
as the travel needs from one activity location to the next. The traditional trip-
based travel-demand modeling approach addresses the interrelationship between
travel agenda and network conditions via a sequential iterative procedure. However,
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several drawbacks of applying the sequential procedure have been pointed out by
various studies (Bowman and Ben-Akiva 1997; Bhat and Koppelman 1999; Lam
and Yin 2001; Lin et al. 2008). The primary limitation of the trip-based approach is
the lack of a cohesive linkage among activities composing an activity schedule.
As a result, temporal and spatial interdependency that bounds the feasibility of
a traveler’s daily activities is likely to be violated. The activity-based modeling
approach, an emerging modeling technique, uses an individual’s activity as a basic
modeling entity, arguably possessing a sound modeling concept and behavioral basis
describing a traveler’s sequenced travel behavior.

Activity-based models (ABM) have been extensively studied in the last three
decades (Hägerstrand 1970; Clarke 1986; Recker et al. 1986a, 1986b; Gärling
et al. 1989; Kitamura et al. 1996; Miller and Roorda 2003; Bhat et al. 2004).
Based on the concept of a space–time prism proposed by Hägerstrand (1970),
several activity-based travel studies have been conducted, including CARLA
(Combinatorial Algorithm for Rescheduling List of Activities) (Clarke 1986),
STARCHILD (Simulation of Travel/Activity Responses to Complex Household
Interactive Logistic Decisions) (Recker et al. 1986a, 1986b), SCHEDULER
(Gärling et al. 1989), AMOS (The Activity-Mobility Simulator) (Kitamura
et al. 1996), CEMDEP (A Comprehensive Econometric Micro-simulator for Daily
Activity-Travel Patterns) (Bhat et al. 2004), and TASHA(Travel Activity Scheduler
for Household Agents) (Miller and Roorda 2003). Nowadays, several transportation
agencies have implemented or are in the process of promoting activity-based
models in practical applications, including Portland (Bradley 1998), San Francisco
(Jonnalagadda et al. 2001), Denver (Sabina and Rossi 2007), Sacramento Area
(Bradley and Bowman 2010), and Columbus (Vovsha et al. 2003).

Most of the prior ABM research has focused on pre-planned schedules, in
which activities’ attributes and sequences are determined in compliance with
certain space–time constraints for assigning activities to each individual (Wigan
and Morris 1981; Gärling et al. 1989; Recker 1995; Bowman and Ben-Akiva 1997;
Kitamura et al. 1998; Arentze et al. 2000; Miller and Roorda 2003). In contrast,
activity adjusting/rescheduling behavior triggered by an unexpected event—which
is a common situation in a within-day travel decision process—has not been well
investigated. In this domain, noteworthy work appears until recently; examples in-
clude mathematical and analytical models (Timmermans et al. 2001; Joh et al. 2002;
Gan and Recker 2008), parameter calibration (Joh et al. 2004), and data collection
and interview design (Joh et al. 2005; Ruiz and Timmermans 2006; Roorda and
Andre 2007).

Timmermans et al. (2001) embodied the time pressure concept suggested by
Gärling et al. (1999) in a rescheduling decision model framework. Further, they
suggested an S-shape utility function and proposed the generic form to model a
positive correlation between utility and activity duration. Joh et al. (2002) proposed
the AURORA (Agent for Utility-driven Rescheduling of Routinized Activities)
model, in which a tree structure contains a set of rescheduling decisions including
duration change, activity insertion, resequencing, etc., applying the utility maxi-
mization rule to model the rescheduling behavior. The parameters of AURORA are
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estimated using activity-travel diaries in the subsequent research (Joh et al. 2004).
Recker et al. (1986a, 1986b; 1995) proposed a rule-based simulation model, called
STARCHILD to model daily activity schedules. Gan and Recker (2008) extended
Recker’s framework to investigate activity rescheduling process behavior, based
on a resistance assumption that people always prefer to reschedule activities in
a way that maintains the similarity to the original preplanned schedule. Miller
and Roorda (2003) used a simulation model to schedule within-a-day activities by
sequentially inserting activity “episode” for each individual member of a household.

Meanwhile, some researchers have conducted surveys attempting to understand
how the actual activity rescheduling decision mechanism is triggered. In this regard,
Joh et al. (2005) conducted an empirical survey to investigate the incentive of
occurrence and types of adjustment associated with the triggered rescheduling
behavior. Ruiz and Timmermans (2006), by an Internet-based survey, analyzed the
feasibility of activity scheduling conflict when a traveler inserts an activity between
two consecutive ones. They tested several plausible duration distribution functions
and showed some findings related to rescheduling behavioral tendencies. Roorda
and Andre (2007) performed a computer-aided telephone survey of a hypothetical
scenario of a 1-h-delay and tried to correlate decision strategies to the scenario.
Their results validate that sudden network congestion is likely to activate the
subsequent activity adjustment/rescheduling decision.

While above studies shed lights on understanding the rationale of the reschedul-
ing process, they omitted the time-varying traffic/network dynamics component as
well as its influence on the rescheduling behavior mechanism. The relevance of
time-varying travel time to the activity rescheduling problem is that, when one
makes a decision to re-timing and/or resequencing activities, the time-dependent
travel time from the preceding activity to its next needs to be valid subject to the
time–space constraint imposed by the adjusted timing.

The emphasis of our research is to explicitly account for time-varying network
travel time in the within-day activity rescheduling decision. The network/traffic
conditions vary over time, due to recurrent/nonrecurrent traffic congestions, and so
do the travel time between activity locations. When activity attributes are modified
or activities are resequenced, the travel time between activities will need to be
accounted for to obtain consistent decisions, meaning that the travel time used for
decisions shall be the same as those experienced in the actual travel. Time-varying
nature is often considered in the dynamic traffic assignment context. These models
assign/simulate entities of individual travelers and their route choice decisions along
a given origin–destination-departure time (O–D-T) journey. Some prior studies
performed dynamic traffic equilibrium analysis in the context where O–D journeys
are expressed as given activity chains or tours (Abdelghany et al. 2001; Lam and
Yin 2001; Abdelghany and Mahmassani 2003; Kim et al. 2006; Maruyama and
Harata 2005,2006; Lin et al. 2008) but none of them studied activity resequencing.
In a more recent study, an innovative activity travel network (ATN) concept and
approach was proposed. In this ATN representation, virtual links were created to
represent additional activity choices dimensions and each route in the augmented
network represents a set of travel and activity arcs. Therefore, choosing a route
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is analogous to choosing an activity location, duration, time of participation, and
travel route (Ramadurai and Ukkusuri 2010). This approach allows one to establish
a dynamic user equilibrium solution combining the activity and travel decisions in
a preplanning context.

Overall, it is apparent that less attention has been given to the decision process
in adjusting the remaining activity schedule due to time pressure or time surplus,
caused by either the unexpected changes in network condition or occasionally
modified activity agenda. To model activity adjustment decisions resulted from
network condition changes, one needs to explicitly account for time-varying travel
time in the decision process.

This paper first presents a utility-based within-day activity rescheduling model
to capture the activity adjustment decision process. The suggested utility maxi-
mization formulation simultaneously determines the new activity sequence, and the
reoptimized start time and end time for each activity. Second, a solution algorithm
incorporating a branch-and-cut technique is proposed with the goal to maintain
computational efficiency in a simulation environment. Finally, the activity decision
model and algorithm are demonstrated with the unique consideration of accounting
for time-varying travel cost in the case studies.

The paper is structured as follows: The rescheduling decision framework is pre-
sented in Sect. 9.2, including model assumptions and decision context. Section 9.3
develops the model formulation of rescheduling decision process and the solution
algorithm. In Sect. 9.4, the capability of the proposed rescheduling model is
numerically verified in two simplified case studies. Section 9.5 concludes this paper.

9.2 Rescheduling Decision modeling Framework

9.2.1 Modeling Considerations

When rescheduling the remaining daily activities, the possible decisions may
involve start time, duration, and precedence relationship between activities. With
regard to rescheduling decision modeling, several considerations are discussed
herein in order to clarify the modeling assumptions and scopes.

Three activity schedules are defined: executed schedules, preplanned schedule,
and updated schedule. Given a preplanned schedule, the executed schedule refers to
the portion of the preplanned schedule that has been executed until the instance at
which the rescheduling decision is to commence. The updated schedule refers to the
newly generated schedule replacing the preplanning schedule from the decision time
instance onward. Thus, within-day temporal adjustment of a preplanned schedule
stemming from exogenously introduced events is the primary concern, which
necessitates incorporating the notion of time budget constraint into the rescheduling
problem. The time budget constraint is imposed under both time pressure and time
surplus situations. We consider time pressure occurs when (1) a traveler needs to
insert additional activities into his/her existing schedule or (2) prolonged travel time
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causes arrival delay to the subsequent activity. In these cases, one may need to
adjust the subsequent activities’ start time and/or duration or cancel one or several
preplanned activities in order to accommodate the unexpected event. In contrast,
time surplus arises when the exogenous event calls for the cancelation of one or
several existing activities or shortening the duration of remaining activities in the
preplanned schedule.

Different from prior research, this research does not consider randomly
generating new activity decisions in the rescheduling process. The underlying
assumption of the proposed decision mechanism is to retime and re-sequence the
existing activity schedule in order to retain the original preplanned activities as
much as possible. The activity rescheduling process follows a utility maximization
framework subject to the time budget constraints. The utility maximization concept
applied in our daily activity rescheduling model was also adopted in several studies
(Becker 1965; Ashiru et al. 2004; Kim et al. 2006; Ye et al. 2009). However, our
model is aimed at optimizing the new timing and sequencing simultaneously to
maximize total utility driven by participating activities. A quadratic marginal utility
function is incorporated into the utility maximization model in order to achieve the
computational tractability in the practical problems.

Moreover, the proposed model focuses on linking activity-based decisions and
daily traffic dynamics in a consistent manner. Several prior rescheduling studies
considered the feasibility of travel time in the time–space prism, but with a
simplified hypothesis of constant travel time. For example, AURORA adopted a
static travel time to reschedule activities under time pressure (Joh et al. 2002).
The static travel time was also referenced in the reschedule model with a formu-
lation of pick-up and delivery problem with time-window constraints proposed by
Gan and Recker (2008). Although those models addressed the importance of travel
cost in a rescheduling decision model, they did not consider time-varying travel cost.

Presenting a time-dependent dynamic traffic condition in the activity reschedul-
ing model is not trivial. When considering fine-grained network/link travel times,
the model formulation and solution algorithm need to explicitly search a reschedul-
ing solution in which the travel time among activity pairs is consistent with the
time-dependent travel times recognized/anticipated by the traveler. This consis-
tency becomes important when linking the within-day rescheduling decisions with
simulation-based dynamic network models in a high-fidelity temporal resolution.
This feature distinguishes our study from most of the prior research.

9.2.2 Decision Context

An individual’s rescheduling behavior is triggered by an unexpected incident due to
either a change of the existing schedule (e.g., last minute canceling of a preplanned
meeting) or a change in the network condition (e.g., accident).

The decision process of the proposed model is depicted in Fig. 9.1. At a given
time instance t, each traveler would check whether he/she needs to reschedule
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Fig. 9.1 Framework of within-day schedule modification

the activities. If rescheduling is not needed, the individual continues executing the
preplanned schedule without adjustment; otherwise, the rescheduling model will
generate a different schedule according to the nature of the event. Two events are
considered in the proposed model, i.e., individual’s activity agenda may change
suddenly or the traffic condition in the assignment framework changes. The same
process is repeated when the decision time instance is advanced from time t to t+1.
One may note that herein the status of an individual’s activity agenda could change
passively, rather than actively. For example, let event E be a meeting between two
individuals A and B in a preplanned schedule, if A’s endogenous decision is to drop
E in his/her rescheduling process due to a time pressure, then this event becomes
an exogenous event to B’s schedule and B’s activity agenda is changed suddenly.
In the following discussions we refer to this exogenous change of an activity agenda
as activity agenda change.

9.3 Model and Solution Methodology

9.3.1 Rescheduling Decision Process

As discussed above, two decision contexts are considered in the proposed
rescheduling framework, including network condition change and activity agenda
change. In the network condition change situation, as shown in Fig. 9.2, the traveler
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receives the network condition change information, and first assesses if the network
condition change leads to a time surplus or time pressure. If time pressure arises,
the traveler will need to retime and re-sequence the remaining activities to obtain
a new optimal schedule with the updated activity location-to-activity location
travel time. If no feasible solution could be found—this is likely if travel delay
is too large to commence all remaining activities within the total time budget—
then one discretionary activity (with more flexibility in terms of trip purpose
compared with anchor activities) is removed from the activity list. Note that in
this rescheduling process, it is assumed that the traveler aims to keep the same
preplanned activities unless doing so becomes infeasible. In such a case, the
individual drops a discretionary activity and searches for a new schedule. This
process is repeated until an optimal solution is found.

Activity attribute change may involve several cases, including insertion of an
activity, change of duration, or deletion of an activity resulted from external factors.
If the activity attribute change situation creates a time surplus in which more
time is permitted, one desired discretionary activity may be added. The expanded
activity set is then re-optimized to see if a feasible schedule can be obtained.
If so, the revised schedule is obtained with the new activity included; otherwise,
the contemplated activity is removed, and the original activity set is re-optimized.
On the other hand, when a time pressure situation is created, the traveler first tries
to re-optimize the current schedule according to the requirements imposed by the
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Fig. 9.3 Rescheduling decision process due to activity attribute change

updated activity attribute. If keeping the current schedule becomes infeasible, one
discretionary activity has to be removed and all activity schedules are re-optimized.
This activity-removal and re-optimization process is repeated until an optimal
schedule is obtained. This procedure is illustrated in Fig. 9.3.

9.3.2 Mathematical Model for Rescheduling Decision

The proposed within-day rescheduling model adopts a utility maximization frame-
work with a goal to maximize the total utility associated with the participated
activities. This model yields a solution with optimized start time, duration of all
remaining activities as well as the activity sequence.
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The within-day rescheduling problem is formulated as follows:

MAX Z = ∑
a∈A′(i)

[Fa (t
s
a + da)−Fa(t

s
a)]+ ∑

g∈A′(i)
∑

a∈A′(i)
θg,a ·wg,a(t

s
g + dg) · yg,a (9.1)

Subject to:

ts
a − ts

h +Mya,h + da ≤ M−wa,h (ts
a + da) ,∀a ∈ A′ (i) ,h ∈ A′ (i) ,a �= h (9.2)

ya,h + yh,a = 1,∀a ∈ A′ (i) ,h ∈ A′ (i) ,a �= h (9.3)

tsmin
a ≤ ts

a ≤ tsmax
a ,∀a ∈ A′ (i) (9.4)

dmin
a ≤ da ≤ dmax

a ,∀a ∈ A′ (i) (9.5)

temin
a ≤ ts

a + da ≤ temax
a ,∀a ∈ A′ (i) (9.6)

where

A(i) = Set of all activities in a schedule for traveler i
A′(i) = Set of remaining activities for traveler i
ts
a = Start time of activity a ∈ A′(i)

da = Duration of activity a ∈ A′(i)
yg,a = Binary sequence variable ∀g ∈ A′ (i) ,∀a ∈ A′ (i) ,yg,a = 1,

if activity g precedes activity a
Fa (t) = Integral of marginal utility (total utility) for activity a ∈ A′(i)

when departing at time t
wg,a (t) = Travel time from activity g ∈ A′(i) to activity

a ∈ A′ (i) when departing at time t,wg,a (t)< 0
θg,a = Weight of journey from activity g ∈ A′ (i) to a ∈ A′(i)
tsmin
a = Earliest start time for activity a ∈ A′(i)

tsmax
a = Latest start time for activity a ∈ A′(i)

temin
a = Earliest end time for activity a ∈ A′(i)

temax
a = Latest end time for activity a ∈ A′(i)

dmin
a = Shortest duration length for activity a ∈ A′(i)

dmax
a = Longest duration length for activity a ∈ A′(i)

M = Penalty value,M > 0

The objective function (9.1) computes the total utility including two utility terms:
one is the positive utility for commencing each activity and the other is the
disutility associated with travel. The first term in (9.1) expresses the sum of the
integral of marginal utility (total utility) for participating in an activity a starting
from ts

a and lasting da, i.e., the area underneath the marginal utility function.
The value of this term increases along with increased duration of the participated
activities. The second term stands for the disutility of the associated time-varying
travel time/cost from one activity to the next. The second term influences the
re-sequencing decision in that the traveler would wish to minimize the total travel
time utility while maximizing activity participation utility. Note that the weight of
this term takes negative sign to represent the disutility of travel.
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It is assumed that the marginal utility function included in the objective function
follows a quadratic form which depends on the duration of an activity. The total
marginal utility value is obtained by using the timing information of the earliest
start time, the latest end time and the maximum utility value of each activity.
The reason for using a quadratic marginal utility function is to obtain an analytically
closed and tractable objective function form that proves to have a unique optimal
solution, solvable by efficient solution algorithm. Also, the proposed marginal utility
function is a comparable with the bell shape function proposed in prior study (Joh
et al. 2002).

The integral of the quadratic marginal utility function can be further rewritten
into Eq. (9.8). Constraints (9.2) and (9.3) maintain a valid sequence among
activities. Constraint (9.2) indicates that, if activity a precedes activity h, then the
start time of activity h cannot be earlier than the end of activity a plus the necessary
travel time from a to h. Constraint (9.3) enforces the logical equivalence that only
one of the two possible preceding relationships between any pair of activities would
hold. In other words, only ya,h or yh,a can take value 1 and the other has to take value
0. If ya,h = 1, it means that activity h follows a (not necessary immediately follow).
Equations (9.4), (9.5) and (9.6) restrict the extent of start time, duration, and end
time for valid activities in a feasible schedule.

The total utility Fa (t) takes the form Fa (t) = ∫ MUa (t)dt,
where,

MUa(t) = a0t2 + b0t + c0, where a0 < 0,b0,c0 are parameters a0 < 0,b0,c0

(9.7)

As a result, the following is established:

Fa (ts
a + da)−Fa (ts

a) =
ts
a+da

∫
ts
a

MUa (t)dt

= 1/3

⎧⎪⎨
⎪⎩

−Umax
a(

te max
a −te min

a
2

)2

⎫⎪⎬
⎪⎭
(

t − te max
a +ts min

a
2

)3
+Umax

a

(
t − te max

a +ts min
a

2

) (9.8)

Where Umax
a = maximum marginal utility value for activity a ∈ A′(i).

9.3.3 Solution Algorithm

The solution algorithm is designed with two goals in mind. First, it needs to solve
for the binary sequence variables and non-integer start time and duration variables
with a nonlinear objective function. Second, the solution needs to be consistent with
the given time-varying travel time/cost from one activity to another.
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The algorithm consists of three steps: the Relaxation step, the Branching step,
and the Consistency Search step. The Relaxation step solves the rescheduling
problem as a relaxed nonlinear optimization in which binary sequence variables are
relaxed to be real-valued variables. Meanwhile, a static average travel time instead
of the time-varying travel time is used in this step.

The next step, specified as the Branching step, implements a branch-and-
cut algorithm that constructs a binary solution tree to find the best k feasible
sequences. The initial solution obtained by Branching is specified as the tree root;
then one activity pair is selected of which the feasibility is tested. For example, for
the relationship branch in which activity 1 precedes activity 2, two new constraints
are constructed (i.e., y12 ≥ 1 and y21 ≤ 0). Constraints y12 ≥ 1 and y21 ≤ 0 are
included for the activity 1 following activity 2 relationship branch. Each branch
also needs to include constraint y1,2 + y2,1 = 1 to enforce that only one of the two
variables takes a value of one. This equality constraint is critical to ensure that no
conflicting schedule is produced in the solution.

Next, each branch is solved and tested for feasibility. If a solution branch is
infeasible, then the entire branch is cut from the solution tree; no need to evaluate
all subsequent branches. The cut process takes the advantage of the fact that in
order for the entire solution to be feasible all activity-pair relationships need to be
at least feasible. One infeasible solution would nullify the validity of subsequent
branches, eliminating the need to further evaluate other solutions along that branch
and significantly reduces the algorithm complexity. The next-level branch is created
by selecting another activity pair and by specifying their precedence relationship.
The branching process continues until all activity pairs are selected. In the end, a
tree with a maximum of Cn

2 depths is created, where n is the number of remaining
activities.

There are a total of Cn
2 depths generated from a base node in a tree. Without

the cut-process, the complexity of branch algorithm in the worst case is 2Cn
2 . With

a branch algorithm that includes the cut-process, when only one feasible solution
exists, the number of computations is 2 ·Cn

2. With two feasible solutions, the
complexity in the worst case is determined by 4 ·Cn

2 − 2.
Figure 9.4 illustrates an example of a solution tree for three activities. Node 1

is the initial solution from the Relaxation step. At the first depth, Node 2 institutes
the precedence relationship in which activity 2 precedes activity 1 (e.g., y12 ≤ 1 and
y21 ≥ 0). However, given this condition, no feasible solution can be found; therefore,
the algorithm discontinues on the Node 2 branch. On the other hand, Node 3 is
feasible, so the algorithm continues on the next level from this point on and solves
for the solution based on the activities 1 and 3 precedence relationships. It turns out
that Node 6 is infeasible, so the algorithm continues to the next level from Node 7.
Finally Node 14 is found to be the only feasible and optimal solution.

Although the above example demonstrates the special case in which only one
feasible solution remains at algorithm termination, it is likely that, in a general case,
multiple feasible solutions may exist. It should also be noted that at this point all
the feasible solutions are solved for based on time-invariant, average, activity-to-
activity travel time. The next Consistency Search step incorporates the time-varying
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Fig. 9.4 Example of a solution tree for three activities

travel time into these k feasible solutions and finally arrives at an optimal and
consistent solution. In other words, for each one of the k feasible solutions, all binary
precedence variables y values are fixed, but the optimal departure time and duration
for each activity are then resolved with the travel time wg,a (t) in Eq. (9.2) depending
on the departure time t of the preceding activity g.

A convergence criterion is defined as follows.

∑
a∈A′

∣∣∣ts new
a − ts previous

a

∣∣∣+ ∑
a∈A′

∣∣∣dnew
a − dprevious

a

∣∣∣≤ ε (9.9)

Where,

ts new
a = obtained start time of activity a ∈ A′(i) at current iteration

ts previous
a = obtained start time of activity a ∈ A′(i) at previous iteration

dnew
a = obtained duration of activity a ∈ A′(i) at current iteration

dprevious
a = obtained duration of activity a ∈ A′(i) at previous iteration

ε = Stopping threshold value

The solution algorithm is summarized as follows.

/∗ f ind initial solution having non−integer values f or sequence variables∗/

Call Relaxation

If feasible solution is found from Relaxation

/∗applying Branch algorithm including a cut − process to do Branching∗/
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Run Branch algorithm

If amount of feasible solution > 0

Find the best k sequences in the final leaves of a tree.

/∗ applying iterative process in Consistency Search∗/

For each k sequences

Do Find time-dependent travel time associated with the end time

of each activity

Calculate a scheduling problem

While satisfying a convergence criterion

Endfor

Find the best sequences among alternatives

Stop /∗ the end o f Consistency Search∗/

Endif

/∗ the end o f Branching∗/

Endif

Stop /∗ the end o f Relaxation∗/

9.4 Experiments

The rescheduling model and algorithm are coded in C language with a nonlinear
optimization function linked with the IMSL Numerical Library optimization solver,
so that the compiled executable of the entire algorithm is portable without needs of
external solvers like CPLEX. This feature is designed to plan for future run-time
integration/communication with the dynamic traffic assignment models.

The capability of the developed rescheduling model is tested in two case studies.
In the case studies, a schedule diary of one hypothetical traveler is supposed given.
Starting from the preplanned schedule, we observe how the preplanned schedule is
adjusted by the rescheduling model triggered by an unanticipated event.

In the first case study, a time shortage situation is created. A preplanned schedule
is given in Table 9.1 as an initial schedule. Three activities are prescheduled to be
executed such as home, work and home. At 12 PM, the traveler is asked to mail out
a document at a post office before the end of business hours, causing a schedule
conflict between this event and the preplanned schedule in Table 9.1. According
to a preplanned schedule, the traveler needs to work until 5 PM. The duration of
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Table 9.1 Description of activities in schedule set

ID 1 2 3 4

Activity Home Work Home Post office
Min duration 6 h 5 h 30 min 20 min
Max duration 8 h 10 h 10 h 60 min
Earliest start time 00:00 AM 7:30 AM 1:00 PM 12:00 PM
Latest start time 00:00 AM 10:00 AM 11:30 PM 4:40 PM
Earliest end time 6:00 AM 1:00 PM 12:00 AM 8:20 AM
Latest end time 8:00 AM 7:00PM 12:00 AM 5:00 PM
Max utility 40 120 40 20
Start time 12:00 AM 7:50 AM 5:40 PM –
Duration 7 h 20 min 9 h 10 min 6 h 20 min –
End time 7:20 AM 5:00 PM 12:00 AM –

Table 9.2 Updated schedule by solution algorithm

Relaxation ID Activity Start time Duration End time

2 Work 12:00 PM 6 h 10 min 6:10 PM
3 Home 2:00 PM 10 h 12:00 AM
4 Post office visit 12:00 PM 20 min 12:20 PM

y23 y32 y24 y42 y34 y43

0.5 0.5 0.5 0.5 0.5 0.5
Branching ID Activity Start time Duration End time

2 Work 12:00 PM 4 h 20 min 4:20 PM
3 Home 5:30 PM 6 h 30 min 12:00 AM
4 Post office visit 4:40 PM 20 min 5:00 PM

y23 y32 y24 y42 y34 y43

1 0 1 0 0 1
Consistency Search ID Activity Start time Duration End time

2 Work 12:00 PM 4 h 20 min 4:20 PM
4 Post office visit 4:40 PM 20 min 5:00 PM
3 Home 5:30 PM 6 h 30 min 12:00 AM

this post office visit event is at least 20 min, and it must be finished no later than
5 PM. The traveler faces a time pressure situation to insert the new event so that a
rescheduling decision is hence initiated.

The solution algorithm is tested in the first case study of time shortage situation.
As shown in the Relaxation section in Table 9.2, the start time of work activity and
the post office visit are still conflicting because the binary precedence variables are
relaxed at this step and all take value of 0.5.

The Branching step is designed to resolve any possible schedule conflicts found
in the solution from the Relaxation step. The Branching step enforces that the binary
precedence variables y take a 0–1 binary value. Further, the Branching step includes
the cut-process, producing a solution tree of the best k solutions. Figure 9.5 shows
how an example tree is generated to seek 0–1 variables associated with the sequence
connections.
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1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

U= 49,795 Infeasible

U=61,992

Fig. 9.5 Solution tree in branching

The first node is obtained from the Relaxation step; the branching algorithm then
generates a solution tree. An optimized schedule having a valid sequence among
activities is calculated at Node 14 in this example. The valid sequence from the
Node 14 is, for example, work, post office visit, and home. It is apparent that the
schedule conflict in a schedule at the Relaxation stage is resolved by the Branching
algorithm, and the total utility is reduced to 49,795, compared to 61,992 units in the
initial solution given by the Relaxation step.

The Consistency Search step applies the time-dependent travel time to the
currently found feasible solutions. The time-varying travel times used in this case
study are illustrated in Fig. 9.6. Examining the final optimal solution (Consistency
Search section of Table 9.2), one can find that the traveler adjusts the schedule to
leave work earlier at 4:20 PM instead of 6:10 PM in the pre-planned schedule, and
arrive at the post office at 4:40 PM, stay 20 min, and then reach home at 5:30 PM,
instead of 5:40 PM in the original schedule.

The second case study is aimed at examining the within-day activity rescheduling
decision process when the traffic condition is changed. The scenario, based on the
same preplanned schedule applied in the first case study, assumes that the traveler
receives incident information at 2:00 PM, just before he/she leaves the office as
scheduled. It is assumed that the traveler is able to estimate the delay time based on
perceived traffic information and experience. Following the preplanned schedule,
the traveler is supposed to leave office at 4:20 PM, and arrive at a post office at
4:40 PM. Because a significant delay occurred when enroute to the post office, the
traveler needs to adjust the schedule with the updated time-varying travel time as
shown in Table 9.3.
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Fig. 9.6 Time-varying travel time

Table 9.3 Travel time information

Original travel time information (min) Updated travel time information (min)

W->PB PB->W PB->H H->PB W->PB PB->W PB->H H->PB

4:00 PM 20 20 30 30 70 20 30 30
4:10 PM 20 20 30 30 70 20 30 30
4:20 PM 20 20 30 30 70 20 30 30
4:30 PM 20 20 30 30 80 60 70 80
4:40 PM 20 20 30 30 80 60 70 80
4:50 PM 20 20 30 30 70 50 60 70

Figure 9.7 shows the comparison of the preplanned schedule and the adjusted
schedule. The new schedule reduces the working time so that the traveler leaves the
office earlier with the same activities sequence to accommodate the extended travel
time.

9.5 Conclusion

This research develops a daily activity rescheduling behavior model integrating both
activity decision choice and time-varying traffic information. The proposed model
investigates the activity rescheduling decision process involved in an unexpected
event created by either network traffic condition changes or activity attributes
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Fig. 9.7 New modified schedule due to travel time change

change. The model is formulated as a utility maximizing rescheduling problem,
designed to solve for start time, duration, and activity sequence consistent with time-
varying traffic dynamics. An algorithm is proposed to solve the optimal solution in
a computationally effective manner. The numerical case studies demonstrate the
characteristics of the proposed model behaved under both time shortage and traffic
condition changes situations. These case studies show how preplanned schedule is
adjusted in response to unforeseen events through a rescheduling decision process.

The further research underway is to conduct the empirical survey to calibrate the
parameters of the proposed utility model; this is important to validate the proposed
methodology before any real-life application. The survey should emphasize on
understanding the perceived preference of the maximum utility value and the
influence on the activity adjustment procedure, as well as the real dairy data
about timing and sequencing choices travelers intend to execute in the preplanned
schedule.

Recently, several researchers have attempted to identify new travel survey
technology suitable for the activity-based models (Wolf et al. 2001; Asakura and
Hato 2006; Frignani et al. 2010; Moiseeva et al. 2010). Global Positioning System
(GPS) technology appears to be promising in collecting individual diaries with
high response rate and satisfactory quality. Use of the mobile phone has also been
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practiced in collecting activity-based travel information. It seems promising to use
those well-developed technologies in current practice to calibrate and validate the
proposed model.

Another potential research effort is to integrate the proposed model with a
dynamic traffic assignment framework to verify the performance of proposed
rescheduling methodology in the contexts of interacting activity decisions with
dynamic traffic conditions.

Acknowlegments The authors acknowledge the partial financial support from FHWA EARP
Project: DTFH61–07-R-00117: Modeling the Urban Continuum in an Integrated Framework:
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Chapter 10
Dynamic Navigation in Direction-Dependent
Environments

Irina S. Dolinskaya

Abstract This chapter examines optimal path-finding problems with direction-,
location- and time-dependent environments. The dependence of the cost function
and path constraints on the location of the mobile agent and time creates the need for
a dynamic navigation algorithm, capable of adjusting the path in real time as more
information about the environment becomes available. In addition, the direction-
dependent nature of the environment results in an asymmetric cost function, which
is not a metric and prohibits the use of more traditional and established approaches
to solving optimal path-finding problems. Moreover, the triangle inequality is often
violated for the direction-dependent cost functions, further preventing the use of
analysis and results developed for Euclidian shortest path problems. To add another
dimension of reality to our model, we integrate the system dynamics and constrain
feasible paths by maximum sharpness of a turn that a mobile agent can make.

The presented work delivers a more realistic optimal path-finding model while
reducing the computational time required to find such a path. This is particularly
important since real-time implementation is essential for our applications. In addi-
tion, many analytical results derived here provide insights into the structure of the
problem, its objective function, and the optimal solution. These insights provide a
closed-form solution to a large subset of problems where additional assumptions are
applicable. For such problems, we easily construct the analytical solutions instead
of implementing more involved, and often approximate, methods presented in the
literature.

We describe the Optimum Vessel Performance in Evolving Nonlinear Wavefields
Project that motivated our work and deliver computational results to demonstrate the
applicability and performance of our path-finding methods.
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10.1 Introduction

Over the past few decades, researchers in a wide range of disciplines have been
studying optimal path-finding problems within a variety of applications. These
approaches find an optimal way to traverse a complex medium or network under
a diverse set of constraints and outside factors. For example, researchers in
computational geometry and geographical information systems analyze the shortest
paths defined by Euclidean distance and other metrics, often with the presence of
polygonal obstacles and weighted homogeneous regions. Optimal robot routing
problems incorporate the system’s physical properties and constraints with the
objective of finding the fastest or minimum energy-consumption paths over various
terrain. In naval vessel path-finding and navigation, researchers integrate the vessel’s
hull structure and forces exerted by waves and wind to minimize travel time to a
destination. Each aforementioned application adds complexity to the optimal path-
finding problem, while integrating a number of assumptions in each scenario to
make the problem more tractable. In this chapter, we relax a set of restrictive
assumptions to broaden application of optimal path-finding results to direction-
dependent environments and to create an accurate and tractable models suitable for
real-life implementation.

We study optimal path-finding problems in a direction-, location- and time-
dependent environment. Since the objective of a problem depends on the actual
application, we do not restrict our analysis to a specific objective function whenever
possible. Throughout this chapter we discuss the problems of minimizing travel
time, fuel consumption, and motions, as well as more general objective functions.
The dependence of the cost function and path constraints on the location of
the mobile agent, as well as time, creates the need for a dynamic navigation
algorithm, capable of adjusting the path in real time as more information about
the environment becomes available. In addition, the direction-dependent nature of
the environment results in an asymmetric cost function, which is not a metric and
prohibits the use of more traditional and established approaches to solving optimal
path finding problems. Moreover, the triangle inequality is often violated for the
direction-dependent cost functions, further preventing the use of analysis and results
developed for Euclidian shortest path problems. To add another dimension of reality
to our model, we integrate the system dynamics and constrain feasible paths by
maximum sharpness of a turn that a mobile agent can make.

The presented work delivers a more realistic optimal path-finding model while
reducing the computational time required to find such a path. This is particularly
important since real-time implementation is essential for our applications. In addi-
tion, many analytical results derived here provide insights into the structure of the
problem, its objective function, and the optimal solution. These insights provide a
closed-form solution to a large subset of problems where additional assumptions are
applicable. For such problems, we easily construct the analytical solutions instead
of implementing more involved, and often approximate, methods presented in the
literature.



10 Dynamic Navigation in Direction-Dependent Environments 247

This chapter is an overview of a number of the author’s prior publications
(some co-authored with colleagues) on the said subject. It brings together our work
within the various research fields into a single comprehensive dynamic navigation
system for direction-dependent environments. For more detailed discussion of
the presented work see, Dolinskaya (2009), Dolinskaya (2012), Dolinskaya et al.
(2009), Dolinskaya and Maggiar (2012), and Dolinskaya and Smith (2012).

10.1.1 Motivation: Optimum Vessel Performance in Evolving
Nonlinear Wavefields Project

Our work was motivated by an optimal vessel routing project entitled “Optimum
Vessel Performance in Evolving Nonlinear Wavefields.” This 5-year project funded
by the Office of Naval Research (ONR) Multidisciplinary University Research
Initiative (MURI) grant is a collaboration with the Department of Naval Architecture
and Marine Engineering and the Department of Industrial and Operations Engineer-
ing at the University of Michigan, the Applied Physics Laboratory at the University
of Washington, and the Department of Electrical and Computer Engineering at The
Ohio State University. Here, we provide a brief overview of the project and the
research tasks of the teams involved. Throughout the chapter, we continually revisit
this project to illustrate the real-life application of the developed methodology and
results.

The goal of this project was to develop a system that can, in real-time, control the
behavior of a vessel, based on real-time measurements and forecasts of the wavefield
surrounding the vessel. Four major groups divided the project into the following
parts based on the areas of expertise:

1. Real-Time Measurement of Ocean Wavefields. The first group of researchers
develops and tests a coherent (Doppler) X-band radar for measurement of the
ocean wavefield surrounding a moving or stationary vessel in real-time.

2. Short-Term Forecasts of Evolving Nonlinear Wavefields. The second team uses
data collected by the radar to forecast the time-dependent evolution of the
wavefield.

3. Time-Domain Computation of Nonlinear Ship Motions. Based on the forecast
of the evolving wavefield, this group develops a numerical model to predict
nonlinear ship motions in the multidirectional wavefield.

4. Dynamic Real-Time Path Optimization and Vessel Control. As part of the fourth
team, we use the developed motion prediction model to evaluate the vessel speed,
motions and other operability criteria conditional on a path chosen to traverse
the forecasted wavefield. We then integrate this information into our optimal
path-finding algorithm to determine the most favorable path. An adaptive control
system developed by our colleagues guides the vessel along the found optimal
path as closely as possible.
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This project considers a wide range of problems, and the objective varies
depending on the specific application. Wavefield forecast can be used to predict
time periods and areas of calm seas to ensure a safe landing onto an aircraft carrier
or a successful launch-and-recovery operation in rough weather. Finding a path
that minimizes ship motion is important for improving safety and comfort of the
passengers on board. Minimizing travel time is crucial in emergency rescue missions
and improves efficiency of the ship-to-ship or port-to-ship cargo transfer operations.
Alternatively, finding a path that minimizes fuel consumption instead of the vessel’s
travel time is favorable for some naval transportation problems. Consequently, in
our work we predominantly study a very general set of path-finding problems, such
that any one of the aforementioned applications can be addressed with our models.

To summarize, our objective, as part of this project, is to develop computationally
efficient and numerically robust algorithms to solve path optimization problems in
time-varying media. We are given information about the environment surrounding
the vessel up to the radar visibility horizon and the dynamic restriction of the
vessel: operability constraints such as probability of wet deck and maximum root
mean squared roll, and minimum turning radius constraining curvature of a feasible
path. We incorporate this information to find an optimal path to a specified desired
destination. It is important to note that the wave forecasting model developed as
part of this project is precise, and the path-finding problem is considered to be
deterministic if the initial condition (i.e., the observed wavefield) is accurate.

10.1.2 Literature Overview

Existing literature details a wide variety of optimal path-finding problems. While
some work analyzes path finding in a location, and possibly, time dependent
medium, others look at the scenarios of anisotropic (i.e., direction-dependent)
environment. However, no previous research studies a generalized model that
includes all aforementioned aspects of the environment into a single analysis. In
this section, we present an overview of various areas of studies and applications that
look at the optimal path finding problems as they relate to our work.

Geometric shortest path finding is a fundamental problem extensively studied in
computational geometry. Mitchell’s survey (Mitchell 2000) gives a comprehensive
overview of the current work conducted in this field. Most computational geometry
research is restricted to finding an optimal path defined by Euclidean distance
or other metrics, such as L1-metric (the Manhattan distance) (Mitchell 1992)
and C-oriented paths (Widmayer et al. 1987). Asymmetric direction-dependence
is occasionally considered in the literature (Chew and Drysdale 1985; Reif and
Sun 2004); however, the introduced anisotropy makes a strong assumption of
distance function convexity which we relax in our analysis. The path-finding
problems in a location-dependent environment examine the presence of polygonal
obstacles (Alt and Welzl 1988; Kapoor et al. 1997; Lozano-Pérez and Wesley
1979; Mitchell 1991a, 1996) and uniform-weighted regions (Cheng et al. 2008;
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Mitchell and Papadimitriou 1991b; Sun and Reif 2006). On the other hand, all
the problems studied in the field of computational geometry are predominantly
static, and time-dependence is not considered in these settings. It is important to
note that Geographic Information Systems (GIS) is one of the primary application
areas for computational geometry, and a number of papers published in GIS journals
(Collischonn and Pilar 2000; de Floriani et al. 2000; Stefanakis and Kavouras 1995;
Yu et al. 2003) also discuss shortest path finding problems.

Optimal path-finding research extends to other applications, such as robot, vessel,
airplane and unmanned aerial vehicle routing. In each of these areas, researchers
create the models specific to said application; unfortunately their analysis and
results cannot be easily transferred to other problems. For example, the problem of
computing an optimal path for a mobile robot considers friction and gravity forces
for various regions of terrain, and then uses this direction- and location-dependent
cost function to find a path that minimizes the total energy consumption of the robot
(Lanthier et al. 1999; Rowe 1997; Rowe and Ross 1990; Sun and Reif 2005). Since
surface contour does not change over time, this set of problems only considers path
finding in a static environment.

Optimal vessel routing evaluates how waves and wind affect vessel speed and
dynamics in finding an optimal path. For example, Philpott et al. (1993) apply
mathematical programming methods to create a yacht velocity prediction program
that computes the vessel speed for a specified range of wind speeds and yacht
headings. The resulting velocity prediction data is used in stochastic dynamic
programming models to find the yacht’s fastest path in uncertain weather (Allsopp
et al. 2000; Philpott 2005; Philpott and Mason 2001).

A significant amount of work assumes that the vessel speed function can
be written analytically. This assumption allows researchers to invoke various
methodologies from calculus of variations and optimal control theory to characterize
an optimal path (Faulkner 1963a,b; Marks et al. 1968; Papadakis and Perakis
1990; Perakis and Papadakis 1989; Zermelo 1931). However, researchers typically
use a simplified form of the speed function in order to make the analysis more
manageable. Our colleagues working on the Optimum Vessel Performance in
Evolving Nonlinear Wavefields project have developed more accurate and involved
models to evaluate vessel dynamics and wave evolution. From our experience
of working on this project, it is clear that analytical functions cannot accurately
describe the vessel movement through the waves, thus obliging us to look for
alternative methods to solve the problem.

Airline industry researchers analyze how weather affects airplane path planning
and air traffic management. For example, Nilim and his colleagues (2004; 2001)
model the weather as Markov chains where storms have a certain probability of
becoming the obstacles, thus preventing the airplanes from passing through those
regions. Then, a path-finding model identifies a path minimizing the expected travel
time and dynamically reevaluates the path as more accurate information about the
storms becomes available. In their work, Nilim et al. assume that the airplane
has constant speed, consequently reducing the problem to a shortest path-finding
problem among stochastic obstacles.
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Unmanned aerial vehicles (UAVs) have become widely employed in civilian
and military applications over the past few years. The problem of optimal path
finding for mini UAVs subjected to wind is similar in nature to the vessel routing
problems and has been extensively studied in recent years. The direction dependence
of the speed function is introduced as a uniform wind vector field, which is added
to a constant isotropic “wind-free” velocity of the airplane (Bakolas and Tsiotras
2010; McGee et al. 2006; McNeely et al. 2007; Osborne and Rysdyk 2005; Techy
and Woolsey 2009). It is important to note that the resulting speed function and
the minimum turning radius of a feasible path have very distinct structures, and
more specifically, the properties of a convex speed polar plot and trochoidal path
(Rysdyk 2007). In our work, we observe that direction-dependent speed often
implies the direction-dependent nature of the minimum turning radius, and we
address such problems for the generalized direction-dependent speed functions and
path curvature restrictions.

10.1.3 Chapter Outline

This chapter is organized as follows. We begin our analysis by studying optimal
path-finding problems in a direction-dependent, time and space homogeneous
environment, which is presented in Sect. 10.2. First, we find closed form solutions
for the problems with obstacle-free domain while neglecting the minimum turning
radius constraint (Sect. 10.2.1). Then, we employ our findings and adapt a visibility
graph search method of computational geometry to an anisotropic environment,
delivering an algorithm that finds an optimal obstacle-avoiding path in a direction-
dependent medium.

Section 10.2.2 extends our analysis of path finding in an anisotropic, time and
space homogeneous environment to a set of problems where path curvature is
constrained by a very general direction-dependent minimum turning radius function.
We demonstrate the problem’s controllability, prove existence of an optimal path,
and invoke techniques from optimal control theory to derive a necessary condition
for optimality. Further analysis characterizes an optimal path and delivers an
algorithm that facilitates the implementation of the presented results.

The assumption of time and space homogeneity is relaxed in Sect. 10.3, where
we develop a dynamic programming model to find an optimal path in a location-,
direction- and time-dependent environment. The results from the preceding section
are integrated into the model to improve its accuracy, efficiency, and run-time.
The path finding model addresses limited information availability (Sect. 10.3.1),
control-feasibility (Sect. 10.3.2), and computational demands of a time-dependent
environment (Sect. 10.3.3). The step-by-step path-finding algorithm (Sect. 10.3.4)
and its application to the Optimum Vessel Performance in Evolving Nonlinear
Wavefields project (Sect. 10.3.5) are also presented in this section. In Sect. 10.4
we discuss how to extend our analysis to optimal path-finding problems for cost
functions other than travel time. The chapter concludes with Sect. 10.5 summarizing
the results, contributions and future directions of our work.
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10.2 Optimal Path Finding in Direction-Dependent,
Time and Space Homogeneous Environment

We begin our study of dynamic navigation in direction-dependent (anisotropic)
environment by focusing our attention on the effects the direction-dependence has
on path optimality. As discussed in the introduction, the anisotropic cost function
is not a metric, since traveling along the straight line path from a to b does not
necessarily incur the same cost as traveling along the reversed straight line path from
b to a. In addition, the triangle inequality might not hold true, and the straight line
path is not always optimal. In this section, we assume time and space homogeneity
of the environment and extend existing results from computational geometry and
control theory to the direction-dependent medium. In the following Sect. 10.3,
these results are integrated into the optimal path finding algorithm for a direction-,
location- and time-dependent environment.

10.2.1 Optimal Path Finding Without Turning
Radius Constraint

We address the fastest-path-finding problems with anisotropic environment where
the speed function, V (θ ), is direction dependent, such as in the case when ocean
waves, winds, or slope of the terrain affect agent’s motions. Our objective is to
find a path from a given starting location to a given target point that minimizes
total travel time of the mobile agent. We first solve this problem in an obstacle-free
domain and then integrate polygonal obstacles restricting the set of feasible paths.
It is important to note that while we demonstrate our analysis and results for the
fastest-path-finding problem, the discussion can be easily extended to other additive
direction-dependent cost functions (e.g., fuel consumption). This section presents a
brief overview of our joint work with R.L. Smith; for more detailed analysis and
results, see Dolinskaya (2009), and Dolinskaya and Smith (2012).

Let S(V (θ ))⊆ ℜ2 denote the set of points enclosed by the polar plot of a speed
function V (θ ) centered in the origin point O = (0,0) ∈ ℜ2. From the definition it
follows that S(V ) contains all the points that the mobile agent can reach from point
O along the straight line path within a single unit of time. We let τ(V,x) for x ∈ ℜ2

denote the travel time along the straight line path from O to x for the speed function
V (θ ). Note, for all x ∈ S(V ), τ(V,x)≤ 1.

First, consider a special case when S(V (θ )) is a convex set. Then, properties
of the Minkowski functional (Luenberger 1969) establish that the straight line path
is the fastest path between a pair of points for the speed function V (θ ), and that
the triangle inequality holds true. In the case when the speed polar plot for V (θ )
is not convex, we consider the augmented speed function Va(θ ), such that its polar
plot is equal to the convex hull of the original speed polar plot, i.e., S(Va(θ )) =
Conv(S(V(θ ))) (see Fig. 10.1). Then, the speed function Va corresponds to a convex
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Fig. 10.1 An example of speed polar plot for the S-175 containership (Dolinskaya et al. 2009) and
corresponding application of our analysis

speed polar plot and the straight line optimal paths. Furthermore, V (θ )≤Va(θ ) for
all θ , and the travel time along an optimal (straight line) path with the speed function
Va is a lower bound on the optimal travel time between the same two points with
the speed function V (θ ). That is, τ(Va,x) is the lowest possible travel time between
points O and x for a mobile agent with the speed function V (θ ).

Observe that, since S(Va) is the convex hull of S(V ), every point in S(Va) can
be expressed as a convex combination of two points in S(V ). In other words, ∀x ∈
S(Va), there exist y,z ∈S(V ) and λ ∈ [0,1] such that x = λ y+(1−λ )z. Then, every
point x ∈ S(Va) can be reached following a piecewise linear path from O to λ y and
then from λ y to x. Finally, observe that τ(V,y) = τ(Va,y), τ(V,z) = τ(Va,z) and the
travel time along the described piecewise linear path with speed function V (θ ) is
equal to τ(Va,x), thus establishing its optimality. See Fig. 10.1 for an illustration of
the presented analysis for the test vessel used in the Optimum Vessel Performance
in Evolving Nonlinear Wavefields project.

We have established that in an obstacle-free domain, an optimal path for an
arbitrary anisotropic speed function is piecewise linear with at most one way-
point. Next, we employ these findings to the problems that consider the presence of
polygonal obstacles. For the case when the speed function corresponds to a convex
polar plot, the straight line path is a fastest path in ℜ2. Therefore, fastest-path finding
in the presence of polygonal obstacles can be restricted to a modified visibility
graph, similar to Euclidian shortest path-finding problems (Alt and Welzl 1988;
Lozano-Pérez and Wesley 1979) (which essentially searches for fastest path among
taut-string paths between starting and target points). We construct the visibility
graph by defining the set of vertices to be all the vertices of the polygonal obstacles,
as well as the starting and target points. The set of edges of our visibility graph
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Fig. 10.2 An example of an obstacle-avoiding fastest path for the S-175 containership

consists of all the straight line edges interconnecting the defined vertices that do not
intersect any of the obstacles. And finally, the cost function for each edge is set to
be the travel time along the link characterized by τ(V, .) function. Then, a minimum
cost path in the constructed graph corresponds to the fastest obstacle-avoiding path
for our original problem.

The triangle inequality might not hold true for a general direction-dependent
speed function V (θ ). In such case, an augmented speed function, Va(θ ), corre-
sponding to the convex hull of the original speed polar plot is used to find a lower
bound on the minimum travel time for our problem. We construct a visibility graph
as discussed above for the augmented speed function, Va(θ ). We then implement
the piecewise linear results presented for the obstacle-free domain along each edge
of the optimal path in this graph (see Fig. 10.2). Thus, we construct an obstacle-
avoiding path that achieves this lower bound, implying its optimality.

10.2.2 Optimal Path with Bounded Curvature
in an Anisotropic Medium

Our initial analysis described above shows that an optimal path in an anisotropic
time and space homogeneous environment has a piecewise-linear structure. Unfor-
tunately, the instantaneous heading change required to follow a piecewise-linear
path is infeasible for most applications, including the navigation of aerial, ground,
and naval vehicles. For these problems, the control system of an agent constrains
the set of feasible paths and these restrictions must be integrated into the optimal
path finding process. We introduce a direction-dependent minimum turning radius
function R(θ ) that constrains the curvature of a feasible path for a vehicle with
the heading direction θ and find an optimal path with bounded curvature in an
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anisotropic time and space homogeneous environment. More detailed analysis
and results of the work presented here can be found in Dolinskaya (2009), and
Dolinskaya and Maggiar (2012).

The problem’s objective is to find a fastest path that starts at the initial point
(xs,ys) and heading angle θs, ends at a destination point (xt ,yt) with a predetermined
final heading θt , and has a curvature bounded by a specified minimum turning radius
function R(θ ). Most published work that discusses fastest-path-finding problems
with bounded curvature (e.g., Boissonnat et al. (1994), Bui et al. (1994), Dubins
(1957), Souères and Laumond (1996), and Sussmann and Tang (1991)) assumes
constant speed and minimum turning radius. When the presence of direction-
dependence is introduced in the existing literature, the resulting speed and minimum
turning radius functions are assumed to maintain specific structures and properties.
We analyze the problems in the anisotropic media where both the agent’s speed
and minimum turning radius are described by generalized direction-dependent func-
tions. The direction-dependent nature of this problem implies the same asymmetry
of a travel time function as discussed in preceding sections. Additionally, the non-
constant turning radius results in complex sharpest turn curves, as opposed to a
circle, which is an essential part of an optimal path for the isotropic problems. These
facts make the task of extending the problem of optimal path finding with minimum
curvature to the direction-dependent case a significant challenge.

Let (x(t),y(t),θ (t)) ∈ ℜ2 ×S1 denote the vehicle configuration at time t ∈ [0,T ],
where (x(t),y(t)) are the coordinates of the mobile agent position and θ (t) is its
heading angle with respect to the x axis. We set the system steering controller u(t) :
[0,T ]→ [−1,1] to represent the rate of change of the vehicle heading at time t. Then,
we can write our fastest path finding problem as the following differential system:

min
u

T

subject to ẋ = V (θ )cos(θ ),

ẏ = V (θ )sin(θ ),

θ̇ =
V (θ )
R(θ )

u,

with the boundary conditions:

(x(0),y(0),θ (0)) = (xs,ys,θs),

(x(T ),y(T ),θ (T )) = (xt ,yt ,θt ).

We demonstrate the problem’s controllability by reducing our problem to
Dubins car problem (Dubins 1957), which has been established to be controllable
(Sussmann and Tang 1991). Next, we prove the existence of an optimal path using
Filippov’s Theorem (Filippov 1962). Then, we employ optimal control theory and
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Pontryagin’s principle (Pontryagin et al. 1962) and derive the necessary condition
for optimality that states that any optimal path is the concatenation of the arcs
with minimum turning radius R(θ ) and the straight line segments. Note that this
condition for optimality holds true for the very generalized anisotropic speed
function V (θ ) and minimum turning radius function R(θ ). Further analysis delivers
the detailed characterization of an optimal path structure.

Theorem 1 (From Dolinskaya and Maggiar (2012)). There exists an optimal
path from an initial configuration (xs,ys,θs) to a target configuration (xt ,yt ,θt) such
that it is a portion of a path of type CSCSC where C denotes a sharpest turn and S
a straight line.

For the case when the speed polar plot is convex, we have more specific
characterization.

Theorem 2 (From Dolinskaya and Maggiar (2012)). When the movement along
a path is characterized by a speed function with a convex polar plot, an optimal path
from (xs,ys,θs) to (xt ,yt ,θt) is of the form {C,C,C}, or {C,S,C}, where C denotes a
sharpest turn curve and S denotes a straight line segment. It is implied that a path of
the form {C,C,C} alternatively switches between left-hand and right-hand sharpest
turn curves.

See Dolinskaya and Maggiar (2012) for the detailed proofs of these theorems and
an algorithm that facilitates the implementation of the results.

10.3 Dynamic Programming Modeling for Optimal Path
Finding in a Direction-, Location- and Time-Dependent
Environment

In the preceding section, an optimal path in a time and space homogeneous
direction-dependent environment was found; in other words, the cost function and
constraints are assumed to be independent of the time and location of an agent. Here,
we relax the assumption of homogeneity and discuss a dynamic programming model
for optimal path finding in a direction-, location- and time-dependent environment.
This section is a brief overview of our work discussed in Dolinskaya (2009, 2012).

10.3.1 Limited Visibility Horizon

Current technological advancements in real-time data collection and forecasting
call for an explicit incorporation of the available information into the decision-
making process. Innovative on-board sensors, such as a Doppler radar in the
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Fig. 10.3 Dynamic Programming model finds the fastest paths to the points on the visibility
horizon, then results for time and space homogeneous medium are used to find the best paths
to continue

Optimum Vessel Performance in Evolving Nonlinear Wavefields project, collect
information about the surrounding environment in real time. The optimal path-
finding model presented here makes use of the gathered information. It is important
to acknowledge that physical sensors have a limited visibility horizon and cannot
gather information about the medium beyond a specified distance, which is often
closer than the location of the target point. To address this restriction, our model
presumes to have complete information about the environment (i.e., cost function
and constraints) within the radar visibility horizon (denoted by RH ) and limited
information beyond that horizon (see Fig. 10.3).

Inside the radar visible region (i.e., region within RH distance from the current
location of the mobile agent) the medium is completely characterized by the
available information. This allows us to construct a detailed dynamic programming
model (to be described below) to evaluate optimal paths to all the points on the
boundary of the visible region. Due to the limited information available to us
about the environment beyond RH , we approximate that region of the medium by
a stationary distribution characterized by a global parameter. For example, in the
case of vessel routing, a parameter called sea state characterizes the distribution
of waves to be encountered for a period of few hours. As a result, we assume the
environment beyond RH is time and space homogeneous for the duration of the trip.
This assumption facilitates the use of our earlier results (see Sect. 10.2) to find an
optimal path from each point on the boundary of the radar visible region to the
target point. Note that as the mobile agent travels along a path, the radar visible
region moves with it, and the optimal path is reevaluated in real time incorporating
the new information.
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10.3.2 System Dynamics Restrictions

The traditional dynamic programming (DP) path-finding models discretize the
path domain into a set of way-points and find an optimal ordered set of way-
points to traverse from the starting point to a target location. Since the paths
between a consecutive pair of way-points are assumed to be a straight line segment,
the resulting optimal path is piecewise linear. However, in a number of real-life
applications, such as navigation of aerial, ground, and naval vehicles, piecewise
linear paths are not feasible, since the curvature of a feasible path is constrained by
a minimum turning radius function. Instead of the traditional approach of addressing
the optimal path-finding and path-following aspects of the problem separately, we
integrate the system’s operability and dynamics constraints into an optimization
model resulting in a control-feasible solution.

We develop a dynamic programming model to be implemented inside the visible
region to find an optimal path to all the points on the boundary of this region (i.e.,
RH distance away from the agent’s current location). We discretize the path domain
into a set of way-points l distance away from each other, and the environment of the
l-radius neighborhood surrounding each way-point is assumed to be time and space
homogeneous. We set our dynamic programming state to include the location (i.e.,
way-point), as well as the heading angle of the mobile agent at the way-point. Then,
at each state, the dynamic programming model decides on the next way-point and
the heading angle with which to arrive at that point. Since the environment between
the two consecutive way-points is assumed to be time and space homogeneous, we
use our results for optimal path with bounded curvature presented in Sect. 10.2.2
to find the fastest path and corresponding travel time between the DP states (see
Fig. 10.3).

10.3.3 Computational Demand of a Time-Dependent
Environment

Due to time dependency of the environment and cost function, it is not necessarily
optimal to arrive at each intermediate way-point of a path as soon as possible.
To account for this fact, a time variable is traditionally added to the dynamic
programming state in order to keep track of all possible times at which we might
arrive, and consequently leave, a given point. This additional variable increases
the number of DP states to be considered by orders of magnitude. At the same
time, computational demand and run-time of the optimal path-finding model is of
particular significance to timely utilization of the available real-time information
in a decision-making process. We developed an alternative formulation of the
dynamic programming functional equation, which allows us to eliminate the time
variable from the state space, thus significantly reducing the computation time of
our algorithm.
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Our approach is built on work by Dreyfus (1969), who was the first one to
demonstrate that in the case when unlimited waiting in the nodes is allowed, the
dynamic fastest path problem can be solved using Dijkstra’s algorithm as efficiently
as in the case of a static network. Dreyfus redefines the cost function di j(ti) (the
cost of traveling from node i to node j when leaving node i at time ti), so that
“if travel schedules are such that a delay before departure decreases the time of
arrival, di j(ti) represents the elapsed time between time ti and the earliest possible
time of arrival.” This alternative definition of di j(ti) ensures the validity of the
consistency condition (established in Kaufman and Smith (1993)) and facilitates a
straightforward dynamic programming formulation of the problem, where DP state
only stores the current location in the network. However, stopping at the way-points
is impractical or infeasible for many applications. For example, an airplane cannot
stop in mid-air to wait for a storm to pass by. Similarly, it is not practical for a large
vessel to come to a complete stop before continuing its travel. Consequently, we do
not allow stopping or waiting in our model. Instead, we extend Dreyfus’ approach to
a path-finding model permitting voluntarily speed reduction (i.e., slow down) along
a path.

Let τ(a,θa,b,θb, ta) denote the vessel travel time along the fastest path with
bounded curvature from point a to point b starting at heading angle θa at time ta
and arriving at heading angle θb. Define g(a,θa) to be the minimum travel time
from the starting position (s,θs) to point a, arriving at a with the heading angle θa.
Recall that the distance between two consecutive way-points is denoted by a fixed
parameter l. Then, we formulate the following DP functional equation,

g(b,θb) =

{
min

{a,θa:‖b−a‖=l}
{g(a,θa)+min

Δt
(Δt + τ(a,θa,b,θb,g(a,θa)+Δt))},

(10.1)

where ‖.‖ is Euclidean norm. By setting the initial condition g(s,θs) = 0 and
iteratively applying the functional equation (10.1), we find fastest paths to all the
points on the boundary of the visible region. Note that Δt denotes the vessel “delay”
at a given way-point before continuing its travel. Thus, the solution of our dynamic
programming model returns an ordered set of optimal way-points and optimal delay
time at each of those points. Since we assume that waiting (i.e., delay) is not
permitted in the intermediate points of a path, we instead intentionally slow down
the mobile agent to guarantee that its arrival time to a way-point coincides with the
optimal time to depart it.

10.3.4 Fastest Path Finding Algorithm (Adopted from
Dolinskaya (2012))

Step 1. Apply results from Sect. 10.2.2 to compute the values of τ(a,θa,b,θb, ta)
for all inputs where ‖a− s‖ ≤ RH ,‖b− s‖ ≤ RH and ‖a− b‖= l.



10 Dynamic Navigation in Direction-Dependent Environments 259

Step 2. Apply Dijkstra’s algorithm to the DP recursive equation (10.1) to find the
fastest paths from (s,θs) to a discretized set of points on the visibility horizon RH .

Step 3. Apply results presented in Sect. 10.2.1 or Sect. 10.2.2 to find the fastest
paths from the points on the visibility horizon to the target state (t,θt).

Step 4. Find the discretized point on the visibility horizon that has the smallest
sum of the corresponding travel times found in Step 2 and Step 3. A fastest path
passing through such point is the optimal path.

Step 5. For the optimal path found in Step 4, adjust the speed for each arc as
discussed in Sect. 10.3.3 to ensure optimal arrival to each intermediate waypoint.

10.3.5 Numerical Results

To demonstrate the applicability and performance of our path-finding methods,
we conducted computational experiments for the Optimum Vessel Performance in
Evolving Wavefield project. The test runs are simulated for an S-175 containership
in the Sea State 6.5 wavefield (corresponding to the mean wave height of the one
third highest waves of 7 m). We compared the travel time of the found optimal path
to those of the straight line path and one way-point path, which we established to be
optimal for time and space homogeneous environment. We observed the average
savings varying between 4% and 6%, with up to 9.7% saving. However, these
estimations are very conservative due to a number of data limitations and restricted
maneuverability of the 175-m long vessel. When we reduce the minimum turning
radius of the test vessel by half, we report an average improvement in travel time
of 12.5%. See Dolinskaya (2009, 2012) for complete discussion of our numerical
results.

10.4 Optimal Path Finding for a Cost Function
Other Than Travel Time

Throughout this chapter, we discuss an optimal path-finding problem with the
objective of minimizing the agent’s travel time. We often mention that our analysis
and results can be directly extended to problems minimizing other cost functions.
In many applications, we face an optimal path finding problem with alternative
objective functions. For example, in the case of the Optimum Vessel Performance
in Evolving Wavefield project, in addition to finding a fastest path, we are interested
in minimizing root mean squared (RMS) motions, such as roll (10.2) and other
measures of the path “quality.”

RMSRoll =

√
φ2

1 + . . .+φ2
n

n
. (10.2)
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However, the extension of our analysis and presented path-finding model is
not straightforward for dynamic networks and path finding in a time-dependent
environment. In this section we discuss how an optimal path-finding algorithm
changes when the objective function is different from travel time.

The problem of minimizing cost in a dynamic network is briefly discussed in the
literature. For example, Chabini (1998) looks at the minimum cost functions where
travel time functions di j(ti) and cost functions ci j(ti) are time dependent. He extends
a backward DP formulation of the fastest path problems to this minimum cost path-
finding problem. Chabini assumes that di j(ti) and ci j(ti) are constant for any time
greater than some specified value, resulting in a static problem. This static problem
solution is then used as the boundary condition for the dynamic programming
formulation of the problem.

The difference between our earlier analysis of the fastest-path-finding problems
and modeling of a problem with a general cost function is that we cannot eliminate
the time variable from the dynamic programming state space [see Sect. 10.3.3 and
Eq. (10.1)]. Therefore, we have to set the DP state to be (a,θa, ta) and consider
all possible times of arrival at a given waypoint. Consequently, the resulting DP
model delivers a classical functional equation and a straightforward application of
Dijkstra’s method or Chabini’s approach to find an optimal path.

We also note that the cost function has to be additive to apply the standard
dynamic programming recursive equation. However, the model can be adjusted to
other objective functions. For example, the averaging measures of path quality, like
RMS roll, can be implemented by fixing a constant number of arcs for all considered
feasible paths, or by adding a variable keeping record of the number of arcs traveled
to the dynamic programming state space. Alternately, since in the Optimum Vessel
Performance in Evolving Wavefield project we are interested in minimizing roll
experienced by a vessel without significant increase in trave time, we set our
dynamic programming model to minimize the additive function φ2

1 + . . .+φ2
n instead

of the RMSRoll defined in Eq. (10.2). This, in turn, allows the model to capture the
trade-off between travel time and RMS roll of a given path. In our forthcoming work
we further explore this and other similar problems.

10.5 Conclusion

This chapter discusses optimal path finding in a direction-, location- and time-
dependent environment. We deliver a computationally efficient path-finding algo-
rithm with a sufficiently small run-time for real-time implementation. A traditional
dynamic programming path finding model makes a number of restrictive assump-
tions that jeopardize its applicability to real-life problems. Alternatively, we present
a model that integrates and addresses a set of limiting aspects previously neglected
in the literature:
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• Our dynamic programming (DP) path-finding model integrates a limited
visibility horizon and accounts for the lack of detailed information about a
medium beyond a certain distance from the mobile agent’s current location.

• The presented DP model finds a smooth and control-feasible fastest path by
integrating the systems dynamics into the optimization process.

• By integrating the agent’s controller (speed) into the decision space of the
algorithm, the resulting model eliminates a time variable from the dynamic
programming state space and improves efficiency and run-time of our model.

A number of special case problems corresponding to the assumption of a time and
space homogeneous environment are solved analytically. These results deliver a
significant contribution to the study of anisotropic (direction-dependent) problems.

We are currently working on integrating the additional system constraints, such
as bounded acceleration and deceleration, into the optimal path-finding model
described in Sect. 10.2.2 in order to improve its accuracy and applicability. We also
plan to integrate uncertainty associated with data-collection and forecasting errors
of the future environment. The goal of our ongoing work is to continue the study
of integration of real-time data collection into the optimization models, especially
with application to unmanned systems.
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Chapter 11
An Approach to Assess the Impact of Dynamic
Congestion in Vehicle Routing Problems

H.M. Abdul Aziz and Satish V. Ukkusuri

Abstract This research proposes an integrated framework of capacitated vehicle
routing problems (CVRP) and traffic flow model (cell transmission model in this
research) to assess the effect of time-varying congestion. We develop a framework
consisting sequence of mixed integer programs solving the CVRP with updated cost
obtained from the traffic flow model. A real-world network with 15 cities and towns
is tested with the framework and results show significant travel time reduction from
the case where time-varying congestion is not considered. In addition, we consider
system optimal type of route choice behavior within the traffic flow model.

11.1 Introduction

Vehicle routing problem (VRP) is commonly encountered in freight distribution
systems and plays an important role in effective management of logistics systems.
In general, VRP seeks the solution for allocating resources (vehicles or crews) with
minimal cost such that all nodes in the network are visited at most only once. The
cost function in VRP primarily includes travel time (from one location to all other
locations) as observed in the transportation network. Evidently, the travel times on
the transportation network are a function of the time-dependent flow in the network.
The time-varying nature of flows is well recognized in previous works in traffic
routing and network assignment. Accommodating the time-varying nature of the
travel time adds congestion effects that can lead to a better design of a just-in time
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type of system (Stickel et al. 2005). Thus, it is necessary to take into account the
time-varying congestion while solving the VRP problem.

Majority of the past research works [see (Toth and Vigo 2002) for an extensive
review] focus on solving the VRP with non-varying travel time information.
However in most real-world problems the assumptions made in the static VRP
do not hold due to continuous change in traffic conditions in the network. In this
research, we limit our focus only on the aspects of traffic congestion (time dependent
travel time cost) and its impact on VRP solution mechanism. The travel time on
different links of a road network can vary for different reasons and affect the cost
function used in the VRP problem (Figliozzi 2007). One observes capacity reduction
for road segments due to bad weather, incidents, work zone, etc. at different time
of the day, different day of the week, or different month of a year. To obtain robust
and useful solutions from VRP problem, it is important to consider of time-varying
nature of travel time on road segments.

One way to account for congestion is to use a time-varying travel time function
[see (Larsen 2000) for different methods used by researchers]. However, this only
captures recurrent congestion to a certain degree and realistic traffic phenomenon
such as spillback effects and shockwave propagation are not considered. Another
approach to deal with the problem is to use the real-time information for analysis.
However, using real-time traffic information to analyze the VRP problem requires
installation of infrastructure and makes the computational complexity much higher
in most cases (Chen et al. 2006). Information on fluctuating travel time can be
acquired from traffic management center. Although the main purpose is to influence
and control traffic in real time, a traffic management center also provides useful
data for routing and dispatching a particular vehicle fleet (Fleischmann et al. 2004).
This concerns two types of travel time information: first, there are forecasts of
the variation of the travel times during the day, e.g., due to the regular rush hour
congestion in certain streets. These data are not dynamic in the strong sense, because
they are available in advance for the whole day. Second, there is online information
on changes in travel times due to unforeseen events such as accidents, information
that leads to an update of the travel time forecast. Hu et al. (2003) proposed
model that uses real-time information from commercial vehicle operations (CVO)
and accounts for time-sensitive demand and current traffic conditions. However,
the authors mentioned that the execution time increases exponentially with the
increased number of nodes. Similar computational and operational issues can also
be found for conceptually similar frameworks [see (Toth and Vigo 2002) and
(Larsen 2000)]. This implies that integrating the components of real-time travel time
of road segments into the VRP adds computational complexity which often makes
the problem intractable especially for large-scale networks.

This research a framework that accounts for the time-varying travel time obtained
from a mesoscopic traffic flow simulator. Using the simulator we solve a sequence
of VRP problems with updated link travel time. In addition, the proposed framework
incorporates the route choice attribute of the road users which is an essential element
in traffic dynamics. The rest of the paper is organized as follows: Sect. 11.2 discusses
some related works from previous literature, Sect. 11.3 describes the proposed
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framework, and Sect. 11.4 illustrated the results for test networks. Finally Sect. 11.5
gives a short summary on the research contribution and future research direction are
discussed.

11.2 Background and Related Works

The VRP has been studied with much interest in the past few decades. Initially
Dantzig and Ramser (1959) proposed a linear programming-based heuristic for the
VRP. Later Schrage (1981) discussed many different variants of the basic problem
(frequency, time windows, varying costs, number of vehicles, etc.). Afterwards,
many researchers worked on different aspects of the basic VRP problem and
developed both exact (branch-and-bound, branch-and-cut, branch-and-pricing, etc.)
and heuristics (tabu search, simulated annealing, genetic algorithms, ant-colony
system) to get applicable solutions [for details, see (Augerat et al. 1995; Chang
et al. 2003; Cordeau et al. 2001; Fukasawa et al. 2006; Laporte 1992; Lysgaard et
al. 2004; Shieh and May 1998; Toth and Vigo 2002)].

Most of the previous research works are in the context of static vehicle routing
problem. This implies that the travel time or the link costs are fixed for the analysis
period. The concept of dynamic vehicle routing problem is relatively recent and only
a few of the researchers have focused on the dynamic aspects of the vehicle routing
problem. Note that, throughout this chapter dynamic aspects only refer to the time
varying travel time due to congestion on road networks in context of vehicle routing
problems. In the static problems all information about customers and travel times are
known beforehand. On the contrary, in dynamic vehicle routing problem (DVRP)
the relevant information are not deterministic and exhibit time-varying nature.
A survey of the DVRP can be found in Psaraftis (1995). Time-dependent travel time,
in addition to other real-time attributes (customer demand, location, time-window,
etc.) is another important component in dynamic vehicle routing problem (Haghani
and Jung 2005). Very few research works comprise VRP problem that accounts for
time-varying travel time [see (Fleischmann et al. 2004; Haghani and Jung 2005;
Ichoua et al. 2003; Malandraki and Daskin 1992; Woensel et al. 2008) for recent
works]. Ichoua et al. (2003) considered the time-dependent nature of travel time
through time-varying travel speeds satisfying first-in-first-out principle. A restricted
dynamic programming method was proposed by Malandraki and Dial (1996) for
solving a time-dependent TSP which can be applicable to VRP. Chen et al. (2006)
developed a series of mixed integer programming models for the time-dependent
vehicle routing problems. A heuristic for route construction and improvement is
proposed and rolling horizon approach is applied to predict travel time.

Most of these research works have computational issues when applied to
larger networks. Further, inclusion of real time information update makes the
problem more difficult (e.g., frequency of analysis, updating cost interval, and
time window limitations). Only a few researchers deploy simulation tools to avoid
the complexity of real-time information systems. Taniguchi and Thompson (2002)



268 H.M.A. Aziz and S.V. Ukkusuri

described the application of intelligent transportation systems to deal with dynamic
vehicle routing problem considering time-dependent travel time deploying traffic
simulation. Conrad and Figliozzi (2010) used Google data and archived historical
data to assess the impact of congestion on VRP solutions using traffic simulation to
represent the congestion scenarios.

Evidently, the existing literature lacks research works that integrate traffic sim-
ulation and VRP solution techniques to incorporate the time-dependent congestion
effect. Besides this, the few research works related to traffic simulation and VRP
do not consider any kind of route choice behavior (to the best knowledge of the
authors). In this research, we seek to integrate a mesoscopic traffic flow model
within the framework of vehicle routing problem. We adopt the cell transmission
model (CTM) proposed by Daganzo (1994; 1995) which is a discrete approximation
of Lighthill, Whitham and Richards’ (LWR) hydrodynamic model (Lighthill and
Whitham 1955) that assumes a piecewise linear relationship between traffic flow and
density for each segment on the road. The proposed framework solves a sequence
of VRP problems with updated cost from the embedded traffic flow model and thus
considers the time-varying nature of travel time along with route choice behavior of
road users within VRP.

11.3 Proposed Framework

In this section, the integrated VRP-CTM framework is described along with the
proposed algorithm. First, we discuss primary components of the framework: the
capacitated vehicle routing (CVRP) problem and cell transmission model (CTM).
Afterwards, we illustrate the framework with a detailed algorithm.

11.3.1 Capacitated Vehicle Routing Problem

The vehicle routing problem (VRP) is a generalization of the traveling salesman
problem (TSP) in that the VRP finds m vehicle routes, where each route is a tour that
begins at the depot, visits a subset of the customers in a given order, and returns to
the depot. The vehicle must visit each customer or node exactly once. When the total
vehicle capacity is imposed as constraints on satisfying the customer demand, the
variant is called capacitated vehicle routing problem (CVRP). In this research, we
adopt the multi-vehicle capacitated vehicle routing problem formulation (a mixed
integer program) as developed in Ahuja et al. (1993). In a CVRP, we have a fleet
of vehicles at a common depot and a set of customers with demand specified. The
CVRP problem seeks to determine the set of minimum cost routes for delivering (or
picking up) the goods to customer sites. This research uses the simplest version of
CVRP problem with the assumption of a homogenous vehicle fleet (same capacity).
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11.3.2 Cell Transmission Model

The developed formulation has an embedded mesoscopic traffic flow model,
namely the cell transmission model (CTM). This model was proposed by
Daganzo (1994; 1995) and later modified by other researchers. CTM (cell
transmission model) divides each link of the network into cells (however, cell
size can be varied throughout the network). CTM can represent congestion and
queue spillover effects on a road link and accordingly can serve as an ideal
choice to capture traffic dynamics due to desirable properties such as the link
spillover and shockwave propagation (Ukkusuri and Waller 2008; Ukkusuri
et al. 2010; Ziliaskopoulos 2000). However, CTM represented as a linear program
has few drawbacks such as the vehicle holding back problem, representation
of merging and diverging, and First-In-First-Out(FIFO) violation for multiple
origin-destination network [see (Ziliaskopoulos 2000; Ukkusuri and Waller 2008;
Zheng and Chiu 2011) for details]. The flow propagation conditions in original
CTM constitute a feasible region of non-convex set (Daganzo 1994; Zheng and
Chiu 2011). Ziliaskopoulos (2000) relaxed the formulation and proposed a linear
programming formulation of system optimal objective with embedded CTM for
single destination. Later Ukkusuri and Waller (2008) and Ukkusuri et al. (2010)
modified the formulation for the multi-destination system optimal objective. In
this paper, for traffic simulation without any route choice behavior we adopt the
Daganzo’s (1995) original network-based model. To implement system optimal-
based CTM simulation, we adopt the formulation by Ukkusuri and Waller (2008)
and Ukkusuri et al. (2010).

11.3.3 Integrated Framework and Solution Algorithm

The integrated framework can be illustrated with the help of the following
algorithm:

Step 0. Initialization:

(a) Path generation for all O–D pairs in the network. Dijkstra’s shortest path
algorithm can provide with shortest paths between any two nodes of the road
network.

(b) Travel time matrix is developed either using free flow travel time or best
available historical data (either from direct observation or possible simulation).

(c) Cost matrix for the CVRP is prepared from the initial travel time matrix.
(d) Solve the CVRP using initial cost matrix. We will call it the basic solution.

Step 1. Tour initiation:

(a) From the basic solution, start from depot O and visit the first node iO as
determined in the basic solution.

(b) Set iO as the current node icurrent and O as the previous node iprevious.
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(c) Obtain the travel time for iprevious → icurrent and set it as current time Tcurrent (e.g.,
if the vehicle starts at 8 AM and reaches the first node at 9 AM, then current time
is 9 AM).

Step 2. Update traffic status:

(a) Obtain the traffic status from traffic simulation (CTM in our case) at Tcurrent.
Traffic status includes link travel time, average speed, queue length (if any), and
density, etc.

(b) Update the travel time matrix based on current traffic status (only if travel times
are changed).

(c) Update the cost matrix for CVRP.
(d) Within the CVRP formulation, set condition that the vehicle already has

traversed iprevious → icurrent.
(e) If the cost matrix is updated, then solve the CVRP with updated cost matrix and

condition defined as in (d).

Step 3. Tour update:

(a) Get the next node j from icurrent from the updated solution obtained in step 2.
(b) Set icurrent as the previous node iprevious.
(c) Set j as the current node icurrent.
(d) Set iprevious → icurrent as current time Tcurrent.

Step 4. Tour Termination:

(a) If current node icurrent is the depot, tour is complete and exit the algorithm.
(b) Otherwise go back to step 2.

Figure 11.1 shows the flow chart of the proposed algorithm.

11.4 Numerical Results and Discussions

The proposed framework is tested with two networks: Test-Network-1 (toy network
with seven nodes) and Test-Network-2 (real-world network containing 15 cities
within the state of Indiana and the state of Illinois in the U.S.). For Test-Network-1
we apply CTM simulation with route choice behavior of the road users (system
optimal formulation) and for Test-Network-2 we apply CTM simulation with and
without user behavior consideration. In addition, we also experiment the networks
with low and high level of demands at different locations in the network. As
expected, the low demand profiles do not produce any significant changes in the
basic solution of the CVRP. Therefore, we only include the results from high
demand profiles for the test networks in this paper. For the test networks, we have
made the following assumptions:

1. No traffic control characteristics in the network such as signal control and ramp
meter are considered.
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Fig. 11.1 Flowchart of the proposed algorithm

2. Demand profiles for the network are known to the analyst.
3. The CVRP costs are symmetric and we only consider travel time (since operating

cost other maintenance costs are fixed in most cases) as the cost for traversing
from one node to another.

11.4.1 Test-Network-1

Table 11.1 describes the input parameters and geometric characteristics for the Test-
Network-1 (second column). Figure 11.2 shows the Test Network-1 with its nodes
and arcs. Node 1 is the depot and nodes from 2 to 7 are the customer site required
to be served in the CVRP. This simple network is used to illustrate the algorithm.
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Table 11.1 Geometric attributes and input parameters for Test-Network-1 and
Test Network-2

Attributes Test Network-1
Test Network-2 (15
City Network)

Total number of nodes in
the traffic network

12 19

Total number of road
segments in the network

17 26

Total number of
customers/cities in the
CVRP

7 15

Demand range at origins
(vphpla)

1,600–2,100 1,800–2,400

Saturation flow(vphpl) 1,900 2,160
Free flow speed or posted

speed limit (mphb)
40 60

Backward propagation
speed(mph)

40 45

Minimum cell length
(miles)

2.33 10

Time step (minutes) 3.5 10
Jam density(max. no. of

vehicles in a cell)
200 1,056

Max. flow allowed (no. of
vehicles per time step)

110 360

avehicles per hour per lane
bmiles per hour

We only apply system optimal-based linear program (Ziliaskopoulos 2000) to
simulate CTM for this network. This implies that a system optimum-based route
choice behavior is considered in the traffic simulation in CTM (Figs. 11.3, 11.4).

11.4.2 Results for Test-Network-1

Table 11.3 (Part-A) shows the results obtained for Test-Network-1. The results
show the effect of congestion on the CVRP solutions at different iterations. The
network is heavily loaded at the beginning of the simulation. As the vehicle starts
the tour, the travel times on road links begin to rise and the cost matrix for the
CVRP is affected. As a result, we see the change in the VRP solution in the first
iteration. Similarly in the second iteration the travel times change the CVRP cost
matrix and accordingly the tour (sequence of visiting nodes). One should note
that it is not necessary that the CVRP solution must change with the change of
travel times in the road networks. This is shown in the results of Test-Network-2.
For some iterations, the results do not show any significant changes in the travel
time that can affect the CVRP cost matrix. Finally, we obtain the modified CVRP
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3 212

10 111

4 65

9 87

Fig. 11.2 Test-Network-1

solution. If we compare the modified CVRP solution with basic CVRP solution
(without considering the congestion), we see that there is a significant reduction in
travel time.

The Basic CVRP solution yields 84 min of travel time with fixed travel time
(fixed cost matrix). However in actual case, the travel time will change due to high
congestion and the basic solution yields 146 min (this total travel time is calculated
based on the varying travel time on the links). Now, the proposed framework that
accounts for time-varying congestion yields a CVRP solution with total travel time
of 116 min. Since the proposed framework takes into account the current traffic
condition and updates CVRP cost matrix, the solution clearly shows significant
reduction in travel time.

11.4.3 Test-Network-2

Table 11.1 describes the input parameters and geometric characteristics for the Test-
Network-2 (third column). This network comprises of 10 cities and 5 towns in the
states of Indiana and Illinois (in the U.S.). All these locations are connected with
highways and interstate freeways. In the simulation we consider the on-ramp and
off-ramp (exits) as the sources and sinks, respectively. Since the network mostly
contains interstate freeways, without loss of generality we assume no traffic control
over the network. To represent congestion we use high demand at different on-ramp
nodes of the network. Further, bottlenecks are found at some exit points when many
vehicles reach the sink which slows down the vehicles on the freeway. The intent
of using Test-Network-2 is to present a real-world CVRP where distribution centers
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Table 11.2 Geographical
locations used in the
real-world test network
(Network-1)

Node ID Location Entity State

1 Champaign City Illinois
2 Covington Town Indiana
3 Indianapolis City Indiana
4 Lafayette City Indiana
5 Rensselaer City Indiana
6 Merrillville Town Indiana
7 Manteno Town Illinois
8 Bloomington City Illinois
9 Pontiac City Illinois
10 Joliet City Illinois
11 LaSalle City Illinois
12 Braidwood Town Illinois
13 Galesburg City Illinois
14 Rock Island Town Illinois
15 Lincoln City Illinois

are located at different geographical locations and the network is connected with
highways and freeways (Table 11.2).

11.4.4 Results for Test-Network-2

Table 11.3 (Part-B and Part-C) shows the results obtained for Test-Network-1 from
traffic simulation with and without route choice behavior, respectively. Similar to
Test-Network-1, we observe the effect of congestion on the cost matrix of CVRP
with time. In iteration-1 of Table 11.3 (Part-B) we see changes in the travel time
and corresponding change in the solution of CVRP. In iteration-2, one should notice
that even though the travel times are changed, there is no effect on the solution of
the CVRP. This happens because the changes in the travel times in the links do
not significantly change the cost hierarchy of the CVRP nodes. The travel time on
different links constitute the cost from one node to another node. Therefore, changes
in few links might not change the cumulative cost from one node to another in
CVRP. Further, the changes in the cost from one node to another may not change the
sequence of visiting nodes in CVRP solution. This is possible because the relative
cost of visiting different nodes affects the CVRP solution. Thus, the change of cost
from one node to another might not change the relative cost and as a result the CVRP
solution remains same.

The results in Table 11.3 (Part-B) show that there is no change in the CVRP
solution up to node 15 and then the CVRP solution changes. Afterwards, there is
no significant changes in the solution (even though we observe travel time changes
as obtained in the traffic simulation). The total travel time for the basic solution
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is 787 min when the travel times are assumed to be unchanged within the tour.
If this solution is followed, the total travel time experienced would be 841 min due to
travel time changes in the link for time-varying congestion. The proposed integrated
framework in this paper offers a solution that accounts for the time-varying travel
time and in that case total travel is 811 min for the solution tour in CVRP.

Next, Table 11.3 (Part-C) shows the results for Test-Network-2 without route
choice consideration. We see similar trends of the results. The basic solution
yields 787 min with fixed travel time assumption. The simulation suggests the
basic solution would actually yield 865 min due to time-varying congestion. On the
contrary, the CVRP solution obtained from the proposed framework yields 834 min
for the tour. Thus, the proposed framework accounts for time-varying congestion
and provides solution that saves travel time.

11.4.5 System Optimal Behavior vs. Predefined Route Choice
Behavior

From the results as seen in Table 11.3 (Part-B and Part-C) we see some differences
between the solution with (Part-B) and without (Part-C) route choice behavior.
When we consider the system optimal behavior of all the users in the road network,
the flows are assigned in such a way that total travel time of the system is minimized.
This causes less delay on road links compared to simulation with predefined route
choice behavior. As a result, the CVRP is less affected. This is reflected in the results
shown in Table 11.3 (Part-B and Part-C). The total travel time is lesser in Part-B as
compared to Part-C.

In addition, when route choice behavior is considered we see switching of paths
during the solution process. For example, to reach point B from point A initially
the CVRP suggests minimum cost C1 corresponding to path P1. However, due to
high congestion in path P1 the cost becomes higher with time and CVRP suggests
minimum cost C2 that corresponds to a different path P2. Thus, we can include
different route choice behavior within this framework. If one were to include the
dynamic user equilibrium as the governing route choice within this framework,
the analytical formulation will be equivalent to a mathematical program with
equilibrium constraints (MPEC). This problem offers a significant potential for
future study.

11.5 Conclusion

In this research, we proposed an integrated simulation-based framework for solving
the capacitated vehicle routing (CVRP) problem incorporating the time-varying
congestion. We adopt a density-based dynamic traffic flow model, namely the CTM,
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that updates the cost matrix to solve the CVRP problem. The algorithm combines
a series of mixed integer programs to solve the CVRP problem. The results show
the total cost (in terms of travel time) is significantly less than the basic solution
when solved accounting for the time-varying congestion. In addition, we show the
difference in solution process when route choice behavior is taken into account.

This research applies travel time for the links of the network from a density-
based traffic flow simulation. An approach that is more appropriate would be to use
the real-time travel time information to build the cost matrix to solve the CVRP
problem. However, in that case we need an efficient approach that would solve
the problem within reasonable time bound so that the vehicle (which is already
on the road) can get the optimal node visiting sequence at the right point of time.
Considering the size of practical problems and computational complexity (NP
hard), it is not always feasible to go for such an efficient system. As an alternative,
the system operators can apply this framework proposed here to obtain solution that
is more accurate than the static CVRP approach. However, the algorithm may not
yield good solutions as the real-time travel time algorithms. One can see this as a
trade-off between the quality of solution and computational cost.

The proposed framework incorporates the effect of congestion and traffic
dynamics into the CVRP problem. It is observed that at low levels of congestion
the solution from the static VRP coincides with the time-varying congestion model
proposed here. However, in cases where there is medium and heavy congestion, the
results are significantly different and the proposed approach allows to model the
problem more accurately.

The proposed framework has few limitations as well. The embedded traffic flow
model (CTM) has some known drawbacks due to the linear nature of the constraint
set (approximating the minimum operator as set of linear equations). This causes
the well-known vehicle holding problem (Ukkusuri and Waller 2008; Ukkusuri
et al. 2010; Zheng and Chiu 2011). Again, the formulations do not consider
diverging and merging, and lane changing phenomenon within the traffic flow model
explicitly. In addition, we consider only the system optimal type of route choice
behavior that is more appropriate from the system operator’s perspective. One might
also focus on user optimal type of behavior to see the results that are appropriate
from the user’s perspective. Finally, no control (traffic light or ramp metering) is
considered in the proposed framework that can affect the time-dependent flows in
the network and accordingly the results.

Nonetheless, the proposed framework provides a sound approach to assess the
impact of time-dependent flows in the context of CVRP. The approach is more
realistic in the sense that it captures the time-dependent nature of congestion and
accommodates its contribution to the cost function in CVRP. The framework is
expected to be useful for logistics planners when dealing with CVRP in real-world
context.
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Chapter 12
Incident Duration Prediction with Hybrid
Tree-based Quantile Regression

Qing He, Yiannis Kamarianakis, Klayut Jintanakul, and Laura Wynter

Abstract Accurate prediction of incident duration is critical for efficient incident
management which aims to minimize the impact of non-recurrent congestion.
In this chapter, a hybrid tree-based quantile regression method is proposed for
incident duration prediction and quantification of the effects of various incident and
traffic characteristics that determine duration. Hybrid tree-based quantile regression
incorporates the merits of both quantile regression modeling and tree-structured
modeling: robustness to outliers, simple interpretation, flexibility in combining
categorical covariates, and capturing nonlinear associations. The predictive models
presented here are based on variables associated with incident characteristics as
well as the traffic conditions before and after incident occurrence. Compared
to previous approaches, the hybrid tree-based quantile regression offers higher
predictive accuracy.

12.1 Introduction

Incidents, including accidents, vehicle breakdowns, spilled loads, or other random
events, reduce the capacity of the road and cause congestion when traffic demand
exceeds the reduced capacity at the incident location. Oak Ridge National Labora-
tory estimates that 55% of motorist delays on freeways are incident related (Chin
et al. 2004). Effective management is essential for mitigating the negative effects
of incidents on congested urban freeways. Various studies have been undertaken to

Q. He • Y. Kamarianakis • K. Jintanakul • L. Wynter (�)
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
e-mail: qhe@us.ibm.com; yiannis@us.ibm.com; kjintan@us.ibm.com; lwynter@us.ibm.com

S.V. Ukkusuri and K. Ozbay (eds.), Advances in Dynamic Network Modeling in Complex
Transportation Systems, Complex Networks and Dynamic Systems 2,
DOI 10.1007/978-1-4614-6243-9 12, © Springer Science+Business Media New York 2013

287



288 Q. He et al.

develop mitigation measures that minimize non-recurrent congestion due to freeway
incidents. A typical example of such efforts is the development of various types of
incident management systems that aim to clear traffic incidents quickly to minimize
its impact on traffic flow.

In existing incident management systems, an ability to anticipate incident charac-
teristics allows traffic managers to make better decisions on how to use management
and control resources, such as advanced traveler information system (ATIS) and
route guidance systems (RGS). Incident duration is an essential characteristic since
it highly determines both the magnitude and the extent of congestion. Therefore, it
is important to understand which factors can affect the incident duration. This study
explores these critical factors and develops statistical models for incident duration
prediction.

Incident duration can be defined as the duration between the instances of incident
occurrence and of departure of the response vehicles from the accident scene (Garib
et al. 1997; Nam and Mannering 2000; Smith and Smith 2001). As indicated in
previous studies, an incident is composed of the following four phases: (a) incident
detection and reporting time, (b) response time, (c) clearance time, and (d) recovery
time. Traditionally incident duration is defined as the sum of first three phases.

Incident duration prediction models can be used as a means to improve incident
management systems under non-recurrent traffic congestion. Incident management
systems generally encompass three main modules, including incident detection
technology, incident impact prediction, and incident-responsive traffic management
and control. Incident duration prediction models are essential components in such a
system, especially in the last two modules. Travelers and traffic management entities
can generally realize the impact by the forecasted incident duration. In general, the
impact of an incident in terms of both magnitude and extent of the congestion is
significantly affected by incident duration. Virtually all existing impact prediction
models developed in the literature require knowing the incident duration before
producing a prediction. Since duration of an incident is usually not known until the
incident is cleared, an accurate estimate is needed for accurate real-time prediction
of incident impacts.

Likewise, an accurate estimate of the incident duration is also required in
deriving effective response management and control strategies. Effective traffic
control strategies are supposed to alleviate impacted traffic without unnecessarily
interrupting the normal traffic or creating a secondary bottleneck. Rerouting factors
such as diversion and merge points, diversion percentages, and diversion duration
need to be derived on the basis of accurate magnitude and extent of the congestion
as well as the duration of congestion (Lee et al. 2003; Srinivasan and Krishna-
murthy 2003). In other words, the ability to redistribute flows over time is important
for effective incident management (Oh and Jayakrishnan 2000). For instance, the
projected incident duration will enable responsible traffic agencies to notify the en-
route drivers of traffic congestion in a timely manner with VMS, and assess if any
detour operators or control actions are needed. Drivers with better traffic information
when encountering an incident can then make a proper route choice decision with
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less anxiety, which may consequently increase their compliance to suggestions or
guidance by responsible traffic agencies (Garib et al. 1997).

The vast majority of previously related studies focused on predicting incident
duration solely from incident characteristics. This work incorporates not only
incident characteristics but also traffic data from both before and after the incident
occurrence. Traffic data collected prior to incidents act as spatial and temporal
indicators. Spatially, sequential traffic measurements indicate if the location of
an incident is a bottleneck in the network. Temporally, time of day and day of
week are associated with different levels of traffic variables and consequently, with
different effects for incidents of the same type. Furthermore, the levels of traffic
variables after an incident are associated with incident severity and hence with
clearance times.

In addition, this work uses hybrid tree-based quantile regression. Other tree
approaches have been used in the literature previously, including (Ozbay and
Kachroo 1999; Smith and Smith 2001). A critical feature of the method used here
is that it is designed to overcome the fundamental problems of previous trees such
as over-fitting and selection bias towards predictors with many possible splits or
missing values.

This chapter is organized as follows. Section 12.2 is devoted to a literature review
which discusses different methods for online prediction of incident duration. In
Sect. 12.3, we present the methodology of hybrid tree-based quantile regression,
which combines conditional inference trees with quantile regression. Data descrip-
tion and preliminary data analysis are illustrated in Sect. 12.4. Section 12.5 describes
the calibration of the statistical models, which is followed by an evaluation of their
predictive accuracy. Finally, Sect. 12.6 presents some concluding remarks.

12.2 Literature Review

Incident duration is one of the essential characteristics of incidents that determine
the magnitude and extent of the congestion. Thus, it has been extensively studied
over the last few decades. Different approaches proposed in the literature can be
grouped into the following categories:

• Linear regression: Garib et al. (1997) performed duration prediction using
regression models, to provide real-time incident information to travelers. As
the empirical distribution of incident duration is skewed (Golob et al. 1987;
Giuliano 1989), linear models are based on its logarithmic transformation.
Khattak et al. (1994) used a series of truncated regression models to predict
incident duration, which account for the fact that incident information at a Traffic
Operations Center is obtained sequentially.

• Tree models: Ozbay and Kachroo (1999) constructed decision trees which
do not require knowledge of all observable incident characteristics. A similar
approach was followed in Smith and Smith (2001) where classification trees
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were applied to predict incident duration, defined as a categorical variable.
The classification tree was shown to be well suited for forecasting the phases
of incident duration with reliable and informative characteristics. Recently,
Kim et al. (2008) constructed a rule-based tree model coupled with a discrete
choice model, aiming at improved predictive ability. However, these models do
not use any traffic data nor do they consider the tails of the distributions.

• K-nearest neighbor (KNN): Smith and Smith (2001) investigated incident dura-
tion prediction with KNN methods. Qi and Smith (2004) developed a distance
metric that can be effectively used with categorical data. They argued that KNN
outperformed parametric forecasting models significantly. Again, these methods
did not leverage traffic data.

• Survival analysis: Incident duration can be viewed as the time period an incident
can survive before being cleared. However, to implement survival analysis,
selecting an appropriate probability distribution for incidence duration can be a
challenging task (Jones et al. 1991; Nam and Mannering 2000; Qi and Teng 2008;
Chung 2010; Chung et al. 2010).

• Artificial intelligence: Wei and Lee (2007) applied artificial neural network
(ANN)-based models and data fusion techniques to forecast incident duration.
Recently they employed genetic algorithms (GA) and ANNs to construct two
models that forecast accident duration from the moment of accident notifica-
tion to accident clearance (Lee and Wei 2010). Demiroluk and Ozbay (2011)
developed three structure learning algorithms to construct Bayesian network
(BN) structures. They demonstrated that BNs were very useful in uncovering
important relationships among predictors, using the concept of strength of links.

12.3 Methodology

The adopted methodology, proposed recently in Hothorn et al. (2006), combines
unbiased recursive partitioning (URP) with piecewise constant fitting using per-
mutation tests. The conditional distribution of statistics measuring the association
between incident duration and its predictors is the basis for an unbiased selection
of the predictors in the model. Multiple tests are applied to determine whether no
significant association between any predictor and duration can be stated and the
recursion needs to stop. The above framework aims to solve both the over-fitting and
the variable selection problems of older recursive partitioning methods (a detailed
overview is provided in Murthy 1998).

Our implementation was based on the software provided by the developers of
the method (Hothorn et al. 2011). Significance levels for the test statistics were set
to conventional levels (0.05) and a Bonferroni correction was applied in multiple
testing procedures, in accordance with the suggestion in Hothorn et al. (2006).

Predictions from conventional tree models are compared to the ones derived
from a hybrid approach that combines regression trees based on the incident char-
acteristics with quantile regression models that use traffic variables as predictors.
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The latter are robust to outliers and skewed response distributions (Koenker 2005)
and are widely used in applications instead of conventional least-squares regression
during the last decade. It is worth noting that our hybrid method is similar to the one
adopted in GUIDE (Loh 2008).

In Sect. 12.5 we display predictive models for the 0.5 (median regression) and the
0.9 quantiles of log-duration. Median regression models can be used as conventional
incident duration predictors, while models for the 0.9 conditional quantile quantify
the uncertainty associated with each prediction and can also be viewed as predictors
of worst-case scenarios.

Finally, URP (prediction from only tree models) and hybrid tree-based quantile
regression models are compared with the well-known older approach known
as Classification and Regression Tree1 (CART) (Breiman et al. 1984) as well as
with the classic K-nearest-neighbor (KNN) methods without using traffic data as
predictors, as was done in previous work found in the literature. Overall prediction
accuracy is measured by mean absolute error (MAE1), median absolute error
(MAE2), mean absolute percentage error (MAPE1), and median absolute percent-
age error (MAPE2). We also present percentages of predictions that are within
a certain tolerance of their actual duration times, as suggested by Smith and
Smith (2001).

12.4 Data Description

We examine incidents that occurred in 17 major freeways in Bay area, California,
from April to June, 2010. The freeway network, shown in Fig. 12.1, connects ten
cities. Incident data were obtained from the California Highway Patrol computer-
aided dispatch (CHP/CAD) system (CHP 2011). Incident information was collected
from two sources: the first source provided the incident type and the corresponding
spatio-temporal information, while the second source provided further details on
incident characteristics, such as number of vehicles involved.2 Original incident
types were classified into three groups: collision, disabled vehicle, and traffic
hazard. In total, 1,245 incidents with valid data were analyzed. Table 12.1 contains
the basic summary statistics of the dataset. The empirical probability distribution
of incident duration has a long tail, which is in accordance with observations from
previous studies (Chung 2010). The average incident duration is 20.61 min, while

1CART is implemented in R (R Development Core Team 2009), using rpart (Therneau and
Atkinson 2011).
2Incidents associated with scheduled road closures or without any log were excluded from the
analysis. Duplicated incidents were identified by incident reporting time and location and were
excluded as well while their logs were reviewed and merged. An automatic text recognition
program was developed to parse incident logs.
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Fig. 12.1 Bay area freeway network with detectors in highlighted links

the median incident duration is 15.5 min. The set of incidents was randomly cut into
a training dataset (60% of data) and test dataset (40% of data).

Traffic data were obtained from the Caltrans Performance Measurement System
(PeMS). PeMS is a system designed to maintain California freeway traffic data
and compute annual congestion for facilities with surveillance systems in place,
typically loop detectors spaced approximately 0.5 mile apart on each freeway lane
(Choe et al. 2002). There are around 850 detectors in Bay area freeways, shown
as highlighted links in Fig. 12.1. The analysis that follows uses 5-min aggregated
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Table 12.1 Summary statistics

Incident data

Number of incidents 1,245
Median incident duration (min) 15.5
Average incident duration (min) 20.61
Proportion of incidents in “Collision” 0.52
Proportion of incidents in “Disabled” 0.26
Proportion of incidents in “Hazard” 0.22
Proportion of incidents with injuries 0.08
Average number of vehicle involved 1.30

Traffic data

Average historical speed across all incident sites (mph) 52.84
Average historical volume across all incident sites (veh/hr/ln) 1,361
Average historical occupancy across all incident sites 0.139
Average speed before incident (mph) 48.75
Average speed after incident (mph) 29.27
Average volume before incident (veh/hr/ln) 1,303
Average volume after incident (veh/hr/ln) 1,300
Average occupancy before incident 0.147
Average occupancy after incident 0.316

volume, speed, and occupancy data. Each incident was associated with traffic data
spatially and temporally:

• Spatially, each incident was matched with the closest link, which satisfied the
incident location descriptions. Upstream and downstream traffic detectors were
also identified accordingly.

• Temporally, a modified incident detection algorithm based on the DELOS (also
called Minnesota) algorithm (Chassiakos and Stephanedes 1993) was developed
to trace differences in occupancy between adjacent detectors through time, and
to detect an incident when these differences change significantly in a short time
period. This incident detection algorithm associates incident data with upstream
and downstream traffic data, locates the time stamp when the shockwave hits the
nearest upstream detector, and records traffic data before and after the incident’s
time of occurrence.

Table 12.1 depicts summary statistics of traffic data before and after the incident.
Prior knowledge suggests that incidents will cause congestion on an upstream
detector whereas traffic conditions will become less congested at downstream
stations (Payne and Tignor 1978). In our study, it is found that speed and occupancy
are affected dramatically by incidents, while volume remains relatively stable. On
average, speed drops 40% after an incident, while occupancy increases by 115%.
The impact of incidents on traffic data is illustrated in Fig. 12.2. Speeds, volumes,
and occupancies at the first upstream detector before and after an incident’s time
of occurrence are normalized and plotted in the same graph. Points on the 45◦ line
correspond to data that are not affected by an incident. One notes that speeds tend to
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Fig. 12.2 Scatter-plots of normalized traffic data (speed, volume, and occupancy) at the first
upstream detector before and after incident occurrence

decrease while occupancies tend to increase after the incident, in accordance with
prior expectations. On the other hand, volumes may increase or decrease, depending
on the levels of traffic congestion before and after the incident.

The candidate predictor variables are displayed in Table 12.2. All incident-
related variables are categorical except for the number of vehicles involved in
the incident. Figure 12.3 depicts a heteroscedastic relationship between incident
duration and occupancy range. The latter is measured by occupancy differences,
i.e., Occ(s, t)−Occ(s, t − 1), where section s indicates the first upstream detector,
and t is the time when the incident-induced impact is observed, with t − 1 being
the preceding time period to t. Each violin-type plot represents the empirical
probability density of incident duration at different ranges of occupancy. Clearly,
the variability of incident duration increases as occupancy increment increases.
Low occupancy ranges are associated with short incident durations, while high
occupancy increments may be related to both short and long incident durations.
This suggests that traffic data may provide significant predictive power for incident
duration. An increasing relationship between incident duration and the number of
vehicles involved in an incident can be observed in Fig. 12.4.
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Table 12.2 Candidate independent variables

Information type Independent variables Notation

Weather charac-
teristics

Rainy Rain

Snowy Snow
Temporal charac-

teristics
Time of day (AM, PM, Mid, Off-peak) t am, t pm,

t mid, t off

Day of week (Weekday or not) Weekday
Incident charac-

teristics
Incident type (collision, disabled, or hazard) Type

Num of vehicles involved num veh
Lanes blocked (binary) lane block
Truck involved (binary) Truck
Person injured (binary) Injured
CHP officer assigned (binary) CHP

Geometric char-
acteristics

Freeway (CA-17, CA-237, CA-24, CA-242,
CA-4, CA-84, CA-85, CA-87, CA-92,
I-238, I-280, I-580, I-680, I-80, I-880,
I-980, US-101)

freeway1∼
freeway17

City (Castro Valley, Contra Costa, Dublin,
Hayward, Marin, Oakland, Redwood City,
San Francisco, San Jose, Solano)

city1∼city10

Interstate highway Interstate
Ramp exists near incident location

(upstream/downstream on-ramp/off-ramp;
binary)

uponramp,
upofframp,
downonramp,
downofframp

Upstream off-ramp and a downstream
on-ramp exist near incident location
(binary)

Junction

Upstream on-ramp and/or downstream
off-ramp exist near incident location
(binary)

Junctionbwt

number of lanes (2 or 3, 4, 5+) ln23, ln4, ln5
Traffic character-

istics
Historical mean of traffic data (speed,

volume, and occupancy) at the time of
incident

v mean, q mean,
o mean

Traffic data at the first upstream detector
before incident detection

v prior, q prior,
o prior

Traffic data at the first upstream detector after
incident detection

v inc, q inc,
o inc

Traffic data after incident occurrence divided
by measurements collected before
incident occurrence

v ratio, q ratio,
o ratio

Traffic data increments after incident
occurrence

v diff, q diff,
o diff

Note: v ratio= v inc/v prior; v diff= v inc – v prior
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Fig. 12.3 Empirical distributions of incident duration for different occupancy increment levels
after incident detection at the first upstream detector

Fig. 12.4 Box-plots of incident duration for different numbers of vehicles involved
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12.5 Model Estimation and Validation

Two URP trees were built based on the different sets of predictors. The first one,
called URP tree1, shown in Fig. 12.5, was created using all candidate variables in
Table 12.2. The second one (URP) was obtained using all but traffic variables and is
depicted in Fig. 12.6. The decision path of the tree model is followed by answering
a yes or no question at each node. Eventually, at each terminal node, a prediction is
made based on the mean of incident duration of the data in that category.

Specifically, URP tree2 is a subset of URP tree1 that does not contain traffic data
variables. According to the p-values in each node in both URP tree1 and URP tree2,
the most significant predictor variables are incident characteristics (type, injured,
num veh and lane block). As shown below, URP tree1 turns out to yield improved
prediction accuracy than URP tree2, demonstrating that the incorporation of traffic
data provides increased predictive power to the model.

In both URP trees the first node separates incidents according to type. This find-
ing is in accordance with earlier studies which suggest that the empirical distribution
of incident duration depends significantly on incident type (Kim et al. 2008). In the
case of traffic collisions, the second node divides incidents according to the presence
or not of an injury. In the URP tree with traffic data, URP tree1, if both collision
and injury occur, v prior, the level of speed prior to an incident divides the dataset
further. Hence, collisions with injuries and high prior speeds (>48.8mph) cause
the longest incident durations in URP tree. High speeds prior to the incident are
usually associated with off-peak periods; severe off-peak incidents are expected to
last longer due to fewer available response units.

Fig. 12.5 URP tree1 (with traffic data): Unbiased recursive partition tree using all candidate
predictors in training data. For each inner node, the Bonferroni-adjusted p-values are given.
A box-plot of the log of incident duration is displayed in each terminal node
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Fig. 12.6 URP tree2 (without traffic data): Unbiased recursive partition tree using only categorical
variables in training data. For each inner node, the Bonferroni-adjusted p-values are shown. A box-
plot of the log of incident duration is displayed in each terminal node

Node 3 indicates that CHP officer involvement reduces incident duration while
node 4 indicates that a large reduction in traffic volume is associated with elevated
incident duration. Node 5 uses historical occupancy to split incidents. Large
values correspond to peak-periods, which tend to have short incident duration.
Information from node 6 is consistent with the observations from Fig. 12.3: a larger
occupancy increment is associated with larger incident duration. Incidents with
disabled vehicles (num veh= 1) have longer expected duration than traffic hazard
(num veh= 0). Node 17 shows that information on blocked lanes is significant for
duration prediction with disabled vehicles.

To gain better prediction accuracy, quantile regression models are built for
each terminal node in URP tree2. Unlike least-squared regression trees, which
concentrate on modeling the relationship between the response and the covariates
at the center of the response distribution, quantile regression can provide insight
into the nature of that relationship at the center as well as the tails of the response
distribution. Table 12.3 shows the coefficients of the six estimated regression models
for the 0.5 (median) and 0.9 quantiles of the logarithm of incident duration. Besides
traffic characteristics, geometric characteristics appear in most of the estimated
regression models, such as ramp, city, and freeway junction information. This
implies that incident duration varies significantly for different geometry factors,
as well as different jurisdictions. For example, incidents that happen in freeway
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Table 12.3 Coefficients of regression models estimated at each terminal node of URPtree2

0.5 quantile 0.9 quantile

Regressor Value Std. Error t value Regressor Value Std. Error t value

Node 4 Node 4
constant −2.7325 0.1266 −21.5818 constant −3.3950 0.1967 −17.2611
city2 −0.2881 0.1692 −1.7025 interstate −0.1924 0.1353 −1.4215
q diff −0.0007 0.0003 −2.3113 junctionbwt −0.2772 0.1076 −2.5768
o diff −1.8049 0.6023 −2.9968 o prior −1.3523 0.6291 −2.1495
Node 5 o diff −1.8274 0.7205 −2.5364
constant −2.6672 0.0910 −29.2972 Node 5
Node 6 lane block −0.3862 0.1603 −2.4096
v diff −0.0175 0.0144 −1.2180 city2 −0.9949 0.4525 −2.1985
v prior −0.0566 0.0074 −7.6151 city6 −0.7597 0.3037 −2.5012
o prior −6.6888 1.3426 −4.9818 city7 −0.3904 0.2175 −1.7954
city8 −0.8139 0.3257 −2.4987 city9 −0.6949 0.1800 −3.8601
city2 −0.5440 0.2358 −2.3071 q mean −0.0006 0.0003 −1.8679
Node 8 v prior −0.0441 0.0108 −4.0738

constant −1.7954 0.1688 −10.6352 o prior −4.3970 1.2343 −3.5624
junction −0.6095 0.1287 −4.7376 v diff −0.0631 0.0182 −3.4759
uponramp −0.2327 0.1087 −2.1402 o diff −8.0788 2.2776 −3.5470
upofframp −0.4717 0.1057 −4.4644 Node 6
v prior −0.0060 0.0028 −2.1330 interstate −0.4334 0.3388 −1.2792
Node 10 o diff −3.1075 1.5401 −2.0177

constant −1.7715 0.2757 −6.4263 v prior −0.0426 0.0071 −5.9916
t mid −0.4259 0.1787 −2.3832 o prior −7.9935 1.7221 −4.6418
t off −0.6355 0.2892 −2.1977 city8 −0.8302 0.3984 −2.0837
t pm −0.2677 0.1373 −1.9501 Node 8
junction −0.2560 0.1296 −1.9751 constant −2.8679 0.1357 −21.1301
CHP −0.3997 0.1244 −3.2133 junction −0.8737 0.2749 −3.1787
downonramp −0.2272 0.1599 −1.4208 junctionbwt −0.5531 0.2895 −1.9109
city6 −0.3466 0.2346 −1.4772 upofframp −1.1451 0.2178 −5.2583
q mean −0.0002 0.0002 −1.5193 downonramp −0.3267 0.1980 −1.6497
o diff −1.7876 1.0319 −1.7324 Node 10
Node 11 constant −3.7102 0.3994 −9.2896

constant −1.6724 0.6992 −2.3918 junction −1.2756 0.4000 −3.1891
weekday −0.5759 0.2481 −2.3209 upofframp −1.1815 0.3823 −3.0906
interstate −0.6921 0.2970 −2.3303 downonramp −0.8234 0.3498 −2.3537
truck −0.4832 0.2702 −1.7882 downofframp −0.8556 0.4051 −2.1121
uponramp −0.2953 0.1660 −1.7790 city6 −0.3029 0.1863 −1.6260
freeway12 −0.3397 0.2504 −1.3564 v diff −0.0110 0.0057 −1.9181
v prior −0.0198 0.0087 −2.2799 q diff −0.0007 0.0004 −2.0189
o prior −4.8327 1.7361 −2.7836 o diff −2.4608 1.4465 −1.7012
o diff −2.5521 1.3578 −1.8796 Node 11

constant −3.6738 0.1235 −29.7529
uponramp −0.4549 0.1742 −2.6114
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Fig. 12.7 Comparisons of median absolute percentage error for URPtree2 and 0.5 quantile
regression in each terminal node

Fig. 12.8 Comparisons of 0.5 and 0.9 quantile estimates

junctions are related to increased clearance times, while the presence of an upstream
off-ramp may decrease incident duration.

By replacing the mean in the final nodes of tree2 by quantile regression models,
the forecasting accuracy (measured by median absolute percentage error) on each
terminal node was improved on average by 15%, as can be observed in Fig. 12.7.
To better visualize the difference between 0.5 and 0.9 quantile estimates, the
corresponding predictions are plotted in Fig. 12.8; the average ratio of 0.9 and 0.5
quantile estimates is 2.29.
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Fig. 12.9 Regression tree from CART for the training data. The split is beneath each intermediate
node. Types a,b, and c represent collision, disabled vehicle and hazard, respectively. The number
beneath each terminal node is the predicted logarithm of incident duration

Finally, the proposed hybrid tree-based quantile regression model is
compared with the well-known Classification and Regression Tree3 (CART)
(Breiman et al. 1984) and K-nearest-neighbor (KNN) methods that do not use
traffic data, as was reported in earlier studies in the literature. Hence, we consider
the CART and the KNN approaches as performed here to be benchmarks for this
research. The tree model from CART is depicted in Fig. 12.9. Again, the first nodes
are incident type and the presence of an injury. KNN selects k past incidents that
are closest to the current one and takes the mean or median of incidents in the
neighborhood. A similar KNN approach implemented for incident prediction was
reported in previous studies (Qi and Smith 2004; Smith and Smith 2001). The
predictors in URPtree2 (Fig. 12.6) were used as the set of descriptors for each
incident in KNN. The distance metric of Qi and Smith (2004) was adopted for
measuring similarity between current and past incidents.

Table 12.4 reports measures of predictive accuracy for all examined methods.
Overall prediction accuracy was measured by mean absolute error (denoted as
MAE1), in minutes, median absolute error (denoted as MAE2), in minutes, mean
absolute percentage error (denoted as MAPE1), and median absolute percentage
error (denoted as MAPE2). As can be observed from the table, the URP tree
approaches, and specifically the hybrid tree-based quantile regression, reduced error
across the board as compared to the KNN and CART approaches used in the
literature.

3CART is implemented in R (R Development Core Team 2009), using rpart (Therneau and
Atkinson 2011).
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Table 12.4 Evaluation of predictive error with different methods

KNN CART

URP tree2
(without
traffic data)

URP tree1 (with
traffic data)

Hybrid
tree-based
quantile reg.

MAE1 (min) 9.77 9.62 9.39 9.15 8.54
MAPE1 (%) 59.2 57.1 55.1 53.2 49.1
MAE2 (min) 6.2 6.02 5.81 5.78 4.99
MAPE2 (%) 42.2 42.2 40.4 39.8 34.5

Table 12.5 Comparisons of percentage of test samples in different prediction tolerances

KNN (%) CART (%)

URP tree2
(without traffic
data) (%)

URP tree1
(with traffic
data) (%)

Hybrid
tree-based
quantile
reg. (%)

Prediction error
<= 5 min

42.8 42.6 43.4 43.96 50.1

Prediction error
<= 10 min

69.1 70.1 71.2 72.1 72.3

Prediction error
<= 15 min

82.5 82.4 84.8 83 84.6

Prediction error
<= 30 min

94.2 94.6 94.7 94.5 94.3

Prediction error
<= 60 min

98.8 99.2 99 99.2 99.1

An alternative measure of effectiveness is related to a certain tolerance of the
prediction error. As suggested by Smith and Smith (2001), it is useful to know the
percentage of predictions that are within a certain tolerance of their actual duration
times. Table 12.5 reports accuracy in terms of tolerance levels. Five tolerance values
were used: 5, 10, 15, 30, and 60 min.

Over 50% of incidents have been predicted with less than 5 min prediction error
with hybrid tree-based quantile regression, while other published methods reached
at most 44%. For the ranges of prediction error under 5, 10, and 15 min, there
were clear advantages to using the URP approaches proposed here. Note that for
thresholds of 30 and 60 min, the benefits of the proposed approach decrease. That is
not surprising for this dataset in that the average and median incident durations were
20 and 15 min, respectively. Hence relatively few incidents fall into the range of
30 min or more, and the benefits of predicting better those durations is therefore not
as visible. Nonetheless, the most important tolerance levels for the incidents in the
dataset used in this study, namely the 5, 10, and 15 min thresholds, all demonstrated
significant improvements via the use of the URP techniques developed here.
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12.6 Concluding Remarks

In this chapter, the use of unbiased recursive partitioning (URP) on both incident
characteristic data and traffic data is proposed for incident duration prediction.
In particular, a hybrid tree-based quantile regression method was developed;
hybrid tree-based quantile regression modeling incorporates the merits of both
quantile regression modeling and tree-structured modeling. Its merits include simple
interpretation and ease of handling categorical covariates, robustness, and flexibility
for nonlinearity. Given a URP tree, the hybrid method works by obtaining quantile
regression models for each terminal node. With both 0.5 and 0.9 quantile estimates,
traffic operators may understand not only the actual prediction but also the worst
case results, and visualize the prediction range easily. Compared with the classic
classification and regression tree (CART) approach, as well as a K-nearest neighbor
approach, the URP trees and hybrid tree-based quantile regression proposed here
appear to offer higher prediction accuracy.

The overall findings of this chapter can be summarized as follows:

• Incident characteristics (type, injuries, blocked lanes, number of vehicle in-
volved, etc.) are the most significant predictors of incident duration.

• Traffic data can provide additional information that improves forecasting accu-
racy. Incidents with high prior speeds (occurring for instance during the night
or during off-peak hours) generally last longer than those in daytime due to the
lack of sufficient response units for incident clearance operations. Incidents with
large occupancy increment tend to have longer duration than those with small
occupancy changes.

• Incident location matters. Different geometry factors and jurisdiction may result
in different incident duration.

In summary, it is essential to forecast the spatial-temporal incident impact based
on both incident duration prediction and traffic conditions. Spatial-temporal incident
impact aims to capture how congestion propagates over space and time. Future work
in this area should leverage not only the model structure developed here, but in
an online decision support system would incorporate real-time traffic predictions
as predictor variables, in addition to the incident characteristics as they become
available. Together, such a system can provide traffic operators with important
components of an optimized control strategy for non-recurrent congestion.
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real network

Dallas Network, 107–109
differences, 104–105
DynaSmart-P network, 104
geometric layout, Dallas fort worth

network, 104, 106
integrated corridor control (See

Integrated corridor control)
optimal control plan, 105
signal timing design procedure,

105–106
SR-81 corridor, 104

simple network
convergence process, 104, 105
geometric layout and demand, 103–104

techniques, 92
traffic flow model (See Traffic flow model)
transportation corridor, 90
urban signal control, 111

SMM. See Switching-mode model (SMM)
Spatial traffic flow model. See Traffic flow

model

SPSA. See Simultaneous perturbation
stochastic approximation (SPSA)

STARCHILD. See Simulation of travel/activity
responses to complex household
interactive logistic decisions
(STARCHILD)

Stochastic approximation. See Simultaneous
perturbation stochastic
approximation (SPSA)

Stochastic cell transmission model (SCTM),
170–171

Stochastic dynamic programming models,
249

Stochastic dynamic user equilibrium, 165
Stochastic dynamic user optimal (SDUO)

cell-based dynamic equilibrium model,
181, 182

departure time choice principle, 178–179
route choice principle, 178

Store and forward (SF) network, 27, 56
Switching-mode model (SMM), 169–170
System optimal solution

equivalence, marginal user-equilibrium
condition, 6

mathematical programming formulation,
5–6

T
TASHA. See Travel activity scheduler for

household agents (TASHA)
Time-varying network. See Within-day

activity
Time-varying travel cost, 228, 229
TNTT. See Total network travel time (TNTT)
Total network travel time (TNTT), 104, 107
Traffic assignment. See Dynamic traffic

assignment (DTA)
Traffic dynamics. See Dynamic traffic

assignment (DTA)
Traffic equilibrium assignment models, 203
Traffic flow component

actual route travel time, 173–175
CTM, 166–168
incident management systems, 288
mapping, 166
MC-SCTM, 171–173
MCTM and SMM, 169–170
SCTM, 170–171

Traffic flow model
CTM, 91
HCM methods, 90
LWR model, 90
METANET, 91
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point-queue (P-Q) and spatial queue (S-Q),
90–91

TRANSYT version 8, 90
Traffic operation design, 18–19
Transportation corridor, 90
Travel activity scheduler for household agents

(TASHA), 226
Traveling salesman problem (TSP), 268
Travel times. See also Arterial travel times

analysis
ADVANCE project, 117
arterial-based urban network, 117
ATIS system, 117
AVI technology, 118
AVL equipment, 117
convexifaction method, 175
CTM simulation, 165, 171, 174
CVRP, 272, 273, 276
direction-dependent nature, 254
discontinuity and non-monotonic route,

186
dynamics, 20–21
estimation, 118
and FIFO constraint, 14–15
GPS-GIS integrated system, 117
information programs, 116
license-plate and test-car survey, 116
linear path, 252
MAC, 118
mean, 215, 216
monitor trip times, 116
optimal path finding, 259–260
people and shippers, 115–116
route, 203
safety margin, 180
surveys and techniques, 116
taxis and buses, 117–118
teal-time, large-scale applications, 187
time-dependent nature, 267
TNTT, 104, 107
traffic management center, 266
transportation systems, 115
trip frequencies, 218
variations, 91
video and machine vision analysis,

116–117
VMS network, 208
VRP, 266
work-conserving controller, 39

TSP. See Traveling salesman problem (TSP)

U
UAVs. See Unmanned aerial vehicles (UAVs)

Unbiased recursive partitioning (URP)
Bonferroni correction, 290
CART and KNN, 291
conditional distribution, statistics

measurement, 290
conventional tree models, 290
MAE1 and MAE2, 291
MAPE1 and MAPE2, 291
median regression models, 291
model estimation and validation

accuracy in terms, tolerance levels., 302
CART, 301
CHP officer, 298
coefficients, six estimated regression

models, 298, 299
hybrid tree-based quantile regression

model, 301
KNN, 301
least-squared regression trees, 298
median absolute percentage error, 300
predictive accuracy measurement,

301–302
quantile estimates, 0.5 and 0.9, 300
tree1 (with traffic data), 297
tree2 (without traffic data), 297, 298

outliers and skewed response distributions,
291

over-fitting and variable selection, 290
Unmanned aerial vehicles (UAVs), 250
URP. See Unbiased recursive partitioning

(URP)
User equilibrium

DTA problem, 165
FHWA method, 6–7
Frank-Wolfe algorithm, 6
incremental assignment, 7
iterations, 21–22
mathematical programming formulation,

3–4
static traffic assignment, 6
travelers, 180
Wardrop principle, 4–5

Utility maximization, 201–202, 225, 229, 232

V
Variable message sign (VMS), 206, 217, 218
Variational inequality problem (VIP)

boundary minimizer, 8–9
formulation, 7
framework, 8
gradient relationship, 10
interior minimizer, 8
Kuhn-Tucker conditions, 10, 11
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Variational inequality problem (VIP) (cont.)
user-equilibrium problem, 9
VI Problem, 7

Vehicle routing and traffic demand input, 97
Vehicle routing problem (VRP). See

Capacitated vehicle routing
problems (CVRP)

Vessel routing
optimal path, 249
sea state characterization, 256

VIP. See Variational inequality problem (VIP)
VMS. See Variable message sign (VMS)

W
Wardrop principle, 4–5
Willingness to pay (WTP), 201–202
Within-day activity

ABM, 226
activities, schedule set, 237, 238
ATN, 227
branch-and-cut technique, 228
branching step, 238, 239
C language, 237
consistency search step, 239
decision process, 228
dynamic traffic assignment, 242
GPS technology, 241
hypothetical traveler, 237
model and solution methodology

mathematical model, 232–234
rescheduling decision process,

230–232
solution algorithm, 234–237

modified schedule, travel time change,
240, 241

network/traffic conditions, 227
O-D-T journey, 227
relaxation step, 238, 239
rescheduling decision (See Rescheduling

decision)
sequence connections, 238, 239
STARCHILD, 226, 227
time-varying travel times, 239, 240
traveling public makes trips, 225
trip-based approach, 226
updated schedule by solution algorithm,

238
Work-conserving controllers

adaptive signal control, 44–45
bound α, 60–61
bound β, 61–62
feed back, 59–60
fixed cycle, 39
single-phase intersections

definition, 40
description, 39–40
network calculus, 41
Poisson processes, 41
stabilizing, 41
weighted queue, 40–41

travel time, 39
two counter

actuated time, intersections, 42
construction, 44
eight phases, standard intersection,

42–43
nonempty queue, 43

vector-matrix
bound μ , 62–64
bound ı́, 64

WTP. See Willingness to pay (WTP)
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